-
Notifications
You must be signed in to change notification settings - Fork 44
/
LLT_Decompose.go
77 lines (72 loc) · 2 KB
/
LLT_Decompose.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// LLT_Decompose
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-8
版本 : 0.0.0
------------------------------------------------------
求对称正定矩阵的平方根分解法
理论:
A = LL'
参考 李信真, 车刚明, 欧阳洁, 等. 计算方法. 西北工业大学
出版社, 2000, pp 57-58.
------------------------------------------------------
输入 :
A 矩阵,对称正定
输出 :
L 下三角矩阵, 上三角矩阵为其转置
err 解出标志:false-未解出或达到步数上限;
true-全部解出
------------------------------------------------------
*/
package goNum
import (
"math"
)
// LLT_Decompose 求对称正定矩阵的平方根分解法
func LLT_Decompose(A Matrix) (Matrix, bool) {
/*
求对称正定矩阵的平方根分解法
输入 :
A 矩阵,对称正定
输出 :
L
err 解出标志:false-未解出或达到步数上限;
true-全部解出
*/
//判断对称
if A.Rows != A.Columns {
panic("Error in goNum.LLT_Decompose: A is not symmetry")
}
n := A.Rows
L := ZeroMatrix(n, n)
var err bool = false
//计算开始
//第一列
L.SetMatrix(0, 0, math.Sqrt(A.GetFromMatrix(0, 0)))
l11 := L.GetFromMatrix(0, 0)
for j := 1; j < n; j++ {
L.SetMatrix(j, 0, A.GetFromMatrix(0, j)/l11)
}
//其它列
for k := 1; k < n; k++ {
//主对角元lkk
var temp0 float64
for m := 0; m < k; m++ {
temp0 += L.GetFromMatrix(k, m) * L.GetFromMatrix(k, m)
}
temp0 = A.GetFromMatrix(k, k) - temp0
L.SetMatrix(k, k, math.Sqrt(temp0))
//k列其它元
for j := k + 1; j < n; j++ {
var temp1 float64
for m := 0; m < k; m++ {
temp1 += L.GetFromMatrix(k, m) * L.GetFromMatrix(j, m)
}
temp1 = (A.GetFromMatrix(k, j) - temp1) / L.GetFromMatrix(k, k)
L.SetMatrix(j, k, temp1)
}
}
err = true
return L, err
}