-
Notifications
You must be signed in to change notification settings - Fork 44
/
FittingLSQ_test.go
103 lines (93 loc) · 2.57 KB
/
FittingLSQ_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// FittingLSQ_test
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-23
版本 : 0.0.0
------------------------------------------------------
线性最小二乘拟合
理论:
设对N个数据对的线性拟合表示为
y = Ax + B
N N N
A*Sum xi^2 + B*Sum xi = Sum xiyi
i=1 i=1 i=1
N N
A*Sum xi + NB = Sum yi
i=1 i=1
解此二元线性方程组即可得A、B
参考:John H. Mathews and Kurtis D. Fink. Numerical
methods using MATLAB, 4th ed. Pearson
Education, 2004. ss 5.1
------------------------------------------------------
输入 :
XY 数据对,nx2,x-y
输出 :
sol 解,2x1
err 解出标志:false-未解出或达到边界;
true-全部解出
------------------------------------------------------
*/
package goNum_test
import (
"testing"
"github.com/chfenger/goNum"
)
// FittingLSQ 线性最小二乘拟合
func FittingLSQ(XY goNum.Matrix) (goNum.Matrix, bool) {
/*
线性最小二乘拟合
输入 :
XY 数据对,nx2,x-y
输出 :
sol 解,2x1
err 解出标志:false-未解出或达到边界;
true-全部解出
*/
//判断XY的维数
if XY.Columns < 2 {
panic("Error in goNum.FittingLSQ: At least 2 columns of XY needed")
}
sol := goNum.ZeroMatrix(2, 1)
AS := goNum.ZeroMatrix(2, 2)
BS := goNum.ZeroMatrix(2, 1)
var err bool = false
var sx2, sx, sxy, sy float64
n := XY.Rows
//求累加和
for i := 0; i < n; i++ {
sx2 += XY.GetFromMatrix(i, 0) * XY.GetFromMatrix(i, 0)
sx += XY.GetFromMatrix(i, 0)
sxy += XY.GetFromMatrix(i, 0) * XY.GetFromMatrix(i, 1)
sy += XY.GetFromMatrix(i, 1)
}
AS.SetMatrix(0, 0, sx2)
AS.SetMatrix(0, 1, sx)
AS.SetMatrix(1, 0, sx)
AS.SetMatrix(1, 1, float64(n))
BS.SetMatrix(0, 0, sxy)
BS.SetMatrix(1, 0, sy)
//解二元线性方程组
soltemp, errtemp := goNum.LEs_ECPE(goNum.Matrix2ToSlices(AS), goNum.Matrix1ToSlices(BS))
if errtemp != true {
panic("Error in goNum.FittingLSQ: Solve error")
}
sol.SetMatrix(0, 0, soltemp[1])
sol.SetMatrix(1, 0, soltemp[0])
err = true
return sol, err
}
func BenchmarkFittingLSQ(b *testing.B) {
xy47 := goNum.NewMatrix(8, 2, []float64{
-1.0, 10.0,
0.0, 9.0,
1.0, 7.0,
2.0, 5.0,
3.0, 4.0,
4.0, 3.0,
5.0, 0.0,
6.0, -1.0})
for i := 0; i < b.N; i++ {
goNum.FittingLSQ(xy47)
}
}