-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_rotten_v2.py
390 lines (313 loc) · 17.6 KB
/
data_rotten_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""RottenMovie dataset"""
import numpy as np
import os
import re
import pandas as pd
import scipy.sparse as sp
import torch as th
import dgl
from dgl.data.utils import download, extract_archive, get_download_dir
from utils import to_etype_name
import pandas as pd
import os
import datetime
import numpy as np
import pandas as pd
class RottenMovie(object):
def __init__(self,
# paths for dataset
train_data,
test_data,
movie_data,
user_data,
emotion=False,
sentiment=False,
name='rotten',
device='cpu',
mix_cpu_gpu=False,
use_one_hot_fea=False,
symm=True,
valid_ratio=0.1,
):
self._name = name
self._device = device
self._symm = symm
self._valid_ratio = valid_ratio
self.sentiment = sentiment
self.emotion = emotion
print('......1: 데이터 로드')
self.all_train_rating_info = pd.read_csv(train_data, encoding='utf-8')
self.test_rating_info = pd.read_csv(test_data, encoding='utf-8')
#######
self.all_train_rating_info['sentiment'] = self.all_train_rating_info['sentiment'] + 11 #rating 과 구분하기위해 11 더해줌 : 11 - 15
self.test_rating_info['sentiment'] = self.test_rating_info['sentiment'] + 11 #rating 과 구분하기위해 11 더해줌 : 11 - 15
self.all_train_rating_info['emotion'] = self.all_train_rating_info['emotion'] + 16 # 16~21
self.test_rating_info['emotion'] = self.test_rating_info['emotion'] + 16 # 16~21
self.all_rating_info = pd.concat([self.all_train_rating_info, self.test_rating_info], ignore_index=True)
self.user_info = pd.read_csv(user_data, encoding='utf-8')
#movie data processing
movie_df = pd.read_csv(movie_data, encoding='utf-8')
movie_df.reset_index(inplace=True)
movie_df.rename(columns = {"index": "movie_id"}, inplace=True)
movie_df = movie_df[['movie_id','movie_title','original_release_date', 'genres']]
movie_df['original_release_date']= pd.to_datetime(movie_df['original_release_date'])
movie_df['year'] = movie_df['original_release_date'].dt.strftime('%Y')
mean_val = pd.to_numeric(movie_df['year']).mean()
movie_df = movie_df.fillna({'original_release_date':movie_df.original_release_date.mean()})
movie_df = movie_df.fillna({'year':mean_val})
movie_df = movie_df.fillna({'genres' : 'unknown'})
self.movie_info = movie_df
self.movie_genre_dummies = movie_df['genres'].str.get_dummies(sep=',')
self.movie_info = pd.concat([movie_df, self.movie_genre_dummies], axis=1)
print('......3: Train/Valid 분리')
num_valid = int(np.ceil(self.all_train_rating_info.shape[0] * valid_ratio))
shuffled_idx = np.random.permutation(self.all_train_rating_info.shape[0])
self.train_idx = shuffled_idx[num_valid: ]
self.valid_idx = shuffled_idx[ :num_valid]
self.train_rating_info = self.all_train_rating_info.iloc[self.train_idx]
self.valid_rating_info = self.all_train_rating_info.iloc[self.valid_idx]
print("All rating pairs : {}".format(self.all_rating_info.shape[0]))
print("\tAll train rating pairs : {}".format(self.all_train_rating_info.shape[0]))
print("\t\tTrain rating pairs : {}".format(self.train_rating_info.shape[0]))
print("\t\tValid rating pairs : {}".format(self.valid_rating_info.shape[0]))
print("\tTest rating pairs : {}".format(self.test_rating_info.shape[0]))
print('......4: User/Movie를 Global id에 매핑')
# Map user/movie to the global id
self.global_user_id_map = {ele: i for i, ele in enumerate(self.user_info['user_id'])}
self.global_movie_id_map = {ele: i for i, ele in enumerate(self.movie_info['movie_id'])}
print('Total user number = {}, movie number = {}'.format(len(self.global_user_id_map),
len(self.global_movie_id_map)))
self._num_user = len(self.global_user_id_map)
self._num_movie = len(self.global_movie_id_map)
print('......5: features 생성')
### Generate features
self.user_feature = None
self.movie_feature = None
# load feature
if use_one_hot_fea == False:
self.user_feature = th.FloatTensor(self._process_user_fea())
self.movie_feature = th.FloatTensor(self._process_movie_fea())
# if mix_cpu_gpu, we put features in CPU
if mix_cpu_gpu == False:
self.user_feature = self.user_feature.to(self._device)
self.movie_feature = self.movie_feature.to(self._device)
if self.user_feature is None:
self.user_feature_shape = (self.num_user, self.num_user)
self.movie_feature_shape = (self.num_movie, self.num_movie)
else:
self.user_feature_shape = self.user_feature.shape
self.movie_feature_shape = self.movie_feature.shape
info_line = "Feature dim: "
info_line += "\nuser: {}".format(self.user_feature_shape)
info_line += "\nmovie: {}".format(self.movie_feature_shape)
print(info_line)
print('......6: Graph Encoder/Decoder 생성')
self.emotion_rating_values = list(set(self.all_rating_info["emotion"].values))
self.sentiment_rating_values = list(set(self.all_rating_info["sentiment"].values))
self.possible_rating_values = list(set(self.all_rating_info["rating"].values))
self.rating_values = self.possible_rating_values
if self.sentiment == True:
self.rating_values += self.sentiment_rating_values
if self.emotion == True:
self.rating_values += self.emotion_rating_values
print("rating_values : ", self.rating_values)
all_rating_pairs, all_rating_values, all_sentiment_values, all_emotion_values = self._generate_pair_value(self.all_rating_info)
all_train_rating_pairs, all_train_rating_values, all_train_sentiment_values, all_train_emotion_values = self._generate_pair_value(self.all_train_rating_info)
train_rating_pairs, train_rating_values, train_sentiment_values, train_emotion_values = self._generate_pair_value(self.train_rating_info)
valid_rating_pairs, valid_rating_values, valid_sentiment_values, valid_emotion_values = self._generate_pair_value(self.valid_rating_info)
test_rating_pairs, test_rating_values, test_sentiment_values, test_emotion_values = self._generate_pair_value(self.test_rating_info)
# self.train_s_graph, self.train_e_graph = self._generate_sub_graph(train_rating_pairs, train_sentiment_values, train_emotion_values)
self.train_rating_pairs = train_rating_pairs
self.train_enc_graph = self._generate_enc_graph(train_rating_pairs, train_rating_values, train_sentiment_values, train_emotion_values, add_support=True)
self.train_dec_graph = self._generate_dec_graph(train_rating_pairs)
self.train_labels = self._make_labels(train_rating_values)
self.train_truths = th.FloatTensor(train_rating_values).to(device)
# self.valid_s_graph, self.valid_e_graph = self.train_s_graph, self.train_e_graph
self.valid_enc_graph = self._generate_enc_graph(all_train_rating_pairs, train_rating_values, train_sentiment_values, train_emotion_values, add_support=True)
self.valid_dec_graph = self._generate_dec_graph(valid_rating_pairs)
self.valid_labels = self._make_labels(valid_rating_values)
self.valid_truths = th.FloatTensor(valid_rating_values).to(device)
test_pairs =(np.concatenate((train_rating_pairs[0], test_rating_pairs[0]), axis=0), np.concatenate((train_rating_pairs[1], test_rating_pairs[1]), axis=0))
self.test_enc_graph = self._generate_enc_graph(test_pairs, train_rating_values, train_sentiment_values, train_emotion_values, add_support=True)
self.test_dec_graph = self._generate_dec_graph(test_rating_pairs)
self.test_labels = self._make_labels(test_rating_values)
self.test_truths = th.FloatTensor(test_rating_values).to(device)
print('......7: Graph 결과 출력')
print("Train enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.train_enc_graph.number_of_nodes('user'), self.train_enc_graph.number_of_nodes('movie'),
self._npairs(self.train_enc_graph)))
print("Train dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.train_dec_graph.number_of_nodes('user'), self.train_dec_graph.number_of_nodes('movie'),
self.train_dec_graph.number_of_edges()))
print("Valid enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.valid_enc_graph.number_of_nodes('user'), self.valid_enc_graph.number_of_nodes('movie'),
self._npairs(self.valid_enc_graph)))
print("Valid dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.valid_dec_graph.number_of_nodes('user'), self.valid_dec_graph.number_of_nodes('movie'),
self.valid_dec_graph.number_of_edges()))
print("Test enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.test_enc_graph.number_of_nodes('user'), self.test_enc_graph.number_of_nodes('movie'),
self._npairs(self.test_enc_graph)))
print("Test dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.test_dec_graph.number_of_nodes('user'), self.test_dec_graph.number_of_nodes('movie'),
self.test_dec_graph.number_of_edges()))
def _make_labels(self, ratings):
labels = th.LongTensor(np.searchsorted([i*0.5 for i in range(1,11)], ratings)).to(self._device)
return labels
def _npairs(self, graph):
rst = 0
for r in self.possible_rating_values:
r = to_etype_name(r)
rst += graph.number_of_edges(str(r))
return rst
def _generate_pair_value(self, rating_info):
rating_pairs = (np.array([self.global_user_id_map[ele] for ele in rating_info["user_id"]],
dtype=np.int64),
np.array([self.global_movie_id_map[ele] for ele in rating_info["movie_id"]],
dtype=np.int64))
rating_values = rating_info["rating"].values.astype(np.float32)
sentiment_values = rating_info["sentiment"].values.astype(np.int16)
emotion_values = rating_info["emotion"].values.astype(np.int16)
return rating_pairs, rating_values, sentiment_values, emotion_values
def _generate_enc_graph(self, rating_pairs, rating_values, sentiment_values, emotion_values, add_support=False):
data_dict = dict()
num_nodes_dict = {'user': self._num_user, 'movie': self._num_movie}
rating_row, rating_col = rating_pairs
for rating in self.possible_rating_values:
ridx = np.where(rating_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
if self.sentiment == True:
for rating in self.sentiment_rating_values:
ridx = np.where(sentiment_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
if self.emotion == True:
for rating in self.emotion_rating_values:
ridx = np.where(emotion_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
graph = dgl.heterograph(data_dict, num_nodes_dict=num_nodes_dict)
# sanity check
# assert len(rating_pairs[0]) == sum([graph.number_of_edges(et) for et in graph.etypes]) // 2
if add_support:
def _calc_norm(x):
x = x.numpy().astype('float32')
x[x == 0.] = np.inf
x = th.FloatTensor(1. / np.sqrt(x))
return x.unsqueeze(1)
user_ci = []
user_cj = []
movie_ci = []
movie_cj = []
for r in self.possible_rating_values:
r = to_etype_name(r)
user_ci.append(graph['rev-%s' % r].in_degrees())
movie_ci.append(graph[r].in_degrees())
if self._symm:
user_cj.append(graph[r].out_degrees())
movie_cj.append(graph['rev-%s' % r].out_degrees())
else:
user_cj.append(th.zeros((self.num_user,)))
movie_cj.append(th.zeros((self.num_movie,)))
user_ci = _calc_norm(sum(user_ci))
movie_ci = _calc_norm(sum(movie_ci))
if self._symm:
user_cj = _calc_norm(sum(user_cj))
movie_cj = _calc_norm(sum(movie_cj))
else:
user_cj = th.ones(self.num_user,)
movie_cj = th.ones(self.num_movie,)
graph.nodes['user'].data.update({'ci' : user_ci, 'cj' : user_cj})
graph.nodes['movie'].data.update({'ci' : movie_ci, 'cj' : movie_cj})
return graph
def _generate_dec_graph(self, rating_pairs):
ones = np.ones_like(rating_pairs[0])
user_movie_ratings_coo = sp.coo_matrix(
(ones, rating_pairs),
shape=(self.num_user, self.num_movie), dtype=np.float32)
g = dgl.bipartite_from_scipy(user_movie_ratings_coo, utype='_U', etype='_E', vtype='_V')
return dgl.heterograph({('user', 'rate', 'movie'): g.edges()},
num_nodes_dict={'user': self.num_user, 'movie': self.num_movie})
@property
def num_links(self):
return self.possible_rating_values.size
@property
def num_user(self):
return self._num_user
@property
def num_movie(self):
return self._num_movie
def _process_user_fea(self):
top_critic = (self.user_info['top_critic'] == False).values.astype(np.float32)
all_publisher_name = set(self.user_info['publisher_name'])
publisher_map = {ele: i for i, ele in enumerate(all_publisher_name)}
publisher_one_hot = np.zeros(shape=(self.user_info.shape[0], len(all_publisher_name)),
dtype=np.float32)
publisher_one_hot[np.arange(self.user_info.shape[0]),
np.array([publisher_map[ele] for ele in self.user_info['publisher_name']])] = 1
user_features = np.concatenate([top_critic.reshape((self.user_info.shape[0], 1)),
publisher_one_hot], axis=1)
return user_features
def _process_movie_fea(self):
import torchtext
TEXT = torchtext.legacy.data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
embedding = torchtext.vocab.GloVe(name='840B', dim=300)
title_embedding = np.zeros(shape=(self.movie_info.shape[0], 300), dtype=np.float32)
release_years = np.zeros(shape=(self.movie_info.shape[0], 1), dtype=np.float32)
for idx, row in self.movie_info.iterrows():
title_context = row['movie_title']
year = row['year']
# We use average of glove
title_embedding[idx, :] = embedding.get_vecs_by_tokens(TEXT.tokenize(title_context)).numpy().mean(axis=0)
release_years[idx] = float(year)
movie_features = np.concatenate((title_embedding,
(release_years - 1950.0) / 100.0,
self.movie_genre_dummies),axis=1)
return movie_features
def _generate_sub_graph(self, rating_pairs, sentiment_values, emotion_values):
num_nodes_dict = {'user': self._num_user, 'movie': self._num_movie}
rating_row, rating_col = rating_pairs
data_dict = dict()
for rating in self.sentiment_rating_values:
ridx = np.where(sentiment_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
s_graph = dgl.heterograph(data_dict, num_nodes_dict=num_nodes_dict)
data_dict = dict()
for rating in self.emotion_rating_values:
ridx = np.where(emotion_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
e_graph = dgl.heterograph(data_dict, num_nodes_dict=num_nodes_dict)
return s_graph, e_graph
if __name__ == '__main__':
RottenMovie(train_data='./data/trainset.csv',
test_data='./data/testset.csv',
feature_data='./'
)