-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer_bert.py
584 lines (468 loc) · 21.6 KB
/
trainer_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from utils.early_stopping import EarlyStopping
import numpy as np
import copy
from tqdm import tqdm
from model.bert import BERT_classifer
from pytorch_pretrained_bert import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam
from data.evaluate import load_dev_labels, get_metrics
import sys
import argparse
import random
from utils.focalloss import FocalLoss
from utils.tweet_processor import processing_pipeline
from copy import deepcopy
parser = argparse.ArgumentParser(description='Options')
parser.add_argument('-folds', default=9, type=int,
help="num of folds")
parser.add_argument('-bs', default=128, type=int,
help="batch size")
parser.add_argument('-postname', default='', type=str,
help="name that will be added at the end of generated file")
parser.add_argument('-gamma', default=0.2, type=float,
help="the decay of the ")
parser.add_argument('-lr', default=5e-4, type=float,
help="learning rate")
parser.add_argument('-lbd1', default=0, type=float,
help="lambda1 is for MTL")
parser.add_argument('-lbd2', default=0, type=float,
help="lambda2 is for optimizing only the emotional labels")
parser.add_argument('-patience', default=1, type=int,
help="patience of early stopping")
parser.add_argument('-flat', default=1, type=float,
help="flatten para")
parser.add_argument('-focal', default=2, type=int,
help="gamma value for focal loss, default 2")
parser.add_argument('-w', default=2, type=int,
help="patience ")
parser.add_argument('-loss', default='ce', type=str,
help="ce or focal ")
parser.add_argument('-tokentype', default='True', type=str,
help="post name")
opt = parser.parse_args()
if opt.size == 'large':
BERT_MODEL = 'bert-large-uncased'
elif opt.size == 'base':
BERT_MODEL = 'bert-base-uncased'
else:
raise ValueError
NUM_OF_FOLD = opt.folds
NUM_EMO = 4
learning_rate = opt.lr
MAX_EPOCH = 300
CONV_PAD_LEN = 3
SENT_PAD_LEN = opt.padlen
BATCH_SIZE = opt.bs
SENT_EMB_DIM = 300
CLIP = 0.888
FLAT = opt.flat
EARLY_STOP_PATIENCE = 1
LAMBDA1 = opt.lbd1
LAMBDA2 = opt.lbd2
EMOS = ['happy', 'angry', 'sad', 'others']
EMOS_DIC = {'happy': 0,
'angry': 1,
'sad': 2,
'others': 3}
USE_TOKEN_TYPE = None
if opt.tokentype == 'False':
USE_TOKEN_TYPE = False
elif opt.tokentype == 'True':
USE_TOKEN_TYPE = True
else:
raise ValueError('Token type is not recognised')
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL)
def load_data_context(data_path='data/train.txt', is_train=True):
# data_path = 'data/train.txt'
data_list = []
target_list = []
f_data = open(data_path, 'r')
data_lines = f_data.readlines()
f_data.close()
for i, text in enumerate(data_lines):
# skip the first line
if i == 0:
continue
tokens = text.split('\t')
convers = tokens[1:CONV_PAD_LEN+1]
a = convers[0]
b = convers[1]
c = convers[2]
a = processing_pipeline(a)
b = processing_pipeline(b)
c = processing_pipeline(c)
a_len = len(a.split())
b_len = len(b.split())
c_len = len(c.split())
data_list.append((a, a_len, b, b_len, c, c_len))
if is_train:
emo = tokens[CONV_PAD_LEN + 1].strip()
target_list.append(EMOS_DIC[emo])
if is_train:
return data_list, target_list
else:
return data_list
class DataSet(Dataset):
def __init__(self, data_list, target_list, sent_pad_len):
self.sent_pad_len = sent_pad_len
self.word2id = 0
self.pad_int = 0
# set max size for the purpose of testing
# internal data
self.tokens = []
self.token_masks = []
self.token_segments = []
self.e_c = []
self.e_c_binary = []
self.e_c_emo = []
self.num_empty_lines = 0
# prepare dataset
self.read_data(data_list, target_list)
def read_data(self, data_list, target_list):
assert len(data_list) == len(target_list)
for X, y in zip(data_list, target_list):
a, _, b, _, c, _ = X
a = tokenizer.tokenize(a)
b = tokenizer.tokenize(b)
c = tokenizer.tokenize(c)
a = ['[CLS]'] + a + ['[SEP]']
b = b + ['[SEP]']
c = c + ['[SEP]']
a = tokenizer.convert_tokens_to_ids(a)
b = tokenizer.convert_tokens_to_ids(b)
c = tokenizer.convert_tokens_to_ids(c)
a_len = len(a)
b_len = len(b)
c_len = len(c)
combined_tokens = a + b + c
token_seg = [0] * (a_len + b_len - 1) + [1] * (c_len+1)
if len(combined_tokens) > self.sent_pad_len:
combined_tokens = combined_tokens[:self.sent_pad_len]
mask = [1] * self.sent_pad_len
token_seg = token_seg[:self.sent_pad_len]
else:
combined_tokens = combined_tokens + [self.pad_int] * (self.sent_pad_len - len(combined_tokens))
mask = [1] * (a_len + b_len + c_len) + [0] * (self.sent_pad_len - (a_len + b_len + c_len))
token_seg = token_seg + [self.pad_int] * (self.sent_pad_len - len(token_seg))
self.tokens.append(combined_tokens)
self.token_masks.append(mask)
self.token_segments.append(token_seg)
self.e_c.append(int(y))
self.e_c_binary.append(1 if int(y) == len(EMOS) - 1 else 0)
e_c_emo = [0] * (len(EMOS) - 1)
if int(y) < len(EMOS) - 1: # i.e. only first three emotions
e_c_emo[int(y)] = 1
self.e_c_emo.append(e_c_emo)
def __len__(self):
return len(self.tokens)
def __getitem__(self, idx):
return torch.LongTensor(self.tokens[idx]),\
torch.LongTensor(self.token_masks[idx]),\
torch.LongTensor(self.token_segments[idx]), \
torch.LongTensor([self.e_c[idx]]), \
torch.LongTensor([self.e_c_binary[idx]]), \
torch.FloatTensor(self.e_c_emo[idx])
class TestDataSet(Dataset):
def __init__(self, data_list, sent_pad_len):
self.sent_pad_len = sent_pad_len
self.word2id = 0
self.pad_int = 0
# internal data
self.tokens = []
self.token_masks = []
self.token_segments = []
self.e_c = []
self.num_empty_lines = 0
# prepare dataset
self.read_data(data_list)
def read_data(self, data_list):
for X in data_list:
a, _, b, _, c, _ = X
a = tokenizer.tokenize(a)
b = tokenizer.tokenize(b)
c = tokenizer.tokenize(c)
a = ['[CLS]'] + a
b = b + ['[SEP]']
c = c + ['[SEP]']
a = tokenizer.convert_tokens_to_ids(a)
b = tokenizer.convert_tokens_to_ids(b)
c = tokenizer.convert_tokens_to_ids(c)
a_len = len(a)
b_len = len(b)
c_len = len(c)
combined_tokens = a + b + c
token_seg = [0] * (a_len + b_len - 1) + [1] * (c_len+1)
if len(combined_tokens) > self.sent_pad_len:
combined_tokens = combined_tokens[:self.sent_pad_len]
mask = [1] * self.sent_pad_len
token_seg = token_seg[:self.sent_pad_len]
else:
combined_tokens = combined_tokens + [self.pad_int] * (self.sent_pad_len - len(combined_tokens))
mask = [1] * (a_len + b_len + c_len) + [0] * (self.sent_pad_len - (a_len + b_len + c_len))
token_seg = token_seg + [self.pad_int] * (self.sent_pad_len - len(token_seg))
self.tokens.append(combined_tokens)
self.token_masks.append(mask)
self.token_segments.append(token_seg)
def __len__(self):
return len(self.tokens)
def __getitem__(self, idx):
return torch.LongTensor(self.tokens[idx]), \
torch.LongTensor(self.token_masks[idx]), \
torch.LongTensor(self.token_segments[idx])
def main():
# load data
path = 'data/train.txt'
data_list, target_list = load_data_context(path)
# build vocab
X = data_list
y = target_list
y = np.array(y)
combined = list(zip(X, y))
random.shuffle(combined)
X[:], y[:] = zip(*combined)
# skf.get_n_splits(X, y)
# train dev split
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=NUM_OF_FOLD, random_state=0)
all_fold_results = []
real_test_results = []
# dev set
dev_file = 'data/dev.txt'
dev_data_list, dev_target_list = load_data_context(data_path=dev_file)
# test set
gold_test_file = 'data/test.txt'
gold_test_data_list, gold_test_target_list = load_data_context(data_path=gold_test_file)
gold_dev_data_set = DataSet(dev_data_list, dev_target_list, SENT_PAD_LEN)
gold_dev_data_loader = DataLoader(gold_dev_data_set, batch_size=BATCH_SIZE, shuffle=False)
print("Size of test data", len(gold_dev_data_set))
gold_test_data_set = DataSet(gold_test_data_list, gold_test_target_list, SENT_PAD_LEN)
gold_test_data_loader = DataLoader(gold_test_data_set, batch_size=BATCH_SIZE, shuffle=False)
print("Size of test data", len(gold_test_data_set))
test_file = 'data/testwithoutlabels.txt'
test_data_list = load_data_context(data_path=test_file, is_train=False)
test_data_set = TestDataSet(test_data_list, SENT_PAD_LEN)
test_data_loader = DataLoader(test_data_set, batch_size=BATCH_SIZE, shuffle=False)
def one_fold(num_fold, train_index, dev_index):
print("Training on fold:", num_fold)
X_train, X_dev = [X[i] for i in train_index], [X[i] for i in dev_index]
y_train, y_dev = y[train_index], y[dev_index]
# construct data loader
train_data_set = DataSet(X_train, y_train, SENT_PAD_LEN)
train_data_loader = DataLoader(train_data_set, batch_size=BATCH_SIZE, shuffle=True)
dev_data_set = DataSet(X_dev, y_dev, SENT_PAD_LEN)
dev_data_loader = DataLoader(dev_data_set, batch_size=BATCH_SIZE, shuffle=False)
gradient_accumulation_steps = 1
num_train_steps = int(
len(train_data_set) / BATCH_SIZE / gradient_accumulation_steps * MAX_EPOCH)
pred_list_test_best = None
final_pred_best = None
# This is to prevent model diverge, once happen, retrain
while True:
is_diverged = False
model = BERT_classifer.from_pretrained(BERT_MODEL)
model.add_output_layer(BERT_MODEL, NUM_EMO)
model = nn.DataParallel(model)
model.cuda()
# BERT optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=learning_rate,
warmup=0.1,
t_total=num_train_steps)
if opt.w == 1:
weight_list = [0.3, 0.3, 0.3, 1.7]
weight_list_binary = [2 - weight_list[-1], weight_list[-1]]
elif opt.w == 2:
weight_list = [0.3198680179, 0.246494733, 0.2484349259, 1.74527696]
weight_list_binary = [2 - weight_list[-1], weight_list[-1]]
weight_list = [x**FLAT for x in weight_list]
weight_label = torch.Tensor(weight_list).cuda()
weight_list_binary = [x**FLAT for x in weight_list_binary]
weight_binary = torch.Tensor(weight_list_binary).cuda()
print('binary loss reweight = weight_list_binary', weight_list_binary)
# loss_criterion_binary = nn.CrossEntropyLoss(weight=weight_list_binary) #
if opt.loss == 'focal':
loss_criterion = FocalLoss(gamma=opt.focal, reduce=False)
loss_criterion_binary = FocalLoss(gamma=opt.focal, reduce=False) #
elif opt.loss == 'ce':
loss_criterion = nn.CrossEntropyLoss(reduce=False)
loss_criterion_binary = nn.CrossEntropyLoss(reduce=False) #
loss_criterion_emo_only = nn.MSELoss()
# es = EarlyStopping(min_delta=0.005, patience=EARLY_STOP_PATIENCE)
es = EarlyStopping(patience=EARLY_STOP_PATIENCE)
final_pred_best = None
final_pred_list_test = None
pred_list_test = None
for num_epoch in range(MAX_EPOCH):
print('Begin training epoch:', num_epoch)
sys.stdout.flush()
train_loss = 0
model.train()
for i, (tokens, masks, segments, e_c, e_c_binary, e_c_emo) in tqdm(enumerate(train_data_loader),
total=len(train_data_set)/BATCH_SIZE):
optimizer.zero_grad()
if USE_TOKEN_TYPE:
pred, pred2, pred3 = model(tokens.cuda(), masks.cuda(), segments.cuda())
else:
pred, pred2, pred3 = model(tokens.cuda(), masks.cuda())
loss_label = loss_criterion(pred, e_c.view(-1).cuda()).cuda()
loss_label = torch.matmul(torch.gather(weight_label, 0, e_c.view(-1).cuda()), loss_label) / \
e_c.view(-1).shape[0]
loss_binary = loss_criterion_binary(pred2, e_c_binary.view(-1).cuda()).cuda()
loss_binary = torch.matmul(torch.gather(weight_binary, 0, e_c_binary.view(-1).cuda()),
loss_binary) / e_c.view(-1).shape[0]
loss_emo = loss_criterion_emo_only(pred3, e_c_emo.cuda())
loss = (loss_label + LAMBDA1 * loss_binary + LAMBDA2 * loss_emo) / float(1 + LAMBDA1 + LAMBDA2)
# training trilogy
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP)
optimizer.step()
train_loss += loss.data.cpu().numpy() * tokens.shape[0]
del loss, pred
# Evaluate
model.eval()
dev_loss = 0
# pred_list = []
# gold_list = []
for i, (tokens, masks, segments, e_c, e_c_binary, e_c_emo) in enumerate(dev_data_loader):
with torch.no_grad():
if USE_TOKEN_TYPE:
pred, pred2, pred3 = model(tokens.cuda(), masks.cuda(), segments.cuda())
else:
pred, pred2, pred3 = model(tokens.cuda(), masks.cuda())
loss_label = loss_criterion(pred, e_c.view(-1).cuda()).cuda()
loss_label = torch.matmul(torch.gather(weight_label, 0, e_c.view(-1).cuda()), loss_label) / \
e_c.view(-1).shape[0]
loss_binary = loss_criterion_binary(pred2, e_c_binary.view(-1).cuda()).cuda()
loss_binary = torch.matmul(torch.gather(weight_binary, 0, e_c_binary.view(-1).cuda()),
loss_binary) / e_c.view(-1).shape[0]
loss_emo = loss_criterion_emo_only(pred3, e_c_emo.cuda())
loss = (loss_label + LAMBDA1 * loss_binary + LAMBDA2 * loss_emo) / float(1 + LAMBDA1 + LAMBDA2)
dev_loss += loss.data.cpu().numpy() * tokens.shape[0]
# pred_list.append(pred.data.cpu().numpy())
# gold_list.append(e_c.numpy())
del pred, loss
# pred_list = np.argmax(np.concatenate(pred_list, axis=0), axis=1)
# gold_list = np.concatenate(gold_list, axis=0)
print('Training loss:', train_loss / len(train_data_set), end='\t')
print('Dev loss:', dev_loss / len(dev_data_set))
# print(classification_report(gold_list, pred_list, target_names=EMOS))
# get_metrics(pred_list, gold_list)
# checking diverge
if dev_loss/len(dev_data_set) > 1.3 and num_epoch > 4:
print("Model diverged, retry")
is_diverged = True
break
if es.step(dev_loss): # overfitting
print('overfitting, loading best model ...')
if num_epoch == 1:
is_diverged = True
final_pred_best = deepcopy(final_pred_list_test)
pred_list_test_best = deepcopy(pred_list_test)
break
else:
if es.is_best():
print('saving best model ...')
if final_pred_best is not None:
del final_pred_best
final_pred_best = deepcopy(final_pred_list_test)
if pred_list_test_best is not None:
del pred_list_test_best
pred_list_test_best = deepcopy(pred_list_test)
else:
print('not best model, ignoring ...')
if final_pred_best is None:
final_pred_best = deepcopy(final_pred_list_test)
if pred_list_test_best is None:
pred_list_test_best = deepcopy(pred_list_test)
print('Gold Dev ...')
pred_list_test = []
model.eval()
for i, (tokens, masks, segments, e_c, e_c_binary, e_c_emo) in enumerate(gold_dev_data_loader):
with torch.no_grad():
if USE_TOKEN_TYPE:
pred, _, _ = model(tokens.cuda(), masks.cuda(), segments.cuda())
else:
pred, _, _ = model(tokens.cuda(), masks.cuda())
pred_list_test.append(pred.data.cpu().numpy())
pred_list_test = np.argmax(np.concatenate(pred_list_test, axis=0), axis=1)
# get_metrics(load_dev_labels('data/dev.txt'), pred_list_test)
print('Gold Test ...')
final_pred_list_test = []
model.eval()
for i, (tokens, masks, segments, e_c, e_c_binary, e_c_emo) in enumerate(gold_test_data_loader):
with torch.no_grad():
if USE_TOKEN_TYPE:
pred, _, _ = model(tokens.cuda(), masks.cuda(), segments.cuda())
else:
pred, _, _ = model(tokens.cuda(), masks.cuda())
final_pred_list_test.append(pred.data.cpu().numpy())
final_pred_list_test = np.argmax(np.concatenate(final_pred_list_test, axis=0), axis=1)
# get_metrics(load_dev_labels('data/test.txt'), final_pred_list_test)
if is_diverged:
print("Reinitialize model ...")
del model
continue
all_fold_results.append(pred_list_test_best)
real_test_results.append(final_pred_best)
del model
break
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# Training the folds
for idx, (_train_index, _dev_index) in enumerate(skf.split(X, y)):
print('Train size:', len(_train_index), 'Dev size:', len(_dev_index))
one_fold(idx, _train_index, _dev_index)
# Function of majority voting
def find_majority(k):
myMap = {}
maximum = ('', 0) # (occurring element, occurrences)
for n in k:
if n in myMap:
myMap[n] += 1
else:
myMap[n] = 1
# Keep track of maximum on the go
if myMap[n] > maximum[1]: maximum = (n, myMap[n])
return maximum
all_fold_results = np.asarray(all_fold_results)
mj_dev = []
for col_num in range(all_fold_results.shape[1]):
a_mj = find_majority(all_fold_results[:, col_num])
mj_dev.append(a_mj[0])
print('FINAL gold DEV RESULTS')
get_metrics(load_dev_labels('data/dev.txt'), np.asarray(mj_dev))
real_test_results = np.asarray(real_test_results)
mj = []
for col_num in range(real_test_results.shape[1]):
a_mj = find_majority(real_test_results[:, col_num])
mj.append(a_mj[0])
print('FINAL TESTING RESULTS')
get_metrics(load_dev_labels('data/test.txt'), np.asarray(mj))
# MAKE SUBMISSION
# WRITE TO FILE
test_file = 'data/testwithoutlabels.txt'
f_in = open(test_file, 'r')
f_out = open('test_bert_mtl' + opt.postname + '.txt', 'w')
data_lines = f_in.readlines()
for idx, text in enumerate(data_lines):
if idx == 0:
f_out.write(text.strip() + '\tlabel\n')
else:
f_out.write(text.strip() + '\t' + EMOS[mj[idx - 1]] + '\n')
f_in.close()
f_out.close()
print('Final testing')
main()