forked from DeformableFriends/NeuralTracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
488 lines (397 loc) · 24.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import sys,os
import argparse
from datetime import datetime
import torch
from tensorboardX import SummaryWriter
from shutil import copyfile
import random
import sys
import numpy as np
from timeit import default_timer as timer
from skimage import io
import math
import torchvision.models as models
from model import evaluate
from model import dataset
from utils import utils
import options as opt
from utils.snapshot_manager import SnapshotManager
from utils.time_statistics import TimeStatistics
from utils import nnutils
from model.model import DeformNet
from model.loss import DeformLoss
import utils.query as query
if __name__ == "__main__":
torch.set_num_threads(opt.num_threads)
torch.backends.cudnn.benchmark = False
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--train_dir', action='store', dest='train_dir', help='Provide a subfolder with training data')
parser.add_argument('--val_dir', action='store', dest='val_dir', help='Provide a subfolder with SPARSE validation data')
parser.add_argument('--experiment', action='store', dest='experiment', help='Provide an experiment name')
parser.add_argument('--date', action='store', dest='date', help='Provide a date in the format %Y-%m-%d (if you do not want current date)')
args = parser.parse_args()
# Train set
train_dir = args.train_dir
# Val set
val_dir = args.val_dir
experiment_name = args.experiment
if not experiment_name:
clock = datetime.now().strftime('%H-%M-%S')
experiment_name = "{}_default".format(clock)
date = args.date
if not date:
date = datetime.now().strftime('%Y-%m-%d')
#####################################################################################
# Ask user input regarding the use of data augmentation
#####################################################################################
# Confirm hyperparameters
opt.print_hyperparams()
print()
print("train_dir ", train_dir)
print("val_dir ", val_dir)
print()
# use_current_hyper = query.query_yes_no("\nThe above hyperparameters will be used. Do you wish to continue?", "yes")
# if not use_current_hyper:
# print("Exiting. Please modify options.py and run this script again.")
# exit()
#####################################################################################
# Creating tf writer and folders
#####################################################################################
# Writer initialization.
tf_runs = os.path.join(opt.experiments_dir, "tf_runs")
log_name = "{0}_{1}".format(date, experiment_name)
log_dir = os.path.join(tf_runs, log_name)
train_log_dir = log_dir + "/" + train_dir
val_log_dir = log_dir + "/" + val_dir
if train_log_dir == val_log_dir:
train_log_dir = train_log_dir + "_0"
val_log_dir = val_log_dir + "_1"
train_writer = SummaryWriter(train_log_dir)
val_writer = SummaryWriter(val_log_dir)
# Copy the current options to the log directory.
options_file_in = os.path.abspath(os.path.join(os.path.dirname(__file__), "options.py"))
options_file_out = os.path.join(log_dir, "options.py")
copyfile(options_file_in, options_file_out)
# Creation of model dir.
training_models = os.path.join(opt.experiments_dir, "models")
if not os.path.exists(training_models): os.mkdir(training_models)
saving_model_dir = os.path.join(training_models, log_name)
if not os.path.exists(saving_model_dir): os.mkdir(saving_model_dir)
#####################################################################################
# Initializing: model, criterion, optimizer, learning scheduler...
#####################################################################################
# Load model, loss and optimizer.
saved_model = opt.saved_model
iteration_number = 0
model = DeformNet().cuda()
if opt.use_pretrained_model:
assert os.path.isfile(saved_model), "\nModel {} does not exist. Please train a model from scratch or specify a valid path to a model.".format(saved_model)
pretrained_dict = torch.load(saved_model)
if "chairs_things" in saved_model:
model.flow_net.load_state_dict(pretrained_dict)
else:
if opt.model_module_to_load == "full_model":
# Load completely model
model.load_state_dict(pretrained_dict)
elif opt.model_module_to_load == "only_flow_net":
# Load only optical flow part
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if "flow_net" in k}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
else:
print(opt.model_module_to_load, "is not a valid argument (A: 'full_model', B: 'only_flow_net')")
exit()
# Criterion.
criterion = DeformLoss(opt.lambda_flow, opt.lambda_graph, opt.lambda_warp, opt.lambda_mask, opt.flow_loss_type)
# Count parameters.
n_all_model_params = int(sum([np.prod(p.size()) for p in model.parameters()]))
n_trainable_model_params = int(sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.parameters())]))
print("Number of parameters: {0} / {1}".format(n_trainable_model_params, n_all_model_params))
n_all_flownet_params = int(sum([np.prod(p.size()) for p in model.flow_net.parameters()]))
n_trainable_flownet_params = int(sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.flow_net.parameters())]))
print("-> Flow network: {0} / {1}".format(n_trainable_flownet_params, n_all_flownet_params))
n_all_masknet_params = int(sum([np.prod(p.size()) for p in model.mask_net.parameters()]))
n_trainable_masknet_params = int(sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.mask_net.parameters())]))
print("-> Mask network: {0} / {1}".format(n_trainable_masknet_params, n_all_masknet_params))
print()
# Set up optimizer.
if opt.use_adam:
optimizer = torch.optim.Adam(model.parameters(), opt.learning_rate, weight_decay=opt.weight_decay)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=opt.learning_rate, momentum=opt.momentum, weight_decay=opt.weight_decay)
# Initialize training.
train_writer.add_text("/hyperparams",
"Batch size: " + str(opt.batch_size)
+ ",\nLearning rate:" + str(opt.learning_rate)
+ ",\nEpochs: " + str(opt.epochs)
+ ",\nuse_flow_loss: " + str(opt.use_flow_loss)
+ ",\nuse_graph_loss: " + str(opt.use_graph_loss)
+ ",\nuse_mask: " + str(opt.use_mask)
+ ",\nuse_mask_loss: " + str(opt.use_mask_loss))
# Initialize snaphost manager for model snapshot creation.
snapshot_manager = SnapshotManager(log_name, saving_model_dir)
# We count the execution time between evaluations.
time_statistics = TimeStatistics()
# Learning rate scheduler.
if opt.use_lr_scheduler:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt.step_lr, gamma=0.1, last_epoch=-1)
for i in range(iteration_number):
scheduler.step()
# Compute the number of worker threads for data loading.
# 0 means that the base thread does all the job (that makes sense when hdf5 is already loaded into memory).
num_train_workers = opt.num_worker_threads
num_val_workers = opt.num_worker_threads
#####################################################################################
# Create datasets and dataloaders
#####################################################################################
complete_cycle_start = timer()
#####################################################################################
# VAL dataset
#####################################################################################
val_dataset = dataset.DeformDataset(
opt.dataset_base_dir, val_dir,
opt.image_width, opt.image_height, opt.max_boundary_dist
)
val_dataloader = torch.utils.data.DataLoader(
dataset=val_dataset, shuffle=opt.shuffle,
batch_size=opt.batch_size, num_workers=num_val_workers,
collate_fn=dataset.DeformDataset.collate_with_padding, pin_memory=True
)
print("Num. validation samples: {0}".format(len(val_dataset)))
if len(val_dataset) < opt.batch_size:
print()
print("Reduce the batch_size, since we only have {} validation samples but you indicated a batch_size of {}".format(
len(val_dataset), opt.batch_size)
)
exit()
#####################################################################################
# TRAIN dataset
#####################################################################################
train_dataset = dataset.DeformDataset(
opt.dataset_base_dir, train_dir,
opt.image_width, opt.image_height, opt.max_boundary_dist
)
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=opt.batch_size,
shuffle=opt.shuffle, num_workers=num_train_workers,
collate_fn=dataset.DeformDataset.collate_with_padding, pin_memory=True
)
print("Num. training samples: {0}".format(len(train_dataset)))
print()
if len(train_dataset) < opt.batch_size:
print()
print("Reduce the batch_size, since we only have {} training samples but you indicated a batch_size of {}".format(
len(train_dataset), opt.batch_size)
)
exit()
# Execute training.
try:
for epoch in range(0, opt.epochs):
print()
print()
print("Epoch: {0}".format(epoch))
num_consecutive_all_invalid_batches = 0
model.train()
for i, data in enumerate(train_dataloader):
#####################################################################################
# Validation.
#####################################################################################
if opt.do_validation and iteration_number % opt.evaluation_frequency == 0:
model.eval()
eval_start = timer()
# Compute train and validation metrics.
num_samples = opt.num_samples_eval
num_eval_batches = math.ceil(num_samples / opt.batch_size) # We evaluate on approximately 1000 samples.
print()
print("Train evaluation")
train_losses, train_metrics = evaluate.evaluate(model, criterion, train_dataloader, num_eval_batches, "train")
print()
print("Val evaluation")
val_losses, val_metrics = evaluate.evaluate(model, criterion, val_dataloader, num_eval_batches, "val")
train_writer.add_scalar('Loss/Loss', train_losses["total"], iteration_number)
train_writer.add_scalar('Loss/Flow', train_losses["flow"], iteration_number)
train_writer.add_scalar('Loss/Graph', train_losses["graph"], iteration_number)
train_writer.add_scalar('Loss/Warp', train_losses["warp"], iteration_number)
train_writer.add_scalar('Loss/Mask', train_losses["mask"], iteration_number)
train_writer.add_scalar('Metrics/EPE_2D_0', train_metrics["epe2d_0"], iteration_number)
train_writer.add_scalar('Metrics/EPE_2D_2', train_metrics["epe2d_2"], iteration_number)
train_writer.add_scalar('Metrics/Graph_Error_3D', train_metrics["epe3d"], iteration_number)
train_writer.add_scalar('Metrics/EPE_3D', train_metrics["epe_warp"], iteration_number)
train_writer.add_scalar('Metrics/ValidRatio', train_metrics["valid_ratio"], iteration_number)
val_writer.add_scalar('Loss/Loss', val_losses["total"], iteration_number)
val_writer.add_scalar('Loss/Flow', val_losses["flow"], iteration_number)
val_writer.add_scalar('Loss/Graph', val_losses["graph"], iteration_number)
val_writer.add_scalar('Loss/Warp', val_losses["warp"], iteration_number)
val_writer.add_scalar('Loss/Mask', val_losses["mask"], iteration_number)
val_writer.add_scalar('Metrics/EPE_2D_0', val_metrics["epe2d_0"], iteration_number)
val_writer.add_scalar('Metrics/EPE_2D_2', val_metrics["epe2d_2"], iteration_number)
val_writer.add_scalar('Metrics/Graph_Error_3D', val_metrics["epe3d"], iteration_number)
val_writer.add_scalar('Metrics/EPE_3D', val_metrics["epe_warp"], iteration_number)
val_writer.add_scalar('Metrics/ValidRatio', val_metrics["valid_ratio"], iteration_number)
print()
print()
print("Epoch number {0}, Iteration number {1}".format(epoch, iteration_number))
print("{:<40} {}".format("Current Train Loss TOTAL", train_losses["total"]))
print("{:<40} {}".format("Current Train Loss FLOW", train_losses["flow"]))
print("{:<40} {}".format("Current Train Loss GRAPH", train_losses["graph"]))
print("{:<40} {}".format("Current Train Loss WARP", train_losses["warp"]))
print("{:<40} {}".format("Current Train Loss MASK", train_losses["mask"]))
print()
print("{:<40} {}".format("Current Train EPE 2D_0", train_metrics["epe2d_0"]))
print("{:<40} {}".format("Current Train EPE 2D_2", train_metrics["epe2d_2"]))
print("{:<40} {}".format("Current Train EPE 3D", train_metrics["epe3d"]))
print("{:<40} {}".format("Current Train EPE Warp", train_metrics["epe_warp"]))
print("{:<40} {}".format("Current Train Solver Success Rate", train_metrics["valid_ratio"]))
print()
print("{:<40} {}".format("Current Val Loss TOTAL", val_losses["total"]))
print("{:<40} {}".format("Current Val Loss FLOW", val_losses["flow"]))
print("{:<40} {}".format("Current Val Loss GRAPH", val_losses["graph"]))
print("{:<40} {}".format("Current Val Loss WARP", val_losses["warp"]))
print("{:<40} {}".format("Current Val Loss MASK", val_losses["mask"]))
print()
print("{:<40} {}".format("Current Val EPE 2D_0", val_metrics["epe2d_0"]))
print("{:<40} {}".format("Current Val EPE 2D_2", val_metrics["epe2d_2"]))
print("{:<40} {}".format("Current Val EPE 3D", val_metrics["epe3d"]))
print("{:<40} {}".format("Current Val EPE Warp", val_metrics["epe_warp"]))
print("{:<40} {}".format("Current Val Solver Success Rate", val_metrics["valid_ratio"]))
print()
time_statistics.eval_duration = timer() - eval_start
# We compute the time of IO as the complete time, subtracted by all processing time.
time_statistics.io_duration += (timer() - complete_cycle_start - time_statistics.train_duration - time_statistics.eval_duration)
# Set CUDA_LAUNCH_BLOCKING=1 environmental variable for reliable timings.
print("Cycle duration (s): {0:3f} (IO: {1:3f}, TRAIN: {2:3f}, EVAL: {3:3f})".format(
timer() - time_statistics.start_time, time_statistics.io_duration, time_statistics.train_duration, time_statistics.eval_duration
))
print("FORWARD: {0:3f}, LOSS: {1:3f}, BACKWARD: {2:3f}".format(
time_statistics.forward_duration, time_statistics.loss_eval_duration, time_statistics.backward_duration
))
print()
time_statistics = TimeStatistics()
complete_cycle_start = timer()
sys.stdout.flush()
model.train()
else:
sys.stdout.write("\r############# Train iteration: {0} / {1} (of Epoch {2}) - {3}".format(
iteration_number % opt.evaluation_frequency + 1, opt.evaluation_frequency, epoch, experiment_name)
)
sys.stdout.flush()
#####################################################################################
# Train.
#####################################################################################
# Data loading.
source, target, target_boundary_mask, \
optical_flow_gt, optical_flow_mask, scene_flow_gt, scene_flow_mask, \
graph_nodes, graph_edges, graph_edges_weights, translations_gt, graph_clusters, \
pixel_anchors, pixel_weights, num_nodes, intrinsics, sample_idx = data
source = source.cuda()
target = target.cuda()
target_boundary_mask = target_boundary_mask.cuda()
optical_flow_gt = optical_flow_gt.cuda()
optical_flow_mask = optical_flow_mask.cuda()
scene_flow_gt = scene_flow_gt.cuda()
scene_flow_mask = scene_flow_mask.cuda()
graph_nodes = graph_nodes.cuda()
graph_edges = graph_edges.cuda()
graph_edges_weights = graph_edges_weights.cuda()
translations_gt = translations_gt.cuda()
graph_clusters = graph_clusters.cuda()
pixel_anchors = pixel_anchors.cuda()
pixel_weights = pixel_weights.cuda()
intrinsics = intrinsics.cuda()
train_batch_start = timer()
#####################################################################################
# Forward pass.
#####################################################################################
train_batch_forward_pass = timer()
model_data = model(
source, target,
graph_nodes, graph_edges, graph_edges_weights, graph_clusters,
pixel_anchors, pixel_weights,
num_nodes, intrinsics
)
time_statistics.forward_duration += (timer() - train_batch_forward_pass)
# Invalidate too for too far away estimations, since they can produce
# noisy gradient information.
if opt.gn_invalidate_too_far_away_translations:
with torch.no_grad():
batch_size = model_data["node_translations"].shape[0]
for i in range(batch_size):
if not model_data["valid_solve"][i]: continue
num_nodes_i = int(num_nodes[i])
assert num_nodes_i > 0
diff = model_data["node_translations"][i, :num_nodes_i, :] - translations_gt[i, :num_nodes_i, :]
epe = torch.norm(diff, p=2, dim=1)
mean_error = epe.sum().item() / num_nodes_i
if mean_error > opt.gn_max_mean_translation_error:
print("\t\tToo big mean translation error: {}".format(mean_error))
model_data["valid_solve"][i] = 0
with torch.no_grad():
# Downscale groundtruth flow
flow_gts, flow_masks = nnutils.downscale_gt_flow(
optical_flow_gt, optical_flow_mask, opt.image_height, opt.image_width
)
# Compute mask gt for mask baseline
xy_coords_warped, source_points, valid_source_points, target_matches, \
valid_target_matches, valid_correspondences, deformed_points_idxs, \
deformed_points_subsampled = model_data["correspondence_info"]
mask_gt, valid_mask_pixels = nnutils.compute_baseline_mask_gt(
xy_coords_warped,
target_matches, valid_target_matches,
source_points, valid_source_points,
scene_flow_gt, scene_flow_mask, target_boundary_mask,
opt.max_pos_flowed_source_to_target_dist, opt.min_neg_flowed_source_to_target_dist
)
# Compute deformed point gt
deformed_points_gt, deformed_points_mask = nnutils.compute_deformed_points_gt(
source_points, scene_flow_gt,
model_data["valid_solve"], valid_correspondences,
deformed_points_idxs, deformed_points_subsampled
)
#####################################################################################
# Loss.
#####################################################################################
train_batch_loss_eval = timer()
# Compute Loss
loss = criterion(
flow_gts, model_data["flow_data"], flow_masks,
translations_gt, model_data["node_translations"], model_data["deformations_validity"],
deformed_points_gt, model_data["deformed_points_pred"], deformed_points_mask,
model_data["valid_solve"], num_nodes,
model_data["mask_pred"], mask_gt, valid_mask_pixels
)
time_statistics.loss_eval_duration += (timer() - train_batch_loss_eval)
#####################################################################################
# Backprop.
#####################################################################################
train_batch_backprop = timer()
# We only backprop if any of the losses is non-zero.
if opt.use_flow_loss or opt.use_mask_loss or torch.sum(model_data["valid_solve"]) > 0:
optimizer.zero_grad()
loss.backward()
optimizer.step()
if opt.use_lr_scheduler: scheduler.step()
else:
print("No valid loss, skipping backpropagation!")
time_statistics.backward_duration += (timer() - train_batch_backprop)
time_statistics.train_duration += (timer() - train_batch_start)
if iteration_number % opt.evaluation_frequency == 0:
# Store the latest model snapshot, if the required elased time has passed.
snapshot_manager.save_model(model, iteration_number)
iteration_number = iteration_number + 1
print()
print("Epoch {} complete".format(epoch))
print("-------------------------------------------------------------------")
print("-------------------------------------------------------------------")
except (KeyboardInterrupt, TypeError, ConnectionResetError) as err:
# We also save the latest model snapshot at interruption.
snapshot_manager.save_model(model, iteration_number, final_iteration=True)
raise err
train_writer.close()
val_writer.close()
print()
print("I'm done")