-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_pascal_part.py
344 lines (298 loc) · 10.1 KB
/
prepare_pascal_part.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Code is adapted from https://github.com/micco00x/py-pascalpart
Usage examples:
python prepare_pascal_part_v3.py --data-dir ~/data/pascal_part/ --name name
"""
import argparse
import os
import random
from shutil import copyfile
import numpy as np
import PIL
from PIL import Image
import scipy.io
from tqdm import tqdm
CLASSES = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
# NOTE: Order of the "big" parts matters because PASCAL-Part annotation overlaps
# meaning that mask of car windows overlap with car body so whichever part gets
# "painted" first will appear in the final mask. Here, we choose "body" to
# appear last.
PARTS = {
"aeroplane": {
"tail": ["tail", "stern"],
"wing": ["lwing", "rwing", "engine"],
"body": ["body", "wheel"],
},
# 'bicycle': {
# 'fwheel': ['fwheel'],
# 'bwheel': ['bwheel', 'chainwheel'],
# 'handlebar': ['handlebar', 'saddle', 'headlight'],
# },
"bird": {
"head": ["head", "beak", "leye", "reye", "neck"],
"legs": ["lleg", "rleg", "lfoot", "rfoot"],
"body": ["torso", "lwing", "rwing", "tail"],
},
"car": {
"wheel": ["wheel"],
"window": ["window"],
"body": [
"bliplate",
"backside",
"door",
"fliplate",
"frontside",
"headlight",
"leftmirror",
"leftside",
"rightmirror",
"rightside",
"roofside",
],
},
"cat": {
"head": ["head", "nose", "leye", "reye", "lear", "rear", "neck"],
"legs": [
"lfleg",
"rfleg",
"lbleg",
"rbleg",
"lfpa",
"rfpa",
"lbpa",
"rbpa",
],
"body": ["torso", "tail"],
},
"dog": {
"head": [
"head",
"nose",
"leye",
"reye",
"lear",
"rear",
"neck",
"muzzle",
],
"legs": [
"lfleg",
"rfleg",
"lbleg",
"rbleg",
"lfpa",
"rfpa",
"lbpa",
"rbpa",
],
"body": ["torso", "tail"],
},
}
LABELS = list(PARTS.keys())
LABEL_TO_IDX = {label: i for i, label in enumerate(PARTS.keys())}
def load_annotations(path):
# Get annotations from the file and relative objects:
annotations = scipy.io.loadmat(path)["anno"]
objects = annotations[0, 0]["objects"]
# List containing information of each object (to add to dictionary):
objects_list = []
# Go through the objects and extract info:
for obj_idx in range(objects.shape[1]):
obj = objects[0, obj_idx]
# Get classname and mask of the current object:
classname = obj["class"][0]
mask = obj["mask"]
# List containing information of each body part (to add to dictionary):
parts_list = []
parts = obj["parts"]
# Go through the part of the specific object and extract info:
for part_idx in range(parts.shape[1]):
part = parts[0, part_idx]
# Get part name and mask of the current body part:
part_name = part["part_name"][0]
part_mask = part["mask"]
# Add info to parts_list:
parts_list.append({"part_name": part_name, "mask": part_mask})
# Add info to objects_list:
objects_list.append(
{"class": classname, "mask": mask, "parts": parts_list}
)
return {"objects": objects_list}
def get_part_label_offset(label_idx):
offset = 0
for prev_label in LABELS[:label_idx]:
offset += len(PARTS[prev_label])
return offset
def relabel_parts(part_label, obj):
"""Label `part_label` with parts of `obj`"""
label = obj["class"]
if label not in LABELS:
return
all_part_list = [p["part_name"] for p in obj["parts"]]
label_offset = get_part_label_offset(LABELS.index(label))
for part_idx, part in enumerate(PARTS[label].keys()):
part_mask = np.zeros_like(part_label)
# Aggregate subparts into one part
for i, subpart in enumerate(all_part_list):
if any([p in subpart for p in PARTS[label][part]]):
part_mask += obj["parts"][i]["mask"]
# Get remaining pixels that still don't have part assigned to
mask_bg = part_label == 0
part_label += mask_bg * (part_mask > 0) * (label_offset + part_idx + 1)
def collect_parts(args):
"""
(1) Sample is the entire image, and its label is determined by that of the
object that takes up the largest area in the image. Also filter out samples
that miss at least one of the three part groups.
(2) Does not filter out objects with missing parts
"""
root = args.data_dir
annotation_path = os.path.join(root, "Annotations_Part")
mat_filenames = os.listdir(annotation_path)
mat_filenames = sorted(mat_filenames)
print("==> Collecting images and their parts...")
file_list, label_list, gt_list = [], [], []
too_small = 0
for annotation_filename in tqdm(mat_filenames):
annotations = load_annotations(
os.path.join(annotation_path, annotation_filename)
)
# PASCAL VOC image have .jpg format
image_filename = annotation_filename.split(".")[0] + ".jpg"
# Determine ambiguous label (largest object in the image)
main_obj_idx, max_area, label = None, 0, None
for obj_idx, obj in enumerate(annotations["objects"]):
area = obj["mask"].astype(np.float32).sum()
if area > max_area:
main_obj_idx = obj_idx
label = obj["class"]
max_area = area
if main_obj_idx is None or label not in LABELS:
continue
image_size = np.prod(obj["mask"].shape)
if (max_area / image_size) < args.min_area:
too_small += 1
continue
obj = annotations["objects"][main_obj_idx]
assert obj["class"] in LABELS
file_list.append(image_filename)
label_list.append(label)
# Reassign part labels according to the new grouping
mask = obj["mask"].astype(np.byte)
part_label = np.zeros_like(mask)
# Relabel the main object first
relabel_parts(part_label, obj)
# Relabel the rest of the objects in the image in order
for obj_idx, o in enumerate(annotations["objects"]):
if obj_idx == main_obj_idx:
continue
relabel_parts(part_label, o)
gt_list.append(part_label)
# Count samples for each class
print(np.unique(label_list, return_counts=True))
print(f"=> {too_small} samples were too small and removed.")
data_dict = {
"labels": label_list,
"images": file_list,
"panoptic-parts": gt_list,
}
return data_dict
def save_pil_image(img, path):
image_path = os.path.join(path)
pil_img = PIL.Image.fromarray(img)
pil_img.save(image_path)
def save_images_partition(partition, data_dict, idx, image_path):
# Copy images to new directory
path = os.path.join(
args.data_dir, "PartImages", args.name, "images", partition
)
for label in LABELS:
os.makedirs(os.path.join(path, label), exist_ok=True)
for i in idx:
label = data_dict["labels"][i]
image_filename = data_dict["images"][i]
orig_image_path = os.path.join(image_path, image_filename)
new_image_path = os.path.join(path, label, image_filename)
if os.path.isfile(orig_image_path):
copyfile(orig_image_path, new_image_path)
# Save segmentation labels
key = "panoptic-parts"
path = os.path.join(
args.data_dir, "PartImages", args.name, "panoptic-parts", partition
)
for label in LABELS:
os.makedirs(os.path.join(path, label), exist_ok=True)
for i in idx:
label = data_dict["labels"][i]
filename = data_dict["images"][i].split(".")[0]
save_pil_image(
data_dict[key][i], os.path.join(path, label, f"{filename}.tif")
)
# Load annotations from the annotation folder of PASCAL-Part dataset:
if __name__ == "__main__":
# Parse arguments from command line:
parser = argparse.ArgumentParser(
description="Prepare PASCAL-Part dataset for classification tasks"
)
parser.add_argument(
"--data-dir", default="~/data/", type=str, help="Path to dataset"
)
parser.add_argument(
"--name", default="temp", type=str, help="Name the new part dataset"
)
parser.add_argument("--seed", default=0, type=int, help="Random seed")
parser.add_argument(
"--val-ratio",
default=0.1,
type=float,
help="Ratio of validation samples to all samples",
)
parser.add_argument(
"--min-area",
default=0.0,
type=float,
help="Min area of object to consider (relative to image size)",
)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
data_dict = collect_parts(args)
labels = np.array(data_dict["labels"])
val_idx, test_idx, train_idx = [], [], []
for l in np.unique(labels):
idx = np.where(labels == l)[0]
num_samples = len(idx)
np.random.shuffle(idx)
num_val, num_test = round(0.1 * num_samples), round(0.1 * num_samples)
val_idx.append(idx[:num_val])
test_idx.append(idx[num_val : num_val + num_test])
train_idx.append(idx[num_val + num_test :])
val_idx = np.concatenate(val_idx, axis=0)
test_idx = np.concatenate(test_idx, axis=0)
train_idx = np.concatenate(train_idx, axis=0)
image_path = os.path.join(args.data_dir, "JPEGImages")
for partition, indices in zip(
["train", "val", "test"], [train_idx, val_idx, test_idx]
):
save_images_partition(partition, data_dict, indices, image_path)