-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
621 lines (540 loc) · 22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
"""Main script for both training and evaluation."""
from __future__ import annotations
import argparse
import json
import logging
import math
import os
import pickle
import random
import sys
import time
from pprint import pprint
from typing import Any
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import wandb
from torch.backends import cudnn
from torch.cuda import amp
# Use this for older version of torchmetrics. torchmetrics <= 0.6.0 is
# supposedly a lot faster at computing mAP scores.
# https://github.com/Lightning-AI/metrics/pull/1389
# from torchmetrics import IoU
# from torchmetrics.detection import MAP as MeanAveragePrecision
from torchmetrics.classification import MulticlassJaccardIndex as IoU
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from torchvision.ops import box_convert
from torchvision.utils import save_image
from DINO.models.dino.dino import PostProcess
from DINO.util.slconfig import SLConfig
from part_model.attack import (
setup_eval_attacker,
setup_train_attacker,
setup_val_attacker,
)
from part_model.dataloader import COLORMAP, load_dataset
from part_model.models import build_model
from part_model.utils import (
AverageMeter,
ProgressMeter,
adjust_learning_rate,
dist_barrier,
get_compute_acc,
get_rank,
init_distributed_mode,
is_main_process,
pixel_accuracy,
save_on_master,
)
from part_model.utils.argparse import get_args_parser
from part_model.utils.dataloader_visualizer import debug_dino_dataloader
from part_model.utils.loss import get_train_criterion
def _dummy_compute_acc(outputs, targets):
_ = outputs, targets # Unused
return torch.zeros(1)
def _write_metrics(save_metrics: Any) -> None:
if is_main_process():
# Save metrics to pickle file if not exists else append
pkl_path = os.path.join(args.output_dir, "metrics.pkl")
with open(pkl_path, "wb") as file:
pickle.dump([save_metrics], file)
def main() -> None:
"""Main function."""
init_distributed_mode(args)
# TODO(chawins@): Have to change this when adding new detection models
use_det = "seg-only" in args.experiment and args.obj_det_arch == "dino"
# Fix the seed for reproducibility
seed: int = args.seed + get_rank()
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
cudnn.benchmark = True
# Data loading code
print("=> Creating dataset...")
loaders = load_dataset(args)
train_loader, train_sampler, val_loader, test_loader = loaders
# Debugging dataloader
if args.debug:
# TODO(nab-126@): What is this debugging code for? Is it still needed?
debug_dino_dataloader(train_loader)
# debug_dino_dataloader(val_loader)
# debug_dino_dataloader(test_loader)
# Create model
print("=> Creating model...")
model, optimizer, scaler = build_model(args)
# Define loss function
criterion, train_criterion = get_train_criterion(args)
# Logging
if is_main_process():
log_path: str = os.path.join(
os.path.expanduser(args.output_dir), "log.txt"
)
logfile = open(log_path, "a", encoding="utf-8")
logfile.write(str(args) + "\n")
logfile.flush()
if args.wandb:
wandb_id = os.path.split(args.output_dir)[-1]
wandb.init(
project="part-model", id=wandb_id, config=args, resume="allow"
)
print("wandb step:", wandb.run.step)
eval_attack = setup_eval_attacker(args, model)
no_attack = eval_attack[0][1]
train_attack = setup_train_attacker(args, model)
val_attack = setup_val_attacker(args, model)
save_metrics = {"train": [], "test": []}
print(args)
if not args.evaluate:
print("=> Beginning training...")
best_acc = 0
val_stats = {}
for epoch in range(args.start_epoch, args.epochs):
is_best = False
if args.distributed:
train_sampler.set_epoch(epoch)
learning_rate = adjust_learning_rate(optimizer, epoch, args)
print(f"=> lr @ epoch {epoch}: {learning_rate:.2e}")
# Train for one epoch
train_stats = _train(
train_loader,
model,
train_criterion,
train_attack,
optimizer,
scaler,
epoch,
)
if (epoch + 1) % 2 == 0:
val_stats = _validate(val_loader, model, criterion, no_attack)
metric_name = "map" if use_det else "acc1"
clean_acc1, acc1 = val_stats[metric_name], None
is_best = clean_acc1 > best_acc
if args.adv_train != "none":
adv_val_stats = _validate(
val_loader, model, criterion, val_attack
)
acc1 = adv_val_stats[metric_name]
val_stats["adv_acc1"] = acc1
val_stats["adv_loss"] = adv_val_stats["loss"]
is_best = clean_acc1 >= acc1 > best_acc
save_dict = {
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scaler": scaler.state_dict(),
"best_acc1": best_acc,
"args": args,
}
if is_best:
print("=> Saving new best checkpoint...")
save_on_master(save_dict, args.output_dir, is_best=True)
best_acc = (
max(clean_acc1, best_acc)
if acc1 is None
else max(acc1, best_acc)
)
save_epoch = epoch + 1 if args.save_all_epochs else None
save_on_master(
save_dict, args.output_dir, is_best=False, epoch=save_epoch
)
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"val_{k}": v for k, v in val_stats.items()},
"epoch": epoch,
}
if is_main_process():
save_metrics["train"].append(log_stats)
_write_metrics(save_metrics)
if args.wandb:
wandb.log(log_stats)
logfile.write(json.dumps(log_stats) + "\n")
logfile.flush()
# Compute stats of best model after training
dist_barrier()
load_path = f"{args.output_dir}/checkpoint_best.pt"
print(f"=> Loading checkpoint from {load_path}...")
# Map model to be loaded to specified single gpu.
checkpoint = torch.load(
load_path,
map_location=None if args.gpu is None else f"cuda:{args.gpu}",
)
model.load_state_dict(checkpoint["state_dict"])
# Running evaluation
for attack in eval_attack:
# Use DataParallel (not distributed) model for AutoAttack.
# Otherwise, DDP model can get timeout or c10d failure.
stats = _validate(test_loader, model, criterion, attack[1])
print(f"=> {attack[0]}: {stats}")
stats["attack"] = str(attack[0])
dist_barrier()
if is_main_process():
save_metrics["test"].append(stats)
_write_metrics(save_metrics)
if args.wandb:
wandb.log(stats)
logfile.write(json.dumps(stats) + "\n")
if is_main_process():
# Save metrics to pickle file if not exists else append
_write_metrics(save_metrics)
last_path = f"{args.output_dir}/checkpoint_last.pt"
if os.path.exists(last_path):
os.remove(last_path)
logfile.close()
def _train(train_loader, model, criterion, attack, optimizer, scaler, epoch):
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
top1 = AverageMeter("Acc@1", ":6.2f")
mem = AverageMeter("Mem (GB)", ":6.1f")
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, mem],
prefix=f"Epoch: [{epoch}]",
)
compute_acc = get_compute_acc(args)
seg_only = "seg-only" in args.experiment
if args.obj_det_arch == "dino" and seg_only:
compute_acc = _dummy_compute_acc
# Switch to train mode
model.train()
segs, masks, target_bbox = None, None, None
need_tgt_for_training = True
end = time.time()
for i, samples in enumerate(train_loader):
# Measure data loading time
data_time.update(time.time() - end)
# TODO(nabeel@): Ideally we want to unify the data handling for both
# DINO and segmentation, or otherwise, make a separate training script.
if args.obj_det_arch == "dino":
nested_tensors, target_bbox, targets = samples
images, masks = nested_tensors.decompose()
images = images.cuda(args.gpu, non_blocking=True)
masks = masks.cuda(args.gpu, non_blocking=True)
targets = torch.tensor(
targets, device=masks.device, dtype=torch.long
)
target_bbox = [
{k: v.cuda(args.gpu, non_blocking=True) for k, v in t.items()}
for t in target_bbox
]
else:
# If training segmenter only, `targets` is segmentation mask
images, targets = samples[:2]
if len(samples) == 3 and not seg_only:
images, segs, targets = samples
segs = segs.cuda(args.gpu, non_blocking=True)
images = images.cuda(args.gpu, non_blocking=True)
targets = targets.cuda(args.gpu, non_blocking=True)
batch_size: int = targets.size(0)
with amp.autocast(enabled=not args.full_precision):
if args.obj_det_arch == "dino":
forward_args = {
"masks": masks,
"dino_targets": target_bbox,
"need_tgt_for_training": need_tgt_for_training,
"return_mask": False,
"return_mask_only": seg_only,
}
if seg_only:
# TODO(nab-126@): target_bbox is being passed in
# forward_args already. Do we still need it as arg here?
images = attack(images, target_bbox, **forward_args)
else:
images = attack(images, targets, **forward_args)
if args.adv_train in ("trades", "mat"):
masks = torch.cat([masks.detach(), masks.detach()], dim=0)
target_bbox = [*target_bbox, *target_bbox]
if seg_only:
outputs = model(images, **forward_args)
loss = criterion(outputs, target_bbox)
else:
# Change to true to get dino outputs for map calculation
forward_args["return_mask"] = True
outputs, dino_outputs = model(images, **forward_args)
loss = criterion(
outputs, dino_outputs, target_bbox, targets
)
if args.adv_train in ("trades", "mat"):
outputs = outputs[batch_size:]
else:
images = attack(images, targets, seg_targets=segs)
if attack.dual_losses:
targets = torch.cat([targets, targets], axis=0)
segs = torch.cat([segs, segs], axis=0)
# TODO(chawins@): unify model interface
if segs is None or seg_only:
outputs = model(images)
loss = criterion(outputs, targets)
elif "groundtruth" in args.experiment:
outputs = model(images, segs=segs)
loss = criterion(outputs, targets)
else:
outputs = model(images, return_mask=True)
loss = criterion(outputs, targets, segs)
outputs = outputs[0]
if args.adv_train in ("trades", "mat"):
outputs = outputs[batch_size:]
if not math.isfinite(loss.item()):
print(f"Loss is {loss.item()}, stopping training")
sys.exit(1)
# Measure accuracy and record loss
acc1 = compute_acc(outputs, targets)
losses.update(loss.item(), batch_size)
top1.update(acc1.item(), batch_size)
# Compute gradient and do SGD step
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if i % args.print_freq == 0:
if is_main_process() and args.wandb:
wandb.log(
{
"acc": acc1.item(),
"loss": loss.item(),
"scaler": scaler.get_scale(),
}
)
progress.display(i)
progress.synchronize()
return {
"acc1": top1.avg,
"loss": losses.avg,
"lr": optimizer.param_groups[0]["lr"],
}
def _validate(val_loader, model, criterion, attack):
seg_only = "seg-only" in args.experiment
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
top1 = AverageMeter("Acc@1", ":6.2f")
pacc = AverageMeter("PixelAcc", ":6.2f")
mem = AverageMeter("Mem (GB)", ":6.1f")
iou = AverageMeter("IoU", ":6.2f")
mAP = AverageMeter("mAP", ":6.2f")
progress = ProgressMeter(
len(val_loader),
[batch_time, data_time, losses, top1, mem],
prefix="Test: ",
)
compute_acc = get_compute_acc(args)
compute_iou = IoU(args.seg_labels).cuda(args.gpu)
if (args.obj_det_arch == "dino" and seg_only) or args.calculate_map:
if seg_only:
compute_acc = _dummy_compute_acc
map_metric = MeanAveragePrecision().cuda(args.gpu)
postprocessors = {
"bbox": PostProcess(
num_select=args.num_select,
nms_iou_threshold=args.nms_iou_threshold,
).cuda(args.gpu)
}
# switch to evaluate mode
model.eval()
need_tgt_for_training = True
end = time.time()
for i, samples in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if len(samples) == 2:
images, targets = samples
segs = None
elif seg_only and args.obj_det_arch != "dino":
images, targets, _ = samples
segs = None
else:
# handling dino validation
if args.obj_det_arch == "dino":
nested_tensors, target_bbox, targets = samples
images, masks = nested_tensors.decompose()
masks = masks.cuda(args.gpu, non_blocking=True)
targets = torch.tensor(
targets, device=masks.device, dtype=torch.long
)
target_bbox = [
{
k: v.cuda(args.gpu, non_blocking=True)
for k, v in t.items()
}
for t in target_bbox
]
else:
images, segs, targets = samples
segs = segs.cuda(args.gpu, non_blocking=True)
# DEBUG
if args.debug:
save_image(COLORMAP[segs.cpu()].permute(0, 3, 1, 2), "gt.png")
save_image(images, "test.png")
images = images.cuda(args.gpu, non_blocking=True)
targets = targets.cuda(args.gpu, non_blocking=True)
batch_size = targets.size(0)
# DEBUG: fixed clean segmentation masks
if "clean" in args.experiment:
model(images, clean=True)
# compute output
with torch.no_grad():
if args.obj_det_arch == "dino":
forward_args = {
"masks": masks,
"dino_targets": target_bbox,
"need_tgt_for_training": need_tgt_for_training,
"return_mask": False,
"return_mask_only": seg_only,
}
# TODO(chawins@): This if-else should be merged and use
# return_mask_only to control the output
if seg_only:
images = attack(images, target_bbox, **forward_args)
dino_outputs = model(images, **forward_args)
loss = criterion(dino_outputs, target_bbox)
else:
images = attack(images, targets, **forward_args)
# Change to true to get dino outputs for map calculation
forward_args["return_mask"] = True
outputs, dino_outputs = model(images, **forward_args)
loss = criterion(outputs, targets)
if seg_only or args.calculate_map:
orig_target_sizes = torch.stack(
[t["orig_size"] for t in target_bbox], dim=0
)
results = postprocessors["bbox"](
dino_outputs, orig_target_sizes
)
# target_bbox_copy = copy.deepcopy(targets)
for j, tbox in enumerate(target_bbox):
shape = tbox["orig_size"]
boxes = tbox["boxes"]
boxes = box_convert(
boxes, in_fmt="cxcywh", out_fmt="xyxy"
)
boxes[:, ::2] = boxes[:, ::2] * shape[1]
boxes[:, 1::2] = boxes[:, 1::2] * shape[0]
target_bbox[j]["boxes"] = boxes
map_metric.update(results, target_bbox)
else:
images = attack(images, targets, seg_targets=segs)
# Need to duplicate segs and targets to match images expanded by
# image corruption attack
if images.shape[0] != targets.shape[0]:
ratio = images.shape[0] // targets.shape[0]
targets = targets.repeat(
(ratio,) + (1,) * (len(targets.shape) - 1)
)
if segs:
segs = segs.repeat(
(ratio,) + (1,) * (len(segs.shape) - 1)
)
if segs is None or "normal" in args.experiment or seg_only:
outputs = model(images)
elif "groundtruth" in args.experiment:
outputs = model(images, segs=segs)
else:
outputs, masks = model(images, return_mask=True)
if "centroid" in args.experiment:
masks, _, _, _ = masks
pixel_acc = pixel_accuracy(masks, segs)
pacc.update(pixel_acc.item(), batch_size)
loss = criterion(outputs, targets)
# DEBUG
if args.debug:
save_image(
COLORMAP[masks.argmax(1).cpu()].permute(0, 3, 1, 2),
"pred_seg_clean.png",
)
print(targets == outputs.argmax(1))
raise NotImplementedError("End of debugging. Exit.")
# measure accuracy and record loss
acc1 = compute_acc(outputs, targets)
losses.update(loss.item(), batch_size)
top1.update(acc1.item(), batch_size)
if seg_only and args.obj_det_arch != "dino":
iou.update(compute_iou(outputs, targets).item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if i % args.print_freq == 0:
progress.display(i)
progress.synchronize()
print(f" * Acc@1 {top1.avg:.3f}")
return_dict = {
"acc1": top1.avg,
"loss": losses.avg,
"pixel-acc": pacc.avg,
}
if pacc.count > 0:
pacc.synchronize()
print(f"Pixelwise accuracy: {pacc.avg:.4f}")
if seg_only or args.calculate_map:
if args.obj_det_arch == "dino":
print(" * mAP metric")
map_dict = map_metric.compute()
mAP.update(map_dict["map"].item(), 1)
mAP.synchronize()
# Average mAP across workers in DDP. This is not strictly correct,
# but should be good enough for logging. Not sure if there is a
# correct way: https://github.com/Lightning-AI/metrics/issues/53.
print(f"mAP: {mAP.avg:.4f}")
return_dict["map"] = mAP.avg
pprint({k: v.item() for k, v in map_dict.items()})
else:
iou.synchronize()
print(f"IoU: {iou.avg:.4f}")
return_dict["iou"] = iou.avg
return return_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"Part Classification", parents=[get_args_parser()]
)
args = parser.parse_args()
# TODO(nab-126@): add to argparser?
# handling dino args
if args.config_file:
cfg = SLConfig.fromfile(args.config_file)
if args.options is not None:
cfg.merge_from_dict(args.options)
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(args)
for k, v in cfg_dict.items():
if k not in args_vars:
setattr(args, k, v)
else:
raise ValueError(f"Key {k} can used by args only")
# Set logging config
logging.basicConfig(
stream=sys.stdout,
format="[%(asctime)s - %(name)s - %(levelname)s]: %(message)s",
level=logging.DEBUG if args.debug else logging.INFO,
force=True,
)
os.makedirs(args.output_dir, exist_ok=True)
main()