-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gcn.py
375 lines (331 loc) · 11 KB
/
test_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""GCN using basic message passing
References:
- Semi-Supervised Classification with Graph Convolutional Networks
- Paper: https://arxiv.org/abs/1609.02907
- Code: https://github.com/tkipf/gcn
"""
import argparse, time, math
import numpy as np
import networkx as nx
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from dgl.data import RedditDataset
from torch_sparse import SparseTensor
from torch_geometric.nn import MessagePassing
from torch_sparse import matmul
th.classes.load_library("build/libadjmatrix.so")
AdjMatrix = th.classes.DGL.AdjMatrix
class GCNConv_pyg(MessagePassing):
def __init__(self,
norm,
in_feats,
out_feats,
activation,
dropout,
bias=False):
super(GCNConv_pyg, self).__init__(aggr="add")
self.weight = nn.Parameter(th.Tensor(in_feats, out_feats))
self.norm = norm
if dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = 0.
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, x, edge_index):
if self.dropout:
x = self.dropout(x)
out = th.mm(x, self.weight)
out = out * self.norm
out = self.propagate(edge_index, x=out)
out = out * self.norm
if self.activation:
out = self.activation(out)
return out
def message(self, x_j):
return x_j
def message_and_aggregate(self, adj_t, x):
return matmul(adj_t, x, reduce=self.aggr)
class GCN_pyg(nn.Module):
def __init__(self,
edge_index,
norm,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN_pyg, self).__init__()
self.edge_index = edge_index
self.layers = nn.ModuleList()
# input layer
self.layers.append(GCNConv_pyg(norm, in_feats, n_hidden, activation, dropout))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(GCNConv_pyg(norm, n_hidden, n_hidden, activation, dropout))
# output layer
self.layers.append(GCNConv_pyg(norm, n_hidden, n_classes, None, dropout))
def forward(self, features):
h = features
for layer in self.layers:
h = layer(h, self.edge_index)
return h
class GCNLayer(nn.Module):
def __init__(self,
g,
in_feats,
out_feats,
activation,
dropout,
bias=False):
super(GCNLayer, self).__init__()
self.g = g
self.weight = nn.Parameter(th.Tensor(in_feats, out_feats))
if dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = 0.
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, h):
if self.dropout:
h = self.dropout(h)
h = th.mm(h, self.weight)
self.g.ndata["h"] = h * self.g.ndata["norm"]
self.g.update_all(fn.copy_src(src="h", out="m"), fn.sum(msg="m", out="h"))
h = self.g.ndata.pop('h')
h = h * self.g.ndata["norm"]
if self.activation:
h = self.activation(h)
return h
class GCN(nn.Module):
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN, self).__init__()
self.layers = nn.ModuleList()
# input layer
self.layers.append(GCNLayer(g, in_feats, n_hidden, activation, dropout))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(GCNLayer(g, n_hidden, n_hidden, activation, dropout))
# output layer
self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))
def forward(self, features):
h = features
for layer in self.layers:
h = layer(h)
return h
class GCN_Adj(nn.Module):
adj: AdjMatrix
norm: th.Tensor
def __init__(self,
adj,
norm,
in_feats,
n_hidden,
n_classes,
activation,
dropout):
super(GCN_Adj, self).__init__()
self.adj = adj
self.norm = norm
self.weight1 = nn.Parameter(th.Tensor(in_feats, n_hidden))
self.weight2 = nn.Parameter(th.Tensor(n_hidden, n_classes))
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight1.size(1))
self.weight1.data.uniform_(-stdv, stdv)
stdv = 1. / math.sqrt(self.weight2.size(1))
self.weight2.data.uniform_(-stdv, stdv)
def forward(self, features : th.Tensor):
# Layer 1
h = self.dropout(features)
h = th.mm(h, self.weight1)
h = h * self.norm
h = th.ops.DGL.GSpMM(self.adj, "copy_lhs", "sum", h, None)
h = h * self.norm
h = self.activation(h)
# Layer 2
h = self.dropout(h)
h = th.mm(h, self.weight2)
h = h * self.norm
h = th.ops.DGL.GSpMM(self.adj, "copy_lhs", "sum", h, None)
h = h * self.norm
return h
def evaluate(model, features, labels, mask):
model.eval()
with th.no_grad():
logits = model(features)
logits = logits[mask]
labels = labels[mask]
_, indices = th.max(logits, dim=1)
correct = th.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
if args.dataset == 'cora':
data = CoraGraphDataset()
elif args.dataset == 'citeseer':
data = CiteseerGraphDataset()
elif args.dataset == 'pubmed':
data = PubmedGraphDataset()
elif args.dataset == 'reddit':
data = RedditDataset()
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.to(args.gpu)
features = g.ndata['feat']
labels = g.ndata['label']
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
in_feats = features.shape[1]
n_classes = data.num_classes
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
n_edges = g.number_of_edges()
# normalization
degs = g.in_degrees().float()
norm = th.pow(degs, -0.5)
norm[th.isinf(norm)] = 0
if cuda:
norm = norm.cuda()
g.ndata['norm'] = norm.unsqueeze(1)
src, dst = g.edges()
adj = AdjMatrix(src, dst)
m = GCN_Adj(adj,
g.ndata['norm'],
in_feats,
args.n_hidden,
n_classes,
F.relu,
args.dropout)
if cuda:
m.cuda()
model1 = th.jit.script(m)
model2 = GCN(g,
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
F.relu,
args.dropout)
if cuda:
model2.cuda()
adj_pyg = SparseTensor(row=src, col=dst, sparse_sizes=(g.number_of_nodes(), g.number_of_nodes()))
model3 = GCN_pyg(adj_pyg,
g.ndata['norm'],
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
F.relu,
args.dropout)
if cuda:
model3.cuda()
loss_fcn = th.nn.CrossEntropyLoss()
model = None
# create GCN model
if args.impl == "script":
model = model1
print("Using Torchscript")
print(model.graph)
elif args.impl == "pyg":
model = model3
print("Using Pyg")
else:
model = model2
print("Using DGL")
optimizer = th.optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
# if epoch == 100:
# th.cuda.nvtx.range_push("forward")
logits = model(features)
loss = loss_fcn(logits[train_mask], labels[train_mask])
# if epoch == 100:
# th.cuda.nvtx.range_pop()
optimizer.zero_grad()
# if epoch == 100:
# th.cuda.nvtx.range_push("backward")
loss.backward()
optimizer.step()
if args.gpu > 0:
th.cuda.synchronize()
# if epoch == 100:
# th.cuda.nvtx.range_pop()
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print("Epoch {:05d} | Time(ms) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur) * 1000, loss.item(),
acc, n_edges / np.mean(dur) / 1000))
print()
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN')
register_data_args(parser)
parser.add_argument("--impl", type=str, default="dgl",
help="use torch script or not")
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--weight-decay", type=float, default=5e-4,
help="Weight for L2 loss")
args = parser.parse_args()
print(args)
main(args)