forked from Arachnid/solidity-stringutils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrings.sol
711 lines (649 loc) · 24.2 KB
/
strings.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
* @title String & slice utility library for Solidity contracts.
* @author Nick Johnson <[email protected]>
*
* @dev Functionality in this library is largely implemented using an
* abstraction called a 'slice'. A slice represents a part of a string -
* anything from the entire string to a single character, or even no
* characters at all (a 0-length slice). Since a slice only has to specify
* an offset and a length, copying and manipulating slices is a lot less
* expensive than copying and manipulating the strings they reference.
*
* To further reduce gas costs, most functions on slice that need to return
* a slice modify the original one instead of allocating a new one; for
* instance, `s.split(".")` will return the text up to the first '.',
* modifying s to only contain the remainder of the string after the '.'.
* In situations where you do not want to modify the original slice, you
* can make a copy first with `.copy()`, for example:
* `s.copy().split(".")`. Try and avoid using this idiom in loops; since
* Solidity has no memory management, it will result in allocating many
* short-lived slices that are later discarded.
*
* Functions that return two slices come in two versions: a non-allocating
* version that takes the second slice as an argument, modifying it in
* place, and an allocating version that allocates and returns the second
* slice; see `nextRune` for example.
*
* Functions that have to copy string data will return strings rather than
* slices; these can be cast back to slices for further processing if
* required.
*
* For convenience, some functions are provided with non-modifying
* variants that create a new slice and return both; for instance,
* `s.splitNew('.')` leaves s unmodified, and returns two values
* corresponding to the left and right parts of the string.
*/
pragma solidity ^0.4.14;
library strings {
struct slice {
uint _len;
uint _ptr;
}
function memcpy(uint dest, uint src, uint len) private {
// Copy word-length chunks while possible
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/*
* @dev Returns a slice containing the entire string.
* @param self The string to make a slice from.
* @return A newly allocated slice containing the entire string.
*/
function toSlice(string self) internal returns (slice) {
uint ptr;
assembly {
ptr := add(self, 0x20)
}
return slice(bytes(self).length, ptr);
}
/*
* @dev Returns the length of a null-terminated bytes32 string.
* @param self The value to find the length of.
* @return The length of the string, from 0 to 32.
*/
function len(bytes32 self) internal returns (uint) {
uint ret;
if (self == 0)
return 0;
if (self & 0xffffffffffffffffffffffffffffffff == 0) {
ret += 16;
self = bytes32(uint(self) / 0x100000000000000000000000000000000);
}
if (self & 0xffffffffffffffff == 0) {
ret += 8;
self = bytes32(uint(self) / 0x10000000000000000);
}
if (self & 0xffffffff == 0) {
ret += 4;
self = bytes32(uint(self) / 0x100000000);
}
if (self & 0xffff == 0) {
ret += 2;
self = bytes32(uint(self) / 0x10000);
}
if (self & 0xff == 0) {
ret += 1;
}
return 32 - ret;
}
/*
* @dev Returns a slice containing the entire bytes32, interpreted as a
* null-termintaed utf-8 string.
* @param self The bytes32 value to convert to a slice.
* @return A new slice containing the value of the input argument up to the
* first null.
*/
function toSliceB32(bytes32 self) internal returns (slice ret) {
// Allocate space for `self` in memory, copy it there, and point ret at it
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 0x20))
mstore(ptr, self)
mstore(add(ret, 0x20), ptr)
}
ret._len = len(self);
}
/*
* @dev Returns a new slice containing the same data as the current slice.
* @param self The slice to copy.
* @return A new slice containing the same data as `self`.
*/
function copy(slice self) internal returns (slice) {
return slice(self._len, self._ptr);
}
/*
* @dev Copies a slice to a new string.
* @param self The slice to copy.
* @return A newly allocated string containing the slice's text.
*/
function toString(slice self) internal returns (string) {
var ret = new string(self._len);
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
return ret;
}
/*
* @dev Returns the length in runes of the slice. Note that this operation
* takes time proportional to the length of the slice; avoid using it
* in loops, and call `slice.empty()` if you only need to know whether
* the slice is empty or not.
* @param self The slice to operate on.
* @return The length of the slice in runes.
*/
function len(slice self) internal returns (uint l) {
// Starting at ptr-31 means the LSB will be the byte we care about
var ptr = self._ptr - 31;
var end = ptr + self._len;
for (l = 0; ptr < end; l++) {
uint8 b;
assembly { b := and(mload(ptr), 0xFF) }
if (b < 0x80) {
ptr += 1;
} else if(b < 0xE0) {
ptr += 2;
} else if(b < 0xF0) {
ptr += 3;
} else if(b < 0xF8) {
ptr += 4;
} else if(b < 0xFC) {
ptr += 5;
} else {
ptr += 6;
}
}
}
/*
* @dev Returns true if the slice is empty (has a length of 0).
* @param self The slice to operate on.
* @return True if the slice is empty, False otherwise.
*/
function empty(slice self) internal returns (bool) {
return self._len == 0;
}
/*
* @dev Returns a positive number if `other` comes lexicographically after
* `self`, a negative number if it comes before, or zero if the
* contents of the two slices are equal. Comparison is done per-rune,
* on unicode codepoints.
* @param self The first slice to compare.
* @param other The second slice to compare.
* @return The result of the comparison.
*/
function compare(slice self, slice other) internal returns (int) {
uint shortest = self._len;
if (other._len < self._len)
shortest = other._len;
var selfptr = self._ptr;
var otherptr = other._ptr;
for (uint idx = 0; idx < shortest; idx += 32) {
uint a;
uint b;
assembly {
a := mload(selfptr)
b := mload(otherptr)
}
if (a != b) {
// Mask out irrelevant bytes and check again
uint mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
var diff = (a & mask) - (b & mask);
if (diff != 0)
return int(diff);
}
selfptr += 32;
otherptr += 32;
}
return int(self._len) - int(other._len);
}
/*
* @dev Returns true if the two slices contain the same text.
* @param self The first slice to compare.
* @param self The second slice to compare.
* @return True if the slices are equal, false otherwise.
*/
function equals(slice self, slice other) internal returns (bool) {
return compare(self, other) == 0;
}
/*
* @dev Extracts the first rune in the slice into `rune`, advancing the
* slice to point to the next rune and returning `self`.
* @param self The slice to operate on.
* @param rune The slice that will contain the first rune.
* @return `rune`.
*/
function nextRune(slice self, slice rune) internal returns (slice) {
rune._ptr = self._ptr;
if (self._len == 0) {
rune._len = 0;
return rune;
}
uint len;
uint b;
// Load the first byte of the rune into the LSBs of b
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
if (b < 0x80) {
len = 1;
} else if(b < 0xE0) {
len = 2;
} else if(b < 0xF0) {
len = 3;
} else {
len = 4;
}
// Check for truncated codepoints
if (len > self._len) {
rune._len = self._len;
self._ptr += self._len;
self._len = 0;
return rune;
}
self._ptr += len;
self._len -= len;
rune._len = len;
return rune;
}
/*
* @dev Returns the first rune in the slice, advancing the slice to point
* to the next rune.
* @param self The slice to operate on.
* @return A slice containing only the first rune from `self`.
*/
function nextRune(slice self) internal returns (slice ret) {
nextRune(self, ret);
}
/*
* @dev Returns the number of the first codepoint in the slice.
* @param self The slice to operate on.
* @return The number of the first codepoint in the slice.
*/
function ord(slice self) internal returns (uint ret) {
if (self._len == 0) {
return 0;
}
uint word;
uint length;
uint divisor = 2 ** 248;
// Load the rune into the MSBs of b
assembly { word:= mload(mload(add(self, 32))) }
var b = word / divisor;
if (b < 0x80) {
ret = b;
length = 1;
} else if(b < 0xE0) {
ret = b & 0x1F;
length = 2;
} else if(b < 0xF0) {
ret = b & 0x0F;
length = 3;
} else {
ret = b & 0x07;
length = 4;
}
// Check for truncated codepoints
if (length > self._len) {
return 0;
}
for (uint i = 1; i < length; i++) {
divisor = divisor / 256;
b = (word / divisor) & 0xFF;
if (b & 0xC0 != 0x80) {
// Invalid UTF-8 sequence
return 0;
}
ret = (ret * 64) | (b & 0x3F);
}
return ret;
}
/*
* @dev Returns the keccak-256 hash of the slice.
* @param self The slice to hash.
* @return The hash of the slice.
*/
function keccak(slice self) internal returns (bytes32 ret) {
assembly {
ret := keccak256(mload(add(self, 32)), mload(self))
}
}
/*
* @dev Returns true if `self` starts with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
function startsWith(slice self, slice needle) internal returns (bool) {
if (self._len < needle._len) {
return false;
}
if (self._ptr == needle._ptr) {
return true;
}
bool equal;
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
return equal;
}
/*
* @dev If `self` starts with `needle`, `needle` is removed from the
* beginning of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
function beyond(slice self, slice needle) internal returns (slice) {
if (self._len < needle._len) {
return self;
}
bool equal = true;
if (self._ptr != needle._ptr) {
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(sha3(selfptr, length), sha3(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
self._ptr += needle._len;
}
return self;
}
/*
* @dev Returns true if the slice ends with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
function endsWith(slice self, slice needle) internal returns (bool) {
if (self._len < needle._len) {
return false;
}
var selfptr = self._ptr + self._len - needle._len;
if (selfptr == needle._ptr) {
return true;
}
bool equal;
assembly {
let length := mload(needle)
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
return equal;
}
/*
* @dev If `self` ends with `needle`, `needle` is removed from the
* end of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
function until(slice self, slice needle) internal returns (slice) {
if (self._len < needle._len) {
return self;
}
var selfptr = self._ptr + self._len - needle._len;
bool equal = true;
if (selfptr != needle._ptr) {
assembly {
let length := mload(needle)
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
}
return self;
}
// Returns the memory address of the first byte of the first occurrence of
// `needle` in `self`, or the first byte after `self` if not found.
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private returns (uint) {
uint ptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
// Optimized assembly for 68 gas per byte on short strings
assembly {
let mask := not(sub(exp(2, mul(8, sub(32, needlelen))), 1))
let needledata := and(mload(needleptr), mask)
let end := add(selfptr, sub(selflen, needlelen))
ptr := selfptr
loop:
jumpi(exit, eq(and(mload(ptr), mask), needledata))
ptr := add(ptr, 1)
jumpi(loop, lt(sub(ptr, 1), end))
ptr := add(selfptr, selflen)
exit:
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := sha3(needleptr, needlelen) }
ptr = selfptr;
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := sha3(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
// Returns the memory address of the first byte after the last occurrence of
// `needle` in `self`, or the address of `self` if not found.
function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private returns (uint) {
uint ptr;
if (needlelen <= selflen) {
if (needlelen <= 32) {
// Optimized assembly for 69 gas per byte on short strings
assembly {
let mask := not(sub(exp(2, mul(8, sub(32, needlelen))), 1))
let needledata := and(mload(needleptr), mask)
ptr := add(selfptr, sub(selflen, needlelen))
loop:
jumpi(ret, eq(and(mload(ptr), mask), needledata))
ptr := sub(ptr, 1)
jumpi(loop, gt(add(ptr, 1), selfptr))
ptr := selfptr
jump(exit)
ret:
ptr := add(ptr, needlelen)
exit:
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := sha3(needleptr, needlelen) }
ptr = selfptr + (selflen - needlelen);
while (ptr >= selfptr) {
bytes32 testHash;
assembly { testHash := sha3(ptr, needlelen) }
if (hash == testHash)
return ptr + needlelen;
ptr -= 1;
}
}
}
return selfptr;
}
/*
* @dev Modifies `self` to contain everything from the first occurrence of
* `needle` to the end of the slice. `self` is set to the empty slice
* if `needle` is not found.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
function find(slice self, slice needle) internal returns (slice) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len -= ptr - self._ptr;
self._ptr = ptr;
return self;
}
/*
* @dev Modifies `self` to contain the part of the string from the start of
* `self` to the end of the first occurrence of `needle`. If `needle`
* is not found, `self` is set to the empty slice.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
function rfind(slice self, slice needle) internal returns (slice) {
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len = ptr - self._ptr;
return self;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and `token` to everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function split(slice self, slice needle, slice token) internal returns (slice) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = self._ptr;
token._len = ptr - self._ptr;
if (ptr == self._ptr + self._len) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
self._ptr = ptr + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and returning everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` up to the first occurrence of `delim`.
*/
function split(slice self, slice needle) internal returns (slice token) {
split(self, needle, token);
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and `token` to everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function rsplit(slice self, slice needle, slice token) internal returns (slice) {
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = ptr;
token._len = self._len - (ptr - self._ptr);
if (ptr == self._ptr) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and returning everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` after the last occurrence of `delim`.
*/
function rsplit(slice self, slice needle) internal returns (slice token) {
rsplit(self, needle, token);
}
/*
* @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return The number of occurrences of `needle` found in `self`.
*/
function count(slice self, slice needle) internal returns (uint cnt) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
while (ptr <= self._ptr + self._len) {
cnt++;
ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
}
}
/*
* @dev Returns True if `self` contains `needle`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return True if `needle` is found in `self`, false otherwise.
*/
function contains(slice self, slice needle) internal returns (bool) {
return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
}
/*
* @dev Returns a newly allocated string containing the concatenation of
* `self` and `other`.
* @param self The first slice to concatenate.
* @param other The second slice to concatenate.
* @return The concatenation of the two strings.
*/
function concat(slice self, slice other) internal returns (string) {
var ret = new string(self._len + other._len);
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
memcpy(retptr + self._len, other._ptr, other._len);
return ret;
}
/*
* @dev Joins an array of slices, using `self` as a delimiter, returning a
* newly allocated string.
* @param self The delimiter to use.
* @param parts A list of slices to join.
* @return A newly allocated string containing all the slices in `parts`,
* joined with `self`.
*/
function join(slice self, slice[] parts) internal returns (string) {
if (parts.length == 0)
return "";
uint length = self._len * (parts.length - 1);
for(uint i = 0; i < parts.length; i++)
length += parts[i]._len;
var ret = new string(length);
uint retptr;
assembly { retptr := add(ret, 32) }
for(i = 0; i < parts.length; i++) {
memcpy(retptr, parts[i]._ptr, parts[i]._len);
retptr += parts[i]._len;
if (i < parts.length - 1) {
memcpy(retptr, self._ptr, self._len);
retptr += self._len;
}
}
return ret;
}
}