forked from adamkarvonen/SAEBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobe_training.py
376 lines (305 loc) · 13.1 KB
/
probe_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import copy
import math
import torch
import torch.nn as nn
from beartype import beartype
from jaxtyping import Bool, Float, Int, jaxtyped
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import sae_bench.sae_bench_utils.dataset_info as dataset_info
class Probe(nn.Module):
def __init__(self, activation_dim: int, dtype: torch.dtype):
super().__init__()
self.net = nn.Linear(activation_dim, 1, bias=True, dtype=dtype)
def forward(self, x):
return self.net(x).squeeze(-1)
@jaxtyped(typechecker=beartype)
def prepare_probe_data(
all_activations: dict[
str, Float[torch.Tensor, "num_datapoints_per_class ... d_model"]
],
class_name: str,
perform_scr: bool = False,
) -> tuple[
Float[torch.Tensor, "num_datapoints_per_class_x_2 ... d_model"],
Int[torch.Tensor, "num_datapoints_per_class_x_2"],
]:
"""perform_scr is for the SCR metric. In this case, all_activations has 3 pairs of keys, or 6 total.
It's a bit unfortunate to introduce coupling between the metrics, but most of the code is reused between them.
The ... means we can have an optional seq_len dimension between num_datapoints_per_class and d_model.
"""
positive_acts_BD = all_activations[class_name]
device = positive_acts_BD.device
num_positive = len(positive_acts_BD)
if perform_scr:
if class_name in dataset_info.PAIRED_CLASS_KEYS.keys():
selected_negative_acts_BD = all_activations[
dataset_info.PAIRED_CLASS_KEYS[class_name]
]
elif class_name in dataset_info.PAIRED_CLASS_KEYS.values():
reversed_dict = {v: k for k, v in dataset_info.PAIRED_CLASS_KEYS.items()}
selected_negative_acts_BD = all_activations[reversed_dict[class_name]]
else:
raise ValueError(f"Class {class_name} not found in paired class keys.")
else:
# Collect all negative class activations and labels
selected_negative_acts_BD = []
negative_keys = [k for k in all_activations.keys() if k != class_name]
num_neg_classes = len(negative_keys)
samples_per_class = math.ceil(num_positive / num_neg_classes)
for negative_class_name in negative_keys:
sample_indices = torch.randperm(len(all_activations[negative_class_name]))[
:samples_per_class
]
selected_negative_acts_BD.append(
all_activations[negative_class_name][sample_indices]
)
selected_negative_acts_BD = torch.cat(selected_negative_acts_BD)
# Randomly select num_positive samples from negative class
indices = torch.randperm(len(selected_negative_acts_BD))[:num_positive]
selected_negative_acts_BD = selected_negative_acts_BD[indices]
assert selected_negative_acts_BD.shape == positive_acts_BD.shape
# Combine positive and negative samples
combined_acts = torch.cat([positive_acts_BD, selected_negative_acts_BD])
combined_labels = torch.empty(len(combined_acts), dtype=torch.int, device=device)
combined_labels[:num_positive] = dataset_info.POSITIVE_CLASS_LABEL
combined_labels[num_positive:] = dataset_info.NEGATIVE_CLASS_LABEL
# Shuffle the combined data
shuffle_indices = torch.randperm(len(combined_acts))
shuffled_acts = combined_acts[shuffle_indices]
shuffled_labels = combined_labels[shuffle_indices]
return shuffled_acts, shuffled_labels
@jaxtyped(typechecker=beartype)
def get_top_k_mean_diff_mask(
acts_BD: Float[torch.Tensor, "batch_size d_model"],
labels_B: Int[torch.Tensor, "batch_size"],
k: int,
) -> Bool[torch.Tensor, "k"]:
positive_mask_B = labels_B == dataset_info.POSITIVE_CLASS_LABEL
negative_mask_B = labels_B == dataset_info.NEGATIVE_CLASS_LABEL
positive_distribution_D = acts_BD[positive_mask_B].mean(dim=0)
negative_distribution_D = acts_BD[negative_mask_B].mean(dim=0)
distribution_diff_D = (positive_distribution_D - negative_distribution_D).abs()
top_k_indices_D = torch.argsort(distribution_diff_D, descending=True)[:k]
mask_D = torch.ones(acts_BD.shape[1], dtype=torch.bool, device=acts_BD.device)
mask_D[top_k_indices_D] = False
return mask_D
@jaxtyped(typechecker=beartype)
def apply_topk_mask_zero_dims(
acts_BD: Float[torch.Tensor, "batch_size d_model"],
mask_D: Bool[torch.Tensor, "d_model"],
) -> Float[torch.Tensor, "batch_size k"]:
masked_acts_BD = acts_BD.clone()
masked_acts_BD[:, mask_D] = 0.0
return masked_acts_BD
@jaxtyped(typechecker=beartype)
def apply_topk_mask_reduce_dim(
acts_BD: Float[torch.Tensor, "batch_size d_model"],
mask_D: Bool[torch.Tensor, "d_model"],
) -> Float[torch.Tensor, "batch_size k"]:
masked_acts_BD = acts_BD.clone()
masked_acts_BD = masked_acts_BD[:, ~mask_D]
return masked_acts_BD
@beartype
def train_sklearn_probe(
train_inputs: Float[torch.Tensor, "train_dataset_size d_model"],
train_labels: Int[torch.Tensor, "train_dataset_size"],
test_inputs: Float[torch.Tensor, "test_dataset_size d_model"],
test_labels: Int[torch.Tensor, "test_dataset_size"],
max_iter: int = 1000, # non-default sklearn value, increased due to convergence warnings
C: float = 1.0, # default sklearn value
verbose: bool = False,
l1_ratio: float | None = None,
) -> tuple[LogisticRegression, float]:
train_inputs = train_inputs.to(dtype=torch.float32)
test_inputs = test_inputs.to(dtype=torch.float32)
# Convert torch tensors to numpy arrays
train_inputs_np = train_inputs.cpu().numpy()
train_labels_np = train_labels.cpu().numpy()
test_inputs_np = test_inputs.cpu().numpy()
test_labels_np = test_labels.cpu().numpy()
# Initialize the LogisticRegression model
if l1_ratio is not None:
# Use Elastic Net regularization
probe = LogisticRegression(
penalty="elasticnet",
solver="saga",
C=C,
l1_ratio=l1_ratio,
max_iter=max_iter,
verbose=int(verbose),
)
else:
# Use L2 regularization
probe = LogisticRegression(
penalty="l2", C=C, max_iter=max_iter, verbose=int(verbose)
)
# Train the model
probe.fit(train_inputs_np, train_labels_np)
# Compute accuracies
train_accuracy = accuracy_score(train_labels_np, probe.predict(train_inputs_np))
test_accuracy = accuracy_score(test_labels_np, probe.predict(test_inputs_np))
if verbose:
print("\nTraining completed.")
print(f"Train accuracy: {train_accuracy}, Test accuracy: {test_accuracy}\n")
return probe, test_accuracy
# Helper function to test the probe
@beartype
def test_sklearn_probe(
inputs: Float[torch.Tensor, "dataset_size d_model"],
labels: Int[torch.Tensor, "dataset_size"],
probe: LogisticRegression,
) -> float:
inputs = inputs.to(dtype=torch.float32)
inputs_np = inputs.cpu().numpy()
labels_np = labels.cpu().numpy()
predictions = probe.predict(inputs_np)
return accuracy_score(labels_np, predictions) # type: ignore
@jaxtyped(typechecker=beartype)
@torch.no_grad
def test_probe_gpu(
inputs: Float[torch.Tensor, "test_dataset_size d_model"],
labels: Int[torch.Tensor, "test_dataset_size"],
batch_size: int,
probe: Probe,
) -> float:
criterion = nn.BCEWithLogitsLoss()
with torch.no_grad():
corrects_0 = []
corrects_1 = []
all_corrects = []
losses = []
for i in range(0, len(labels), batch_size):
acts_BD = inputs[i : i + batch_size]
labels_B = labels[i : i + batch_size]
logits_B = probe(acts_BD)
preds_B = (logits_B > 0.0).long()
correct_B = (preds_B == labels_B).float()
all_corrects.append(correct_B)
corrects_0.append(correct_B[labels_B == 0])
corrects_1.append(correct_B[labels_B == 1])
loss = criterion(logits_B, labels_B.to(dtype=probe.net.weight.dtype))
losses.append(loss)
accuracy_all = torch.cat(all_corrects).mean().item()
return accuracy_all
@jaxtyped(typechecker=beartype)
def train_probe_gpu(
train_inputs: Float[torch.Tensor, "train_dataset_size d_model"],
train_labels: Int[torch.Tensor, "train_dataset_size"],
test_inputs: Float[torch.Tensor, "test_dataset_size d_model"],
test_labels: Int[torch.Tensor, "test_dataset_size"],
dim: int,
batch_size: int,
epochs: int,
lr: float,
verbose: bool = False,
l1_penalty: float | None = None,
early_stopping_patience: int = 10,
) -> tuple[Probe, float]:
"""We have a GPU training function for training on all SAE features, which was very slow (1 minute+) on CPU.
This is also used for SCR / TPP, which require probe weights."""
device = train_inputs.device
model_dtype = train_inputs.dtype
print(f"Training probe with dim: {dim}, device: {device}, dtype: {model_dtype}")
probe = Probe(dim, model_dtype).to(device)
optimizer = torch.optim.AdamW(probe.parameters(), lr=lr) # type: ignore
criterion = nn.BCEWithLogitsLoss()
best_test_accuracy = 0.0
best_probe = None
patience_counter = 0
for epoch in range(epochs):
indices = torch.randperm(len(train_inputs))
for i in range(0, len(train_inputs), batch_size):
batch_indices = indices[i : i + batch_size]
acts_BD = train_inputs[batch_indices]
labels_B = train_labels[batch_indices]
logits_B = probe(acts_BD)
loss = criterion(
logits_B, labels_B.clone().detach().to(device=device, dtype=model_dtype)
)
if l1_penalty is not None:
l1_loss = l1_penalty * torch.sum(torch.abs(probe.net.weight))
loss += l1_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_accuracy = test_probe_gpu(train_inputs, train_labels, batch_size, probe)
test_accuracy = test_probe_gpu(test_inputs, test_labels, batch_size, probe)
if test_accuracy > best_test_accuracy:
best_test_accuracy = test_accuracy
best_probe = copy.deepcopy(probe)
patience_counter = 0
else:
patience_counter += 1
if verbose:
print(
f"Epoch {epoch + 1}/{epochs} Loss: {loss.item()}, train accuracy: {train_accuracy}, test accuracy: {test_accuracy}" # type: ignore
)
if patience_counter >= early_stopping_patience:
print(
f"GPU probe training early stopping triggered after {epoch + 1} epochs"
)
break
assert best_probe is not None
return best_probe, best_test_accuracy
@jaxtyped(typechecker=beartype)
def train_probe_on_activations(
train_activations: dict[str, Float[torch.Tensor, "train_dataset_size d_model"]],
test_activations: dict[str, Float[torch.Tensor, "test_dataset_size d_model"]],
select_top_k: int | None = None,
use_sklearn: bool = True,
batch_size: int = 16,
epochs: int = 5,
lr: float = 1e-3,
verbose: bool = False,
early_stopping_patience: int = 10,
perform_scr: bool = False,
l1_penalty: float | None = None,
) -> tuple[dict[str, LogisticRegression | Probe], dict[str, float]]:
"""Train a probe on the given activations and return the probe and test accuracies for each profession.
use_sklearn is a flag to use sklearn's LogisticRegression model instead of a custom PyTorch model.
We use sklearn by default. probe training on GPU is only for training a probe on all SAE features.
"""
torch.set_grad_enabled(True)
probes, test_accuracies = {}, {}
for profession in train_activations.keys():
train_acts, train_labels = prepare_probe_data(
train_activations, profession, perform_scr
)
test_acts, test_labels = prepare_probe_data(
test_activations, profession, perform_scr
)
if select_top_k is not None:
activation_mask_D = get_top_k_mean_diff_mask(
train_acts, train_labels, select_top_k
)
train_acts = apply_topk_mask_reduce_dim(train_acts, activation_mask_D)
test_acts = apply_topk_mask_reduce_dim(test_acts, activation_mask_D)
activation_dim = train_acts.shape[1]
print(f"Num non-zero elements: {activation_dim}")
if use_sklearn:
probe, test_accuracy = train_sklearn_probe(
train_acts,
train_labels,
test_acts,
test_labels,
verbose=False,
)
else:
probe, test_accuracy = train_probe_gpu(
train_acts,
train_labels,
test_acts,
test_labels,
dim=activation_dim,
batch_size=batch_size,
epochs=epochs,
lr=lr,
verbose=verbose,
early_stopping_patience=early_stopping_patience,
l1_penalty=l1_penalty,
)
print(f"Test accuracy for {profession}: {test_accuracy}")
probes[profession] = probe
test_accuracies[profession] = test_accuracy
return probes, test_accuracies