-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
235 lines (185 loc) · 8.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pandas as pd
import numpy as np
import os
from pycocotools.coco import COCO
from torch.utils.data import DataLoader
import random
import torch
import torch.nn.functional as F
from torch import nn
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint#, StochasticWeightAveraging
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, CosineAnnealingLR, ReduceLROnPlateau
from typing import Optional
from sklearn.model_selection import train_test_split#, StratifiedKFold
from utils import dice_channel_torch, metric, ImagePredictionLogger
from loss import DiceBCELoss, DiceLoss, TverskyLoss, ComboLoss, FocalLoss
from segmentation_models_pytorch import losses
from lr_scheduler import CosineAnnealingWarmUpRestarts
from bmdataset import CustomDataset
from timm_unet import CustomUnet
from trans import get_transforms
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class LitClassifier(pl.LightningModule):
"""
>>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
LitClassifier(
(backbone): ...
)
"""
def __init__(
self,
scale_list = [0.25, 0.5], # 0.125,
backbone: Optional[CustomUnet] = None,
learning_rate: float = 0.0001,
):
super().__init__()
self.save_hyperparameters(ignore=['backbone'])
if backbone is None:
backbone = CustomUnet()
self.backbone = backbone
# self.criterion = losses.DiceLoss(mode='multiclass')
# self.criterion = TverskyLoss()#.to(self.device)
self.criterion = ComboLoss(nn.BCEWithLogitsLoss(pos_weight=torch.tensor([10])), FocalLoss())#.to(self.device)
# self.criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([10]))
# self.criterion = DiceBCELoss()#.to(self.device)
self.split_patch = True
def forward(self, batch):
output = self.backbone.model(batch)
return output
def training_step(self, batch, batch_idx):
x, y = batch
if self.split_patch:
x = x.view(-1, 1, 256, 256)
y = y.view(-1, 256, 256)
output = self.backbone(x)
# labels = F.one_hot(y.long(), num_classes=2).float().permute(0, 3, 1, 2)
# labels = y.long().contiguous() # .float().unsqueeze(1)
loss = self.criterion(output, y)
try:
dice_score = dice_channel_torch(y.detach().cpu(), output.detach().cpu().sigmoid())
self.log("dice_score", dice_score, on_step= True, prog_bar=True, logger=True)
self.log("Train Loss", loss, on_step= True,prog_bar=True, logger=True)
except:
pass
return {"loss": loss, "predictions": output.detach().cpu(), "labels": y.detach().cpu()}
def training_epoch_end(self, outputs):
preds = []
labels = []
for output in outputs:
preds += output['predictions']#.detach().cpu().sigmoid()
labels += output['labels']#.detach().cpu()
labels = torch.stack(labels)
preds = torch.stack(preds)
# dice_score, dice_neg, dice_pos, num_neg, num_pos = metric(preds.sigmoid(), labels)
# self.log("dice_score", dice_score, prog_bar=True, logger=True)
# self.log("dice_neg", dice_neg, prog_bar=True, logger=True)
# self.log("dice_pos", dice_pos, prog_bar=True, logger=True)
# self.log("num_neg", num_neg, prog_bar=False, logger=True)
# self.log("num_neg", num_neg, prog_bar=False, logger=True)
# self.log("num_pos", num_pos, prog_bar=False, logger=True)
dice_score = dice_channel_torch(labels, preds)
self.log("mean_dice_score", dice_score, prog_bar=True, logger=True)
def validation_step(self, batch, batch_idx):
x, y = batch
if self.split_patch:
x = x.view(-1, 1, 256, 256)
y = y.view(-1, 256, 256)
output = self.backbone(x)
# labels = F.one_hot(y.long(), num_classes=2).float().permute(0, 3, 1, 2)#.contiguous()
# labels = y.float().unsqueeze(1)
# labels = y.long().contiguous() # .float().unsqueeze(1)
loss = self.criterion(output, y)
self.log('val_loss', loss, on_step= True, prog_bar=True, logger=True)
return {"predictions": output.detach().cpu(), "labels": y.detach().cpu()}
def validation_epoch_end(self, outputs):
preds = []
labels = []
for output in outputs:
preds += output['predictions']
labels += output['labels']
preds = torch.stack(preds)
labels = torch.stack(labels)
# onehot = F.one_hot(labels.long(), num_classes=3).permute(0, 3, 1, 2)# .contiguous()
val_dice_score = dice_channel_torch(labels.detach().cpu(), preds.detach().cpu().sigmoid())
self.log("val_dice_score", val_dice_score, prog_bar=True, logger=True)
# val_dice_score, val_dice_neg, val_dice_pos, val_num_neg, val_num_pos = metric(preds.sigmoid(), labels)
# self.log("val_dice_score", val_dice_score, prog_bar=True, logger=True)
# self.log("val_dice_neg", val_dice_neg, prog_bar=True, logger=True)
# self.log("val_dice_pos", val_dice_pos, prog_bar=True, logger=True)
# self.log("val_num_neg", val_num_neg, prog_bar=False, logger=True)
# self.log("val_num_neg", val_num_neg, prog_bar=False, logger=True)
# self.log("val_num_pos", val_num_pos, prog_bar=False, logger=True)
def test_step(self, batch, batch_idx):
out = self.backbone(batch)
return out.sigmoid()
def configure_optimizers(self):
param_optimizer = list(self.backbone.named_parameters()) # self.model.named_parameters()
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_parameters = [
{
"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)
],
"weight_decay": 1e-6,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_parameters, lr=self.hparams.learning_rate)
scheduler_cosie = CosineAnnealingLR(optimizer, T_max= 10, eta_min=1e-6, last_epoch=-1)
# scheduler_cosie = CosineAnnealingWarmUpRestarts(optimizer, T_0=10, T_mult=1, eta_max=0.01, T_up=2, gamma=0.5)
# scheduler_warmup = GradualWarmupSchedulerV2(optimizer, multiplier=1, total_epoch=5, after_scheduler=scheduler_cosie)
return dict(optimizer=optimizer, lr_scheduler=scheduler_cosie) # , lr_scheduler=scheduler_warmup lr_scheduler=scheduler[optimizer], [scheduler]
class MyDataModule(pl.LightningDataModule):
def __init__(
self,
batch_size: int = 2,
):
super().__init__()
cc = COCO('../data/seg_data/crop_bm_v2.json') # crop_bm-1
img_ids = cc.getImgIds()
train_img_ids, valid_img_ids = train_test_split(img_ids, test_size=0.2, shuffle=True, random_state=52)
trn_dataset = CustomDataset(cc, train_img_ids, transform=get_transforms(data='train'), split_patch=True) # , feat_df=TRAIN_FEAT_DF
val_dataset = CustomDataset(cc, valid_img_ids, transform=get_transforms(data='valid'), split_patch=True) # , feat_df=TRAIN_FEAT_DF
self.train_dset = trn_dataset
self.valid_dset = val_dataset
self.batch_size = batch_size
def train_dataloader(self):
return DataLoader(self.train_dset, batch_size=self.batch_size, shuffle=True, num_workers=8)
def val_dataloader(self):
return DataLoader(self.valid_dset, batch_size=self.batch_size, shuffle=False, num_workers=8)
def cli_main():
logger = WandbLogger(name=f'weight BCE with focal', project='BM_seg_unet')
classifier = LitClassifier()
mc = ModelCheckpoint('model', monitor='val_dice_score', mode='max', filename='{epoch}-{val_dice_score:.4f}_')
# swa = StochasticWeightAveraging(swa_epoch_start=2, annealing_epochs=2)
mydatamodule = MyDataModule()
val_img, val_mask = next(iter(mydatamodule.val_dataloader()))
trainer = pl.Trainer(
gpus=1,
max_epochs=30,
# stochastic_weight_avg=True,
callbacks=[
mc,
ImagePredictionLogger(val_img[0], val_mask[0])
],
logger=logger
)
trainer.fit(classifier, datamodule=mydatamodule)
if __name__ == '__main__':
seed_everything()
cli_main()