Skip to content

Releases: chainer/onnx-chainer

v1.2.2a3

06 Sep 06:46
Compare
Choose a tag to compare
v1.2.2a3 Pre-release
Pre-release

Support ONNX v1.2.1, 1.2.2, 1.3.0. onnx_chainer.export() method now supports opset_version option to specify the opset version of exported ONNX file.

v1.1.1a2

05 Jul 08:43
Compare
Choose a tag to compare
v1.1.1a2 Pre-release
Pre-release

Add a description to README and fix the PyPI upload.

v1.1.1a1

05 Jul 07:59
a34b579
Compare
Choose a tag to compare
v1.1.1a1 Pre-release
Pre-release

This is the release of onnx-chainer v1.1.1a1. This version supports ONNX v1.1.1 and tested with MXNet 1.2.0 and TVM at this commit ID: ebdde3c277a9807a67b233cecfaf6d9f96c0c1bc.

Main Update

v1.0.0a1

11 Dec 10:01
23ae78c
Compare
Choose a tag to compare
v1.0.0a1 Pre-release
Pre-release

Support ONNX v1

v0.2.1b4

02 Dec 10:33
Compare
Choose a tag to compare
v0.2.1b4 Pre-release
Pre-release

Add some tests to compare the output of Chainer model and exported model using caffe2.

v0.2.1b3

28 Nov 09:24
Compare
Choose a tag to compare
v0.2.1b3 Pre-release
Pre-release

ONNX-Chainer

This is an add-on package for ONNX support by Chainer.

Requirements

  • onnx==0.2.1
  • chainer>=3.1.0

Installation

See INSTALL.md

Quick Start

import numpy as np
import chainer.links as L
import onnx_chainer

model = L.VGG16Layers()

# Pseudo input
x = np.zeros((1, 3, 224, 224), dtype=np.float32)

onnx_chainer.export(model, x, filename='VGG16.onnx')

Supported Functions

Currently 50 Chainer Functions are supported to export in ONNX format.

Activation

  • ELU
  • HardSigmoid
  • LeakyReLU
  • LogSoftmax
  • PReLUFunction
  • ReLU
  • Sigmoid
  • Softmax
  • Softplus
  • Tanh

Array

  • Cast
  • Concat
  • Depth2Space
  • Pad 12
  • Reshape
  • Space2Depth
  • SplitAxis
  • Squeeze
  • Tile
  • Transpose

Connection

  • Convolution2DFunction
  • ConvolutionND
  • Deconvolution2DFunction
  • DeconvolutionND
  • EmbedIDFunction 3
  • LinearFunction

Math

  • Add
  • Absolute
  • Div
  • Mul
  • Neg
  • PowVarConst
  • Sub
  • Clip
  • Exp
  • Identity
  • MatMul 4
  • Maximum
  • Minimum
  • Sqrt
  • SquaredDifference
  • Sum

Noise

  • Dropout 5

Pooling

  • AveragePooling2D
  • AveragePoolingND
  • MaxPooling2D
  • MaxPoolingND

Normalization

  • BatchNormalization
  • FixedBatchNormalization
  • LocalResponseNormalization

1: mode should be either 'constant', 'reflect', or 'edge'

2: ONNX doesn't support multiple constant values for Pad operation

3: Current ONNX doesn't support ignore_label for EmbedID

4: Current ONNX doesn't support transpose options for matmul ops

5: In test mode, all dropout layers aren't included in the exported file

v0.2.1b1

27 Nov 13:15
10964bc
Compare
Choose a tag to compare
v0.2.1b1 Pre-release
Pre-release

Added many functions. Now it supports:

Activation

  • ELU
  • HardSigmoid
  • LeakyReLU
  • LogSoftmax
  • PReLUFunction
  • ReLU
  • Sigmoid
  • Softmax
  • Softplus
  • Tanh

Array

  • Cast
  • Concat
  • Depth2Space
  • Pad
  • Reshape
  • Space2Depth
  • SplitAxis
  • Squeeze
  • Tile
  • Transpose

Connection

  • Convolution2DFunction
  • LinearFunction

Pooling

  • AveragePooling2D
  • MaxPooling2D

Normalization

  • BatchNormalization
  • FixedBatchNormalization

Math

  • Add
  • Sub
  • Mul
  • Neg
  • Absolute
  • Div

v0.2.1a2

27 Nov 02:51
Compare
Choose a tag to compare
v0.2.1a2 Pre-release
Pre-release

Basic function support with naive implementation