This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
train_coco_multi.py
executable file
·245 lines (203 loc) · 8.19 KB
/
train_coco_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import division
import argparse
import functools
import multiprocessing
import numpy as np
import random
import six
import chainer
from chainer.dataset.convert import _concat_arrays
from chainer.dataset.convert import to_device
import chainer.links as L
from chainer.training import extensions
from chainercv.chainer_experimental.datasets.sliceable \
import TransformDataset
from chainercv.chainer_experimental.training.extensions import make_shift
from chainercv.datasets import coco_bbox_label_names
from chainercv.datasets import COCOBboxDataset
from chainercv.links.model.light_head_rcnn import LightHeadRCNNResNet101
from chainercv.links.model.light_head_rcnn import LightHeadRCNNTrainChain
from chainercv.links.model.ssd import GradientScaling
from chainercv import transforms
import chainermn
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
try:
import cv2
cv2.setNumThreads(0)
except ImportError:
pass
def concat_examples(batch, device=None, padding=None,
indices_concat=None, indices_to_device=None):
if len(batch) == 0:
raise ValueError('batch is empty')
first_elem = batch[0]
elem_size = len(first_elem)
if indices_concat is None:
indices_concat = range(elem_size)
if indices_to_device is None:
indices_to_device = range(elem_size)
result = []
if not isinstance(padding, tuple):
padding = [padding] * elem_size
for i in six.moves.range(elem_size):
res = [example[i] for example in batch]
if i in indices_concat:
res = _concat_arrays(res, padding[i])
if i in indices_to_device:
if i in indices_concat:
res = to_device(device, res)
else:
res = [to_device(device, r) for r in res]
result.append(res)
return tuple(result)
class Transform(object):
def __init__(self, light_head_rcnn):
self.light_head_rcnn = light_head_rcnn
def __call__(self, in_data):
img, bbox, label = in_data
_, H, W = img.shape
img = self.light_head_rcnn.prepare(img)
_, o_H, o_W = img.shape
scale = o_H / H
bbox = transforms.resize_bbox(bbox, (H, W), (o_H, o_W))
# horizontally flip
img, params = transforms.random_flip(
img, x_random=True, return_param=True)
bbox = transforms.flip_bbox(
bbox, (o_H, o_W), x_flip=params['x_flip'])
return img, bbox, label, scale
def main():
parser = argparse.ArgumentParser(
description='ChainerCV training example: LightHeadRCNN')
parser.add_argument('--out', '-o', default='result',
help='Output directory')
parser.add_argument('--seed', '-s', type=int, default=1234)
parser.add_argument('--batchsize', '-b', type=int, default=8)
parser.add_argument('--epoch', type=int, default=30)
parser.add_argument('--step-epoch', type=int, nargs='*', default=[19, 25])
args = parser.parse_args()
# https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
if hasattr(multiprocessing, 'set_start_method'):
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()
# chainermn
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
np.random.seed(args.seed)
random.seed(args.seed)
# model
light_head_rcnn = LightHeadRCNNResNet101(
pretrained_model='imagenet',
n_fg_class=len(coco_bbox_label_names))
light_head_rcnn.use_preset('evaluate')
model = LightHeadRCNNTrainChain(light_head_rcnn)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
# train dataset
train_dataset = COCOBboxDataset(
year='2017', split='train')
# filter non-annotated data
train_indices = np.array(
[i for i, label in enumerate(train_dataset.slice[:, ['label']])
if len(label[0]) > 0],
dtype=np.int32)
train_dataset = train_dataset.slice[train_indices]
train_dataset = TransformDataset(
train_dataset, ('img', 'bbox', 'label', 'scale'),
Transform(model.light_head_rcnn))
if comm.rank == 0:
indices = np.arange(len(train_dataset))
else:
indices = None
indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
train_dataset = train_dataset.slice[indices]
train_iter = chainer.iterators.SerialIterator(
train_dataset, batch_size=args.batchsize // comm.size)
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.MomentumSGD(momentum=0.9), comm)
optimizer.setup(model)
global_context_module = model.light_head_rcnn.head.global_context_module
global_context_module.col_max.W.update_rule.add_hook(GradientScaling(3.0))
global_context_module.col_max.b.update_rule.add_hook(GradientScaling(3.0))
global_context_module.col.W.update_rule.add_hook(GradientScaling(3.0))
global_context_module.col.b.update_rule.add_hook(GradientScaling(3.0))
global_context_module.row_max.W.update_rule.add_hook(GradientScaling(3.0))
global_context_module.row_max.b.update_rule.add_hook(GradientScaling(3.0))
global_context_module.row.W.update_rule.add_hook(GradientScaling(3.0))
global_context_module.row.b.update_rule.add_hook(GradientScaling(3.0))
optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0001))
model.light_head_rcnn.extractor.conv1.disable_update()
model.light_head_rcnn.extractor.res2.disable_update()
for link in model.links():
if isinstance(link, L.BatchNormalization):
link.disable_update()
converter = functools.partial(
concat_examples, padding=0,
# img, bboxes, labels, scales
indices_concat=[0, 2, 3], # img, _, labels, scales
indices_to_device=[0], # img
)
updater = chainer.training.updater.StandardUpdater(
train_iter, optimizer, converter=converter,
device=device)
trainer = chainer.training.Trainer(
updater, (args.epoch, 'epoch'), out=args.out)
@make_shift('lr')
def lr_scheduler(trainer):
base_lr = 0.0005 * 1.25 * args.batchsize
warm_up_duration = 500
warm_up_rate = 1 / 3
iteration = trainer.updater.iteration
epoch = trainer.updater.epoch
if iteration < warm_up_duration:
rate = warm_up_rate \
+ (1 - warm_up_rate) * iteration / warm_up_duration
else:
for step in args.step_epoch:
if epoch > step:
rate *= 0.1
return rate * base_lr
trainer.extend(lr_scheduler)
if comm.rank == 0:
# interval
log_interval = 100, 'iteration'
plot_interval = 3000, 'iteration'
print_interval = 20, 'iteration'
# training extensions
model_name = model.light_head_rcnn.__class__.__name__
trainer.extend(
chainer.training.extensions.snapshot_object(
model.light_head_rcnn,
filename='%s_model_iter_{.updater.iteration}.npz'
% model_name),
trigger=(1, 'epoch'))
trainer.extend(
extensions.observe_lr(),
trigger=log_interval)
trainer.extend(
extensions.LogReport(log_name='log.json', trigger=log_interval))
report_items = [
'iteration', 'epoch', 'elapsed_time', 'lr',
'main/loss',
'main/rpn_loc_loss',
'main/rpn_cls_loss',
'main/roi_loc_loss',
'main/roi_cls_loss',
'validation/main/map/iou=0.50:0.95/area=all/max_dets=100',
]
trainer.extend(
extensions.PrintReport(report_items), trigger=print_interval)
trainer.extend(
extensions.ProgressBar(update_interval=10))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(
['main/loss'],
file_name='loss.png', trigger=plot_interval),
trigger=plot_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.run()
if __name__ == '__main__':
main()