-
Notifications
You must be signed in to change notification settings - Fork 6
/
engine.py
497 lines (414 loc) · 17.6 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os, sys, time, math, json, importlib
import torch
import datetime
from collections import defaultdict, OrderedDict
import utils.capeval.bleu.bleu as capblue
import utils.capeval.cider.cider as capcider
import utils.capeval.rouge.rouge as caprouge
import utils.capeval.meteor.meteor as capmeteor
from utils.box_util import box3d_iou_batch_tensor
from utils.ap_calculator import APCalculator
from utils.io import save_checkpoint
from utils.misc import SmoothedValue
from utils.proposal_parser import parse_predictions
class Logger:
def __init__(self, args):
self.logger = open(os.path.join(args.checkpoint_dir, 'logger.out'), 'a')
def __call__(self, info_str):
self.logger.write(info_str + "\n")
self.logger.flush()
print(info_str)
def score_captions(corpus: dict, candidates: dict):
bleu = capblue.Bleu(4).compute_score(corpus, candidates)
cider = capcider.Cider().compute_score(corpus, candidates)
rouge = caprouge.Rouge().compute_score(corpus, candidates)
meteor = capmeteor.Meteor().compute_score(corpus, candidates)
score_per_caption = {
"bleu-1": [float(s) for s in bleu[1][0]],
"bleu-2": [float(s) for s in bleu[1][1]],
"bleu-3": [float(s) for s in bleu[1][2]],
"bleu-4": [float(s) for s in bleu[1][3]],
"cider": [float(s) for s in cider[1]],
"rouge": [float(s) for s in rouge[1]],
"meteor": [float(s) for s in meteor[1]],
}
message = '\n'.join([
"[BLEU-1] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
bleu[0][0], max(bleu[1][0]), min(bleu[1][0])
),
"[BLEU-2] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
bleu[0][1], max(bleu[1][1]), min(bleu[1][1])
),
"[BLEU-3] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
bleu[0][2], max(bleu[1][2]), min(bleu[1][2])
),
"[BLEU-4] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
bleu[0][3], max(bleu[1][3]), min(bleu[1][3])
),
"[CIDEr] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
cider[0], max(cider[1]), min(cider[1])
),
"[ROUGE-L] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
rouge[0], max(rouge[1]), min(rouge[1])
),
"[METEOR] Mean: {:.4f}, Max: {:.4f}, Min: {:.4f}".format(
meteor[0], max(meteor[1]), min(meteor[1])
)
])
eval_metric = {
"BLEU-4": bleu[0][3],
"CiDEr": cider[0],
"Rouge": rouge[0],
"METEOR": meteor[0],
}
return score_per_caption, message, eval_metric
def prepare_corpus(raw_data, max_len: int=30) -> dict:
# helper function to prepare ground truth captions
corpus = defaultdict(list)
object_id_to_name = defaultdict(lambda:'unknown')
for data in raw_data:
( scene_id, object_id, object_name
) = data["scene_id"], data["object_id"], data["object_name"]
# parse language tokens
token = data["token"][:max_len]
description = " ".join(["sos"] + token + ["eos"])
key = f"{scene_id}|{object_id}|{object_name}"
object_id_to_name[f"{scene_id}|{object_id}"] = object_name
corpus[key].append(description)
return corpus, object_id_to_name
def compute_learning_rate(args, curr_epoch_normalized):
assert curr_epoch_normalized <= 1.0 and curr_epoch_normalized >= 0.0
if (
curr_epoch_normalized <= (args.warm_lr_epochs / args.max_epoch)
and args.warm_lr_epochs > 0
):
# Linear Warmup
curr_lr = args.warm_lr + curr_epoch_normalized * args.max_epoch * (
(args.base_lr - args.warm_lr) / args.warm_lr_epochs
)
else:
# Cosine Learning Rate Schedule
curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 + math.cos(math.pi * curr_epoch_normalized)
)
return curr_lr
def adjust_learning_rate(args, optimizer, curr_epoch):
curr_lr = compute_learning_rate(args, curr_epoch)
for param_group in optimizer.param_groups:
if args.pretrained_params_lr is not None and \
param_group["lr"] == args.pretrained_params_lr:
continue
param_group["lr"] = curr_lr
return curr_lr
def do_train(
args,
model,
optimizer,
dataset_config,
dataloaders,
best_val_metrics=dict()
):
if args.eval_metric == 'detection':
args.criterion = f'mAP@{args.test_min_iou}'
do_eval = evaluate_detection
elif args.eval_metric == 'caption':
args.criterion = f'CiDEr@{args.test_min_iou}'
do_eval = evaluate_caption
else:
raise NotImplementedError
logout = Logger(args)
logout(f"call with args: {args}")
logout(f"{model}")
curr_iter = args.start_epoch * len(dataloaders['train'])
max_iters = args.max_epoch * len(dataloaders['train'])
net_device = next(model.parameters()).device
time_delta = SmoothedValue(window_size=10)
loss_avg = SmoothedValue(window_size=10)
model.train()
for curr_epoch in range(args.start_epoch, args.max_epoch):
for batch_idx, batch_data_label in enumerate(dataloaders['train']):
curr_time = time.time()
curr_iter = curr_epoch * len(dataloaders['train']) + batch_idx
curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters)
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
# Forward pass
optimizer.zero_grad()
outputs = model(batch_data_label, is_eval=False)
loss = outputs['loss']
if not math.isfinite(loss.item()):
logout("Loss in not finite. Training will be stopped.")
sys.exit(1)
loss.backward()
if args.clip_gradient > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
time_delta.update(time.time() - curr_time)
loss_avg.update(loss.item())
# logging
if curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
eta_seconds = (max_iters - curr_iter) * time_delta.avg
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
logout(
f"Epoch [{curr_epoch}/{args.max_epoch}]; "
f"Iter [{curr_iter}/{max_iters}]; "
f"Loss {loss_avg.avg:0.2f}; "
f"LR {curr_lr:0.2e}; Iter time {time_delta.avg:0.2f}; "
f"ETA {eta_str}; Mem {mem_mb:0.2f}MB"
)
# eval
if (curr_iter + 1) % args.eval_every_iteration == 0:
eval_metrics = do_eval(
args,
curr_epoch,
model,
dataset_config,
dataloaders['test'],
logout,
curr_train_iter=curr_iter
)
model.train()
if not best_val_metrics or (
best_val_metrics[args.criterion] < eval_metrics[args.criterion]
):
best_val_metrics = eval_metrics
filename = "checkpoint_best.pth"
save_checkpoint(
args.checkpoint_dir,
model,
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint_best.pth",
)
logout(
f"Epoch [{curr_epoch}/{args.max_epoch}] "
f"saved current best val checkpoint at {filename}; "
f"{args.criterion} {eval_metrics[args.criterion]}"
)
# end of an iteration
# end of an epoch
save_checkpoint(
args.checkpoint_dir,
model,
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint.pth",
)
# end of training
do_eval(
args,
curr_epoch,
model,
dataset_config,
dataloaders['test'],
logout,
curr_train_iter=-1
)
return
@torch.no_grad()
def evaluate_detection(
args,
curr_epoch,
model,
dataset_config,
dataset_loader,
logout=print,
curr_train_iter=-1,
):
# ap calculator is exact for evaluation.
# This is slower than the ap calculator used during training.
ap_calculator = APCalculator(
dataset_config=dataset_config,
ap_iou_thresh=[0.25, 0.5],
class2type_map=dataset_config.class2type,
exact_eval=True,
)
net_device = next(model.parameters()).device
num_batches = len(dataset_loader)
time_delta = SmoothedValue(window_size=10)
model.eval()
epoch_str = f"[{curr_epoch}/{args.max_epoch}]" if curr_epoch > 0 else ""
for curr_iter, batch_data_label in enumerate(dataset_loader):
curr_time = time.time()
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
model_input = {
'point_clouds': batch_data_label['point_clouds'],
'point_cloud_dims_min': batch_data_label['point_cloud_dims_min'],
'point_cloud_dims_max': batch_data_label['point_cloud_dims_max'],
}
outputs = model(model_input, is_eval=True)
# Memory intensive as it gathers point cloud GT tensor across all ranks
ap_calculator.step_meter(
{'outputs': outputs},
batch_data_label
)
time_delta.update(time.time() - curr_time)
if curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
logout(
f"Evaluate {epoch_str}; Batch [{curr_iter}/{num_batches}]; "
f"Evaluating on iter: {curr_train_iter}; "
f"Iter time {time_delta.avg:0.2f}; Mem {mem_mb:0.2f}MB"
)
metrics = ap_calculator.compute_metrics()
metric_str = ap_calculator.metrics_to_str(metrics, per_class=True)
logout("==" * 10)
logout(f"Evaluate Epoch [{curr_epoch}/{args.max_epoch}]")
logout(f"{metric_str}")
logout("==" * 10)
eval_metrics = {
metric + f'@{args.test_min_iou}': score \
for metric, score in metrics[args.test_min_iou].items()
}
return eval_metrics
@torch.no_grad()
def evaluate_caption(
args,
curr_epoch,
model,
dataset_config,
dataset_loader,
logout=print,
curr_train_iter=-1,
):
dataset = importlib.import_module(f'datasets.{args.dataset}')
SCANREFER = dataset.SCANREFER
# prepare ground truth caption labels
print("preparing corpus...")
corpus, object_id_to_name = prepare_corpus(
SCANREFER['language']['val']
)
### initialize and prepare for evaluation
net_device = next(model.parameters()).device
num_batches = len(dataset_loader)
time_delta = SmoothedValue(window_size=10)
model.eval()
epoch_str = f"[{curr_epoch}/{args.max_epoch}]" if curr_epoch > 0 else ""
candidates = {'caption': OrderedDict({}), 'iou': defaultdict(float)}
for curr_iter, batch_data_label in enumerate(dataset_loader):
curr_time = time.time()
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
model_input = {
'point_clouds': batch_data_label['point_clouds'],
'point_cloud_dims_min': batch_data_label['point_cloud_dims_min'],
'point_cloud_dims_max': batch_data_label['point_cloud_dims_max'],
}
outputs = model(model_input, is_eval=True)
### match objects
batch_size, MAX_NUM_OBJ, _, _ = batch_data_label["gt_box_corners"].shape
_, nqueries, _, _ = outputs["box_corners"].shape
match_box_ious = box3d_iou_batch_tensor( # batch, nqueries, MAX_NUM_OBJ
(outputs["box_corners"]
.unsqueeze(2)
.repeat(1, 1, MAX_NUM_OBJ, 1, 1)
.view(-1, 8, 3)
),
(batch_data_label["gt_box_corners"]
.unsqueeze(1)
.repeat(1, nqueries, 1, 1, 1)
.view(-1, 8, 3)
)
).view(batch_size, nqueries, MAX_NUM_OBJ)
match_box_ious, match_box_idxs = match_box_ious.max(-1) # batch, nqueries
match_box_idxs = torch.gather(
batch_data_label['gt_box_object_ids'], 1,
match_box_idxs
) # batch, nqueries
# ---- Checkout bounding box ious and semantic logits
good_bbox_masks = match_box_ious > args.test_min_iou # batch, nqueries
good_bbox_masks &= outputs["sem_cls_logits"].argmax(-1) != (
outputs["sem_cls_logits"].shape[-1] - 1
)
# ---- add nms to get accurate predictions
nms_bbox_masks = parse_predictions( # batch x nqueries
outputs["box_corners"],
outputs['sem_cls_prob'],
outputs['objectness_prob'],
batch_data_label['point_clouds']
)
nms_bbox_masks = torch.from_numpy(nms_bbox_masks).long() == 1
good_bbox_masks &= nms_bbox_masks.to(good_bbox_masks.device)
good_bbox_masks = good_bbox_masks.cpu().tolist()
captions = outputs["lang_cap"] # batch, nqueries, [sentence]
match_box_idxs = match_box_idxs.cpu().tolist()
match_box_ious = match_box_ious.cpu().tolist()
### calculate measurable indicators on captions
for idx, scene_id in enumerate(batch_data_label["scan_idx"].cpu().tolist()):
scene_name = SCANREFER['scene_list']['val'][scene_id]
for prop_id in range(nqueries):
if good_bbox_masks[idx][prop_id] is False:
continue
match_obj_id = match_box_idxs[idx][prop_id]
match_obj_iou = match_box_ious[idx][prop_id]
object_name = object_id_to_name[f"{scene_name}|{match_obj_id}"]
key = f"{scene_name}|{match_obj_id}|{object_name}"
if match_obj_iou > candidates['iou'][key]:
candidates['iou'][key] = match_obj_iou
candidates['caption'][key] = [
captions[idx][prop_id]
]
# DEBUG: checkout how many matched bounding boxes
# candidates[key] = ["this is a valid match!"]
# Memory intensive as it gathers point cloud GT tensor across all ranks
time_delta.update(time.time() - curr_time)
if curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
logout(
f"Evaluate {epoch_str}; Batch [{curr_iter}/{num_batches}]; "
f"Evaluating on iter: {curr_train_iter}; "
f"Iter time {time_delta.avg:0.2f}; Mem {mem_mb:0.2f}MB"
)
# end of forward pass traversion
### message out
missing_proposals = len(corpus.keys() - candidates['caption'].keys())
total_captions = len(corpus.keys())
logout(
f"\n----------------------Evaluation-----------------------\n"
f"INFO: iou@{args.test_min_iou} matched proposals: "
f"[{total_captions - missing_proposals} / {total_captions}], "
)
### make up placeholders for undetected bounding boxes
for missing_key in (corpus.keys() - candidates['caption'].keys()):
candidates['caption'][missing_key] = ["sos eos"]
# find annotated objects in scanrefer
candidates = OrderedDict([
(key, value) for key, value in sorted(candidates['caption'].items()) \
if not key.endswith("unknown")
])
score_per_caption, message, eval_metric = score_captions(
OrderedDict([(key, corpus[key]) for key in candidates]), candidates
)
logout(message)
with open(os.path.join(args.checkpoint_dir, "corpus_val.json"), "w") as f:
json.dump(corpus, f, indent=4)
with open(os.path.join(args.checkpoint_dir, "pred_val.json"), "w") as f:
json.dump(candidates, f, indent=4)
with open(os.path.join(args.checkpoint_dir, "pred_gt_val.json"), "w") as f:
pred_gt_val = {}
for scene_object_id, scene_object_id_key in enumerate(candidates):
pred_gt_val[scene_object_id_key] = {
'pred': candidates[scene_object_id_key],
'gt': corpus[scene_object_id_key],
'score': {
'bleu-1': score_per_caption['bleu-1'][scene_object_id],
'bleu-2': score_per_caption['bleu-2'][scene_object_id],
'bleu-3': score_per_caption['bleu-3'][scene_object_id],
'bleu-4': score_per_caption['bleu-4'][scene_object_id],
'CiDEr': score_per_caption['cider'][scene_object_id],
'rouge': score_per_caption['rouge'][scene_object_id],
'meteor': score_per_caption['meteor'][scene_object_id]
}
}
json.dump(pred_gt_val, f, indent=4)
eval_metrics = {
metric + f'@{args.test_min_iou}': score \
for metric, score in eval_metric.items()
}
return eval_metrics