-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPT.nb
567 lines (538 loc) · 22.9 KB
/
PPT.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 23261, 559]
NotebookOptionsPosition[ 21317, 515]
NotebookOutlinePosition[ 21713, 531]
CellTagsIndexPosition[ 21670, 528]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Entanglement via PPT criterion", "Title",
CellChangeTimes->{{3.856773299182427*^9, 3.856773324283894*^9}, {
3.8567780484187927`*^9,
3.856778049882503*^9}},ExpressionUUID->"8ce03acf-b291-4af8-8e88-\
4027dbab9382"],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.856776309104405*^9, 3.856776309973344*^9}},
CellLabel->
"In[230]:=",ExpressionUUID->"f2051478-1d66-4784-ba60-2d45dc40a8e4"],
Cell[CellGroupData[{
Cell["Helper functions", "Subtitle",
CellChangeTimes->{{3.8567733521069183`*^9,
3.8567733534430723`*^9}},ExpressionUUID->"85f34d30-1270-475a-a7c6-\
6830c647fe24"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Warning", ":", " ",
RowBox[{
RowBox[{
"This", " ", "partial", " ", "transpose", " ", "function", " ", "only",
" ", "works", " ", "for", " ", "bipartite", " ",
RowBox[{"systems", ".", " ", "Mathematica"}], " ",
RowBox[{"doesn", "'"}], "t", " ", "have", " ", "a", " ", "bult"}], "-",
RowBox[{"in", "."}]}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"PartialTranspose", "[", "mat_", "]"}], ":=",
RowBox[{"Flatten", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"Partition", "[",
RowBox[{"mat", ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "4"}], "}"}]}], "}"}]}], "]"}]}], "\n",
RowBox[{
RowBox[{"IsPPT", "[", "mat_", "]"}], ":=",
RowBox[{
RowBox[{"Min", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"PartialTranspose", "[", "mat", "]"}], "]"}], "]"}],
"\[GreaterEqual]", "0"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ToDensityMatrix", "[", "ket_", "]"}], ":=",
RowBox[{"Outer", "[",
RowBox[{"Times", ",", "ket", ",", "ket"}], "]"}]}]}]}]], "Input",
CellChangeTimes->{{3.8567609871950197`*^9, 3.856761047326172*^9}, {
3.8567611411432467`*^9, 3.8567611534643927`*^9}, {3.856761225898211*^9,
3.856761366735029*^9}, {3.856761403029698*^9, 3.8567614818533087`*^9}, {
3.8567615365792503`*^9, 3.856761671671771*^9}, {3.856761705706923*^9,
3.856761761077242*^9}, {3.856761869340694*^9, 3.856761897466494*^9}, {
3.856761951303568*^9, 3.856761956166521*^9}, {3.856761999668339*^9,
3.8567620455618477`*^9}, {3.8567620787579193`*^9, 3.856762094253962*^9}, {
3.856762156406365*^9, 3.856762229791206*^9}, {3.856762266534449*^9,
3.856762274828424*^9}, {3.856762313650614*^9, 3.856762313766273*^9}, {
3.856762476487365*^9, 3.8567625502040977`*^9}, {3.8567625933161087`*^9,
3.856762645875679*^9}, {3.856762703014175*^9, 3.856762834045533*^9}, {
3.856762865709518*^9, 3.8567628691073847`*^9}, {3.856762956296568*^9,
3.856762957194901*^9}, {3.856762999618338*^9, 3.85676303062285*^9},
3.8567729342697773`*^9, {3.8567729924026413`*^9, 3.856773025583173*^9}, {
3.856773076466552*^9, 3.856773126430044*^9}, {3.85677319169236*^9,
3.856773285763248*^9}, {3.8567733550397053`*^9, 3.856773394387817*^9}, {
3.856774152655685*^9, 3.856774152966651*^9}, {3.856774215202845*^9,
3.8567742565998163`*^9}, {3.856775566124648*^9, 3.8567755670933523`*^9},
3.856775859540235*^9, 3.856775896594428*^9, {3.856775929622517*^9,
3.8567759581587563`*^9}},
CellLabel->
"In[231]:=",ExpressionUUID->"4608a0e0-815a-43ae-9498-2cbe5bf1cee1"]
}, Open ]],
Cell[CellGroupData[{
Cell["State generation functions", "Subtitle",
CellChangeTimes->{{3.8567733278835382`*^9,
3.856773347530939*^9}},ExpressionUUID->"688fea8d-7359-40c8-b514-\
c167828c9446"],
Cell[BoxData[{
RowBox[{
RowBox[{"BasisVector", "[",
RowBox[{"d_", ",", "n_"}], "]"}], ":=",
RowBox[{"ReplacePart", "[",
RowBox[{
RowBox[{"ConstantArray", "[",
RowBox[{"0", ",", "d"}], "]"}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}], "\[Rule]", "1"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SinCosState", "[", "\[Theta]_", "]"}], ":=",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"], " ",
RowBox[{"BasisVector", "[",
RowBox[{"4", ",", "0"}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"], " ",
RowBox[{"BasisVector", "[",
RowBox[{"4", ",", "3"}], "]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NoisySinCosState", "[",
RowBox[{"\[Alpha]_", ",", "\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[Alpha]", " ",
RowBox[{"ToDensityMatrix", "[",
RowBox[{"SinCosState", "[", "\[Theta]", "]"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}],
RowBox[{"WhiteNoise", "[", "4", "]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"WhiteNoise", "[",
RowBox[{"d_", ":", "4"}], "]"}], ":=",
RowBox[{
RowBox[{"IdentityMatrix", "[", "d", "]"}], "/",
"d"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GHZ", "[",
RowBox[{"ld_Integer", ":", "2"}], "]"}], ":=",
RowBox[{
RowBox[{"ArrayReshape", "[",
RowBox[{
RowBox[{"IdentityMatrix", "[", "ld", "]"}], ",",
SuperscriptBox["ld", "2"]}], "]"}], "/",
RowBox[{"Sqrt", "[", "2", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"IsotropicState", "[",
RowBox[{"\[Alpha]_", ",",
RowBox[{"ld_", ":", "Integer", ":", "2"}]}], "]"}], ":=",
RowBox[{
RowBox[{"\[Alpha]", " ",
RowBox[{"ToDensityMatrix", "[",
RowBox[{"GHZ", "[", "ld", "]"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}],
RowBox[{"WhiteNoise", "[",
SuperscriptBox["ld", "2"], "]"}]}]}]}]}], "Input",
CellChangeTimes->{{3.856773334491026*^9, 3.856773376200379*^9}, {
3.8567743500909243`*^9, 3.8567745811713467`*^9}, {3.8567746280618153`*^9,
3.856774702274941*^9}, 3.8567747636489973`*^9, {3.856775075460682*^9,
3.856775076844329*^9}, {3.856776166350642*^9, 3.856776167795507*^9}, {
3.856776200361703*^9, 3.856776201487102*^9}, {3.8567762540361967`*^9,
3.85677628754268*^9}, {3.856776335332885*^9, 3.85677633917303*^9}, {
3.856776780023687*^9, 3.856776785144215*^9}, {3.856777123720256*^9,
3.856777161010022*^9}, {3.8567779848828173`*^9, 3.856777985151834*^9}},
CellLabel->
"In[234]:=",ExpressionUUID->"b02513c0-f2b5-4032-b0e8-905bb9af789d"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Under what value of \[Alpha] does an isotropic state become separable?\
\>", "Subtitle",
CellChangeTimes->{{3.85677339835328*^9, 3.856773404177024*^9}, {
3.856774771845272*^9, 3.856774830327921*^9}, {3.856776356003744*^9,
3.85677635691566*^9}},ExpressionUUID->"582b8f8e-1c2c-494b-9a37-\
2658675f0d28"],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
RowBox[{"By", " ", "default"}], ",", " ",
RowBox[{
"it", " ", "minimizes", " ", "the", " ", "first", " ", "argument"}], ",",
" ",
RowBox[{
"given", " ", "the", " ", "constraints", " ", "on", " ", "the", " ",
"second"}], ",", " ",
RowBox[{"and", " ", "the", " ",
RowBox[{"opt", ".", " ", "var", ".", " ", "in"}], " ", "the", " ",
"third"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.8567763637553997`*^9, 3.856776403684959*^9}, {
3.856777968078231*^9, 3.856777981629953*^9}},
CellLabel->
"In[240]:=",ExpressionUUID->"c2a8d290-9dfd-40d9-9e84-ce4bf3bbad3b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SemidefiniteOptimization", "[",
RowBox[{
RowBox[{"-", "\[Alpha]"}], ",",
RowBox[{
RowBox[{"PartialTranspose", "@",
RowBox[{"IsotropicState", "[",
RowBox[{"\[Alpha]", ",", "2"}], "]"}]}],
UnderscriptBox["\[VectorGreaterEqual]",
TemplateBox[{"4"},
"SemidefiniteConeList"]], "0"}], ",", "\[Alpha]"}], "]"}]], "Input",
CellChangeTimes->{{3.856773432952656*^9, 3.856773437515202*^9},
3.8567748330720263`*^9, {3.856774877529052*^9, 3.856775003246821*^9}, {
3.856775092141733*^9, 3.85677511161548*^9}},
CellLabel->
"In[241]:=",ExpressionUUID->"43f83728-8ec6-46d3-a1d1-bbf7680c96fd"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\[Alpha]", "\[Rule]", "0.3333333354215544`"}], "}"}]], "Output",
CellChangeTimes->{
3.85677500439503*^9, {3.8567750817582607`*^9, 3.856775112325605*^9},
3.856776277965749*^9, 3.8567779921639957`*^9, 3.8567790754183826`*^9,
3.858007517385841*^9},
CellLabel->
"Out[241]=",ExpressionUUID->"4ff3ad29-2c74-48f5-abe2-d98e23456abb"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"Entanglement vs. separability for ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "(", "\[Theta]", ")"}], "2"],
RowBox[{"\[LeftBracketingBar]", "00"}]}], "\[RightAngleBracket]"}],
"+",
RowBox[{
SuperscriptBox[
RowBox[{"Sin", "(", "\[Theta]", ")"}], "2"],
RowBox[{"\[LeftBracketingBar]", "11"}]}]}], "\[RightAngleBracket]"}],
TraditionalForm]],
FormatType->TraditionalForm,ExpressionUUID->
"a91c9d40-06a9-478b-8922-afdda7096fb0"]
}], "Subtitle",
CellChangeTimes->{{3.8567764171595*^9, 3.856776447180084*^9}, {
3.856776498307333*^9,
3.856776637012693*^9}},ExpressionUUID->"834afd69-6027-468f-a05a-\
c16766b3afd1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"List", " ", "of", " ", "equally", " ", "spaced", " ", "points", " ", "in",
" ",
RowBox[{"the", " ", "[",
RowBox[{"0", ",", " ",
RowBox[{"\[Pi]", "/", "2"}]}], "]"}], " ", "interval"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Theta]s", "=",
RowBox[{"Subdivide", "[",
RowBox[{"0", ",",
RowBox[{"Pi", "/", "2"}], ",", "100"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"Find", " ", "the", " ", "required", " ", "noise", " ", "to", " ",
"turn", " ", "the", " ", "state", " ", "separable"}], ",", " ",
RowBox[{"for", " ", "each", " ", "value", " ", "of", " ", "\[Theta]"}]}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]\[Alpha]pairs", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"\[Alpha]", "/.",
RowBox[{"SemidefiniteOptimization", "[",
RowBox[{
RowBox[{"-", "\[Alpha]"}], ",",
RowBox[{
RowBox[{"PartialTranspose", "@",
RowBox[{"NoisySinCosState", "[",
RowBox[{"\[Alpha]", ",", "\[Theta]"}], "]"}]}],
UnderscriptBox["\[VectorGreaterEqual]",
TemplateBox[{"4"},
"SemidefiniteConeList"]], "0"}], ",", "\[Alpha]"}], "]"}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Theta]s"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{"\[Theta]\[Alpha]pairs", ",",
RowBox[{"Filling", "\[Rule]", "Top"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Alpha]"}], "}"}]}], ",",
RowBox[{"PlotLabels", "\[Rule]", "\"\<Entangled states\>\""}]}], "]"}],
" ", "\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.856776656374132*^9, 3.856776679508958*^9}, {
3.856776799578822*^9, 3.856776857106793*^9}, {3.856776963403531*^9,
3.8567770941124277`*^9}, {3.856777170898902*^9, 3.8567772313518953`*^9}, {
3.856777304825658*^9, 3.856777477440235*^9}, {3.856777530701275*^9,
3.856777568477251*^9}, {3.856777599638118*^9, 3.856777775192671*^9}, {
3.856777898428343*^9, 3.856777958062701*^9}},
CellLabel->
"In[242]:=",ExpressionUUID->"e07d3a47-b478-4c1d-9fc4-2fa4980146da"],
Cell[BoxData[
GraphicsBox[{{}, GraphicsComplexBox[CompressedData["
1:eJztlWlQU2cYhRMsYMVdtgiWrTWAQnFBsYMeK2LNjFikIgiIKGJdQGpdEJEW
l0YQq5S6gFZRBBKsRVqQsVpxAS24VVQWEeQmIQGykZANi0u5C22nf/uXzCR3
7tzc73u/c573vC6rE0PizFgs1r3+L3kd+KSNtO3/1WA81y77uk0WDApvudLU
zdyfQUYk2+1pWzcEV1wj85yFEHnHiG0uDzwvxR8H/DIW7+4Goflh+4cO5bhd
mKwP9h/4/2XIf80f4SRXI2GfEKMm/obGGY8nijLVzPs3kDeyIrvFVY3XVhH7
kuxvgZNSZlhfqmLWq4blhGJLpa8KVfVt6zom3IFlTdC9O+VKZv0abBjeJQnz
VuJAXlxQmNtdRIUvZ2vOKZj97iM6+eeiB7YKBK9XTPnd/SF8r9v6ctLlzP6P
UMlf7CTu7UJmrl+mg10dmk3PEiZs6GLqeYyxgbfNC1s6kfhVSuoTzhO4tzcZ
Zy7pZOp7ij8f2c9JqelASGxlYqZjPZQ+7/r0zetg6m3A61Qe1+umDL4L2asD
nBqRZF22fXOAjKm/CcJfAtfa3JXC3mv+0j6XZzCrqlwaGiplztMMfef6G9HS
dvSN2b+g7P3nuFodOjlkZztzvhac8FgzLtC6HW3GWr+N3Fa4n83hB5RJmPO+
AL/EULUkTIJbz4dPcvNsw8c5DqcTWBLm/AQUcYKrh0vE+IwQHEo4RuDCQ9Wl
C6vEjB4irHjpMKKCI0Z1SO3+2uMi6EqumJ9sEDH6iGETwY3i5Ygw47Y87YNc
Md7IvPU/RYsYvSQYZzl00SUPEQQzh+/cfUKC/XsvDFv0kmD0a8fr5LSglQ8I
cM57bWk92Y7pN/ns1kKC0VOKT+Q+nuV7CGQ6fho/65QUa9u2jq+PJRh9Zchl
S85M4RF4deiLuKOnZTgYpfK+NpVg9O6AlVOHOt6ZwCZ2drQ2rwPHhrpqZ44l
GP074any8rQbSqBtS1lY0NlO+M1VpZubEYwfXcifkc9msQgskT0NLs7vQm2a
jHpO+yNHQYkf9X5VuJFnXiDHvLdPqPVpvxQYfcVRS+4//Z5dwKpCBWSBgslk
fbR/Snx7WEXVXzR7lv+1IiViT2uo89F+qmBI3OlBnt++NMKXI1TBVJD9tqVf
H9pfNdJHfbeI1C/DdZf3tmI1+Iy+tN/duJgm5JH69x05xa07339vmN9D+kP7
r/nbv4q9K7Nsl2mQMPrkO6S/NA8aBDe8pfzv9tccrG7QQKB+8y8+tJh0tITi
x92YlvFlmBZ1VqmnSL5oXrSQDvG/SfK36uIYvnOTFsdilBSfND89CH4Tbk3y
m7suf8/D8B7M3pxA8U3z1INtdyIrSf4fu0z7etezHrj7rAgl+4PmSwffHcvW
kP1j9bwqxTNChyF2hUlUf1G86dBYP8qD7L/5R5buaGrWgfXKkupPmj89xq4u
nk32b2qQdCs/Uo8hjlqqv2ke9UjZWmRB9v8li+2bp7foURKfFE/mA82nAZ01
nPfI/FBft9gkjjLA4a5wKpkvNK8GlN9PF5D5w00+viGr1YADRdZmZD7R/Brh
mSGk8itmqvvnc6KNkGR/dJ/MN5pnI5wfnKPyL1dxOVb5wggL2x+pfKT5NiHH
qyKLzM+6Al7MiZUmlE7Uccl8pXk3ofL7b6j8HRbdHLWQMIG3uKXnn3zuRZxu
AZXfAXYblxtjetEkTKTyne6HXhRmTaPyf9ejvtACUS9eNEdR84Huj5dodOVQ
82Ngnvz3fnC+DM6XwfkyOF8G58vgfPk/8+Uvxl40pA==
"], {{
{RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.2], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{101, 102, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100}}]]}, {}, {}, {}}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101}]}}}], {{{{}, GraphicsGroupBox[{
{GrayLevel[1], AbsoluteThickness[4], Opacity[
NCache[
Rational[2, 3], 0.6666666666666666]], CapForm["Butt"], JoinForm[
"Round"],
BSplineCurveBox[{
Offset[{0, 0}, {1.6022122533307945`, 1.0000000003657783`}],
Offset[{0, 0}, {1.6022122533307945`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6185747150682412`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6185747150682412`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6349371768056882`, 1.0000000003657783`}],
Offset[{0, 0}, {1.6668486832384124`, 0.9995004650966994}],
Offset[{5., 1.1102230246251565`*^-15}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., 2.220446049250313*^-15}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., 2.220446049250313*^-15}, {1.6668486832384124`,
0.9995004650966994}]}]},
{RGBColor[0.6666666666666666, 0.6666666666666666, 0.6666666666666666],
AbsoluteThickness[1.25],
BSplineCurveBox[{
Offset[{0, 0}, {1.6022122533307945`, 1.0000000003657783`}],
Offset[{0, 0}, {1.6022122533307945`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6185747150682412`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6185747150682412`, 1.0000000003657783`}],
Offset[{0., 0.}, {1.6349371768056882`, 1.0000000003657783`}],
Offset[{0, 0}, {1.6668486832384124`, 0.9995004650966994}],
Offset[{5., 1.1102230246251565`*^-15}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., 2.220446049250313*^-15}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., 2.220446049250313*^-15}, {1.6668486832384124`,
0.9995004650966994}]}]},
{EdgeForm[None], FaceForm[{GrayLevel[1], Opacity[
NCache[
Rational[2, 3], 0.6666666666666666]]}],
PolygonBox[{
Offset[{90., 7.5000000000000195`}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{90., -7.4999999999999805`}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., -7.499999999999998}, {1.6668486832384124`,
0.9995004650966994}],
Offset[{10., 7.500000000000002}, {1.6668486832384124`,
0.9995004650966994}]}]},
{RGBColor[0.6666666666666666, 0.6666666666666666, 0.6666666666666666],
AbsoluteThickness[1.25], EdgeForm[None]}, {}, InsetBox[
StyleBox[
RotationBox["\<\"Entangled states\"\>",
BoxRotation->0.],
StripOnInput->False,
LineOpacity->1,
FrontFaceOpacity->1,
BackFaceOpacity->1,
Opacity->1,
FontOpacity->1],
Offset[{50., 1.1102230246251565*^-14}, \
{1.6668486832384124, 0.9995004650966994}],
ImageScaled[{Rational[1, 2], Rational[1, 2]}]]}]}, {}}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\[Theta]", TraditionalForm],
FormBox["\[Alpha]", TraditionalForm]},
AxesOrigin->{0, 0.47222222541385467`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{All, 108.5135785459987}, {All, All}},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 1.5707963267948966`}, {0.47222222541385467`,
1.0000000003657783`}},
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.08090169943749476]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.856777027264978*^9, 3.856777046070097*^9},
3.856777086076592*^9, 3.85677718096369*^9, 3.8567772332953243`*^9,
3.856777323108808*^9, {3.856777366499033*^9, 3.8567774260702553`*^9}, {
3.85677746676336*^9, 3.856777478251935*^9}, {3.85677755600235*^9,
3.8567775692571497`*^9}, {3.856777601065564*^9, 3.8567776241481943`*^9},
3.85677766576237*^9, {3.856777753868984*^9, 3.856777765884474*^9},
3.856777992551044*^9, 3.8567790760037622`*^9, 3.858007518478128*^9},
CellLabel->
"Out[244]=",ExpressionUUID->"f5430b91-10f9-4198-aa10-b05c684c5152"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Comments on these examples", "Subtitle",
CellChangeTimes->{{3.856778214009117*^9, 3.856778219104561*^9}, {
3.856778491233827*^9,
3.8567784926810427`*^9}},ExpressionUUID->"d4b4b37a-6d56-47db-bf38-\
41730791a1e6"],
Cell["\<\
I aimed at the simplest possible example to introduce the main ideas in \
semidefinite programming. As a matter of fact, this problem does not even \
require optimization: we could simply do a bisection on the \[Alpha] \
\[Element] [0,1] interval and test for PPT on each step, until we find the \
SEP/ENT threshold. However, PPT conditions frequently appear as constraints \
in more complicated problems, so this SDP is a building block for those.\
\>", "Text",
CellChangeTimes->{{3.856778234569281*^9, 3.85677834928792*^9}, {
3.856778384085498*^9,
3.8567784798724527`*^9}},ExpressionUUID->"973f3f21-1156-424c-93b2-\
6d8ec160ce6c"]
}, Open ]]
}, Open ]]
},
WindowSize->{1280, 755},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"12.2 for Mac OS X x86 (64-bit) (December 12, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"8beee82e-b5eb-4de3-aa43-4b19ccf379e7"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 224, 4, 98, "Title",ExpressionUUID->"8ce03acf-b291-4af8-8e88-4027dbab9382"],
Cell[807, 28, 225, 4, 30, "Input",ExpressionUUID->"f2051478-1d66-4784-ba60-2d45dc40a8e4"],
Cell[CellGroupData[{
Cell[1057, 36, 166, 3, 53, "Subtitle",ExpressionUUID->"85f34d30-1270-475a-a7c6-6830c647fe24"],
Cell[1226, 41, 2897, 60, 94, "Input",ExpressionUUID->"4608a0e0-815a-43ae-9498-2cbe5bf1cee1"]
}, Open ]],
Cell[CellGroupData[{
Cell[4160, 106, 174, 3, 53, "Subtitle",ExpressionUUID->"688fea8d-7359-40c8-b514-c167828c9446"],
Cell[4337, 111, 2763, 73, 140, "Input",ExpressionUUID->"b02513c0-f2b5-4032-b0e8-905bb9af789d"]
}, Open ]],
Cell[CellGroupData[{
Cell[7137, 189, 317, 6, 53, "Subtitle",ExpressionUUID->"582b8f8e-1c2c-494b-9a37-2658675f0d28"],
Cell[7457, 197, 650, 16, 30, "Input",ExpressionUUID->"c2a8d290-9dfd-40d9-9e84-ce4bf3bbad3b"],
Cell[CellGroupData[{
Cell[8132, 217, 654, 15, 51, "Input",ExpressionUUID->"43f83728-8ec6-46d3-a1d1-bbf7680c96fd"],
Cell[8789, 234, 379, 8, 34, "Output",ExpressionUUID->"4ff3ad29-2c74-48f5-abe2-d98e23456abb"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[9217, 248, 764, 23, 55, "Subtitle",ExpressionUUID->"834afd69-6027-468f-a05a-c16766b3afd1"],
Cell[CellGroupData[{
Cell[10006, 275, 2479, 60, 159, "Input",ExpressionUUID->"e07d3a47-b478-4c1d-9fc4-2fa4980146da"],
Cell[12488, 337, 7878, 151, 193, "Output",ExpressionUUID->"f5430b91-10f9-4198-aa10-b05c684c5152"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[20415, 494, 223, 4, 53, "Subtitle",ExpressionUUID->"d4b4b37a-6d56-47db-bf38-41730791a1e6"],
Cell[20641, 500, 648, 11, 81, "Text",ExpressionUUID->"973f3f21-1156-424c-93b2-6d8ec160ce6c"]
}, Open ]]
}, Open ]]
}
]
*)