diff --git a/draft-irtf-cfrg-generic-hybrid-kems.md b/draft-irtf-cfrg-generic-hybrid-kems.md index 8c1ce00..7ec7f45 100644 --- a/draft-irtf-cfrg-generic-hybrid-kems.md +++ b/draft-irtf-cfrg-generic-hybrid-kems.md @@ -48,6 +48,14 @@ informative: ins: D. Riepel name: Doreen Riepel org: Ruhr-Universität Bochum + ANSIX9.62: + title: "Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA)" + date: Nov, 2005 + seriesinfo: + "ANS": X9.62-2005 + author: + - + org: ANS AVIRAM: target: https://mailarchive.ietf.org/arch/msg/tls/F4SVeL2xbGPaPB2GW_GkBbD_a5M/ title: "[TLS] Combining Secrets in Hybrid Key Exchange in TLS 1.3" @@ -83,6 +91,7 @@ informative: ins: N. Medinger name: Niklas Medinger org: CISPA Helmholtz Center for Information Security + FIPS186: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf FIPS202: DOI.10.6028/NIST.FIPS.202 FIPS203: DOI.10.6028/NIST.FIPS.203 GHP2018: https://eprint.iacr.org/2018/024.pdf @@ -132,6 +141,11 @@ informative: - ins: S. Schmieg name: Sophie Schmieg + SEC1: + title: "Elliptic Curve Cryptography, Standards for Efficient Cryptography Group, ver. 2" + target: https://secg.org/sec1-v2.pdf + date: 2009 + X25519: RFC7748 XWING: https://eprint.iacr.org/2024/039.pdf XWING-EC-PROOF: https://github.com/formosa-crypto/formosa-x-wing/ @@ -183,15 +197,15 @@ The following terms are used throughout this document: Key encapsulation mechanisms (KEMs) are cryptographic schemes that consist of three algorithms: -- `KeyGen() -> (pk, sk)`: A probabilistic key generation algorithm, - which generates a public encapsulation key `pk` and a secret - decapsulation key `sk`. +- `KeyGen() -> (pk, sk)`: A probabilistic key generation algorithm, which + generates a public encapsulation key `pk` and a secret decapsulation key + `sk`. - `Encaps(pk) -> (ct, shared_secret)`: A probabilistic encapsulation - algorithm, which takes as input a public encapsulation key `pk` and - outputs a ciphertext `ct` and shared secret `shared_secret`. -- `Decaps(sk, ct) -> shared_secret`: A decapsulation algorithm, which takes as - input a secret decapsulation key `sk` and ciphertext `ct` and outputs - a shared secret `shared_secret`. + algorithm, which takes as input a public encapsulation key `pk` and outputs + a ciphertext `ct` and shared secret `shared_secret`. +- `Decaps(sk, ct) -> shared_secret`: A decapsulation algorithm, which takes + as input a secret decapsulation key `sk` and ciphertext `ct` and outputs a + shared secret `shared_secret`. # Hybrid KEM Security Properties @@ -217,13 +231,27 @@ adversary can recognize which of two messages is encrypted in a given ciphertext, even if the two candidate messages are chosen by the adversary himself. -## LEAK-BIND-K-CT security +## Ciphertext second preimage resistant (C2PRI) security / ciphertext collision resistance (CCR) + +The notion where, even if a KEM has broken IND-CCA security (either due to +construction, implementation, or other), its internal structure, based on the +Fujisaki-Okamoto transform, guarantees that it is impossible to find a second +ciphertext that decapsulates to the same shared secret `K`: this notion is +known as ciphertext second preimage resistance (C2SPI) for KEMs +{{XWING}}. The same notion has also been described as chosen ciphertext +resistance elsewhere {{CDM2023}}. + + +## Binding properties + + + +### X-BIND-K-PK security -## LEAK-BIND-K-PK security +### X-BIND-K-CT security -## CCR / C2PRI security -Ciphertext second preimage resistance for KEMs ([C2PRI][Xwing]). Related to +Ciphertext second preimage resistance for KEMs ([C2PRI][XWING]). Related to the ciphertext collision-freeness of the underlying PKE scheme of a FO-transform KEM. Also called ciphertext collision resistance. @@ -232,15 +260,38 @@ FO-transform KEM. Also called ciphertext collision resistance. The generic hybrid PQ/T KEM constructions we define depend on the the following cryptographic primitives: +- Extendable Output Function {{xof}} +- Key Derivation Function {{kdf}} - Post-Quantum-secure KEM {{pq-kem} - Nominal Diffie-Hellman Group {{group}} -- Key Derivation Function {{kdf}} -- Extendable Output Function {{xof}} +## `XOF` {#xof} + +Extendable-output function (XOF). A function on bit strings in which the +output can be extended to any desired length. Ought to satisfy the following +properties as long as the specified output length is sufficiently long to +prevent trivial attacks: + +1. (One-way) It is computationally infeasible to find any input that maps to + any new pre-specified output. + +2. (Collision-resistant) It is computationally infeasible to find any two + distinct inputs that map to the same output. + +MUST provide the bit-security required to source input randomness for PQ/T +components from a seed that is expanded to a output length, of which a subset +is passed to the component key generation algorithms. + +## Key Derivation Function `KDF` {#kdf} + +A secure key derivation function (KDF) that is modeled as a secure +pseudorandom function (PRF) in the [standard model][GHP2018] and independent +random oracle in the random oracle model (ROM). ## Post-Quantum KEM {{#pq-kem}} -An IND-CCA KEM that is resilient against post-quantum attacks. +An IND-CCA KEM that is resilient against post-quantum attacks. It fulfills +the scheme API in {kems}. ### Post-quantum KEM ciphertext `pq_CT` @@ -276,28 +327,60 @@ traditional component KEM. For the constructions in this document, this is a Diffie-Hellman group element. -## Key Derivation Function `KDF` {#kdf} - -A secure key derivation function (KDF) that is modeled as a secure -pseudorandom function (PRF) in the [standard model][GHP2018] and independent -random oracle in the random oracle model (ROM). - -## XOF {#xof} - -Extendable-output function (XOF). A function on bit strings in which the -output can be extended to any desired length. Ought to satisfy the following -properties as long as the specified output length is sufficiently long to -prevent trivial attacks: - -1. (One-way) It is computationally infeasible to find any input that maps to - any new pre-specified output. - -2. (Collision-resistant) It is computationally infeasible to find any two - distinct inputs that map to the same output. - -MUST provide the bit-security required to source input randomness for PQ/T -components from a seed that is expanded to a output length, of which a subset -is passed to the component key generation algorithms. +## Nominal Diffie-Hellman Group {#group} + +The traditional DH-KEM construction depends on an abelian group of order +`order`. We represent this group as the object `G` that additionally defines +helper functions described below. The group operation for `G` is addition `+` +with identity element `I`. For any elements `A` and `B` of the group `G`, +`A + B = B + A` is also a member of `G`. Also, for any `A` in `G`, there +exists an element `-A` such that `A + (-A) = (-A) + A = I`. For convenience, +we use `-` to denote subtraction, e.g., `A - B = A + (-B)`. Integers, taken +modulo the group order `order`, are called scalars; arithmetic operations on +scalars are implicitly performed modulo `order`. Scalar multiplication is +equivalent to the repeated application of the group operation on an element +`A` with itself `r-1` times, denoted as `ScalarMult(A, r)`. We denote the +sum, difference, and product of two scalars using the `+`, `-`, and `*` +operators, respectively. (Note that this means `+` may refer to group element +addition or scalar addition, depending on the type of the operands.) For any +element `A`, `ScalarMult(A, order) = I`. We denote `B` as a fixed generator +of the group. Scalar base multiplication is equivalent to the repeated +application of the group operation on `B` with itself `r-1` times, this is +denoted as `ScalarBaseMult(r)`. The set of scalars corresponds to +`GF(order)`, which we refer to as the scalar field. It is assumed that group +element addition, negation, and equality comparison can be efficiently +computed for arbitrary group elements. + +This document uses types `Element` and `Scalar` to denote elements of the +group `G` and its set of scalars, respectively. We denote `Scalar(x)` as the +conversion of integer input `x` to the corresponding `Scalar` value with the +same numeric value. For example, `Scalar(1)` yields a `Scalar` representing +the value 1. We denote equality comparison of these types as `==` and +assignment of values by `=`. When comparing Scalar values, e.g., for the +purposes of sorting lists of Scalar values, the least nonnegative +representation mod `order` is used. + +We now detail a number of member functions that can be invoked on `G`. + +- Order(): Outputs the order of `G` (i.e., `order`). +- Identity(): Outputs the identity `Element` of the group (i.e., `I`). +- RandomScalar(): Outputs a random `Scalar` element in GF(order), i.e., a + random scalar in \[0, order - 1\]. +- ScalarMult(A, k): Outputs the scalar multiplication between Element `A` and + Scalar `k`. +- ScalarBaseMult(k): Outputs the scalar multiplication between Scalar `k` and + the group generator `B`. +- SerializeElement(A): Maps an `Element` `A` to a canonical byte array `buf` + of fixed length `Ne`. This function raises an error if `A` is the identity + element of the group. +- DeserializeElement(buf): Attempts to map a byte array `buf` to an `Element` + `A`, and fails if the input is not the valid canonical byte representation + of an element of the group. This function raises an error if + deserialization fails or if `A` is the identity element of the group. +- SerializeScalar(s): Maps a Scalar `s` to a canonical byte array `buf` of + fixed length `Ns`. +- DeserializeScalar(buf): Attempts to map a byte array `buf` to a `Scalar` + `s`. This function raises an error if deserialization fails. # Other @@ -335,14 +418,11 @@ in the random oracle model (ROM). A component post-quantum KEM that has IND-CCA security. -### Elliptic curve group where the Strong Diffie-Hellman problem (SDH) is hard +### IND-CCA-secure traditional KEM -For these generic constructions, the traditional KEMs are [DH-KEM][RFC9180] -instantiated with a particular elliptic curve group. For one construction, -`{{QSF}}`, this requires Strong Diffie-Hellman security and to be modelable -as a nominal group. +A component traditional KEM that has IND-CCA security. -### Fixed length +### Fixed lengths Every instantiation in concrete parameters of the generic constructions is for fixed parameter sizes, KDF choice, and label, allowing the lengths to not @@ -354,60 +434,16 @@ ciphertext, and shared secret is fixed once the algorithm is fixed in the concrete instantiations. This is the case for all concrete instantiations in this document. - -### X-BIND-K-CT / - - - - - - ## Key Generation {#keygen} We specify a common generic key generation scheme for all generic constructions. This requires the component key generation algorithns to accept the sufficient random seed, possibly according to their parameter set. -A keypair (decapsulation key, encapsulation key) is generated as -follows. - -~~~ -def expandDecapsulationKey(sk): - expanded = SHAKE256(sk, 96) - (pk_M, sk_M) = ML-KEM-768.KeyGen_internal(expanded[0:32], expanded[32:64]) - sk_X = expanded[64:96] - pk_X = X25519(sk_X, X25519_BASE) - return (sk_M, sk_X, pk_M, pk_X) - -def GenerateKeyPair(): - sk = random(32) - (sk_M, sk_X, pk_M, pk_X) = expandDecapsulationKey(sk) - return sk, concat(pk_M, pk_X) -~~~ - -`GenerateKeyPair()` returns the 32 byte secret decapsulation key `sk` -and the 1216 byte encapsulation key `pk`. - -Here and in the balance of the document for clarity we use -the `M` and `X`subscripts for ML-KEM-768 and X25519 components respectively. - + ### Key derivation {#derive-key-pair} -For testing, it is convenient to have a deterministic version -of key generation. An X-Wing implementation MAY provide the following -derandomized variant of key generation. - -~~~ -def GenerateKeyPairDerand(sk): - sk_M, sk_X, pk_M, pk_X = expandDecapsulationKey(sk) - return sk, concat(pk_M, pk_X) -~~~ - -`sk` must be 32 bytes. - -`GenerateKeyPairDerand()` returns the 32 byte secret encapsulation key -`sk` and the 1216 byte decapsulation key `pk`. - + ## 'Kitchen Sink' construction: @@ -417,7 +453,7 @@ of its component algorithms at the cost of more bytes needing to be processed by the KDF. ~~~ -def KitchenSink-KEM.SharedSecret(): +def KitchenSink-KEM.SharedSecret(pq_SS, trad_SS, pq_CT, pq_PK, trad_CT, trad_PK): return KDF(concat(pq_SS, trad_SS, pq_CT, pq_PK, trad_CT, trad_PK, label)) ~~~ @@ -429,6 +465,27 @@ against implementation errors in the component algorithms. + + + + + + + + + + + + + ## 'QSF' construction {#qsf} Inspired by the generic QSF[^qsf] framework in [XWING], which leverages the @@ -439,7 +496,7 @@ the KDF input: [qsf] Quantum Superiority Fighter ~~~ -def QSF-KEM.SharedSecret(): +def QSF-KEM.SharedSecret(pq_SS, trad_SS, trad_CT, trad_PK): return KDF(concat(pq_SS, trad_SS, trad_CT, trad_PK, label)) ~~~ @@ -475,10 +532,186 @@ oracle. {{XWING}} # Concrete Hybrid KEM Instances -## `QSF-SHA3-256-ML-KEM-768-P-256` +## `QSF-SHA3-256-ML-KEM-768-P-256` + +Also known as [XWING] but with P-256 instead of X25519. + +### `label`: `QSF-SHA3-256-ML-KEM-768-P-256` +### `XOF`: [SHAKE-256][FIPS202] +### `KDF`: [SHA3-256][FIPS202] +### PQ KEM: [ML-KEM-768][FIPS203] +### Group: [P-256][FIPS186] (secp256r1) {{ANSIX9.62}}, where Ne = 33 and Ns = 32. + +This instantiation uses P-256 for the Group. + + + +- Group: P-256 + - Order(): Return + 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551. + - Identity(): As defined in {{x9.62}}. + - RandomScalar(): Implemented by returning a uniformly random Scalar in the + range \[0, `G.Order()` - 1\]. Refer to {{random-scalar}} for + implementation guidance. + - SerializeElement(A): Implemented using the compressed + Elliptic-Curve-Point-to-Octet-String method according to {{SEC1}}, + yielding a 33-byte output. Additionally, this function validates that the + input element is not the group identity element. + - DeserializeElement(buf): Implemented by attempting to deserialize a + 33-byte input string to a public key using the compressed + Octet-String-to-Elliptic-Curve-Point method according to {{SEC1}}, and + then performs public-key validation as defined in section 3.2.2.1 of + {{SEC1}}. This includes checking that the coordinates of the resulting + point are in the correct range, that the point is on the curve, and that + the point is not the point at infinity. (As noted in the specification, + validation of the point order is not required since the cofactor is 1.) + If any of these checks fail, deserialization returns an error. + - SerializeScalar(s): Implemented using the Field-Element-to-Octet-String + conversion according to {{SEC1}}. + - DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar + from a 32-byte string using Octet-String-to-Field-Element from + {{SEC1}}. This function can fail if the input does not represent a Scalar + in the range \[0, `G.Order()` - 1\]. + + +### Key generation + +A keypair (decapsulation key, encapsulation key) is generated as follows. + + -### Security properties +~~~ +def expandDecapsulationKey(sk): + expanded = SHAKE256(sk, 96) + (pk_M, sk_M) = ML-KEM-768.KeyGen_internal(expanded[0:32], expanded[32:64]) + sk_G = Scalar(expanded[64:96]) + pk_G = ScalarMultBase(sk_G) + return (sk_M, sk_G, pk_M, pk_G) + +def GenerateKeyPair(): + sk = random(32) + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_G) +~~~ + +`GenerateKeyPair()` returns the 32 byte secret decapsulation key `sk` and the +1217 byte encapsulation key `pk`. + +For testing, it is convenient to have a deterministic version of key +generation. An implementation MAY provide the following derandomized variant +of key generation. + +~~~ +def GenerateKeyPairDerand(sk): + sk_M, sk_G, pk_M, pk_G = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_X) +~~~ + +`sk` MUST be 32 bytes. + +`GenerateKeyPairDerand()` returns the 32 byte secret decapsulation key `sk` +and the 1217 byte encapsulation key `pk`. + +## Shared secret + +Given 32-byte strings `ss_M`, `ss_G`, and the 33-byte strings `ct_G`, `pk_G`, +representing the ML-KEM-768 shared secret, P-256 shared secret, P-256 +ciphertext (ephemeral public key) and P-256 public key respectively, the 32 +byte combined shared secret is given by: + +~~~ +def SharedSecret(ss_M, ss_G, ct_G, pk_G): + return SHA3-256(concat( + ss_M, + ss_X, + ct_G, + pk_G, + `label` + )) +~~~ + +where `label` is the instance `label`. In hex `label` is given by `TODO`. + + +## Encapsulation + +Given an encapsulation key `pk`, encapsulation proceeds as follows. + +~~~ +def Encapsulate(pk): + pk_M = pk[0:1184] + pk_G = pk[1184:1217] + ek_G = RandomScalar() + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + (ss_M, ct_M) = ML-KEM-768.Encaps(pk_M) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ + +`pk` is a 1217 byte X-Wing encapsulation key resulting from +`GeneratePublicKey()` + +`Encapsulate()` returns the 32 byte shared secret `ss` and the 1121 byte +ciphertext `ct`. + +Note that `Encapsulate()` may raise an error if the ML-KEM encapsulation does +not pass the check of {{FIPS203}} §7.2. + +### Derandomized + +For testing, it is convenient to have a deterministic version of +encapsulation. An implementation MAY provide the following derandomized +function. + +~~~ +def EncapsulateDerand(pk, eseed): + pk_M = pk[0:1184] + pk_G = pk[1184:1217] + ek_G = eseed[32:65] + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + + (ss_M, ct_M) = ML-KEM-768.EncapsDerand(pk_M, eseed[0:32]) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ +`pk` is a 1217 byte X-Wing encapsulation key resulting from +`GeneratePublicKey()` `eseed` MUST be 65 bytes. + +`EncapsulateDerand()` returns the 32 byte shared secret `ss` and the 1121 +byte ciphertext `ct`. + + +## Decapsulation {#decaps} + +~~~ +def Decapsulate(ct, sk): + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + ct_M = ct[0:1088] + ct_G = ct[1088:1121] + ss_M = ML-KEM-768.Decapsulate(ct_M, sk_M) + ss_G = ScalarMult(sk_G, ct_G) + return SharedSecret(ss_M, ss_G, ct_G, pk_G) +~~~ + +`ct` is the 1121 byte ciphertext resulting from `Encapsulate()` `sk` is a 32 +byte decapsulation key resulting from `GenerateKeyPair()` + +`Decapsulate()` returns the 32 byte shared secret. + +### Security properties #### Binding @@ -506,7 +739,191 @@ This implies via {{KSMW}} that this instance also satisfies - HON-BIND-K,CT-PK - HON-BIND-K,PK-CT -## `KitchenSink-HKDF-SHA-256-ML-KEM-768-X25519` +## `KitchenSink-HKDF-SHA-256-ML-KEM-768-X25519` + +### `label`: `KitchenSink-HKDF-SHA-256-ML-KEM-768-X25519` +### `XOF`: [SHAKE-256][FIPS202] +### `KDF`: [HKDF-SHA-256][HKDF] + +HKDF is comprised of `HKDF-Extract` and `HKDF-Expand`. We compose them as one +function here: + + + +~~~ +def LabeledExtract(salt, label, ikm): + labeled_ikm = concat("Hybrid", suite_id, label, ikm) + return HDKF-Extract(salt, labeled_ikm) + +def LabeledExpand(prk, label, info, L): + labeled_info = concat(I2OSP(L, 2), "Hybrid", suite_id, + label, info) + return HKDF-Expand(prk, labeled_info, L) + + +def HKDF(preimage): + prk = LabeledExtract("", "hybrid_prk", preimage) + shared_secret = LabeledExpand(prk, "shared_secret", "", 32) + return shared_secret +~~~ + +### PQ KEM: [ML-KEM-768][FIPS203] +### Group: [X25519][X25519] + +This instantiation uses X25519 for the Group. + + +- Group: Curve25519 {{!X25519}}, where Ne = 32 and Ns = 32. + - Order(): Return 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed (see + {{?RFC7748}}). + - Identity(): As defined in {{RFC7748}}. + - RandomScalar(): Implemented by returning a uniformly random Scalar in the + range \[0, `G.Order()` - 1\]. Refer to {{random-scalar}} for + implementation guidance. + - SerializeElement(A): Implemented as specified in {{!RFC7748}}. + - DeserializeElement(buf): Implemented as specified in {{!RFC7748}}. + - SerializeScalar(s): Implemented by outputting the little-endian 32-byte + encoding of the Scalar value with the top three bits set to zero. + - DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar + from a little-endian 32-byte string. This function can fail if the input + does not represent a Scalar in the range \[0, `G.Order()` - 1\]. Note + that this means the top three bits of the input MUST be zero. + +### Key generation + +A keypair (decapsulation key, encapsulation key) is generated as follows. + + + +~~~ +def expandDecapsulationKey(sk): + expanded = SHAKE256(sk, 96) + (pk_M, sk_M) = ML-KEM-768.KeyGen_internal(expanded[0:32], expanded[32:64]) + sk_G = Scalar(expanded[64:96]) + pk_G = ScalarMultBase(sk_G) + return (sk_M, sk_G, pk_M, pk_G) + +def GenerateKeyPair(): + sk = random(32) + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_G) +~~~ + +`GenerateKeyPair()` returns the 32 byte secret decapsulation key `sk` and the +1216 byte encapsulation key `pk`. + +For testing, it is convenient to have a deterministic version of key +generation. An implementation MAY provide the following derandomized variant +of key generation. + +~~~ +def GenerateKeyPairDerand(sk): + sk_M, sk_G, pk_M, pk_G = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_X) +~~~ + +`sk` MUST be 32 bytes. + +`GenerateKeyPairDerand()` returns the 32 byte secret encapsulation key `sk` +and the 1216 byte decapsulation key `pk`. + +## Shared secret + +Given 32-byte strings `ss_M`, `ss_G`, `ct_G`, `pk_G`, representing the +ML-KEM-768 shared secret, X25519 shared secret, X25519 ciphertext (ephemeral +public key) and X25519 public key respectively, the 32 byte combined shared +secret is given by: + +~~~ +def SharedSecret(ss_M, ss_G, ct_G, pk_G): + return HKDF(concat( + ss_M, + ss_X, + ct_G, + pk_G, + `label` + )) +~~~ + +where `label` is the instance `label`. In hex `label` is given by `TODO`. + + +## Encapsulation + +Given an encapsulation key `pk`, encapsulation proceeds as follows. + +~~~ +def Encapsulate(pk): + pk_M = pk[0:1184] + pk_G = pk[1184:1216] + ek_G = RandomScalar() + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + (ss_M, ct_M) = ML-KEM-768.Encaps(pk_M) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ + +`pk` is a 1216 byte encapsulation key resulting from `GeneratePublicKey()` + +`Encapsulate()` returns the 32 byte shared secret `ss` and the 1120 byte +ciphertext `ct`. + +Note that `Encapsulate()` may raise an error if the ML-KEM encapsulation does +not pass the check of {{FIPS203}} §7.2. + +### Derandomized + +For testing, it is convenient to have a deterministic version of +encapsulation. An implementation MAY provide the following derandomized +function. + +~~~ +def EncapsulateDerand(pk, eseed): + pk_M = pk[0:1184] + pk_G = pk[1184:1216] + ek_G = eseed[32:64] + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + + (ss_M, ct_M) = ML-KEM-768.EncapsDerand(pk_M, eseed[0:32]) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ + +`pk` is a 1217 byte X-Wing encapsulation key resulting from +`GeneratePublicKey()` `eseed` MUST be 65 bytes. + +`EncapsulateDerand()` returns the 32 byte shared secret `ss` and the 1121 +byte ciphertext `ct`. + + +## Decapsulation {#decaps} + +~~~ +def Decapsulate(ct, sk): + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + ct_M = ct[0:1088] + ct_G = ct[1088:1120] + ss_M = ML-KEM-768.Decapsulate(ct_M, sk_M) + ss_G = ScalarMult(sk_G, ct_G) + return SharedSecret(ss_M, ss_G, ct_G, pk_G) +~~~ + +`ct` is the 1120 byte ciphertext resulting from `Encapsulate()` `sk` is a 32 +byte decapsulation key resulting from `GenerateKeyPair()` + +`Decapsulate()` returns the 32 byte shared secret. + +### Security properties + + #### Binding @@ -535,7 +952,187 @@ This implies via {{KSMW}} that this instance also satisfies - HON-BIND-K,CT-PK - HON-BIND-K,PK-CT -## `QSF-SHA3-256-ML-KEM-1024-P-384` +## `QSF-SHA3-256-ML-KEM-1024-P-384` + + +### `label`: `QSF-SHA3-256-ML-KEM-768-P-256` +### `XOF`: [SHAKE-256][FIPS202] +### `KDF`: [SHA3-256][FIPS202] +### PQ KEM: [ML-KEM-1024][FIPS203] +### Group: [P-384][FIPS186] (secp256r1) {{ANSIX9.62}}, where Ne = 33 and Ns = 32. + +This instantiation uses P-384 for the Group. + + + +- Group: P-384 + - Order(): Return + 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf + 581a0db248b0a77aecec196accc52973 + - Identity(): As defined in {{x9.62}}. + - RandomScalar(): Implemented by returning a uniformly random Scalar in the + range \[0, `G.Order()` - 1\]. Refer to {{random-scalar}} for + implementation guidance. + - SerializeElement(A): Implemented using the compressed + Elliptic-Curve-Point-to-Octet-String method according to {{SEC1}}, + yielding a 61-byte output. Additionally, this function validates that the + input element is not the group identity element. + - DeserializeElement(buf): Implemented by attempting to deserialize a + 61-byte input string to a public key using the compressed + Octet-String-to-Elliptic-Curve-Point method according to {{SEC1}}, and + then performs public-key validation as defined in section 3.2.2.1 of + {{SEC1}}. This includes checking that the coordinates of the resulting + point are in the correct range, that the point is on the curve, and that + the point is not the point at infinity. (As noted in the specification, + validation of the point order is not required since the cofactor is 1.) + If any of these checks fail, deserialization returns an error. + - SerializeScalar(s): Implemented using the Field-Element-to-Octet-String + conversion according to {{SEC1}}. + - DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar + from a 48-byte string using Octet-String-to-Field-Element from + {{SEC1}}. This function can fail if the input does not represent a Scalar + in the range \[0, `G.Order()` - 1\]. + + +### Key generation + +A keypair (decapsulation key, encapsulation key) is generated as follows. + + + +~~~ +def expandDecapsulationKey(sk): + expanded = SHAKE256(sk, 112) + (pk_M, sk_M) = ML-KEM-1024.KeyGen_internal(expanded[0:32], expanded[32:64]) + sk_G = Scalar(expanded[64:112]) + pk_G = ScalarMultBase(sk_G) + return (sk_M, sk_G, pk_M, pk_G) + +def GenerateKeyPair(): + sk = random(32) + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_G) +~~~ + +`GenerateKeyPair()` returns the 32 byte secret decapsulation key `sk` and the +1629 byte encapsulation key `pk`. + +For testing, it is convenient to have a deterministic version of key +generation. An implementation MAY provide the following derandomized variant +of key generation. + +~~~ +def GenerateKeyPairDerand(sk): + sk_M, sk_G, pk_M, pk_G = expandDecapsulationKey(sk) + return sk, concat(pk_M, pk_X) +~~~ + +`sk` MUST be 32 bytes. + +`GenerateKeyPairDerand()` returns the 32 byte secret decapsulation key `sk` +and the 1629 byte encapsulation key `pk`. + +## Shared secret + +Given 32-byte string `ss_M`, the 61-byte strings `ss_G`, `ct_G`, `pk_G`, +representing the ML-KEM-1024 shared secret, P-384 shared secret, P-384 +ciphertext (ephemeral public key) and P-384 public key respectively, the 32 +byte combined shared secret is given by: + +~~~ +def SharedSecret(ss_M, ss_G, ct_G, pk_G): + return SHA3-256(concat( + ss_M, + ss_X, + ct_G, + pk_G, + `label` + )) +~~~ + +where `label` is the instance `label`. In hex `label` is given by `TODO`. + + +## Encapsulation + +Given an encapsulation key `pk`, encapsulation proceeds as follows. + +~~~ +def Encapsulate(pk): + pk_M = pk[0:1568] + pk_G = pk[1568:1629] + ek_G = RandomScalar() + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + (ss_M, ct_M) = ML-KEM-1024.Encaps(pk_M) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ + +`pk` is a 1629 byte X-Wing encapsulation key resulting from +`GeneratePublicKey()` + +`Encapsulate()` returns the 32 byte shared secret `ss` and the 1629 byte +ciphertext `ct`. + +Note that `Encapsulate()` may raise an error if the ML-KEM encapsulation does +not pass the check of {{FIPS203}} §7.2. + +### Derandomized + +For testing, it is convenient to have a deterministic version of +encapsulation. An implementation MAY provide the following derandomized +function. + +~~~ +def EncapsulateDerand(pk, eseed): + pk_M = pk[0:1568] + pk_G = pk[1568:1629] + ek_G = eseed[32:80] + ct_G = ScalarMultBase(ek_G) + ss_G = ScalarMult(ek_G, pk_G) + + (ss_M, ct_M) = ML-KEM-768.EncapsDerand(pk_M, eseed[0:32]) + ss = SharedSecret(ss_M, ss_G, ct_G, pk_G) + ct = concat(ct_M, ct_G) + return (ss, ct) +~~~ + +`pk` is a 1629 byte X-Wing encapsulation key resulting from +`GeneratePublicKey()` `eseed` MUST be 80 bytes. + +`EncapsulateDerand()` returns the 32 byte shared secret `ss` and the 1629 +byte ciphertext `ct`. + + +## Decapsulation {#decaps} + +~~~ +def Decapsulate(ct, sk): + (sk_M, sk_G, pk_M, pk_G) = expandDecapsulationKey(sk) + ct_M = ct[0:1568] + ct_G = ct[1568:1629] + ss_M = ML-KEM-1024.Decapsulate(ct_M, sk_M) + ss_G = ScalarMult(sk_G, ct_G) + return SharedSecret(ss_M, ss_G, ct_G, pk_G) +~~~ + +`ct` is the 1629 byte ciphertext resulting from `Encapsulate()` `sk` is a 32 +byte decapsulation key resulting from `GenerateKeyPair()` + +`Decapsulate()` returns the 32 byte shared secret. + + +### Security properties #### Binding @@ -629,7 +1226,7 @@ in subsequent documents and not included here. ## HPKE - +TODO --- back