Skip to content

Latest commit

 

History

History
 
 

Step-by-Step

This example is used to demonstrate the steps of reproducing quantization and benchmarking results with Intel® Neural Compressor.

The 3D-Unet source code comes from mlperf, commit SHA is b7e8f0da170a421161410d18e5d2a05d75d6bccf; nnUnet commit SHA is b38c69b345b2f60cd0d053039669e8f988b0c0af. Users could diff them with this example to know which changes have been made to integrate with Intel® Neural Compressor..

The model is performing on BraTS 2019 brain tumor segmentation task.

Prerequisite

1. Environment

Python 3.6 or higher version is recommended. The dependent packages are all in requirements, please install as following.

cd examples/pytorch/image_recognition/3d-unet/quantization/ptq/fx
pip install -r requirements.txt

2. Preprocess Dataset

  # download BraTS 2019 from https://www.med.upenn.edu/cbica/brats2019/data.html
  export DOWNLOAD_DATA_DIR=<path/to/MICCAI_BraTS_2019_Data_Training> # point to location of downloaded BraTS 2019 Training dataset.

  # install dependency required by data preprocessing script
  git clone https://github.com/MIC-DKFZ/nnUNet.git --recursive
  cd nnUNet/
  git checkout b38c69b345b2f60cd0d053039669e8f988b0c0af
  # replace sklearn in the older version with scikit-learn
  sed -i 's/sklearn/scikit-learn/g' setup.py
  python setup.py install
  cd ..

  # download pytorch model
  make download_pytorch_model

  # generate preprocessed data
  make preprocess_data

  # create postprocess dir
  make mkdir_postprocessed_data

  # generate calibration preprocessed data
  python preprocess.py --preprocessed_data_dir=./build/calib_preprocess/ --validation_fold_file=./brats_cal_images_list.txt

  # install mlperf loadgen required by tuning script
  git clone https://github.com/mlcommons/inference.git --recursive
  cd inference
  git checkout b7e8f0da170a421161410d18e5d2a05d75d6bccf
  cd loadgen
  pip install absl-py
  python setup.py install
  cd ../..

Run

1. Quantization

  make run_pytorch_NC_tuning

or

  python run.py --model_dir=build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1 --backend=pytorch --accuracy --preprocessed_data_dir=build/preprocessed_data/ --mlperf_conf=./mlperf.conf --tune

2. Benchmark

# int8
sh run_benchmark.sh --int8=true --input_model=build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1 --dataset_location=build/preprocessed_data/
# fp32
sh run_benchmark.sh --input_model=build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1 --dataset_location=build/preprocessed_data/

3. Model Baseline

model framework accuracy dataset model link model source precision
3D-Unet PyTorch mean = 0.85300 (whole tumor = 0.9141, tumor core = 0.8679, enhancing tumor = 0.7770) Fold 1 of BraTS 2019 Training Dataset from zenodo Trained in PyTorch using codes fromnnUnet on Fold 0, Fold 2, Fold 3, and Fold 4 of BraTS 2019 Training Dataset. fp32