-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
161 lines (138 loc) · 7.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np
from data_loader import *
from model import Model
from tree import Tree
import manifolds
import os
import time
from tqdm import tqdm
from evaluation import *
def parse_args():
parser = argparse.ArgumentParser()
# hyperparameters for model training
parser.add_argument('-ne', '--num_epochs', type=int, default=200) # set a small num of epochs for large datasets, such as 10
parser.add_argument('-lr', '--learning_rate', type=float, default=0.01)
parser.add_argument('-ms', '--minibatch_size', type=int, default=64)
parser.add_argument('-dn', '--dataset_name', type=str, default='ml', choices=['ml', 'pl', 'covid', 'aminer', 'web'])
parser.add_argument('-dim', '--emb_dim', type=int, default=16)
parser.add_argument('-s', '--supervision', type=bool, default=False)
parser.add_argument('-reg_s', '--reg_s', type=float, default=1)
parser.add_argument('-reg_text', '--reg_text', type=float, default=0.1)
parser.add_argument('-reg_kld', '--reg_kld', type=float, default=0)
parser.add_argument('-tr', '--training_ratio', type=float, default=0.8)
parser.add_argument('-m', '--manifold', type=str, default='PoincareBall', choices=['PoincareBall', 'Hyperboloid'])
parser.add_argument('-le', '--log_epochs', type=int, default=25) # set a small num of log epochs for large datasets, such as 1
# hyperparameters for encoder
parser.add_argument('-nl', '--num_conv_layers', type=int, default=2)
parser.add_argument('-nn', '--num_sampled_neighbors', type=int, default=5)
parser.add_argument('-neg', '--num_negative_samples', type=int, default=5)
parser.add_argument('-c', '--init_curvature', type=float, default=1.0)
parser.add_argument('-b', '--use_bias', type=bool, default=True)
# hyperparameters for topic tree (decoder)
parser.add_argument('-ut', '--update_tree', type=bool, default=True)
parser.add_argument('-max_l', '--max_levels', type=int, default=4)
parser.add_argument('-max_c', '--max_children_per_parent', type=int, default=20)
parser.add_argument('-at', '--add_threshold', type=float, default=0.05)
parser.add_argument('-rt', '--remove_threshold', type=float, default=0.05)
parser.add_argument('-we', '--use_ptr_word_emb', type=bool, default=False)
parser.add_argument('-rs', '--random_seed', type=int, default=519)
parser.add_argument('-gpu', '--gpu', type=int, default=0)
return parser.parse_args()
def train(args):
args.device = 'cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu'
print('Preparing data...')
data_center = DataCenter(args)
training_data = Data(args, 'train', data_center)
test_data = Data(args, 'test', data_center)
training_loader = DataLoader(dataset=training_data, batch_size=args.minibatch_size, shuffle=False)
test_loader = DataLoader(dataset=test_data, batch_size=args.minibatch_size, shuffle=False)
print('Start training...')
manifold = getattr(manifolds, args.manifold)()
tree = Tree(args, manifold).to(args.device)
model = Model(args, data_center, manifold).to(args.device)
print(model)
optimizer = torch.optim.Adagrad(model.parameters(), lr=args.learning_rate)
num_minibatches = len(training_loader)
t = time.time()
print('Current tree structure:', tree.par2child)
for epoch_idx in tqdm(range(1, args.num_epochs + 1)):
# training
one_epoch_loss = 0.0
model.train()
data_center.sample_neighbors()
for idx, batch in tqdm(enumerate(training_loader)):
links, doc_ids_neg = batch
doc_ids_neg = np.reshape(doc_ids_neg, [-1])
optimizer.zero_grad()
res = model(links, data_center, tree, mode='train')
loss = res[0][0]
loss.backward()
optimizer.step()
with torch.no_grad():
one_epoch_loss = loss.item()
# testing
if epoch_idx % args.log_epochs == 0 or epoch_idx == 1:
print('******************************************************')
print('Time: %ds' % (time.time() - t), '\tEpoch: %d/%d' % (epoch_idx, args.num_epochs), '\tLoss: %f' % one_epoch_loss)
model.eval()
doc_emb, y_pred, bow_pred, topic_word_dist, doc_topic_dist, topic_emb = [], [], [], [], [], []
for idx, batch in enumerate(test_loader):
links, _ = batch
res = model(links, data_center, tree, mode='test')
doc_emb_tmp, bow_pred_tmp, topic_word_dist, doc_topic_dist_tmp, topic_emb = res[1], res[2], res[3], res[4], res[5]
doc_emb_tmp = doc_emb_tmp.detach().cpu().numpy().tolist()
bow_pred_tmp = bow_pred_tmp.detach().cpu().numpy().tolist()
topic_word_dist = topic_word_dist.detach().cpu().numpy()
doc_topic_dist_tmp = doc_topic_dist_tmp.detach().cpu().numpy().tolist()
topic_emb = topic_emb.detach().cpu().numpy()
doc_emb.extend(doc_emb_tmp)
bow_pred.extend(bow_pred_tmp)
doc_topic_dist.extend(doc_topic_dist_tmp)
if args.supervision:
y_pred_tmp = res[-1]
y_pred_tmp = y_pred_tmp.detach().cpu().numpy().tolist()
y_pred.extend(y_pred_tmp)
doc_emb = np.array(doc_emb)
training_doc_emb = doc_emb[:data_center.num_training_docs]
test_doc_emb = doc_emb[data_center.num_training_docs:]
test_bow_pred = np.array(bow_pred[data_center.num_training_docs:])
training_doc_topic_dist = np.array(doc_topic_dist[:data_center.num_training_docs])
test_doc_topic_dist = np.array(doc_topic_dist[data_center.num_training_docs:])
topic_emb = np.array(topic_emb)
if args.supervision:
y_pred_test = np.array(y_pred[data_center.num_training_docs:])
# evaluation
output_topic_keywords(topic_word_dist, data_center.voc, tree)
if data_center.labels_available:
if args.supervision:
print('Micro F1: %.4f' % f1_score(data_center.test_labels, y_pred_test, average='micro'))
print('Macro F1: %.4f' % f1_score(data_center.test_labels, y_pred_test, average='macro'))
else:
classification_knn(training_doc_emb, test_doc_emb, data_center.training_labels, data_center.test_labels)
link_prediction_auc(test_doc_emb, data_center.test_links, data_center.num_training_docs, args)
test_bow_true = data_center.generate_bow(range(data_center.num_training_docs, data_center.num_docs), normalize=False)
perplexity(test_bow_pred, test_bow_true)
# update tree
if args.update_tree and epoch_idx % args.log_epochs == 0 and epoch_idx != args.num_epochs:
tree.update_tree(training_doc_topic_dist, data_center.training_doc_length)
if tree.update_tree_flg:
print('Current tree structure:', tree.par2child)
# save model outputs
if epoch_idx % args.log_epochs == 0:
folder = os.path.exists('./data/' + args.dataset_name + '/results')
if not folder:
os.makedirs('./data/' + args.dataset_name + '/results')
np.savetxt('./data/' + args.dataset_name + '/results/doc_emb.txt', doc_emb, delimiter=' ', fmt='%.4f')
np.savetxt('./data/' + args.dataset_name + '/results/topic_emb.txt', topic_emb, delimiter=' ', fmt='%.4f')
np.savetxt('./data/' + args.dataset_name + '/results/topic_word_dist.txt', topic_word_dist, delimiter=' ', fmt='%.4f')
def main(args):
if args.random_seed:
np.random.seed(args.random_seed)
torch.random.manual_seed(args.random_seed)
train(args)
if __name__ == '__main__':
main(parse_args())