-
Notifications
You must be signed in to change notification settings - Fork 5
/
2.56.scm
executable file
·159 lines (120 loc) · 3.92 KB
/
2.56.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
(load "myhelpers.scm")
;Exercise 2.56
;Setup
(define (variable? x)
(symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
;ANSWERS
;Predicate
(define (exponentiation? x)
(and (pair? x) (eq? (car x) '**)))
(assert (exponentiation? '(** base exponent)) #t)
(assert (exponentiation? '(x base exponent)) #f)
;Constructor
(define (make-exponentiation base exponent)
(list '** base exponent))
;Selectors
(define (base exp)
(car (cdr exp)))
(define (exponent exp)
(car (cdr (cdr exp))))
(assert (base '(** (* 5 6) 8)) '(* 5 6))
(assert (exponent '(** (* 5 6) 8)) 8)
;Deriving proc
;IMPLEMENTATION With Simplification in deriving function
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(cond
((= (- (exponent exp) 1) 0) 1)
((= (- (exponent exp) 1) 1) (base exp))
(else
(make-product
(exponent exp)
(make-exponentiation (base exp)
(- (exponent exp) 1)))))
(deriv (base exp) var)))
(else
(error "unknown expression type -- DERIV" exp))))
(d "Implentation 1")
(d (deriv '(** (* x y) 6) 'x))
(d (deriv '(** (* x y) 6) 'y))
(d (deriv '(** (* x y) 1) 'x))
(d (deriv '(** (* x y) 1) 'y))
(d (deriv '(** (* x y) 0) 'x))
(d (deriv '(** (* x y) 0) 'y))
;IMPLEMENATION With simplication in constructors. This, I think, is how it was intended.
;Deriv stays more of a simple abstraction and doesn't deal with any of the exponentiation
;reprensentations.
;This way is better too because the modified exponent constructors can be used for other
;procedures
;Redefined constructor
;Constructor
(define (make-exponentiation base exponent)
(cond ((= exponent 1) base)
((= exponent 0) 1)
(else
(list '** base exponent))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product
(exponent exp)
(make-exponentiation (base exp)
(- (exponent exp) 1)))
(deriv (base exp) var)))
(else
(error "unknown expression type -- DERIV" exp))))
(d "Implentation 2")
(d (deriv '(** (* x y) 6) 'x))
(d (deriv '(** (* x y) 6) 'y))
(d (deriv '(** (* x y) 1) 'x))
(d (deriv '(** (* x y) 1) 'y))
(d (deriv '(** (* x y) 0) 'x))
(d (deriv '(** (* x y) 0) 'y))