-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGreens_functions_presentation.tex
2738 lines (2246 loc) · 85.9 KB
/
Greens_functions_presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% rubber: set program xelatex
% The theme used for this presentation is matze's mtheme, which can be
% found at https://github.com/matze/mtheme
\newif\ifhandout
\newif\ifextended
\handoutfalse
%\handouttrue
\extendedfalse
%\extendedtrue
\ifhandout
\documentclass[12 pt, compress, handout, intlimits]{beamer}
\setbeamertemplate{note page}[plain]
\setbeameroption{show notes}% on second screen=bottom}
\else
\documentclass[12 pt, compress, intlimits]{beamer}
\fi
\usetheme{metropolis}
\usepackage{mymacros}
\usepackage[retainorgcmds]{IEEEtrantools}
\setlength{\IEEEnormaljot}{9pt}
\renewcommand{\d}{\operatorname{d}\!}
\renewcommand{\L}{\mathcal{L}}
\renewcommand{\B}{\mathcal{B}}
\newcommand{\inprod}[2]{\left\langle {#1}, {#2} \right\rangle}
\newcommand{\conj}[1]{\overline{#1}}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage[scale=2]{ccicons}
\usepackage{array}
\usepackage{tabularx}
\usepackage{xcolor}
\usepackage{mathtools}
\usepackage{empheq}
\renewcommand{\tabularxcolumn}[1]{>{\normalsize}m{#1}}
\newcommand{\highlight}[1]{\colorbox{mLightBrown!65}{$\displaystyle{#1}$}}
\newcommand{\mygreenbox}[1]{\colorbox{mLightBrown!65}{\hspace{1em}#1\hspace{1em}}}
\newcommand*\widefbox[1]{\fbox{\hspace{1em}#1\hspace{1em}}}
%\usepgfplotslibrary{dateplot}
%\usefonttheme[onlymath]{serif}
%\usepackage{eulervm}
%\usepackage{arevmath}
%\renewcommand{\vect}[1]{\vec{#1}}
\renewcommand{\L}{\mathcal{L}}
\newcommand{\ft}[1]{\tilde{#1}}
\newcommand{\rinprod}[2]{\left\langle {#1}, {#2} \right\rangle_r}
\newcommand{\pinprod}[2]{\left\langle {#1}, {#2} \right\rangle_p}
\useinnertheme{circles}
\setbeamercovered{transparent}
\title{Green's functions}
\subtitle{A short introduction}
\date{\today}
\author{Chris Deimert}
\institute{Department of Electrical and Computer Engineering, University of Calgary}
\begin{document}
\maketitle
\note{
\begin{itemize}
\item
This is intended as a short introduction to Green's functions for electrical engineers.
\item
Basic idea of Green's functions is simple, but there is a huge amount of theory for actually calculating and using them.
\item
We won't be able to cover much here, but we'll try to focus on building a solid foundation and understanding of Green's functions.
\item
Suggested further reading is provided at the end.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Outline}
\tableofcontents
\end{frame}
\note{
\begin{enumerate}
\item
Basic idea of Green's functions.
\item
Simplest method for solving the Green's function equation.
\item
How to use the Green's function to solve a problem with boundary conditions. (Biggest section!)
\item
Useful properties of Green's functions for special types of problems.
\item
Summary and suggested further reading.
\end{enumerate}
}
\section{Basic idea}
\label{sec:basic_idea}
\note{
\begin{itemize}
\item
The basic idea of Green's functions is really simple.
You've actually used them before!
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{What is a Green's function?}
Linear equation to solve:
\begin{align*}
\L u(x) &= f(x)
\end{align*}
\pause
Green's function is the \textbf{impulse response}:
\begin{align*}
\L G(x,x') &= \delta(x - x')
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Most electromagnetics problems are described by linear (differential) equations with some source/driving function $ f(x) $.
\item
The Green's function is the solution when the source $ f(x) $ is set equal to an impulse (delta function) located at $ x' $.
\item
Can think of it as a generalization of the familiar impulse response from signal processing.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Why is it useful?}
\begin{align*}
\delta(x - x') &\xrightarrow{\quad \L^{-1} \quad} G(x,x')
\end{align*}
\pause
\begin{align*}
f(x) = \int \delta(x - x') f(x') \d x \xrightarrow{\quad \L^{-1} \quad} \int G(x,x') f(x') \d x
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Once we know the Green's function for a problem, we can find the solution for any source $ f(x) $.
\item
Impulses $ \delta(x - x') $ produce a response $ G(x,x') $.
\item
We can split the source $ f(x) $ up into a sum (integral) of impulses $ \delta(x - x') $.
\item
Then the response to $ f(x) $ is just a weighted sum (integral) of impulse responses.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Why is it useful?}
\begin{align*}
\L u(x) &= f(x)
\end{align*}
\begin{align*}
\L G(x,x') &= \delta(x - x')
\end{align*}
\begin{empheq}[box=\widefbox]{align*}
u(x) = \int G(x,x') f(x') \d x
\end{empheq}
\begin{flushright}\scriptsize{(Some conditions apply.)}\end{flushright}
\end{frame}
\note{
\begin{itemize}
\item
Once we know the Green's function, we have an explicit formula for the solution $ u(x) $ for any source function $ f(x) $.
\item
Beware the fine print!
This formula actually only works under certain assumptions about the boundary conditions.
\item
We'll deal with the more general approach later.
For now, we'll use this simple version to get the key idea across.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Familiar Green's functions}
Impulse response of a linear time-invariant system:
\begin{align*}
y(t) &= \int_{-\infty}^{\infty} x(t') \alert{h(t - t')} \d t'
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
In electrical engineering, we've seen Green's functions before.
\item
Impulse response $ h(t - t') $ from linear system theory is an example of a Green's function.
\begin{align*}
G(t,t') = h(t - t')
\end{align*}
\item
Output $ y(t) $ is given by convolution of the impulse $ h(t) $ with the input $ x(t) $.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Familiar Green's functions}
Poisson's equation:
\begin{align*}
\nabla^2 V(\vect{r}) &= - \frac{\rho(\vect{r})}{\epsilon_0}
\end{align*}
\begin{align*}
V(\vect{r}) &= \iiint \alert{\frac{1}{4 \pi \epsilon_0 \left| \vect{r} - \vect{r}' \right|}} \rho(\vect{r}') \d^3 \vect{r}'
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Green's function for Poisson's equation is
\begin{align*}
G(\vect{r}, \vect{r}') &= \frac{1}{4 \pi \epsilon_0 \left| \vect{r} - \vect{r}' \right|}
\end{align*}
\item
The Green's function is the potential created by a point (impulse) charge.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Familiar Green's functions}
Helmholtz equation:
\begin{align*}
\left( \nabla^2 + k^2 \right) A_z(\vect{r}) &= -J_z(\vect{r})
\end{align*}
\begin{align*}
A_z(\vect{r}) &= \iiint \alert{\frac{e^{-jk \left| \vect{r} - \vect{r}' \right|}}{4 \pi \left| \vect{r} - \vect{r}' \right|}} J_z\left( \vect{r}' \right) \d^3 \vect{r}'
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Green's function for the Helmholtz equation is
\begin{align*}
G(\vect{r}, \vect{r}') &= \frac{e^{-jk \left| \vect{r} - \vect{r}' \right|}}{4 \pi \left| \vect{r} - \vect{r}' \right|}
\end{align*}
\item
The Green's function is the potential created by a point (impulse) current.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Familiar Green's functions}
Green's functions let us:
\begin{itemize}
\item
Derive and understand these expressions.
\item
Generalize to other problems and boundary conditions.
\end{itemize}
\end{frame}
\note{
\begin{itemize}
\item
With Green's function theory, we learn how to derive the above expressions and understand them a little more rigorously. (Though we won't have time to derive the 3D ones here.)
\item
In addition, Green's function theory allows us to deal with different boundary conditions.
The solutions to the Poisson and Helmholtz equations above assume free space (boundaries at infinity).
Green's functions would allow us to, e.g., find the response to a current source inside a specific waveguide.
\end{itemize}
}
\section{Finding the Green's function}
\label{sec:finding_the_green_s_function}
\note{
\begin{itemize}
\item
In this section, we'll look at one of the simplest methods for actually solving the Green's function problem.
\item
Often called the \emph{direct method}.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
Original problem:
\begin{align*}
\frac{\d^2 u(x)}{\d x^2} - k^2 u(x) &= f(x)
\end{align*}
Green's function problem:
\begin{align*}
\frac{\d^2 G(x, x')}{\d x^2} - k^2 G(x,x') &= \delta(x - x')
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Let's start off by looking at a simple example.
\item
This problem is similar to a simple harmonic oscillator, but the negative sign means we expect lossy behaviour rather than oscillation.
\item
We won't worry much about boundary conditions yet, we'll just look for solutions that don't blow up at $ x = \pm \infty $.
\item
If we can find the Green's function, then we can find the solution to the original problem for any $ f(x) $.
\item
But the Green's function problem looks hard!
The point of this example is to demonstrate that we can actually solve it.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
For $ x \neq x' $
\begin{align*}
\frac{\d^2 G(x, x')}{\d x^2} - k^2 G(x,x') &= 0
\end{align*}
\pause
So we have
\begin{align*}
G(x,x') &=
\begin{cases}
A e^{+k (x - x')} & \text{for } x < x'
\\
B e^{-k (x - x')} & \text{for } x > x'
\end{cases}
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Key thing to notice is that the source is concentrated at $ x = x' $.
\item
So for $ x > x' $ and $ x < x' $, we expect the solutions to look like those of the source-free equation.
\item
To keep the solutions finite, we expect exponential growth before $ x = x' $ and exponential decay afterward.
\item
Now, how do we find the constants $ A $ and $ B $?
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
\begin{align*}
\frac{\d^2 G(x,x')}{\d x^2} - k^2 G(x,x') &= \delta(x - x')
\end{align*}
\pause
Continuity of the Green's function:
\begin{align*}
\lim_{\epsilon \to 0} \left[ G(x'+\epsilon, x') - G(x' - \epsilon, x') \right] = 0
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
How continuous do we expect our Green's function to be?
\item
If $ G(x,x') $ is discontinuous (like a step function), then $ \d G / \d x $ will behave like a delta function and $ \d^2 G / \d x^2 $ will behave like a delta function derivative. No good!
\item
So we expect $ G(x,x') $ to be continuous.
\item
That gives us one condition we can use to find $ A $ and $ B $. (In fact, it tells us that $ A = B $.)
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
\begin{align*}
\alt<2->{\int_{x'-\epsilon}^{x'+\epsilon} \left[ \frac{\d^2 G(x, x')}{\d x^2} - k^2 G(x,x') \right] \d x &= \int_{x'-\epsilon}^{x'+\epsilon} \delta(x - x') \d x}{\frac{\d^2 G(x, x')}{\d x^2} - k^2 G(x,x') = \delta(x - x')}
\end{align*}
\pause
\pause
Discontinuity condition:
\begin{align*}
\lim_{\epsilon \to 0} \left[ \left. \frac{\d G}{\d x}\right|_{x = x' + \epsilon} - \left. \frac{\d G}{\d x} \right|_{x = x' - \epsilon} \right] &= 1
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
But what if the derivative $ \d G / \d x $ is discontinuous?
\item
Then $ \d^2 G / \d x^2 $ is like a delta function.
But that's fine, because we have a delta function on the right hand side too.
\item
We can find exactly how discontinuous the derivative is by integrating over a small interval around $ x' $.
\item
In the limit of $ \epsilon \to 0 $, the second integral vanishes because $ G(x,x') $ is continuous.
\item
The first integral is an integral of a derivative, so we can use the fundamental theorem of calculus.
The result is a \emph{discontinuity condition for the derivative.}
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
\begin{align*}
G(x,x') &=
\begin{cases}
A e^{+k (x - x')} & \text{for } x < x'
\\
B e^{-k (x - x')} & \text{for } x > x'
\end{cases}
\end{align*}
Continuity of $ G(x,x') $:
\begin{align*}
A &= B
\end{align*}
Discontinuity of $ \dfrac{\d G(x,x')}{\d x} $:
\begin{align*}
k A + k B = 1
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Applying our two conditions, we can solve for $ A $ and $ B $.
We find
\begin{align*}
A = B = \frac{1}{2 k}
\end{align*}
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{A simple example}
Solving, our Green's function is
\begin{align*}
G(x,x') &= \frac{1}{2k}
\begin{dcases}
e^{+k (x - x')} & \text{for } x < x'
\\
e^{-k (x - x')} & \text{for } x > x'
\end{dcases}
\end{align*}
Or, more compactly:
\begin{empheq}[box=\widefbox]{align*}
G(x, x') = \frac{e^{k |x - x'|}}{2 k}
\end{empheq}
\end{frame}
\note{
}
\begin{frame}[fragile]
\frametitle{A simple example}
Original problem:
\begin{align*}
\frac{\d^2 u(x)}{\d x^2} - k^2 u(x) &= f(x)
\end{align*}
Solution:
\begin{align*}
u(x) &= \int_{-\infty}^{\infty} f(x') \frac{e^{k|x - x'|}}{2k} \d x'
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Now that we have the Green's function, we can construct the solution to our original problem for any forcing function $ f(x) $.
\item
Caution: remember the fine print from before.
This solution only works with certain assumptions about boundary conditions.
(More on this to come!)
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{General approach}
Direct solution:
\begin{itemize}
\item
$ G(x,x') $ obeys source-free equation for $ x \neq x' $.
\item
$ G(x,x') $ and its derivatives are continuous or discontinuous at $ x = x' $.
\end{itemize}
\end{frame}
\note{
\begin{itemize}
\item
Write down the source-free solution for $ x \neq x' $: usually has a few unknown coefficients.
\item
Examine the equation to find continuity/discontinuity requirements for $ G(x,x') $ and its derivatives.
(Most books on Green's functions provide these requirements for general Sturm-Liouville problems.)
\item
This approach is great if it works.
Unfortunately, it doesn't always work (especially in 3D problems).
\item
We'll briefly look at an alternative solution method later using eigenvalues and eigenfunctions, but this still just scratches the surface.
See the references provided at the end.
\end{itemize}
}
\section{Constructing the solution}
\label{sec:constructing_the_solution}
\note{}
\begin{frame}[fragile]
\frametitle{Constructing the solution}
\begin{align*}
u(x) &= \int G(x,x') f(x') \d x'
\end{align*}
\begin{center}Can we prove/generalize this?\end{center}
\end{frame}
\note{
\begin{itemize}
\item
In the introduction, we showed non-rigorously how to construct a solution from the Green's function.
To keep things simpler, we ignored boundary conditions.
\item
Here, we'll look at how to properly construct a solution from the Green's function when boundary conditions are involved.
\item
Our approach is quite challenging compared to a lot of books on the subject.
The advantage is that we'll deal with some subtleties that can otherwise lead to confusion.
\item
For approaches similar to the one in this section, see Dudley, Morse and Feshbach, or Gerlach.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators}
Inner product:
\begin{align*}
\inprod{u}{v} &= \int_a^b u(x) \conj{v}(x) \d x
\end{align*}
Adjoint operator $ \L^* $:
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v}
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Underpinning our approach is the idea of an adjoint operator.
\item
Start with an inner product (for 1D problems, usually the one shown).
Note that $ \conj{v} $ is the complex conjugate of $ v $.
\item
If $ \L $ is a linear operator, then its adjoint $ \L^* $ is defined as the operator which satisfies
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v}
\\
\Longrightarrow \quad \int_a^b (\L u) v^* \d x &= \int_a^b u \conj{(\L^* v)} \d x
\end{align*}
\item
Roughly, $ \L^* $ is what appears if we try to move $ \L $ into the other slot of the inner product.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint boundary conditions}
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v} \longrightarrow \text{Only for certain $ u, v $ !}
\end{align*}
Adjoint boundary conditions:
\begin{align*}
\B_i[u] &= 0; \qquad \B_i^*[v] = 0
\end{align*}
Otherwise
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v} + \underbrace{J(u,\conj{v})}_{\text{Conjunct}} \Big|_a^b
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
The adjoint is only truly the adjoint (i.e., $ \inprod{\L u}{v} = \inprod{u}{\L^* v} $) for certain functions $ u $ and $ v $.
(Mathematically, when $ \L $ and $ \L^* $ are unbounded operators, they do not necessarily share the same \emph{domain}, and we need to consider that.)
\item
This is where boundary conditions come in.
Specifically, if $ u $ obeys some boundary conditions $ \B_i[u] = 0 $, then $ v $ has to obey some adjoint boundary conditions $ \B_i^*[v] = 0 $.
\item
Note on notation: $ \B_i[u] = 0 $ means that some linear combination of $ u $ and its derivatives are set equal to zero at the boundaries.
\item
If $ \B_i[u] = 0 $ and $ \B_i^*[v] = 0 $ are not satisfied, then the adjoint equation almost holds, but we get an extra term $ J(u,v^*) $ called the \emph{conjunct}. It's only evaluated at the boundaries.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
\begin{align*}
\L u(x) &= \left[ \frac{\d^2}{\d x^2} + k^2 \right] u(x)
\end{align*}
Want $ \L^* $ so that
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v} + J(u, \conj{v})\Big|_a^b
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Let's look at an example: the 1D simple harmonic oscillator.
\item
Let's try to find $ \L^* $ without worrying about boundary conditions for now.
(So we expect the conjunct to appear.)
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
\begin{align*}
\inprod{\L u}{v} &= \int_a^b \left[ u'' + k^2 u \right] \conj{v} \d x
\\
\inprod{\L u}{v} &= \int_a^b \left[ -u' \conj{v}' + k^2 u \conj{v} \right] \d x + \left[ u' \conj{v} \right]_a^b
\\
\inprod{\L u}{v} &= \int_a^b u \left[ \conj{v}^{\prime\prime} + k^2 \conj{v} \right] \d x + \left[ u' \conj{v} - u \conj{v}' \right]_{a}^{b}
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
To find the adjoint, let's expand $ \inprod{\L u}{v} $.
\item
Use integration by parts twice.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
\begin{align*}
\inprod{\L u}{v} &= \int_a^b u \left[ \conj{v}^{\prime\prime} + k^2 \conj{v} \right] \d x + \left[ u' \conj{v} - u \conj{v}' \right]_{a}^{b}
\end{align*}
Looks like
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v} + J(u, \conj{v})\Big|_a^b
\end{align*}
with
\begin{align*}
\L^* &= \frac{\d^2}{\d x^2} + \conj{k^2}
\\[4pt]
J(u,\conj{v}) &= u' \conj{v} - u \conj{v}'
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
After integration by parts, we can read off the adjoint operator and the conjunct.
\item
So in this case, the adjoint operator is the almost the same as the original operator, but there's an extra complex conjugate.
If $ k $ is real, then $ \L = \L^* $.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
For
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v}
\end{align*}
must have
\begin{align*}
J(u,\conj{v})\Big|_a^b &= 0
\\
\left[u' \conj{v} - u \conj{v}'\right]_a^b &= 0
\end{align*}
\begin{align*}
u'(b) \conj{v}(b) - u(b) \conj{v}'(b) - u'(a) \conj{v}(a) + u(a) \conj{v}'(a) = 0
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Now let's look at adjoint boundary conditions.
\item
For $ \L^* $ to be a true adjoint, we need the conjunct to be zero.
\item
Let's expand the conjunct for this particular example.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
\begin{align*}
u'(b) \conj{v}(b) - u(b) \conj{v}'(b) - u'(a) \conj{v}(a) + u(a) \conj{v}'(a) = 0
\end{align*}
Boundary conditions:
\begin{align*}
\begin{array}{c}
\B_1[u] = u(a) = 0
\\
\B_2[u] = u(b) = 0
\end{array}
\Longrightarrow
\begin{array}{c}
\B^*_1[v] = v(a) = 0
\\
\B^*_2[v] = v(b) = 0
\end{array}
\end{align*}
\begin{align*}
\B_i &= \B_i^*
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
Suppose we have the simple boundary conditions $ u(a) = u(b) = 0 $.
\item
Then, to make the conjunct zero, we need $ \conj{v}(a) = \conj{v}(b) = 0 $ or $ v(a) = v(b) = 0 $.
\item
So in this case, the adjoint boundary conditions on $ v $ are the same as the boundary conditions on $ u $.
\item
Remember what these boundary conditions mean.
$ \L^* $ is the true adjoint when $ \L $ operates on functions $ u(x) $ which are zero at $ x = a,b $ and $ \L^* $ operates on functions $ v(x) $ which are zero at $ x = a,b $.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: example}
\begin{align*}
u'(b) \conj{v}(b) - u(b) \conj{v}'(b) - u'(a) \conj{v}(a) + u(a) \conj{v}'(a) = 0
\end{align*}
Initial conditions:
\begin{align*}
\begin{array}{c}
\B_1[u] = u(a) = 0
\\
\B_2[u] = u'(a) = 0
\end{array}
\Longrightarrow
\begin{array}{c}
\B^*_1[v] = v(b) = 0
\\
\B^*_2[v] = v'(b) = 0
\end{array}
\end{align*}
\begin{align*}
\B_i &\neq \B_i^*
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
What if we have initial conditions instead? $ u(a) = u'(a) = 0 $.
\item
Then, to make the conjunct zero, we need $ v(b) = v'(b) = 0 $.
\item
So, for initial conditions, the adjoint boundary conditions are \emph{final} conditions.
$ \B_i \neq \B_i^* $.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Adjoint operators: summary}
Adjoint operator:
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v}
\end{align*}
Adjoint boundary conditions:
\begin{align*}
\begin{array}{c} \B_i[u] = 0 \\ \B^*_i[v] = 0 \end{array} \Longrightarrow J(u,\conj{v})\Big|_a^b = 0
\end{align*}
Otherwise:
\begin{align*}
\inprod{\L u}{v} &= \inprod{u}{\L^* v} + J(u,\conj{v}) \Big|_a^b
\end{align*}
\end{frame}
\note{
\begin{itemize}
\item
The adjoint operator satisfies $ \inprod{\L u}{v} = \inprod{u}{\L^* v} $.
\item
This only works for certain $ u,v $, though.
Specifically, it works when $ u $ obeys boundary conditions and $ v $ obeys adjoint boundary conditions.
\item
If $ u,v $ do not satisfy these boundary conditions, then $ \L^* $ is not truly the adjoint anymore.
However, it still nearly obeys the adjoint equation; there's just a leftover conjunct term which depends on the boundary values of $ u, v $ and their derivatives.
\item
For a lot of things (e.g., using eigenfunction bases) we need this conjunct to be zero.
But for Green's functions, it will end up being indispensible.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{The adjoint Green's function}
Original problem:
\begin{IEEEeqnarray*}{rClCrCl}
\L u(x) &=& f(x); &\qquad& \B_i [u(x)] &=& \alpha_i
\end{IEEEeqnarray*}
Green's problem:
\begin{IEEEeqnarray*}{rClCrCl}
\L G(x,x') &=& \delta(x - x'); &\qquad& \B_i [G(x,x')] &=& 0
\end{IEEEeqnarray*}
Adjoint Green's problem:
\begin{IEEEeqnarray*}{rClCrCl}
\L^* H(x,x') &=& \delta(x - x'); &\qquad& \B_i^* [H(x,x')] &=& 0
\end{IEEEeqnarray*}
\end{frame}
\note{
\begin{itemize}
\item
Now we'll be able to deal with boundary conditions properly.
\item
We define $ G(x,x') $ to obey the same equation as $ u(x) $, but with $ f(x) \to \delta(x - x') $ and $ \alpha_i \to 0 $.
As before, $ G(x,x') $ is the impulse response.
\item
In addition, we define a new function $ H(x,x') $ which is called the adjoint Green's function.
It obeys the adjoint version of the $ G(x,x') $ equation.
\item
Warning! A lot of textbooks don't distinguish between $ H(x,x') $ and $ G(x,x') $.
Sometimes the ``Green's function'' in an expression is really the adjoint Green's function.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Constructing solutions: derivation}
\begin{align*}
\inprod{\L u(x)}{H(x,x')} &= \inprod{u(x)}{\L^* H(x,x')} + J\big(u(x), \conj{H}(x,x')\big) \Big|_a^b
\\
\inprod{f(x)}{H(x,x')} &= \inprod{u(x)}{\delta(x - x')} + J\big(u(x), \conj{H}(x,x')\big) \Big|_a^b
\\
\int_a^b f(x) H^*(x,x') \d x &= \int_a^b u(x) \delta(x - x') \d x + J\big(u(x), \conj{H}(x,x')\big) \Big|_a^b
\end{align*}
\begin{empheq}[box=\widefbox]{align*}
u(x') &= \int_a^b f(x) \conj{H}(x,x') \d x - J\big(u(x), \conj{H}(x,x')\big) \Big|_a^b
\end{empheq}
\end{frame}
\note{
\begin{itemize}
\item
To construct the solution $ u(x) $, we take an inner product of $ \L u(x) $ with $ H(x,x') $, and apply our knowledge of adjoints and conjuncts.
\item
Then, we use the fact that $ \L u(x) = f(x) $ and $ \L H(x,x') = \delta(x - x') $.
\item
After evaluating the inner product terms, we arrive at a fairly general formula which looks somewhat like what we had in the introduction.
The difference is that it involves the \emph{adjoint} Green's function $ H(x,x') $, and it has an extra conjunct term.
\item
We'll deal with the conjunct later.
For now, let's try to get rid of $ H(x,x') $ and express $ u(x) $ in terms of $ G(x,x') $.
To do that, we need a relationship between $ H(x,x') $ and $ G(x,x') $.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Constructing solutions: derivation}
How are $ G(x,x') $ and $ H(x,x') $ related?
\begin{align*}
\inprod{\L G(x,x')}{H(x,x'')} &= \inprod{G(x,x')}{\L^* H(x,x'')}
\\
\inprod{\delta(x - x')}{H(x,x'')} &= \inprod{G(x,x')}{\delta(x - x'')}
\\
\int_a^b \delta(x - x') \conj{H}(x,x'') \d x &= \int_a^b G(x,x') \delta(x - x'') \d x
\\
\conj{H}(x',x'') &= G(x'',x')
\end{align*}
\begin{empheq}[box=\widefbox]{align*}
G(x,x') = \conj{H}(x',x)
\end{empheq}
\end{frame}
\note{
\begin{itemize}
\item
Using the definition of the adjoint problem, we find that there is a simple relationship between $ G(x,x') $ and $ H(x,x') $.
\item
Note, in the last example, we had to include the conjunct because $ \B[u] \neq 0 $.
The boundary conditions and adjoint boundary conditions have to be set to zero to eliminate the conjunct.
In this case, $ \B[G] = 0 $ and $ \B[H] = 0 $, so the conjunct is eliminated.
\item
Also note a surprising result of this: if $ G(x,x') $ obeys the boundary conditions with respect to $ x $, then it automatically obeys the \emph{adjoint} boundary conditions with respect to $ x' $.
We'll come back to this idea later.
\end{itemize}
}
\begin{frame}[fragile]
\frametitle{Constructing solutions: derivation}
\begin{align*}
u(x') &= \int_a^b f(x) \conj{H}(x,x') \d x - J\big(u(x), \conj{H}(x,x')\big) \Big|_a^b
\end{align*}
\begin{center}and\end{center}
\begin{align*}
G(x,x') = \conj{H}(x',x)
\end{align*}
\begin{center}so\end{center}
\begin{empheq}[box=\widefbox]{align*}
u(x) &= \int_{a}^{b} f(x') G(x,x') \d x' - J\big( u(x'), G(x,x') \big) \Big|_{x'=a}^b