-
Notifications
You must be signed in to change notification settings - Fork 842
/
test_Fuji.py
180 lines (139 loc) · 7 KB
/
test_Fuji.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import division
import os, scipy.io
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import rawpy
import glob
input_dir = './dataset/Fuji/short/'
gt_dir = './dataset/Fuji/long/'
checkpoint_dir = './checkpoint/Fuji/'
result_dir = './result_Fuji/'
# get test IDs
test_fns = glob.glob(gt_dir + '1*.RAF')
test_ids = [int(os.path.basename(test_fn)[0:5]) for test_fn in test_fns]
def lrelu(x):
return tf.maximum(x * 0.2, x)
def upsample_and_concat(x1, x2, output_channels, in_channels):
pool_size = 2
deconv_filter = tf.Variable(tf.truncated_normal([pool_size, pool_size, output_channels, in_channels], stddev=0.02))
deconv = tf.nn.conv2d_transpose(x1, deconv_filter, tf.shape(x2), strides=[1, pool_size, pool_size, 1])
deconv_output = tf.concat([deconv, x2], 3)
deconv_output.set_shape([None, None, None, output_channels * 2])
return deconv_output
def network(input): # Unet
conv1 = slim.conv2d(input, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_1')
conv1 = slim.conv2d(conv1, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_2')
pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')
conv2 = slim.conv2d(pool1, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_1')
conv2 = slim.conv2d(conv2, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_2')
pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')
conv3 = slim.conv2d(pool2, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_1')
conv3 = slim.conv2d(conv3, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_2')
pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')
conv4 = slim.conv2d(pool3, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_1')
conv4 = slim.conv2d(conv4, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_2')
pool4 = slim.max_pool2d(conv4, [2, 2], padding='SAME')
conv5 = slim.conv2d(pool4, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_1')
conv5 = slim.conv2d(conv5, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_2')
up6 = upsample_and_concat(conv5, conv4, 256, 512)
conv6 = slim.conv2d(up6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_1')
conv6 = slim.conv2d(conv6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_2')
up7 = upsample_and_concat(conv6, conv3, 128, 256)
conv7 = slim.conv2d(up7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_1')
conv7 = slim.conv2d(conv7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_2')
up8 = upsample_and_concat(conv7, conv2, 64, 128)
conv8 = slim.conv2d(up8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_1')
conv8 = slim.conv2d(conv8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_2')
up9 = upsample_and_concat(conv8, conv1, 32, 64)
conv9 = slim.conv2d(up9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_1')
conv9 = slim.conv2d(conv9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_2')
conv10 = slim.conv2d(conv9, 27, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
out = tf.depth_to_space(conv10, 3)
return out
def pack_raw(raw):
# pack X-Trans image to 9 channels
im = raw.raw_image_visible.astype(np.float32)
im = np.maximum(im - 1024, 0) / (16383 - 1024) # subtract the black level
img_shape = im.shape
H = (img_shape[0] // 6) * 6
W = (img_shape[1] // 6) * 6
out = np.zeros((H // 3, W // 3, 9))
# 0 R
out[0::2, 0::2, 0] = im[0:H:6, 0:W:6]
out[0::2, 1::2, 0] = im[0:H:6, 4:W:6]
out[1::2, 0::2, 0] = im[3:H:6, 1:W:6]
out[1::2, 1::2, 0] = im[3:H:6, 3:W:6]
# 1 G
out[0::2, 0::2, 1] = im[0:H:6, 2:W:6]
out[0::2, 1::2, 1] = im[0:H:6, 5:W:6]
out[1::2, 0::2, 1] = im[3:H:6, 2:W:6]
out[1::2, 1::2, 1] = im[3:H:6, 5:W:6]
# 1 B
out[0::2, 0::2, 2] = im[0:H:6, 1:W:6]
out[0::2, 1::2, 2] = im[0:H:6, 3:W:6]
out[1::2, 0::2, 2] = im[3:H:6, 0:W:6]
out[1::2, 1::2, 2] = im[3:H:6, 4:W:6]
# 4 R
out[0::2, 0::2, 3] = im[1:H:6, 2:W:6]
out[0::2, 1::2, 3] = im[2:H:6, 5:W:6]
out[1::2, 0::2, 3] = im[5:H:6, 2:W:6]
out[1::2, 1::2, 3] = im[4:H:6, 5:W:6]
# 5 B
out[0::2, 0::2, 4] = im[2:H:6, 2:W:6]
out[0::2, 1::2, 4] = im[1:H:6, 5:W:6]
out[1::2, 0::2, 4] = im[4:H:6, 2:W:6]
out[1::2, 1::2, 4] = im[5:H:6, 5:W:6]
out[:, :, 5] = im[1:H:3, 0:W:3]
out[:, :, 6] = im[1:H:3, 1:W:3]
out[:, :, 7] = im[2:H:3, 0:W:3]
out[:, :, 8] = im[2:H:3, 1:W:3]
return out
sess = tf.Session()
in_image = tf.placeholder(tf.float32, [None, None, None, 9])
gt_image = tf.placeholder(tf.float32, [None, None, None, 3])
out_image = network(in_image)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded ' + ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
if not os.path.isdir(result_dir + 'final/'):
os.makedirs(result_dir + 'final/')
for test_id in test_ids:
# test the first image in each sequence
in_files = glob.glob(input_dir + '%05d_00*.RAF' % test_id)
for k in range(len(in_files)):
in_path = in_files[k]
in_fn = os.path.basename(in_path)
print(in_fn)
gt_files = glob.glob(gt_dir + '%05d_00*.RAF' % test_id)
gt_path = gt_files[0]
gt_fn = os.path.basename(gt_path)
in_exposure = float(in_fn[9:-5])
gt_exposure = float(gt_fn[9:-5])
ratio = min(gt_exposure / in_exposure, 300)
raw = rawpy.imread(in_path)
input_full = np.expand_dims(pack_raw(raw), axis=0) * ratio
im = raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
# scale_full = np.expand_dims(np.float32(im/65535.0),axis = 0)*ratio #scale the low-light image using the same ratio
scale_full = np.expand_dims(np.float32(im / 65535.0), axis=0)
gt_raw = rawpy.imread(gt_path)
im = gt_raw.postprocess(use_camera_wb=True, half_size=False, no_auto_bright=True, output_bps=16)
gt_full = np.expand_dims(np.float32(im / 65535.0), axis=0)
input_full = np.minimum(input_full, 1.0)
output = sess.run(out_image, feed_dict={in_image: input_full})
output = np.minimum(np.maximum(output, 0), 1)
_, H, W, _ = output.shape
output = output[0, :, :, :]
gt_full = gt_full[0, 0:H, 0:W, :]
scale_full = scale_full[0, 0:H, 0:W, :]
scale_full = scale_full * np.mean(gt_full) / np.mean(
scale_full) # scale the low-light image to the same mean of the groundtruth
scipy.misc.toimage(output * 255, high=255, low=0, cmin=0, cmax=255).save(
result_dir + 'final/%5d_00_%d_out.png' % (test_id, ratio))
scipy.misc.toimage(scale_full * 255, high=255, low=0, cmin=0, cmax=255).save(
result_dir + 'final/%5d_00_%d_scale.png' % (test_id, ratio))
scipy.misc.toimage(gt_full * 255, high=255, low=0, cmin=0, cmax=255).save(
result_dir + 'final/%5d_00_%d_gt.png' % (test_id, ratio))