forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracer.cpp
254 lines (220 loc) · 9.03 KB
/
tracer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/remove_expands.h"
#include "torch/csrc/variable_tensor_functions.h"
#include <string>
#include <sstream>
#include <memory>
namespace torch { namespace jit { namespace tracer {
////////////////////////////////////////////////////////////////////////////////
// Recording the traces
////////////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T>
void genericAddInput(Node *n, T value) {
Value *v = n->owningGraph()->insertConstant(value);
recordSourceLocation(v->node());
n->addInput(v);
}
template<typename T>
void badArgType(const T& v) {
AT_ERROR(
"Found an unsupported argument type in the JIT tracer: ",
c10::demangle_type<T>(),
". File a bug report.");
}
thread_local std::shared_ptr<TracingState> tracing_state;
} // namespace detail
void addInputs(Node *n, const char * name, int64_t value) {
using ArgumentStash = jit::tracer::ArgumentStash;
if (ArgumentStash::hasValue(name)) {
Value * v = ArgumentStash::popValue(name);
n->addInput(v);
} else {
detail::genericAddInput(n, value);
}
}
void addInputs(Node *n, const char * name, bool value) { detail::genericAddInput(n, value); }
void addInputs(Node *n, const char * name, double value) { detail::genericAddInput(n, value); }
void addInputs(Node *n, const char * name, const at::Scalar& value) { detail::genericAddInput(n, value); }
void addInputs(Node *n, const char * name, const c10::optional<at::Scalar>& value) {
if(value) {
detail::genericAddInput(n, *value);
} else {
Graph * g = n->owningGraph();
Value* none =
g->insertNode(g->createNone(NumberType::get()))
->output();
n->addInput(none);
}
}
void addInputs(Node *n, const char * name, const std::string& value) { detail::genericAddInput(n, value); }
void addInputs(Node *n, const char * name, const at::Tensor& value) { n->addInput(getValueTrace(value)); }
void addInputs(Node *n, const char * name, const at::SparseTensorRef& value) { detail::badArgType(value); }
void addInputs(Node *n, const char * name, at::Generator * value) {
if (value) {
detail::badArgType(value);
}
Graph * g = n->owningGraph();
Value * undef_gen = g->insertNode(g->createNoneGenerator())->output();
n->addInput(undef_gen);
}
void addInputs(Node *n, const char * name, at::Device value) {
detail::genericAddInput(n, value);
}
void addInputs(Node *n, const char * name, at::Layout value) {
detail::genericAddInput(n, static_cast<int64_t>(value));
}
void addInputs(Node *n, const char * name, at::ScalarType value) {
detail::genericAddInput(n, static_cast<int64_t>(value));
}
void addInputs(Node *n, const char * name, at::TensorList value) {
Graph *g = n->owningGraph();
Node *list_node = g->appendNode(g->createList(DynamicType::get(), fmap(value, getValueTrace)));
n->addInput(list_node->output());
}
void addInputs(Node* n, const char * name, const at::TensorOptions& options) {
// [TensorOptions in script] - update this when you change how we schematize TensorOptions
addInputs(n, name, at::typeMetaToScalarType(options.dtype()));
addInputs(n, name, options.layout());
addInputs(n, name, options.device());
}
void addInputs(Node *n, const char * name, at::IntList value) {
using ArgumentStash = jit::tracer::ArgumentStash;
std::vector<Value*> info = ArgumentStash::hasIntList(name) ?
ArgumentStash::popIntList(name) :
ArgumentStash::IntListTrace(value.size());
auto& g = getTracingState()->graph;
for (size_t i = 0; i < info.size(); ++i) {
if (info[i] != nullptr) continue;
info[i] = g->insertConstant(value[i]);
recordSourceLocation(info[i]->node());
}
for (jit::Value* v : info) {
if (*v->type() != *jit::IntType::get()) {
throw std::runtime_error(
"Type mismatch in setposattr for IntList. Check that your program "
"is valid without tracing, and please file a bug report if it is.");
}
}
n->addInput(g->insertNode(g->createList(jit::IntType::get(), info))->output());
}
void addInputs(Node *n, const char * name, const ArrayRef<double>& value) {
AT_ERROR("Tracing float lists currently not supported!");
}
void addOutput(Node* node, const at::Tensor& output) {
Value * value = node->addOutput();
if (output.defined()) {
value->inferTypeFrom(output);
setValueTrace(autograd::as_variable_ref(output), value);
}
}
void addOutput(Node* node, const std::vector<at::Tensor>& outputs) {
Value * value = node->addOutput()->setType(ListType::ofTensors());
Graph * graph = node->owningGraph();
Node * unpack_node = graph->appendNode(graph->create(prim::ListUnpack, {value}, outputs.size()));
for (size_t i = 0; i < outputs.size(); ++i) {
Value * output_val = unpack_node->outputs()[i];
output_val->inferTypeFrom(outputs[i]);
setValueTrace(outputs[i], output_val);
}
}
const std::shared_ptr<TracingState>& getTracingState() {
return detail::tracing_state;
}
void setTracingState(std::shared_ptr<TracingState> state) {
detail::tracing_state = std::move(state);
}
TracingState::TracingState()
: graph(new Graph()) {}
TracingState::~TracingState() = default;
autograd::Variable getSizeOf(const autograd::Variable& var, int64_t dim) {
auto & tracing_state = getTracingState();
auto & graph = tracing_state->graph;
auto size_var = autograd::make_variable(scalar_to_tensor(at::Scalar(var.size(dim))));
auto* value = getValueTrace(var);
WithInsertPoint ipoint { graph->block() };
auto dim_val = graph->insertConstant(dim);
recordSourceLocation(dim_val->node());
auto* node = graph->insertNode(graph->create(aten::size, {value, dim_val}));
recordSourceLocation(node);
node->output()->setType(jit::IntType::get());
auto ten =
graph->appendNode(graph->createNumToTensor(node->output()))->output();
setValueTrace(size_var, ten);
return size_var;
}
////////////////////////////////////////////////////////////////////////////////
// Argument stash
////////////////////////////////////////////////////////////////////////////////
thread_local ArgumentStash ArgumentStash::stash;
void ArgumentStash::stashIntListElem(const std::string& arg_name, size_t size, size_t idx, const Variable& var) {
// TODO: check type?
if (!isTracing()) return;
auto & list_trace = stash.intlists.emplace(arg_name, size).first->second;
JIT_ASSERT(size == list_trace.size());
JIT_ASSERT(idx < list_trace.size());
JIT_ASSERT(list_trace[idx] == nullptr);
Value* ten = getValueTrace(var);
auto& g = *ten->owningGraph();
auto prim = g.createTensorToNum(jit::IntType::get(), ten)
->insertAfter(ten->node())
->output();
list_trace[idx] = prim;
}
void ArgumentStash::stashValue(const std::string& arg_name, size_t idx, const Variable& var, TypePtr type) {
if (!isTracing()) return;
Value* ten = getValueTrace(var);
if (type) {
auto& g = *ten->owningGraph();
ten = g.createTensorToNum(type, ten)
->insertAfter(ten->node())
->output();
}
stash.values.emplace(arg_name, ten);
}
////////////////////////////////////////////////////////////////////////////////
// Stack trace recording
////////////////////////////////////////////////////////////////////////////////
// no python present so we just do not record source information
void defaultRecordSourceLocation(Node* n) {}
std::atomic<decltype(&defaultRecordSourceLocation)> record_source_location(defaultRecordSourceLocation);
void recordSourceLocation(Node* n) {
return record_source_location.load()(n);
}
void setRecordSourceLocation(void (*v)(Node*)) {
record_source_location.store(v);
}
void defaultWarn(const std::string& str) {
AT_WARN(str);
}
std::atomic<warn_fn_type> warn_callback { defaultWarn };
const char * WARN_PYTHON_DATAFLOW =
" might cause the trace to be incorrect. We can't record the data flow of "
"Python values, so this value will be treated as a constant in the future. "
"This means that the trace might not generalize to other inputs!";
const char * WARN_CONSTRUCTOR =
" results are registered as constants in the trace. You can safely ignore this "
"warning if you use this function to create tensors out of constant variables "
"that would be the same every time you call this function. In any other case, "
"this might cause the trace to be incorrect.";
const char * WARN_RESIZE =
" can't be represented in the JIT at the moment, so we won't connect any uses of "
"this value with its current trace. If you happen to use it again, it will show "
"up as a constant in the graph.";
// XXX: _kind can be a nullptr
void _do_warn(const char * _reason, const char * _kind) {
std::string reason { _reason };
std::string kind { _kind ? _kind : "" };
std::ostringstream s;
s << reason << kind;
warn_callback.load()(s.str());
}
void setWarn(warn_fn_type fn) {
warn_callback.store(fn);
}
}}}