forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.cpp
360 lines (327 loc) · 13.4 KB
/
init.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/python_ir.h"
#include "torch/csrc/jit/python_arg_flatten.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/import.h"
#include "torch/csrc/jit/argument_spec.h"
#include "torch/csrc/jit/passes/remove_expands.h"
#include "torch/csrc/jit/passes/graph_fuser.h"
#include "torch/csrc/jit/passes/onnx.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/erase_number_types.h"
#include "torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/passes/constant_pooling.h"
#include "torch/csrc/jit/passes/create_autodiff_subgraphs.h"
#include "torch/csrc/jit/passes/peephole.h"
#include "torch/csrc/jit/passes/canonicalize.h"
#include "torch/csrc/jit/passes/onnx/peephole.h"
#include "torch/csrc/jit/passes/onnx/fixup_onnx_loop.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/passes/canonicalize_ops.h"
#include "torch/csrc/jit/passes/remove_inplace_ops.h"
#include "torch/csrc/jit/passes/constant_propagation.h"
#include "torch/csrc/jit/passes/loop_unrolling.h"
#include "torch/csrc/jit/passes/to_batch.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/passes/specialize_undef.h"
#include "torch/csrc/jit/passes/utils/check_alias_annotation.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/jit/script/init.h"
#include "torch/csrc/jit/script/python_tree_views.h"
#include "torch/csrc/jit/batched/BatchTensor.h"
#include "torch/csrc/jit/pybind_utils.h"
#include "torch/csrc/jit/function_schema.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/fuser/interface.h"
#include "torch/csrc/jit/script/jit_exception.h"
#include "torch/csrc/jit/script/jit_exception.h"
#include "caffe2/serialize/inline_container.h"
#include <pybind11/functional.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch { namespace jit {
// TODO: make a fake future for python
namespace detail {
class Future {
};
}
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
//PyObject *jit_module = PyImport_ImportModule("torch.jit");
//THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
//PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if defined(_WIN32)
std::string runJITCPPTests() {
AT_ERROR("JIT tests not yet supported on Windows");
}
#else
std::string runJITCPPTests();
#endif
void initJITBindings(PyObject *module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor>(m, "IODescriptor");
m.def("_jit_init", loadPythonClasses)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX)
.def("_jit_pass_fuse", FuseGraph)
.def("_jit_pass_dce", [](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def("_jit_pass_cse", [](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def("_jit_pass_remove_inplace_ops", [](std::shared_ptr<Graph> g) {
return RemoveInplaceOps(g);
})
.def("_jit_pass_constant_pooling", ConstantPooling)
.def("_jit_pass_peephole", [](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
}, py::arg("graph"), py::arg("addmm_fusion_enabled") = false)
.def("_jit_pass_canonicalize", [](const std::shared_ptr<Graph>& g) {
return Canonicalize(g);
})
.def("_jit_pass_lint", LintGraph)
.def("_jit_pass_shape_analysis", [](std::shared_ptr<Graph> graph, std::vector<at::Tensor> inputs, bool with_grad) {
setInputTypes(*graph, ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size()));
PropagateInputShapes(graph);
})
.def("_jit_pass_complete_shape_analysis", [](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
CompleteArgumentSpec spec(with_grad, evilDeprecatedBadCreateStackDoNotUse(inputs, graph->inputs()));
auto graph_inputs = graph->inputs();
JIT_ASSERT(spec.size() == graph_inputs.size());
for (size_t i = 0; i < graph_inputs.size(); ++i) {
graph_inputs[i]->setType(spec.at(i));
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def("_jit_pass_constant_propagation", [](std::shared_ptr<Graph>& g) {
return ConstantPropagation(g);
})
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def("_jit_pass_create_autodiff_subgraphs", [](std::shared_ptr<Graph> graph) {
CreateAutodiffSubgraphs(graph);
})
.def("_jit_run_cpp_tests", [] {
// We have to release the GIL inside this method, because if we happen to
// initialize the autograd engine in these tests, the newly spawned worker threads will
// try to initialize their PyThreadState*, and they need the GIL for this.
AutoNoGIL _no_gil;
return runJITCPPTests();
})
.def("_jit_flatten", [](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_canonicalize_ops", CanonicalizeOps)
.def("_jit_pass_specialize_undef", specializeUndef)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def("_jit_differentiate", [](Graph &g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def("_jit_check_alias_annotation", [](
std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
});
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code")
.def("grad_executors", [](Code& c) {
return py::make_iterator(c.grad_executors().begin(), c.grad_executors().end());
});
py::class_<ExecutionPlanState>(m, "ExecutionPlanState")
.def_property_readonly("graph", [](ExecutionPlanState& s) {
return s.graph;
})
.def_property_readonly("code", [](ExecutionPlanState& s) {
return s.code;
});
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) {
return m.f;
})
.def_property_readonly("df", [](Gradient& m) {
return m.df;
})
.def_property_readonly("f_real_outputs", [](Gradient& m) {
return m.f_real_outputs;
})
.def_property_readonly("df_input_vjps", [](Gradient& m) {
return m.df_input_vjps;
})
.def_property_readonly("df_input_captured_inputs", [](Gradient& m) {
return m.df_input_captured_inputs;
})
.def_property_readonly("df_input_captured_outputs", [](Gradient& m) {
return m.df_input_captured_outputs;
})
.def_property_readonly("df_output_vjps", [](Gradient& m) {
return m.df_output_vjps;
});
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly("graph", [](GraphExecutorState& s) {
return s.graph;
})
.def_property_readonly("execution_plans", [](GraphExecutorState& s) {
return s.execution_plans;
})
.def_property_readonly("fallback", [](GraphExecutorState& s) {
return s.fallback;
});
py::class_<GraphExecutor>(m, "GraphExecutor", py::dynamic_attr())
.def(
py::init([](py::function func,
py::tuple inputs,
py::function var_name_lookup_fn,
bool optimize,
bool _force_outplace) {
auto graph = tracer::createGraphByTracing(
func, toStack(inputs), var_name_lookup_fn, _force_outplace);
return GraphExecutor(graph, optimize);
}),
py::arg("func"),
py::arg("inputs"),
py::arg("var_name_lookup_fn"),
py::arg("optimize") = true,
py::arg("_force_outplace") = false)
.def(
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
return GraphExecutor(std::move(graph), optimize);
}),
py::arg("graph"),
py::arg("optimize") = true)
.def(
"graph_for",
[](GraphExecutor& ge, py::args args) {
return ge.graphFor(evilDeprecatedBadCreateStackDoNotUse(
args, ge.graph()->inputs()));
})
.def_property_readonly(
"graph", [](GraphExecutor& ge) { return ge.graph(); })
.def(
"get_debug_state",
[](GraphExecutor& ge) { return ge.getDebugState(); })
.def("__call__", [](GraphExecutor& ge, py::args args) -> py::object {
const auto & graph = ge.graph();
auto stack = evilDeprecatedBadCreateStackDoNotUse(args, graph->inputs());
{
AutoNoGIL no_gil_guard;
ge.run(stack);
}
return createPyObjectForStack(std::move(stack));
});
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(
"write_record",
[](PyTorchStreamWriter& self, const std::string& name, const char* data, size_t size) {
return self.writeRecord(name, data, size);
})
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile);
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def(
"get_record",
[](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
});
m.def("_jit_get_operation", [](const std::string& qualified_name) {
try {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(std::move(symbol));
AT_CHECK(!operations.empty(), "No such operator ", qualified_name);
AT_CHECK(
operations.size() == 1,
"Found ", operations.size(), " overloads for operator ",
qualified_name, "! Overloads are not supported from Python.");
std::shared_ptr<Operator> op = operations[0];
AT_ASSERT(op != nullptr);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << qualified_name
<< "' with schema: " << op->schema();
return py::cpp_function([op](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
*op, std::move(args), std::move(kwargs));
}, py::name(qualified_name.c_str()), py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
}, py::arg("qualified_name"));
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly("name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly("arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly("returns", [](FunctionSchema& self) { return self.returns(); });
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly("N", [](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly("default_value", [](Argument& self) -> py::object {
if(!self.default_value())
return py::none();
IValue v = *self.default_value();
return toPyObject(std::move(v));
});
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(std::move(symbol));
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
py::class_<detail::Future>(m, "Future");
m.def("fork", [](script::Module &sm, py::args args) {
// TODO: this is a fake stub
return detail::Future();
});
m.def("wait", [](detail::Future &fut) {
// TODO: this is a fake stub
});
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
initBatchTensorBindings(module);
initRegisterBatchOpsBindings(module);
}
}}