-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path00-ingest.R
676 lines (611 loc) · 24 KB
/
00-ingest.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# 1. Setup ---------------------------------------------------------------------
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NOTE: See DESCRIPTION for library dependencies and R/setup.R for
# variables used in each pipeline stage
# Start the stage timer
tictoc::tic.clearlog()
tictoc::tic("Ingest")
# Load libraries, helpers, and recipes from files
purrr::walk(list.files("R/", "\\.R$", full.names = TRUE), source)
# Load additional dev R libraries (see README#managing-r-dependencies)
suppressPackageStartupMessages({
library(DBI)
library(igraph)
library(noctua)
})
# Adds arrow support to speed up ingest process.
noctua_options(unload = TRUE)
# Establish Athena connection
AWS_ATHENA_CONN_NOCTUA <- dbConnect(
noctua::athena(),
rstudio_conn_tab = FALSE
)
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# 2. Define Functions ----------------------------------------------------------
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Ingest-specific helper functions for data cleaning, etc.
# Create a dictionary of column types, as specified in ccao::vars_dict
col_type_dict <- ccao::vars_dict %>%
distinct(var_name = var_name_model, var_type = var_data_type) %>%
drop_na(var_name)
# Mini-function to ensure that columns are the correct type
recode_column_type <- function(col, col_name, dictionary = col_type_dict) {
col_type <- dictionary %>%
filter(var_name == col_name) %>%
pull(var_type)
switch(col_type,
numeric = as.numeric(col),
character = as.character(col),
logical = as.logical(as.numeric(col)),
categorical = as.factor(col),
date = lubridate::as_date(col)
)
}
# Mini function to deal with arrays
# Some Athena columns are stored as arrays but are converted to string on
# ingest. In such cases, we either keep the contents of the cell (if 1 unit),
# collapse the array into a comma-separated string (if more than 1 unit),
# or replace with NA if the array is empty
process_array_column <- function(x) {
purrr::map_chr(x, function(cell) {
if (length(cell) > 1) {
paste(cell, collapse = ", ")
} else if (length(cell) == 1) {
as.character(cell) # Convert the single element to character
} else {
NA # Handle cases where the array is empty
}
})
}
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# 3. Pull Data -----------------------------------------------------------------
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
message("Pulling data from Athena")
# Pull the training data, which contains actual sales + attached characteristics
# from the residential input view. Earlier years are included to help calculate
# lagged features
tictoc::tic("Training data pulled")
training_data <- dbGetQuery(
conn = AWS_ATHENA_CONN_NOCTUA, glue("
SELECT
sale.sale_price AS meta_sale_price,
sale.sale_date AS meta_sale_date,
sale.doc_no AS meta_sale_document_num,
sale.deed_type AS meta_sale_deed_type,
sale.seller_name AS meta_sale_seller_name,
sale.buyer_name AS meta_sale_buyer_name,
sale.sv_is_outlier,
sale.sv_outlier_reason1,
sale.sv_outlier_reason2,
sale.sv_outlier_reason3,
sale.sv_run_id,
res.*
FROM model.vw_card_res_input res
INNER JOIN default.vw_pin_sale sale
ON sale.pin = res.meta_pin
AND sale.year = res.year
WHERE CAST(res.year AS int)
BETWEEN CAST({params$input$min_sale_year} AS int) -
{params$input$n_years_prior}
AND CAST({params$input$max_sale_year} AS int)
AND sale.deed_type IN ('01', '02', '05')
AND NOT sale.is_multisale
AND NOT sale.sale_filter_same_sale_within_365
AND NOT sale.sale_filter_less_than_10k
AND NOT sale.sale_filter_deed_type
")
)
tictoc::toc()
# Pull all ADDCHARS/HIE data. These are Home Improvement Exemptions (HIEs)
# stored in the legacy (AS/400) data system
tictoc::tic("HIE data pulled")
hie_data <- dbGetQuery(
conn = AWS_ATHENA_CONN_NOCTUA, glue("
SELECT *
FROM ccao.hie
")
)
tictoc::toc()
# Save HIE data for use in report generation
hie_data %>%
write_parquet(paths$input$hie$local)
# Pull all residential PIN input data for the assessment and prior year. We will
# only use the assessment year to run the model, but the prior year can be used
# for report generation
tictoc::tic("Assessment data pulled")
assessment_data <- dbGetQuery(
conn = AWS_ATHENA_CONN_NOCTUA, glue("
SELECT *
FROM model.vw_card_res_input
WHERE year BETWEEN '{as.numeric(params$assessment$data_year) - 1}'
AND '{params$assessment$data_year}'
")
)
tictoc::toc()
##### START TEMPORARY FIX FOR MISSING DATA. REMOVE ONCE 2024 DATA IS AVAILABLE
library(data.table)
conflict_prefer_all("dplyr", "data.table", quiet = TRUE)
conflict_prefer_all("lubridate", "data.table", quiet = TRUE)
fill_cols <- assessment_data %>%
select(
starts_with("loc_"),
starts_with("prox_"),
starts_with("acs5_"),
starts_with("other_"),
starts_with("shp_")
) %>%
names()
assessment_data_temp <- as.data.table(assessment_data) %>%
mutate(across(starts_with("loc_tax_"), process_array_column))
assessment_data_temp_2024 <- assessment_data_temp[
meta_year == "2024",
][
assessment_data_temp[meta_year == "2023"],
(fill_cols) := mget(paste0("i.", fill_cols)),
on = .(meta_pin, meta_card_num)
]
assessment_data <- rbind(
assessment_data_temp[meta_year != "2024"],
assessment_data_temp_2024
) %>%
as_tibble()
training_data_temp <- as.data.table(training_data) %>%
mutate(across(starts_with("loc_tax_"), process_array_column))
training_data_temp_2024 <- training_data_temp[
meta_year == "2024",
][
assessment_data_temp[meta_year == "2023"],
(fill_cols) := mget(paste0("i.", fill_cols)),
on = .(meta_pin, meta_card_num)
]
training_data <- rbind(
training_data_temp[meta_year != "2024"],
training_data_temp_2024
) %>%
as_tibble()
rm(
assessment_data_temp, assessment_data_temp_2024,
training_data_temp, training_data_temp_2024
)
##### END TEMPORARY FIX
# Save both years for report generation using the characteristics
assessment_data %>%
write_parquet(paths$input$char$local)
# Save only the assessment year data to use for assessing values
assessment_data <- assessment_data %>%
filter(year == params$assessment$data_year)
# Pull neighborhood-level land rates ($/sqft), as calculated by Valuations
tictoc::tic("Land rate data pulled")
land_nbhd_rate_data <- dbGetQuery(
conn = AWS_ATHENA_CONN_NOCTUA, glue("
SELECT *
FROM ccao.land_nbhd_rate
WHERE year = '{params$assessment$year}'
")
)
tictoc::toc()
# Close connection to Athena
dbDisconnect(AWS_ATHENA_CONN_NOCTUA)
rm(AWS_ATHENA_CONN_NOCTUA)
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# 4. Home Improvement Exemptions -----------------------------------------------
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
message("Adding HIE data to training and assessment sets")
# HIEs need to be combined with the training data such that the training data
# uses the characteristics at the time of sale, rather than the un-updated
# characteristics used for assessment. See GitHub wiki for more information:
# https://github.com/ccao-data/wiki/blob/master/Residential/Home-Improvement-Exemptions.md # nolint
## 4.1. Training Data ----------------------------------------------------------
# Convert legacy data to sparse representation with 1 active row per HIE year.
# NOTE: ONLY join to non-multicard PINs, since HIEs cannot be matched when there
# are multiple cards
hie_data_training_sparse <- hie_data %>%
ccao::chars_sparsify(
pin_col = pin,
year_col = year,
town_col = qu_town,
upload_date_col = qu_upload_date,
additive_source = any_of(chars_cols$add$source),
replacement_source = any_of(chars_cols$replace$source)
) %>%
mutate(
ind_pin_is_multicard = FALSE,
year = as.character(year)
)
# Merge the HIE data with the training data, updating/adding to training data
# characteristics
training_data_w_hie <- training_data %>%
mutate(across(
all_of(ccao::chars_cols$add$target),
~ recode_column_type(.x, cur_column())
)) %>%
left_join(
hie_data_training_sparse,
by = c("meta_pin" = "pin", "year", "ind_pin_is_multicard")
) %>%
mutate(qu_class = ifelse(qu_class != "288", qu_class, meta_class)) %>%
ccao::chars_update(
additive_target = any_of(chars_cols$add$target),
replacement_target = any_of(chars_cols$replace$target)
) %>%
select(-starts_with("qu_")) %>%
mutate(
hie_num_active = replace_na(hie_num_active, 0),
char_porch = recode(char_porch, "3" = "0")
) %>%
relocate(hie_num_active, .before = meta_cdu)
## 4.2. Assessment Data --------------------------------------------------------
# For assessment data, we want to include ONLY the HIEs that expire in the
# assessment year
hie_data_assessment_sparse <- hie_data %>%
filter(hie_last_year_active == as.numeric(params$assessment$year) - 1) %>%
ccao::chars_sparsify(
pin_col = pin,
year_col = year,
town_col = qu_town,
upload_date_col = qu_upload_date,
additive_source = any_of(chars_cols$add$source),
replacement_source = any_of(chars_cols$replace$source)
) %>%
mutate(
ind_pin_is_multicard = FALSE,
year = as.character(year)
)
# Update assessment data with any expiring HIEs. Add a field for the number
# of HIEs expired for each PIN
assessment_data_w_hie <- assessment_data %>%
mutate(across(
all_of(ccao::chars_cols$add$target),
~ recode_column_type(.x, cur_column())
)) %>%
left_join(
hie_data_assessment_sparse,
by = c("meta_pin" = "pin", "year", "ind_pin_is_multicard")
) %>%
mutate(qu_class = ifelse(qu_class != "288", qu_class, meta_class)) %>%
ccao::chars_update(
additive_target = any_of(chars_cols$add$target),
replacement_target = any_of(chars_cols$replace$target)
) %>%
select(-starts_with("qu_")) %>%
mutate(
hie_num_active = replace_na(hie_num_active, 0),
char_porch = recode(char_porch, "3" = "0")
) %>%
rename(hie_num_expired = hie_num_active) %>%
relocate(hie_num_expired, .before = meta_cdu)
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# 5. Add Features and Clean ----------------------------------------------------
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
message("Adding time features and cleaning")
## 5.1. Training Data ----------------------------------------------------------
# Clean up the training data. Goal is to get it into a publishable format.
# Final featurization, missingness, etc. is handled via Tidymodels recipes
training_data_clean <- training_data_w_hie %>%
# Recode factor variables using the definitions stored in ccao::vars_dict
# This will remove any categories not stored in the dictionary and convert
# them to NA (useful since there are a lot of misrecorded variables)
ccao::vars_recode(cols = starts_with("char_"), code_type = "code") %>%
# Recode the number of apartments from its numeric code to its actual number
# of units. Additionally, ensure non-multi-family PINs always have NONE apts
ccao::vars_recode(
cols = all_of("char_apts"),
code_type = "short",
as_factor = FALSE
) %>%
mutate(
char_apts = case_when(
char_class %in% c("211", "212") & !is.na(char_apts) ~ char_apts,
char_class %in% c("211", "212") & is.na(char_apts) ~ "UNKNOWN",
TRUE ~ "NONE"
),
char_apts = factor(
char_apts,
levels = c("TWO", "THREE", "FOUR", "FIVE", "SIX", "UNKNOWN", "NONE")
),
char_ncu = ifelse(char_class == "212" & !is.na(char_ncu), char_ncu, 0)
) %>%
mutate(
across(starts_with("loc_tax_"), process_array_column),
loc_tax_municipality_name =
replace_na(loc_tax_municipality_name, "UNINCORPORATED")
) %>%
# Coerce columns to the data types recorded in the dictionary. Necessary
# because the SQL drivers will often coerce types on pull (boolean becomes
# character)
mutate(across(
any_of(col_type_dict$var_name),
~ recode_column_type(.x, cur_column())
)) %>%
# Only exclude explicit outliers from training. Sales with missing validation
# outcomes will be considered non-outliers
mutate(
sv_is_outlier = replace_na(sv_is_outlier, FALSE)
) %>%
mutate(
# Miscellaneous column-level cleanup
ccao_is_corner_lot = replace_na(ccao_is_corner_lot, FALSE),
ccao_is_active_exe_homeowner = replace_na(ccao_is_active_exe_homeowner, 0L),
ccao_n_years_exe_homeowner = replace_na(ccao_n_years_exe_homeowner, 0L),
across(where(is.character), \(x) na_if(x, "")),
across(where(bit64::is.integer64), \(x) as.numeric(x))
) %>%
# Get a count of the number of sales that have occurred in the last n years
left_join(
left_join(
training_data %>%
select(meta_pin, meta_sale_document_num, meta_sale_date),
training_data %>%
filter(!sv_is_outlier) %>%
select(meta_pin, meta_sale_date),
by = "meta_pin",
relationship = "many-to-many"
) %>%
# as.duration(1) excludes the same sale from being identified as within
# 3 years of itself
mutate(within_n_years = between(
meta_sale_date.x - meta_sale_date.y,
as.duration(1),
as.duration(years(params$input$n_years_prior))
)) %>%
# Distinct is necessary because of multicard sales
distinct() %>%
summarise(
meta_sale_count_past_n_years = as.numeric(
sum(within_n_years, na.rm = TRUE)
),
.by = c("meta_pin", "meta_sale_document_num")
),
by = c("meta_pin", "meta_sale_document_num")
) %>%
# Create time/date features using lubridate
mutate(
# Calculate interval periods and time since the start of the sales sample
time_interval = interval(
make_date(params$input$min_sale_year, 1, 1),
ymd(meta_sale_date)
),
time_sale_year = as.numeric(year(meta_sale_date)),
time_sale_day = as.numeric(time_interval %/% days(1)) + 1,
# Get components of dates to correct for seasonality and other factors
time_sale_quarter_of_year = paste0("Q", quarter(meta_sale_date)),
time_sale_month_of_year = as.integer(month(meta_sale_date)),
time_sale_day_of_year = as.integer(yday(meta_sale_date)),
time_sale_day_of_month = as.integer(day(meta_sale_date)),
time_sale_day_of_week = as.integer(wday(meta_sale_date)),
time_sale_post_covid = meta_sale_date >= make_date(2020, 3, 15)
) %>%
# Reorder resulting columns
select(-any_of(c("time_interval"))) %>%
relocate(starts_with("sv_"), .after = everything()) %>%
relocate("year", .after = everything()) %>%
relocate("meta_sale_count_past_n_years", .after = meta_sale_buyer_name) %>%
# Drop invalid sales outside the sample date range or with obvious incorrect
# characteristic values
filter(
between(
meta_sale_date,
make_date(params$input$min_sale_year, 1, 1),
make_date(params$input$max_sale_year, 12, 31)
),
between(char_bldg_sf, 0, 60000),
between(char_beds, 0, 40),
between(char_rooms, 0, 50),
between(char_fbath, 0, 15),
between(char_hbath, 0, 10),
) %>%
mutate(
# Recode unexpectedly low values to NA
char_bldg_sf = replace(char_bldg_sf, which(char_bldg_sf < 300), NA),
char_land_sf = replace(char_land_sf, which(char_land_sf < 300), NA),
across(
c(char_beds, char_rooms, char_fbath),
\(x) replace(x, which(x == 0), NA)
)
) %>%
as_tibble() %>%
write_parquet(paths$input$training$local)
## 5.2. Assessment Data --------------------------------------------------------
# Clean the assessment data. This is the target data that the trained model is
# used on. The cleaning steps are the same as above, with the exception of the
# time variables and identifying complexes
assessment_data_clean <- assessment_data_w_hie %>%
ccao::vars_recode(cols = starts_with("char_"), code_type = "code") %>%
ccao::vars_recode(
cols = all_of("char_apts"),
code_type = "short",
as_factor = FALSE
) %>%
# Apply the helper function to process array columns
mutate(
across(starts_with("loc_tax_"), process_array_column),
loc_tax_municipality_name =
replace_na(loc_tax_municipality_name, "UNINCORPORATED")
) %>%
mutate(
char_apts = case_when(
char_class %in% c("211", "212") & !is.na(char_apts) ~ char_apts,
char_class %in% c("211", "212") & is.na(char_apts) ~ "UNKNOWN",
TRUE ~ "NONE"
),
char_apts = factor(
char_apts,
levels = c("TWO", "THREE", "FOUR", "FIVE", "SIX", "UNKNOWN", "NONE")
),
char_ncu = ifelse(char_class == "212" & !is.na(char_ncu), char_ncu, 0)
) %>%
mutate(across(
any_of(col_type_dict$var_name),
~ recode_column_type(.x, cur_column())
)) %>%
# Same feature cleanup as the training data
mutate(
ccao_is_corner_lot = replace_na(ccao_is_corner_lot, FALSE),
ccao_is_active_exe_homeowner = replace_na(ccao_is_active_exe_homeowner, 0L),
ccao_n_years_exe_homeowner = replace_na(ccao_n_years_exe_homeowner, 0L),
across(where(is.character), \(x) na_if(x, "")),
across(where(bit64::is.integer64), \(x) as.numeric(x))
) %>%
# Get a count of the number of sales that have occurred in the last n years
left_join(
left_join(
assessment_data %>% select(meta_pin),
training_data %>%
filter(!sv_is_outlier) %>%
select(meta_pin, meta_sale_date),
by = "meta_pin",
relationship = "many-to-many"
) %>%
# as.duration(1) excludes the same sale from being identified as within
# 3 years of itself
mutate(within_n_years = between(
# Here we're looking back from the lien date instead of the sale date,
# as in the training data
ymd(params$assessment$date) - as_date(meta_sale_date),
as.duration(1),
as.duration(years(params$input$n_years_prior))
)) %>%
# Distinct is necessary because of multicard sales
distinct() %>%
summarise(
# Subtract 1 from the count of prior sales. The reasoning here is
# difficult, but basically: in the training data, this feature only has
# a count > 0 conditional on multiple sales. In the assessment data, if
# we count the lien date as a sale, the "multiple sales" conditional
# isn't technically true. Therefore, we subtract 1 from the count to
# make the feature consistent between the training and assessment data
meta_sale_count_past_n_years = as.numeric(
pmax(sum(within_n_years, na.rm = TRUE) - 1, 0)
),
.by = "meta_pin"
),
by = "meta_pin",
relationship = "many-to-many"
) %>%
# Create sale date features BASED ON THE ASSESSMENT DATE. The model predicts
# the sale price of properties on the date of assessment. Not the date of an
# actual sale
dplyr::mutate(
meta_sale_date = as_date(params$assessment$date),
time_interval = interval(
make_date(params$input$min_sale_year, 1, 1),
ymd(meta_sale_date)
),
time_sale_year = as.numeric(year(meta_sale_date)),
time_sale_day = as.numeric(time_interval %/% days(1)) + 1,
time_sale_quarter_of_year = paste0("Q", quarter(meta_sale_date)),
time_sale_month_of_year = as.integer(month(meta_sale_date)),
time_sale_day_of_year = as.integer(yday(meta_sale_date)),
time_sale_day_of_month = as.integer(day(meta_sale_date)),
time_sale_day_of_week = as.integer(wday(meta_sale_date)),
time_sale_post_covid = meta_sale_date >= make_date(2020, 3, 15)
) %>%
select(-any_of(c("time_interval"))) %>%
relocate(starts_with("sv_"), .after = everything()) %>%
relocate("year", .after = everything()) %>%
relocate(starts_with("meta_sale_"), .after = hie_num_expired) %>%
as_tibble() %>%
write_parquet(paths$input$assessment$local)
## 5.3. Complex IDs ------------------------------------------------------------
message("Creating townhome complex identifiers")
# Townhomes and rowhomes within the same "complex" or building should
# ultimately receive the same final assessed value. However, a single row of
# identical townhomes can have multiple PINs and the CCAO does not maintain a
# unique complex ID. Further, PINs within a complex often have nearly, but not
# exactly, identical characteristics.
# To solve this issue and assign each complex an ID, we do some clever "fuzzy"
# joining and then link each PIN into an undirected graph. See this SO post
# for more details on the methodology:
# https://stackoverflow.com/questions/68353869/create-group-based-on-fuzzy-criteria # nolint
complex_id_temp <- assessment_data_clean %>%
filter(meta_class %in% c("210", "295")) %>%
# Self-join with attributes that must be exactly matching
select(
meta_pin, meta_card_num, meta_township_code, meta_class,
all_of(params$input$complex$match_exact),
any_of(paste0("char_", names(params$input$complex$match_fuzzy))),
loc_x_3435, loc_y_3435
) %>%
full_join(
eval(.),
by = params$input$complex$match_exact,
multiple = "all",
relationship = "many-to-many"
) %>%
# Filter with attributes that can be "fuzzy" matched
filter(
char_rooms.x >= char_rooms.y - params$input$complex$match_fuzzy$rooms,
char_rooms.x <= char_rooms.y + params$input$complex$match_fuzzy$rooms,
char_bldg_sf.x >= char_bldg_sf.y - params$input$complex$match_fuzzy$bldg_sf,
char_bldg_sf.x <= char_bldg_sf.y + params$input$complex$match_fuzzy$bldg_sf,
# nolint start
(char_yrblt.x >= char_yrblt.y - params$input$complex$match_fuzzy$yrblt &
char_yrblt.x <= char_yrblt.y + params$input$complex$match_fuzzy$yrblt) |
is.na(char_yrblt.x),
# Units must be within 250 feet of other units
(loc_x_3435.x >= loc_x_3435.y - params$input$complex$match_fuzzy$dist_ft &
loc_x_3435.x <= loc_x_3435.y + params$input$complex$match_fuzzy$dist_ft) |
is.na(loc_x_3435.x),
(loc_y_3435.x >= loc_y_3435.y - params$input$complex$match_fuzzy$dist_ft &
loc_y_3435.x <= loc_y_3435.y + params$input$complex$match_fuzzy$dist_ft) |
is.na(loc_y_3435.x)
# nolint end
) %>%
# Combine PINs into a graph
select(meta_pin.x, meta_pin.y) %>%
igraph::graph_from_data_frame(directed = FALSE) %>%
igraph::components() %>%
igraph::membership() %>%
# Convert graph to tibble and clean up
utils::stack() %>%
as_tibble() %>%
mutate(ind = as.character(ind)) %>%
rename(meta_pin = ind, meta_complex_id = values)
# Attach original PIN data and fill any missing complexes with
# a sequential integer
complex_id_data <- assessment_data_clean %>%
filter(meta_class %in% c("210", "295")) %>%
distinct(meta_pin, meta_township_code, meta_class) %>%
left_join(complex_id_temp, by = "meta_pin") %>%
arrange(meta_complex_id) %>%
mutate(meta_complex_id = ifelse(
!is.na(meta_complex_id),
meta_complex_id,
lag(meta_complex_id) + 1
)) %>%
# Break long "chains" of fuzzy matched properties into separate groups if the
# chain spans more than the allowed square foot difference
left_join(
assessment_data_clean %>%
filter(meta_class %in% c("210", "295")) %>%
group_by(meta_pin) %>%
summarize(tot_sqft = sum(char_bldg_sf)),
by = "meta_pin"
) %>%
group_by(meta_complex_id) %>%
mutate(
char_break = floor(tot_sqft / params$input$complex$match_fuzzy$bldg_sf),
char_break = char_break - min(char_break),
char_break = floor(char_break / 2)
) %>%
group_by(meta_complex_id, char_break) %>%
mutate(meta_complex_id = cur_group_id()) %>%
ungroup() %>%
select(-c(tot_sqft, char_break)) %>%
mutate(meta_complex_id = as.numeric(meta_complex_id)) %>%
write_parquet(paths$input$complex_id$local)
## 5.4. Land Rates -------------------------------------------------------------
message("Saving land rates")
# Write land data directly to file, since it's already mostly clean
land_nbhd_rate_data %>%
select(meta_nbhd = town_nbhd, meta_class = class, land_rate_per_sqft) %>%
write_parquet(paths$input$land_nbhd_rate$local)
# Reminder to upload to DVC store
message(
"Be sure to add updated input data to DVC and finalized data to S3\n",
"See https://dvc.org/doc/start/data-management/data-versioning ",
"for more information"
)
# End the stage timer
tictoc::toc(log = FALSE)