forked from Deshan-Zhou/MultiDTI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
204 lines (155 loc) · 7.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
import datetime
import os
import numpy as np
import torch.optim as optim
import torch
from torch import nn
from torch.autograd import Variable
from torch.nn import functional as F
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
import pandas as pd
from config import Config
from utils.util import Helper
from model.CommonModel import Common_model
from model.PredictModel import Predict_model
from dataset import HetrDataset
results = []
def train_common_model(config,helper,model,hetrdataset,repeat_nums,flod_nums):
dg_dg = hetrdataset.dg_dg
dg_ds = hetrdataset.dg_ds
dg_se = hetrdataset.dg_se
pt_ds = hetrdataset.pt_ds
pt_pt = hetrdataset.pt_pt
dg_dg = helper.to_floattensor(dg_dg,config.use_gpu)
dg_ds = helper.to_floattensor(dg_ds, config.use_gpu)
dg_se = helper.to_floattensor(dg_se, config.use_gpu)
pt_ds = helper.to_floattensor(pt_ds, config.use_gpu)
pt_pt = helper.to_floattensor(pt_pt, config.use_gpu)
optimizer = optim.Adam(model.parameters(),config.common_learn_rate)
model.train()
print("common model begin training----------",datetime.datetime.now())
#common_loss
for e in range(config.common_epochs):
common_loss = 0
begin_time = time.time()
for i, (dg,pt,tag,dg_index,pt_index) in enumerate(hetrdataset.get_train_batch(repeat_nums,flod_nums,config.batch_size)):
dg = helper.to_longtensor(dg,config.use_gpu)
pt = helper.to_longtensor(pt,config.use_gpu)
tag = helper.to_floattensor(tag,config.use_gpu)
dg_index = helper.to_longtensor(dg_index,config.use_gpu)
pt_index = helper.to_longtensor(pt_index,config.use_gpu)
#common_loss
optimizer.zero_grad()
smi_common, fas_common, ds_common, se_common = model(dg,pt)
distance_loss = helper.comput_distance_loss(smi_common,fas_common,tag,dg_index,pt_index,ds_common,se_common,dg_dg,dg_se,dg_ds,pt_pt,pt_ds)
common_loss += distance_loss
distance_loss.backward()
optimizer.step()
#end a epech
print("the loss of common model epoch[%d / %d]:is %4.f, time:%d s" % (e+1,config.common_epochs,common_loss,time.time()-begin_time))
def train_predict_model(config,helper,predict_model,common_model,hetrdataset,repeat_nums,flod_nums,epoch):
optimizer1 = optim.Adam(predict_model.parameters(),config.pre_learn_rate)
optimizer2 = optim.Adam(common_model.parameters(),config.common_learn_rate)
predict_model.train()
common_model.train()
print("predict model begin training----------",datetime.datetime.now())
#tag_loss
for e in range(config.predict_epochs):
epoch_loss = 0
begin_time = time.time()
for i, (dg,pt,tag,dg_index,pt_index) in enumerate(hetrdataset.get_train_batch(repeat_nums,flod_nums,config.batch_size)):
dg = helper.to_longtensor(dg,config.use_gpu)
pt = helper.to_longtensor(pt,config.use_gpu)
tag = helper.to_floattensor(tag,config.use_gpu)
smi_common,fas_common, ds_common, se_common= common_model(dg,pt)
optimizer1.zero_grad()
optimizer2.zero_grad()
predict, tag = predict_model(smi_common,fas_common,tag)
tag_loss = F.binary_cross_entropy(predict,tag)
epoch_loss += tag_loss
tag_loss.backward()
optimizer1.step()
optimizer2.step()
# end a epech
print("the loss of predict model epoch[%d / %d]:is %4.f, time:%d s" % (e+1, config.predict_epochs, epoch_loss, time.time() - begin_time))
#create floder
if not os.path.exists('./results'):
os.mkdir('./results')
if not os.path.exists('./results/com_model_parm'):
os.mkdir('./results/com_model_parm')
if not os.path.exists('./results/pre_model_parm'):
os.mkdir('./results/pre_model_parm')
#save model
if e == config.predict_epochs-1 and epoch == config.num_epochs-1:
torch.save(common_model.state_dict(),
'./results/com_model_parm/repeat_%d_corss_%d.parm' % (repeat_nums, flod_nums))
torch.save(predict_model.state_dict(),
'./results/pre_model_parm/repeat_%d_corss_%d.parm' % (repeat_nums, flod_nums))
#evaluation_model
evaluation_model(config, helper, predict_model, common_model, hetrdataset, repeat_nums, flod_nums)
def evaluation_model(config,helper,predict_model,common_model,hetrdataset,repeat_nums,flod_nums):
predict_model.eval()
common_model.eval()
print("evaluate the model")
begin_time = time.time()
loss = 0
avg_acc = []
avg_aupr = []
with torch.no_grad():
for i,(dg,pt,tag,dg_index,pt_index) in enumerate(hetrdataset.get_test_batch(repeat_nums,flod_nums,config.batch_size)):
dg = helper.to_longtensor(dg,config.use_gpu)
pt = helper.to_longtensor(pt,config.use_gpu)
tag = helper.to_floattensor(tag,config.use_gpu)
smi_common,fas_common, ds_common, se_common = common_model(dg,pt)
predict, tag = predict_model(smi_common, fas_common, tag)
tag_loss = F.binary_cross_entropy(predict,tag)
loss +=tag_loss
try:
auc = roc_auc_score(tag.cpu(),predict.cpu())
aupr = average_precision_score(tag.cpu(),predict.cpu())
avg_acc.append(auc)
avg_aupr.append(aupr)
except ValueError:
pass
print("the total_loss of test model:is %4.f, time:%d s" % (loss, time.time() - begin_time))
print("avg_acc:",np.mean(avg_acc),"avg_aupr:",np.mean(avg_aupr))
result = []
result.append(np.mean(avg_acc))
result.append(np.mean(avg_aupr))
results.append(result)
if __name__=='__main__':
# initial parameters class
config = Config()
# initial utils class
helper = Helper()
#initial data
hetrdataset = HetrDataset()
#torch.backends.cudnn.enabled = False 把
model_begin_time = time.time()
for i in range(config.repeat_nums):
print("repeat:",str(i),"+++++++++++++++++++++++++++++++++++")
for j in range(config.fold_nums):
print(" crossfold:", str(j), "----------------------------")
#initial presentation model
c_model = Common_model(config)
p_model = Predict_model()
if config.use_gpu:
c_model = c_model.cuda()
p_model = p_model.cuda()
for epoch in range(config.num_epochs):
print(" epoch:",str(epoch),"zzzzzzzzzzzzzzzz")
train_common_model(config,helper,c_model,hetrdataset,i,j)
train_predict_model(config,helper,p_model,c_model,hetrdataset,i,j,epoch)
print("Done!")
print("All_training time:",time.time()-model_begin_time)
avg_results = np.sum(results,axis=0)/len(results)
print("model avg_acc:",avg_results[0])
print("model avg_aupr:",avg_results[1])
result_file = pd.DataFrame(results)
result_file.to_csv('results/all_auc_aupr.csv',mode='a',index=False,header=False,float_format='%.3f',encoding='utf-8')
temp = []
temp.append(avg_results)
result_file = pd.DataFrame(temp)
result_file.to_csv('results/avg_auc_aupr.csv',mode='a',index=False,header=False,float_format='%.3f',encoding='utf-8')