forked from Deshan-Zhou/MultiDTI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
45 lines (37 loc) · 1.71 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Config():
def __init__(self):
# model parmeters
self.use_gpu = True
self.repeat_nums = 1
self.fold_nums = 10 #The numbers of crossflod-validation
self.neg_samp_ratio = 10 #NO. negative : NO. positive = nag_samp_ratio:1
self.num_epochs = 30
self.common_epochs = 1
self.predict_epochs = 1
self.batch_size = 128
#Related to neural networks
self.embedding_size = 64 # The embedding size for every word
self.num_filters= 128 #The number of filter for convolutional layers #[32,64]
self.common_size = 32
self.common_learn_rate = 0.00001 #Learning Rate
self.pre_learn_rate = 0.00001
#Related to the data set
self.smi_n_gram = 1
self.fas_n_gram = 3
self.smi_dict_len=61 #The length of dictionary
self.fas_dict_len=8083 #The length of dictionary
self.fasta_max_len = 15000 #The max sequense length of protein
self.smiles_max_len = 1500 #The max sequense length of smiles
self.ds_nums = 5603
self.se_nums = 4192
# The path of data
self.dg_ds_path = 'data/drug_disease.csv'
self.dg_dg_path = 'data/drug_drug.csv'
self.dg_pt_path = 'data/drug_protein.csv'
self.dg_se_path = 'data/drug_se.csv'
self.pt_ds_path = 'data/protein_disease.csv'
self.pt_pt_path = 'data/protein_protein.csv'
self.smi_dict_path = 'data/smi_dict.pickle'
self.fas_dict_path = 'data/fas_dict.pickle'
self.dg_smiles_path = 'data/durg_smiles.csv'
self.pt_fasta_path = 'data/protein_fasta.csv'