-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkompiler.sml
528 lines (460 loc) · 17.8 KB
/
kompiler.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
structure Kompiler (* : KOMPILER *) =
struct
datatype src =
Var of string
| Lambda of string * src
| Apply of src * src
| Card of Card.card
| Int of int
fun src2str (Var x) = x
| src2str (Int i) = Int.toString i
| src2str (Lambda (var, src)) = "(\\" ^ var ^ (src2str src) ^ ")"
| src2str (Apply (x, y)) = "(" ^ (src2str x) ^ " " ^ (src2str y) ^ ")"
| src2str (Card c) = Card.card2str c
exception Kompiler of string
(* Y' = S S K (S (K (S S (S (S S K)))) K) *)
(* XXX spoons this should be faster, but seems buggy
fun fix s = let
val S = Card Card.S
val K = Card Card.K
val A = Apply
in
A (A (A (A (S, S), K),
A (A (S, A (K, A (A (S, S),
A (S, A (A (S, S), K))))), K)),
s)
end
*)
infix 9 --
val op -- = Apply
val $ = Var
fun \ x exp = Lambda (x, exp)
infixr 1 `
fun a ` b = a b
fun seq a b = (\"_" ` b) -- a
(* ((\_. b) a)* == (\_. b)* a*
== ([x] b)* a* *)
(*
dec 0; dec 1 == S (K Dec) (K 1) (Dec 0)
--> S (K Dec) (K 1) I // boom
--> K Dec I (K 1 I)
--> Dec (K 1 I)
--> Dec 1
--> I // boom
dec 0; attack 1 0 0 == S (K (Attack 1 0)) (K 0) (Dec 0)
--> S (K (Attack 1 0)) (K 0) I // boom
--> K (Attack 1 0) I (K 0 I)
--> K (Attack 1 0) I 0
--> Attack 1 0 0
--> I // boom
idea: optimize: "S (K t) (K u) e" to "e (t u)", when e is an effectful
term that returns I and t and u are both values
S (K t) (K u) e --> S (K t) (K u) I // effect
--> K t I (K u I)
--> t u
-->* whatever // effects?
e (t u) --> I (t u) // effect
-->* I whatever // effects?
--> whatever
*)
(* seqlist : src list -> src
* seqlist [x1...xn] implements (x1; ... ; xn) *)
fun seqlist [] = Card (Card.I)
| seqlist [a] = a
| seqlist (a::ays) = (\"_" ` (seqlist ays)) -- a
(* XXX this has never been tested! spoons should check it out. *)
fun elet (var : string, value : src, exp : src) = Apply(Lambda(var, exp), value)
fun fix s = let
val minifix = \"x" ` $"f" -- (\"y" ` $"x" -- $"x" -- $"y")
val Z = \"f" ` minifix -- minifix (* " make fontify happy *)
in
Apply (Z, s)
end
(* fun rrs src = fn unused => Put src (rrs src) *)
fun run_and_return_self src =
fix (\"self" ` \"unused" ` Card LTG.Put -- src -- $"self")
(* fun rrs_ref src s = fn unused => (fn self => Put src self) (Get s) *)
fun rrs_ref src s =
\"unused" ` ((\ "self" ` Card LTG.Put -- src -- $"self") -- ((Card Card.Get) -- (Int s)))
fun for g = fix (\ "f" ` \ "x" ` (Card Card.Put)
-- (g -- $"x") -- (\ "q" ` $"f" -- (Card Card.Succ -- $"x")))
(* s is a slot number; this will only work in slot s *)
fun for_ref g s = \ "X" ` (Card Card.Put) -- (g -- $"X") -- ((\ "f" ` \ "q" ` $"f" -- ((Card Card.Succ) -- $"q")) -- ((Card Card.Get) -- (Int s)))
datatype kil = KApply of kil * kil
| KCard of Card.card
| KVar of string
(* first translate from lambda calculus to kombinators *)
fun src2kil s =
let
(* helper function to encode numbers *)
fun T_int 0 = KCard Card.Zero
| T_int n = if n < 0 then raise (Kompiler "Int of negative number!") else
if n mod 2 = 0 then
KApply (KCard Card.Dbl, T_int (n div 2))
else KApply (KCard Card.Succ, T_int (n - 1))
fun T (Lambda (x, s)) = A (x, T s)
| T (Apply (s1, s2)) = KApply (T s1, T s2)
| T (Card c) = KCard c
| T (Var x) = KVar x
| T (Int n) = T_int n
and A (x, KVar y) = if x = y then KCard Card.I
else KApply (KCard Card.K, KVar y)
| A (x, KCard c) = KApply (KCard Card.K, KCard c)
| A (x, s as KApply (s1, s2)) =
let
fun contains x (KVar y) = x = y
| contains x (KCard _) = false
| contains x (KApply (s, t)) = contains x s orelse contains x t
(* PERF: might instead make the translation return whether or not
the result is a value, to avoid exponential double traversal.. *)
fun value (KCard _) = true
| value (KVar _) = true
| value (KApply (KCard Card.Succ, v)) = value v
| value (KApply (KCard Card.Dbl, v)) = value v
| value (KApply (KCard Card.S, v)) = value v
| value (KApply (KApply (KCard Card.S, v1), v2)) = value v1
andalso value v2
| value (KApply (KCard Card.K, v)) = value v
| value (KApply (KCard Card.Attack, v)) = value v
| value (KApply (KApply (KCard Card.Attack, v1), v2)) = value v1
andalso value v2
| value (KApply (KCard Card.Help, v)) = value v
| value (KApply (KApply (KCard Card.Help, v1), v2)) = value v1
andalso value v2
| value (KApply (KCard Card.Zombie, v)) = value v
| value _ = false
in
(* William can vouch for these optimisations *)
(* Note: to preserve CBV semantics, we must ensure that the result
is always a value. *)
if value s andalso not (contains x s) then
(KApply (KCard Card.K, s))
else if value s1 andalso not (contains x s1)
andalso s2 = KVar x then
s1
else
(* naive translation: term is not safe for optimization *)
KApply (KApply (KCard Card.S, A (x, s1)), A (x, s2))
end
in
T s
end
fun kil2str (KCard c) = Card.card2str c
| kil2str (KApply (k1, k2))
= "(" ^ kil2str k1 ^ " " ^ kil2str k2 ^ ")"
| kil2str (KVar x) = x
val L = LTG.LeftApply
val R = LTG.RightApply
(* newer, different version below -wjl *)
fun kil2turns_spoons init k i = let
fun f (acc, KCard c) = R(i, c) :: acc
| f (acc, KApply (KCard c, t))
(* S(K acc) c t *)
= f(R(i, c) :: L(Card.S, i) :: L(Card.K, i) :: acc, t)
| f (acc, KApply (KApply (t, u), v))
(* S(K(S(K acc))) t u v *)
= f (f (f (L(Card.S, i) :: L(Card.K, i)
:: L(Card.S, i) :: L(Card.K, i) :: acc, t), u), v)
| f (acc, KApply (KVar x, _))
= raise (Kompiler ("unbound variable: " ^ x))
| f (acc, KVar x)
= raise (Kompiler ("unbound variable: " ^ x))
in
rev (f (init, k))
end
(*
alternative version -- totally broken!
fun kil2turns_spoons init k i = let
fun f (r, KCard c) = r ([R(i, c)])
| f (r, KApply (KCard c, t)) =
f (fn ts_t => r (L(c, i) :: ts_t), t)
| f (r, KApply (KApply (t, u), v)) =
f (fn ts_t => f (fn ts_u => f (fn ts_v =>
r (L(Card.S, i) :: ts_t @ [L(Card.K, i)] @ ts_v @ ts_u),
v), u), t)
| f (r, KApply (KVar x, _))
= raise (Kompiler ("unbound variable: " ^ x))
| f (r, KVar x)
= raise (Kompiler ("unbound variable: " ^ x))
in
rev (f (fn ts => ts @ init, k))
end
*)
(**** wjl version of kil2turns -- differently biased than spoons version ****)
(* in particular, it seems really good for right-nested things like numbers,
but it performs *very* poorly on some other kinds of terms with a bit of
left nesting, like timecube. spoons's kil2turns is slightly poorer on
numbers, but much better on timecube. below, we implement kil2turns by
running both and picking the smaller of the two. *)
(* a twig is a tree where no branch leaves the main trunk for more than a
single step. this is the kind of thing that can be easily put into a
slot by left and right applications. *)
datatype twig =
TCard of Card.card
| TLApp of Card.card * twig
| TRApp of twig * Card.card
infix <@ @>
fun TC c = TCard c
fun c <@ ts = TLApp (c, ts)
fun ts @> c = TRApp (ts, c)
exception Kil2TwigTimeout
fun twigapp' r (TCard c, ts) = c <@ ts
| twigapp' r (ts, TCard c) = ts @> c
(*
| twigapp (TLApp (c, us), ts) = ???
(c us) ts
== (c us) (K ts us)
== S c (K ts) us // XXX not in twig form yet :(
| twigapp (TRApp (us, c), ts) =
*)
| twigapp' r (ts, TLApp(c,us)) = twigapp r (Card.S <@ (Card.K <@ ts) @> c, us)
| twigapp' r (ts, TRApp(us,c)) = twigapp r (Card.S <@ (Card.K <@ ts), us) @> c
(*
ts @ (c us)
K ts us (c us)
S (K ts) c us
*)
and twigapp r ts =
let in
r := !r - 1;
if !r < 0
then raise Kil2TwigTimeout
else twigapp' r ts
end
fun kil2twig' r (KCard c) = TCard c
| kil2twig' r (KApply (t, u)) = twigapp r (kil2twig r t, kil2twig r u)
| kil2twig' r (KVar x) = raise (Kompiler ("unbound variable: " ^ x))
and kil2twig r k =
let in
r := !r - 1;
if !r < 0
then raise Kil2TwigTimeout
else kil2twig' r k
end
fun kil2twig_limited k =
let fun kilsize (KCard _) = 1
| kilsize (KApply (t, u)) = kilsize t + kilsize u + 1
| kilsize (KVar x) = 1
val size = kilsize k
val r = ref (100 * size) (* overflow? *)
in
kil2twig r k
end
handle Overflow => raise Kil2TwigTimeout
fun twig2turns twig i =
let fun t2t (TCard c) = [R (i, c)]
| t2t (TLApp (c, ts)) = L (c, i) :: t2t ts
| t2t (TRApp (ts, c)) = R (i, c) :: t2t ts
in
rev (t2t twig)
end
fun kil2turns_wjl init k i = SOME (init @ twig2turns (kil2twig_limited k) i)
handle Kil2TwigTimeout => NONE
(**** end wjl version of kil2turns ****)
(* XXX experimental: try both, take the smaller. performance problem? *)
(* NB: kil2turns_wjl will return NONE if it takes more than 100*n steps
to convert a kil of size n *)
fun kil2turns init k i =
let (* val _ = eprint "TRYING SPOONS\n" *)
val tspoons = kil2turns_spoons init k i
(* val _ = eprint "TRYING WOMBAT\n" *)
val twjl_o = kil2turns_wjl init k i
(* val _ = eprint "MOVING RIGHT ALONG\n" *)
in
case twjl_o of
NONE => tspoons
| SOME twjl =>
if length tspoons < length twjl
then tspoons
else twjl
end
(* Tom's peephole optimizer.
XXX This keeps going until no more optimizations can be applied,
but this could sometimes cause us to blow our time bounds. Probably
should have a timer for the worst case scenarios. *)
local
open Card
in
fun optimize il =
let
(* True if evaluating the argument will have no effects.
This can be massively expanded! *)
(* c.f. pure above -- but that turned out not to be useful for my
purposes -wjl *)
fun effectless (KCard _) = true
| effectless _ = false
(* purity of combinator terms.
these terms have side effects:
get i (read effect only)
inc i
dec i
attack i j n
help i j n
copy i (read effect only)
revive i
zombie i x
any term containing one of these terms as a subterm
has side effects.
(XXX What about the side effect of causing errors?
maybe we want to just have the behavior that the
optimizer is allowed to optimize away errors. -tom7)
all other terms are pure. *)
fun pure (KApply (KCard Card.Get, _)) = false
| pure (KApply (KCard Card.Inc, _)) = false
| pure (KApply (KCard Card.Dec, _)) = false
| pure (KApply (KApply (KApply (KCard Card.Attack, _), _), _)) = false
| pure (KApply (KApply (KApply (KCard Card.Help, _), _), _)) = false
| pure (KApply (KCard Card.Copy, _)) = false
| pure (KApply (KCard Card.Revive, _)) = false
| pure (KApply (KApply (KCard Card.Zombie, _), _)) = false
| pure (KApply (s1, s2)) = pure s1 andalso pure s2
| pure _ = true
fun opt (KApply (KApply (KCard S, KCard K), KCard K)) = KCard I
| opt (KApply (KCard I, exp)) = opt exp
| opt (KApply (KCard K, KCard I)) = KCard Put
(*
based on wjl's comment
idea: optimize: "S (K t) (K u) e" to "e (t u)", when e is an effectful
term that returns I and t and u are both values
| opt (KApply (KApply (KApply (KCard Card.S,
KApply (KCard Card.K, t)),
KApply (KCard Card.K, u)),
e)) =
let in
(* XXX need to check for that e evals to I *)
if pure t andalso pure u then
eprint "[Kom] Got magic optimzation!"
else ();
KApply (opt e, KApply (opt t, opt u))
end
*)
(*
(* never happens due to our optimizations in bracket abstraction *)
| opt (KApply (KApply (KCard S, (KApply (KCard K, a))), KCard I)) =
let in
eprint "[Kom] Got magic optimization 2!";
opt a
end
*)
| opt (KApply (KApply (KCard K, t), u)) =
if pure u
then opt t
else KApply (KApply (KCard K, opt t), opt u)
(* ... *)
| opt (KApply (i1, i2)) = KApply (opt i1, opt i2)
| opt (KVar v) = raise Kompiler ("unbound var in optimizer? " ^ v)
| opt (KCard c) = KCard c
fun loop il =
let val il' = opt il
in
if il = il'
then il
else
let in
(* eprint ("Optimized to\n" ^ kil2str il' ^ "\n"); *)
loop il'
end
end
in
(* eprint ("OPTIMIZE:\n" ^ kil2str il ^ "\n"); *)
loop il
end
end
fun compile s i = let
(* val _ = eprint "KILING\n" *)
val kil = src2kil s
(* val _ = eprint "OPTING\n" *)
val opt = optimize kil
(* val _ = eprint "TRUNING\n" *)
val turns = kil2turns [L(Card.Put, i)] opt i
(* val _ = eprint "RETURNING\n" *)
in
turns
end
(*
kil2turns [L(Card.Put, i)]
(optimize (src2kil s)) i
*)
fun compile_never_exponential s i = compile s i
(*
(* compile is now never exponential, by fiat *)
kil2turns_spoons [L(Card.Put, i)]
(optimize (src2kil s)) i
*)
fun compile_no_clear s i =
kil2turns [L(Card.K, i), L(Card.I, i), L(Card.S, i)]
(optimize (src2kil s)) i
(* This doesn't work and makes no sense and don't use it. --gwillen *)
fun compile_no_clear_rev s i =
kil2turns [] (optimize (src2kil s)) i
val print = EPrint.eprint
fun test () = (
print (kil2str (src2kil (Lambda("x", Var "x"))));
print "\n";
print (kil2str (src2kil (Lambda("x", Card Card.K))));
print "\n";
print (kil2str (src2kil (Lambda("x", Lambda ("y", Var "x")))));
print "\n";
print (kil2str (src2kil (Lambda("x", Lambda("y", Lambda("z",
Apply(Apply(Var "x", Var "z"), Apply(Var "y", Var "z"))
))))));
print "\n";
print (LTG.turns2str (compile (Lambda("x", Lambda ("y", Var "x"))) 13));
print "\n";
print (LTG.turns2str (compile (Lambda("x", Int 4)) 1));
print "\n";
print (LTG.turns2str (compile (Int 4) 1));
print "\n";
print (LTG.turns2str (compile (Card Card.Attack -- Card Card.Zero -- Card Card.Zero -- Card Card.Zero) 1));
print "\n";
())
(* a small test case that distinguishes kil2turns_spoons and kil2turns_wjl *)
val e = Lambda ("x", Lambda ("y", Lambda ("z", $"x" -- (Card Card.Attack -- $"x" -- $"y" -- $"z"))));
fun tomtest () =
let
val getsrc = Card LTG.Get -- Int 5
val gettarg = Card LTG.Get -- Int 8
val amount = 8192
(* XXX this is totally not done *)
(* 365 *)
val helpy_indirect1 =
(\"amount" `
(Card LTG.Revive -- gettarg) --
(* First heal from source to target.
This drains a lot of src's health, but gives even
more to target. Doing this in reverse then restores
health to src, but leaves target with any excess. *)
(Card LTG.Help -- getsrc -- gettarg -- $"amount") --
(Card LTG.Help -- gettarg -- getsrc -- $"amount")) --
Int amount
(* also 365 *)
val helpy_indirect2 =
(Card LTG.Revive -- gettarg) --
((\"amount" `
(Card LTG.Help -- getsrc -- gettarg -- $"amount") --
(Card LTG.Help -- gettarg -- getsrc -- $"amount")) -- Int amount)
val getamount = Card LTG.Get -- Int 8
val helpy_indirect3 =
(Card LTG.Revive -- gettarg) --
(Card LTG.Help -- gettarg -- gettarg -- getamount) --
(Card LTG.Help -- gettarg -- gettarg -- getamount)
val target = 123
val src = 0
val helpy_indirect =
(\"src" ` \"target" ` \"amount" `
(Card LTG.Revive -- $"target") --
(* First heal from source to target.
This drains a lot of src's health, but gives even
more to target. Doing this in reverse then restores
even more health to src, but leaves target
with any excess. *)
(* XXX Should try to do this more times? *)
(Card LTG.Help -- $"src" -- $"target" -- $"amount") --
(Card LTG.Help -- $"target" -- $"src" -- $"amount")) --
Int src -- Int target -- Int amount
val prog = (* run_and_return_self *) helpy_indirect
val insns = compile prog 231
in
eprint ("Length of program: " ^ Int.toString (length insns) ^ "\n")
end
end