Skip to content

Latest commit

 

History

History
165 lines (136 loc) · 7.67 KB

all.dag.explanation.md

File metadata and controls

165 lines (136 loc) · 7.67 KB

Debug information

There are switches in the DAG class that control how much debugging information it saves.

  • save_node_io decides whether a DAG instance writes output DataFrame to disk for each Node, refer to the corresponding section for details; The permissible values are:
    • "": save nothing
    • df_as_csv: save output as CSV
    • df_as_pq: save output as Parquet
    • df_as_csv_and_pq: save output as both CSV and Parquet
  • save_node_stats decides whether a DAG instance writes statistics (e.g., size, columns, types, index) about output DataFrame to disk for each Node or not
    • Refer to the corresponding section for details
  • profile_execution decides whether a DAG instance writes information about Node memory consumption and its execution time or not
    • Refer to the corresponding section for details

Worth noting that writing files to disk is expensive in terms of time so the corresponding switches should be turned on only when debugging a system run.

When running a System all the data is stored at .../dag/node_io.

Node output data

The DAG class saves an output DataFrame for each bar_timestamp and each Node at .../dag/node_io/node_io.data. E.g.:

> ls system_log_dir/dag/node_io/node_io.data/

predict.0.read_data.df_out.20240123_080000.20240123_080011.parquet
predict.0.read_data.df_out.20240123_080000.20240123_080011.csv
predict.0.read_data.df_out.20240123_081200.20240123_081211.parquet
predict.0.read_data.df_out.20240123_081200.20240123_081211.csv
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.parquet
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.csv
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.parquet
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.csv
...

A file name follows the following pattern: {method}.{topological_id}.{nid}.df_out.{bar_timestamp}.{wall_clock_time}.{extension}, e.g., predict.0.read_data.df_out.20240123_080000.20240123_080011.parquet

  • method is fit or predict
  • topological_id is the Node id, e.g., 0 for the first Node
  • nid is Node name, e.g., read_data, resample
  • bar_timestamp is the timestamp of a bar for which a DAG was computed
  • wall_clock_time machine time when a Node is computed
  • extension file extensions, e.g., csv or pq

An output DataFrame is stored in the DataFlow format, i.e. indexed by timestamps and asset_ids, e.g.:

|                           |       open |            |            |      close |            |            |     volume |            |            |
|---------------------------|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
|                           | 1030828978 | 1464553467 | 8968126878 | 1030828978 | 1464553467 | 8968126878 | 1030828978 | 1464553467 | 8968126878 |
| 2023-11-03 09:10:00-04:00 |   0.435053 |   0.316767 |   0.575763 |   0.435053 |   0.316767 |   0.002544 |   0.435053 |   0.316767 |   0.575763 |
| 2023-11-03 09:15:00-04:00 |   0.707034 |   0.144804 |   0.123079 |   0.707034 |   0.144804 |   0.123079 |  0.707034  |   0.144804 |  0.144804  |

Node output statistics

The DAG class saves a TXT file with statistics for each bar_timestamp and each Node at .../dag/node_io/node_io.data. E.g.:

> ls system_log_dir/dag/node_io/node_io.data/ | grep "txt"

predict.0.read_data.df_out.20240123_080000.20240123_080011.txt
predict.0.read_data.df_out.20240123_081200.20240123_081211.txt
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.txt
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.txt
...

File content:

  • Index
  • Columns
  • Data types
  • Memory by column
  • Number of nans
  • Munber of zeroes
  • Dataframe

E.g.:

> cat system_log_dir/dag/node_io/node_io.data/predict.0.read_data.df_out.20240123_080000.20240123_080011.txt
index=[2024-01-23 07:48:00-05:00, 2024-01-23 08:00:00-05:00]
columns=('open', 1030828978),('open', 1464553467),('open', 8968126878),('close', 1030828978),('close', 1464553467),('close', 8968126878),('volume', 1030828978),('volume', 1464553467),('volume', 8968126878)...
shape=(13, 240)
* type=
| col_name | dtype                 | num_unique                       | num_nans          | first_elem     | type(first_elem)              |
|----------|-----------------------|----------------------------------|-------------------|----------------|-------------------------------|
| 0        | index                 | datetime64[ns, America/New_York] | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2024-01-23T12:48:00.000000000 |
| 1        | ('open', 1030828978)  | float64                          | 12 / 13 = 92.31%  | 0 / 13 = 0.00% | 0.2483                        |
| 2        | ('open', 1464553467)  | float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24                       |
| 3        | ('open', 8968126878)  | float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5                       |
| 4        | ('close', 1030828978) | float64                          | 12 / 13 = 92.31%  | 0 / 13 = 0.00% | 0.2483                        |
| 5        | ('close', 1464553467) | float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24                       |
| 6        | ('close', 8968126878) | float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5                       |
| 7        | ('volume', 1030828978)| float64                          | 12 / 13 = 92.31%  | 0 / 13 = 0.00% | 0.2483                        |
| 8        | ('volume', 1464553467)| float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24                       |
| 9        | ('volume', 8968126878)| float64                          | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5                       |
....
* memory =
|                     |         |         |
|---------------------|---------|---------|
|                     | shallow | deep    |
| Index               | 660.0 b | 660.0 b |
| (open, 1030828978)  | 104.0 b | 104.0 b |
| (open, 1464553467)  | 104.0 b | 104.0 b |
| (open, 8968126878)  | 104.0 b | 104.0 b |
| (close, 1030828978) | 104.0 b | 104.0 b |
| (close, 1464553467) | 104.0 b | 104.0 b |
| (close, 8968126878) | 104.0 b | 104.0 b |
| (volume, 1030828978)| 104.0 b | 104.0 b |
| (volume, 1464553467)| 104.0 b | 104.0 b |
| (volume, 8968126878)| 104.0 b | 104.0 b |
|...                  |         |         |
|total                | 25.0 KB | 45.3 KB |
num_nans=0 / 3120 = 0.00%
num_zeros=0 / 3120 = 0.00%
num_nan_rows=13 / 3120 = 0.42%
num_nan_cols=240 / 3120 = 7.69%
...

Profiling statistics

The DAG class saves TXT files with memory and time statistics for each bar_timestamp and before and after each Node is computed. The files are saved at .../dag/node_io/node_io.prof.

The file written after Node execution contains the timestamp when the execution ended, the memory status, the run-time of the node and the memory difference.

E.g.:

> cat system_log_dir/dag/node_io/node_io.prof/predict.9.process_forecasts.after_execution.20240201_052000.txt
    timestamp=20240201_102040
    memory=rss=1.163GB vms=1.621GB mem_pct=15%
    node_execution done (0.026 s)
    run_node done (1.774 s)
    run_node done: start=(1.163GB 1.621GB 15%) end=(1.163GB 1.621GB 15%) diff=(-0.000GB 0.000GB -0%)