There are switches in the DAG
class that control how much debugging
information it saves.
save_node_io
decides whether aDAG
instance writes outputDataFrame
to disk for eachNode
, refer to the corresponding section for details; The permissible values are:""
: save nothingdf_as_csv
: save output as CSVdf_as_pq
: save output as Parquetdf_as_csv_and_pq
: save output as both CSV and Parquet
save_node_stats
decides whether aDAG
instance writes statistics (e.g., size, columns, types, index) about outputDataFrame
to disk for eachNode
or not- Refer to the corresponding section for details
profile_execution
decides whether aDAG
instance writes information aboutNode
memory consumption and its execution time or not- Refer to the corresponding section for details
Worth noting that writing files to disk is expensive in terms of time so the corresponding switches should be turned on only when debugging a system run.
When running a System all the data is stored at .../dag/node_io
.
The DAG
class saves an output DataFrame
for each bar_timestamp
and each
Node
at .../dag/node_io/node_io.data
. E.g.:
> ls system_log_dir/dag/node_io/node_io.data/
predict.0.read_data.df_out.20240123_080000.20240123_080011.parquet
predict.0.read_data.df_out.20240123_080000.20240123_080011.csv
predict.0.read_data.df_out.20240123_081200.20240123_081211.parquet
predict.0.read_data.df_out.20240123_081200.20240123_081211.csv
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.parquet
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.csv
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.parquet
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.csv
...
A file name follows the following pattern:
{method}.{topological_id}.{nid}.df_out.{bar_timestamp}.{wall_clock_time}.{extension}
,
e.g., predict.0.read_data.df_out.20240123_080000.20240123_080011.parquet
method
isfit
orpredict
topological_id
is theNode
id, e.g.,0
for the firstNode
nid
isNode
name, e.g.,read_data
,resample
bar_timestamp
is the timestamp of a bar for which a DAG was computedwall_clock_time
machine time when aNode
is computedextension
file extensions, e.g.,csv
orpq
An output DataFrame
is stored in the DataFlow
format, i.e. indexed by
timestamps and asset_ids, e.g.:
| | open | | | close | | | volume | | |
|---------------------------|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
| | 1030828978 | 1464553467 | 8968126878 | 1030828978 | 1464553467 | 8968126878 | 1030828978 | 1464553467 | 8968126878 |
| 2023-11-03 09:10:00-04:00 | 0.435053 | 0.316767 | 0.575763 | 0.435053 | 0.316767 | 0.002544 | 0.435053 | 0.316767 | 0.575763 |
| 2023-11-03 09:15:00-04:00 | 0.707034 | 0.144804 | 0.123079 | 0.707034 | 0.144804 | 0.123079 | 0.707034 | 0.144804 | 0.144804 |
The DAG
class saves a TXT
file with statistics for each bar_timestamp
and
each Node
at .../dag/node_io/node_io.data
. E.g.:
> ls system_log_dir/dag/node_io/node_io.data/ | grep "txt"
predict.0.read_data.df_out.20240123_080000.20240123_080011.txt
predict.0.read_data.df_out.20240123_081200.20240123_081211.txt
predict.1.generate_feature_panels.df_out.20240123_080000.20240123_080014.txt
predict.1.generate_feature_panels.df_out.20240123_081200.20240123_081211.txt
...
File content:
- Index
- Columns
- Data types
- Memory by column
- Number of nans
- Munber of zeroes
- Dataframe
E.g.:
> cat system_log_dir/dag/node_io/node_io.data/predict.0.read_data.df_out.20240123_080000.20240123_080011.txt
index=[2024-01-23 07:48:00-05:00, 2024-01-23 08:00:00-05:00]
columns=('open', 1030828978),('open', 1464553467),('open', 8968126878),('close', 1030828978),('close', 1464553467),('close', 8968126878),('volume', 1030828978),('volume', 1464553467),('volume', 8968126878)...
shape=(13, 240)
* type=
| col_name | dtype | num_unique | num_nans | first_elem | type(first_elem) |
|----------|-----------------------|----------------------------------|-------------------|----------------|-------------------------------|
| 0 | index | datetime64[ns, America/New_York] | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2024-01-23T12:48:00.000000000 |
| 1 | ('open', 1030828978) | float64 | 12 / 13 = 92.31% | 0 / 13 = 0.00% | 0.2483 |
| 2 | ('open', 1464553467) | float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24 |
| 3 | ('open', 8968126878) | float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5 |
| 4 | ('close', 1030828978) | float64 | 12 / 13 = 92.31% | 0 / 13 = 0.00% | 0.2483 |
| 5 | ('close', 1464553467) | float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24 |
| 6 | ('close', 8968126878) | float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5 |
| 7 | ('volume', 1030828978)| float64 | 12 / 13 = 92.31% | 0 / 13 = 0.00% | 0.2483 |
| 8 | ('volume', 1464553467)| float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 2212.24 |
| 9 | ('volume', 8968126878)| float64 | 13 / 13 = 100.00% | 0 / 13 = 0.00% | 38854.5 |
....
* memory =
| | | |
|---------------------|---------|---------|
| | shallow | deep |
| Index | 660.0 b | 660.0 b |
| (open, 1030828978) | 104.0 b | 104.0 b |
| (open, 1464553467) | 104.0 b | 104.0 b |
| (open, 8968126878) | 104.0 b | 104.0 b |
| (close, 1030828978) | 104.0 b | 104.0 b |
| (close, 1464553467) | 104.0 b | 104.0 b |
| (close, 8968126878) | 104.0 b | 104.0 b |
| (volume, 1030828978)| 104.0 b | 104.0 b |
| (volume, 1464553467)| 104.0 b | 104.0 b |
| (volume, 8968126878)| 104.0 b | 104.0 b |
|... | | |
|total | 25.0 KB | 45.3 KB |
num_nans=0 / 3120 = 0.00%
num_zeros=0 / 3120 = 0.00%
num_nan_rows=13 / 3120 = 0.42%
num_nan_cols=240 / 3120 = 7.69%
...
The DAG
class saves TXT
files with memory and time statistics for each
bar_timestamp
and before and after each Node
is computed. The files are
saved at .../dag/node_io/node_io.prof
.
The file written after Node
execution contains the timestamp when the
execution ended, the memory status, the run-time of the node and the memory
difference.
E.g.:
> cat system_log_dir/dag/node_io/node_io.prof/predict.9.process_forecasts.after_execution.20240201_052000.txt
timestamp=20240201_102040
memory=rss=1.163GB vms=1.621GB mem_pct=15%
node_execution done (0.026 s)
run_node done (1.774 s)
run_node done: start=(1.163GB 1.621GB 15%) end=(1.163GB 1.621GB 15%) diff=(-0.000GB 0.000GB -0%)