Skip to content

Latest commit

 

History

History
158 lines (100 loc) · 10.6 KB

Inception.md

File metadata and controls

158 lines (100 loc) · 10.6 KB

Inception 系列


目录

1. 模型介绍

1.1 模型简介

GoogLeNet 是 2014 年由 Google 设计的一种新的神经网络结构,其与 VGG 网络并列成为当年 ImageNet 挑战赛的双雄。GoogLeNet 首次引入 Inception 结构,在网络中堆叠该结构使得网络层数达到了 22 层,这也是卷积网络首次超过 20 层的标志。由于在 Inception 结构中使用了 1x1 的卷积用于通道数降维,并且使用了 Global-pooling 代替传统的多 fc 层加工特征的方式,最终的 GoogLeNet 网络的 FLOPs 和参数量远小于 VGG 网络,成为当时神经网络设计的一道亮丽风景线。

InceptionV3 是 Google 对 InceptionV2 的一种改进。首先,InceptionV3 对 Inception 模块进行了优化,同时设计和使用了更多种类的 Inception 模块,与此同时,InceptionV3 中的部分 Inception 模块将较大的方形二维卷积拆成两个较小的非对称卷积,这样可以大幅度节省参数量。

Xception 是 Google 继 Inception 后提出的对 InceptionV3 的另一种改进。在 Xception 中,作者使用了深度可分离卷积代替了传统的卷积操作,该操作大大节省了网络的 FLOPs 和参数量,但是精度反而有所提升。在 DeeplabV3+ 中,作者将 Xception 做了进一步的改进,同时增加了 Xception 的层数,设计出了 Xception65 和 Xception71 的网络。

InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结构风靡一时,但是作者认为仅使用 Inception 结构也可以达到很高的性能。InceptionV4 使用了更多的 Inception module,在 ImageNet 上的精度再创新高。

该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。

上图反映了 Xception 系列和 InceptionV4 的精度和其他指标的关系。其中 Xception_deeplab 与论文结构保持一致,Xception 是 PaddleClas 的改进模型,在预测速度基本不变的情况下,精度提升约 0.6%。关于该改进模型的详细介绍正在持续更新中,敬请期待。

1.2 模型指标

Models Top1 Top5 Reference
top1
Reference
top5
FLOPs
(G)
Params
(M)
GoogLeNet 0.707 0.897 0.698 2.880 8.460
Xception41 0.793 0.945 0.790 0.945 16.740 22.690
Xception41
_deeplab
0.796 0.944 18.160 26.730
Xception65 0.810 0.955 25.950 35.480
Xception65
_deeplab
0.803 0.945 27.370 39.520
Xception71 0.811 0.955 31.770 37.280
InceptionV3 0.791 0.946 0.788 0.944 11.460 23.830
InceptionV4 0.808 0.953 0.800 0.950 24.570 42.680

1.3 Benchmark

1.3.1 基于 V100 GPU 的预测速度

Models Size Latency(ms)
bs=1
Latency(ms)
bs=4
Latency(ms)
bs=8
GoogLeNet 224 1.41 3.25 5.00
Xception41 299 3.58 8.76 16.61
Xception41_
deeplab
299 3.81 9.16 17.20
Xception65 299 5.45 12.78 24.53
Xception65_
deeplab
299 5.65 13.08 24.61
Xception71 299 6.19 15.34 29.21
InceptionV4 299 8.93 15.17 21.56

备注: 精度类型为 FP32,推理过程使用 TensorRT。

1.3.2 基于 T4 GPU 的预测速度

Models Size Latency(ms)
FP16
bs=1
Latency(ms)
FP16
bs=4
Latency(ms)
FP16
bs=8
Latency(ms)
FP32
bs=1
Latency(ms)
FP32
bs=4
Latency(ms)
FP32
bs=8
GoogLeNet 299 1.75451 3.39931 4.71909 1.88038 4.48882 6.94035
Xception41 299 2.91192 7.86878 15.53685 4.96939 17.01361 32.67831
Xception41_
deeplab
299 2.85934 7.2075 14.01406 5.33541 17.55938 33.76232
Xception65 299 4.30126 11.58371 23.22213 7.26158 25.88778 53.45426
Xception65_
deeplab
299 4.06803 9.72694 19.477 7.60208 26.03699 54.74724
Xception71 299 4.80889 13.5624 27.18822 8.72457 31.55549 69.31018
InceptionV3 299 3.67502 6.36071 9.82645 6.64054 13.53630 22.17355
InceptionV4 299 9.50821 13.72104 20.27447 12.99342 25.23416 43.56121

备注: 推理过程使用 TensorRT。

2. 模型快速体验

安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验

3. 模型训练、评估和预测

此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/Inception/ 中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测

4. 模型推理部署

4.1 推理模型准备

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程

Inference 的获取可以参考 ResNet50 推理模型准备

4.2 基于 Python 预测引擎推理

PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理

4.3 基于 C++ 预测引擎推理

PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。

4.4 服务化部署

Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库

PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。

4.5 端侧部署

Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库

PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。

4.6 Paddle2ONNX 模型转换与预测

Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库

PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。