-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
156 lines (132 loc) · 5.88 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# import boto3
# import botocore
#
#
# bucket = '11785fall2018'
#
# s3 = boto3.resource('s3')
#
# for file in files[:1]:
# try:
# s3.Bucket(bucket).download_file(file, os.path.basename(file))
# except botocore.exceptions.ClientError as e:
# if e.response['Error']['Code'] == "404":
# print("The object does not exist.")
# else:
# raise
import subprocess
import os
from torch.utils.data import Dataset
import numpy as np
import utils
import torch
import preprocess_plus
class DataDownload:
def __init__(self, vad_nframes):
self.vad_nframes = vad_nframes
def download(self, parts=['A', 'B']):
if not os.path.exists('./data'):
os.makedirs('./data')
os.chdir('./data')
print('Downloading tar files...')
for file in parts:
p = subprocess.Popen(
'wget https://11785fall2018.s3.amazonaws.com/hw2p2_{0}.tar.gz'.format(file),
shell=True)
p.wait()
os.chdir('..')
print('Downloaded files to ./data.')
def extract(self, parts=['A', 'B'], erase_tar=False):
print('Extracting tar files...')
os.chdir('./data')
for file in parts:
p = subprocess.Popen('tar -xvzf hw2p2_{}.tar.gz --strip 1'.format(file), shell=True)
p.wait()
if erase_tar:
os.remove('hw2p2_{}.tar.gz'.format(file))
os.chdir('..')
print('Extracted files to ./data.')
def get_train(self, parts=[1]):
for i in parts:
input_path = './data/{}.npz'.format(i)
output_path = './data/{}.preprocessed.npz'.format(i)
print('Pre-processing file {}...'.format(i))
npz = np.load(input_path, encoding='latin1')
np.savez(output_path, feats=preprocess_plus.bulk_VAD(npz['feats'], self.vad_nframes),
targets=npz['targets'])
def get_dev(self):
input_path = './data/dev.npz'
output_path = './data/dev.preprocessed.npz'
print('Pre-processing dev file...')
npz = np.load(input_path, encoding='latin1')
np.savez(output_path, enrol=preprocess_plus.bulk_VAD(npz['enrol'], self.vad_nframes),
test=preprocess_plus.bulk_VAD(npz['test'], self.vad_nframes), trials=npz['trials'],
labels=npz['labels'])
def get_test(self):
input_path = './data/test.npz'
output_path = './data/test.preprocessed.npz'
print('Pre-processing test file...')
npz = np.load(input_path, encoding='latin1')
np.savez(output_path, enrol=preprocess_plus.bulk_VAD(npz['enrol'], self.vad_nframes),
test=preprocess_plus.bulk_VAD(npz['test'], self.vad_nframes), trials=npz['trials'])
class UtteranceTrainDataset(Dataset):
def __init__(self, path='./data', parts=[1], utterance_size=384):
self.utterance_size = utterance_size
self.features, self.labels, self.n_labels = utils.train_load(path, parts)
self.features = [preprocess_plus.select_random_frames(x.squeeze().T, utterance_size).T for x in self.features]
self.num_entries = len(self.features)
def __getitem__(self, index):
features = torch.from_numpy(self.features[index]).float()
features = features.view(1, features.shape[0], features.shape[1])
labels = torch.from_numpy(np.array(self.labels[index])).long()
return labels, features
def __len__(self):
return self.num_entries
class UtteranceValidationDataset(Dataset):
def __init__(self, path='./data/dev.preprocessed.npz', utterance_size=384):
self.trials, self.labels, self.enrol, self.test = utils.dev_load(path)
self.enrol = [preprocess_plus.select_random_frames(x.T, utterance_size).T for x in self.enrol]
self.test = [preprocess_plus.select_random_frames(x.T, utterance_size).T for x in self.test]
self.num_entries = len(self.labels)
def __getitem__(self, index):
trial = self.trials[index]
labels = torch.from_numpy(np.array(self.labels[index]).astype(int)).long()
enrol = torch.from_numpy(self.enrol[trial[0]]).float()
enrol = enrol.view(1, enrol.shape[0], enrol.shape[1])
test = torch.from_numpy(self.test[trial[1]]).float()
test = test.view(1, test.shape[0], test.shape[1])
return trial, labels, enrol, test
def __len__(self):
return self.num_entries
class UtteranceTestDataset(Dataset):
def __init__(self, path='./data/test.preprocessed.npz', utterance_size=384):
self.trials, self.enrol, self.test = utils.test_load(path)
self.enrol = [preprocess_plus.select_random_frames(x.squeeze().T, utterance_size).T for x in self.enrol]
self.test = [preprocess_plus.select_random_frames(x.squeeze().T, utterance_size).T for x in self.test]
self.num_entries = len(self.trials)
def __getitem__(self, index):
trial = self.trials[index]
enrol = torch.from_numpy(self.enrol[trial[0]]).float()
enrol = enrol.view(1, enrol.shape[0], enrol.shape[1])
test = torch.from_numpy(self.test[trial[1]]).float()
test = test.view(1, test.shape[0], test.shape[1])
return trial, enrol, test
def __len__(self):
return self.num_entries
if __name__ == "__main__":
# dl = DataDownload(vad_nframes=50)
# dl.download(parts=['A', 'B'])
# dl.extract(parts=['C'], erase_tar=False)
# dl.get_train(parts=[1])
# dl.get_dev()
# dl.get_test()
# print('Download and pre-processing successful.')
#print(UtteranceTrainDataset(utterance_size=20)[1][1].shape)
#print(UtteranceValidationDataset(utterance_size=20)[1][2].shape)
#print(UtteranceTestDataset(utterance_size=20)[1][2].shape)
dl = DataDownload(vad_nframes=468*32)
# dl.download(parts=['A', 'B', 'C'])
# dl.extract(parts=['A', 'B', 'C'], erase_tar=True)
dl.get_train(parts=[1,2,3,4,5,6])
dl.get_dev()
dl.get_test()