Skip to content

Latest commit

 

History

History
86 lines (61 loc) · 2.96 KB

README.md

File metadata and controls

86 lines (61 loc) · 2.96 KB

Anserini-Spark Integration

Exploratory integration between Spark and Anserini: provides the ability to "map" over documents in a Lucene index. This package works with all the versions of the dependencies referenced in pom.xml; in particular, the important ones are Spark (3.1.1), Scala (2.12.0), and Anserini (0.12.0). Note that Spark still requires Java 11+.

Setup Note: While cloning this project, make sure to clone it in the same repository where you cloned anserini. Also, before building this project, make sure to build anserini first.

Build the repo:

$ mvn clean package

Note: If you encounter build issues during compile with maven-gpg-plugin:1.6:sign saying gpg: no default secret key: No secret key followed by gpg: signing failed: No secret key, try to run which gpg followed by gpg --list-secret

Scala Spark

Here's a demo manipulating the Robust04 collection. First, fire up Spark shell (adjust memory as appropriate):

$ spark-shell --jars target/anserini-spark-0.0.1-SNAPSHOT-fatjar.jar --driver-memory 128G

Try the following:

import io.anserini.spark._
import org.apache.spark.rdd.RDD
import java.util.HashMap

val indexPath = "../anserini/lucene-index.robust04.pos+docvectors+rawdocs/"
val docids = new IndexLoader(sc, indexPath).docids

You can replace the above indexPath variable with any valid index that you have built, for example MS MARCO passage. Typically, you can locate the index under the anserini/indexes/ directory once you build it.

The value docids has type DocidRDD, so you now have the full power of Spark. For example:

// Project the columns.
val docs1 = docids.docs(doc => (doc.getField("id").stringValue(), doc.getField("raw").stringValue()))
val r1 = docs1.filter(t => (t._2.contains("Albert Einstein"))).collect()

// Grab entire document as a HashMap.
val docs2 = docids.docs()
// docs2 has type org.apache.spark.api.java.JavaRDD[java.util.HashMap[String,String]]

val docs2 : RDD[HashMap[String,String]]  = docids.docs()
// Invoke implicit conversion to Scala RDD.

val r2 = docs2.filter(t => (t.get("raw").contains("Albert Einstein"))).collect()

PySpark

PySpark interfaces with the JVM via the Py4J project, which plays much nicer with Java than Scala. Here's the equivalent demo in PySpark. First:

$ pyspark --jars target/anserini-spark-0.0.1-SNAPSHOT-fatjar.jar --driver-memory 128G

The equivalent script to above:

# Import Java -> Python converter
from pyspark.mllib.common import _java2py

INDEX_PATH = "../anserini/lucene-index.robust04.pos+docvectors+rawdocs/"
index_loader = spark._jvm.io.anserini.spark.IndexLoader(spark._jsc, INDEX_PATH)
docids = index_loader.docids()

# Convert to Python.
docs = _java2py(spark.sparkContext, docids.docs())

After the above, docs is now an RDD in Python. So we can do stuff like the following:

sample = docs.take(10)

matches = docs.filter(lambda d: 'Albert Einstein' in d['raw']).collect()