-
Notifications
You must be signed in to change notification settings - Fork 58
/
train_gan.py
157 lines (124 loc) · 7.06 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Here is the implementation for MRI to CT unsupervised domain adaptation with adversarial loss for segmentation network
"""
import os
import sys
import logging
import datetime
import argparse
import tensorflow as tf
from tensorflow.python import debug as tf_debug
import numpy as np
import random
import adversarial as drn
from lib import _read_lists
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
random.seed(456)
logging.basicConfig(filename = "general_log", level = logging.DEBUG)
currtime = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
rate = 0.3
date = "1221"
cost_kwargs = {
"regularizer": 1e-4, # L2 norm regularizer segmentation model
"gan_regularizer": 1e-4, # L2 norm regularizer for WGAN variables
"miu_gen": 0.002, # weighing of generator loss
"miu_dis": 0.002, # weighing of discriminator loss
"lambda_mask_loss": None, # the trade-off parameter for mask discriminator, set it as 0.3
}
opt_kwargs = {
"learning_rate": 3e-4,
}
network_config = {
"mr_front_trainable": False, # whether mri segmenter early layers are trainable, set it as False
"joint_trainable": False, # whether common higher layers shared by MRI and CT trainable or not, set it as False
"ct_front_trainable": None, # whether CT adaptation (DAM) variables are trainable
"cls_trainable": True, # whether domain discriminator for CNN features are trainable, set it as True
"m_cls_trainable": True, # whether domain discriminator for segmentation mask are trainable, set it as True
"restore_skip_kwd": ["Adam", "RMS", "cls"], # when manually RESTORE a checkpoint, what should be ignored, for implementation purpose
}
train_config = {
"restore_from_baseline": None, # restore from the source segmenter and manually initialize DAM layers with learned early layers
"copy_main": None, # only for rerun the zip experiment with cls6 pretrained classifier
"clear_rms": None, # restore from the baseline module and manually copy parameters to the ct branch
"lr_update": None, # if true, when the model is first run, the learning rate specified above will be used to update learning rate in the checkpoint
"dis_interval": 1, # frequency of updating discriminator, normally, just set it to 1
"gen_interval": 1, # frequency of updating generator (CT adaptation layers), normally, just set it to 1
"dis_sub_iter": 20, # number of sub iteration in one update, set as 1 for pre-train, other wise 20
"gen_sub_iter": 1,
"tag": "gan-"+str(rate)+"_"+date, # name postfix of tensorboard log file for identifying this run
"iter_upd_interval": 300, # interval for increasing number of *_sub_iter
"dis_sub_iter_inc": 1, # number of iteraion increase when updating
"gen_sub_iter_inc": 0,
"lr_decay_factor": 0.98,
"checkpoint_space": 100, # intervals between model save and learning rate decay
"training_iters": 200,
"epochs": 600
}
def main(phase):
mr_train_list = _read_lists("./lists/mr_train_list") # load a list of tfrecord samples for CT training samples
mr_val_list = _read_lists("./lists/mr_val_list") # load list of tfrecord samples for CT validation
ct_train_list = _read_lists("./lists/ct_train_list") # load a list of tfrecord samples for MRI training
ct_val_list = _read_lists("./lists/ct_val_list") # load a list of tfrecord samples for MRI validation
adapt_var_list = _read_lists("./lists/half_zip_ct_vars") # load a list of all variables for opened CT layers
mr_var_list = _read_lists("./lists/half_zip_mri_vars") # load a list of all MRI variables corresponding to adapt_variable_list, These variables are used for initializing CT adaptation variables
old_bn_list = _read_lists("./lists/old_bn_list") # load a list of batch normalization internal variables for source segmenter model
new_bn_list = _read_lists("./lists/pred_bn_list") # load a list of batch normalization internal variables for current adaptation model.
num_cls = 5 # number of classes, 0: background, 1: la_myo, 2: la_blood, 3: lv_blood, 4: aa
batch_size = 6
output_path = "./tmp_exps/mr2ct"+date+str(rate)[0]+str(rate)[2]
restored_path = output_path
if phase == 'pre-train': # pre-train the discriminator for CNN feature, before update the DAM and segmentation mask discriminator together
network_config["ct_front_trainable"] = False
train_config["restore_from_baseline"] = True
train_config["copy_main"] = True
train_config["clear_rms"] = True
train_config["lr_update"] = True
train_config["gen_interval"] = 0
train_config["dis_sub_iter"] = 1
train_config["dis_sub_iter_inc"] = 0
train_config["checkpoint_space"] = 2000 # intervals between model save and learning rate decayU
train_config["training_iters"] = 201
train_config["epochs"] = 100
cost_kwargs["lambda_mask_loss"] = 0 # do not take into account for the mask discriminator in pre-training, as ct prediction masks are initially unmeaningful
elif phase == 'train-gan': # After warming-up, train the DAM and DCM together
network_config["ct_front_trainable"] = True
train_config["restore_from_baseline"] = False
train_config["copy_main"] = False
train_config["clear_rms"] = False
train_config["lr_update"] = True
train_config["tag"] = train_config["tag"] + "-gan"
cost_kwargs["lambda_mask_loss"] = rate
elif phase == 'fine-tune': # continue to train the GAN from a breakpoint
network_config["ct_front_trainable"] = True
train_config["restore_from_baseline"] = False
train_config["copy_main"] = False
train_config["clear_rms"] = False
training_config["lr_update"] = False
train_config["gen_interval"] = 1
train_config["dis_sub_iter"] = 30
train_config["tag"] = train_config["tag"] + "-fine_tune"
cost_kwargs["lambda_mask_loss"] = rate
else:
raise Exception("Please set a training phase!")
net = drn.Full_DRN(channels = 3, batch_size = batch_size, n_class = num_cls, cost_kwargs = cost_kwargs, network_config = network_config)
print("Network has been built ...")
trainer = drn.Trainer(net, mr_train_list, mr_val_list, ct_train_list, ct_val_list, \
adapt_var_list = adapt_var_list,\
mr_var_list = mr_var_list,\
old_bn_list = old_bn_list,\
new_bn_list = new_bn_list,\
num_cls = num_cls, \
batch_size = batch_size,\
opt_kwargs = opt_kwargs,\
train_config = train_config)
print("Now start training...")
trainer.train(output_path = output_path,\
restored_path = restored_path,\
training_iters = train_config["training_iters"],\
epochs = train_config["epochs"])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--phase", type = str, default = None)
args = parser.parse_args()
phase = args.phase
main(phase = phase)