-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (105 loc) · 5.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from model import Generator, Discriminator
from tensorboardX import SummaryWriter
from data_loader import get_data_loader
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
from utils import *
import numpy as np
import argparse
import os
import torch
if __name__ == "__main__":
os.makedirs("images", exist_ok=True)
os.makedirs("checkpoint", exist_ok=True)
os.makedirs("tensorboard", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=128, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=64, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels, 3 for RGB image")
parser.add_argument("--sample_interval", type=int, default=1000, help="number of image channels")
parser.add_argument("--tensorboard", type=str, default="tensorboard/losses", help="where losses are located")
parser.add_argument("--resume_generator", type=str, default=None, help="resume generator")
parser.add_argument("--resume_discriminator", type=str, default=None, help="discriminator")
opt = parser.parse_args()
print(opt)
writer = SummaryWriter(opt.tensorboard)
cuda = True if torch.cuda.is_available() else False
# !!! Minimizes MSE instead of BCE
adversarial_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator(opt)
discriminator = Discriminator(opt)
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
dataloader = get_data_loader(opt)
# optimizer
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# resume checkpoint
if opt.resume_generator and opt.resume_discriminator:
print('Resuming checkpoint from {} and {}'.format(opt.resume_generator, opt.resume_discriminator))
checkpoint_generator = torch.load(opt.resume_generator)
checkpoint_discriminator = torch.load(opt.resume_discriminator)
generator.load_state_dict(checkpoint_generator['generator'])
discriminator.load_state_dict(checkpoint_discriminator['discriminator'])
print('Validating the checkpoints ... ')
batch_idx = 0
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
batch_idx += 1
# Adversarial ground truths
valid = Variable(Tensor(imgs.shape[0], 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# -------------------------------------Train Generator------------------------------------------
optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
writer.add_scalar("g_loss: ", g_loss.cpu(), batch_idx)
g_loss.backward()
optimizer_G.step()
# -------------------------------------Train Discriminator---------------------------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = 0.5 * (real_loss + fake_loss)
writer.add_scalar("real_loss: ", real_loss.cpu(), batch_idx)
writer.add_scalar("fake_loss: ", fake_loss.cpu(), batch_idx)
writer.add_scalar("d_loss: ", d_loss.cpu(), batch_idx)
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
if epoch % 20 == 0:
save_checkpoint({
'epoch': epoch,
'generator': generator.state_dict()
}, 'checkpoint/generator{}.pth.tar'.format(epoch))
save_checkpoint({
'epoch': epoch,
'discriminator': discriminator.state_dict()
}, 'checkpoint/discriminator{}.pth.tar'.format(epoch))