-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathworker.py
187 lines (174 loc) · 7.97 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os, sys, json, requests
sys.path.append('/content/ComfyUI')
import random, time
import torch
import numpy as np
from PIL import Image
from nodes import NODE_CLASS_MAPPINGS
from comfy_extras import nodes_custom_sampler
from comfy_extras import nodes_flux
def download_file(url, save_dir='/content/ComfyUI/models/loras'):
os.makedirs(save_dir, exist_ok=True)
file_name = url.split('/')[-1]
file_path = os.path.join(save_dir, file_name)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
DualCLIPLoader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
UNETLoader = NODE_CLASS_MAPPINGS["UNETLoader"]()
VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]()
LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]()
FluxGuidance = nodes_flux.NODE_CLASS_MAPPINGS["FluxGuidance"]()
RandomNoise = nodes_custom_sampler.NODE_CLASS_MAPPINGS["RandomNoise"]()
BasicGuider = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicGuider"]()
KSamplerSelect = nodes_custom_sampler.NODE_CLASS_MAPPINGS["KSamplerSelect"]()
BasicScheduler = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicScheduler"]()
SamplerCustomAdvanced = nodes_custom_sampler.NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]()
VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
with torch.inference_mode():
clip = DualCLIPLoader.load_clip("t5xxl_fp16.safetensors", "clip_l.safetensors", "flux")[0]
unet = UNETLoader.load_unet("flux1-dev.sft", "default")[0]
vae = VAELoader.load_vae("ae.sft")[0]
def closestNumber(n, m):
q = int(n / m)
n1 = m * q
if (n * m) > 0:
n2 = m * (q + 1)
else:
n2 = m * (q - 1)
if abs(n - n1) < abs(n - n2):
return n1
return n2
@torch.inference_mode()
def generate(input):
values = json.loads(input)["input"]
positive_prompt = values['positive_prompt']
width = values['width']
height = values['height']
seed = values['seed']
steps = values['steps']
guidance = values['guidance']
lora_strength_model = values['lora_strength_model']
lora_strength_clip = values['lora_strength_clip']
sampler_name = values['sampler_name']
scheduler = values['scheduler']
lora_url = values['lora_url']
lora_file = download_file(lora_url)
lora_file = os.path.basename(lora_file)
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
print(seed)
global unet, clip
unet_lora, clip_lora = LoraLoader.load_lora(unet, clip, lora_file, lora_strength_model, lora_strength_clip)
cond, pooled = clip_lora.encode_from_tokens(clip_lora.tokenize(positive_prompt), return_pooled=True)
cond = [[cond, {"pooled_output": pooled}]]
cond = FluxGuidance.append(cond, guidance)[0]
noise = RandomNoise.get_noise(seed)[0]
guider = BasicGuider.get_guider(unet_lora, cond)[0]
sampler = KSamplerSelect.get_sampler(sampler_name)[0]
sigmas = BasicScheduler.get_sigmas(unet_lora, scheduler, steps, 1.0)[0]
latent_image = EmptyLatentImage.generate(closestNumber(width, 16), closestNumber(height, 16))[0]
sample, sample_denoised = SamplerCustomAdvanced.sample(noise, guider, sampler, sigmas, latent_image)
decoded = VAEDecode.decode(vae, sample)[0].detach()
image = Image.fromarray(np.array(decoded*255, dtype=np.uint8)[0])
file_path = os.getenv('com_camenduru_result_file_path')
image.save(file_path)
result = file_path
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
return image
import gradio as gr
with gr.Blocks(css=".gradio-container {max-width: 544px !important}", analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
textbox = gr.Textbox(show_label=False, value="""
{
"input": {
"notify_uri": "notify_uri",
"notify_token": "notify_token",
"discord_id": "discord_id",
"discord_channel": "discord_channel",
"discord_token": "discord_token",
"job_id": "job_id",
"positive_prompt": "Number 1",
"seed": 0,
"steps": 20,
"guidance": 3.5,
"lora_file": "xlabs_flux_realism_lora_comfui.safetensors",
"lora_strength_model": 1,
"lora_strength_clip": 1,
"sampler_name": "euler",
"scheduler": "simple",
"width": 1024,
"height": 1024
}
}
""")
button = gr.Button()
with gr.Row(variant="default"):
output_image = gr.Image(
show_label=False,
interactive=False,
height=512,
width=512
)
button.click(fn=generate, inputs=[textbox], outputs=[output_image], show_progress=True)
PORT = int(os.getenv('server_port'))
demo.queue().launch(inline=False, share=False, debug=True, server_name='0.0.0.0', server_port=PORT)