forked from aoiang/LaMOO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
430 lines (359 loc) · 21.3 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import torch
import torch.nn as nn
import rdkit.Chem as Chem
import torch.nn.functional as F
from hgraph.nnutils import *
from hgraph.encoder import IncHierMPNEncoder
from hgraph.mol_graph import MolGraph
from hgraph.inc_graph import IncTree, IncGraph
class HTuple():
def __init__(self, node=None, mess=None, vmask=None, emask=None):
self.node, self.mess = node, mess
self.vmask, self.emask = vmask, emask
class HierMPNDecoder(nn.Module):
def __init__(self, vocab, avocab, rnn_type, embed_size, hidden_size, latent_size, depthT, depthG, dropout, attention=False):
super(HierMPNDecoder, self).__init__()
self.vocab = vocab
self.avocab = avocab
self.hidden_size = hidden_size
self.embed_size = embed_size
self.latent_size = latent_size
self.use_attention = attention
# self.itensor = torch.LongTensor([])
self.itensor = torch.LongTensor([]).cuda()
self.hmpn = IncHierMPNEncoder(vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout)
self.rnn_cell = self.hmpn.tree_encoder.rnn
self.E_assm = self.hmpn.E_i
# self.E_order = torch.eye(MolGraph.MAX_POS)
self.E_order = torch.eye(MolGraph.MAX_POS).cuda()
self.topoNN = nn.Sequential(
nn.Linear(hidden_size + latent_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, 1)
)
self.clsNN = nn.Sequential(
nn.Linear(hidden_size + latent_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, vocab.size()[0])
)
self.iclsNN = nn.Sequential(
nn.Linear(hidden_size + latent_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, vocab.size()[1])
)
self.matchNN = nn.Sequential(
nn.Linear(hidden_size + embed_size + MolGraph.MAX_POS, hidden_size),
nn.ReLU(),
)
self.W_assm = nn.Linear(hidden_size, latent_size)
if latent_size != hidden_size:
self.W_root = nn.Linear(latent_size, hidden_size)
if self.use_attention:
self.A_topo = nn.Linear(hidden_size, latent_size)
self.A_cls = nn.Linear(hidden_size, latent_size)
self.A_assm = nn.Linear(hidden_size, latent_size)
self.topo_loss = nn.BCEWithLogitsLoss(size_average=False)
self.cls_loss = nn.CrossEntropyLoss(size_average=False)
self.icls_loss = nn.CrossEntropyLoss(size_average=False)
self.assm_loss = nn.CrossEntropyLoss(size_average=False)
def apply_tree_mask(self, tensors, cur, prev):
fnode, fmess, agraph, bgraph, cgraph, scope = tensors
agraph = agraph * index_select_ND(cur.emask, 0, agraph)
bgraph = bgraph * index_select_ND(cur.emask, 0, bgraph)
cgraph = cgraph * index_select_ND(prev.vmask, 0, cgraph)
return fnode, fmess, agraph, bgraph, cgraph, scope
def apply_graph_mask(self, tensors, hgraph):
fnode, fmess, agraph, bgraph, scope = tensors
agraph = agraph * index_select_ND(hgraph.emask, 0, agraph)
bgraph = bgraph * index_select_ND(hgraph.emask, 0, bgraph)
return fnode, fmess, agraph, bgraph, scope
def update_graph_mask(self, graph_batch, new_atoms, hgraph):
new_atom_index = hgraph.vmask.new_tensor(new_atoms)
hgraph.vmask.scatter_(0, new_atom_index, 1)
new_atom_set = set(new_atoms)
new_bonds = [] #new bonds are the subgraph induced by new_atoms
for zid in new_atoms:
for nid in graph_batch[zid]:
if nid not in new_atom_set: continue
new_bonds.append( graph_batch[zid][nid]['mess_idx'] )
new_bond_index = hgraph.emask.new_tensor(new_bonds)
if len(new_bonds) > 0:
hgraph.emask.scatter_(0, new_bond_index, 1)
return new_atom_index, new_bond_index
def init_decoder_state(self, tree_batch, tree_tensors, src_root_vecs):
batch_size = len(src_root_vecs)
num_mess = len(tree_tensors[1])
agraph = tree_tensors[2].clone()
bgraph = tree_tensors[3].clone()
for i,tup in enumerate(tree_tensors[-1]):
root = tup[0]
assert agraph[root,-1].item() == 0
agraph[root,-1] = num_mess + i
for v in tree_batch.successors(root):
mess_idx = tree_batch[root][v]['mess_idx']
assert bgraph[mess_idx,-1].item() == 0
bgraph[mess_idx,-1] = num_mess + i
new_tree_tensors = tree_tensors[:2] + [agraph, bgraph] + tree_tensors[4:]
htree = HTuple()
htree.mess = self.rnn_cell.get_init_state(tree_tensors[1], src_root_vecs)
htree.emask = torch.cat( [bgraph.new_zeros(num_mess), bgraph.new_ones(batch_size)], dim=0 )
return htree, new_tree_tensors
def attention(self, src_vecs, batch_idx, queries, W_att):
size = batch_idx.size()
if batch_idx.dim() > 1:
batch_idx = batch_idx.view(-1)
queries = queries.view(-1, queries.size(-1))
src_vecs = src_vecs.index_select(0, batch_idx)
att_score = torch.bmm( src_vecs, W_att(queries).unsqueeze(-1) )
att_vecs = F.softmax(att_score, dim=1) * src_vecs
att_vecs = att_vecs.sum(dim=1)
return att_vecs if len(size) == 1 else att_vecs.view(size[0], size[1], -1)
def get_topo_score(self, src_tree_vecs, batch_idx, topo_vecs):
if self.use_attention:
topo_cxt = self.attention(src_tree_vecs, batch_idx, topo_vecs, self.A_topo)
else:
topo_cxt = src_tree_vecs.index_select(index=batch_idx, dim=0)
return self.topoNN( torch.cat([topo_vecs, topo_cxt], dim=-1) ).squeeze(-1)
def get_cls_score(self, src_tree_vecs, batch_idx, cls_vecs, cls_labs):
if self.use_attention:
cls_cxt = self.attention(src_tree_vecs, batch_idx, cls_vecs, self.A_cls)
else:
cls_cxt = src_tree_vecs.index_select(index=batch_idx, dim=0)
cls_vecs = torch.cat([cls_vecs, cls_cxt], dim=-1)
cls_scores = self.clsNN(cls_vecs)
if cls_labs is None: #inference mode
icls_scores = self.iclsNN(cls_vecs) #no masking
else:
vocab_masks = self.vocab.get_mask(cls_labs)
icls_scores = self.iclsNN(cls_vecs) + vocab_masks #apply mask by log(x + mask): mask=0 or -INF
return cls_scores, icls_scores
def get_assm_score(self, src_graph_vecs, batch_idx, assm_vecs):
if self.use_attention:
assm_cxt = self.attention(src_graph_vecs, batch_idx, assm_vecs, self.A_assm)
else:
assm_cxt = index_select_ND(src_graph_vecs, 0, batch_idx)
return (self.W_assm(assm_vecs) * assm_cxt).sum(dim=-1)
def forward(self, src_mol_vecs, graphs, tensors, orders):
batch_size = len(orders)
tree_batch, graph_batch = graphs
tree_tensors, graph_tensors = tensors
inter_tensors = tree_tensors
src_root_vecs, src_tree_vecs, src_graph_vecs = src_mol_vecs
init_vecs = src_root_vecs if self.latent_size == self.hidden_size else self.W_root(src_root_vecs)
htree, tree_tensors = self.init_decoder_state(tree_batch, tree_tensors, init_vecs)
hinter = HTuple(
mess = self.rnn_cell.get_init_state(inter_tensors[1]),
emask = self.itensor.new_zeros(inter_tensors[1].size(0))
)
hgraph = HTuple(
mess = self.rnn_cell.get_init_state(graph_tensors[1]),
vmask = self.itensor.new_zeros(graph_tensors[0].size(0)),
emask = self.itensor.new_zeros(graph_tensors[1].size(0))
)
all_topo_preds, all_cls_preds, all_assm_preds = [], [], []
new_atoms = []
tree_scope = tree_tensors[-1]
for i in range(batch_size):
root = tree_batch.nodes[ tree_scope[i][0] ]
clab, ilab = self.vocab[ root['label'] ]
all_cls_preds.append( (init_vecs[i], i, clab, ilab) ) #cluster prediction
new_atoms.extend(root['cluster'])
subgraph = self.update_graph_mask(graph_batch, new_atoms, hgraph)
graph_tensors = self.hmpn.embed_graph(graph_tensors) + (graph_tensors[-1],) #preprocess graph tensors
maxt = max([len(x) for x in orders])
max_cls_size = max( [len(attr) * 2 for node,attr in tree_batch.nodes(data='cluster')] )
for t in range(maxt):
batch_list = [i for i in range(batch_size) if t < len(orders[i])]
assert htree.emask[0].item() == 0 and hinter.emask[0].item() == 0 and hgraph.vmask[0].item() == 0 and hgraph.emask[0].item() == 0
subtree = [], []
for i in batch_list:
xid, yid, tlab = orders[i][t]
subtree[0].append(xid)
if yid is not None:
mess_idx = tree_batch[xid][yid]['mess_idx']
subtree[1].append(mess_idx)
subtree = htree.emask.new_tensor(subtree[0]), htree.emask.new_tensor(subtree[1])
htree.emask.scatter_(0, subtree[1], 1)
hinter.emask.scatter_(0, subtree[1], 1)
cur_tree_tensors = self.apply_tree_mask(tree_tensors, htree, hgraph)
cur_inter_tensors = self.apply_tree_mask(inter_tensors, hinter, hgraph)
cur_graph_tensors = self.apply_graph_mask(graph_tensors, hgraph)
htree, hinter, hgraph = self.hmpn(cur_tree_tensors, cur_inter_tensors, cur_graph_tensors, htree, hinter, hgraph, subtree, subgraph)
new_atoms = []
for i in batch_list:
xid, yid, tlab = orders[i][t]
all_topo_preds.append( (htree.node[xid], i, tlab) ) #topology prediction
if yid is not None:
mess_idx = tree_batch[xid][yid]['mess_idx']
new_atoms.extend( tree_batch.nodes[yid]['cluster'] ) #NOTE: regardless of tlab = 0 or 1
if tlab == 0: continue
cls = tree_batch.nodes[yid]['smiles']
clab, ilab = self.vocab[ tree_batch.nodes[yid]['label'] ]
mess_idx = tree_batch[xid][yid]['mess_idx']
hmess = self.rnn_cell.get_hidden_state(htree.mess)
all_cls_preds.append( (hmess[mess_idx], i, clab, ilab) ) #cluster prediction using message
inter_label = tree_batch.nodes[yid]['inter_label']
inter_label = [ (pos, self.vocab[(cls, icls)][1]) for pos,icls in inter_label ]
inter_size = self.vocab.get_inter_size(ilab)
if len(tree_batch.nodes[xid]['cluster']) > 2: #uncertainty occurs only when previous cluster is a ring
nth_child = tree_batch[yid][xid]['label'] #must be yid -> xid (graph order labeling is different from tree)
cands = tree_batch.nodes[yid]['assm_cands']
icls = list(zip(*inter_label))[1]
cand_vecs = self.enum_attach(hgraph, cands, icls, nth_child)
if len(cand_vecs) < max_cls_size:
pad_len = max_cls_size - len(cand_vecs)
cand_vecs = F.pad(cand_vecs, (0,0,0,pad_len))
batch_idx = hgraph.emask.new_tensor( [i] * max_cls_size )
all_assm_preds.append( (cand_vecs, batch_idx, 0) ) #the label is always the first of assm_cands
subgraph = self.update_graph_mask(graph_batch, new_atoms, hgraph)
topo_vecs, batch_idx, topo_labels = zip_tensors(all_topo_preds)
topo_scores = self.get_topo_score(src_tree_vecs, batch_idx, topo_vecs)
topo_loss = self.topo_loss(topo_scores, topo_labels.float())
topo_acc = get_accuracy_bin(topo_scores, topo_labels)
cls_vecs, batch_idx, cls_labs, icls_labs = zip_tensors(all_cls_preds)
cls_scores, icls_scores = self.get_cls_score(src_tree_vecs, batch_idx, cls_vecs, cls_labs)
cls_loss = self.cls_loss(cls_scores, cls_labs) + self.icls_loss(icls_scores, icls_labs)
cls_acc = get_accuracy(cls_scores, cls_labs)
icls_acc = get_accuracy(icls_scores, icls_labs)
if len(all_assm_preds) > 0:
assm_vecs, batch_idx, assm_labels = zip_tensors(all_assm_preds)
assm_scores = self.get_assm_score(src_graph_vecs, batch_idx, assm_vecs)
assm_loss = self.assm_loss(assm_scores, assm_labels)
assm_acc = get_accuracy_sym(assm_scores, assm_labels)
else:
assm_loss, assm_acc = 0, 1
loss = (topo_loss + cls_loss + assm_loss) / batch_size
return loss, cls_acc, icls_acc, topo_acc, assm_acc
def enum_attach(self, hgraph, cands, icls, nth_child):
cands = self.itensor.new_tensor(cands)
icls_vecs = self.itensor.new_tensor(icls * len(cands))
icls_vecs = self.E_assm( icls_vecs )
nth_child = self.itensor.new_tensor([nth_child] * len(cands.view(-1)))
order_vecs = self.E_order.index_select(0, nth_child)
cand_vecs = hgraph.node.index_select(0, cands.view(-1))
cand_vecs = torch.cat( [cand_vecs, icls_vecs, order_vecs], dim=-1 )
cand_vecs = self.matchNN(cand_vecs)
if len(icls) == 2:
cand_vecs = cand_vecs.view(-1, 2, self.hidden_size).sum(dim=1)
return cand_vecs
def decode(self, src_mol_vecs, greedy=True, max_decode_step=100, beam=5):
src_root_vecs, src_tree_vecs, src_graph_vecs = src_mol_vecs
batch_size = len(src_root_vecs)
tree_batch = IncTree(batch_size, node_fdim=2, edge_fdim=3)
graph_batch = IncGraph(self.avocab, batch_size, node_fdim=self.hmpn.atom_size, edge_fdim=self.hmpn.atom_size + self.hmpn.bond_size)
stack = [[] for i in range(batch_size)]
init_vecs = src_root_vecs if self.latent_size == self.hidden_size else self.W_root(src_root_vecs)
batch_idx = self.itensor.new_tensor(range(batch_size))
cls_scores, icls_scores = self.get_cls_score(src_tree_vecs, batch_idx, init_vecs, None)
root_cls = cls_scores.max(dim=-1)[1]
icls_scores = icls_scores + self.vocab.get_mask(root_cls)
root_cls, root_icls = root_cls.tolist(), icls_scores.max(dim=-1)[1].tolist()
super_root = tree_batch.add_node()
for bid in range(batch_size):
clab, ilab = root_cls[bid], root_icls[bid]
root_idx = tree_batch.add_node( batch_idx.new_tensor([clab, ilab]) )
tree_batch.add_edge(super_root, root_idx)
stack[bid].append(root_idx)
root_smiles = self.vocab.get_ismiles(ilab)
new_atoms, new_bonds, attached = graph_batch.add_mol(bid, root_smiles, [], 0)
tree_batch.register_cgraph(root_idx, new_atoms, new_bonds, attached)
#invariance: tree_tensors is equal to inter_tensors (but inter_tensor's init_vec is 0)
tree_tensors = tree_batch.get_tensors()
graph_tensors = graph_batch.get_tensors()
htree = HTuple( mess = self.rnn_cell.get_init_state(tree_tensors[1]) )
hinter = HTuple( mess = self.rnn_cell.get_init_state(tree_tensors[1]) )
hgraph = HTuple( mess = self.rnn_cell.get_init_state(graph_tensors[1]) )
h = self.rnn_cell.get_hidden_state(htree.mess)
h[1 : batch_size + 1] = init_vecs #wiring root (only for tree, not inter)
for t in range(max_decode_step):
batch_list = [ bid for bid in range(batch_size) if len(stack[bid]) > 0 ]
if len(batch_list) == 0: break
batch_idx = batch_idx.new_tensor(batch_list)
cur_tree_nodes = [stack[bid][-1] for bid in batch_list]
subtree = batch_idx.new_tensor(cur_tree_nodes), batch_idx.new_tensor([])
subgraph = batch_idx.new_tensor( tree_batch.get_cluster_nodes(cur_tree_nodes) ), batch_idx.new_tensor( tree_batch.get_cluster_edges(cur_tree_nodes) )
htree, hinter, hgraph = self.hmpn(tree_tensors, tree_tensors, graph_tensors, htree, hinter, hgraph, subtree, subgraph)
topo_scores = self.get_topo_score(src_tree_vecs, batch_idx, htree.node.index_select(0, subtree[0]))
topo_scores = torch.sigmoid(topo_scores)
if greedy:
topo_preds = topo_scores.tolist()
else:
topo_preds = torch.bernoulli(topo_scores).tolist()
new_mess = []
expand_list = []
for i,bid in enumerate(batch_list):
if topo_preds[i] > 0.5 and tree_batch.can_expand(stack[bid][-1]):
expand_list.append( (len(new_mess), bid) )
new_node = tree_batch.add_node() #new node label is yet to be predicted
edge_feature = batch_idx.new_tensor( [stack[bid][-1], new_node, 0] ) #parent to child is 0
new_edge = tree_batch.add_edge(stack[bid][-1], new_node, edge_feature)
stack[bid].append(new_node)
new_mess.append(new_edge)
else:
child = stack[bid].pop()
if len(stack[bid]) > 0:
nth_child = tree_batch.graph.in_degree(stack[bid][-1]) #edge child -> father has not established
edge_feature = batch_idx.new_tensor( [child, stack[bid][-1], nth_child] )
new_edge = tree_batch.add_edge(child, stack[bid][-1], edge_feature)
new_mess.append(new_edge)
subtree = subtree[0], batch_idx.new_tensor(new_mess)
subgraph = [], []
htree, hinter, hgraph = self.hmpn(tree_tensors, tree_tensors, graph_tensors, htree, hinter, hgraph, subtree, subgraph)
cur_mess = self.rnn_cell.get_hidden_state(htree.mess).index_select(0, subtree[1])
if len(expand_list) > 0:
idx_in_mess, expand_list = zip(*expand_list)
idx_in_mess = batch_idx.new_tensor( idx_in_mess )
expand_idx = batch_idx.new_tensor( expand_list )
forward_mess = cur_mess.index_select(0, idx_in_mess)
cls_scores, icls_scores = self.get_cls_score(src_tree_vecs, expand_idx, forward_mess, None)
scores, cls_topk, icls_topk = hier_topk(cls_scores, icls_scores, self.vocab, beam)
if not greedy:
scores = torch.exp(scores) #score is output of log_softmax
shuf_idx = torch.multinomial(scores, beam, replacement=True).tolist()
for i,bid in enumerate(expand_list):
new_node, fa_node = stack[bid][-1], stack[bid][-2]
success = False
cls_beam = range(beam) if greedy else shuf_idx[i]
for kk in cls_beam: #try until one is chemically valid
if success: break
clab, ilab = cls_topk[i][kk], icls_topk[i][kk]
node_feature = batch_idx.new_tensor( [clab, ilab] )
tree_batch.set_node_feature(new_node, node_feature)
smiles, ismiles = self.vocab.get_smiles(clab), self.vocab.get_ismiles(ilab)
fa_cluster, _, fa_used = tree_batch.get_cluster(fa_node)
inter_cands, anchor_smiles, attach_points = graph_batch.get_assm_cands(fa_cluster, fa_used, ismiles)
if len(inter_cands) == 0:
continue
elif len(inter_cands) == 1:
sorted_cands = [(inter_cands[0], 0)]
nth_child = 0
else:
nth_child = tree_batch.graph.in_degree(fa_node)
icls = [self.vocab[ (smiles,x) ][1] for x in anchor_smiles]
cands = inter_cands if len(attach_points) <= 2 else [ (x[0],x[-1]) for x in inter_cands ]
cand_vecs = self.enum_attach(hgraph, cands, icls, nth_child)
batch_idx = batch_idx.new_tensor( [bid] * len(inter_cands) )
assm_scores = self.get_assm_score(src_graph_vecs, batch_idx, cand_vecs).tolist()
sorted_cands = sorted( list(zip(inter_cands, assm_scores)), key = lambda x:x[1], reverse=True )
for inter_label,_ in sorted_cands:
inter_label = list(zip(inter_label, attach_points))
if graph_batch.try_add_mol(bid, ismiles, inter_label):
new_atoms, new_bonds, attached = graph_batch.add_mol(bid, ismiles, inter_label, nth_child)
tree_batch.register_cgraph(new_node, new_atoms, new_bonds, attached)
tree_batch.update_attached(fa_node, inter_label)
success = True
break
if not success: #force backtrack
child = stack[bid].pop() #pop the dummy new_node which can't be added
nth_child = tree_batch.graph.in_degree(stack[bid][-1])
edge_feature = batch_idx.new_tensor( [child, stack[bid][-1], nth_child] )
new_edge = tree_batch.add_edge(child, stack[bid][-1], edge_feature)
child = stack[bid].pop()
if len(stack[bid]) > 0:
nth_child = tree_batch.graph.in_degree(stack[bid][-1])
edge_feature = batch_idx.new_tensor( [child, stack[bid][-1], nth_child] )
new_edge = tree_batch.add_edge(child, stack[bid][-1], edge_feature)
return graph_batch.get_mol()