-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_mlg.py
155 lines (130 loc) · 6.19 KB
/
train_mlg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import os.path as osp
import torch
import imageio.v2 as iio
from tqdm import tqdm
import numpy as np
import argparse
def config_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="./config/Lineformer/chest_50.yaml",help="configs file path")
parser.add_argument("--gpu_id", default="1", help="gpu to use")
return parser
parser = config_parser()
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
from src.config.configloading import load_config
from src.render import render, run_network
from src.trainer_mlg import Trainer
from src.loss import calc_mse_loss
from src.utils import get_psnr, get_mse, get_psnr_3d, get_ssim_3d, cast_to_image, get_ssim
from pdb import set_trace as stx
cfg = load_config(args.config)
# torch.cuda.set_device(2)
# stx()
device = torch.device("cuda")
# stx()
# 从Trainer继承
class BasicTrainer(Trainer):
def __init__(self):
"""
Basic network trainer.
"""
super().__init__(cfg, device)
print(f"[Start] exp: {cfg['exp']['expname']}, net: Basic network")
def compute_loss(self, data, global_step, idx_epoch):
rays = data["rays"].reshape(-1, 8) # [1, 1024, 8] -> [1024, 8]
# stx()
projs = data["projs"].reshape(-1) # projection 的 ground truth [1, 1024] -> [1024]
ret = render(rays, self.net, self.net_fine, **self.conf["render"])
# stx()
# stx()
projs_pred = ret["acc"]
loss = {"loss": 0.}
calc_mse_loss(loss, projs, projs_pred)
# Log
for ls in loss.keys():
self.writer.add_scalar(f"train/{ls}", loss[ls].item(), global_step)
return loss["loss"]
def eval_step(self, global_step, idx_epoch):
"""
Evaluation step
"""
# Evaluate projection 渲染投射的 RGB 图
projs = self.eval_dset.projs # [256, 256] -> [50, 256, 256]
rays = self.eval_dset.rays.reshape(-1, 8) # [65536,8] -> [3276800, 8]
# stx()
N, H, W = projs.shape
projs_pred = []
for i in tqdm(range(0, rays.shape[0], self.n_rays)): # 每一簇射线是 n_rays ,每隔这么多射线渲染一次
projs_pred.append(render(rays[i:i+self.n_rays], self.net, self.net_fine, **self.conf["render"])["acc"])
projs_pred = torch.cat(projs_pred, 0).reshape(N, H, W)
# Evaluate density 渲染3D图像
image = self.eval_dset.image
image_pred = run_network(self.eval_dset.voxels, self.net_fine if self.net_fine is not None else self.net, self.netchunk)
# stx()
image_pred = image_pred.squeeze()
# stx()
loss = {
"proj_psnr": get_psnr(projs_pred, projs),
"proj_ssim": get_ssim(projs_pred, projs),
"psnr_3d": get_psnr_3d(image_pred, image),
"ssim_3d": get_ssim_3d(image_pred, image),
}
if loss["psnr_3d"] > self.best_psnr_3d:
torch.save(
{
"epoch": idx_epoch,
"network": self.net.state_dict(),
"network_fine": self.net_fine.state_dict() if self.n_fine > 0 else None,
"optimizer": self.optimizer.state_dict(),
},
self.ckpt_best_dir,
) # 此处并没有save best的操作呀
self.best_psnr_3d = loss["psnr_3d"]
self.logger.info(f"best model update, epoch:{idx_epoch}, best 3d psnr:{self.best_psnr_3d:.4g}")
# Logging
show_slice = 5
show_step = image.shape[-1]//show_slice
show_image = image[...,::show_step]
show_image_pred = image_pred[...,::show_step]
show = []
for i_show in range(show_slice):
show.append(torch.concat([show_image[..., i_show], show_image_pred[..., i_show]], dim=0))
show_density = torch.concat(show, dim=1)
# cast_to_image -> 转成 numpy并多加一个维度
self.writer.add_image("eval/density (row1: gt, row2: pred)", cast_to_image(show_density), global_step, dataformats="HWC")
proj_pred_origin_dir = osp.join(self.expdir, "proj_pred_origin")
proj_gt_origin_dir = osp.join(self.expdir, "proj_gt_origin")
proj_pred_dir = osp.join(self.expdir, "proj_pred")
proj_gt_dir = osp.join(self.expdir, "proj_gt")
# os.makedirs(eval_save_dir, exist_ok=True)
os.makedirs(proj_pred_origin_dir, exist_ok=True)
os.makedirs(proj_gt_origin_dir, exist_ok=True)
os.makedirs(proj_pred_dir, exist_ok=True)
os.makedirs(proj_gt_dir, exist_ok=True)
for i in tqdm(range(N)):
'''
cast_to_image 自带了归一化, 1 - 放在外边
'''
iio.imwrite(osp.join(proj_pred_origin_dir, f"proj_pred_{str(i)}.png"), (cast_to_image(projs_pred[i])*255).astype(np.uint8))
iio.imwrite(osp.join(proj_gt_origin_dir, f"proj_gt_{str(i)}.png"), (cast_to_image(projs[i])*255).astype(np.uint8))
iio.imwrite(osp.join(proj_pred_dir, f"proj_pred_{str(i)}.png"), ((1-cast_to_image(projs_pred[i]))*255).astype(np.uint8))
iio.imwrite(osp.join(proj_gt_dir, f"proj_gt_{str(i)}.png"), ((1-cast_to_image(1-projs[i]))*255).astype(np.uint8))
for ls in loss.keys():
self.writer.add_scalar(f"eval/{ls}", loss[ls], global_step)
# Save
# 保存各种视图
eval_save_dir = osp.join(self.evaldir, f"epoch_{idx_epoch:05d}")
os.makedirs(eval_save_dir, exist_ok=True)
np.save(osp.join(eval_save_dir, "image_pred.npy"), image_pred.cpu().detach().numpy())
np.save(osp.join(eval_save_dir, "image_gt.npy"), image.cpu().detach().numpy())
iio.imwrite(osp.join(eval_save_dir, "slice_show_row1_gt_row2_pred.png"), (cast_to_image(show_density)*255).astype(np.uint8))
with open(osp.join(eval_save_dir, "stats.txt"), "w") as f:
for key, value in loss.items():
f.write("%s: %f\n" % (key, value.item()))
return loss
trainer = BasicTrainer()
# 这并不是多线程中的start函数,而是父类Trainer中的start函数
trainer.start() # loop train and evaluation