-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdataloader.py
63 lines (50 loc) · 2 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
class Dataloader:
def __init__(self, dataset_dir, batch_sizes, max_tick, n_cpu):
self.dataset_dir = dataset_dir
self.batch_sizes = batch_sizes
self.img_size = 4
self.max_tick = max_tick
self.checkpoint = 0
self.n_cpus = n_cpu
def __iter__(self):
return DataIter(self.dataset, self.batch_size, self.max_tick, self.checkpoint, self.n_cpu)
def set_checkpoint(self, checkpoint_tick):
self.checkpoint = checkpoint_tick
def grow(self):
self.checkpoint = 0
self.img_size *= 2
self.batch_size = self.batch_sizes[str(self.img_size)]
self.n_cpu = self.n_cpus[str(self.img_size)]
self.dataset = ImageFolder(root=self.dataset_dir, transform=transforms.Compose([
transforms.Resize(self.img_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
def __len__(self):
return (self.max_tick - self.checkpoint) // self.batch_size
class DataIter:
def __init__(self, dataset, batch_size, max_tick, checkpoint, n_cpu):
self.dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size,
shuffle=True, drop_last=True, num_workers=n_cpu,
)
self.iter = iter(self.dataloader)
self.tick = self.checkpoint = checkpoint
self.batch_size = batch_size
self.max_tick = max_tick
def __next__(self):
if self.tick >= self.max_tick:
raise StopIteration
try:
data = next(self.iter)
except StopIteration as e:
self.iter = iter(self.dataloader)
data = next(self.iter)
self.tick += self.batch_size
return data, self.tick
def __len__(self):
return (self.max_tick - self.checkpoint) // self.batch_size