-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsam.py
294 lines (216 loc) · 9.17 KB
/
sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import rasterio #read and process rasters
from rasterio.plot import show #display rasters
import numpy #matrices
from numpy.linalg import norm #noramlised magnitude
import cv2 #saving classified image
import tkinter #gui
from tkinter import ttk
from tkinter import filedialog
from tkinter import messagebox # diplsay messages in UI
#UI
class Root(tkinter.Tk):
def __init__(self):
super(Root, self).__init__()
self.title("SAM")
#self.wm_iconbitmap('icon1.ico')
self.labelFrame1 = ttk.LabelFrame(self, text = "1.Open A File") #function1
self.labelFrame1.grid(column = 0, row = 1, padx = 10, pady = 30)
self.labelFrame2 = ttk.LabelFrame(self, text="2.Display TCC&FCC") #function2
self.labelFrame2.grid(column=12, row=1, padx=10, pady=30)
self.button1()
self.button2()
def button1(self):
self.button1 = ttk.Button(self.labelFrame1, text = "Browse a File", command = self.fileDialog)
self.button1.grid(column = 1, row = 1)
def fileDialog(self): #readfile
self.filename = filedialog.askopenfilename(initialdir = "\\", title = "Select a File", filetype = (("tiff", "*.tif"), ("All Files", "*.*")))
self.label = ttk.Label(self.labelFrame1, text = "")
self.label.grid(column = 1, row = 2)
self.num_of_dir_till_file = len(self.filename.split("/"))
self.just_file_name = self.filename.split("/")[self.num_of_dir_till_file - 1]
self.label.configure(text="Selected : " + self.just_file_name)
def button2(self):
self.button2 = ttk.Button(self.labelFrame2, text = "Show TCC&FCC", command = self.fun1)
self.button2.grid(column = 3, row = 4)
def fun1(self):
import matplotlib.pyplot as plt #for drawing images
raster= rasterio.open(self.filename, 'r')
#print(raster.shape)
#read image with band
# Read the grid values into numpy arrays
nir= raster.read(4)
red = raster.read(3)
green = raster.read(2)
blue = raster.read(1)
#normalize the grid values
def normalize(array):
"""Normalizes numpy arrays into scale 0.0 - 1.0"""
array_min, array_max = array.min(), array.max()
return ((array - array_min)/(array_max - array_min))
# normalise the bands
nirn = normalize(nir)
redn = normalize(red)
greenn = normalize(green)
bluen = normalize(blue)
"""#to check values
print("Normalized bands")
print(redn.min(), '-', redn.max(), 'mean:', redn.mean())
print(greenn.min(), '-', greenn.max(), 'mean:', greenn.mean())
print(bluen.min(), '-', bluen.max(), 'mean:', bluen.mean())
"""
# Create TCC
rgb = numpy.dstack((redn, greenn, bluen))
# Create FCC
nrg = numpy.dstack((nirn,redn, greenn))
#print(nrg.shape)
plt.figure(1)
plt.imshow(rgb)
messagebox.showinfo("Information","Please Select reference points on the FCC(figure 2) by double click and close the User Interface and wait")
#######to read refernce pixel coordinates
self.ref_count = 0
plt.figure(2)
ref_cord = []
ax = plt.gca()
fig = plt.gcf()
implot = ax.imshow(nrg)
def onclick(event):
if event.dblclick: #read data on double click
if event.xdata != None and event.ydata != None:
ref_cord.append([round(event.xdata), round(event.ydata)])
self.ref_count
self.ref_count=self.ref_count + 1
#print(self.ref_count)
#print(ref_cord)
#print(event.xdata, event.ydata)
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()
#default palettte made to classsify
class_color = {0:[0, 0, 255], 1:[255, 0, 0], 2:[0, 255, 0], 3:[255,0,255], 4:[0,200,200],5:[200,200,0], 6:[100,100,0], 7:[250,255,80],8:[200,0,100],10:[0,0,0]}
with rasterio.open(self.filename, 'r') as ds:
arr=ds.read()
ix=max(ds.height,ds.width)
iy=min(ds.width,ds.height)
if arr.shape[0] != 4:
messagebox.showinfo("Error","Input image is not 4 band")
arr = numpy.array(arr, dtype=numpy.float64)
#show(arr)
data=arr.shape
#print(data)
#test cases
"""
print(arr[0,0,0])
print(arr[1,0,0])
print(arr[2,0,0])
print(arr[3,0,0])"""
#print("_______________")
#print(arr[0,400,165],)
#print(arr[2,400,165],)
#print(arr[3,400,165],)
#print(arr[0,ref_cord[0][0],ref_cord[0][1]])
#print(ref_cord)
#print(arr[0,int(ref_cord[0][0]),int(ref_cord[0][1])])
#print(arr[0,400,165],)
#ref_vect is refernce pixel
ref_vect=[[0 for x in range(4)] for y in range(self.ref_count)]
for i in range(self.ref_count):
for j in range(4):
ref_vect[i][j]=arr[j,int(ref_cord[i][0]),int(ref_cord[i][1])]
#print(ref_vect)
#print(data)
# print(arr[0,289,313])
# print(arr[1,289,313])
# print(arr[2,289,313])
# print(arr[3,289,313])
c=numpy.ndarray((ix, iy, 3))
#clas=numpy.ndarray((ix, iy))
# print(angle_between(arr,l))
#print(arr.shape) #(4, 3925, 3085)
#print(arr[0,0,0])
#print(arr[1,0,0])
#print(arr[2,0,0])
#print(arr[3,0,0])"""
p_mag = [0] * self.ref_count
product_numtr=[0]*self.ref_count
p_deno = [0]*self.ref_count
p_ang = [0]*self.ref_count
p_cos = [0]* self.ref_count
refv_mag=[0]* self.ref_count
for i in range(self.ref_count):
refv_mag[i] = numpy.linalg.norm(ref_vect[i])
#print(refv_mag[i])
#temp=[100]
#band number
#ctr = 0
for x in range(ix):
for y in range(iy):
#print(p_ang)
for j in range(self.ref_count):
for bn in range(4):
#debug code
#ctr += 1
#
product_numtr[j]+=(arr[bn,x,y]*ref_vect[j][bn])
#l_numtr+=(arr[bn,x,y]*l[bn])
#u_numtr+=(arr[bn,x,y]*u[bn])
#b_numtr+=(arr[bn,x,y]*b[bn])
p_mag[j]=p_mag[j]+arr[bn,x,y]*arr[bn,x,y]
#l_pmag=l_pmag+arr[bn,x,y]*arr[bn,x,y]
#u_pmag=u_pmag+arr[bn,x,y]*arr[bn,x,y]
#b_pmag=b_pmag+arr[bn,x,y]*arr[bn,x,y]
p_deno[j]=(numpy.sqrt(p_mag[j]))
#print(product_numtr[j],p_deno[j])
#print(p_deno[j])
#print(product_numtr[j])
p_cos[j]=product_numtr[j]/(p_deno[j]*refv_mag[j])
#print("###")
#print(p_cos[j])
p_ang[j]=numpy.arccos(p_cos[j])
#class_no = numpy.argmin(p_ang, axis = 0)
#print(p_ang[j])
if p_ang[j] < 0.2:
class_no = numpy.argmin(p_ang, axis = 0)
print(class_no)
else:
class_no = 10
print("10")
#back to zero
p_mag = [0]* self.ref_count
#l_pmag = 0.0
#u_pmag = 0.0
#b_pmag=0
product_numtr=[0] * self.ref_count
#u_numtr=0.0
#l_numtr=0.0
#b_numtr=0
#temp=numpy.minmum()
c[x,y,0]=class_color[class_no][0] #class_color = {0:[234, 12, 1], 1:[34, 45, 46], 2:[34, 56, 123]}
c[x,y,1]=class_color[class_no][1]
#print(class_color[class_no][1])
c[x,y,2]=class_color[class_no][2]
#print("CLASS")
#print(class_no)
#print(c[x,y,bn-1],c[x,y,bn-2],c[x,y,bn-3])
#print()
#print()
#dst.write(data)
#print(m_ang,l_ang)
plt.imshow(c)
plt.show()
f, axarr = plt.subplots(1,3)
#plt.legend(["TCC", "FCC", "Classified"], loc=4)
axarr[0].imshow(rgb)
axarr[0].set_title('TCC')
axarr[1].imshow(nrg)
axarr[1].set_title('FCC')
axarr[2].imshow(c)
axarr[2].set_title('Classified')
plt.show()
if __name__ == '__main__':
root = Root()
root.mainloop()
""" TRAIL CLASSES PIXEL
l=[9948,9209,8055,7358] #LAKE
m=[9747,8956,7904,16434] #mangroves
u=[13581,14973,17244,20404] #urbanairport
b=[10723,10111,10393,12682] #barreland
"""