-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgravity.py
280 lines (236 loc) · 9.06 KB
/
gravity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys, time, os
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.gpuarray as gpuarray
import pycuda.cumath as cumath
#import pycuda.curandom as curandom
from pycuda.elementwise import ElementwiseKernel
from pycuda.reduction import ReductionKernel
import h5py as h5
import matplotlib.pyplot as plt
#Add Modules from other directories
currentDirectory = os.getcwd()
parentDirectory = currentDirectory[:currentDirectory.rfind("/")]
toolsDirectory = parentDirectory + "/tools"
volumeRenderDirectory = parentDirectory + "/volumeRender"
sys.path.extend( [toolsDirectory, volumeRenderDirectory] )
from cudaTools import setCudaDevice, getFreeMemory, gpuArray3DtocudaArray, kernelMemoryInfo
from tools import ensureDirectory, printProgressTime
cudaP = "double"
nPoints = 256
useDevice = None
usingAnimation = False
for option in sys.argv:
if option == "float": cudaP = "float"
if option == "anim": usingAnimation = True
if option == "mem": showKernelMemInfo = True
if option == "128" or option == "256": nPoints = int(option)
if option.find("dev=") != -1: useDevice = int(option[-1])
precision = {"float":(np.float32, np.complex64), "double":(np.float64,np.complex128) }
cudaPre, cudaPreComplex = precision[cudaP]
#set simulation volume dimentions
nWidth = nPoints
nHeight = nPoints
nDepth = nPoints
nData = nWidth*nHeight*nDepth
Lx = 1.
Ly = 1.
Lz = 1.
xMax, xMin = Lx/2, -Lx/2
yMax, yMin = Ly/2, -Ly/2
zMax, zMin = Lz/2, -Lz/2
dx, dy, dz = Lx/(nWidth-1), Ly/(nHeight-1), Lz/(nDepth-1 )
Z, Y, X = np.mgrid[ zMin:zMax:nDepth*1j, yMin:yMax:nHeight*1j, xMin:xMax:nWidth*1j ]
xPoints = X[0,0,:]
yPoints = Y[0,:,0]
zPoints = Z[0,0,:]
R = np.sqrt( X*X + Y*Y + Z*Z )
sphereR = 0.1
sphereOffCenter = 0.25
sphere = np.sqrt( X*X + Y*Y + Z*Z ) < sphereR
sphere_left = ( np.sqrt( (X+sphereOffCenter)*(X+sphereOffCenter) + Y*Y + Z*Z ) < sphereR )
sphere_right = ( np.sqrt( (X-sphereOffCenter)*(X-sphereOffCenter) + Y*Y + Z*Z ) < sphereR )
spheres = sphere_right + sphere_left
#For analitical solution
sigma = 0.2
r2 = X*X + Y*Y + Z*Z
rho_teo = ( r2 - 2*sigma**2 )/sigma**4 * np.exp( -r2/(2*sigma**2) )
phi_teo = np.exp( -r2/(2*sigma**2) )
#Change precision of the parameters
dx, dy, dz = cudaPre(dx), cudaPre(dy), cudaPre(dz)
# Lx, Ly, Lz = cudaPre(Lx), cudaPre(Ly), cudaPre(Lz)
# xMin, yMin, zMin = cudaPre(xMin), cudaPre(yMin), cudaPre(zMin)
pi4 = cudaPre( 4*np.pi )
#Initialize openGL
if usingAnimation:
import volumeRender
volumeRender.nWidth = nWidth
volumeRender.nHeight = nHeight
volumeRender.nDepth = nDepth
volumeRender.windowTitle = "Hydro 3D nPoints={0}".format(nPoints)
volumeRender.initGL()
#initialize pyCUDA context
cudaDevice = setCudaDevice( devN=useDevice, usingAnimation=usingAnimation)
#set thread grid for CUDA kernels
block_size_x, block_size_y, block_size_z = 32,4,4 #hardcoded, tune to your needs
gridx = nWidth // block_size_x + 1 * ( nWidth % block_size_x != 0 )
gridy = nHeight // block_size_y + 1 * ( nHeight % block_size_y != 0 )
gridz = nDepth // block_size_z + 1 * ( nDepth % block_size_z != 0 )
block3D = (block_size_x, block_size_y, block_size_z)
grid3D = (gridx, gridy, gridz)
nBlocks3D = grid3D[0]*grid3D[1]*grid3D[2]
grid3D_poisson = (gridx//2, gridy, gridz)
print "\nCompiling CUDA code"
cudaCodeFile = open("cuda_gravity.cu","r")
cudaCodeString = cudaCodeFile.read().replace( "cudaP", cudaP )
# cudaCodeString = cudaCodeString.replace( "THREADS_PER_BLOCK", str(nPointsBlock) )
cudaCode = SourceModule(cudaCodeString)
iterPoissonStep_kernel = cudaCode.get_function('iterPoissonStep')
FFT_divideK2_kernel = cudaCode.get_function('FFT_divideK2_kernel')
########################################################################
convertToUCHAR = ElementwiseKernel(arguments="cudaP normaliztion, cudaP *values, unsigned char *psiUCHAR".replace("cudaP", cudaP),
operation = "psiUCHAR[i] = (unsigned char) ( -255*( values[i]*normaliztion -1 ) );",
name = "sendModuloToUCHAR_kernel")
def poisonIteration( parity, omega ):
iterPoissonStep_kernel( np.int32(parity),
np.int32( nWidth ), np.int32( nHeight ), np.int32( nDepth ),
dx, dy, dz, cudaPre(omega), pi4,
rho_d, phi_d, converged, grid=grid3D_poisson, block=block3D )
rJacobi = ( np.cos(np.pi/nWidth) + (dx/dy)**2*np.cos(np.pi/nHeight) ) / ( 1 + (dx/dy)**2 )
def poissonStep( omega ):
converged.set( one_Array )
poisonIteration( 0, omega )
poisonIteration( 1, omega )
hasConverged = converged.get()[0]
return hasConverged
########################################################################
def solvePoisson( show=False ):
maxIter = 500000
omega = 2. / ( 1 + np.pi / nWidth )
# omega = 1
for n in range(maxIter):
hasConverged = poissonStep( omega )
if hasConverged == 1:
phi_1 = phi_d.get()
poisonIteration( 0, omega )
phi_2 = phi_d.get()
phi_avrg = ( phi_1 + phi_2 )/2.
if show: print 'Poisson converged: ', n+1
# return phi_1, phi_2, phi_avrg
return phi_avrg
if show: print 'Poisson converged: ', maxIter
return phi_d.get()
########################################################################
# def stepFuntion():
# solvePoisson()
# maxVal = ( gpuarray.max( phi_d ) ).get()
# convertToUCHAR( cudaPre( 0.95/maxVal ), phi_d, plotData_d)
# copyToScreenArray()
#
# # grid=grid3D_poisson, block=block3D
########################################################################
########################################################################
print "\nInitializing Data"
initialMemory = getFreeMemory( show=True )
rho = np.zeros( X.shape, dtype=cudaPre ) #density
#####################################################
#Initialize a centerd sphere
overDensity = spheres
rho[ overDensity ] = 1.
rho[ np.logical_not(overDensity) ] = 0.6
rho = rho_teo
# phi = np.ones( X.shape, dtype=cudaPre ) #gravity potencial
phi = rho #gravity potencial
zeros_h = np.zeros_like( rho )
#####################################################
#Initialize device global data
phi_d = gpuarray.to_gpu( phi )
rho_d = gpuarray.to_gpu( rho )
rho_re_d = gpuarray.to_gpu( rho )
rho_im_d = gpuarray.to_gpu( zeros_h )
rho_FFT_re_d = gpuarray.to_gpu( zeros_h )
rho_FFT_im_d = gpuarray.to_gpu(zeros_h)
# phiTemp_d = gpuarray.to_gpu( phi )
one_Array = np.array([ 1 ]).astype( np.int32 )
converged = gpuarray.to_gpu( one_Array )
if usingAnimation:
plotData_d = gpuarray.to_gpu(np.zeros([nDepth, nHeight, nWidth], dtype = np.uint8))
volumeRender.plotData_dArray, copyToScreenArray = gpuArray3DtocudaArray( plotData_d )
print "Total Global Memory Used: {0:.2f} MB\n".format(float(initialMemory-getFreeMemory( show=False ))/1e6)
print " Making FFT plan"
from pyfft.cuda import Plan
fftPlan = Plan((nDepth, nHeight, nWidth), dtype=cudaPre)
fftKx_h = np.zeros( nWidth, dtype=cudaPre )
fftKy_h = np.zeros( nHeight, dtype=cudaPre )
fftKz_h = np.zeros( nDepth, dtype=cudaPre )
for i in range(1,nWidth/2+1):
fftKx_h[i-1] = i*2*np.pi/Lx
for i in range(nWidth/2, nWidth):
fftKx_h[i] = (i-nWidth)*2*np.pi/Lx
for i in range(nHeight/2):
fftKy_h[i] = i*2*np.pi/Ly
for i in range(nHeight/2, nHeight):
fftKy_h[i] = (i-nHeight)*2*np.pi/Ly
for i in range(nDepth/2):
fftKz_h[i] = i*2*np.pi/Lz
for i in range(nDepth/2, nDepth):
fftKz_h[i] = (i-nDepth)*2*np.pi/Lz
fftKx_d = gpuarray.to_gpu( fftKx_h ) #OPTIMIZATION
fftKy_d = gpuarray.to_gpu( fftKx_h )
fftKz_d = gpuarray.to_gpu( fftKx_h )
fftPlan.execute( rho_re_d, rho_im_d, rho_FFT_re_d, rho_FFT_im_d )
FFT_divideK2_kernel( fftKx_d, fftKy_d, fftKz_d, rho_FFT_re_d, rho_FFT_im_d, grid=grid3D, block=block3D )
fftPlan.execute( rho_FFT_re_d, rho_FFT_im_d, rho_re_d, rho_im_d, inverse=True )
phi_re_FFT = rho_re_d.get()
phi_im_FFT = rho_im_d.get()
# phi_FFT = np.sqrt( phi_re_FFt**2 + phi_im_FFt**2 )
phi_slide_teo = phi_teo[nWidth/2,:,:]
plt.figure(0)
plt.clf()
plt.imshow(phi_slide_teo, interpolation='nearest')
plt.colorbar()
plt.show()
#
# phi_slide_FFT = phi_re_FFT[nWidth/2,:,:]
# plt.figure(1)
# plt.imshow(phi_slide_FFT, interpolation='nearest')
# plt.colorbar()
# plt.show()
print 'Getting initial Gravity Force...'
start, end = cuda.Event(), cuda.Event()
start.record() # start timing
# phi_1, phi_2, phi = solvePoisson( show=True )
phi = solvePoisson( show=True )
phi = phi - phi.min()
phi = phi/phi.max()
end.record(), end.synchronize()
secs = start.time_till( end )*1e-3
print 'Time: {0:0.4f}\n'.format( secs )
# phi_slide_1, phi_slide_2, phi_slide = phi_1[nWidth/2,:,:], phi_2[nWidth/2,:,:], phi[nWidth/2,:,:]
phi_slide = phi[nWidth/2,:,:]
plt.figure(2)
plt.clf()
plt.imshow(phi_slide, interpolation='nearest')
plt.colorbar()
plt.show()
#
#
plt.figure(3)
plt.clf()
plt.imshow(np.abs(phi_slide - phi_slide_teo), interpolation='nearest')
plt.colorbar()
plt.show()
# # plt.figure(1)
# # plt.imshow(phi_slide_1, interpolation='nearest')
# # plt.figure(2)
# # plt.imshow(phi_slide_2, interpolation='nearest')
#configure volumeRender functions
if usingAnimation:
#volumeRender.viewTranslation[2] = -2
# volumeRender.transferScale = np.float32( 2.8 )
#volumeRender.keyboard = keyboard
#volumeRender.specialKeys = specialKeyboardFunc
volumeRender.stepFunc = stepFuntion
#run volumeRender animation
volumeRender.animate()