-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnat.hs
37 lines (27 loc) · 874 Bytes
/
nat.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
-- reasoning about programs.. (hw/chapter 12)
data Nat = Zero | Succ Nat deriving(Show)
add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)
-- Show property: add n (Succ m) = Succ (add n m)
{- Base case:
add Zero (Succ m) =? Succ (add Zero m)
<Apply add> = Succ m
<Unapply add> = Succ (add Zero m)
- Inductive case:
add (Succ n) (Succ m) =? Succ (add (Succ n) m)
<Apply add> = Succ (add n (Succ m))
<Induction hypothesis> = Succ (Succ (add n m))
<Unapply add> = Succ (add (Succ n) m)
-}
-- Show commutativity: add n m = add m n
{- Base case:
add Zero m =? add m Zero
<Apply add> = m
<prop?> = add m Zero
- Inductive case:
add (Succ n) m =? add m (Succ n)
<Apply add> = Succ (add n m)
<Inductive hypo> = Succ (add m n)
<prop> = add (m (Succ n))
-}