diff --git a/Assignment_3/Assignment_3.pdf b/Assignment_3/Assignment_3.pdf index d86ae42..bd14891 100644 Binary files a/Assignment_3/Assignment_3.pdf and b/Assignment_3/Assignment_3.pdf differ diff --git a/Assignment_3/Problem_3/Project.toml b/Assignment_3/Problem_3/Project.toml index 9023662..8c32031 100644 --- a/Assignment_3/Problem_3/Project.toml +++ b/Assignment_3/Problem_3/Project.toml @@ -1,3 +1,6 @@ +name = "SchrödingerSolver" +uuid = "44c901a1-9596-43aa-b2cd-6fc2ac4d38fa" + [deps] LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" \ No newline at end of file diff --git a/Assignment_3/Problem_3/figs/choice_3.png b/Assignment_3/Problem_3/figs/choice_3.png new file mode 100644 index 0000000..1cc8209 Binary files /dev/null and b/Assignment_3/Problem_3/figs/choice_3.png differ diff --git a/Assignment_3/Problem_3/figs/choice_4.png b/Assignment_3/Problem_3/figs/choice_4.png new file mode 100644 index 0000000..3efb5c2 Binary files /dev/null and b/Assignment_3/Problem_3/figs/choice_4.png differ diff --git a/Assignment_3/Problem_3/figs/choice_4_2.png b/Assignment_3/Problem_3/figs/choice_4_2.png new file mode 100644 index 0000000..b04d9c4 Binary files /dev/null and b/Assignment_3/Problem_3/figs/choice_4_2.png differ diff --git a/Assignment_3/Problem_3/figs/plot_1.png b/Assignment_3/Problem_3/figs/plot_1.png new file mode 100644 index 0000000..f39ec0d Binary files /dev/null and b/Assignment_3/Problem_3/figs/plot_1.png differ diff --git a/Assignment_3/Problem_3/figs/plot_2.png b/Assignment_3/Problem_3/figs/plot_2.png new file mode 100644 index 0000000..d4a4a15 Binary files /dev/null and b/Assignment_3/Problem_3/figs/plot_2.png differ diff --git a/Assignment_3/Problem_3/figs/plot_3.png b/Assignment_3/Problem_3/figs/plot_3.png new file mode 100644 index 0000000..079a272 Binary files /dev/null and b/Assignment_3/Problem_3/figs/plot_3.png differ diff --git a/Assignment_3/Problem_3/figs/plot_4.png b/Assignment_3/Problem_3/figs/plot_4.png new file mode 100644 index 0000000..bc807ff Binary files /dev/null and b/Assignment_3/Problem_3/figs/plot_4.png differ diff --git a/Assignment_3/Problem_3/problem_3.tex b/Assignment_3/Problem_3/problem_3.tex index 06f99dd..c5643b9 100644 --- a/Assignment_3/Problem_3/problem_3.tex +++ b/Assignment_3/Problem_3/problem_3.tex @@ -1,3 +1,4 @@ +\textit{长海今天人好多啊} \subsection{题目描述} Solve the 1D Schrödinger equation with the potential (i) \( V(x) = x^2 \); (ii) \( V(x) = x^4 - x^2 \) with the variational approach using a \textbf{Gaussian basis} (either fixed widths or fixed centers) \[ @@ -6,7 +7,308 @@ \subsection{题目描述} Consider the three lowest energy eigenstates. \subsection{程序描述} +本题要求用原版高斯基线性组合,通过变分原理找能级。高斯基并不相互正交,故需要计算重叠积分 $S_{ij}$: +\[ + S_{ij} = \left(\frac{v_i v_j}{v_i + v_j}\right)^{1/2} \exp{\left(-\frac{v_i v_j (s_i - s_j)^2}{v_i + v_j}\right)}, +\] +接着计算动能积分 $T_{ij}$(此解答采用自然单位制 $\hbar = m = 1 $): +\[ + T_{ij} = \left(\frac{v_i^{3/2} v_j^{3/2}}{\sqrt{\pi} (v_i + v_j)^{5/2}}\right) \left[(v_i + v_j) - 2 v_i v_j (s_i - s_j)^2\right] \exp{\left(-\frac{v_i v_j (s_i - s_j)^2}{v_i + v_j}\right)}. +\] +而对于势能积分 $V_{ij}$,通过广义本征值问题 $\mathbf{H} \mathbf{c} = E \mathbf{S} \mathbf{c}$ 可以找到能级 $E$ 和对应的波函数 $\psi = \mathbf{c} \phi$。计算的难点在于,对于一般的势能 $V(x)$,高斯基下的积分 +\[ + V_{ij} = \int \phi_i(x) V(x) \phi_j(x) \, dx +\] +没有解析解,需要数值积分来求解。幸运的是,本题所求的势能 $V(x)$ 是多项式形式,使用 Mathematica\textsuperscript{\textregistered} 可以方便地求解 $x^n$ 对应的势能积分。然而,高阶积分的解析表达式会变得非常复杂。GPT 提醒我,两个高斯基的乘积仍是一个新的高斯函数,因此可利用该特性来简化多项式势能的积分,即通过高斯分布的矩来处理。两个高斯函数的乘积为 +\[ +\phi_i(x) \phi_j(x) = \left(\frac{2 v_i v_j}{\pi^2}\right)^{1/4} \exp\left(-v_i (x - s_i)^2 - v_j (x - s_j)^2\right). +\] +将 $v_i (x - s_i)^2 + v_j (x - s_j)^2$ 展开为: +\[ +(v_i + v_j) \left( x - \frac{v_i s_i + v_j s_j}{v_i + v_j} \right)^2 + \frac{v_i v_j (s_i - s_j)^2}{v_i + v_j}. +\] +因此,$\phi_i(x) \phi_j(x)$ 可以写成一个新的高斯函数的形式: +\[ +\phi_i(x) \phi_j(x) = \left(\frac{2v_i v_j}{\pi (v_i + v_j)}\right)^{1/2} \exp\left(-\frac{v_i v_j (s_i - s_j)^2}{v_i + v_j}\right) \exp\left(- (v_i + v_j) \left(x - \mu\right)^2 \right), +\] +其中新的高斯分布的中心 $\mu$ 和方差 $\sigma^2$ 为: +\[ +\mu = \frac{v_i s_i + v_j s_j}{v_i + v_j}, \quad \sigma^2 = \frac{1}{2(v_i + v_j)}. +\] +于是对于多项式形式的势能 $V(x) = x^n$,我们可以将势能积分转化为新高斯分布的矩问题。高斯分布 $G(x; \mu, \sigma^2)$ 的 $n$ 阶矩 $M_n = \mathbb{E}[x^n]$ 满足递推关系 +\[ +M_n(\mu, \sigma^2) = \mu M_{n-1}(\mu, \sigma^2) + (n-1) \sigma^2 M_{n-2}(\mu, \sigma^2), +\] +其中 +\[ +M_0 = 1, \quad M_1 = \mu. +\] +因此,前几个矩的具体值为 +\[ +M_2 = \mu^2 + \sigma^2, +\] +\[ +M_3 = \mu^3 + 3 \mu \sigma^2, +\] +\[ +M_4 = \mu^4 + 6 \mu^2 \sigma^2 + 3 \sigma^4. +\] +综上,势能积分可以表示为 +\[ +V_{ij} = S_{ij} \cdot M_n(\mu, \sigma^2), +\] +其中 $S_{ij}$ 是重叠积分,保证新高斯分布的归一化,$M_n$ 是高斯分布的 $n$ 阶矩。通过递推公式可以更方便地计算多项式势能下的高斯积分,\href{https://github.com/bud-primordium/Computational-Physics-Fall-2024/blob/main/Assignment_3/Problem_3/src/methods.jl#L106-L117}{源代码}中实际使用\texttt{Switch}语句处理了$n\in [1,4]$的情形。最后的本征值求解借助了\textit{Julia} \ \texttt{LinearAlgebra}库中的\texttt{eigen}函数,并采用梯形法计算最后波函数的归一化系数。 + +本题子目录结构如下 +\begin{multicols}{2} + \begin{verbatim} + |-- Documenter.html + |-- figs + |-- problem_3.tex + `-- src + |-- documenter_output + |-- integrals.nb + |-- interaction.jl + |-- main.jl + |-- methods.jl + `-- utils.jl + \end{verbatim} +\end{multicols} +\noindent \textbf{助教老师}审阅源代码时,可借助\texttt{Documenter.html}便捷查看\texttt{Documenter}生成的\href{https://bud-primordium.github.io/Computational-Physics-Fall-2024/Assignment_3/Problem_3/src/documenter_output/build/index.html}{注释文档}。在\texttt{src}目录下,运行\ccmd{julia main.jl}即可运行程序(需安装\texttt{LinearAlgebra}与\texttt{Plots}包),\texttt{main.jl}是主程序入口点,其逻辑结构在伪代码 \ \ref{alg:interactive_entry} \ 中有详细说明;\texttt{methods.jl}负责算法实现,包括重叠积分,动能积分,势能积分与求解Schrödinger方程等,逻辑结构在伪代码 \ \ref{alg:integral_functions},\ref{alg:matrix_solver} \ 中有详细说明;\texttt{interaction.jl}负责交互功能,包括展示主菜单,根据不同选项处理用户输入输出等;\texttt{utils.jl}包含一些通用的工具函数,如梯形法,波函数归一化,异常处理等。目录下还准备了\texttt{integrals.nb},是用于验证高斯积分的 Mathematica\textsuperscript{\textregistered} 笔记本文件,最终源代码采用前述的多级矩计算方法,比直接录入Mathematica\textsuperscript{\textregistered}结果更加高效简洁且具备拓展性\footnote{猛然想起钟阳老师说DeepMD\textsuperscript{\textregistered}就是因为内置了许多积分查找的优化,速度提升不少。}。 + +程序主菜单提供了四个选项,分别对应使用:自定义参数求解题目要求的两种势阱、使用默认参数一次求解两种势阱,以及自定义四次以内的多项式势能进行求解。自定义参数包括高斯基数量、宽度$v$、中心$s$(在子模式下可选择变动其中之一,为另一个指定范围),输出能级数,自定义势阱系数等。用户还可以选择是否绘制波函数图像,但归一化处理较为耗时,故内置了多线程处理不同能级绘制,但依赖于用户授权,故建议至少使用\ccmd{julia -t 4 main.jl}运行,可显著提升绘图速度。输出结果与绘图详见\ref{sec:problem_3_example}节所示。 + +\textit{碎碎念:我多次尝试使用\texttt{PackageCompiler}打包编译本程序,奈何依赖屡屡出错,也没有合适的压缩方法,更不用谈交叉编译;尝试过使用\texttt{Pluto}交互式改造,发布至\textit{Binder},但新语法过多,中道崩殂。尽管我非常欣赏Julia超前的各项设计理念,风格优美在一众科学计算语言中当属清流,但生态实在还是不够配套,继续加油吧!} + \subsection{伪代码} +\begin{algorithm}[H] + \caption{Interactive Entry Program for Solving the 1D Schrödinger Equation} + \label{alg:interactive_entry} + + % Function and Data Format Settings + \SetKwFunction{DisplayMenu}{DisplayMenu} + \SetKwFunction{GetUserChoice}{GetUserChoice} + \SetKwFunction{GetParameters}{GetParameters} + \SetKwFunction{BuildMatrices}{BuildMatrices} + \SetKwFunction{SolveSchrodinger}{SolveSchrodinger} + \SetKwFunction{PrintEnergies}{PrintEnergies} + \SetKwFunction{AskUserToPlot}{AskUserToPlot} + \SetKwFunction{ComputeWavefunction}{ComputeWavefunction} + \SetKwFunction{NormalizeWavefunction}{NormalizeWavefunction} + \SetKwFunction{PlotWavefunctions}{PlotWavefunctions} + \SetKwFunction{Range}{Range} + \SetKwFunction{InitializeArray}{InitializeArray} + \SetKwFunction{Print}{Print} + + \SetKwData{Choice}{choice} + \SetKwData{Potential}{potential} + \SetKwData{Params}{params} + \SetKwData{PotentialName}{potential\_name} + \SetKwData{NumLevels}{num\_levels} + \SetKwData{XVals}{x\_vals} + \SetKwData{Wavefunctions}{wavefunctions} + \SetKwData{N}{N} + \SetKwData{v}{v} + \SetKwData{s}{s} + \SetKwData{Energies}{energies} + \SetKwData{States}{states} + \SetKwData{PotentialList}{potential\_list} + \SetKwData{ParamsList}{params\_list} + \SetKwData{NameList}{name\_list} + \SetKwData{HMatrix}{\textbf{H}} + \SetKwData{SMatrix}{\textbf{S}} + + \KwIn{\ \Choice (str): User selection for potential type.\\ + \qquad \qquad \N (int): Number of basis functions.\\ + \qquad \qquad \v (Array[float]): Fixed or variable basis widths.\\ + \qquad \qquad \s (Array[float]): Basis center positions.\\ + \qquad \qquad \NumLevels (int) [default=3]: Number of energy levels to compute.} + + \KwOut{\Energies (Array), optional plots} + + \While{\textbf{True}}{ + \DisplayMenu()\tcp*[r]{Display menu options to the user} + \Choice $\gets$ \GetUserChoice()\tcp*[r]{Get user's menu selection} + + \If{\Choice \textbf{equals} 'q' \textbf{or} \Choice \textbf{equals} 'Q'}{ + \Print("Program exited.")\tcp*[r]{Exit message} + \textbf{break}\tcp*[r]{Terminate the loop} + } + + (\N, \v, \s, \PotentialList, \ParamsList, \NameList, \NumLevels) $\gets$ \GetParameters(\Choice)\; + \tcp{Option 1: Custom parameters for $V(x) = x^2$} + \tcp{Option 2: Custom parameters for $V(x) = x^4 - x^2$} + \tcp{Option 3: Use default parameters for both problems} + \tcp{Option 4: Custom polynomial potential up to degree 4} + + \For{$i \gets 1$ \KwTo \texttt{Length}(\PotentialList)}{ + (\Potential, \Params, \PotentialName) $\gets$ (\PotentialList$[i]$, \ParamsList$[i]$, \NameList$[i]$)\; + \tcp{Get potential function and its parameters} + + (\HMatrix, \SMatrix) $\gets$ \BuildMatrices(\N, \v, \s, \Potential, \Params)\tcp*[r]{Construct \HMatrix and \SMatrix matrices} + + (\Energies, \States) $\gets$ \SolveSchrodinger(\HMatrix, \SMatrix, \NumLevels)\tcp*[r]{Solve the eigenvalue problem} + + \PrintEnergies(\Energies, \PotentialName, \NumLevels)\tcp*[r]{Output energy levels} + + \If{\AskUserToPlot(\PotentialName)}{ + \XVals $\gets$ \Range($-5$, $5$, $200$)\; + \Wavefunctions $\gets$ \InitializeArray(\NumLevels)\tcp*[r]{Prepare storage for wavefunctions} + + \For{$n \gets 1$ \KwTo \NumLevels}{ + $\psi_n$ $\gets$ \ComputeWavefunction(\XVals, \States$[:, n]$, \v, \s, \N)\tcp*[r]{Compute wavefunction $\psi_n$} + + \Wavefunctions$[n]$ $\gets$ \NormalizeWavefunction(\XVals, $\psi_n$) + \tcp*[r]{Using \textbf{trapezoidal method}} + } + \PlotWavefunctions(\XVals, \Wavefunctions, \NumLevels, \PotentialName, \Params) + } + } + } +\end{algorithm} + +\begin{algorithm}[H] + \caption{Integral Functions for Gaussian Basis} + \label{alg:integral_functions} + + % Function and Data Format Settings + \SetKwProg{Fn}{Function}{:}{end} + \SetKwFunction{OverlapIntegral}{OverlapIntegral} + \SetKwFunction{KineticIntegral}{KineticIntegral} + \SetKwFunction{PotentialIntegral}{PotentialIntegral} + \SetKwFunction{ComputeMoment}{ComputeMoment} + + % Define Variables + \SetKwData{Vp}{$v_p$} + \SetKwData{Exponent}{$exponent$} + \SetKwData{Prefactor}{$prefactor$} + \SetKwData{Sij}{$S_{ij}$} + \SetKwData{Tij}{$T_{ij}$} + \SetKwData{Vij}{$V_{ij}$} + \SetKwData{Mu}{$\mu$} + \SetKwData{Sigma}{$\sigma^2$} + \SetKwData{Mn}{$M_n$} + + % Mathematical Upright e + \newcommand{\me}{\mathrm{e}} + + % Algorithms + + \Fn{\OverlapIntegral{$v_1$, $s_1$, $v_2$, $s_2$}}{ + \Vp $\gets v_1 + v_2$\tcp*[r]{Combined width parameter} + \Exponent, \Prefactor $\gets - \dfrac{v_1 v_2 (s_1 - s_2)^2}{\Vp},\ \dfrac{\sqrt{v_1 v_2}}{\sqrt{\pi \Vp}}$\tcp*[r]{Exponent and prefactor} + \Sij $\gets$ \Prefactor $\times$ $\me^{\Exponent}$\tcp*[r]{Compute overlap integral} + \Return \Sij\; + } + + \Fn{\KineticIntegral{$v_1$, $s_1$, $v_2$, $s_2$}}{ + \Vp $\gets v_1 + v_2$\tcp*[r]{Combined width parameter} + \Exponent, \Prefactor $\gets - \dfrac{v_1 v_2 (s_1 - s_2)^2}{\Vp},\ \dfrac{v_1^{1.5} v_2^{1.5}}{\sqrt{\pi} \Vp^{2.5}}$\tcp*[r]{Exponent and prefactor} + $numerator \gets \Vp - 2 v_1 v_2 (s_1 - s_2)^2$\tcp*[r]{Numerator in kinetic integral} + \Tij $\gets$ \Prefactor $\times$ $numerator$ $\times$ $\me^{\Exponent}$\tcp*[r]{Compute kinetic energy integral} + \Return \Tij\; + } + + \Fn{\PotentialIntegral{$v_1$, $s_1$, $v_2$, $s_2$, $n$}}{ + \Vp $\gets v_1 + v_2$\tcp*[r]{Combined width parameter} + \Exponent $\gets - \dfrac{v_1 v_2 (s_1 - s_2)^2}{\Vp}$\; + \Sij $\gets \dfrac{\sqrt{v_1 v_2}}{\sqrt{\pi \Vp}} \times \me^{\Exponent}$\tcp*[r]{Compute overlap integral} + \Mu $\gets \dfrac{v_1 s_1 + v_2 s_2}{\Vp}$\tcp*[r]{Mean of combined Gaussian} + \Sigma $\gets \dfrac{1}{2 \Vp}$\tcp*[r]{Variance of combined Gaussian} + \Mn $\gets$ \ComputeMoment{$n$, \Mu, \Sigma}\tcp*[r]{Compute the $n$-th moment} + \Vij $\gets$ \Sij $\times$ \Mn\tcp*[r]{Compute potential energy integral} + \Return \Vij\; + } + + \Fn{\ComputeMoment{$n$, \Mu, \Sigma}}{ + \eIf{$n = 0$}{ + \Return $1$\tcp*[r]{Compute $M_n$ using moments of the normal distribution} + }{ + \Return $\sum_{k=0}^{n} \binom{n}{k} \mu^{n-k} \sigma^{k} \cdot (n-k-1)!!$\tcp*[r]{General formula for $M_n$} + } + } + +\end{algorithm} + +\begin{algorithm}[H] + \caption{Matrix Construction and Schrödinger Equation Solver} + \label{alg:matrix_solver} + + % Function and Data Format Settings + \SetKwProg{Fn}{Function}{:}{end} + \SetKwFunction{BuildMatrices}{BuildMatrices} + \SetKwFunction{SolveSchrodinger}{SolveSchrodinger} + \SetKwFunction{OverlapIntegral}{OverlapIntegral} + \SetKwFunction{KineticIntegral}{KineticIntegral} + \SetKwFunction{PotentialFunction}{PotentialFunction} + \SetKwFunction{GeneralizedEigenSolve}{GeneralizedEigenSolve} + + % Define Variables + \SetKwData{HMatrix}{$\mathbf{H}$} + \SetKwData{SMatrix}{$\mathbf{S}$} + \SetKwData{Energies}{$energies$} + \SetKwData{States}{$states$} + \SetKwData{NumLevels}{$num\_levels$} + \SetKwData{Idx}{$idx$} + + % Algorithms + + \Fn{\BuildMatrices{$N$, $v$, $s$, PotentialFunction, PotentialParams}}{ + Initialize \HMatrix\ and \SMatrix\ as $N \times N$ zero matrices\; + \For{$i \gets 1$ \KwTo $N$}{ + \For{$j \gets i$ \KwTo $N$}{ + $S_{ij} \gets$ \OverlapIntegral{$v[i]$, $s[i]$, $v[j]$, $s[j]$}\; + $T_{ij} \gets$ \KineticIntegral{$v[i]$, $s[i]$, $v[j]$, $s[j]$}\; + $V_{ij} \gets$ \PotentialFunction($v[i]$, $s[i]$, $v[j]$, $s[j]$, PotentialParams)\; + \HMatrix$[i, j] \gets T_{ij} + V_{ij}$\; + \SMatrix$[i, j] \gets S_{ij}$\; + \If{$i \ne j$}{ + \HMatrix$[j, i],$ \SMatrix$[j, i] \gets$ \HMatrix$[i, j],$ \SMatrix$[i, j]$\tcp*[r]{Copy symmetric elements} + } + } + } + \Return \HMatrix, \SMatrix\; + } + + \Fn{\SolveSchrodinger{\HMatrix, \SMatrix, \NumLevels}}{ + $(E\_values, E\_vectors) \gets$ \GeneralizedEigenSolve{\HMatrix, \SMatrix}\tcp*[r]{Solve $\mathbf{H} \mathbf{c} = E \mathbf{S} \mathbf{c}$} + \Idx $\gets$ Indices that sort $E\_values$ in ascending order\; + \Energies $\gets E\_values[\Idx[1..\NumLevels]]$\tcp*[r]{Select lowest \NumLevels\ energies} + \States $\gets E\_vectors[:, \Idx[1..\NumLevels]]$\tcp*[r]{Corresponding eigenvectors} + \Return \Energies, \States\; + } + +\end{algorithm} + \subsection{结果示例} +\label{sec:problem_3_example} +\begin{figure}[H] + \centering + \includegraphics[width=0.8\textwidth]{Problem_3/figs/choice_3.png} + \hspace{5pt} + \includegraphics[width=0.5\textwidth]{Problem_3/figs/plot_1.png} + \hspace{5pt} + \includegraphics[width=0.5\textwidth]{Problem_3/figs/plot_2.png} + \caption{选项3:使用默认参数求解$V=x^2$与$V=x^4-x^2$及其前$3$个能级} +\end{figure} + +\begin{figure}[H] + \centering + \includegraphics[width=0.75\textwidth]{Problem_3/figs/choice_4.png} + \hspace{5pt} + \includegraphics[width=0.75\textwidth]{Problem_3/figs/plot_3.png} + \caption{选项4:求解自定义势阱$V=\frac{1}{2}x^2$及其前$8$个能级} + \caption*{\footnotesize{\textbf{注:} 在自然单位制下,与解析解$E_n = (n+\frac{1}{2})\hbar \omega$数值一致}} +\end{figure} + +\begin{figure}[H] + \centering + \includegraphics[width=0.8\textwidth]{Problem_3/figs/choice_4_2.png} + \hspace{5pt} + \includegraphics[width=0.8\textwidth]{Problem_3/figs/plot_4.png} + \caption{选项4:求解自定义势阱$V=(x+1)^2$及其前$3$个能级} + \caption*{\footnotesize{\textbf{注:} 能级与势阱$V=x^2$一致,波函数相较势阱$V=x^2$平移}} +\end{figure} + diff --git a/Assignment_3/Problem_3/src/build.jl b/Assignment_3/Problem_3/src/build.jl new file mode 100644 index 0000000..58a6009 --- /dev/null +++ b/Assignment_3/Problem_3/src/build.jl @@ -0,0 +1,10 @@ +using Pkg +Pkg.precompile() +using PackageCompiler + +# 生成通用 64 位 CPU 架构的应用 +create_app("./project", "SchrodingerSolver"; + cpu_target="x86-64", force=true) + +# 构建可执行文件 +build_executable("SchrodingerSolver") diff --git a/Assignment_3/Problem_3/src/project/Manifest.toml b/Assignment_3/Problem_3/src/project/Manifest.toml new file mode 100644 index 0000000..811845c --- /dev/null +++ b/Assignment_3/Problem_3/src/project/Manifest.toml @@ -0,0 +1,1083 @@ +# This file is machine-generated - editing it directly is not advised + +julia_version = "1.10.5" +manifest_format = "2.0" +project_hash = "320aae5ec2ce416d12e4b46d4fb39a856c9641d0" + +[[deps.ArgTools]] +uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" +version = "1.1.1" + +[[deps.Artifacts]] +uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" + +[[deps.Base64]] +uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" + +[[deps.BitFlags]] +git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d" +uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35" +version = "0.1.9" + +[[deps.Bzip2_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd" +uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" +version = "1.0.8+1" + +[[deps.Cairo_jll]] +deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] +git-tree-sha1 = "009060c9a6168704143100f36ab08f06c2af4642" +uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" +version = "1.18.2+1" + +[[deps.CodecZlib]] +deps = ["TranscodingStreams", "Zlib_jll"] +git-tree-sha1 = "bce6804e5e6044c6daab27bb533d1295e4a2e759" +uuid = "944b1d66-785c-5afd-91f1-9de20f533193" +version = "0.7.6" + +[[deps.ColorSchemes]] +deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"] +git-tree-sha1 = "b5278586822443594ff615963b0c09755771b3e0" +uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" +version = "3.26.0" + +[[deps.ColorTypes]] +deps = ["FixedPointNumbers", "Random"] +git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" +uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" +version = "0.11.5" + +[[deps.ColorVectorSpace]] +deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"] +git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249" +uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" +version = "0.10.0" + + [deps.ColorVectorSpace.extensions] + SpecialFunctionsExt = "SpecialFunctions" + + [deps.ColorVectorSpace.weakdeps] + SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b" + +[[deps.Colors]] +deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] +git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0" +uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" +version = "0.12.11" + +[[deps.Compat]] +deps = ["TOML", "UUIDs"] +git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215" +uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" +version = "4.16.0" +weakdeps = ["Dates", "LinearAlgebra"] + + [deps.Compat.extensions] + CompatLinearAlgebraExt = "LinearAlgebra" + +[[deps.CompilerSupportLibraries_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" +version = "1.1.1+0" + +[[deps.ConcurrentUtilities]] +deps = ["Serialization", "Sockets"] +git-tree-sha1 = "ea32b83ca4fefa1768dc84e504cc0a94fb1ab8d1" +uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb" +version = "2.4.2" + +[[deps.Contour]] +git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8" +uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" +version = "0.6.3" + +[[deps.DataAPI]] +git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" +uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" +version = "1.16.0" + +[[deps.DataStructures]] +deps = ["Compat", "InteractiveUtils", "OrderedCollections"] +git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82" +uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" +version = "0.18.20" + +[[deps.Dates]] +deps = ["Printf"] +uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" + +[[deps.Dbus_jll]] +deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "fc173b380865f70627d7dd1190dc2fce6cc105af" +uuid = "ee1fde0b-3d02-5ea6-8484-8dfef6360eab" +version = "1.14.10+0" + +[[deps.DelimitedFiles]] +deps = ["Mmap"] +git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae" +uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" +version = "1.9.1" + +[[deps.DocStringExtensions]] +deps = ["LibGit2"] +git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" +uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" +version = "0.9.3" + +[[deps.Downloads]] +deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] +uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" +version = "1.6.0" + +[[deps.EpollShim_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643" +uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43" +version = "0.0.20230411+0" + +[[deps.ExceptionUnwrapping]] +deps = ["Test"] +git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a" +uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4" +version = "0.1.10" + +[[deps.Expat_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7" +uuid = "2e619515-83b5-522b-bb60-26c02a35a201" +version = "2.6.2+0" + +[[deps.FFMPEG]] +deps = ["FFMPEG_jll"] +git-tree-sha1 = "53ebe7511fa11d33bec688a9178fac4e49eeee00" +uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" +version = "0.4.2" + +[[deps.FFMPEG_jll]] +deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] +git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e" +uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" +version = "4.4.4+1" + +[[deps.FileWatching]] +uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" + +[[deps.FixedPointNumbers]] +deps = ["Statistics"] +git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" +uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" +version = "0.8.5" + +[[deps.Fontconfig_jll]] +deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"] +git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23" +uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" +version = "2.13.96+0" + +[[deps.Format]] +git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc" +uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8" +version = "1.3.7" + +[[deps.FreeType2_jll]] +deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"] +git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc" +uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" +version = "2.13.2+0" + +[[deps.FriBidi_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2" +uuid = "559328eb-81f9-559d-9380-de523a88c83c" +version = "1.0.14+0" + +[[deps.GLFW_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll", "libdecor_jll", "xkbcommon_jll"] +git-tree-sha1 = "532f9126ad901533af1d4f5c198867227a7bb077" +uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" +version = "3.4.0+1" + +[[deps.GR]] +deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Preferences", "Printf", "Qt6Wayland_jll", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "p7zip_jll"] +git-tree-sha1 = "629693584cef594c3f6f99e76e7a7ad17e60e8d5" +uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" +version = "0.73.7" + +[[deps.GR_jll]] +deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "FreeType2_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Qt6Base_jll", "Zlib_jll", "libpng_jll"] +git-tree-sha1 = "a8863b69c2a0859f2c2c87ebdc4c6712e88bdf0d" +uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" +version = "0.73.7+0" + +[[deps.Gettext_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] +git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" +uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" +version = "0.21.0+0" + +[[deps.Glib_jll]] +deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"] +git-tree-sha1 = "674ff0db93fffcd11a3573986e550d66cd4fd71f" +uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" +version = "2.80.5+0" + +[[deps.Graphite2_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011" +uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472" +version = "1.3.14+0" + +[[deps.Grisu]] +git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" +uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" +version = "1.0.2" + +[[deps.HTTP]] +deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] +git-tree-sha1 = "d1d712be3164d61d1fb98e7ce9bcbc6cc06b45ed" +uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" +version = "1.10.8" + +[[deps.HarfBuzz_jll]] +deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll"] +git-tree-sha1 = "401e4f3f30f43af2c8478fc008da50096ea5240f" +uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566" +version = "8.3.1+0" + +[[deps.InteractiveUtils]] +deps = ["Markdown"] +uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" + +[[deps.IrrationalConstants]] +git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" +uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" +version = "0.2.2" + +[[deps.JLFzf]] +deps = ["Pipe", "REPL", "Random", "fzf_jll"] +git-tree-sha1 = "39d64b09147620f5ffbf6b2d3255be3c901bec63" +uuid = "1019f520-868f-41f5-a6de-eb00f4b6a39c" +version = "0.1.8" + +[[deps.JLLWrappers]] +deps = ["Artifacts", "Preferences"] +git-tree-sha1 = "f389674c99bfcde17dc57454011aa44d5a260a40" +uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" +version = "1.6.0" + +[[deps.JSON]] +deps = ["Dates", "Mmap", "Parsers", "Unicode"] +git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" +uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" +version = "0.21.4" + +[[deps.JpegTurbo_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "25ee0be4d43d0269027024d75a24c24d6c6e590c" +uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" +version = "3.0.4+0" + +[[deps.LAME_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "170b660facf5df5de098d866564877e119141cbd" +uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" +version = "3.100.2+0" + +[[deps.LERC_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434" +uuid = "88015f11-f218-50d7-93a8-a6af411a945d" +version = "3.0.0+1" + +[[deps.LLVMOpenMP_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "78211fb6cbc872f77cad3fc0b6cf647d923f4929" +uuid = "1d63c593-3942-5779-bab2-d838dc0a180e" +version = "18.1.7+0" + +[[deps.LZO_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "854a9c268c43b77b0a27f22d7fab8d33cdb3a731" +uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" +version = "2.10.2+1" + +[[deps.LaTeXStrings]] +git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" +uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" +version = "1.3.1" + +[[deps.Latexify]] +deps = ["Format", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "OrderedCollections", "Requires"] +git-tree-sha1 = "ce5f5621cac23a86011836badfedf664a612cee4" +uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" +version = "0.16.5" + + [deps.Latexify.extensions] + DataFramesExt = "DataFrames" + SparseArraysExt = "SparseArrays" + SymEngineExt = "SymEngine" + + [deps.Latexify.weakdeps] + DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + SymEngine = "123dc426-2d89-5057-bbad-38513e3affd8" + +[[deps.LibCURL]] +deps = ["LibCURL_jll", "MozillaCACerts_jll"] +uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" +version = "0.6.4" + +[[deps.LibCURL_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] +uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" +version = "8.4.0+0" + +[[deps.LibGit2]] +deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] +uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" + +[[deps.LibGit2_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] +uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" +version = "1.6.4+0" + +[[deps.LibSSH2_jll]] +deps = ["Artifacts", "Libdl", "MbedTLS_jll"] +uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" +version = "1.11.0+1" + +[[deps.Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" + +[[deps.Libffi_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290" +uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" +version = "3.2.2+1" + +[[deps.Libgcrypt_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll"] +git-tree-sha1 = "9fd170c4bbfd8b935fdc5f8b7aa33532c991a673" +uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" +version = "1.8.11+0" + +[[deps.Libglvnd_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] +git-tree-sha1 = "6f73d1dd803986947b2c750138528a999a6c7733" +uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" +version = "1.6.0+0" + +[[deps.Libgpg_error_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "fbb1f2bef882392312feb1ede3615ddc1e9b99ed" +uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" +version = "1.49.0+0" + +[[deps.Libiconv_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "f9557a255370125b405568f9767d6d195822a175" +uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" +version = "1.17.0+0" + +[[deps.Libmount_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "0c4f9c4f1a50d8f35048fa0532dabbadf702f81e" +uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" +version = "2.40.1+0" + +[[deps.Libtiff_jll]] +deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "LERC_jll", "Libdl", "XZ_jll", "Zlib_jll", "Zstd_jll"] +git-tree-sha1 = "2da088d113af58221c52828a80378e16be7d037a" +uuid = "89763e89-9b03-5906-acba-b20f662cd828" +version = "4.5.1+1" + +[[deps.Libuuid_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "5ee6203157c120d79034c748a2acba45b82b8807" +uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" +version = "2.40.1+0" + +[[deps.LinearAlgebra]] +deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] +uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + +[[deps.LogExpFunctions]] +deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] +git-tree-sha1 = "a2d09619db4e765091ee5c6ffe8872849de0feea" +uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" +version = "0.3.28" + + [deps.LogExpFunctions.extensions] + LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" + LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" + LogExpFunctionsInverseFunctionsExt = "InverseFunctions" + + [deps.LogExpFunctions.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" + InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" + +[[deps.Logging]] +uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" + +[[deps.LoggingExtras]] +deps = ["Dates", "Logging"] +git-tree-sha1 = "c1dd6d7978c12545b4179fb6153b9250c96b0075" +uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36" +version = "1.0.3" + +[[deps.MacroTools]] +deps = ["Markdown", "Random"] +git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" +uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" +version = "0.5.13" + +[[deps.Markdown]] +deps = ["Base64"] +uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" + +[[deps.MbedTLS]] +deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "NetworkOptions", "Random", "Sockets"] +git-tree-sha1 = "c067a280ddc25f196b5e7df3877c6b226d390aaf" +uuid = "739be429-bea8-5141-9913-cc70e7f3736d" +version = "1.1.9" + +[[deps.MbedTLS_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" +version = "2.28.2+1" + +[[deps.Measures]] +git-tree-sha1 = "c13304c81eec1ed3af7fc20e75fb6b26092a1102" +uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e" +version = "0.3.2" + +[[deps.Missings]] +deps = ["DataAPI"] +git-tree-sha1 = "ec4f7fbeab05d7747bdf98eb74d130a2a2ed298d" +uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" +version = "1.2.0" + +[[deps.Mmap]] +uuid = "a63ad114-7e13-5084-954f-fe012c677804" + +[[deps.MozillaCACerts_jll]] +uuid = "14a3606d-f60d-562e-9121-12d972cd8159" +version = "2023.1.10" + +[[deps.NaNMath]] +deps = ["OpenLibm_jll"] +git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" +uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" +version = "1.0.2" + +[[deps.NetworkOptions]] +uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" +version = "1.2.0" + +[[deps.Ogg_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f" +uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" +version = "1.3.5+1" + +[[deps.OpenBLAS_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] +uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" +version = "0.3.23+4" + +[[deps.OpenLibm_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "05823500-19ac-5b8b-9628-191a04bc5112" +version = "0.8.1+2" + +[[deps.OpenSSL]] +deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"] +git-tree-sha1 = "38cb508d080d21dc1128f7fb04f20387ed4c0af4" +uuid = "4d8831e6-92b7-49fb-bdf8-b643e874388c" +version = "1.4.3" + +[[deps.OpenSSL_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "7493f61f55a6cce7325f197443aa80d32554ba10" +uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" +version = "3.0.15+1" + +[[deps.Opus_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "6703a85cb3781bd5909d48730a67205f3f31a575" +uuid = "91d4177d-7536-5919-b921-800302f37372" +version = "1.3.3+0" + +[[deps.OrderedCollections]] +git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5" +uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" +version = "1.6.3" + +[[deps.PCRE2_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "efcefdf7-47ab-520b-bdef-62a2eaa19f15" +version = "10.42.0+1" + +[[deps.Pango_jll]] +deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "e127b609fb9ecba6f201ba7ab753d5a605d53801" +uuid = "36c8627f-9965-5494-a995-c6b170f724f3" +version = "1.54.1+0" + +[[deps.Parsers]] +deps = ["Dates", "PrecompileTools", "UUIDs"] +git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" +uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" +version = "2.8.1" + +[[deps.Pipe]] +git-tree-sha1 = "6842804e7867b115ca9de748a0cf6b364523c16d" +uuid = "b98c9c47-44ae-5843-9183-064241ee97a0" +version = "1.3.0" + +[[deps.Pixman_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LLVMOpenMP_jll", "Libdl"] +git-tree-sha1 = "35621f10a7531bc8fa58f74610b1bfb70a3cfc6b" +uuid = "30392449-352a-5448-841d-b1acce4e97dc" +version = "0.43.4+0" + +[[deps.Pkg]] +deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] +uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" +version = "1.10.0" + +[[deps.PlotThemes]] +deps = ["PlotUtils", "Statistics"] +git-tree-sha1 = "6e55c6841ce3411ccb3457ee52fc48cb698d6fb0" +uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" +version = "3.2.0" + +[[deps.PlotUtils]] +deps = ["ColorSchemes", "Colors", "Dates", "PrecompileTools", "Printf", "Random", "Reexport", "Statistics"] +git-tree-sha1 = "7b1a9df27f072ac4c9c7cbe5efb198489258d1f5" +uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" +version = "1.4.1" + +[[deps.Plots]] +deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "JLFzf", "JSON", "LaTeXStrings", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "Pkg", "PlotThemes", "PlotUtils", "PrecompileTools", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "RelocatableFolders", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "TOML", "UUIDs", "UnicodeFun", "UnitfulLatexify", "Unzip"] +git-tree-sha1 = "45470145863035bb124ca51b320ed35d071cc6c2" +uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +version = "1.40.8" + + [deps.Plots.extensions] + FileIOExt = "FileIO" + GeometryBasicsExt = "GeometryBasics" + IJuliaExt = "IJulia" + ImageInTerminalExt = "ImageInTerminal" + UnitfulExt = "Unitful" + + [deps.Plots.weakdeps] + FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" + GeometryBasics = "5c1252a2-5f33-56bf-86c9-59e7332b4326" + IJulia = "7073ff75-c697-5162-941a-fcdaad2a7d2a" + ImageInTerminal = "d8c32880-2388-543b-8c61-d9f865259254" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" + +[[deps.PrecompileTools]] +deps = ["Preferences"] +git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" +uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" +version = "1.2.1" + +[[deps.Preferences]] +deps = ["TOML"] +git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" +uuid = "21216c6a-2e73-6563-6e65-726566657250" +version = "1.4.3" + +[[deps.Printf]] +deps = ["Unicode"] +uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" + +[[deps.Qt6Base_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Vulkan_Loader_jll", "Xorg_libSM_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_cursor_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "libinput_jll", "xkbcommon_jll"] +git-tree-sha1 = "492601870742dcd38f233b23c3ec629628c1d724" +uuid = "c0090381-4147-56d7-9ebc-da0b1113ec56" +version = "6.7.1+1" + +[[deps.Qt6Declarative_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll", "Qt6ShaderTools_jll"] +git-tree-sha1 = "e5dd466bf2569fe08c91a2cc29c1003f4797ac3b" +uuid = "629bc702-f1f5-5709-abd5-49b8460ea067" +version = "6.7.1+2" + +[[deps.Qt6ShaderTools_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll"] +git-tree-sha1 = "1a180aeced866700d4bebc3120ea1451201f16bc" +uuid = "ce943373-25bb-56aa-8eca-768745ed7b5a" +version = "6.7.1+1" + +[[deps.Qt6Wayland_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Qt6Base_jll", "Qt6Declarative_jll"] +git-tree-sha1 = "729927532d48cf79f49070341e1d918a65aba6b0" +uuid = "e99dba38-086e-5de3-a5b1-6e4c66e897c3" +version = "6.7.1+1" + +[[deps.REPL]] +deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] +uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" + +[[deps.Random]] +deps = ["SHA"] +uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" + +[[deps.RecipesBase]] +deps = ["PrecompileTools"] +git-tree-sha1 = "5c3d09cc4f31f5fc6af001c250bf1278733100ff" +uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" +version = "1.3.4" + +[[deps.RecipesPipeline]] +deps = ["Dates", "NaNMath", "PlotUtils", "PrecompileTools", "RecipesBase"] +git-tree-sha1 = "45cf9fd0ca5839d06ef333c8201714e888486342" +uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" +version = "0.6.12" + +[[deps.Reexport]] +git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" +uuid = "189a3867-3050-52da-a836-e630ba90ab69" +version = "1.2.2" + +[[deps.RelocatableFolders]] +deps = ["SHA", "Scratch"] +git-tree-sha1 = "ffdaf70d81cf6ff22c2b6e733c900c3321cab864" +uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" +version = "1.0.1" + +[[deps.Requires]] +deps = ["UUIDs"] +git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" +uuid = "ae029012-a4dd-5104-9daa-d747884805df" +version = "1.3.0" + +[[deps.SHA]] +uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" +version = "0.7.0" + +[[deps.Scratch]] +deps = ["Dates"] +git-tree-sha1 = "3bac05bc7e74a75fd9cba4295cde4045d9fe2386" +uuid = "6c6a2e73-6563-6170-7368-637461726353" +version = "1.2.1" + +[[deps.Serialization]] +uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" + +[[deps.Showoff]] +deps = ["Dates", "Grisu"] +git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" +uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" +version = "1.0.3" + +[[deps.SimpleBufferStream]] +git-tree-sha1 = "f305871d2f381d21527c770d4788c06c097c9bc1" +uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" +version = "1.2.0" + +[[deps.Sockets]] +uuid = "6462fe0b-24de-5631-8697-dd941f90decc" + +[[deps.SortingAlgorithms]] +deps = ["DataStructures"] +git-tree-sha1 = "66e0a8e672a0bdfca2c3f5937efb8538b9ddc085" +uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" +version = "1.2.1" + +[[deps.SparseArrays]] +deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] +uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" +version = "1.10.0" + +[[deps.Statistics]] +deps = ["LinearAlgebra", "SparseArrays"] +uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +version = "1.10.0" + +[[deps.StatsAPI]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "1ff449ad350c9c4cbc756624d6f8a8c3ef56d3ed" +uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" +version = "1.7.0" + +[[deps.StatsBase]] +deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] +git-tree-sha1 = "5cf7606d6cef84b543b483848d4ae08ad9832b21" +uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" +version = "0.34.3" + +[[deps.SuiteSparse_jll]] +deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] +uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" +version = "7.2.1+1" + +[[deps.TOML]] +deps = ["Dates"] +uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" +version = "1.0.3" + +[[deps.Tar]] +deps = ["ArgTools", "SHA"] +uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" +version = "1.10.0" + +[[deps.TensorCore]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" +uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" +version = "0.1.1" + +[[deps.Test]] +deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] +uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + +[[deps.TranscodingStreams]] +git-tree-sha1 = "0c45878dcfdcfa8480052b6ab162cdd138781742" +uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" +version = "0.11.3" + +[[deps.URIs]] +git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" +uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" +version = "1.5.1" + +[[deps.UUIDs]] +deps = ["Random", "SHA"] +uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" + +[[deps.Unicode]] +uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" + +[[deps.UnicodeFun]] +deps = ["REPL"] +git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf" +uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1" +version = "0.4.1" + +[[deps.Unitful]] +deps = ["Dates", "LinearAlgebra", "Random"] +git-tree-sha1 = "d95fe458f26209c66a187b1114df96fd70839efd" +uuid = "1986cc42-f94f-5a68-af5c-568840ba703d" +version = "1.21.0" + + [deps.Unitful.extensions] + ConstructionBaseUnitfulExt = "ConstructionBase" + InverseFunctionsUnitfulExt = "InverseFunctions" + + [deps.Unitful.weakdeps] + ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9" + InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" + +[[deps.UnitfulLatexify]] +deps = ["LaTeXStrings", "Latexify", "Unitful"] +git-tree-sha1 = "975c354fcd5f7e1ddcc1f1a23e6e091d99e99bc8" +uuid = "45397f5d-5981-4c77-b2b3-fc36d6e9b728" +version = "1.6.4" + +[[deps.Unzip]] +git-tree-sha1 = "ca0969166a028236229f63514992fc073799bb78" +uuid = "41fe7b60-77ed-43a1-b4f0-825fd5a5650d" +version = "0.2.0" + +[[deps.Vulkan_Loader_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Wayland_jll", "Xorg_libX11_jll", "Xorg_libXrandr_jll", "xkbcommon_jll"] +git-tree-sha1 = "2f0486047a07670caad3a81a075d2e518acc5c59" +uuid = "a44049a8-05dd-5a78-86c9-5fde0876e88c" +version = "1.3.243+0" + +[[deps.Wayland_jll]] +deps = ["Artifacts", "EpollShim_jll", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] +git-tree-sha1 = "7558e29847e99bc3f04d6569e82d0f5c54460703" +uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" +version = "1.21.0+1" + +[[deps.Wayland_protocols_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "93f43ab61b16ddfb2fd3bb13b3ce241cafb0e6c9" +uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" +version = "1.31.0+0" + +[[deps.XML2_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Zlib_jll"] +git-tree-sha1 = "1165b0443d0eca63ac1e32b8c0eb69ed2f4f8127" +uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" +version = "2.13.3+0" + +[[deps.XSLT_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "XML2_jll", "Zlib_jll"] +git-tree-sha1 = "a54ee957f4c86b526460a720dbc882fa5edcbefc" +uuid = "aed1982a-8fda-507f-9586-7b0439959a61" +version = "1.1.41+0" + +[[deps.XZ_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "ac88fb95ae6447c8dda6a5503f3bafd496ae8632" +uuid = "ffd25f8a-64ca-5728-b0f7-c24cf3aae800" +version = "5.4.6+0" + +[[deps.Xorg_libICE_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "326b4fea307b0b39892b3e85fa451692eda8d46c" +uuid = "f67eecfb-183a-506d-b269-f58e52b52d7c" +version = "1.1.1+0" + +[[deps.Xorg_libSM_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libICE_jll"] +git-tree-sha1 = "3796722887072218eabafb494a13c963209754ce" +uuid = "c834827a-8449-5923-a945-d239c165b7dd" +version = "1.2.4+0" + +[[deps.Xorg_libX11_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] +git-tree-sha1 = "afead5aba5aa507ad5a3bf01f58f82c8d1403495" +uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" +version = "1.8.6+0" + +[[deps.Xorg_libXau_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "6035850dcc70518ca32f012e46015b9beeda49d8" +uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" +version = "1.0.11+0" + +[[deps.Xorg_libXcursor_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] +git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" +uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" +version = "1.2.0+4" + +[[deps.Xorg_libXdmcp_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "34d526d318358a859d7de23da945578e8e8727b7" +uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" +version = "1.1.4+0" + +[[deps.Xorg_libXext_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] +git-tree-sha1 = "d2d1a5c49fae4ba39983f63de6afcbea47194e85" +uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" +version = "1.3.6+0" + +[[deps.Xorg_libXfixes_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] +git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" +uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" +version = "5.0.3+4" + +[[deps.Xorg_libXi_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] +git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" +uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" +version = "1.7.10+4" + +[[deps.Xorg_libXinerama_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] +git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" +uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" +version = "1.1.4+4" + +[[deps.Xorg_libXrandr_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] +git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" +uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" +version = "1.5.2+4" + +[[deps.Xorg_libXrender_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] +git-tree-sha1 = "47e45cd78224c53109495b3e324df0c37bb61fbe" +uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" +version = "0.9.11+0" + +[[deps.Xorg_libpthread_stubs_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "8fdda4c692503d44d04a0603d9ac0982054635f9" +uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" +version = "0.1.1+0" + +[[deps.Xorg_libxcb_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] +git-tree-sha1 = "bcd466676fef0878338c61e655629fa7bbc69d8e" +uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" +version = "1.17.0+0" + +[[deps.Xorg_libxkbfile_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] +git-tree-sha1 = "730eeca102434283c50ccf7d1ecdadf521a765a4" +uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" +version = "1.1.2+0" + +[[deps.Xorg_xcb_util_cursor_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_jll", "Xorg_xcb_util_renderutil_jll"] +git-tree-sha1 = "04341cb870f29dcd5e39055f895c39d016e18ccd" +uuid = "e920d4aa-a673-5f3a-b3d7-f755a4d47c43" +version = "0.1.4+0" + +[[deps.Xorg_xcb_util_image_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] +git-tree-sha1 = "0fab0a40349ba1cba2c1da699243396ff8e94b97" +uuid = "12413925-8142-5f55-bb0e-6d7ca50bb09b" +version = "0.4.0+1" + +[[deps.Xorg_xcb_util_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll"] +git-tree-sha1 = "e7fd7b2881fa2eaa72717420894d3938177862d1" +uuid = "2def613f-5ad1-5310-b15b-b15d46f528f5" +version = "0.4.0+1" + +[[deps.Xorg_xcb_util_keysyms_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] +git-tree-sha1 = "d1151e2c45a544f32441a567d1690e701ec89b00" +uuid = "975044d2-76e6-5fbe-bf08-97ce7c6574c7" +version = "0.4.0+1" + +[[deps.Xorg_xcb_util_renderutil_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] +git-tree-sha1 = "dfd7a8f38d4613b6a575253b3174dd991ca6183e" +uuid = "0d47668e-0667-5a69-a72c-f761630bfb7e" +version = "0.3.9+1" + +[[deps.Xorg_xcb_util_wm_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] +git-tree-sha1 = "e78d10aab01a4a154142c5006ed44fd9e8e31b67" +uuid = "c22f9ab0-d5fe-5066-847c-f4bb1cd4e361" +version = "0.4.1+1" + +[[deps.Xorg_xkbcomp_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxkbfile_jll"] +git-tree-sha1 = "330f955bc41bb8f5270a369c473fc4a5a4e4d3cb" +uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" +version = "1.4.6+0" + +[[deps.Xorg_xkeyboard_config_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_xkbcomp_jll"] +git-tree-sha1 = "691634e5453ad362044e2ad653e79f3ee3bb98c3" +uuid = "33bec58e-1273-512f-9401-5d533626f822" +version = "2.39.0+0" + +[[deps.Xorg_xtrans_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "e92a1a012a10506618f10b7047e478403a046c77" +uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" +version = "1.5.0+0" + +[[deps.Zlib_jll]] +deps = ["Libdl"] +uuid = "83775a58-1f1d-513f-b197-d71354ab007a" +version = "1.2.13+1" + +[[deps.Zstd_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "555d1076590a6cc2fdee2ef1469451f872d8b41b" +uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" +version = "1.5.6+1" + +[[deps.eudev_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "gperf_jll"] +git-tree-sha1 = "431b678a28ebb559d224c0b6b6d01afce87c51ba" +uuid = "35ca27e7-8b34-5b7f-bca9-bdc33f59eb06" +version = "3.2.9+0" + +[[deps.fzf_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "936081b536ae4aa65415d869287d43ef3cb576b2" +uuid = "214eeab7-80f7-51ab-84ad-2988db7cef09" +version = "0.53.0+0" + +[[deps.gperf_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "3516a5630f741c9eecb3720b1ec9d8edc3ecc033" +uuid = "1a1c6b14-54f6-533d-8383-74cd7377aa70" +version = "3.1.1+0" + +[[deps.libaom_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1827acba325fdcdf1d2647fc8d5301dd9ba43a9d" +uuid = "a4ae2306-e953-59d6-aa16-d00cac43593b" +version = "3.9.0+0" + +[[deps.libass_jll]] +deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Zlib_jll"] +git-tree-sha1 = "e17c115d55c5fbb7e52ebedb427a0dca79d4484e" +uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" +version = "0.15.2+0" + +[[deps.libblastrampoline_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" +version = "5.11.0+0" + +[[deps.libdecor_jll]] +deps = ["Artifacts", "Dbus_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pango_jll", "Wayland_jll", "xkbcommon_jll"] +git-tree-sha1 = "9bf7903af251d2050b467f76bdbe57ce541f7f4f" +uuid = "1183f4f0-6f2a-5f1a-908b-139f9cdfea6f" +version = "0.2.2+0" + +[[deps.libevdev_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "141fe65dc3efabb0b1d5ba74e91f6ad26f84cc22" +uuid = "2db6ffa8-e38f-5e21-84af-90c45d0032cc" +version = "1.11.0+0" + +[[deps.libfdk_aac_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "8a22cf860a7d27e4f3498a0fe0811a7957badb38" +uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" +version = "2.0.3+0" + +[[deps.libinput_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "eudev_jll", "libevdev_jll", "mtdev_jll"] +git-tree-sha1 = "ad50e5b90f222cfe78aa3d5183a20a12de1322ce" +uuid = "36db933b-70db-51c0-b978-0f229ee0e533" +version = "1.18.0+0" + +[[deps.libpng_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Zlib_jll"] +git-tree-sha1 = "b70c870239dc3d7bc094eb2d6be9b73d27bef280" +uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" +version = "1.6.44+0" + +[[deps.libvorbis_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] +git-tree-sha1 = "490376214c4721cdaca654041f635213c6165cb3" +uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" +version = "1.3.7+2" + +[[deps.mtdev_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "814e154bdb7be91d78b6802843f76b6ece642f11" +uuid = "009596ad-96f7-51b1-9f1b-5ce2d5e8a71e" +version = "1.1.6+0" + +[[deps.nghttp2_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" +version = "1.52.0+1" + +[[deps.p7zip_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" +version = "17.4.0+2" + +[[deps.x264_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2" +uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" +version = "2021.5.5+0" + +[[deps.x265_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] +git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9" +uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" +version = "3.5.0+0" + +[[deps.xkbcommon_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] +git-tree-sha1 = "9c304562909ab2bab0262639bd4f444d7bc2be37" +uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" +version = "1.4.1+1" diff --git a/Assignment_3/Problem_3/src/project/Project.toml b/Assignment_3/Problem_3/src/project/Project.toml new file mode 100644 index 0000000..70bd388 --- /dev/null +++ b/Assignment_3/Problem_3/src/project/Project.toml @@ -0,0 +1,6 @@ +name = "SchrodingerSolver" +uuid = "44c901a1-9596-43aa-b2cd-6fc2ac4d38fa" + +[deps] +LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" diff --git a/Assignment_3/Problem_3/src/project/src/SchrodingerSolver.jl b/Assignment_3/Problem_3/src/project/src/SchrodingerSolver.jl new file mode 100644 index 0000000..747f71e --- /dev/null +++ b/Assignment_3/Problem_3/src/project/src/SchrodingerSolver.jl @@ -0,0 +1,95 @@ +# main.jl +# Main script for solving the 1D Schrödinger equation using Gaussian basis functions +# with additional utility modules. +# +# Author: Gilbert Young +# Date: 2024/10/08 +# +# This script provides the user interface to select different potential functions, +# solve the Schrödinger equation, and visualize the results. +module SchrödingerSolver + +include("methods.jl") +include("utils.jl") +include("interaction.jl") + +using .Methods +using .Utils +using .Interaction + +using LinearAlgebra +using Plots +using Base.Threads + +function main() + print("Number of threads available: ", Threads.nthreads()) + while true + display_menu() + # Prompt for main menu selection + print("Enter your choice: ") + choice = readline() + + if choice in ["1", "2", "3", "4"] + N, v, s, potential_gaussian_integral_list, potential_params_list, potential_name_list, num_levels = get_parameters(choice) + if N == 0 + continue + end + + # Loop over potential functions and corresponding parameters/names + for i in eachindex(potential_gaussian_integral_list) + potential_gaussian_integral = potential_gaussian_integral_list[i] + potential_params = potential_params_list[i] + potential_name = potential_name_list[i] + + # Build Hamiltonian and overlap matrices + H, S = build_matrices(N, v, s, potential_gaussian_integral, potential_params) + + # Solve the Schrödinger equation + energies, states = solve_schrodinger(H, S, num_levels) + + # Output results + println("\nLowest $(num_levels) energy levels for $potential_name:") + for (j, E) in enumerate(energies) + println("Energy Level $(j): E = $(E)") + end + + # Ask whether to plot + print("Do you want to plot the wave functions for $potential_name? (y/n) ") + plot_choice = readline() + if plot_choice in ["y", "Y"] + x_vals = range(-5, 5, length=200) + + # Parallel computation of wave functions + wavefunctions = Vector{Vector{Float64}}(undef, num_levels) + + @threads for n in 1:num_levels + ψ_n = zeros(Float64, length(x_vals)) + + # Construct the wave function as a linear combination of Gaussian basis functions + for k in 1:N + ψ_n .+= states[k, n] * sqrt(v[k] / π) .* exp.(-v[k] .* (x_vals .- s[k]) .^ 2) + end + + # Normalize the wave function using the utility function + wavefunctions[n] = normalize_wavefunction(x_vals, ψ_n) + end + + # Plot the precomputed wave functions + plot_wavefunctions(x_vals, wavefunctions, num_levels, potential_name, potential_params) + end + end + elseif choice in ["q", "Q"] + print("Program exited.") + break + else + print("Invalid selection, please try again.\n") + end + end +end + +# Run the main function if the script is executed directly +if abspath(PROGRAM_FILE) == @__FILE__ + main() +end + +end # module SchrödingerSolver diff --git a/Assignment_3/Problem_3/src/project/src/interaction.jl b/Assignment_3/Problem_3/src/project/src/interaction.jl new file mode 100644 index 0000000..d9b4eaa --- /dev/null +++ b/Assignment_3/Problem_3/src/project/src/interaction.jl @@ -0,0 +1,75 @@ +# interaction.jl +# Interaction functions for plotting and displaying the Schrödinger equation solver results. +# +# Author: Gilbert Young +# Date: 2024/10/08 + +module Interaction + +using Plots +using ..Utils + +export display_menu, plot_wavefunctions + +@doc raw""" + display_menu() + +Displays the main menu options to the user. +""" +function display_menu() + println("\nMain Menu:") + println("1. Custom parameters for V(x) = x^2") + println("2. Custom parameters for V(x) = x^4 - x^2") + println("3. Use default parameters to compute both problems") + println("4. Custom polynomial potential function up to degree 4") + println("q. Quit") +end + +@doc raw""" + plot_wavefunctions( + x_vals::AbstractVector{Float64}, + wavefunctions::Vector{Vector{Float64}}, + num_levels::Int, + potential_name::String, + potential_params::Vector{Float64} + ) + +Plots the wave functions. + +# Arguments +- `x_vals`: Values of `x`. +- `wavefunctions`: Precomputed and normalized wave functions. +- `num_levels`: Number of energy levels to plot. +- `potential_name`: The name of the potential function. +- `potential_params`: Coefficients for the polynomial potential function. +""" +function plot_wavefunctions( + x_vals::AbstractVector{Float64}, + wavefunctions::Vector{Vector{Float64}}, + num_levels::Int, + potential_name::String, + potential_params::Vector{Float64} +) + # Initialize the primary plot for wave functions on the left y-axis + p = plot(title="Wave Functions and Potential\n($potential_name)", xlabel="x", ylabel="Ψ(x)", legend=:topleft) + + # Batch plot wave functions + for n in 1:num_levels + plot!(p, x_vals, wavefunctions[n], label="Ψ$n") + end + + # Define the potential function based on the given parameters + V_function = x -> sum(potential_params[i] * x^(4 - (i - 1)) for i in eachindex(potential_params)) + + # Calculate the potential values for plotting + V_vals = [V_function(x) for x in x_vals] + + # Use `twinx()` to add a second y-axis for the potential + p_right = twinx() + plot!(p_right, x_vals, V_vals, label="Potential V(x)", linewidth=2, linestyle=:solid, color=:black, ylabel="V(x)", legend=:topright) + + # Display the final plot with dual y-axes + display(p) +end + +end # module Interaction diff --git a/Assignment_3/Problem_3/src/project/src/methods.jl b/Assignment_3/Problem_3/src/project/src/methods.jl new file mode 100644 index 0000000..b8bb3a8 --- /dev/null +++ b/Assignment_3/Problem_3/src/project/src/methods.jl @@ -0,0 +1,183 @@ +# methods.jl +# Methods for solving the 1D Schrödinger equation using Gaussian basis functions +# +# Author: Gilbert Young +# Date: 2024/10/08 +# +# This module provides functions to compute overlap, kinetic energy, and potential energy integrals +# for Gaussian basis functions and to solve the 1D Schrödinger equation using the variational method. + +module Methods + +using LinearAlgebra +using Base.Threads # For parallel computing + +export overlap_integral, kinetic_integral, potential_integral_xn +export build_matrices, solve_schrodinger + +@doc raw""" + overlap_integral(v1, s1, v2, s2) + +Computes the overlap integral between two Gaussian basis functions with parameters `(v1, s1)` and `(v2, s2)`. + +The overlap integral is given by: + +```math +S_{ij} = \frac{\sqrt{v_1 v_2}}{\sqrt{\pi (v_1 + v_2)}} e^{- \frac{v_1 v_2 (s_1 - s_2)^2}{v_1 + v_2}} +``` + +# Arguments + +- `v1`: Width parameter of the first Gaussian basis function. +- `s1`: Center of the first Gaussian basis function. +- `v2`: Width parameter of the second Gaussian basis function. +- `s2`: Center of the second Gaussian basis function. + +# Returns + +- `S_ij`: The overlap integral value. +""" +function overlap_integral(v1::Real, s1::Real, v2::Real, s2::Real)::Float64 + vp = v1 + v2 + exponent = -((v1 * v2 * (s1 - s2)^2) / vp) + prefactor = sqrt(v1 * v2) / (sqrt(π) * sqrt(vp)) + S_ij = prefactor * exp(exponent) + return S_ij +end + +@doc raw""" + kinetic_integral(v1, s1, v2, s2) + +Computes the kinetic energy integral between two Gaussian basis functions. + +The kinetic energy integral is given by: + +```math +T_{ij} = \frac{v_1^{3/2} v_2^{3/2} \left( v_1 + v_2 - 2 v_1 v_2 (s_1 - s_2)^2 \right)}{\sqrt{\pi} (v_1 + v_2)^{5/2}} e^{- \frac{v_1 v_2 (s_1 - s_2)^2}{v_1 + v_2}} +``` + +# Arguments + +- `v1`: Width parameter of the first Gaussian basis function. +- `s1`: Center of the first Gaussian basis function. +- `v2`: Width parameter of the second Gaussian basis function. +- `s2`: Center of the second Gaussian basis function. + +# Returns + +- `T_ij`: The kinetic energy integral value. +""" +function kinetic_integral(v1::Real, s1::Real, v2::Real, s2::Real)::Float64 + vp = v1 + v2 + exponent = -((v1 * v2 * (s1 - s2)^2) / vp) + numerator = v1 + v2 - 2 * v1 * v2 * (s1 - s2)^2 + prefactor = v1^(1.5) * v2^(1.5) / (sqrt(π) * vp^(2.5)) + T_ij = prefactor * numerator * exp(exponent) + return T_ij +end + +@doc raw""" + potential_integral_xn(v1, s1, v2, s2, n) + +Computes the potential energy integral for \( V(x) = x^n \) between two Gaussian basis functions. + +# Arguments + +- `v1`, `s1`: Parameters of the first Gaussian basis function. +- `v2`, `s2`: Parameters of the second Gaussian basis function. +- `n`: The power of x in the potential function (integer from 0 to 4). + +# Returns + +- `V_ij`: The potential energy integral value. +""" +function potential_integral_xn(v1::Real, s1::Real, v2::Real, s2::Real, n::Int)::Float64 + if n < 0 || n > 4 + error("n should be an integer between 0 and 4") + end + + vp = v1 + v2 + exponent = -((v1 * v2 * (s1 - s2)^2) / vp) + S_ij = sqrt(v1 * v2) / (sqrt(π) * sqrt(vp)) * exp(exponent) + + μ = (v1 * s1 + v2 * s2) / vp + σ2 = 1 / (2 * (v1 + v2)) + + # Compute the nth moment M_n(μ, σ2) + if n == 0 + moment = 1.0 + elseif n == 1 + moment = μ + elseif n == 2 + moment = μ^2 + σ2 + elseif n == 3 + moment = μ^3 + 3 * μ * σ2 + elseif n == 4 + moment = μ^4 + 6 * μ^2 * σ2 + 3 * σ2^2 + end + + V_ij = S_ij * moment + return V_ij +end + +@doc raw""" + build_matrices(N, v, s, potential_gaussian_integral, potential_params) + +Builds the Hamiltonian matrix `H` and overlap matrix `S` for the variational method. + +# Arguments + +- `N`: Number of basis functions. +- `v`: Width parameters of the Gaussian basis functions. +- `s`: Centers of the Gaussian basis functions. +- `potential_gaussian_integral`: Function to compute the potential energy integral. +- `potential_params`: Additional parameters for the potential function. + +# Returns + +- `(H, S)`: The Hamiltonian and overlap matrices. +""" +function build_matrices(N::Int, v::Vector{Float64}, s::Vector{Float64}, potential_gaussian_integral, potential_params) + H = zeros(N, N) + S = zeros(N, N) + @threads for i in 1:N + for j in i:N # Utilize symmetry, compute only upper triangle + S_ij = overlap_integral(v[i], s[i], v[j], s[j]) + T_ij = kinetic_integral(v[i], s[i], v[j], s[j]) + V_ij = potential_gaussian_integral(v[i], s[i], v[j], s[j], potential_params...) + H_ij = T_ij + V_ij + H[i, j] = H_ij + S[i, j] = S_ij + if i != j + H[j, i] = H_ij + S[j, i] = S_ij + end + end + end + return H, S +end + +@doc raw""" + solve_schrodinger(H, S, num_levels) + +Solves the generalized eigenvalue problem for the Hamiltonian `H` and overlap matrix `S`. + +# Arguments + +- `H`: Hamiltonian matrix. +- `S`: Overlap matrix. +- `num_levels`: Number of energy levels to compute. + +# Returns + +- `(energies, states)`: The lowest `num_levels` eigenvalues and eigenvectors. +""" +function solve_schrodinger(H::Matrix{Float64}, S::Matrix{Float64}, num_levels::Int) + E_values, E_vectors = eigen(H, S) + idx = sortperm(real(E_values)) + energies = real(E_values[idx[1:num_levels]]) + states = E_vectors[:, idx[1:num_levels]] + return energies, states +end + +end # module Methods \ No newline at end of file diff --git a/Assignment_3/Problem_3/src/project/src/utils.jl b/Assignment_3/Problem_3/src/project/src/utils.jl new file mode 100644 index 0000000..27ae1b5 --- /dev/null +++ b/Assignment_3/Problem_3/src/project/src/utils.jl @@ -0,0 +1,241 @@ +# utils.jl +# Utility functions for the Schrödinger equation solver. +# +# Author: Gilbert Young +# Date: 2024/10/08 + +module Utils + +using LinearAlgebra +using ..Methods + +export check_positive_v, trapezoidal_integration, get_parameters, get_potential_function, read_number, read_int, normalize_wavefunction + +@doc raw""" + check_positive_v(v) + +Checks if `v` is positive. + +# Arguments +- `v`: Value to check. + +# Throws +- `Error` if `v <= 0`. +""" +function check_positive_v(v::Float64) + if v <= 0 + error("Error: v must be greater than 0. Please enter a positive value for v.") + end +end + +@doc raw""" + trapezoidal_integration(x, y) + +Performs trapezoidal integration of `y` with respect to `x`. + +# Arguments +- `x`: Vector of x values. +- `y`: Vector of y values. + +# Returns +- `integral`: The result of the integration. +""" +function trapezoidal_integration(x::AbstractVector{Float64}, y::AbstractVector{Float64}) + integral = sum((y[1:end-1] + y[2:end]) .* diff(x)) / 2 + return integral +end + +@doc raw""" + read_number(prompt::String, default::Float64) + +Reads a floating-point number from the user with a prompt. If the user presses enter without input, returns the default value. + +# Arguments +- `prompt`: The prompt message to display. +- `default`: The default value to return if no input is provided. + +# Returns +- The user-entered number or the default value. +""" +function read_number(prompt::String, default::Float64) + print("$prompt [Default: $default] ") + input = readline() + if isempty(input) + return default + else + try + return parse(Float64, input) + catch + println("\nInvalid input. Using default value: $default") + return default + end + end +end + +@doc raw""" + read_int(prompt::String, default::Int) + +Reads an integer from the user with a prompt. If the user presses enter without input, returns the default value. + +# Arguments +- `prompt`: The prompt message to display. +- `default`: The default value to return if no input is provided. + +# Returns +- The user-entered integer or the default value. +""" +function read_int(prompt::String, default::Int) + print("$prompt [Default: $default] ") + input = readline() + if isempty(input) + return default + else + try + return parse(Int, input) + catch + println("\nInvalid input. Using default value: $default") + return default + end + end +end + +@doc raw""" + normalize_wavefunction(x_vals::AbstractVector{Float64}, ψ::AbstractVector{Float64})::Vector{Float64} + +Normalizes the wave function `ψ` based on the integration over `x_vals`. + +# Arguments +- `x_vals`: Vector of x values. +- `ψ`: Wave function to normalize. + +# Returns +- Normalized wave function. +""" +function normalize_wavefunction(x_vals::AbstractVector{Float64}, ψ::AbstractVector{Float64})::Vector{Float64} + norm_factor = sqrt(trapezoidal_integration(x_vals, ψ .^ 2)) + return ψ / norm_factor +end + +@doc raw""" + get_parameters(choice::String) + +Retrieves parameters based on the user's selection. + +# Arguments +- `choice`: User selection for the potential type. + +# Returns +- `(N, v, s, potential_gaussian_integral, potential_params, potential_name, num_levels)`: Parameters for solving the Schrödinger equation. +""" +function get_parameters(choice::String) + num_levels_default = 3 + if choice in ["1", "2", "4"] + N = read_int("Enter the number of basis functions N:", 40) + + println("Select parameter setting:") + println("1. Fixed v, varying s") + println("2. Fixed s, varying v") + print("Enter your choice: ") + param_choice = readline() + + v, s = Float64[], Float64[] + if param_choice == "1" + v_value = read_number("Enter the fixed value of v:", 0.5) + check_positive_v(v_value) + v = fill(v_value, N) + + println("Suggested range for s is from -$(N/4) to $(N/4)") + s_start = read_number("Enter the starting value of s:", -N / 4) + s_end = read_number("Enter the ending value of s:", N / 4) + s = collect(range(s_start, stop=s_end, length=N)) + elseif param_choice == "2" + s_value = read_number("Enter the fixed value of s:", 0.0) + s = fill(s_value, N) + + v_start = read_number("Enter the starting value of v:", 0.1) + check_positive_v(v_start) + + v_end = read_number("Enter the ending value of v:", 1.0) + check_positive_v(v_end) + + v = collect(range(v_start, stop=v_end, length=N)) + else + println("Invalid selection, returning to main menu.") + return 0, Float64[], Float64[], nothing, Float64[], "", 0 + end + + num_levels = read_int("Enter the number of energy levels to compute:", num_levels_default) + + potential_gaussian_integral_list, potential_name_list, potential_params_list = get_potential_function(choice) + return N, v, s, potential_gaussian_integral_list, potential_params_list, potential_name_list, num_levels + elseif choice == "3" + N = 40 + v = fill(0.5, N) + s = collect(range(-10.0, stop=10.0, length=N)) + num_levels = num_levels_default + potential_gaussian_integral_list, potential_name_list, potential_params_list = get_potential_function("3") + return N, v, s, potential_gaussian_integral_list, potential_params_list, potential_name_list, num_levels + else + println("Invalid selection, returning to main menu.") + return 0, Float64[], Float64[], nothing, Float64[], "", 0 + end +end + +@doc raw""" + get_potential_function(choice::String) + +Selects the potential function based on user's choice. + +# Arguments +- `choice`: User selection for the potential type. + +# Returns +- `[(potential_gaussian_integral, potential_name, potential_params)]`: Potential function and parameters. +""" +function get_potential_function(choice::String) + if choice == "1" + potential_gaussian_integral = (v1, s1, v2, s2, params...) -> potential_integral_xn(v1, s1, v2, s2, 2) + potential_name = "V(x) = x^2" + potential_params = [0.0, 0.0, 1.0, 0.0, 0.0] # Coefficients from x^4 to x^0 + return [potential_gaussian_integral], [potential_name], [potential_params] + elseif choice == "2" + potential_gaussian_integral = (v1, s1, v2, s2, params...) -> potential_integral_xn(v1, s1, v2, s2, 4) - potential_integral_xn(v1, s1, v2, s2, 2) + potential_name = "V(x) = x^4 - x^2" + potential_params = [1.0, 0.0, -1.0, 0.0, 0.0] + return [potential_gaussian_integral], [potential_name], [potential_params] + elseif choice == "3" + potential_gaussian_integral_list = [ + (v1, s1, v2, s2, params...) -> potential_integral_xn(v1, s1, v2, s2, 2), + (v1, s1, v2, s2, params...) -> potential_integral_xn(v1, s1, v2, s2, 4) - potential_integral_xn(v1, s1, v2, s2, 2) + ] + potential_name_list = ["V(x) = x^2", "V(x) = x^4 - x^2"] + potential_params_list = [[0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, -1.0, 0.0, 0.0]] + return potential_gaussian_integral_list, potential_name_list, potential_params_list + elseif choice == "4" + println("Enter the coefficients of the polynomial potential (degree up to 4).") + println("Format: c4 c3 c2 c1 c0 (separated by spaces) [Default: 1 0 -1 0 0]") + print("Enter coefficients: ") + potential_params_input = readline() + if isempty(potential_params_input) + potential_params = [1.0, 0.0, -1.0, 0.0, 0.0] + else + try + potential_params = parse.(Float64, split(potential_params_input)) + if length(potential_params) != 5 + error("Please enter exactly 5 coefficients.") + end + catch + println("Invalid input. Using default coefficients: 1 0 -1 0 0") + potential_params = [1.0, 0.0, -1.0, 0.0, 0.0] + end + end + potential_gaussian_integral = (v1, s1, v2, s2, potential_params...) -> sum(potential_params[i] * potential_integral_xn(v1, s1, v2, s2, 4 - (i - 1)) for i in eachindex(potential_params)) + terms = [c != 0 ? "$(c)x^$(4 - (i - 1))" : "" for (i, c) in enumerate(potential_params)] + potential_name = "V(x) = " * join(filter(!isempty, terms), " + ") + return [potential_gaussian_integral], [potential_name], [potential_params] + else + error("\nInvalid potential function selection.") + end +end + +end # module Utils