@@ -269,9 +269,9 @@ In the following the equations of Alex J. Cannon (2015) are shown and explained:
269
269
270
270
**Multiplicative **:
271
271
272
- .. math ::
273
-
274
- X^{*QM}_{sim,p}(i) = F^{- 1 }_{obs,h} \Biggl\{ F_{sim,h} \left [ \frac { \mu {X_{sim,h}} \cdot X_{sim,p}(i)}{ \mu {X_{sim,p}(i)}} \right ] \Biggr \} \frac { \mu {X_{sim,p}(i)}}{ \mu {X_{sim,h}}}
272
+ The formula is the same as for the additive variant, but the values are
273
+ bound to the lower level of zero. The upper and lower boundary can be
274
+ adjusted by passing the hidden arguments `` val_min `` and `` val_max ``.
275
275
276
276
.. code-block :: python
277
277
:linenos:
@@ -324,24 +324,20 @@ Preserve Changes in Quantiles and Extremes?"*
324
324
The following equations qre based on Alex J. Cannon (2015) but extended the
325
325
shift of :math: `X_{sim,p}(i)`:
326
326
327
- **Shift of value range **:
328
-
329
- .. math ::
330
-
331
- X_{sim,p}^{*DT}(i) = X_{sim,p}(i) + \Delta\mu
332
-
333
327
**Additive **:
334
328
335
329
.. math ::
336
330
337
- X_{sim,p}^{*DQM}(i) = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
331
+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) + \Delta\mu \\[ 1 pt]
332
+ X_{sim,p}^{*DQM}(i) & = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
338
333
339
334
340
335
**Multiplicative **:
341
336
342
337
.. math ::
343
338
344
- X^{*DQM}_{sim,p}(i) = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
339
+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) \cdot \Delta\mu \\[ 1 pt]
340
+ X^{*DQM}_{sim,p}(i) & = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
345
341
346
342
347
343
.. code-block :: python
0 commit comments