@@ -55,6 +55,12 @@ for both additive and multiplicative Linear Scaling are shown:
55
55
56
56
X^{*LS}_{sim,p}(i) = X_{sim,p}(i) + \mu _{m}(X_{obs,h}(i)) - \mu _{m}(X_{sim,h}(i))
57
57
58
+ where:
59
+
60
+ .. math ::
61
+
62
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
63
+
58
64
**Multiplicative **:
59
65
60
66
The multiplicative Linear Scaling differs from the additive variant in such
@@ -64,6 +70,12 @@ for both additive and multiplicative Linear Scaling are shown:
64
70
65
71
X^{*LS}_{sim,h}(i) = X_{sim,h}(i) \cdot \left [\frac {\mu _{m}(X_{obs,h}(i))}{\mu _{m}(X_{sim,h}(i))}\right ]
66
72
73
+ where:
74
+
75
+ .. math ::
76
+
77
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
78
+
67
79
68
80
.. code-block :: python
69
81
:linenos:
@@ -119,6 +131,12 @@ deviation in the mean.
119
131
120
132
X^{*LS}_{sim,p}(i) = X_{sim,p}(i) + \mu _{m}(X_{obs,h}(i)) - \mu _{m}(X_{sim,h}(i))
121
133
134
+ where:
135
+
136
+ .. math ::
137
+
138
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
139
+
122
140
**(2) ** In the second step, the time-series are shifted to a zero mean. This
123
141
enables the adjustment of the standard deviation in the following step.
124
142
@@ -202,6 +220,12 @@ for both additive and multiplicative Delta Method are shown:
202
220
203
221
X^{*DM}_{sim,p}(i) = X_{obs,h}(i) + \mu _{m}(X_{sim,p}(i)) - \mu _{m}(X_{sim,h}(i))
204
222
223
+ where:
224
+
225
+ .. math ::
226
+
227
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
228
+
205
229
**Multiplicative **:
206
230
207
231
The multiplicative variant behaves like the additive, but with the
@@ -212,6 +236,12 @@ for both additive and multiplicative Delta Method are shown:
212
236
213
237
X^{*DM}_{sim,p}(i) = X_{obs,h}(i) \cdot \left [\frac { \mu _{m}(X_{sim,p}(i)) }{ \mu _{m}(X_{sim,h}(i))}\right ]
214
238
239
+ where:
240
+
241
+ .. math ::
242
+
243
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
244
+
215
245
.. code-block :: python
216
246
:linenos:
217
247
:caption: Example: Delta Method
@@ -325,10 +355,11 @@ Detrended Quantile Mapping
325
355
The Detrended Quantile Mapping bias correction technique can be used to minimize
326
356
distributional biases between modeled and observed time-series climate data like
327
357
the regular Quantile Mapping. Detrending means, that the values of
328
- :math: `X_{sim,p}` are shifted by the mean of :math: `X_{sim,h}` before the
329
- regular Quantile Mapping is applied. After the Quantile Mapping was applied, the
330
- mean is shifted back. Since it does not make sense to take the whole mean to
331
- rescale the data, the month-dependent long-term mean is used.
358
+ :math: `X_{sim,p}` are shifted by the mean of :math: `X_{sim,p}` before the
359
+ regular Quantile Mapping is applied. The shift is performed on a monthly basis.
360
+ After the Quantile Mapping was applied, the mean is shifted back. Since it does
361
+ not make sense to take the whole mean to rescale the data, the month-dependent
362
+ long-term mean is used.
332
363
333
364
This method must be applied on a 1-dimensional data set i.e., there is only one
334
365
time-series passed for each of ``obs ``, ``simh ``, and ``simp ``. This method
@@ -351,17 +382,26 @@ shift of :math:`X_{sim,p}(i)`:
351
382
352
383
.. math ::
353
384
354
- X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) + \Delta\mu \\[ 1 pt]
385
+ X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) - \mu _m(X_{sim,p}(i)) \\[ 1 pt]
355
386
X_{sim,p}^{*DQM}(i) & = F_{obs,h}^{-1 }\left\{ F_{sim,h}\left [X_{sim,p}^{*DT}(i)\right ]\right \}
356
387
388
+ where:
389
+
390
+ .. math ::
391
+
392
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
357
393
358
394
**Multiplicative **:
359
395
360
396
.. math ::
361
397
362
- X_{sim,p}^{*DT}(i) & = X_{sim,p}(i) \cdot \Delta\mu \\[ 1 pt]
363
- X^{*DQM}_{sim,p}(i) & = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu {X_{sim,h}} \cdot X_{sim,p}^{*DT}(i)}{\mu {X_{sim,p}^{*DT}(i)}}\right ]\Biggr \}\frac {\mu {X_{sim,p}^{*DT}(i)}}{\mu {X_{sim,h}}}
398
+ X^{*DQM}_{sim,p}(i) = F^{-1 }_{obs,h}\Biggl\{ F_{sim,h}\left [\frac {\mu _m(X_{sim,h}(i)) \cdot X_{sim,p}(i)}{\mu _m(X_{sim,p}(i))}\right ]\Biggr \}\frac {\mu _m(X_{sim,p}(i))}{\mu _m(X_{sim,h}(i))}
399
+
400
+ where:
401
+
402
+ .. math ::
364
403
404
+ \mu _m(X\ldots (i)) = \text {long-term monthly mean of month related to day at index } i
365
405
366
406
.. code-block :: python
367
407
:linenos:
0 commit comments