-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.hpp
251 lines (208 loc) · 8.42 KB
/
metric.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#ifndef _BASIL_METRIC_HPP_
#define _BASIL_METRIC_HPP_
/** Distance metrics for d-dimensional real space, useful for computing Gram
* matrices.
*
* @author Aaron Moss
*/
/* Copyright: Aaron Moss, 2012, [email protected] */
/* This file is part of Basil.
Basil is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
Basil is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Basil. If not, see <http://www.gnu.org/licenses/>. */
#include <gmpxx.h>
#include "basil.hpp"
#include "lrs/matrix.hpp"
#include "prime/factors.hpp"
namespace basil {
/** Represents a multiprecision radical fraction (a number of the form
* n*sqrt(r)/d). In normalized form, the radical r has no factors which
* are perfect squares, and the numerator and denominator n and d have no
* common factors, and d and r are both positive.
*/
struct mpr {
/** Constructor; initializes the mpr to the canonical form of 0
* [0*sqrt(1)/1] */
mpr();
/** Constructor; initializes mpr to n_*sqrt(r_)/d_. Performs no
* normalization.
* @param n The numerator
* @param r The radical (should be positive)
* @param d The denominator (should be non-zero)
*/
mpr(mpz_class n_, mpz_class r_, mpz_class d_);
/** Creates a normalized mpr.
* @param n_ The numerator
* @param rf The factors of the radical
* @param d_ The denominator (should be non-zero)
* @param factor The prime factorizer to use to factor r [defaults
* to a new instance - it is strongly recommended that
* the prime factorization instance be saved if more
* than one normalization is desired].
* @return an mpr reprsenting the parameters, but with no factors of r
* which are perfect squares, and n/d in lowest terms with a
* positive d.
*/
static mpr makeNorm(mpz_class n_, prime::factor_list rf, mpz_class d_,
prime::factorizer factor = prime::factorizer());
/** Constructor; initializes mpr to x*sqrt(1)/1. */
mpr(int x);
/** Assignment operator; sets this to x*sqrt(1)/1 */
mpr& operator= (int x);
/** Normalizes the fraction n/d to lowest terms, with d positive. Does
* not normalize the radical part r.
*/
void normRational();
/** Normalizes the mpr. After this is called, r will have no factors
* which are perfect squares, and n/d will be in lowest terms with a
* positive d.
* @param factor The prime factorizer to use to factor r [defaults
* to a new instance - it is strongly recommended that
* the prime factorization instance be saved if more
* than one normalization is desired].
*/
void norm(prime::factorizer factor = prime::factorizer());
/** Numerator */
mpz_class n;
/** Radical */
mpz_class r;
/** Denominator */
mpz_class d;
}; /* struct mpr */
/** Equality operator for mpr type
* @param a the first mpr to check (should be normalized)
* @param b the second mpr to check (should be normalized)
* @return true for a == b, false otherwise
*/
bool operator== (mpr const& a, mpr const& b);
/** Inequality operator for mpr type
* @param a the first mpr to check (should be normalized)
* @param b the second mpr to check (should be normalized)
* @return true for a != b, false otherwise
*/
bool operator!= (mpr const& a, mpr const& b);
/** Output operator for mpr type */
std::ostream& operator<< (std::ostream& o, mpr x);
/** Takes the absolute value of an mpr
* @param x the mpr to take the absolute value of - should
* be in normal form
* @return absolute value of x
*/
mpr abs(mpr const& x);
/** Takes the sign of an mpr
* @param x the mpr to take the sign of - should be in
* normal form
* @return -1 for x < 0, 0 for x == 0, 1 for x > 0
*/
int sgn(mpr const& x);
/** Matrix of mpr objects. Designed for minimal compatibility with
* lrs::matrix_mpq.
*/
class matrix_mpr {
public:
/** Constructs a matrix with the given number of rows and columns, with
* all elements initialized to zero. If called as the default
* constructor, constructs an empty matrix.
* @param n the number of rows in the matrix [default 0]
* @param d the number of columns in the matrix [default 0]
*/
matrix_mpr(ind n = 0, ind d = 0);
/** Copy constructor.
* @param that matrix to copy
*/
matrix_mpr(matrix_mpr const& that);
/** Destructor */
~matrix_mpr();
/** Assignment operator.
* @param that matrix to copy into this one
*/
matrix_mpr& operator= (matrix_mpr const& that);
/** Gets the number of rows in this matrix. */
ind size() const;
/** Gets the dimension of the rows in this matrix. */
ind dim() const;
/** Gets the (i,j)th element of this matrix */
mpr& elem(ind i, ind j);
/** Gets the (i,j)th element of this matrix */
mpr const& elem(ind i, ind j) const;
private:
/** Matrix data storage */
mpr* m;
/** Number of rows in the matrix */
ind n;
/** Dimension of the matrix rows */
ind d;
}; /* class matrix_mpr */
/** Adds a [1 0 0 ... 0] row to a matrix. When interpreted as an LRS-style
* constraint, equivalent to 1 >= 0 (always true), when interpreted as a
* vector in d-space, ensures that any automorphisms will fix the x_0 = 1
* plane.
* @param M The matrix to append to
* @return a copy of the matrix with an extra row [1 0 0 ... 0] added
*/
lrs::matrix_mpq fixPlane(lrs::matrix_mpq const& M);
/** Computes the inner product matrix of a matrix.
* @param M The matrix to compute the inner product of
* @return a matrix P such that P[i][j] = inner_prod(M[i], M[j])
*/
lrs::matrix_mpq innerProdMat(lrs::matrix_mpq const& M);
/** Computes the inverse of the Q-matrix of a matrix.
* @param M The matrix to compute the Q-matrix inverse for
* @return a matrix inv(Q) such that
* Q = sum 1 to n of outer_prod(M[i], M[j])
*/
lrs::matrix_mpq invQMat(lrs::matrix_mpq const& M);
/** Computes the orthogonal augmentation of a matrix. The augmentation
* matrix will have full rank, and all the added rows will be orthogonal
* to the row vectors already in the matrix.
* @param M The matrix to augment
* @param augSigned Should the added augment vectors be considered to
* be signed. If so, they will be paired with their
* negations (should be true for polyhedra, false for
* hyperplane arrangements) [default true]
* @return a matrix augmented as above
*/
lrs::matrix_mpq orthoAugment(lrs::matrix_mpq const& M,
bool augSigned = true);
/** Computes the column rank augmentation of a matrix.
* @param M The matrix to augment
* @param rows The rows to keep and augment
* @return a matrix augmented as above
*/
lrs::matrix_mpq colRankAugment(lrs::matrix_mpq const& M,
lrs::index_set const& rows);
/** Computes the inner product matrix of M*T with M.
* @param M The matrix to compute the inner products for
* @param T The matrix to transform M by (should be M.d*M.d
* square)
* @return a matrix P such that P[i][j] = inner_prod(M[i]*T,M[j])
*/
lrs::matrix_mpq transformedInnerProdMat(lrs::matrix_mpq const& M,
lrs::matrix_mpq const& T);
/** Computes the inner product matrix of a matrix, normalized according to
* the Euclidean metric.
* @param M The matrix to compute the inner products for.
* Should not have any zero rows - inclusion of a zero
* row will result in undefined results.
* @return a matrix P such that P[i][j] =
* inner_prod(M[i],M[j])/( ||M[i]|| * ||M[j]|| )
*/
matrix_mpr normedInnerProdMat(lrs::matrix_mpq const& M);
/** Selects the submatrix of a matrix determined by the given list of
* indices.
* @param M The matrix to select from
* @param l The set of row indices to select from the matrix.
* The maximum index in l should be less than or equal
* to M.n.
* @return a matrix R such that R[i][j] = M[l[i],j]
*/
lrs::matrix_mpq select_rows(lrs::matrix_mpq const& M, index_list const& l);
} /* namespace basil */
#endif /* BASIL_METRIC_HPP */