Skip to content

Commit ac85216

Browse files
committed
update readme
1 parent c48990a commit ac85216

File tree

5 files changed

+26
-1
lines changed

5 files changed

+26
-1
lines changed

README.md

+26-1
Original file line numberDiff line numberDiff line change
@@ -129,6 +129,15 @@ from scripts_notebooks_fossa.pycombat_umap import combat_util
129129
130130
## 3. Details for each folder
131131
132+
### 0. Metadata
133+
**metadata folder:**
134+
Notebooks and executable programs to:
135+
136+
1. Generate a metadata file from layout of a plate containing all the info about the assay (**metadata_from_layout_program**);
137+
138+
2. Generate a load csv file with the location of the images split by channel, and metadata info from Plate, Well, and Site.
139+
140+
132141
### 1. Profile generator for CellProfiler and DeepProfiler outputs
133142
**profiles folder:**
134143
It has one folder for each software output, but the idea is the same for both. There are two notebooks:
@@ -145,8 +154,10 @@ It will process well-aggregated profiles and apply batch correction using PyComb
145154
146155
- For more details on environment settings, see the readme inside the folder.
147156
157+
- Run TSNE and UMAP for the number of iterations determined and plot the mean embedding and standard deviation.
158+
148159
- Example of a plot:
149-
<img src="https://github.com/broadinstitute/scripts_notebooks_fossa/assets/48028636/9b733dec-2939-4e2c-914d-0e8e8bd06021" width=50% height=50%>
160+
![Alt text](images/TSNE.png)
150161
151162
152163
@@ -175,6 +186,20 @@ Create a dose-response curve based on concentration and cell viability values. U
175186
<img src="https://github.com/broadinstitute/scripts_notebooks_fossa/assets/48028636/bfb49eee-7c3c-4f8f-8ac4-1643709adfdd" width=50% height=50%>
176187
177188
189+
### 6. Plot single features
190+
**individual_feature_and_statistics folder:**
191+
Plot boxplots with each sample colored by the batch with the option to annotate with statannotations.
192+
193+
![Alt text](images/single_feat.png)
194+
195+
### 7. Machine learning
196+
**machine_learning folder:**
197+
Example of running a Random Forest model to find the feature importance between groups and the shap value.
198+
199+
200+
![Alt text](images/shap.png)
201+
![Alt text](images/shap2.png)
202+
178203
# APPENDIX: Submodules tips
179204
180205
## To update a submodule that's inside your main repo

images/TSNE.png

796 KB
Loading

images/shap.png

79.1 KB
Loading

images/shap2.png

86 KB
Loading

images/single_feat.png

86.3 KB
Loading

0 commit comments

Comments
 (0)