-
Notifications
You must be signed in to change notification settings - Fork 0
/
longlong.h
2218 lines (2076 loc) · 78 KB
/
longlong.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* longlong.h -- definitions for mixed size 32/64 bit arithmetic.
Copyright 1991-1994, 1996, 1997, 1999-2005, 2007-2009, 2011-2016 Free Software
Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
/* You have to define the following before including this file:
UWtype -- An unsigned type, default type for operations (typically a "word")
UHWtype -- An unsigned type, at least half the size of UWtype
UDWtype -- An unsigned type, at least twice as large a UWtype
W_TYPE_SIZE -- size in bits of UWtype
SItype, USItype -- Signed and unsigned 32 bit types
DItype, UDItype -- Signed and unsigned 64 bit types
On a 32 bit machine UWtype should typically be USItype;
on a 64 bit machine, UWtype should typically be UDItype.
Optionally, define:
LONGLONG_STANDALONE -- Avoid code that needs machine-dependent support files
NO_ASM -- Disable inline asm
CAUTION! Using this version of longlong.h outside of GMP is not safe. You
need to include gmp.h and gmp-impl.h, or certain things might not work as
expected.
*/
#define __BITS4 (W_TYPE_SIZE / 4)
#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
/* This is used to make sure no undesirable sharing between different libraries
that use this file takes place. */
#ifndef __MPN
#define __MPN(x) __##x
#endif
/* Define auxiliary asm macros.
1) umul_ppmm(high_prod, low_prod, multiplier, multiplicand) multiplies two
UWtype integers MULTIPLIER and MULTIPLICAND, and generates a two UWtype
word product in HIGH_PROD and LOW_PROD.
2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a
UDWtype product. This is just a variant of umul_ppmm.
3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
denominator) divides a UDWtype, composed by the UWtype integers
HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
than DENOMINATOR for correct operation. If, in addition, the most
significant bit of DENOMINATOR must be 1, then the pre-processor symbol
UDIV_NEEDS_NORMALIZATION is defined to 1.
4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
denominator). Like udiv_qrnnd but the numbers are signed. The quotient
is rounded towards 0.
5) count_leading_zeros(count, x) counts the number of zero-bits from the
msb to the first non-zero bit in the UWtype X. This is the number of
steps X needs to be shifted left to set the msb. Undefined for X == 0,
unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value.
6) count_trailing_zeros(count, x) like count_leading_zeros, but counts
from the least significant end.
7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
high_addend_2, low_addend_2) adds two UWtype integers, composed by
HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
(i.e. carry out) is not stored anywhere, and is lost.
8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
and is lost.
If any of these macros are left undefined for a particular CPU,
C macros are used.
Notes:
For add_ssaaaa the two high and two low addends can both commute, but
unfortunately gcc only supports one "%" commutative in each asm block.
This has always been so but is only documented in recent versions
(eg. pre-release 3.3). Having two or more "%"s can cause an internal
compiler error in certain rare circumstances.
Apparently it was only the last "%" that was ever actually respected, so
the code has been updated to leave just that. Clearly there's a free
choice whether high or low should get it, if there's a reason to favour
one over the other. Also obviously when the constraints on the two
operands are identical there's no benefit to the reloader in any "%" at
all.
*/
/* The CPUs come in alphabetical order below.
Please add support for more CPUs here, or improve the current support
for the CPUs below! */
/* count_leading_zeros_gcc_clz is count_leading_zeros implemented with gcc
3.4 __builtin_clzl or __builtin_clzll, according to our limb size.
Similarly count_trailing_zeros_gcc_ctz using __builtin_ctzl or
__builtin_ctzll.
These builtins are only used when we check what code comes out, on some
chips they're merely libgcc calls, where we will instead want an inline
in that case (either asm or generic C).
These builtins are better than an asm block of the same insn, since an
asm block doesn't give gcc any information about scheduling or resource
usage. We keep an asm block for use on prior versions of gcc though.
For reference, __builtin_ffs existed in gcc prior to __builtin_clz, but
it's not used (for count_leading_zeros) because it generally gives extra
code to ensure the result is 0 when the input is 0, which we don't need
or want. */
#ifdef _LONG_LONG_LIMB
#define count_leading_zeros_gcc_clz(count,x) \
do { \
ASSERT ((x) != 0); \
(count) = __builtin_clzll (x); \
} while (0)
#else
#define count_leading_zeros_gcc_clz(count,x) \
do { \
ASSERT ((x) != 0); \
(count) = __builtin_clzl (x); \
} while (0)
#endif
#ifdef _LONG_LONG_LIMB
#define count_trailing_zeros_gcc_ctz(count,x) \
do { \
ASSERT ((x) != 0); \
(count) = __builtin_ctzll (x); \
} while (0)
#else
#define count_trailing_zeros_gcc_ctz(count,x) \
do { \
ASSERT ((x) != 0); \
(count) = __builtin_ctzl (x); \
} while (0)
#endif
/* FIXME: The macros using external routines like __MPN(count_leading_zeros)
don't need to be under !NO_ASM */
#if ! defined (NO_ASM)
#if defined (__alpha) && W_TYPE_SIZE == 64
/* Most alpha-based machines, except Cray systems. */
#if defined (__GNUC__)
#if __GMP_GNUC_PREREQ (3,3)
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UDItype __m0 = (m0), __m1 = (m1); \
(ph) = __builtin_alpha_umulh (__m0, __m1); \
(pl) = __m0 * __m1; \
} while (0)
#else
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UDItype __m0 = (m0), __m1 = (m1); \
__asm__ ("umulh %r1,%2,%0" \
: "=r" (ph) \
: "%rJ" (__m0), "rI" (__m1)); \
(pl) = __m0 * __m1; \
} while (0)
#endif
#define UMUL_TIME 18
#else /* ! __GNUC__ */
#include <machine/builtins.h>
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UDItype __m0 = (m0), __m1 = (m1); \
(ph) = __UMULH (__m0, __m1); \
(pl) = __m0 * __m1; \
} while (0)
#endif
#ifndef LONGLONG_STANDALONE
#define udiv_qrnnd(q, r, n1, n0, d) \
do { UWtype __di; \
__di = __MPN(invert_limb) (d); \
udiv_qrnnd_preinv (q, r, n1, n0, d, __di); \
} while (0)
#define UDIV_PREINV_ALWAYS 1
#define UDIV_NEEDS_NORMALIZATION 1
#define UDIV_TIME 220
#endif /* LONGLONG_STANDALONE */
/* clz_tab is required in all configurations, since mpn/alpha/cntlz.asm
always goes into libgmp.so, even when not actually used. */
#define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#if defined (__GNUC__) && HAVE_HOST_CPU_alpha_CIX
#define count_leading_zeros(COUNT,X) \
__asm__("ctlz %1,%0" : "=r"(COUNT) : "r"(X))
#define count_trailing_zeros(COUNT,X) \
__asm__("cttz %1,%0" : "=r"(COUNT) : "r"(X))
#endif /* clz/ctz using cix */
#if ! defined (count_leading_zeros) \
&& defined (__GNUC__) && ! defined (LONGLONG_STANDALONE)
/* ALPHA_CMPBGE_0 gives "cmpbge $31,src,dst", ie. test src bytes == 0.
"$31" is written explicitly in the asm, since an "r" constraint won't
select reg 31. There seems no need to worry about "r31" syntax for cray,
since gcc itself (pre-release 3.4) emits just $31 in various places. */
#define ALPHA_CMPBGE_0(dst, src) \
do { asm ("cmpbge $31, %1, %0" : "=r" (dst) : "r" (src)); } while (0)
/* Zero bytes are turned into bits with cmpbge, a __clz_tab lookup counts
them, locating the highest non-zero byte. A second __clz_tab lookup
counts the leading zero bits in that byte, giving the result. */
#define count_leading_zeros(count, x) \
do { \
UWtype __clz__b, __clz__c, __clz__x = (x); \
ALPHA_CMPBGE_0 (__clz__b, __clz__x); /* zero bytes */ \
__clz__b = __clz_tab [(__clz__b >> 1) ^ 0x7F]; /* 8 to 1 byte */ \
__clz__b = __clz__b * 8 - 7; /* 57 to 1 shift */ \
__clz__x >>= __clz__b; \
__clz__c = __clz_tab [__clz__x]; /* 8 to 1 bit */ \
__clz__b = 65 - __clz__b; \
(count) = __clz__b - __clz__c; \
} while (0)
#define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#endif /* clz using cmpbge */
#if ! defined (count_leading_zeros) && ! defined (LONGLONG_STANDALONE)
#if HAVE_ATTRIBUTE_CONST
long __MPN(count_leading_zeros) (UDItype) __attribute__ ((const));
#else
long __MPN(count_leading_zeros) (UDItype);
#endif
#define count_leading_zeros(count, x) \
((count) = __MPN(count_leading_zeros) (x))
#endif /* clz using mpn */
#endif /* __alpha */
#if defined (__AVR) && W_TYPE_SIZE == 8
#define umul_ppmm(ph, pl, m0, m1) \
do { \
unsigned short __p = (unsigned short) (m0) * (m1); \
(ph) = __p >> 8; \
(pl) = __p; \
} while (0)
#endif /* AVR */
#if defined (_CRAY) && W_TYPE_SIZE == 64
#include <intrinsics.h>
#define UDIV_PREINV_ALWAYS 1
#define UDIV_NEEDS_NORMALIZATION 1
#define UDIV_TIME 220
long __MPN(count_leading_zeros) (UDItype);
#define count_leading_zeros(count, x) \
((count) = _leadz ((UWtype) (x)))
#if defined (_CRAYIEEE) /* I.e., Cray T90/ieee, T3D, and T3E */
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UDItype __m0 = (m0), __m1 = (m1); \
(ph) = _int_mult_upper (__m0, __m1); \
(pl) = __m0 * __m1; \
} while (0)
#ifndef LONGLONG_STANDALONE
#define udiv_qrnnd(q, r, n1, n0, d) \
do { UWtype __di; \
__di = __MPN(invert_limb) (d); \
udiv_qrnnd_preinv (q, r, n1, n0, d, __di); \
} while (0)
#endif /* LONGLONG_STANDALONE */
#endif /* _CRAYIEEE */
#endif /* _CRAY */
#if defined (__ia64) && W_TYPE_SIZE == 64
/* This form encourages gcc (pre-release 3.4 at least) to emit predicated
"sub r=r,r" and "sub r=r,r,1", giving a 2 cycle latency. The generic
code using "al<bl" arithmetically comes out making an actual 0 or 1 in a
register, which takes an extra cycle. */
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
do { \
UWtype __x; \
__x = (al) - (bl); \
if ((al) < (bl)) \
(sh) = (ah) - (bh) - 1; \
else \
(sh) = (ah) - (bh); \
(sl) = __x; \
} while (0)
#if defined (__GNUC__) && ! defined (__INTEL_COMPILER)
/* Do both product parts in assembly, since that gives better code with
all gcc versions. Some callers will just use the upper part, and in
that situation we waste an instruction, but not any cycles. */
#define umul_ppmm(ph, pl, m0, m1) \
__asm__ ("xma.hu %0 = %2, %3, f0\n\txma.l %1 = %2, %3, f0" \
: "=&f" (ph), "=f" (pl) \
: "f" (m0), "f" (m1))
#define UMUL_TIME 14
#define count_leading_zeros(count, x) \
do { \
UWtype _x = (x), _y, _a, _c; \
__asm__ ("mux1 %0 = %1, @rev" : "=r" (_y) : "r" (_x)); \
__asm__ ("czx1.l %0 = %1" : "=r" (_a) : "r" (-_y | _y)); \
_c = (_a - 1) << 3; \
_x >>= _c; \
if (_x >= 1 << 4) \
_x >>= 4, _c += 4; \
if (_x >= 1 << 2) \
_x >>= 2, _c += 2; \
_c += _x >> 1; \
(count) = W_TYPE_SIZE - 1 - _c; \
} while (0)
/* similar to what gcc does for __builtin_ffs, but 0 based rather than 1
based, and we don't need a special case for x==0 here */
#define count_trailing_zeros(count, x) \
do { \
UWtype __ctz_x = (x); \
__asm__ ("popcnt %0 = %1" \
: "=r" (count) \
: "r" ((__ctz_x-1) & ~__ctz_x)); \
} while (0)
#endif
#if defined (__INTEL_COMPILER)
#include <ia64intrin.h>
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UWtype __m0 = (m0), __m1 = (m1); \
ph = _m64_xmahu (__m0, __m1, 0); \
pl = __m0 * __m1; \
} while (0)
#endif
#ifndef LONGLONG_STANDALONE
#define udiv_qrnnd(q, r, n1, n0, d) \
do { UWtype __di; \
__di = __MPN(invert_limb) (d); \
udiv_qrnnd_preinv (q, r, n1, n0, d, __di); \
} while (0)
#define UDIV_PREINV_ALWAYS 1
#define UDIV_NEEDS_NORMALIZATION 1
#endif
#define UDIV_TIME 220
#endif
#if defined (__GNUC__)
/* We sometimes need to clobber "cc" with gcc2, but that would not be
understood by gcc1. Use cpp to avoid major code duplication. */
#if __GNUC__ < 2
#define __CLOBBER_CC
#define __AND_CLOBBER_CC
#else /* __GNUC__ >= 2 */
#define __CLOBBER_CC : "cc"
#define __AND_CLOBBER_CC , "cc"
#endif /* __GNUC__ < 2 */
#if (defined (__a29k__) || defined (_AM29K)) && W_TYPE_SIZE == 32
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("add %1,%4,%5\n\taddc %0,%2,%3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "%r" (al), "rI" (bl))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("sub %1,%4,%5\n\tsubc %0,%2,%3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "r" (al), "rI" (bl))
#define umul_ppmm(xh, xl, m0, m1) \
do { \
USItype __m0 = (m0), __m1 = (m1); \
__asm__ ("multiplu %0,%1,%2" \
: "=r" (xl) \
: "r" (__m0), "r" (__m1)); \
__asm__ ("multmu %0,%1,%2" \
: "=r" (xh) \
: "r" (__m0), "r" (__m1)); \
} while (0)
#define udiv_qrnnd(q, r, n1, n0, d) \
__asm__ ("dividu %0,%3,%4" \
: "=r" (q), "=q" (r) \
: "1" (n1), "r" (n0), "r" (d))
#define count_leading_zeros(count, x) \
__asm__ ("clz %0,%1" \
: "=r" (count) \
: "r" (x))
#define COUNT_LEADING_ZEROS_0 32
#endif /* __a29k__ */
#if defined (__arc__)
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("add.f\t%1, %4, %5\n\tadc\t%0, %2, %3" \
: "=r" (sh), \
"=&r" (sl) \
: "r" ((USItype) (ah)), \
"rICal" ((USItype) (bh)), \
"%r" ((USItype) (al)), \
"rICal" ((USItype) (bl)))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("sub.f\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
: "=r" (sh), \
"=&r" (sl) \
: "r" ((USItype) (ah)), \
"rICal" ((USItype) (bh)), \
"r" ((USItype) (al)), \
"rICal" ((USItype) (bl)))
#endif
#if defined (__arm__) && (defined (__thumb2__) || !defined (__thumb__)) \
&& W_TYPE_SIZE == 32
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("adds\t%1, %4, %5\n\tadc\t%0, %2, %3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "%r" (al), "rI" (bl) __CLOBBER_CC)
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
do { \
if (__builtin_constant_p (al)) \
{ \
if (__builtin_constant_p (ah)) \
__asm__ ("rsbs\t%1, %5, %4\n\trsc\t%0, %3, %2" \
: "=r" (sh), "=&r" (sl) \
: "rI" (ah), "r" (bh), "rI" (al), "r" (bl) __CLOBBER_CC); \
else \
__asm__ ("rsbs\t%1, %5, %4\n\tsbc\t%0, %2, %3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "rI" (al), "r" (bl) __CLOBBER_CC); \
} \
else if (__builtin_constant_p (ah)) \
{ \
if (__builtin_constant_p (bl)) \
__asm__ ("subs\t%1, %4, %5\n\trsc\t%0, %3, %2" \
: "=r" (sh), "=&r" (sl) \
: "rI" (ah), "r" (bh), "r" (al), "rI" (bl) __CLOBBER_CC); \
else \
__asm__ ("rsbs\t%1, %5, %4\n\trsc\t%0, %3, %2" \
: "=r" (sh), "=&r" (sl) \
: "rI" (ah), "r" (bh), "rI" (al), "r" (bl) __CLOBBER_CC); \
} \
else if (__builtin_constant_p (bl)) \
{ \
if (__builtin_constant_p (bh)) \
__asm__ ("subs\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "r" (al), "rI" (bl) __CLOBBER_CC); \
else \
__asm__ ("subs\t%1, %4, %5\n\trsc\t%0, %3, %2" \
: "=r" (sh), "=&r" (sl) \
: "rI" (ah), "r" (bh), "r" (al), "rI" (bl) __CLOBBER_CC); \
} \
else /* only bh might be a constant */ \
__asm__ ("subs\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
: "=r" (sh), "=&r" (sl) \
: "r" (ah), "rI" (bh), "r" (al), "rI" (bl) __CLOBBER_CC);\
} while (0)
#if defined (__ARM_ARCH_2__) || defined (__ARM_ARCH_2A__) \
|| defined (__ARM_ARCH_3__)
#define umul_ppmm(xh, xl, a, b) \
do { \
register USItype __t0, __t1, __t2; \
__asm__ ("%@ Inlined umul_ppmm\n" \
" mov %2, %5, lsr #16\n" \
" mov %0, %6, lsr #16\n" \
" bic %3, %5, %2, lsl #16\n" \
" bic %4, %6, %0, lsl #16\n" \
" mul %1, %3, %4\n" \
" mul %4, %2, %4\n" \
" mul %3, %0, %3\n" \
" mul %0, %2, %0\n" \
" adds %3, %4, %3\n" \
" addcs %0, %0, #65536\n" \
" adds %1, %1, %3, lsl #16\n" \
" adc %0, %0, %3, lsr #16" \
: "=&r" ((USItype) (xh)), "=r" ((USItype) (xl)), \
"=&r" (__t0), "=&r" (__t1), "=r" (__t2) \
: "r" ((USItype) (a)), "r" ((USItype) (b)) __CLOBBER_CC); \
} while (0)
#define UMUL_TIME 20
#ifndef LONGLONG_STANDALONE
#define udiv_qrnnd(q, r, n1, n0, d) \
do { UWtype __r; \
(q) = __MPN(udiv_qrnnd) (&__r, (n1), (n0), (d)); \
(r) = __r; \
} while (0)
extern UWtype __MPN(udiv_qrnnd) (UWtype *, UWtype, UWtype, UWtype);
#define UDIV_TIME 200
#endif /* LONGLONG_STANDALONE */
#else /* ARMv4 or newer */
#define umul_ppmm(xh, xl, a, b) \
__asm__ ("umull %0,%1,%2,%3" : "=&r" (xl), "=&r" (xh) : "r" (a), "r" (b))
#define UMUL_TIME 5
#define smul_ppmm(xh, xl, a, b) \
__asm__ ("smull %0,%1,%2,%3" : "=&r" (xl), "=&r" (xh) : "r" (a), "r" (b))
#ifndef LONGLONG_STANDALONE
#define udiv_qrnnd(q, r, n1, n0, d) \
do { UWtype __di; \
__di = __MPN(invert_limb) (d); \
udiv_qrnnd_preinv (q, r, n1, n0, d, __di); \
} while (0)
#define UDIV_PREINV_ALWAYS 1
#define UDIV_NEEDS_NORMALIZATION 1
#define UDIV_TIME 70
#endif /* LONGLONG_STANDALONE */
#endif /* defined(__ARM_ARCH_2__) ... */
#define count_leading_zeros(count, x) count_leading_zeros_gcc_clz(count, x)
#define count_trailing_zeros(count, x) count_trailing_zeros_gcc_ctz(count, x)
#define COUNT_LEADING_ZEROS_0 32
#endif /* __arm__ */
#if defined (__aarch64__) && W_TYPE_SIZE == 64
/* FIXME: Extend the immediate range for the low word by using both
ADDS and SUBS, since they set carry in the same way. */
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("adds\t%1, %x4, %5\n\tadc\t%0, %x2, %x3" \
: "=r" (sh), "=&r" (sl) \
: "rZ" ((UDItype)(ah)), "rZ" ((UDItype)(bh)), \
"%r" ((UDItype)(al)), "rI" ((UDItype)(bl)) __CLOBBER_CC)
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("subs\t%1, %x4, %5\n\tsbc\t%0, %x2, %x3" \
: "=r,r" (sh), "=&r,&r" (sl) \
: "rZ,rZ" ((UDItype)(ah)), "rZ,rZ" ((UDItype)(bh)), \
"r,Z" ((UDItype)(al)), "rI,r" ((UDItype)(bl)) __CLOBBER_CC)
#define umul_ppmm(ph, pl, m0, m1) \
do { \
UDItype __m0 = (m0), __m1 = (m1); \
__asm__ ("umulh\t%0, %1, %2" : "=r" (ph) : "r" (__m0), "r" (__m1)); \
(pl) = __m0 * __m1; \
} while (0)
#define count_leading_zeros(count, x) count_leading_zeros_gcc_clz(count, x)
#define count_trailing_zeros(count, x) count_trailing_zeros_gcc_ctz(count, x)
#define COUNT_LEADING_ZEROS_0 64
#endif /* __aarch64__ */
#if defined (__clipper__) && W_TYPE_SIZE == 32
#define umul_ppmm(w1, w0, u, v) \
({union {UDItype __ll; \
struct {USItype __l, __h;} __i; \
} __x; \
__asm__ ("mulwux %2,%0" \
: "=r" (__x.__ll) \
: "%0" ((USItype)(u)), "r" ((USItype)(v))); \
(w1) = __x.__i.__h; (w0) = __x.__i.__l;})
#define smul_ppmm(w1, w0, u, v) \
({union {DItype __ll; \
struct {SItype __l, __h;} __i; \
} __x; \
__asm__ ("mulwx %2,%0" \
: "=r" (__x.__ll) \
: "%0" ((SItype)(u)), "r" ((SItype)(v))); \
(w1) = __x.__i.__h; (w0) = __x.__i.__l;})
#define __umulsidi3(u, v) \
({UDItype __w; \
__asm__ ("mulwux %2,%0" \
: "=r" (__w) : "%0" ((USItype)(u)), "r" ((USItype)(v))); \
__w; })
#endif /* __clipper__ */
/* Fujitsu vector computers. */
#if defined (__uxp__) && W_TYPE_SIZE == 32
#define umul_ppmm(ph, pl, u, v) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__asm__ ("mult.lu %1,%2,%0" : "=r" (__x.__ll) : "%r" (u), "rK" (v));\
(ph) = __x.__i.__h; \
(pl) = __x.__i.__l; \
} while (0)
#define smul_ppmm(ph, pl, u, v) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__asm__ ("mult.l %1,%2,%0" : "=r" (__x.__ll) : "%r" (u), "rK" (v)); \
(ph) = __x.__i.__h; \
(pl) = __x.__i.__l; \
} while (0)
#endif
#if defined (__gmicro__) && W_TYPE_SIZE == 32
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("add.w %5,%1\n\taddx %3,%0" \
: "=g" (sh), "=&g" (sl) \
: "0" ((USItype)(ah)), "g" ((USItype)(bh)), \
"%1" ((USItype)(al)), "g" ((USItype)(bl)))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("sub.w %5,%1\n\tsubx %3,%0" \
: "=g" (sh), "=&g" (sl) \
: "0" ((USItype)(ah)), "g" ((USItype)(bh)), \
"1" ((USItype)(al)), "g" ((USItype)(bl)))
#define umul_ppmm(ph, pl, m0, m1) \
__asm__ ("mulx %3,%0,%1" \
: "=g" (ph), "=r" (pl) \
: "%0" ((USItype)(m0)), "g" ((USItype)(m1)))
#define udiv_qrnnd(q, r, nh, nl, d) \
__asm__ ("divx %4,%0,%1" \
: "=g" (q), "=r" (r) \
: "1" ((USItype)(nh)), "0" ((USItype)(nl)), "g" ((USItype)(d)))
#define count_leading_zeros(count, x) \
__asm__ ("bsch/1 %1,%0" \
: "=g" (count) : "g" ((USItype)(x)), "0" ((USItype)0))
#endif
#if defined (__hppa) && W_TYPE_SIZE == 32
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("add%I5 %5,%r4,%1\n\taddc %r2,%r3,%0" \
: "=r" (sh), "=&r" (sl) \
: "rM" (ah), "rM" (bh), "%rM" (al), "rI" (bl))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("sub%I4 %4,%r5,%1\n\tsubb %r2,%r3,%0" \
: "=r" (sh), "=&r" (sl) \
: "rM" (ah), "rM" (bh), "rI" (al), "rM" (bl))
#if defined (_PA_RISC1_1)
#define umul_ppmm(wh, wl, u, v) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__asm__ ("xmpyu %1,%2,%0" : "=*f" (__x.__ll) : "*f" (u), "*f" (v)); \
(wh) = __x.__i.__h; \
(wl) = __x.__i.__l; \
} while (0)
#define UMUL_TIME 8
#define UDIV_TIME 60
#else
#define UMUL_TIME 40
#define UDIV_TIME 80
#endif
#define count_leading_zeros(count, x) \
do { \
USItype __tmp; \
__asm__ ( \
"ldi 1,%0\n" \
" extru,= %1,15,16,%%r0 ; Bits 31..16 zero?\n" \
" extru,tr %1,15,16,%1 ; No. Shift down, skip add.\n" \
" ldo 16(%0),%0 ; Yes. Perform add.\n" \
" extru,= %1,23,8,%%r0 ; Bits 15..8 zero?\n" \
" extru,tr %1,23,8,%1 ; No. Shift down, skip add.\n" \
" ldo 8(%0),%0 ; Yes. Perform add.\n" \
" extru,= %1,27,4,%%r0 ; Bits 7..4 zero?\n" \
" extru,tr %1,27,4,%1 ; No. Shift down, skip add.\n" \
" ldo 4(%0),%0 ; Yes. Perform add.\n" \
" extru,= %1,29,2,%%r0 ; Bits 3..2 zero?\n" \
" extru,tr %1,29,2,%1 ; No. Shift down, skip add.\n" \
" ldo 2(%0),%0 ; Yes. Perform add.\n" \
" extru %1,30,1,%1 ; Extract bit 1.\n" \
" sub %0,%1,%0 ; Subtract it.\n" \
: "=r" (count), "=r" (__tmp) : "1" (x)); \
} while (0)
#endif /* hppa */
/* These macros are for ABI=2.0w. In ABI=2.0n they can't be used, since GCC
(3.2) puts longlong into two adjacent 32-bit registers. Presumably this
is just a case of no direct support for 2.0n but treating it like 1.0. */
#if defined (__hppa) && W_TYPE_SIZE == 64 && ! defined (_LONG_LONG_LIMB)
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("add%I5 %5,%r4,%1\n\tadd,dc %r2,%r3,%0" \
: "=r" (sh), "=&r" (sl) \
: "rM" (ah), "rM" (bh), "%rM" (al), "rI" (bl))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("sub%I4 %4,%r5,%1\n\tsub,db %r2,%r3,%0" \
: "=r" (sh), "=&r" (sl) \
: "rM" (ah), "rM" (bh), "rI" (al), "rM" (bl))
#endif /* hppa */
#if (defined (__i370__) || defined (__s390__) || defined (__mvs__)) && W_TYPE_SIZE == 32
#if defined (__zarch__) || defined (HAVE_HOST_CPU_s390_zarch)
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
do { \
/* if (__builtin_constant_p (bl)) \
__asm__ ("alfi\t%1,%o5\n\talcr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" (ah), "r" (bh), "%1" (al), "n" (bl) __CLOBBER_CC);\
else \
*/ __asm__ ("alr\t%1,%5\n\talcr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" (ah), "r" (bh), "%1" (al), "r" (bl)__CLOBBER_CC); \
} while (0)
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
do { \
/* if (__builtin_constant_p (bl)) \
__asm__ ("slfi\t%1,%o5\n\tslbr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" (ah), "r" (bh), "1" (al), "n" (bl) __CLOBBER_CC); \
else \
*/ __asm__ ("slr\t%1,%5\n\tslbr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" (ah), "r" (bh), "1" (al), "r" (bl) __CLOBBER_CC); \
} while (0)
#if __GMP_GNUC_PREREQ (4,5)
#define umul_ppmm(xh, xl, m0, m1) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__x.__ll = (UDItype) (m0) * (UDItype) (m1); \
(xh) = __x.__i.__h; (xl) = __x.__i.__l; \
} while (0)
#else
#if 0
/* FIXME: this fails if gcc knows about the 64-bit registers. Use only
with a new enough processor pretending we have 32-bit registers. */
#define umul_ppmm(xh, xl, m0, m1) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__asm__ ("mlr\t%0,%2" \
: "=r" (__x.__ll) \
: "%0" (m0), "r" (m1)); \
(xh) = __x.__i.__h; (xl) = __x.__i.__l; \
} while (0)
#else
#define umul_ppmm(xh, xl, m0, m1) \
do { \
/* When we have 64-bit regs and gcc is aware of that, we cannot simply use
DImode for the product, since that would be allocated to a single 64-bit
register, whereas mlr uses the low 32-bits of an even-odd register pair.
*/ \
register USItype __r0 __asm__ ("0"); \
register USItype __r1 __asm__ ("1") = (m0); \
__asm__ ("mlr\t%0,%3" \
: "=r" (__r0), "=r" (__r1) \
: "r" (__r1), "r" (m1)); \
(xh) = __r0; (xl) = __r1; \
} while (0)
#endif /* if 0 */
#endif
#if 0
/* FIXME: this fails if gcc knows about the 64-bit registers. Use only
with a new enough processor pretending we have 32-bit registers. */
#define udiv_qrnnd(q, r, n1, n0, d) \
do { \
union {UDItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__x.__i.__h = n1; __x.__i.__l = n0; \
__asm__ ("dlr\t%0,%2" \
: "=r" (__x.__ll) \
: "0" (__x.__ll), "r" (d)); \
(q) = __x.__i.__l; (r) = __x.__i.__h; \
} while (0)
#else
#define udiv_qrnnd(q, r, n1, n0, d) \
do { \
register USItype __r0 __asm__ ("0") = (n1); \
register USItype __r1 __asm__ ("1") = (n0); \
__asm__ ("dlr\t%0,%4" \
: "=r" (__r0), "=r" (__r1) \
: "r" (__r0), "r" (__r1), "r" (d)); \
(q) = __r1; (r) = __r0; \
} while (0)
#endif /* if 0 */
#else /* if __zarch__ */
/* FIXME: this fails if gcc knows about the 64-bit registers. */
#define smul_ppmm(xh, xl, m0, m1) \
do { \
union {DItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__asm__ ("mr\t%0,%2" \
: "=r" (__x.__ll) \
: "%0" (m0), "r" (m1)); \
(xh) = __x.__i.__h; (xl) = __x.__i.__l; \
} while (0)
/* FIXME: this fails if gcc knows about the 64-bit registers. */
#define sdiv_qrnnd(q, r, n1, n0, d) \
do { \
union {DItype __ll; \
struct {USItype __h, __l;} __i; \
} __x; \
__x.__i.__h = n1; __x.__i.__l = n0; \
__asm__ ("dr\t%0,%2" \
: "=r" (__x.__ll) \
: "0" (__x.__ll), "r" (d)); \
(q) = __x.__i.__l; (r) = __x.__i.__h; \
} while (0)
#endif /* if __zarch__ */
#endif
#if defined (__s390x__) && W_TYPE_SIZE == 64
/* We need to cast operands with register constraints, otherwise their types
will be assumed to be SImode by gcc. For these machines, such operations
will insert a value into the low 32 bits, and leave the high 32 bits with
garbage. */
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
do { \
__asm__ ("algr\t%1,%5\n\talcgr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" ((UDItype)(ah)), "r" ((UDItype)(bh)), \
"%1" ((UDItype)(al)), "r" ((UDItype)(bl)) __CLOBBER_CC); \
} while (0)
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
do { \
__asm__ ("slgr\t%1,%5\n\tslbgr\t%0,%3" \
: "=r" (sh), "=&r" (sl) \
: "0" ((UDItype)(ah)), "r" ((UDItype)(bh)), \
"1" ((UDItype)(al)), "r" ((UDItype)(bl)) __CLOBBER_CC); \
} while (0)
#define umul_ppmm(xh, xl, m0, m1) \
do { \
union {unsigned int __attribute__ ((mode(TI))) __ll; \
struct {UDItype __h, __l;} __i; \
} __x; \
__asm__ ("mlgr\t%0,%2" \
: "=r" (__x.__ll) \
: "%0" ((UDItype)(m0)), "r" ((UDItype)(m1))); \
(xh) = __x.__i.__h; (xl) = __x.__i.__l; \
} while (0)
#define udiv_qrnnd(q, r, n1, n0, d) \
do { \
union {unsigned int __attribute__ ((mode(TI))) __ll; \
struct {UDItype __h, __l;} __i; \
} __x; \
__x.__i.__h = n1; __x.__i.__l = n0; \
__asm__ ("dlgr\t%0,%2" \
: "=r" (__x.__ll) \
: "0" (__x.__ll), "r" ((UDItype)(d))); \
(q) = __x.__i.__l; (r) = __x.__i.__h; \
} while (0)
#if 0 /* FIXME: Enable for z10 (?) */
#define count_leading_zeros(cnt, x) \
do { \
union {unsigned int __attribute__ ((mode(TI))) __ll; \
struct {UDItype __h, __l;} __i; \
} __clr_cnt; \
__asm__ ("flogr\t%0,%1" \
: "=r" (__clr_cnt.__ll) \
: "r" (x) __CLOBBER_CC); \
(cnt) = __clr_cnt.__i.__h; \
} while (0)
#endif
#endif
/* On x86 and x86_64, every asm implicitly clobbers "flags" and "fpsr",
so we don't need __CLOBBER_CC. */
#if (defined (__i386__) || defined (__i486__)) && W_TYPE_SIZE == 32
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("addl %5,%k1\n\tadcl %3,%k0" \
: "=r" (sh), "=&r" (sl) \
: "0" ((USItype)(ah)), "g" ((USItype)(bh)), \
"%1" ((USItype)(al)), "g" ((USItype)(bl)))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("subl %5,%k1\n\tsbbl %3,%k0" \
: "=r" (sh), "=&r" (sl) \
: "0" ((USItype)(ah)), "g" ((USItype)(bh)), \
"1" ((USItype)(al)), "g" ((USItype)(bl)))
#define umul_ppmm(w1, w0, u, v) \
__asm__ ("mull %3" \
: "=a" (w0), "=d" (w1) \
: "%0" ((USItype)(u)), "rm" ((USItype)(v)))
#define udiv_qrnnd(q, r, n1, n0, dx) /* d renamed to dx avoiding "=d" */\
__asm__ ("divl %4" /* stringification in K&R C */ \
: "=a" (q), "=d" (r) \
: "0" ((USItype)(n0)), "1" ((USItype)(n1)), "rm" ((USItype)(dx)))
#if HAVE_HOST_CPU_i586 || HAVE_HOST_CPU_pentium || HAVE_HOST_CPU_pentiummmx
/* Pentium bsrl takes between 10 and 72 cycles depending where the most
significant 1 bit is, hence the use of the following alternatives. bsfl
is slow too, between 18 and 42 depending where the least significant 1
bit is, so let the generic count_trailing_zeros below make use of the
count_leading_zeros here too. */
#if HAVE_HOST_CPU_pentiummmx && ! defined (LONGLONG_STANDALONE)
/* The following should be a fixed 14 or 15 cycles, but possibly plus an L1
cache miss reading from __clz_tab. For P55 it's favoured over the float
below so as to avoid mixing MMX and x87, since the penalty for switching
between the two is about 100 cycles.
The asm block sets __shift to -3 if the high 24 bits are clear, -2 for
16, -1 for 8, or 0 otherwise. This could be written equivalently as
follows, but as of gcc 2.95.2 it results in conditional jumps.
__shift = -(__n < 0x1000000);
__shift -= (__n < 0x10000);
__shift -= (__n < 0x100);
The middle two sbbl and cmpl's pair, and with luck something gcc
generates might pair with the first cmpl and the last sbbl. The "32+1"
constant could be folded into __clz_tab[], but it doesn't seem worth
making a different table just for that. */
#define count_leading_zeros(c,n) \
do { \
USItype __n = (n); \
USItype __shift; \
__asm__ ("cmpl $0x1000000, %1\n" \
"sbbl %0, %0\n" \
"cmpl $0x10000, %1\n" \
"sbbl $0, %0\n" \
"cmpl $0x100, %1\n" \
"sbbl $0, %0\n" \
: "=&r" (__shift) : "r" (__n)); \
__shift = __shift*8 + 24 + 1; \
(c) = 32 + 1 - __shift - __clz_tab[__n >> __shift]; \
} while (0)
#define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
#define COUNT_LEADING_ZEROS_0 31 /* n==0 indistinguishable from n==1 */
#else /* ! pentiummmx || LONGLONG_STANDALONE */
/* The following should be a fixed 14 cycles or so. Some scheduling
opportunities should be available between the float load/store too. This
sort of code is used in gcc 3 for __builtin_ffs (with "n&-n") and is
apparently suggested by the Intel optimizing manual (don't know exactly
where). gcc 2.95 or up will be best for this, so the "double" is
correctly aligned on the stack. */
#define count_leading_zeros(c,n) \
do { \
union { \
double d; \
unsigned a[2]; \
} __u; \
ASSERT ((n) != 0); \
__u.d = (UWtype) (n); \
(c) = 0x3FF + 31 - (__u.a[1] >> 20); \
} while (0)
#define COUNT_LEADING_ZEROS_0 (0x3FF + 31)
#endif /* pentiummx */
#else /* ! pentium */
#if __GMP_GNUC_PREREQ (3,4) /* using bsrl */
#define count_leading_zeros(count,x) count_leading_zeros_gcc_clz(count,x)
#endif /* gcc clz */
/* On P6, gcc prior to 3.0 generates a partial register stall for
__cbtmp^31, due to using "xorb $31" instead of "xorl $31", the former
being 1 code byte smaller. "31-__cbtmp" is a workaround, probably at the
cost of one extra instruction. Do this for "i386" too, since that means
generic x86. */
#if ! defined (count_leading_zeros) && __GNUC__ < 3 \
&& (HAVE_HOST_CPU_i386 \
|| HAVE_HOST_CPU_i686 \
|| HAVE_HOST_CPU_pentiumpro \
|| HAVE_HOST_CPU_pentium2 \
|| HAVE_HOST_CPU_pentium3)
#define count_leading_zeros(count, x) \
do { \
USItype __cbtmp; \
ASSERT ((x) != 0); \
__asm__ ("bsrl %1,%0" : "=r" (__cbtmp) : "rm" ((USItype)(x))); \
(count) = 31 - __cbtmp; \
} while (0)
#endif /* gcc<3 asm bsrl */
#ifndef count_leading_zeros
#define count_leading_zeros(count, x) \
do { \
USItype __cbtmp; \
ASSERT ((x) != 0); \
__asm__ ("bsrl %1,%0" : "=r" (__cbtmp) : "rm" ((USItype)(x))); \
(count) = __cbtmp ^ 31; \
} while (0)
#endif /* asm bsrl */
#if __GMP_GNUC_PREREQ (3,4) /* using bsfl */
#define count_trailing_zeros(count,x) count_trailing_zeros_gcc_ctz(count,x)
#endif /* gcc ctz */
#ifndef count_trailing_zeros
#define count_trailing_zeros(count, x) \
do { \
ASSERT ((x) != 0); \
__asm__ ("bsfl %1,%k0" : "=r" (count) : "rm" ((USItype)(x))); \
} while (0)
#endif /* asm bsfl */
#endif /* ! pentium */
#ifndef UMUL_TIME