-
Notifications
You must be signed in to change notification settings - Fork 51
/
index.Rmd
executable file
·223 lines (142 loc) · 6.66 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
<style>@import url(style.css);</style>
# Introduction to Data Analysis
[François Briatte](http://f.briatte.org/) and [Ivaylo Petev](http://ipetev.org/)
[Sciences Po](http://www.sciences-po.fr/), [Euro-American Campus](http://college.sciences-po.fr/sitereims/)
Spring 2013
This course is an introduction to analyzing data with the [R](http://www.r-project.org/) software. It features some mathematics and statistics as well as some statistical computing and data visualization. You will need a laptop with an Internet connection to follow the class.
To get started, [download the entire course](https://github.com/briatte/ida/archive/master.zip). To take a look at what the course material is made of, [view it on GitHub first](https://github.com/briatte/ida). It's not a large download.
- [Syllabus][syllabus]
- [Introduction][001]
- [Readings][002]
[syllabus]: https://github.com/briatte/ida/raw/master/syllabus.pdf
[001]: 001_intro.html
[002]: 002_readings.html
> __Part 1: Introduction to Statistical Computing__. The course starts by one month dedicated to setting up R and learning its basic functionalities. All course logistics will be discussed in these weeks.
## 1. [Setup][010]
__Readings:__ Kabacoff, ch. 1 and Teetor, ch. 1 and 3.
- [Installing R][011]
- [Installing RStudio][012]
- [Practice][013]
[010]: 010_setup.html
[011]: 011_r.html
[012]: 012_rstudio.html
[013]: 013_practice.html
* * *
## 2. [Objects][020]
__Readings:__ Teetor, ch. 2 and 5.
- [Vectors and matrices][021]
- [Variables and factors][022]
- [Practice][023]
[020]: 020_objects.html
[021]: 021_vectors.html
[022]: 022_variables.html
[023]: 023_practice.html
* * *
## 3. [Functions][030]
__Readings:__ Kabacoff, ch. 5, and Teetor, ch. 8.
<!-- Matloff, ch. 8. -->
- [Control flow][031]
- [Iteration][032]
- [Practice][033]
[030]: 030_functions.html
[031]: 031_control.html
[032]: 032_iteration.html
[033]: 033_practice.html
* * *
## 4. [Data][040]
__Readings:__ Kabacoff, ch. 4, and Teetor, ch. 4 and 6-7.
- [Imports and exports][041]
- [Reshapes and aggregates][042]
- [Practice][043]
[040]: 040_data.html
[041]: 041_dataio.html
[042]: 042_reshaping.html
[043]: 043_practice.html
* * *
> __Part 2: Introduction to Statistical Analysis__. The course continues by showcasing some statistical techniques, from finding clusters of related data to modelling relationships between several variables.
## 5. [Clusters][050]
__Readings:__ Kabacoff, ch. 14, and Teetor, ch. 13.4, 13.6 and 13.9.
- [Heatmaps][051]
- [Principal components][052]
- [Practice][053]
[050]: / "050_clusters.html"
[051]: / "051_heatmaps.html"
[052]: / "052_pca.html"
[053]: / "053_practice.html"
* * *
## 6. [Distributions][060]
__Readings:__ Kabacoff, ch. 6, Teetor, ch. 10, and Urdan, ch. 4-6. See also Urdan, ch. 1-3, if you have forgotten everything about statistics.
- [Descriptive statistics][061]
- [Density functions][062]
- [Practice][063]
[060]: / "60_distributions.html"
[061]: / "061_description.html"
[062]: / "062_density.html"
[063]: / "063_practice.html"
* * *
## 7. [Differences][070]
__Readings:__ Kabacoff, ch. 7, Teetor, ch. 9, and Urdan, ch. 7, 9 and 14.
- [Confidence intervals][071]
- [Significance tests][072]
- [Practice][073]
[070]: / "070_differences.html"
[071]: / "071_intervals.html"
[072]: / "072_tests.html"
[073]: / "073_practice.html"
* * *
## 8. [Models][080]
__Readings:__ Kabacoff, ch. 8 and 11, Teetor, ch. 11, and Urdan, ch. 8, 10 and 13. Skim ANOVA to focus on OLS (simple and multiple linear regression).
- [Linear correlation][081]
- [Ordinary least squares][082]
- [Practice][083]
[080]: 080_models.html
[081]: 081_correlation.html
[082]: 082_ols.html
[083]: 083_practice.html
* * *
> __Part 3: Introduction to Data Visualization__. The course ends by focusing on the graphic dimension of quantitative data. We will also try to have guest speakers to talk about their professional use of data.
## 9. [Visualization in time: Time series][090]
__Reading:__ Teetor, ch. 14. Focus on detrending and read ARIMA only if you plan to earn millions as a financial analyst.
- [Autocorrelation][091]
- [Smoothing][092]
- [Practice][093]
[090]: 090_ts.html
[091]: 091_lags.html
[092]: 092_smoothing.html
[093]: 093_practice.html
* * *
## 10. [Visualization in space: Maps][100]
**Special guest:** [Joël Gombin][jg] on reproducible science.
[jg]: http://www.joelgombin.fr
<!-- __Reading:__ B. Sue Bell *et al.*, "[Current practices in spatial analysis of cancer data mapping health statistics to inform policymakers and the public](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1647272/)", 2006. -->
- [Geocoding][101]
- [Choropleths][102]
[100]: 100_maps.html
[101]: 101_geocoding.html
[102]: 102_choropleths.html
<!-- [Links][103] (read at home)
[103]: 103_practice.html -->
* * *
## 11. [Networks][110]
<!-- __Reading:__ David Siegel, "[Social Networks in Comparative Perspective](http://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=1045&context=pn_wp)", 2011. -->
**Special guest:** [Alexandre Léchenet][al] on data-driven journalism.
[al]: http://alphoenix.net
- [Influence][111]
- [Network(d)s][112]
[110]: 110_networks.html
[111]: 111_influence.html
[112]: 112_networkds.html
<!-- [Links][113] (read at home)
[113]: 113_practice.html -->
* * *
## 12. [Data-driven advances][120]
__Special guest:__ [Samuel Goëta][sg] will speak in the [Distinguished Lecture Series][dls-talk] on open data and open government.
[120]: 120_data.html
[sg]: http://coulisses-opendata.com
[dls-talk]: https://www.facebook.com/events/123760981144191/
* * *
We're done!
__Thanks to__ [Baptiste Coulmont](http://coulmont.com/), [Joël Gombin ](http://joelgombin.fr/) and [Timothée Poisot](https://github.com/tpoisot/RCourse2012) for very valuable advice and comments, to [GitHub](http://github.com/) for hosting and to users at [StackExchange](http://stackexchange.com/) for coding assistance.
Special thanks to the Sciences Po Reims staff and students for indefectible support.
__Inspired by__ [Christopher Adolph](http://faculty.washington.edu/cadolph/index.php?page=22), [Dave Armstrong](http://quantoid.net/ICPSRR.html), [Christopher Gangrud](https://github.com/christophergandrud/Introduction_to_Statistics_and_Data_Analysis_Yonsei/), [Andrew Gelman](http://andrewgelman.com/2012/12/textbook-for-data-visualization/), [Rebecca Nugent](http://www.stat.cmu.edu/~rnugent/teaching/introR/), [Gaston Sanchez](https://gastonsanchez.wordpress.com/), [Cosma Shalizi](http://www.stat.cmu.edu/~cshalizi/), [David Sparks](http://is-r.tumblr.com/) and [Hadley Wickham](http://had.co.nz/ggplot2/).
This course has its own [GitHub repository](https://github.com/briatte/ida); fork at will. This HTML version was compiled from source on `r format(Sys.time(), "%A %B %d, %Y")`.