-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathflops.go
executable file
·743 lines (634 loc) · 24.2 KB
/
flops.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
package main
import "fmt"
//import "os"
import "syscall"
/* ported to Go, Brian Olson, http://bolson.org/, 2014-10 */
/*--------------------- Start flops.c source code ----------------------*/
/*****************************/
/* flops.c */
/* Version 2.0, 18 Dec 1992 */
/* Al Aburto */
/* [email protected] */
/*****************************/
/*
Flops.c is a 'c' program which attempts to estimate your systems
floating-point 'MFLOPS' rating for the FADD, FSUB, FMUL, and FDIV
operations based on specific 'instruction mixes' (discussed below).
The program provides an estimate of PEAK MFLOPS performance by making
maximal use of register variables with minimal interaction with main
memory. The execution loops are all small so that they will fit in
any cache. Flops.c can be used along with Linpack and the Livermore
kernels (which exersize memory much more extensively) to gain further
insight into the limits of system performance. The flops.c execution
modules also include various percent weightings of FDIV's (from 0% to
25% FDIV's) so that the range of performance can be obtained when
using FDIV's. FDIV's, being computationally more intensive than
FADD's or FMUL's, can impact performance considerably on some systems.
Flops.c consists of 8 independent modules (routines) which, except for
module 2, conduct numerical integration of various functions. Module
2, estimates the value of pi based upon the Maclaurin series expansion
of atan(1). MFLOPS ratings are provided for each module, but the
programs overall results are summerized by the MFLOPS(1), MFLOPS(2),
MFLOPS(3), and MFLOPS(4) outputs.
The MFLOPS(1) result is identical to the result provided by all
previous versions of flops.c. It is based only upon the results from
modules 2 and 3. Two problems surfaced in using MFLOPS(1). First, it
was difficult to completely 'vectorize' the result due to the
recurrence of the 's' variable in module 2. This problem is addressed
in the MFLOPS(2) result which does not use module 2, but maintains
nearly the same weighting of FDIV's (9.2%) as in MFLOPS(1) (9.6%).
The second problem with MFLOPS(1) centers around the percentage of
FDIV's (9.6%) which was viewed as too high for an important class of
problems. This concern is addressed in the MFLOPS(3) result where NO
FDIV's are conducted at all.
The number of floating-point instructions per iteration (loop) is
given below for each module executed:
MODULE FADD FSUB FMUL FDIV TOTAL Comment
1 7 0 6 1 14 7.1% FDIV's
2 3 2 1 1 7 difficult to vectorize.
3 6 2 9 0 17 0.0% FDIV's
4 7 0 8 0 15 0.0% FDIV's
5 13 0 15 1 29 3.4% FDIV's
6 13 0 16 0 29 0.0% FDIV's
7 3 3 3 3 12 25.0% FDIV's
8 13 0 17 0 30 0.0% FDIV's
A*2+3 21 12 14 5 52 A=5, MFLOPS(1), Same as
40.4% 23.1% 26.9% 9.6% previous versions of the
flops.c program. Includes
only Modules 2 and 3, does
9.6% FDIV's, and is not
easily vectorizable.
1+3+4 58 14 66 14 152 A=4, MFLOPS(2), New output
+5+6+ 38.2% 9.2% 43.4% 9.2% does not include Module 2,
A*7 but does 9.2% FDIV's.
1+3+4 62 5 74 5 146 A=0, MFLOPS(3), New output
+5+6+ 42.9% 3.4% 50.7% 3.4% does not include Module 2,
7+8 but does 3.4% FDIV's.
3+4+6 39 2 50 0 91 A=0, MFLOPS(4), New output
+8 42.9% 2.2% 54.9% 0.0% does not include Module 2,
and does NO FDIV's.
NOTE: Various timer routines are included as indicated below. The
timer routines, with some comments, are attached at the end
of the main program.
NOTE: Please do not remove any of the printouts.
EXAMPLE COMPILATION:
UNIX based systems
cc -DUNIX -O flops.c -o flops
cc -DUNIX -DROPT flops.c -o flops
cc -DUNIX -fast -O4 flops.c -o flops
.
.
.
etc.
Al Aburto
*/
/***************************************************************/
/* Timer options. You MUST uncomment one of the options below */
/* or compile, for example, with the '-DUNIX' option. */
/***************************************************************/
/* #define Amiga */
//#define UNIX
/* #define UNIX_Old */
/* #define VMS */
/* #define BORLAND_C */
/* #define MSC */
/* #define MAC */
/* #define IPSC */
/* #define FORTRAN_SEC */
/* #define GTODay */
/* #define CTimer */
/* #define UXPM */
/* #define MAC_TMgr*/
/* #define PARIX */
/* #define POSIX */
/* #define WIN32 */
/* #define POSIX1 */
/***********************/
/*
#if (! defined(Amiga)) && (! defined(UNIX)) && (! defined(UNIX_Old)) && (! defined(VMS)) && (! defined(BORLAND_C)) && (! defined(MSC)) && (! defined(MAC)) && (! defined(IPSC)) && (! defined(FORTRAN_SEC)) && (! defined(GTODay)) && (! defined(CTimer)) && (! defined(UXPM)) && (! defined(MAC_TMgr)) && (! defined(PARIX)) && (! defined(POSIX)) && (! defined(WIN32)) && (! defined(POSIX1))
#warning using default UNIX timer
#define UNIX
#endif
int dtime( double* );
#include <stdio.h>
#include <math.h>
*/
/* 'Uncomment' the line below to run */
/* with 'register double' variables */
/* defined, or compile with the */
/* '-DROPT' option. Don't need this if */
/* registers used automatically, but */
/* you might want to try it anyway. */
/* #define ROPT */
/* Variables needed for 'dtime()'. */
var nulltime float64
var TimeArray []float64 = []float64{0, 0, 0}
var TLimit float64 /* Threshold to determine Number of */
/* Loops to run. Fixed at 15.0 seconds.*/
var T [36]float64 /* Global Array used to hold timing */
/* results and other information. */
var sa, sb, sc, sd, one, two, three float64
var four, five, piref, piprg float64
var scale, pierr float64
const A0 = 1.0
const A1 = -0.1666666666671334
const A2 = 0.833333333809067E-2
var A3 float64 = 0.198412715551283E-3
const A4 = 0.27557589750762E-5
var A5 float64 = 0.2507059876207E-7
const A6 = 0.164105986683E-9
const B0 = 1.0
const B1 = -0.4999999999982
const B2 = 0.4166666664651E-1
const B3 = -0.1388888805755E-2
const B4 = 0.24801428034E-4
const B5 = -0.2754213324E-6
const B6 = 0.20189405E-8
const C0 = 1.0
const C1 = 0.99999999668
const C2 = 0.49999995173
const C3 = 0.16666704243
const C4 = 0.4166685027E-1
const C5 = 0.832672635E-2
const C6 = 0.140836136E-2
const C7 = 0.17358267E-3
const C8 = 0.3931683E-4
const D1 = 0.3999999946405E-1
const D2 = 0.96E-3
const D3 = 0.1233153E-5
const E2 = 0.48E-3
const E3 = 0.411051E-6
type long int64
func main() {
// int argc, char** argv
var s, u, v, w, x float64
var loops, NLimit long
var i, m, n long
fmt.Printf("\n")
fmt.Printf(" FLOPS Go Program (Float64 Precision), V2.0 18 Dec 1992\n\n")
/****************************/
loops = 15625 /* Initial number of loops. */
/* DO NOT CHANGE! */
/****************************/
/****************************************************/
/* Set Variable Values. */
/* T[1] references all timing results relative to */
/* one million loops. */
/* */
/* The program will execute from 31250 to 512000000 */
/* loops based on a runtime of Module 1 of at least */
/* TLimit = 15.0 seconds. That is, a runtime of 15 */
/* seconds for Module 1 is used to determine the */
/* number of loops to execute. */
/* */
/* No more than NLimit = 512000000 loops are allowed*/
/****************************************************/
T[1] = 1.0E+06 / float64(loops)
TLimit = 15.0
NLimit = 512000000
piref = 3.14159265358979324
one = 1.0
two = 2.0
three = 3.0
four = 4.0
five = 5.0
scale = one
fmt.Printf(" Module Error RunTime MFLOPS\n")
fmt.Printf(" (usec)\n")
/*************************/
/* Initialize the timer. */
/*************************/
dtime(TimeArray)
dtime(TimeArray)
/*******************************************************/
/* Module 1. Calculate integral of df(x)/f(x) defined */
/* below. Result is ln(f(1)). There are 14 */
/* float64 precision operations per loop */
/* ( 7 +, 0 -, 6 *, 1 / ) that are included */
/* in the timing. */
/* 50.0% +, 00.0% -, 42.9% *, and 07.1% / */
/*******************************************************/
n = loops
sa = 0.0
x = one / float64(n)
s = 0.0
for sa < TLimit {
n = 2 * n
x = one / float64(n) /*********************/
s = 0.0 /* Loop 1. */
v = 0.0 /*********************/
w = one
dtime(TimeArray)
for i = 1; i <= n-1; i++ {
v = v + w
u = v * x
s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3)))
}
dtime(TimeArray)
sa = TimeArray[1]
if n == NLimit {
break
}
/* fmt.Printf(" %10ld %12.5lf\n",n,sa); */
}
scale = 1.0E+06 / float64(n)
T[1] = scale
fmt.Printf(" n=%d sa=%f scale=%f\n", n, sa, scale)
/****************************************/
/* Estimate nulltime ('for' loop time). */
/****************************************/
dtime(TimeArray)
for i = 1; i <= n-1; i++ {
}
dtime(TimeArray)
nulltime = T[1] * TimeArray[1]
if nulltime < 0.0 {
nulltime = 0.0
}
T[2] = T[1]*sa - nulltime
sa = (D1 + D2 + D3) / (one + D1 + E2 + E3)
sb = D1
T[3] = T[2] / 14.0 /*********************/
sa = x * (sa + sb + two*s) / two /* Module 1 Results. */
sb = one / sa /*********************/
n = long(float64(40000*long(sb)) / scale)
//fmt.Printf( "x=%lf\ts=%lf\tsa=%lf\tsb=%lf\tscale=%lf\tn=%ld\n", x, s, sa, sb, scale, n );
sc = sb - 25.2
T[4] = one / T[3]
/********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/********************/
//fmt.Printf(" 1 %13.4le %10.4lf %10.4lf\n",sc,T[2],T[4]);
fmt.Printf(" 1 %13.4e %10.4f %10.4f\n", sc, T[2], T[4])
m = n
/*******************************************************/
/* Module 2. Calculate value of PI from Taylor Series */
/* expansion of atan(1.0). There are 7 */
/* float64 precision operations per loop */
/* ( 3 +, 2 -, 1 *, 1 / ) that are included */
/* in the timing. */
/* 42.9% +, 28.6% -, 14.3% *, and 14.3% / */
/*******************************************************/
//fmt.Printf("starting module 2, m=%ld\n", m );
s = -five /********************/
sa = -one /* Loop 2. */
/********************/
dtime(TimeArray)
for i = 1; i <= m; i++ {
s = -s
sa = sa + s
}
dtime(TimeArray)
T[5] = T[1] * TimeArray[1]
if T[5] < 0.0 {
T[5] = 0.0
}
sc = float64(m)
u = sa /*********************/
v = 0.0 /* Loop 3. */
w = 0.0 /*********************/
x = 0.0
dtime(TimeArray)
for i = 1; i <= m; i++ {
s = -s
sa = sa + s
u = u + two
x = x + (s - u)
v = v - s*u
w = w + s/u
}
dtime(TimeArray)
T[6] = T[1] * TimeArray[1]
T[7] = (T[6] - T[5]) / 7.0 /*********************/
m = long(sa * x / sc) /* PI Results */
//fmt.Printf("sa=%lf\tx=%lf\tsc\%lf\tm=%ld\n", sa, x, sc, m );
sa = four * w / five /*********************/
sb = sa + five/v
sc = 31.25
piprg = sb - sc/(v*v*v)
pierr = piprg - piref
T[8] = one / T[7]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 2 %13.4e %10.4f %10.4f\n", pierr, T[6]-T[5], T[8])
/*******************************************************/
/* Module 3. Calculate integral of sin(x) from 0.0 to */
/* PI/3.0 using Trapazoidal Method. Result */
/* is 0.5. There are 17 float64 precision */
/* operations per loop (6 +, 2 -, 9 *, 0 /) */
/* included in the timing. */
/* 35.3% +, 11.8% -, 52.9% *, and 00.0% / */
/*******************************************************/
//fmt.Printf("starting module 3, m=%ld\n", m );
x = piref / (three * float64(m)) /*********************/
s = 0.0 /* Loop 4. */
v = 0.0 /*********************/
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
v = v + one
u = v * x
w = u * u
s = s + u*((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one)
}
dtime(TimeArray)
T[9] = T[1]*TimeArray[1] - nulltime
u = piref / three
w = u * u
sa = u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w + one)
T[10] = T[9] / 17.0 /*********************/
sa = x * (sa + two*s) / two /* sin(x) Results. */
sb = 0.5 /*********************/
sc = sa - sb
T[11] = one / T[10]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 3 %13.4e %10.4f %10.4f\n", sc, T[9], T[11])
/************************************************************/
/* Module 4. Calculate Integral of cos(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* sin(PI/3). There are 15 float64 precision */
/* operations per loop (7 +, 0 -, 8 *, and 0 / ) */
/* included in the timing. */
/* 50.0% +, 00.0% -, 50.0% *, 00.0% / */
/************************************************************/
A3 = -A3
A5 = -A5
x = piref / (three * float64(m)) /*********************/
s = 0.0 /* Loop 5. */
v = 0.0 /*********************/
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
u = float64(i) * x
w = u * u
s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
}
dtime(TimeArray)
T[12] = T[1]*TimeArray[1] - nulltime
u = piref / three
w = u * u
sa = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
T[13] = T[12] / 15.0 /*******************/
sa = x * (sa + one + two*s) / two /* Module 4 Result */
u = piref / three /*******************/
w = u * u
sb = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + A0)
sc = sa - sb
T[14] = one / T[13]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 4 %13.4e %10.4f %10.4f\n", sc, T[12], T[14])
/************************************************************/
/* Module 5. Calculate Integral of tan(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* ln(cos(PI/3)). There are 29 float64 precision */
/* operations per loop (13 +, 0 -, 15 *, and 1 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 50.0% *, and 03.3% / */
/************************************************************/
x = piref / (three * float64(m)) /*********************/
s = 0.0 /* Loop 6. */
v = 0.0 /*********************/
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
u = float64(i) * x
w = u * u
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + one)
s = s + v/(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one)
}
dtime(TimeArray)
T[15] = T[1]*TimeArray[1] - nulltime
u = piref / three
w = u * u
sa = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + one)
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
sa = sa / sb
T[16] = T[15] / 29.0 /*******************/
sa = x * (sa + two*s) / two /* Module 5 Result */
sb = 0.6931471805599453 /*******************/
sc = sa - sb
T[17] = one / T[16]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 5 %13.4e %10.4f %10.4f\n", sc, T[15], T[17])
/************************************************************/
/* Module 6. Calculate Integral of sin(x)*cos(x) from 0.0 */
/* to PI/4 using the Trapazoidal Method. Result */
/* is sin(PI/4)^2. There are 29 float64 precision */
/* operations per loop (13 +, 0 -, 16 *, and 0 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / (four * float64(m)) /*********************/
s = 0.0 /* Loop 7. */
v = 0.0 /*********************/
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
u = float64(i) * x
w = u * u
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + one)
s = s + v*(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one)
}
dtime(TimeArray)
T[18] = T[1]*TimeArray[1] - nulltime
u = piref / four
w = u * u
sa = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + one)
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
sa = sa * sb
T[19] = T[18] / 29.0 /*******************/
sa = x * (sa + two*s) / two /* Module 6 Result */
sb = 0.25 /*******************/
sc = sa - sb
T[20] = one / T[19]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 6 %13.4e %10.4f %10.4f\n", sc, T[18], T[20])
/*******************************************************/
/* Module 7. Calculate value of the definite integral */
/* from 0 to sa of 1/(x+1), x/(x*x+1), and */
/* x*x/(x*x*x+1) using the Trapizoidal Rule.*/
/* There are 12 float64 precision operations */
/* per loop ( 3 +, 3 -, 3 *, and 3 / ) that */
/* are included in the timing. */
/* 25.0% +, 25.0% -, 25.0% *, and 25.0% / */
/*******************************************************/
/*********************/
s = 0.0 /* Loop 8. */
w = one /*********************/
sa = 102.3321513995275
v = sa / float64(m)
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
x = float64(i) * v
u = x * x
s = s - w/(x+w) - x/(u+w) - u/(x*u+w)
}
dtime(TimeArray)
T[21] = T[1]*TimeArray[1] - nulltime
/*********************/
/* Module 7 Results */
/*********************/
T[22] = T[21] / 12.0
x = sa
u = x * x
sa = -w - w/(x+w) - x/(u+w) - u/(x*u+w)
sa = 18.0 * v * (sa + two*s)
m = -2000 * long(sa)
m = long(float64(m) / scale)
sc = sa + 500.2
T[23] = one / T[22]
/********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/********************/
fmt.Printf(" 7 %13.4e %10.4f %10.4f\n", sc, T[21], T[23])
/************************************************************/
/* Module 8. Calculate Integral of sin(x)*cos(x)*cos(x) */
/* from 0 to PI/3 using the Trapazoidal Method. */
/* Result is (1-cos(PI/3)^3)/3. There are 30 */
/* float64 precision operations per loop included */
/* in the timing: */
/* 13 +, 0 -, 17 * 0 / */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / (three * float64(m)) /*********************/
s = 0.0 /* Loop 9. */
v = 0.0 /*********************/
dtime(TimeArray)
for i = 1; i <= m-1; i++ {
u = float64(i) * x
w = u * u
v = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
s = s + v*v*u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one)
}
dtime(TimeArray)
T[24] = T[1]*TimeArray[1] - nulltime
u = piref / three
w = u * u
sa = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w + one)
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1) + one
sa = sa * sb * sb
T[25] = T[24] / 30.0 /*******************/
sa = x * (sa + two*s) / two /* Module 8 Result */
sb = 0.29166666666666667 /*******************/
sc = sa - sb
T[26] = one / T[25]
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
fmt.Printf(" 8 %13.4e %10.4f %10.4f\n", sc, T[24], T[26])
/**************************************************/
/* MFLOPS(1) output. This is the same weighting */
/* used for all previous versions of the flops.c */
/* program. Includes Modules 2 and 3 only. */
/**************************************************/
T[27] = (five*(T[6]-T[5]) + T[9]) / 52.0
T[28] = one / T[27]
/**************************************************/
/* MFLOPS(2) output. This output does not include */
/* Module 2, but it still does 9.2% FDIV's. */
/**************************************************/
T[29] = T[2] + T[9] + T[12] + T[15] + T[18]
T[29] = (T[29] + four*T[21]) / 152.0
T[30] = one / T[29]
/**************************************************/
/* MFLOPS(3) output. This output does not include */
/* Module 2, but it still does 3.4% FDIV's. */
/**************************************************/
T[31] = T[2] + T[9] + T[12] + T[15] + T[18]
T[31] = (T[31] + T[21] + T[24]) / 146.0
T[32] = one / T[31]
/**************************************************/
/* MFLOPS(4) output. This output does not include */
/* Module 2, and it does NO FDIV's. */
/**************************************************/
T[33] = (T[9] + T[12] + T[18] + T[24]) / 91.0
T[34] = one / T[33]
fmt.Printf("\n")
fmt.Printf(" Iterations = %10d\n", m)
fmt.Printf(" NullTime (usec) = %10.4f\n", nulltime)
fmt.Printf(" MFLOPS(1) = %10.4f\n", T[28])
fmt.Printf(" MFLOPS(2) = %10.4f\n", T[30])
fmt.Printf(" MFLOPS(3) = %10.4f\n", T[32])
fmt.Printf(" MFLOPS(4) = %10.4f\n\n", T[34])
// return 0;
}
/*****************************************************/
/* Various timer routines. */
/* Al Aburto, [email protected], 18 Feb 1997 */
/* */
/* dtime(p) outputs the elapsed time seconds in p[1] */
/* from a call of dtime(p) to the next call of */
/* dtime(p). Use CAUTION as some of these routines */
/* will mess up when timing across the hour mark!!! */
/* */
/* For timing I use the 'user' time whenever */
/* possible. Using 'user+sys' time is a separate */
/* issue. */
/* */
/* Example Usage: */
/* [Timer options added here] */
/* float64 RunTime, TimeArray[3]; */
/* main() */
/* { */
/* dtime(TimeArray); */
/* [routine to time] */
/* dtime(TimeArray); */
/* RunTime = TimeArray[1]; */
/* } */
/* [Timer code added here] */
/*****************************************************/
/******************************/
/* Timer code. */
/******************************/
/*****************************************************/
/* UNIX dtime(). This is the preferred UNIX timer. */
/* Provided by: Markku Kolkka, [email protected] */
/* HP-UX Addition by: Bo Thide', [email protected] */
/*****************************************************/
/*
#ifdef UNIX
#include <sys/time.h>
#include <sys/resource.h>
#ifdef hpux
#include <sys/syscall.h>
#define getrusage(a,b) syscall(SYS_getrusage,a,b)
#endif
struct rusage rusage;
int dtime(p)
float64 p[];
{
float64 q;
q = p[2];
getrusage(RUSAGE_SELF,&rusage);
p[2] = (float64)(rusage.ru_utime.tv_sec);
p[2] = p[2] + (float64)(rusage.ru_utime.tv_usec) * 1.0e-06;
p[1] = p[2] - q;
return 0;
}
#endif*/
func dtime(p []float64) {
var ru syscall.Rusage
err := syscall.Getrusage(syscall.RUSAGE_SELF, &ru)
if err != nil {
fmt.Print(err)
}
q := p[2]
p[2] = float64(ru.Utime.Sec) + (float64(ru.Utime.Usec) * 1.0e-6)
p[1] = p[2] - q
//fmt.Printf("TODO: write dtime()\n")
}
/*------ End flops.c code, say good night Jan! (Sep 1992) ------*/