diff --git a/.github/workflows/codeql-analysis.yml b/.github/workflows/codeql-analysis.yml
index fbe6fa0..d030d2c 100644
--- a/.github/workflows/codeql-analysis.yml
+++ b/.github/workflows/codeql-analysis.yml
@@ -1,67 +1,67 @@
-# For most projects, this workflow file will not need changing; you simply need
-# to commit it to your repository.
-#
-# You may wish to alter this file to override the set of languages analyzed,
-# or to provide custom queries or build logic.
-#
-# ******** NOTE ********
-# We have attempted to detect the languages in your repository. Please check
-# the `language` matrix defined below to confirm you have the correct set of
-# supported CodeQL languages.
-#
-name: "CodeQL"
-
-on:
- push:
- branches: [ main ]
- pull_request:
- # The branches below must be a subset of the branches above
- branches: [ main ]
- schedule:
- - cron: '28 20 * * 6'
-
-jobs:
- analyze:
- name: Analyze
- runs-on: ubuntu-latest
-
- strategy:
- fail-fast: false
- matrix:
- language: [ 'python' ]
- # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
- # Learn more:
- # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
-
- steps:
- - name: Checkout repository
- uses: actions/checkout@v2
-
- # Initializes the CodeQL tools for scanning.
- - name: Initialize CodeQL
- uses: github/codeql-action/init@v2
- with:
- languages: ${{ matrix.language }}
- # If you wish to specify custom queries, you can do so here or in a config file.
- # By default, queries listed here will override any specified in a config file.
- # Prefix the list here with "+" to use these queries and those in the config file.
- # queries: ./path/to/local/query, your-org/your-repo/queries@main
-
- # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
- # If this step fails, then you should remove it and run the build manually (see below)
- - name: Autobuild
- uses: github/codeql-action/autobuild@v2
-
- # βΉοΈ Command-line programs to run using the OS shell.
- # π https://git.io/JvXDl
-
- # βοΈ If the Autobuild fails above, remove it and uncomment the following three lines
- # and modify them (or add more) to build your code if your project
- # uses a compiled language
-
- #- run: |
- # make bootstrap
- # make release
-
- - name: Perform CodeQL Analysis
- uses: github/codeql-action/analyze@v2
+# For most projects, this workflow file will not need changing; you simply need
+# to commit it to your repository.
+#
+# You may wish to alter this file to override the set of languages analyzed,
+# or to provide custom queries or build logic.
+#
+# ******** NOTE ********
+# We have attempted to detect the languages in your repository. Please check
+# the `language` matrix defined below to confirm you have the correct set of
+# supported CodeQL languages.
+#
+name: "CodeQL"
+
+on:
+ push:
+ branches: [ main ]
+ pull_request:
+ # The branches below must be a subset of the branches above
+ branches: [ main ]
+ schedule:
+ - cron: '28 20 * * 6'
+
+jobs:
+ analyze:
+ name: Analyze
+ runs-on: ubuntu-latest
+
+ strategy:
+ fail-fast: false
+ matrix:
+ language: [ 'python' ]
+ # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
+ # Learn more:
+ # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
+
+ steps:
+ - name: Checkout repository
+ uses: actions/checkout@v2
+
+ # Initializes the CodeQL tools for scanning.
+ - name: Initialize CodeQL
+ uses: github/codeql-action/init@v2
+ with:
+ languages: ${{ matrix.language }}
+ # If you wish to specify custom queries, you can do so here or in a config file.
+ # By default, queries listed here will override any specified in a config file.
+ # Prefix the list here with "+" to use these queries and those in the config file.
+ # queries: ./path/to/local/query, your-org/your-repo/queries@main
+
+ # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
+ # If this step fails, then you should remove it and run the build manually (see below)
+ - name: Autobuild
+ uses: github/codeql-action/autobuild@v2
+
+ # βΉοΈ Command-line programs to run using the OS shell.
+ # π https://git.io/JvXDl
+
+ # βοΈ If the Autobuild fails above, remove it and uncomment the following three lines
+ # and modify them (or add more) to build your code if your project
+ # uses a compiled language
+
+ #- run: |
+ # make bootstrap
+ # make release
+
+ - name: Perform CodeQL Analysis
+ uses: github/codeql-action/analyze@v2
diff --git a/.github/workflows/new_test.yml b/.github/workflows/new_test.yml
index c554c22..bdb4d3d 100644
--- a/.github/workflows/new_test.yml
+++ b/.github/workflows/new_test.yml
@@ -1,35 +1,35 @@
-name: DicomRTTool Check
-
-on:
- push:
- branches: [ main, dev ]
- pull_request:
- braches: [main]
-jobs:
- build:
-
- runs-on: ubuntu-latest
- strategy:
- matrix:
- python-version: ["3.8"]
-
- steps:
- - uses: actions/checkout@v3
- - name: Set up Python ${{ matrix.python-version }}
- uses: actions/setup-python@v4
- with:
- python-version: ${{ matrix.python-version }}
- - name: Install dependencies
- run: |
- python -m pip install --upgrade pip
- pip install flake8 pytest
- if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- - name: Lint with flake8
- run: |
- # stop the build if there are Python syntax errors or undefined names
- flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
- # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
- flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- - name: Test with pytest
- run: |
+name: DicomRTTool Check
+
+on:
+ push:
+ branches: [ main, dev ]
+ pull_request:
+ braches: [main]
+jobs:
+ build:
+
+ runs-on: ubuntu-latest
+ strategy:
+ matrix:
+ python-version: ["3.8"]
+
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v4
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install flake8 pytest
+ if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
+ - name: Lint with flake8
+ run: |
+ # stop the build if there are Python syntax errors or undefined names
+ flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
+ flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
+ - name: Test with pytest
+ run: |
pytest
\ No newline at end of file
diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml
index 6e64ea1..34e9868 100644
--- a/.github/workflows/python-publish.yml
+++ b/.github/workflows/python-publish.yml
@@ -1,40 +1,40 @@
-# This workflow will upload a Python Package using Twine when a release is created
-# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
-
-# This workflow uses actions that are not certified by GitHub.
-# They are provided by a third-party and are governed by
-# separate terms of service, privacy policy, and support
-# documentation.
-
-name: Upload Python Package
-
-on:
- release:
- types: [published]
-
-permissions:
- contents: read
-
-jobs:
- deploy:
-
- runs-on: ubuntu-latest
-
- steps:
- - uses: actions/checkout@v3
- - name: Set up Python
- uses: actions/setup-python@v3
- with:
- python-version: '3.x'
- - name: Install dependencies
- run: |
- python -m pip install --upgrade pip
- pip install -r requirements.txt
- pip install build
- - name: Build package
- run: python -m build
- - name: Publish package
- uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
- with:
- user: __token__
- password: ${{ secrets.PYPI_API_TOKEN }}
+# This workflow will upload a Python Package using Twine when a release is created
+# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
+
+# This workflow uses actions that are not certified by GitHub.
+# They are provided by a third-party and are governed by
+# separate terms of service, privacy policy, and support
+# documentation.
+
+name: Upload Python Package
+
+on:
+ release:
+ types: [published]
+
+permissions:
+ contents: read
+
+jobs:
+ deploy:
+
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python
+ uses: actions/setup-python@v3
+ with:
+ python-version: '3.x'
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install -r requirements.txt
+ pip install build
+ - name: Build package
+ run: python -m build
+ - name: Publish package
+ uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
+ with:
+ user: __token__
+ password: ${{ secrets.PYPI_API_TOKEN }}
diff --git a/.gitignore b/.gitignore
index 7973763..301c0ae 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,145 +1,145 @@
-/__pycache__/
-/.idea/
-/Examples/Example_Data
-# Created by https://www.toptal.com/developers/gitignore/api/python
-# Edit at https://www.toptal.com/developers/gitignore?templates=python
-
-### Python ###
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-/test.py
-/Test2.py
-# C extensions
-*.so
-*.nii*
-# Distribution / packaging
-.Python
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-pip-wheel-metadata/
-share/python-wheels/
-*.egg-info/
-.installed.cfg
-*.egg
-MANIFEST
-
-# PyInstaller
-# Usually these files are written by a python script from a template
-# before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-*~$*
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.nox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-*.py,cover
-.hypothesis/
-.pytest_cache/
-pytestdebug.log
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-db.sqlite3
-db.sqlite3-journal
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-doc/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# IPython
-profile_default/
-ipython_config.py
-
-# pyenv
-.python-version
-
-# pipenv
-# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
-# However, in case of collaboration, if having platform-specific dependencies or dependencies
-# having no cross-platform support, pipenv may install dependencies that don't work, or not
-# install all needed dependencies.
-#Pipfile.lock
-
-# PEP 582; used by e.g. github.com/David-OConnor/pyflow
-__pypackages__/
-
-# Celery stuff
-celerybeat-schedule
-celerybeat.pid
-
-# SageMath parsed files
-*.sage.py
-
-# Environments
-.env
-.venv
-env/
-venv/
-ENV/
-env.bak/
-venv.bak/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-Data.xlsx
-# mypy
-.mypy_cache/
-.dmypy.json
-dmypy.json
-
-# Pyre type checker
-.pyre/
-
-# pytype static type analyzer
-.pytype/
-
-# End of https://www.toptal.com/developers/gitignore/api/python
+/__pycache__/
+/.idea/
+/Examples/Example_Data
+# Created by https://www.toptal.com/developers/gitignore/api/python
+# Edit at https://www.toptal.com/developers/gitignore?templates=python
+
+### Python ###
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+/test.py
+/Test2.py
+# C extensions
+*.so
+*.nii*
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+*~$*
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+pytestdebug.log
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+doc/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+Data.xlsx
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# pytype static type analyzer
+.pytype/
+
+# End of https://www.toptal.com/developers/gitignore/api/python
/AnonDICOM/
\ No newline at end of file
diff --git a/Examples/DICOMRTTool_Tutorial.ipynb b/Examples/DICOMRTTool_Tutorial.ipynb
index b904750..f9edb46 100644
--- a/Examples/DICOMRTTool_Tutorial.ipynb
+++ b/Examples/DICOMRTTool_Tutorial.ipynb
@@ -1,1172 +1,1172 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# DICOM RT Tool Tutorial with Open-Access Data\n",
- "\n",
- "This notebook demonstrates the various functions and utilities available in the Dicom RT tool Python package (https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask) by Anderson et. al. It serves as supplementary information for the Technical Paper titled: \"Simple Python Module for Conversions between DICOM Images and Radiation Therapy Structures, Masks, and Prediction Arrays\" . This notebook works through an example of publicly available brain tumor data of T1-w/FLAIR MRI sequences and corresponding RT structure files with multiple segmented regions of interest. Full information of the publicly available brain tumor data used in this notebook can be found at: https://figshare.com/articles/dataset/Data_from_An_Investigation_of_Machine_Learning_Methods_in_Delta-radiomics_Feature_Analysis/9943334. This notebook was written for easy accessibility for beginners to Python programming, medical imaging, and computational analysis. It should take no more than 10-15 minutes to run in it's entirety from scratch. The notebook generates about 10 GB worth of files, so ensure you have adequate space to run it. \n",
- "\n",
- "The notebook covers the following topics (click to go to section):\n",
- "1. [Getting the data](#DATA)\n",
- "2. [Reading in DICOM and RT struct files and converting to numpy array format](#DICOM)\n",
- "3. [Saving arrays to nifti format and reloading them](#NIFTI)\n",
- "4. [Saving and loading numpy array files](#NUMPY)\n",
- "5. [Calculating radiomic features](#RADIOMICS)\n",
- "6. [Predictions To RT-Structure Example](#RTSTRUCTURE)\n",
- "\n",
- "The notebook assumes you have the following nested directory structure after running cells that download necessary data:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "\"\"\"\n",
- "Top-level directory/\n",
- "βββ DICOMRTTool_manuscript.ipynb\n",
- "βββ Example_Data/ <- Generated when you run the cells below\n",
- "| βββ Image_Data/ \n",
- "| βββ Structure/ <- These correspond to the Pre-RT scans\n",
- "β βββ T1/\n",
- "| βββ Patient number/\n",
- "| βββ RT Struc file (.dcm) \n",
- "β βββ T2FLAIR/\n",
- "| βββ Patient number/\n",
- "| βββ RT Struc file (.dcm)\n",
- "| βββ T1/\n",
- "| βββ Post1/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm)\n",
- "| βββ Post2/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm)\n",
- "| βββ Pre/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm) <- The images we care about\n",
- "| βββ T2FLAIR/\n",
- "| βββ Post1/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm)\n",
- "| βββ Post2/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm)\n",
- "| βββ Pre/\n",
- "| βββ Patient number/\n",
- "| βββ DICOM image files (.dcm) <- The images we care about\n",
- "βββ Data.zip <- Generated when you run the cells below, downloaded Figshare file\n",
- "βββ Nifti_Data/ <- Generated when you run the cells below\n",
- "| βββImage.nii\n",
- "| βββMask.nii\n",
- "| βββMRN_Path_To_Iteration.xlsx\n",
- "| βββOverall_Data_Examples_(iteration)0.nii.gz \n",
- "| βββOverall_mask_Examples_y(iteration)0.nii.gz \n",
- "βββ Numpy_Data/ <- Generated when you run the cells below\n",
- "| βββimage.npy\n",
- "| βββmask.npy\n",
- "βββ RT_Structures/ <- Generated when you run the cells below\n",
- "| βββRS_Test_UID.dcm\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "%%capture\n",
- "# Load or install the program, %%capture supresses print statements\n",
- "!pip install DicomRTTool --upgrade\n",
- "from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "# importing neccessary libraries \n",
- "\n",
- "# file mangagment \n",
- "import os \n",
- "import zipfile\n",
- "from six.moves import urllib\n",
- "\n",
- "# array manipulation and plotting\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "# medical image manipulation \n",
- "import SimpleITK as sitk"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 1: Getting the data. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "The RT struc files and their corresponding DICOM images can be in the same directory or different directories. Here we show a case where structure files and images are located in different directories. This is a good dataset to work with since its somewhat messy but coherent enough to show power of DICOMRTTool. Many files (pre-RT, post-RT at 2 timepoints) but only pre-RT T1 and FLAIR images have associated RT structure files. Downloading and unzipping the necessary files will take about 10 minutes on most CPUs and takes up about 8 GB of storage. One may visualize these DICOM images using a free commercially available DICOM viewer, such as Radiant (https://www.radiantviewer.com/)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Zipped images already downloaded.\n",
- "Unzipping images...\n",
- "Estimated unzip time is 2 minutes\n"
- ]
- },
- {
- "ename": "BadZipFile",
- "evalue": "File is not a zip file",
- "output_type": "error",
- "traceback": [
- "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
- "\u001B[1;31mBadZipFile\u001B[0m Traceback (most recent call last)",
- "File \u001B[1;32m:19\u001B[0m, in \u001B[0;36m\u001B[1;34m\u001B[0m\n",
- "File \u001B[1;32mc:\\users\\b5anderson\\appdata\\local\\programs\\python\\python38\\lib\\zipfile.py:1269\u001B[0m, in \u001B[0;36mZipFile.__init__\u001B[1;34m(self, file, mode, compression, allowZip64, compresslevel, strict_timestamps)\u001B[0m\n\u001B[0;32m 1267\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m 1268\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m mode \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mr\u001B[39m\u001B[38;5;124m'\u001B[39m:\n\u001B[1;32m-> 1269\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_RealGetContents\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 1270\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m mode \u001B[38;5;129;01min\u001B[39;00m (\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mw\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mx\u001B[39m\u001B[38;5;124m'\u001B[39m):\n\u001B[0;32m 1271\u001B[0m \u001B[38;5;66;03m# set the modified flag so central directory gets written\u001B[39;00m\n\u001B[0;32m 1272\u001B[0m \u001B[38;5;66;03m# even if no files are added to the archive\u001B[39;00m\n\u001B[0;32m 1273\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_didModify \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mTrue\u001B[39;00m\n",
- "File \u001B[1;32mc:\\users\\b5anderson\\appdata\\local\\programs\\python\\python38\\lib\\zipfile.py:1336\u001B[0m, in \u001B[0;36mZipFile._RealGetContents\u001B[1;34m(self)\u001B[0m\n\u001B[0;32m 1334\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m BadZipFile(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFile is not a zip file\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 1335\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m endrec:\n\u001B[1;32m-> 1336\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m BadZipFile(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFile is not a zip file\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 1337\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mdebug \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m1\u001B[39m:\n\u001B[0;32m 1338\u001B[0m \u001B[38;5;28mprint\u001B[39m(endrec)\n",
- "\u001B[1;31mBadZipFile\u001B[0m: File is not a zip file"
- ]
- }
- ],
- "source": [
- "%%time\n",
- "data_path = os.path.join('.', 'Example_Data')\n",
- "if not os.path.isdir(data_path): # create Example_data directory if it doesn't exist\n",
- " os.mkdir(data_path)\n",
- "\n",
- "url_img = \"https://ndownloader.figshare.com/files/20140100\" # brain scans \n",
- "filename_img = os.path.join(data_path, 'Data.zip')\n",
- "if not os.path.exists(filename_img): # if zip file doesnt exist download \n",
- " print (\"Retrieving zipped images...\")\n",
- " print('Estimated download time is 5 minutes...')\n",
- " urllib.request.urlretrieve(url_img, filename_img)\n",
- " print('Finished downloading!')\n",
- "else:\n",
- " print (\"Zipped images already downloaded.\")\n",
- "\n",
- "if os.path.exists(filename_img): # If we downloaded the data\n",
- " if not os.path.exists(os.path.join(data_path, 'Image_Data')): # and it hasn't been unzipped\n",
- " print (\"Unzipping images...\")\n",
- " print('Estimated unzip time is 2 minutes')\n",
- " z = zipfile.ZipFile(filename_img)\n",
- " z.extractall(data_path)\n",
- " print (\"Done unzipping images.\")\n",
- " \n",
- "print(\"All required files downloaded and unzipped!\") # print when done"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "def display_slices(image, mask, skip=1):\n",
- " \"\"\"\n",
- " Displays a series of slices in z-direction that contains the segmented regions of interest.\n",
- " Ensures all contours are displayed in consistent and different colors.\n",
- " Parameters:\n",
- " image (array-like): Numpy array of image.\n",
- " mask (array-like): Numpy array of mask.\n",
- " skip (int): Only print every nth slice, i.e. if 3 only print every 3rd slice, default 1.\n",
- " Returns:\n",
- " None (series of in-line plots).\n",
- " \"\"\"\n",
- "\n",
- " slice_locations = np.unique(np.where(mask != 0)[0]) # get indexes for where there is a contour present \n",
- " slice_start = slice_locations[0] # first slice of contour \n",
- " slice_end = slice_locations[len(slice_locations)-1] # last slice of contour\n",
- " \n",
- " counter = 1\n",
- " \n",
- " for img_arr, contour_arr in zip(image[slice_start:slice_end+1], mask[slice_start:slice_end+1]): # plot the slices with contours overlayed ontop\n",
- " if counter % skip == 0: # if current slice is divisible by desired skip amount \n",
- " masked_contour_arr = np.ma.masked_where(contour_arr == 0, contour_arr)\n",
- " plt.imshow(img_arr, cmap='gray', interpolation='none')\n",
- " plt.imshow(masked_contour_arr, cmap='cool', interpolation='none', alpha=0.5, vmin = 1, vmax = np.amax(mask)) # vmax is set as total number of contours so same colors can be displayed for each slice\n",
- " plt.show()\n",
- " counter += 1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 2: Reading in DICOM and RT struct files and converting to numpy array format. \n",
- "\n",
- "The principal on which this set of tools operates on is based on the DicomReaderWriter object. It is instantiated with the contours of interest (and associations) and can then be used to create numpy arrays of images and masks of the format [slices, width, height].\n",
- "\n",
- "\n",
- "The following code logic is used to demonstrate searching a path and returning indices for matched structures and images (by UID) for arbitrary directory structures (DICOM image files and RT Struct files not in the same folder). If all necessary structure files are in the same folder as the corresponding images (by UID), one can alternatively use an os.walk through directories of interest and call DicomReaderWriter each time a folder is discovered. For example, I normally use a folder structure MRN -> date of image (pre,mid,post-RT) -> type of scan (MRI, CT, etc.) -> files (DICOM images + RT Struct). However, this approach calls the DicomReaderWriter iteratively, which can be computationally taxing."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\n"
- ]
- }
- ],
- "source": [
- "DICOM_path = os.path.join('.', 'Example_Data', 'Image_Data') # folder where downloaded data was stored\n",
- "print(DICOM_path)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "This will walk through all of the folders, and using SimpleITK, will separate them based on SeriesInstanceUIDs."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "%%time\n",
- "Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)\n",
- "print('Estimated 30 seconds, depending on number of cores present in your computer')\n",
- "Dicom_reader.walk_through_folders(DICOM_path) # need to define in order to use all_roi method"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The following ROIs were found\n",
- "rttempglioma\n",
- "exprttempglioma\n",
- "brainstem\n",
- "dose 500[cgy]\n",
- "dose 1000[cgy]\n",
- "dose 1200[cgy]\n",
- "gtvplus2\n",
- "expltparrecgliom\n",
- "ltparrecglioma\n",
- "expltfrontrecao\n",
- "ltfrontrecao\n",
- "body\n",
- "expltfrparrecgbm\n",
- "ltfrparrecgbm\n",
- "explttempglioma\n",
- "lttempglioma\n",
- "exprtfrontrecgbm\n",
- "rtfrontrecgbm\n",
- "expinfrttemprecg\n",
- "infrttempgbm\n",
- "dose 2400[cgy]\n",
- "expltfrontgbm\n",
- "ltfrontgbm\n",
- "exprttemprecglio\n",
- "rttemprecglioma\n",
- "rtfrontrecglioma\n",
- "exprtfrontrecgli\n",
- "brainstem1\n",
- "eye, left\n",
- "eye, right\n",
- "chiasm\n",
- "lens, left\n",
- "lens, right\n",
- "optic nerve, rig\n",
- "optic nerve, lef\n",
- "dose 2500[cgy]\n",
- "exprttemprecgbm\n",
- "rttemprecgbm\n",
- "exprtfrparresxn\n",
- "right_front_par_\n",
- "abv\n",
- "abv_roi\n"
- ]
- }
- ],
- "source": [
- "all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present, and print them"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "As we can see, these ROIs correspond to a variety of structures. In particular, we can see many GBM and glioma structures. Note GBM denotes glioblastoma multiforme (a high grade glioma)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Contours of brainstem1 are located:\n",
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T1\\001\\RS.CA1756_T13D.dcm\n",
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T1\\011\\RS.GF6065_T13D.dcm\n",
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T2Flair\\001\\RS.CA1756_T2Flair.dcm\n",
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T2Flair\\011\\RS.GF6065_T2Flairdcm.dcm\n",
- "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\001\\RS.CA1756_T13D.dcm\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "['C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T1\\\\001\\\\RS.CA1756_T13D.dcm',\n",
- " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T1\\\\011\\\\RS.GF6065_T13D.dcm',\n",
- " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T2Flair\\\\001\\\\RS.CA1756_T2Flair.dcm',\n",
- " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T2Flair\\\\011\\\\RS.GF6065_T2Flairdcm.dcm',\n",
- " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\T1\\\\001\\\\RS.CA1756_T13D.dcm']"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Print the locations of all RTs with a certain ROI name, automatically lower cased\n",
- "Dicom_reader.where_is_ROI(ROIName='BrAiNsTeM1')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "You need to first define what ROIs you want, please use .set_contour_names_and_associations()\n"
- ]
- }
- ],
- "source": [
- "Dicom_reader.which_indexes_have_all_rois() # Check to see which indexes have all of the rois we want\n",
- "# Since we haven't defined anything yet, it prompts you to input a list of contour names"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "Dicom_reader.which_indexes_lack_all_rois() # Check to see which indexes LACK all of the rois we want\n",
- "# Since we haven't defined any wanted ROI yet, it will prompt you to input a list of contour names"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "From these ROIs, we will look for those that describe the following regions of interest: tumor (glioblastoma multiforme only) and high-dose area of radiation therapy. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "Contour_Names = ['tumor', 'high_dose'] \n",
- "associations = [ROIAssociationClass('high_dose',['dose 1000[cgy]', 'dose 1200[cgy]']),\n",
- " ROIAssociationClass('tumor', ['exprtfrontrecgbm', 'rtfrontrecgbm', 'expltfrontgbm', 'ltfrontgbm',\n",
- " 'infrttempgbm', 'rttemprecgbm', 'exprttemprecgbm', 'expltfrparrecgbm',\n",
- " 'ltfrparrecgbm'])]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "!winget install pandoc"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "Dicom_reader.set_contour_names_and_associations(contour_names=Contour_Names, associations=associations)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Note: The module is printing \"Found []\" because many of the scans (post-1 and post-2 RT) do not have associated structure files. The module recognizes these images exist (unique UIDs) but associated structure files cannot be located for them."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The following indexes have all ROIs present\n",
- "Index 7, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\009\n",
- "Index 11, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\003\n",
- "Index 18, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\010\n",
- "Index 28, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\005\n",
- "Index 31, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\003\n",
- "Index 35, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\005\n",
- "Index 54, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\011\n",
- "Index 58, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\010\n",
- "Index 60, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\011\n",
- "Finished listing present indexes\n"
- ]
- }
- ],
- "source": [
- "indexes = Dicom_reader.which_indexes_have_all_rois() # Check to see which indexes have all of the rois we want, now we can see indexes"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Loading images for ax T1 3D 1MM +c at \n",
- " C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\011\n",
- "\n"
- ]
- }
- ],
- "source": [
- "pt_indx = indexes[-1]\n",
- "Dicom_reader.set_index(pt_indx) # This index has all the structures, corresponds to pre-RT T1-w image for patient 011\n",
- "Dicom_reader.get_images_and_mask() # Load up the images and mask for the requested index"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "image = Dicom_reader.ArrayDicom # image array\n",
- "mask = Dicom_reader.mask # mask array\n",
- "dicom_sitk_handle = Dicom_reader.dicom_handle # SimpleITK image handle\n",
- "mask_sitk_handle = Dicom_reader.annotation_handle # SimpleITK mask handle"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Dk6V0fjr+mu6dzmtCTw87ubI63t3t3e0G6050klEoCFZaMAJnCQBUSLiyXgzAGG7usKkyVKWHKolwUKmNku8i2QAfolO9WF/Y25zA7OXWazt3T4ffH/F7PvPrZ3hPCfKVd+Lyrpmam+xOe+A6vd3i6Wq1WCw455JBDDjn0kJDr+90AhxxyyCGHHPpuyBFcDjnkkEMOPVTkCC6HHHLIIYceKnIEl0MOOeSQQw8VOYLLIYcccsihh4ocweWQQw455NBDRY7gcsghhxxy6KEiR3A55JBDDjn0UJEjuBxyyCGHHHqoyBFcDjnkkEMOPVT0fRNcv/mbv4kdO3bA7/fj8ccfx2uvvfb9aopDDjnkkEMPEX1fBNf//t//G5/61Kfwy7/8y3jzzTdx9OhRvPvd78ba2tr3ozkOOeSQQw49RNT1/Siy+/jjj+PkyZP4L//lvwAAms0mxsfH8XM/93P4V//qX32vm+OQQw455NBDRJ7v9QtrtRrOnDmDT3/60+Yzl8uFF154AadPn+54T7VaRbVaNf83m02k02n09fWhq6vr//M2O+SQQw459LdLrVYL+XweIyMjcLm+O/Dvey64kskkGo0GBgcH2z4fHBzEtWvXOt7zmc98Bv/u3/2770XzHHLIIYcc+h7S/Pw8xsbGvqt7Hoqowk9/+tPY2NgwP3Nzc9/vJjnkkEMOOfS3QJFI5Lu+53tucfX398PtdmN1dbXt89XVVQwNDXW8x+fzwefzfS+a55BDDjnk0PeQ/ibunu+5xeX1evHoo4/ipZdeMp81m0289NJLOHXq1Pe6OQ49pNTV1WUWvC58+3P9se93uVz3XNPpfpfLZTB4/azTdfpsfT4AuN3utmcBaHuO3Yf7PU9/2993Gg+7LV1dXXC73fB4PB3H4n5t0ffaz7vfuHZqj/37fnPkkEP3o++5xQUAn/rUp/Dxj38cJ06cwGOPPYZf//VfR7FYxE/8xE98P5rj0F+DbIbTarXQarX+2szG5XKZe/SzZrPZ8Tp9h/1+Msdms4lWqwWXy4VGo2Haw8/se9+qP7yPz+CPtvd+TJ1tZfu1bXweP280Gmg2m4a56xja71PSMdF3ut3ujm20x0uf0el7HSsdx05/83+3222ea/dX26rPdLvdaDab97yH77bXQ6d26fx3uqdTfzq1q9OzO33f6bkOfX/p+yK4PvKRj2B9fR2/9Eu/hJWVFRw7dgwvvvjiPQEbDrWTvdk7WRo2s+F3/K2bnEyPn3XamMpoSMqMbYYGwDBm/q1ttJ9lt10FTqPRaGvX/SKPOgnQt2Iy9vvYRn2/9o/tAHCPQNT+KFO1hbT9bvZFBR7H637WivbLFgr6vdvtRr1ev0cgsr22cqB9tt9tM3MVuPa88zsKMb2e/dJ+UvBxfLUfKpR1fdrjYFu+9rjb/VWh12k92X3qtIc6XdtJKeNnncbFFpQOfXf0fcnj+n+lXC6HWCz2/W7G95SUISrdT5Bx03R3dwNAm0bciTweD5rNZscNfT/N1H4XmSatCr1eGbX9//2uVYbG52o7u7u7zd/aJv5PoUvmYVs87JMtuPhsbR/v9Xg8aLVaqNfrhiE1Go22+dFnsg1KfAeZtz2m+nkna8K+Vpkj28g2dbJwOwlXbQMhzXq93tHq0PHje9xudxsj1mfbwl2Fn/ZB77XXoK0AKWzJOWXbOQ46p6pUcQ47WWz3U2bsNa/ClG3gXKuw7KRY2M/V/vO7v0+0sbGBaDT6Xd3zfbG4HPruSTcacK9F0ckCspkBSRmYvXHeiqHZAkw1ZmXGfA6ZH7Bt3fF/mwG3Wi3jc1HN1O6rtrNTuzpZDTp+dn9sjVqFI7/3+XymDSoo9R2dBJD6gpSZ2++0+2XPo70GVOjzhwLEZtr22Og72F+7XQq9KlP3eDzweDyoVqv3wJ2qfHBt6DrTeazX623f870UuKpodFqnKtxUMaAiYwsRe7zt5+je8Hg8cLvd2Nzc7Ng3nW9bmHbae7oWbEvU3r+dLDeHOpMjuB4SUmajzNNmYno9P7ed+GRyvM6Gg9Ta4Aa2oT9lYirIbHjE4/GY720B10nAKgRE5kBGrMyiq6vLCEGPx2P+JtmMlH2w/WrKpLUPFMpsq1o2ZLoADJOkwGAbyZhomdn9U4asjEw1fbbDZrT83+12t1k6+kz2o1arGQuD87G5uYnu7u62taACknOuzFTfYzNx7RvfUa/X296rfdY153K5zBqhQGNfOM5sj46tWlwcM8KjVDw4pmw7FSn+5vixuAHHg2QLelUQdG9RuWEb7P2pFqGOEZUkrl1HYP31yRFcDwnZm1+tE5Ktzd0PflGmSGGijnYVLsoUO0EmpE5+HZsJ29/ZcAmZlQ3fKBzH/7W/AO6x1rRPtr+H/VZhynvJbG2/C59nW538TpmoMutO2r72i/4oCj2FCPlcHXMV7PxfFYuurq42a8FWTMgwOTY2hGpbrXwGv+ccbW5utgk+G2am0qN91/ZTgCjMZsODnAMVKCqsVSDYZFuEvK9Wq7XNiT5XLTa2UdvN3/aYulwu1Go1dHd3t1mMdju41lTp4vu8Xq8ZL4e+MzmC6yEiheFUw9fv+L8yL9sa0ufdj7kqU7A1bm52W4vsxERsJsv7bEaggsl+p0YM8jt9LwU5mY39HruPFLK2k97WeLVf/K2QJ5/b3d3d1g/V+HUMlDGxb3ynMlAbalILi3+rVUxBp+/c3Nw0gsq2GJVhc9y0v50sYSoGnSwSW7gC29CYrjuboet6UWtc+6XPJYzHezc3N+8RLpwnFfqNRqPNaqPQ1XHl/PFvXs+2qmXN9nLsdMxtJUItUSpGHo8HxWKxzcpkv2zkwKHO5Aiuh4iooXo8HlQqlTYHsA1J2Pg/4RFuamqHnYQDN7YydrUCSJ2CH2xNGmjf5LZvQ7V8Mke+QwM9+D+ZKd/D+7WWpTKJZrMJr9eLRqNh+ru5udnxWRqNZws6YMuHwjFUIUCGRWFmW4hq2eo8AjBtsaFYjrUGP/A7r9dr3k/GR2FmC3jbmiRjVMFlM1r11/E3x0bXYq1Wu0fo8z325zYUyuvUCuEYs30qxBSu0/YrNMlnqqDQdlUqlXssK7uNfDY/oyLIOeQ86xpViFLHyRbOnDcdI67fSqXSpjg49NbkCK6HiMhQqLnbVpRCNqoFK8MAOkdx2dCXHarMjUtGo74rfa8yFhWa9K2olagbVJkdmXatVmvzG9k+ja6uLX+cx+NBqVQy/6t2rxZWp+gzwnTKqOi7Yxttq9YeWwpc9tWGZcnIVOjbFib/tiFAfTbJhjKVwfM371eNns9XBYRMV2E1vlMDabjmaDGodaDv07bZ0LQtnBXm5D36To4lBVytVrvHB6YCTAWPKkecV13rNuRqW3c2SqBjRMVEI0s5D52EoK4/fmbDzioYHfrO5Aiuh4TsDU6GXa1W7/FPATCMRYULAGNtkXRDqZaqTntljmot8H8yfo3I0nbaVpxuZmUMm5ubbTCiTep/IOmG17a0Wi3jz/B6vff4lmq1mum//buTMAfQJgQ0gIFjRgd9rVaDz+czQov91d8aaMD3su+0Cvh8jguZnfrDKJxUuChzVyuYn+m7bGFCi8GGfSlEqbwo1ApslWVjX+0QeV1HDNpQy4jXNxoNo3joemS7dB3y2V6vF8C24sOxUOVNFTGuia6uLvh8vra1b6cQKDRpw50qpNUqVQFGa18tL7tvqjjQIlM41qHO5Aiuh4jU2U0mYOPytg9CmQOwHXKszyGDo4NYNz+1a2UitPpUaCizUPgSaId1bEHI56lgtJkmmTafodqzQoS2EOL1nXxLtL5U6GsUI2FBZfLKtFTwKOMl2QKBn9lWlh2QoMLKZoT6owLetmBtaK2TgGIftG3su71uOBYcD302LWkKNhWUnXxcqqyohaJzA2ytdb/f39Zm3m/PoVpCOo4kWkdqJatQ47sJ1ymKoOte59teE/Y483pdrwojKlLC+VS/mkNvTY7gekjI1pKVEdRqtbZNw8WvIbdkErQ21ALrhKl3Yqr8nM/hs23834Zd1PegG1aZqDIg2xJjXxT24UZXgaMRiWS4GhRhP5vP0naTVMiolqwMjRAoLSkKG4U21bq0n6njYX/Pv8lwVeCrtk/FRRUZW2NX5qv94LsUdmQ7FFq0rX17Xm1fnI4Xr7NhUhviVJ+qzoutMNnv17ap0FW4UoWLzgvHkX3QcdYgGRsO5HPVqtM1rOOhQTy0vLhm1H+sY+XQdyZHcD0kRN+LaqQkbrxKpWI+U8avgkI1Q4U4bKZkM1z+pvbNjaobkvClarf2M4H2en4arKGRgco8ms1mWxizarxqiSkDVmbj8/kMM6nVam3WigZaKETE96mSALT7YOgLIvTK9tDqYF/Vd6Ht0r7wPraR1xA+osKhOU/sK8ebATfKkGm92RCsvSZUANoMmdexv8wDY5vYD86fDVnqMzUoQS0OO8qRignHTIWhzgH7rP1TSFatJl1ThHsB3BNkwnHT9cR3cf44R2p9NxoNVKtVs765r7gvKpWKsSI1slHHWf2rDt2fHMH1kBA3FLAdraSadicmoxtZ4Q8+z2aqykzUGlDhwHv5HIXJ9PlkUnqdvUn5TlubVT8SGYDtm6HwtQM6lOFo21QAqRVhWwPaP/aB7bCtpE5as46RPpf/28ESNgylwk9hONtS5BirBcDfGjloC0y7/TomnHuF+9SS4JqiIqHtVeGolr9ah/xOIUG1HO0gF1W0tK8Kcep6V1+Svl8tMb5ThSbQrpDYz7YFp44T14p+ZucUqlJoW2B8ZqeAJYfuT47gekiIm0Qd5ypUVLNUjc8uuUTSjQZ0dk6rICAztTcc363MXsmO+lKoRpkHNXVuYoU3O7W3k7ZKUkZPJqxh1/Z7NVTdtgo5jvo9YUFbCVBLVi0Z1aZti081dmW8anl0CnNX4nVq5dkCg2tAgy/0OcrwuabUV8VrdL2oILfhQjtyjuNCf5OuCX2OQs0q/Kmocd1oGzk/ulY7BSypVUWYWefBvoY/tpDleCtyYFv/tsXGtc3ISN1DOm5OHtdfjxzB9ZCQHVJtbxqgPaSXznQVbLrZdGMpc9X/7eAPZRq6edUatD8PBAKo1+tt/ij9TWZFXxmfoYEmrda9OUr1et1ElPF+9tPWaMn0SAqD2RqzzTDZbv3eHi8VPupgt62g+wV7qABReFTzgWyIVpmkjrndZy1ErH4XbZvmQamvkNF/9N3R0urq6jKBPLaVzbEihKfW7v0sd4XtdGzUX6gWro55J8XEVqDYR7fb3QbD2SHy+rdager/5O/u7u62KE8dB75T/YL8nv4t5hbyWoWMnajC70yO4HoIqBOUQAaqGhw3OzeCMkbVJAHcw5hVS1ctVDc171fmYTvI9X47MITP4P9axVxhNXVi6318Jt/LzW7DSfZ77L7Z/VFhYfu/gPYcM1pMOqbKJDtZX3bUocJ2ep/On0KHtgWlgp/v549tVdpjbwdi6BxyjekBkzr/OtdaJULhMG1LJxiYpM/QtW3fS+Fnj7OutU7Cu1MgCX/ruKq13UnYqaDXe9U65P0KjXPtMheRgkwFY6f1aI+TQ53JEVwPAZExKFPjhtIItk7wk8Iy92NmKmioLatWz3erJUHtn22iH8hmXOVyuU17tiEkfTffWa/XjYXFvmltPGBbW+ZzGbjg9XrbKoTY7dHoRNv3wD52d3cby0Ih0k6WkQ032lF2eo8NOel4KiPV4BS2kZ8xKELvI4NlODffoWPs9/vbYGOOj86j+k07fa/PUx+qnYisY6GWmsvlarMAWXVfrSUyeFqYOt98L+eRa5nP1PnQe3Q8VFlSIdPJ16sKlq457aveo5ZZuVxua6+uA74T2FIcNzc3zXgy2MWhtyZHcD0kpBo1YRhuWODe4AQVYkB7qLPNhPk90F5p3dbgycCUcdoQm91m3eDqcFfmrZCRwnB2PpD6gmwhbENEqkV3ErraLm07ISCSzcR4HxNLO0FctqDXsVfL2H6/bdmoP0XfrVX5VeCr9s/n2xa5bZXaa0ShQo6XDTNrW7ge7YryGtmnzJ7jpcJRhYi2Sy1LFZ4KGaq1B+Cev+15YH95v6006Fzq2NiCUfeF7dfstPY5rnyOWrlqIXbaRw7dS47gekhIN6xqxfxR0o2nlg4ZgR0xphuQG92unqB+q07Qis/nM1qnCiFexw3P+xUqUsGm/e10P/vEv9UCtQMrNNpShYrdDpvB2v4SW8vmmNoCSaEt+t90jBViJdmWtG2Jaj9VcLM/bIeOpVqJHEM7tNsWVp3Wj84ZBSbQHoHHedN1o5ajLQAIH2vZKN6v88N5tpECHTcVGioobAXJXhsqXLU/Kgz1vWyXvcbta2wlTd+pbdOIWc6XWraE7x26PzmC6yEiv99vGCMXeKdoP2CbYSqjBmBgCdX8gfaK8LQ6VCja2L7Cfo1GA36/32w4LdtzP8ze1uD5Dra3Xq8bRqGfdWIQ9PWpcLItJWDb72BDhF6v9x5GroxaK0OQcSnsZkNGZOAaLaaCn9e1WttlomzGa8NnfA5zhfgctl2FtOa8qQVGCFYVIL5bf+t6IaO1gzcoLHmtz+czwSClUqktqEHh3EAgYObStrjYR86LJtBzXnTu2BcNDLIVND5XS4/pmlbLn2W6OMcaWKLoBpUi3Xc2jKj+LkbJMsdL/brcj3YVf4femhzB9ZCQMm6g/eRadZoD9xYG5QbncwDck+dFJgK0n1/VidnqO6n11mo1s5k18IPPUEhE67Npf7SvfJ8KBDKyTpChMny1aNgWZcbaJj5bxwFor42nzF61ctWkmYRMxmi/S5maOvq1r9r2TtYcn6vWpM69rSzYlqZtxal1o9aujr36JDm3+r8tyPW99lyqwOJ86npiGwjDsg6n9p3CWyFlnVtVZvR7XUfsr65/bSMFj73H7HmxLS7OgcKb9vtVmdF79d0OfWdyBNdDQNwQ9kFzNiSizEvvq1QqxgpSpkcG4Xa74ff7USqV2p6jG47X8sA8fq9h4CSFs8hkyJg1qZbX6mbXd2rUmc3cgO0gAVqfdvi/HR0HtOe+qbDn936/H63WVg1EbbsNPSnEqH4zPpcMn8yZfdLKIhQobI/Cq6ROUW+tVguhUMgwd9sqsqFUtb5VqCospdfrNQzb1vmhgkIhzfappae1FhWa1qoUlUrF/K91Dm0L3B4HPosBHzqeCot3gmRJhHJVaOk1tPhsS1whWI6rrSjo9fYcd/KHsa1cG5wDh+5P9xajc+iBJGWa3KAKJekPSS0Wm0FyQ6mlo/fb8JG90fgZ/7f9QXb9N2U82nZ9j1p5/Izt1Daoxq2+GL1XoSUVKHq99p/MiJ/p8xXW4jvYJ1vY6jtIdiCG/ug9NgPUOdUAC7ZTK+53Ulxs7V2FF9cCyxGplWIzXyX109i+TO2rtlvnk7Chy+VqEwzq71LLV/P37jfW+j/v07Gyr7fHT9umZK8TDdtXQa7r316/NhxuW1m6lhz665NjcT0ExA2of9uasf0/N41t+dgbTRlGp+coo9Rn2s5phQltWIWWlm5Q1V5105OU4fD6Ts+kRq/tVcFqM3N9DvvJftkRlWpV8noyP03a5fUqtFSwqc9PmZ1arCpo7f7blpIml/N9hDRbrdY9/j6boasPU/08fJe2VWFk7b8d7KFWP9Belomf02JnexRu0zWqfiu1ujjOnSBr21+mJ0Tztyaqaz+1nbYA0fXSaX3pHtAxtb+3oXVd2/zfqQ7/16eulj17DwHlcjnEYrHvdzO+Z8TFbPsWNM9HhYZGXKnvRRkLsM3EyJwUsqFGamvgNpPSzajtVbjmfsxfNzVzemxBCrSXYeqkmdqwjUIvKiQ4RixcWy6X7wkV532EoewwZXW6a7+1L7b1o0EhFJKtVsvknCkkqe2wtXRbkKulphau1hHsJCDVArF9i7aQ1TnQtvNa29K2+0lGzj7a0ZiqCKm1xfu57m3Gbls4tjBVAcXxsueKxJwxtQbps/V6vW3jqQLc9ktynu0xIozLItjsj4bHA9u5en/fYMKNjQ1Eo9Hv6h7H4noISBmURijZ2rkNcenmJqPk3wpV6DU2dKiOdPVZqJbLe/mZCit12qtfyBZ4nQSSMmebeSvcpcxer1cmrcEBtuZ7P8iH7+OBgwp3KqNTy0jHg2OgvgudRz0gkkqIDYcqs+W42WPCMdW6fSr4VWHg9ToWuoZ4LZ/Dd2ritj5T+22Pow2V6dE2yvDVT6RzzPcRpruf4mKvV5erPRVC15M+375XT+jm+Ompy+wXIyS1jVQSOS5qRWsfbHhZLWG7Hw7dnxzB9RCQwi7qHwLujZrrpBUqkWmQkdhMTbVn4F7fk1pRfJ6SDQHp37xeGZMKUf2M7wa2Kxvo550EM69l/7UskQpauxgt7+vUFh0H/V9DsO2+aD/VClNGrH3S/igpI9bx1GdqMIqGbNtzqcKF7+oUEKPMnYxWLS0VwFpjspOvVNunwl3HSvvSaGwn1etYKzSt/VP4WVEJtb7V12YjBmwX224Hk7APCqfqXtF+6brR9muCuh3soZX/VUHReXCoMzmC6yEg9VMx74ObTM/vURiFG4JQIRk5maHX623TqPmZXVWCG1IhMzI1PhfYZuAa0cbr7GM2bAiO7yXT0oMubSam2qgyTq0bpwwfQJu/pFKptPkg+L3CWfouoD2sX6En3suCs4yY1H52dXWZd+qcEH4iA7NrRrJ/1OIZpWdbWhwfnhVF5t8JDlOLTZm4Wo0qoNRy6DT/ttKjwsPt3jpR2Laq2UY7zF2tGf5tH1Wic0pSBUzhba5PtWJV6NsWKZ+vCg7nkOtRfao6drSoaZ1RUBL21nmwIVu7TbYi6FBncgTXQ0AKOwH3HsGgwkGDC2yrgNcSVuL/vF5hRt3M9sbm9TaEyQ1IRq6aMJ/Pdyqz4vM1aZcavVoDth9NGZ8dKdkJVrOFpkJXfHcwGAQAVCqVNutDmR/7wGdzPIPBYBujVbiM/yvDtvuhVpjNoNWyUGtFhXAnq9VmxlqhQdeLQn3KTPkMtT643lQ46HzqPKqFr9aurgm17Oy225b2W42HrhEdVxsp0HtsaF3Xi4aw6/jYY8xn6lrU0w3YHr3ejhLVubItb4fuJSc44yGg7u5uo6VTSBAaoqYPtC98u9yOYuy6qW0fi8JqnSwvoF3Y2daVOta1+Kpq9iqo9DkqBG2/CUnfp1o68400Os5mQMrEbKFJBsL71frU99n+h/u1tRNTViuSfWflDLXYms1m2+d8HtupjE2FB99H/4stNPV4EpKOiR35qe8F2n2eKoDtcVTB7PV64Xa7Tb6ZDTfakKctYCjQbaupk7Bif3StUIFTixFoh591T/GZ+j2rk7AP+k61zhRKpAKn1VY4dp0UFN1jOn5/H8gJzvg7SrpJCEUow7AFioYwK0NQsjc9BSGhkU7Octt3psxDc8TUca3CgG1XaNNm9PZRJ3blcYUi+X5aPHoNGZEyCEYLqhBSJmlbk0C770u/51zoqb12KS0NW+80n2oBcd7svtmKg86/pgRwDtWXoutA261t4OcsO6RQmM6Prhm11jiOKtB5nx16bltOum51HfN7nWu9ln3TpHddz7o+1RLVftv1Fu3ncD41KMdeJ+y3Ko9sq15vf6bKDveTnT7g0FuTk4D8EJD6pxR60XppvM6GjLQcTyf4jAmovN7WZpUBcKN2IjISe0PazMiGsBTyoWXJza2BJ53gHWUOWsewk7VoQ0LaXxUcymhsaEqtKKC9srj2zbYKbAXDVgQoYHRM1Eq14Ul9ls637bfhnPEd6j/jNZ2qiyh1UnhsYWALJe0D14WWHeM6shUrjdJUy89GCex503mngmKTPXaqHOmcANsCi++q1+v3zbFim9QyVtTDXsO8hr5nKg0aIu9Ahd+ZHIvrIaBO1oZuDqDdcgLaLSDb56OwCxkENz/L9ijD570qlBjQQOtKBRwFIq0v9Zlo4VUyJs0dIgPQyC4NUdbEW9tyU18En9UJBlIBSEhHmZ/2BdgO1bchOi3Cq9eR+Hwtq6SMzA7i0BqObAdTGPgeO5BCLTa2l0ErmlfEeVelRhmpVuHgOlOmrjCs3mevT64R+jn5HAYusB2Nxla1dc6vBnCoMgNslxujENF9YVvE9qkGGqJO60jHWINt+Ax+Z+87ew/ZlhfbpAqNnsulaSTcA3yGXe/RobcmR3A9BKSbmqSM2v5MGcr9rA9ubk2uVOZuP1MFopZAUitCNWUb9uJ3Wp3CtuposangBNCmQdvtU+tOn6XMw7YQ2F5lUMpwteaeMlC+z4ZqFeZRK1MFoA1JdYLiOL68V60UHQd9nh2MQCGkgkT7b8NSnax2XmePly0gKRQYjME1oQyasKXd304WOBUeFSi24FArlNfoHHRavzonbA/nUI80UUVNhaE91mphso3aDzviku0llEy43B5TRQXsuqQOtZMjuB4Cshk9F7tWtuCmIwShlhDvsbVTDZ3WIyB0g6p2yHf6fD7UajWjRSuT0U2t1oAN1ynjAbb9GQrHqcVDJmgHHyg8t7m5aYI0bMZI0nfwverDUEauv9Wvwz7osew25KgnFatVRyuQ/kS1EBRiVOZsw3ydtHf1D2pfVHgyUIJWqwpf9S0qs2fRYY6/DVPa8DPXkkJ+7CeVJBKDHfguFbSsZsG2aMUSjrH6uzjPTPMol8umjaoMqAJmKzyBQMA8m/OhwpfV6tVaI+zH9aBWP/uuc8GIQ7ZdEROdf4femhzB9RCQzei5yG0Hs+1/UlhDiczN1tbJRDpp350sHU2gVF+MvpObXIMlFB4iU1KfAoA2wWFbbHYbFYZTAWzDpqrV6vgpc6IwVqtPtWcAbdF5Nvxot4saNxmW7TvrpNnzHfp+hYL1nZrUSsuHbVOrTS0whUQVflbhYFtzZL7aTrViOCYcb5sJ22tUhRO/5xiR2F7NvbPRAR0LwrJq2fBaVcB0TGnJ6bpW4UxBr3OjgtJWALQttoXNfttWlu5n+z6HOpMjuB4SUmjOxt7tTaOwhAoF9W+oBWQzgE7WisJUfB7QDrkpJGIzadsioRDipmW0HxmNvkNJLUyFvTR4xWauCu1p5B+/p9bOtthMVuFLhTptQa8MR8ea79R32PAl20nSOVIoj0yRn9MHpvlZ7B/Hl0KQjJ3X63M5xxrSrc+1rTudV/3Rsb9ftKANAWvwkMJ1FPi2cLHfrZ8rjK1zacO2XK+d5plzYwta2y+mPjudb10vXCe2MmgHRHVSJBy6PzmC6yEg1bgVYmi1tk6e1c2qGqwNmSnD5fUKuzGgolQqGXisk4ZtCxUydPukYH2XQkoaJs3nqkBhnxSyZMh7p6RkWh2Ew9h3tkEjDlXIqPDi9RoMoVAQGbieQaXCXBkhn2eHjZOZU6AwuET9QmyHzrNq+2rddnV1oVwum2f7/f62or0qxAh18Tn2OCkEyzapBcp3KzSnVpzClGS+GmzCMVerj75Erh0bptVgBRUyOreaYmEHlaiPSaFnW+Dxb63YosIM2Bbq7Ad/20Kr07ypgqVC0bYatYKLQ29NjuB6CMjWcPlbF7+t3Wm0lDI+G/7T5+p71K+jDMC2tgC0acdknLYmrkyFPgEyXVugKIxIH49CMtpmllxSi02vsX0ZtrVKhq2C1uVymXJF/IzjoOHjOp42tKhQmQoRjo1G1PEd2gY+y4ai1OLUd5JZqn+pUzSkMlFtn0KwmiysVoqGlHPs1UrTtWILd3u8eG+1WjXX8pkU9Iwm1PGgxWgjDSpA+R6NRNV369pS6FiDPVTg2tU++N5OsK/2pdPY6ziybWwD945D35mcPK6HgNRnQaGkC78TRKNaof4G2h3Bet/m5qbRXIF2Ycb3q79EhYEKMxWmZEZAu7bJftlBGdpGe/PbwketG5K+XxmnDR3dbxz4fBW2dn5Xq7VdG1CFLtuigtyeFzJIFe5sC607Vs0gE9QoQFvoqPDh+FIo2FalMnp73lQhArZhMxVW9hrSeVYhqcdzaPknTTvgO/R5vN9+tvbXhlc1TL/TGtG+6prU+eP82FAtf9v+RXusdA7tNa790TbaQTe6x7QdDnUmx+J6CEixf4V3FEpTZgvca2mQoai/h5+TIaiA5PW0jvg/gLaCrvQtUdNXy0phHbVCSqWS6ZtaUWy/HfjA56gQUEZGTZtMUk+2ZU6T1mZUDZdjwLZo3o1erw55AOZsJR1DtZ50fNkmChRW8FCfhsvlgt/vb/PZaV8BIBAIoNncKkLM6FHCjcoEVUjdjzErBGYHBqhVphYPLSAljQy030mhS0iaUZ98v/r8eK1WXdGcP64Hhfx0XXPc2WaFKjkXdgQt16NawiqMFI5Uq8y2iDsFKVGBUCVT51StWI6Hjp9Db02OaH9ISBmh/eP3+w0jI+nmUn8VsFUfj6HRaonoJlP4yYYGVdPtBIVw0ytcZB+hQuGg/i4+g/4sG+pS64L99Xg8hiGp746h87yWf6vFotaabV3aDESVBL5Xx47XqJWmjI/v1fHidxxTWihUGHi4JtvCKvK28NA281lqrXbS+kmdrAj2w1ZkdP5sC1ufRT+ebVGq9aoWaavVMqkFqljob5drKxBFLSVVwrS/OlfaNjuogt/bAl7nib/tpG4dW75LhbVaqzaczPHQdtp72qG3JsfiegiIviMVCADafqsG2dXV1ZYzY2fk01qwLSmNdOKz7LwwZZKqNSokRKZE4cZiwOrrscOMFR4ig2FOTicLUYMZ7JJWZBxa0YLjooxfGaOOkUKbJBUKaoFp+/SgToWv1EqwmZgKUp0zMkn62vSnq2sr0KLVapk8K51DW+HQY3BUuOvaUB+PDQlSEDFBnH5FYNsy1DFSi4Ljz7nR3DJVrNTCV+WAAk3XOa0ZvZf90gAh3qPKCVEHVSR0bDUnS8kWLra/116bnDuuC7aXFpruH86PbfU5dH9yBNdDQsoUgG1NXX1BJFvzU41Ur7U1zU5+BUIjnfB8hYhsmIjXEtpSZkKhQwhPndQKx6jFYjMSbZ8NvdjWqfbRhvzsPquVQdKIMoW0+F5VGHgNf9t5VdoOtpVMjZF1tsZtWxEKCeszFdbTtcLvbL8kGbVtFdmCl0qTCh+Xy2UsQgoXtS70/WoB8t22cLSFHeFFW8jq93Z0I9CupOjcqnBT/52uk/tZnzqnqnio1amwY7PZNLAuhSn7oc/rNA663hwBdn9yoMKHgFitwnYmc/OpxqgaKIA22E0Fi2LqqkHq53q/hnHr5rYFg0JwCn+RMagvjfcD7TCbwpxst0JEtv/LduzrMzsxcWWoNrNUYn/12foswlrK6NhvLZxqWz73g5jUuc/vFLqzFQK1YFSwUaMncQ5suLPZ3Do+xefztTFpFV7aLntdqOWqlpn6BXWeVaG637q1LUt7DpXR6zNteJF/sz2Ei+31qn1iP1WJ0vHiM0hqGSpErIhAp73Ie+w1xH3YCdJ1qJ2c87geAuLiBraZsUJvrL6tGqatfQPbsI7NkPgOG4azrQheQ+tHhRgd9wo9qWAlqQWiPrJAINDWNq0XqBqsQnR20Ar/JlNg2R+2xxYy6tsjqXDgmGtuDoWGWjx23hTv57voT+S8NZtNwwR1bu02aRI3fV/K3Om/o7DjePr9fnN/J4GkzN1WQAjt8lquI64zjiGhQ54uQFhMFSAVJmrlsP+6FhRyVJi6kyC3rRR7XvV6YPtommazaUqC6f7RtnWypHw+HxqNxj0lq3gPq4ZoOL6uJ+5HCnJaqlRIdX4VRn8IWfPfiJzzuP4OkwonYFuYKWNTQaLQDtDur7GLtQLtjFY1XDI6fZ5CcupHUl+C+qnYfhtaVCiTG9blct1TdUMFGZmFarK2UNAgE4WA+CyF/ZRRKRxkQ3FqPVGwdGL6KnhsoW8nItP3wfeWy+W2+9SCVSamgqBTtXQKA4U4SboebOvTVgjs93d1tVc5V+HXyVLSdtkQnwphfs754L2qaOmasYUZ+2VH+PEeRRG4PrSYr1qROkb8jG2yrXu+n5amDdva0KOONddTp3l0LK7vTI7geghIoRhuQK0Np1aDbj460RuNRlt+FoUDmakybLVYNP9GgzOAbac+n8/NSP8PGVS1Wm0rOGszNKDdr9QJvtNgC2U4ZBZ06tvRixTsrBJB4WJbS3wPtXxNjOU4vJWfRlMPtH8cj3q9brRrVgUh8+ZnAIyF1MnHoYyQ86Bzo35Bhsgr81YhbQt2MloNP9c+cAxcru0KH3ZwDIN47geTsS0qWNhnHX9eq8Le9gfxXRwvFUwaOq8WG8dKrUZdj2pR83OuFVYc0b2ic6BjZ4fgq4LGfulRP0yT4AnnKjQduj85gushIbuQ6f2gEYXNAJjoM4XsuJkULlTGA9wb9KGCU4WAXQ+Pz7e1cbUGKVQ7nUZMIrNRp3Ynf5NqtMA2IyRpn9XHplq59lUFme1zArar2PN7Gxq1w/ptPxDf5/V6EQwGMTQ0ZGDWUChkmFg+n0c2m0WxWDTzRaHMthNaUjiPfVCIjjAW26AWjFbc7wThqsXKvtgCgZ9x3nTsOR4KZfO5VDy0D3YlDrWaqYRwHDpVS9F+c9zs0lOcN7ZFE77tdrEfthXM33bAEa9nf2yrXNec+ibtdejQW5MjuB4CUsxd6+6pVq4QFNCuvZPZqkZHxqp+Ln5uQxwKAdrOdqC99qFqofxOSQUV20qhzPcxfJ7/K1SlG1sd3WR2ynS1n9onZbjKRNRy5fvUb6FjTcvM5br3bCW7rfoOj8eDSCSCRCKB/v5+TE9Pw+12o1KpoFgsmlOgl5eX0d3d3VaLkH4hhfI0YtOGNzkfmnytc2BH4On825aFWj029Mq54HjYTF4/62RFsv3qQ1RIWJ/VyUrmc1U4dxoHRSXsNcK2aGi63W5a0PZ+sXPW1PLjNQxwUmHI5zHNwKG/PjnBGQ8B2ZFMrVbLlM/RjaWwSiAQaGNOmrWvjNoWXHqPMiv1VWkot23x2A5uZUCdfEm09rQNainYjEoFgjJqfq/CTrV4PVpdNV+FlpTRAtuBJDYjUoHE66gkkPmRlJlPTEyYn0QiAZ/Phx07dhiYiAKmVqthZWUFGxsbuHbtGpaXl5FOp5HJZExgAeeaMKwGOPB/tQo0CIFMmcWDbUuUZFsEGjmnc6OKg8LMKow4N+rr4/+q+KjwYVt03G2lwIZDFU5WZQJoP1XbPgmZ79OzstQHq1aqws3st1piWmRa1xP7olaqjTrouP198XU5wRl/R4mbVCEMDYNWrRJo1071SHYyJ73Whrh4P3+rf00hRxuqU2Hk9Xrbcn/I0JTBqSZuh7wzf0eZAduqZZoUzlGISJ/dyS9kjxH/7+Tzs9+v1oD2A7j33C+2wev1IhqN4siRI5ienkZ/f795PwWPx+NBKBQCsJUgXqlUEIlE4PV6EY/HMTMzg2Qy2WbpKPyq64TCWueGfdfUhE7V2zXRmM/iNeyzVqBnf7kuaHnp3PFHrd1Olj7bq4qQ/n2/ZykyoH3t9M5OfbIVJPZH1wafr2tP55rjrM/heiJp+zRtgOuWz6SS4dD9yRFcDwHZEBmJ0JFaF9wYGoyhWjHQDqsoI1ctVbVk3sPryJj4DBumVGZhw2fclHyH3qOMxvbF2AxMhTE1VNXk2Ub2X7Vlfm47zdUq0XHXNpOpaUCJVswA7q2OEY1GMTU1haNHj2JgYAB+vx/5fB61Wg3VatUoJLb14PV6sWPHDgSDQXi9Xly7ds3UeVRlRa1J/qbVodXXlVlryLpasrY1a/fLTqkAYIJMCPHqPOkz1Bdnz70tgBn5x/fabbSFMv/Xe2zoTgWEjh/bqX4q3Vsq0G3LTK0phf5si9G22vm5HTClkKZD9ydHcD0EpDAIN4MeF6GWhm4+O8TWDuxQDRPYDivnc3ktoUZlVropFXLiplaoRbV1ChpuZvajUqnco+WTMbBffL76q1QIsS2E0+yxUuHO5yqMqA57tlMFmQp/TcpWDZtMlGPl9Xrx7LPP4tFHH8XExARyuRxSqRQAoFQqIZvNIh6Pw+v1GiiwXq+jUqmgu7sbiUQCU1NTGBoawuzsLC5fvoxsNtsG99pQnfqu1MJWK9gWYApVqSWs462KAeeJOU525RMycR0/ey5t60itZHt9ct0xCk/XvFr0AEzqhI6NrnvNu9KCzHwGrSZb+PG3rsNO60vXukaW2sEvChtyfBgJXK1WHQH2FuQIroeAVFjo5gPQ5h9S2I/VELhheD/QfkREJ2uJpMEbtrarsAv9JWQEyrCUafIZ9xOufJ76plQjVlIGAmxrtQrn2G23fWsKZ6kg1PfpmPEemxEqA1MG3N3djZ6eHuzYsQODg4MAgEKhYI6iz+VyJky+0Wggk8m0Me9ms2nqSvp8PuzevRuZTAbNZhOlUqktgEWtX7VGdWy4XuzUBvabAqCTpcQ51OhU/Z/v1rXI9+o8KeyqigevUZ+dbYEpqfXI/gMwyoQd9q7Ck/fayo9aZPba0rnvhEbonlJlUtewKmZq0eoc2GPsUGdyBNdDQAp1KWPTnCD1/wBoy8InE2BAh24goD2kXJmdHnmh4cXKnLRorVpQnTRJW+tXganUKV/NjohTpsHxUG1fLT5epxYj328LIfZPGZxalXw/fUhqoSjT8vv96OvrwyOPPIJdu3ah1do+zqVWqyGXy6FUKmF4eBiBQAD1et34tDKZDOr1OorFIhKJBAqFAlqtFvbs2YNmswm/34/Lly+3jYUKKq4LW5Br0AA/p69F87NIFCTq5ySEp74cHV+Onx5P0tXVZfL9dC0T1rP9lvxfK3ioZXa/oBy1Gm2FQwU622jD1rxen0eIT/2fNuTMZxKu1jWsSIGur04KHt+rB5s61JkcwfUQkG5KxfRZZqeTQ1oDHjS6SwWgwiwkezPzHr6b7VHtXjVKdfjrBlcLTSEnMkaFj1RzVeuDm7+Tj0zbRdLwZ7VCVNCoZWD7uVSL1ug3wqG2haNRnQAQj8cxPj5+T54U3xcMBtHf32/eMTExgWq1iuXlZZRKJRQKhbbxCIVC6OvrMxGJtHB17sg8qWwAnfPqlLHqeuAcqcWjfimdTx1/jWi0LVaFGXUcdZyp2KgSBNzrL9T9oJYN/1ZI204PUCGmyo+uK13T2g7dgzrnep/Or0Lh7KvOJcdf95Qt9By6PzmC6yEgZZjqt7GTXzsxKN1wmvekjBtoTxzttCkBtG06ZWK0SGyBY8Nrygxs/xGZDH9rOLBtZZHs40e0T7bmrdq6tl/bq++x/Tv2uzsxaWWooVAIo6OjGBoaMpYjABSLRRM4MzIygkgkgnQ6jUajgZGREaTTaeRyOaTTaVMRg8IlGAwiFothaGgIoVDIwIX6fs6ZBgSoAOb8arCCLfAVMiQcyXqLavnaqQ/KjDl2CjfruOl8acUThT+5BogUcM51XalF19XVhXK53BZ9q+ufY6MKjMKD7IMd6q6Qug0Lc9ztiEZ9p+4F/q97lu/QOXDorckZqYeAFNojlGAf+aCwjVae7gQ9UFOndqpwI4u/kono5lcLhddy85GBau09WyvWSDYyGwAmh4nvJKPWpFr2hwxDo8c6+ZyUMRGaUaGkBWKZ9MuIMDIkLd+jWr1aAeqPI8N0uVzYt28fTpw4gR07diCVSmF9fR31eh3r6+uYmZlBT08PXnjhBbhcLiSTSeRyOROZVyqVcOXKFZRKJczNzWFmZgaZTAaRSMRYcQcPHkQ8Hm8ToLQCvV6vqTBBYh8oqOzgA44D547zQOHHCEg+h3Olz1G4Vp9rB61Q0bGt/3q9btqt7+nUZlsYc09QsHH+FPpWga1lyHSdaTs9Ho/xFXP/cV2yzbqmdbz8fn9baoE+34b1eY/WmbQVJYfaybG4HgKiT8GG8Wzc344StLVNhd5sS6cTfATcCxtRaKhVopARNWjbYgLaHejAdkKoXmNbQDbMqFaU/q1+F/t9Cv1wrAC0VaAH2i04FULqu6K1aFuzfBcZYiAQMM+rVqsmLN3j8aBQKMDtdiMQCJgj7VutFrLZLCqVCsLhMDY2NjA8PAxgK/qQQrVer6NWq2FoaAgbGxtIpVKmnQoPqjCxITP9W+EvnVOOH9cV55QKigoCfZfCYOrz0ner30cVgU4QtVq7bJ/2z/Z3qfKh7dA22BafWq22b0ktS1thsnO01ALTsVAhrigJx8YeFzts3qF7yRFcDwFxk25ubhqNVCse2PCcMgAyBm4EHn+usAx/tJqARjfpsxRWAdqrcpOREApToaeb1GZmKhTt0G5tuzrB9WBJMihlHNSqVZgp01YfhGr0vEZzciiMVKPWMVTfhMfjQTwex549e0x1l3K5jHK5DJfLZSoEuFwuM06RSMRYY8FgEDt27EAmk8H8/DxOnDiBYDCIarWK1dVVLC8vo1wuY+fOnejt7cXS0hI2NjbQam35zFRhUF+PPc4cBxuq4njwHrVc7XnTtAZeZ0Nq/J8C0F5TbAfHTuebbVWBobU31drRwBOdC4X51OpUa1T9dbyeSIRCrQqx24EaANosMbaFa9AuYcb7NAWD7XYsru9MjuB6CMiGXZRZUNDoRiapxsrvbYtGNT7eS38B0O5f082ucB6d4nyffTYYr1ftXhkE+6gMTK0x1biVwfAZrNbAaxTGUZ8LhZ5WJFdNXRmLRj1qwIYyKY5xo9GA3+8318diMQwMDCAajcLlchmrikV0tX2sqkGBE4/HsXv3bkSjUeTzeVSrVfj9ftTrdeRyOTPu4XAYbrcb8XgcpVIJlUqlbZzYRi0C2ym4xl4Dai1Q+HOcNFdLITyF0thfFTa2MsV1oxYiSQWm3Z5O65ZrQeda1zrniG1RK5Cf63W6p3SeKSBVWOqa1P2j46tBUVTGSBoQw/erIHTo/uQIroeEyHRVq7QFA/8m6UbU78iA1N/E64F7NyA3sgod+ins69Rhr5aQ+hrUB0dmxvZTG+4EUfIzWjx2Dphq1rxHmYE9DvYYKqyqtQA5JgprauKqhoy3Wlt1IkOhEHw+H9xutxEq4XAYPp8PXq8XgUAALtdWAm80GjVjHggETKWNubk5ZLNZDA4OYnNzE7VazRy4GQwG4XK50N/fbyBGjodtZZCx28EUCg+rlWaPnc6brhu73p++VwM07M/s6MtOSpS2SefD9umqEsP+2YqN7evjb11nnax/e61wzEjaN46rKnJ6jf1+hZkVUbCtUYc603cdnPGNb3wDH/jABzAyMoKuri78yZ/8Sdv3rVYLv/RLv2TyU1544QXcvHmz7Zp0Oo2PfexjiEajiMfj+Mmf/EkUCoX/p478XSbVpDVs3OfztW1KXmP7Bsh86TBuNLZPc+WP1pcjzMf3kWitKHOoVqsm1NsOylBmqEEbNkTJNmqAhEJPJA0TtkOPbS1VTxjm9WwbtXLg3gokylDY9lKpZELMvV5vmwWiUFq1WoXP58Pk5CR8Pp8RfByfeDyOSCRihJXb7UYwGEQoFEKj0UAymUSxWDTVNkZHR3H9+nU0Gg3j9xoaGsLb3vY2DAwMIBKJ4NChQ5iensbQ0JBRHDTFoFqttp1bRetQhYjCnxwzG7pTCI/rgnNOIUDfH5k+LU07QpOMXf1VqmBwPlVpUuWG65VrhfPJklOcExLbQpiRQoYBHRTq7DOv4XrnuNFPqagH55hjx7/13Z2EMceWx9uEQiFHYH0X9F0LrmKxiKNHj+I3f/M3O37/q7/6q/jsZz+Lz33uc3j11VcRCoXw7ne/21QAAICPfexjuHz5Mv7qr/4KX/ziF/GNb3wDP/3TP/0378XfcbLhBaA9YkqFgK0l63fcVMqYeb8+3444U98PgHsYJBkgoR8bxlMoRvtj+0dsS0H7QkZMpqYRj8A21Kd5M+ynbb2xz2qJKUPTMVWtn23WRGTbrxIMBtHT04NwOIxgMAi/398mPOnvqFQqpnwRsFVRI5/PY3NzE36/H+Pj4+jr60M2m0U+nzeQ1sbGhome8/l8GB4extjYGAYGBkxkoFbwsIUQ36fWi/bVHieF5HSuODcqXHR92OtFIUK18hWete/XdazrR9c0+6cBPJ0UKCp6un41fN/23ep1fJYdpKFjrWgFrS1VzLTtur+4Z3Qt3c/ac2ibvmuo8D3veQ/e8573dPyu1Wrh13/91/GLv/iL+OAHPwgA+O///b9jcHAQf/Inf4KPfvSjuHr1Kl588UW8/vrrOHHiBADgN37jN/De974Xv/Zrv4aRkZH/h+783SR1ECv0o4yZTFivs60azeNSnF9hL6BzgqdaFrrBNIqLP9zkfBbQDrVpkIVubGVidj+0XcpAbYtKmSgtQmWcnQS8DRVSSPIzjhUthU7QD7V2n8+HSCSCWCxmcp843hy7zc1NFAoF1Go1BINBVCoVNJtN5HI5I5RGR0cxPDyMs2fPYnFxEYlEAoFAAJVKBevr6wiHw+jq6kIikUCpVEKj0cCNGzeMMNToNY4F26FQsD0/bKNChhxv+7dawFxfailz7djwm1q2qkTp9zaUaPvVbHTAXje8hn2zQ96pbNnt1z3Ae7QKiCpK3IsKM1Kh4rs4rrrmGJTBNtiw5v2UJoe26W81j2tmZgYrKyt44YUXzGexWAyPP/44Tp8+DQA4ffo04vG4EVoATD7Lq6++2vG51WoVuVyu7efvE9lQjzIZbgTNoyLZicaVSsWEVqu/Sq0aFvmkRtpqtUy+lTrBAbS1hRaYx+NBOBxuO6mWDIYMhJAL36P+EtWCFdZTQWoLHAD3JOsqM7StIrZVLT32T0ORFTris9T60M+6urYCJnbs2IGpqSlT4mhzcxNDQ0PYvXs34vG4mYdMJoNarYb+/n5MTU1hYmICS0tLuH37NtLpNKanp/H444+jWCziG9/4Bs6dO4enn34aU1NTyOVyKBaL5pDJ6elpPPfcczhy5Ihpr8fjMQEjwLb10enMLs6BnT6g46ZCjZZTq7WdI0jlh1YN22An6qrgCwQCCAaDbcEUah3b17Pd3d3dpm92PiLXpa38cJ8Q0tN13MnC9/l8JqXBttzYb46X+uy0H7ZwY9t0PNkfjinfzXF0qDP9rQqulZUVADAFRUmDg4Pmu5WVFQwMDLR97/F40Nvba66x6TOf+QxisZj5GR8f/9ts9gNPivnbEEcnyKUTFKiMn+Hk1Pa44ZRZqVUHdC4bpM9nO/hsTZBWwcjrbb/J/fwlyoAAtGncbCefre3jZ6q5q4auTIvMRv1mSjq2Ch/xHRT2AwMDmJycRH9/vxm/ZrOJcDiMUCjUVpuPmjktoWAwiEajgXQ6jWw2C6/Xi0QigWg0io2NDczOziIQCMDv96NYLJpgjFKpBI/Hg0Qigf3792N8fLyjJaJzqJCsHezAueC1tDp0HShz7hRIY19nW84cN1u4qJBSi08tNLUAuR90TagvVfcLfVr8nkEyuj90LRMSVuuUc69w9P2ConTNq7KjPjw+k+/h8zpFWzrUTg9F5YxPf/rT2NjYMD/z8/Pf7yZ9T4mCiAtehQw3MH1XXq/XhE8rc1HogQxCmbgyBIZpa6IxrSO2h89RIQDAVAvQiEE+l4ybz1LLjc/jxlXGrteReas1yfFQ/51d943+Hz5TT55VZ7vb7TbavAo01Z7JrOzxe+qpp/C2t70Ng4ODmJubMycXX7p0CRcvXkStVkM0GkUoFEKxWMTm5iaSySSSySSCwSDC4TBSqRTu3r0Lr9eL6elpnDhxAt3d3bh48SKuXbuGTCaDlZUVzM3NmfkuFotoNBp45zvfiY9//OPYvXs3wuGwEaiMbnS73UaAcu7og7MZMxk7mamuO/VT2ZZIp6RczpUmMdNKI7TJNaFFm22lh1YhlSMyf1XkNBhE51wjIRlQpJVRVFhzXZTLZQM1q9VGq1WVE43apEXGaFIVtOyn7gk+l3PFcXHo/vS3KriGhoYAAKurq22fr66umu+GhoawtrbW9n29Xkc6nTbX2MQoLP35+0QKbyk8qH4n228D3JvTBHSusafWGYWTWm42bKMOaXVqq6NZmQqfS4ZgM30lasl2civbTgZqa/c25EUYSUP/bb+N9pNExqaavloObDMZuwaFaHTf+vo6UqkUUqkUZmdnMT8/D7d7K8crHA63afIATDkn+rBcLhcCgQDGx8cRj8exubmJxcVFkw9GwedybUUzrqysoKury5SDGh4eRjAYNP1QC0ej4GzrqpOle7+1pmOp0Bf7xXcAaIOOtU1qqdt+S/s9Om/6t239cx1xvdjrz/YhKRSpz9e+3g96BrYhea473qcCVYNGtD+d/rcRDYfupb9VwcUD71566SXzWS6Xw6uvvopTp04BAE6dOoVsNoszZ86Ya77yla+g2Wzi8ccf/9tszt8p4kZQB7O98VTTU6arWf7KgBSesSOslCnwGTacooxcgw+0bRrhpgyDlgstGruCQKdNTFjFvlafq05xZUgKzyiUasNECm3ZbVHmYjPf3t5e7NixA6FQqE2jr1arxh8VCAQQi8UQiUQAbCskLpcLsVgMiUQCm5ubWF9fR6VSgdvtxvDwMPr6+uDz+bC4uAgA6O3tRb1eNykktCABIBqN4pFHHsHevXsxNDRklADbSlJLRqMRlUGT1F9jW+4cUwpDzpH6pNRq1bXDHw0757hqJQyFiXXMVMCpAtIJouY7+Q61+DspUBwDu818rw3F2wLSRjEUzVAYkBYmFS1NFXHo/vRdRxUWCgXcunXL/D8zM4Nz586ht7cXExMT+Pmf/3n8h//wH7B7925MTU3h3/ybf4ORkRF86EMfAgDs378fP/ADP4Cf+qmfwuc+9zlsbm7ik5/8JD760Y86EYX3IS52YvLcUPzOxvw12MEWGkB7EIItvIBtKE/LKiksSVIBxWv1XZqLoxq1Mg8KNkbWqd9CtX8VuArNkLHYOVUcG4WdFHpURqQatAaDcCxZ01AFHE8odrvdGBoawvPPP4++vj4UCgVkMhlMTk7C5XKhWCwiHA4jEAig0dg64DMWiyGdTiOfzxthkUgkcOTIEczNzSGZTCKVSmF4eBh79+7Fo48+inK5jDfffBPj4+OYnJxEvV7H6uoqxsbG0NfXh0AgYHLHjh49ip6eHoyOjiKfzxsosVQqtUF31WrV5GOFQiGjTLBySrPZNM/kGBAGVt9kvV5vg5Vt3yLXh1rpPp/vnnWhc63KCu+xI0jVStI5ZPs4/6ps6DWce01uJqphlxSjVa2KjcLHGuxBQU44VInjz/Xk9/vNdbbAsxPsHdqm71pwvfHGG3juuefM/5/61KcAAB//+Mfx+c9/Hv/iX/wLFItF/PRP/zSy2SyefvppvPjii/D7/eae3/u938MnP/lJPP/883C5XPjwhz+Mz372s38L3fm7S7Y1QnxeGTEAw0QoIIBtoQN0Lpqrz9XnsJSSaqbAvVUk1FKzncoqHLnZyRRUMNkWHBmFHYUFoI1xkt4qsILtI5PV72xoiXCnDeWwr4z84hh3d3djeHgYExMTyOfzyOVy8Hq96OnpQS6XQ6FQMP0plUqm743GVkIrx7pYLGJgYACJRALVahXZbBYDAwMIhULo7+9Hf38/5ufnkU6nMTExYc7jUuuQMKfX60U4HMbQ0BAikQiq1SrK5bJZM/Rfsg0U0kwYZpI150DHh8KYfefcqsBRAcOx1JJfanFxjWjpJc4Nn+F2u00eqCpF/FuFiAoQzpktRG0rXhUwXeu8TmuDsg9qYem7dD+oUqTKpbZB94WWUXME11vTdy24nn322bc0Y7u6uvArv/Ir+JVf+ZX7XtPb24svfOEL3+2r/94SN4NCMIz2qlarRpDw3CIyX92w3DC0tnQD6ffUxPkOfq45YGRCaoHYtQg7Yfi81uv1tjG6ZrPZtlmVAdgVPTRpVze/1tTjd3b9QkJQZHDqxFcBoMxPrREyHoUku7u7cfLkSezevRtLS0uo1WoYHh6G1+tFuVxGKpUy4f9q3aTTaXR1dWFgYADpdBobGxs4ceIE6vU6vvrVr+LSpUsIh8Po6+vD/v37sbGxgXPnzuHMmTMYHBxEIpHA+vq6yQfb2NhAMplEd3c3Dhw4gNHRUfT392N5eRnXr1/HnTt3MDMzY5ik3+9HOBw20BQtIgZscM5VMHFOOH8co0AgAK/X21YDkmvNVpo4psqUGZzBttDS0wg7uzyTWnxq2XeCdXWdcd5YOYZrq9P1CmXaKSgKd1MR0KR4RtVqOoWueQ024Vjzcycw4zuTU6vwISANpSVzUeHBzWRXk7CtMd10wDbkSEbOe0idYBC9V5m9bn5bsbGFoz7brn9nMx5tsxZm7QR3augzn6FtoNDkc5UJKmPkmHNsONYaUUY4KBAIoLe315R2qtVqyOVybRGO/M13x2IxzM7OIp/PG+ZcKpXQbDYxODiIkZER3L17F/l8HpOTkxgYGMDw8DD8fj9yuRyy2Sx27tyJZDKJSqWCeDwOt9tthCFhNZ/Ph5GREWPZpdNpFItFFItF4/fi+9lvtpH+OQBt/iv1D6qyQ9hUo/1sK0wFh865PkeDVtTiUWFo+yBVgdL9od/b+8Am20JSWFCtJXvP2YqW7cOzrWJdl7pOFQnptIccaidHcD3g1Amy0sALXeRk4uon4jPUAlOIgo55asHqh+oEmZGRkBHZ5zPpJuT19ka1rTIKXX53P1+aMqNO7eLnGiRC4awCic/TcdMiv7bvTxNMycQDgQACgQB6enoQi8WMoFNYye/3t1kSnINQKIRarYb19XWTd8UK736/H4ODg7hx4way2Sz27NmDeDyO/v5+xONxNBoN5PN59PT0IJVKIZPJYHh4GP39/W2MtFgsAtiKyGX5qVgsdk9xYmWU9pz5fD4TZMKkX1pHtB45fhRKPp/PWJicD2C7diTHQeFhPkPhQdtvxe8UulZY115rtuLB7+3cMl2bKnxsv5sKTxW4hLMVklQ0gm3Rd9hrz25rpz3vUDs5gusBJ4U4FKrohKVTs+UGoPCipaHRe8rQ9TNqk8y5sjeQbkyXy2V8LboZtd1Ae8CDzSRZgJZMUuEZZWSEYlSg6aZXWJC+uUgkApdrq1IFIdVSqWTu5bjQ30PIUYW/HcnZam0FZni9XvT29uKRRx7Bnj17EAwGsWfPHlOHcHV1FTMzM7h48SJSqRQmJiaQy+UQCATQ19dnztg6dOgQurq6sLKygmQyiVAohMnJSZw/fx6rq6tIp9Po7u5Gb28venp6kM1msby8jEQigXK5jN/93d/FpUuXsHv3buzbtw8+nw8bGxtYXl5uc/rv3r0bjzzyiEl25vzSd6TniqmQWV5eRjKZxK1bt4y1x3tU+WFkIOeSkGOlUjE/XHNcB6yQD2wHGalSpBGLrVb7+XH2+ldhSIuTFqPf7zdriUEhGs2nCh/3FwNXOO+2UNLK+BSIGtRC4aZ/+/1+8zd/28JcIyUduj85gusBJxuG4MbSwAXF/Pm3Hk3ODaZ19pQBaACELSh1I+o1to/AhkhUwFCYANt1Eumv0mRqFVS2lcbnqnbK/lDzbTabpl1+v98EG6iGbTvLCe/ZlhoZH4UbLdNgMIje3l4cPXoU4+Pj2Lt3LwKBgNHKAWBjYwNvvvkmrl27hpmZGfT09KC3txeRSAR+vx8+nw/5fB6ZTMZUB+/u7kY6nYbH40EsFsPw8LCxwqggEL5j4d1SqYTFxUUsLy9jdnYWc3Nz6OnpQX9/vwkEaTabJlgkHA4bpsmx5BhzTdHS4jyNjIwgEokgEAigUCggmUyacP2FhQWUy2U0Gg1jjQEw4871wWr0HF/OSae8OrUGbYuJVpBtCSmzV0HCz7WcGIWrwooKI9tCU4UK22QHB3F/2oiA/VuFpL0e1crSax0B1pkcwfUQEDcP0F52yIZqeC2ZlTIE1V41UbiTv0A/p6NeHcbKOJThq/asvgxllgqzqKVowzxAO0PQOm5qDVLIamAKAANXtVotUy1CISUAbbX8WF2Cz+N7Xa6tUPVwOIze3l4MDg6aUPPu7m74fD4sLS1hc3MTwWDQJArPz88jk8mg0WggFAohHo+jp6cHjUYD5XIZd+7cQSaTwZUrV7Br1y6TR0WrY3x83CQV+/1+cxwK+5zNZpHL5dBsNlGpVJBOp1GtVhEOh7Fz504kEgkA24m96+vryGQyaLVayOfzxrrlWAaDwTb/js/nQygUQiAQAABj8Y2MjBgr9urVqyawJJVKmZJKFHIsR+X1ek2ACy0v5rpxvmml5fP5NubOOVFoTYsFq2KlDF+RCRUOCgvr3lLBwTlgG/RUAvXv2T5ZVc7sNa3+LhVauhe4p+zISIfuJUdwPeCkG0rPWSLERoZOZqv5XQrLqTBTPw8AEyVm5+i0Wi1Uq1UTWKDtUWe5Blhw09uRZSpoCTXRB6QCkO+gdUEtmtYCrSQNKGi1WigWi2i1tg5rJHNgjgywlZg7NDSExx57DPF4HLFYDHv37kUsFgMAk/zJs7dYC3BzcxPFYtEw3YWFBaysrODWrVtGAMTjcUSjUQwODiIQCKBcLuPIkSN46qmn0Gg0TAmnhYUF3Lp1C3/xF3+BO3fuYGJiAp/97GexY8cOPProozh8+LCZy8HBQQNLBoNBDA0NYc+ePejq2gruoDDbuXOnGaPz589jbGwMN2/exPr6urGy4vE4fD4fVldXUSqVEI1GTTuXl5dRKBTMPDabTVMVhEzU4/Ggr6/PCO+RkRH4fD5MT0/D5drKebp06RJmZmawtLSE1dVVc1gm5zubzZpIRkK2GujCtAH+T4FaLpdNBRC1gDTPitdTIFKR4ZwSKlQLnX469evSL6gWkf5PIaYKF9CeoK0C1ev1trXTTmHRtAFC4wpbO9bW/ckRXA84cfFyU2s4r1oYQHsRWzs6S+EUjSSkMKRF1dW1fcw5sJ3Eq9adapqK1bNdCmsCMP423keBq5F9fBY3vIYXExYloyGz8Xq95lpe5/f7Tc5SKpVCMBjEwYMHsWPHDoyPj+Pw4cOIRCIIhUIYHh5Gd3c3MpmMEVYbGxsol8umAvv6+jru3r1r2prL5YyQ5bvVr8L6fuvr6wZe7O3tRSwWw82bN/Haa6/hzp072Lt3L5588kmk02kkk0ncuXMHU1NTxmdISyuTyZhk597eXoRCIXg8HkSjUbhcLvT09KBUKpnvI5EIisUiMpkMAJjAEY/Hg6GhIaM0EE51u90olUqYm5szc0FlxePxoFKpoFAooFAomMMsG40GgsEgBgcHTQHh/fv3Y2BgAKlUCm+88QZmZ2eRzWbh8/ng9/tRKpWMYKBFx3mlcFQoW+FdZfi6RnWNa1K7+rxUuChcrgFEJBU63AN8BsdDIWzuLf5Pq5FrVPewCiy2RwM7uIYVJXHo/uQIrgecbOiuXC63WVKa/6QJvdzYNixiQ35kZNw8hCwobHw+X9sGBbatqHq9brRZ5n7RH8Rr1G+kwRfqGFf4RS06PtvtdhumR5+QFpD1eDxIpVJoNBpYWlpCV1cXotEo/tE/+keYnJzE4cOHEY1GDVNuNpvIZDKYmZlBuVzG7OwsSqUSqtUqMpkMyuUyMpmMYeBDQ0MmWZewl0ZuUlBVKhUcO3YMyWQSX/ziFw1z+/SnP42DBw/id3/3d3HhwgVsbm7iZ3/2Z7Fnzx7kcjkDG96+fRsHDx40PrOenh6srKxgZWUFPp/PBEfk83lEIhFMTk7i+vXrOH/+PAqFAnbt2oUDBw5gcXHR+OOq1SpmZ2fRbDYxMTGBZrOJUqkEl8uFUqmE1dVVRKNR7N+/38zj2tqasQBYkYP+tmw2i3K5jFqtZqyvnTt3Ynp6GgcPHkR3dzeefPJJzM7O4lvf+hZmZmYwOztrLPFCoWDWRDAYNJZ8IBAwfkv6yLieqtWqgQe5jnRtqiXO9asnI3PdUVgA9ypcXIvq39LvqajQJ8r9yH2m1hiFEX2MwLZvTCMcaR3yGvt0cUeI3Z8cwfWAk1o3GoSg2Dg3Azc7sF0mio5oErVS20dF4n3d3d1ticJatVv9DwDu0XIJ8dEqUj8FrRL1NVDQklFQAGsZHGU8hDwphAkTAlu+mt27d+PIkSN4/vnnzSnEbFc2mzUVJlhDUJkYgwzYDgqpTCaDfD6P8fFxY9Ww78zjOn/+PCYmJkxSqs/nw9zcnPmexaWnp6cxMDCAzc1N9Pb2otFooFAoIJ1OG4bOc9Oi0SjS6bQRtNlsFsBWDdCJiQmEQiGkUiksLCzgueeeQyKRQKFQMIyS1pJSNptFOBwGsBVIUiqVEI/HTZh/vV5HLpdrg9EoWHhWVFdXl7FQV1dX4fP50NPTg56eHgwPDyMUCqHVamFkZAR9fX1444037qm0zvGnX4zzSwtKfUqqPKmio4qP+pa4TjXIgevaFkrcB1rTsxNqoe3i/0yIZzCPtlmDP/heuzqG+rLUN+zQW5MjuB5wYmi6Qha6+anVqW+Alhnv1YobGiLPv7lhKVBUi9WwYWBb8KnFQSjRzpFRX4AGR7APCq+p5spnbW5uGsiQDJPPJBxDpuzz+VAul/Hud78bJ0+exK5duxCPx1Gv101QArVlYNsB7/f7EYvFzHexWMxAZGwr6wc2Gg3DwAG0jQN9ZWtrawaeYwRhb28vNjc3sbGxgZ6eHhw7dgx9fX3I5XLG3+Z2u7G6uopCoYCBgQHjx2QI/NLSEhYWFowlfPXqVezcuRN9fX1twkOt2O7ubiQSCbRaLSMgAJhCzMCW/6lYLGJ5eRl9fX2IRCIIBoNtcJet+XM++b6NjQ2cPXsW4XAYIyMjOHjwIHp6erB//35T9T4SieDWrVu4cuVKW3SjQpNq9fO4FhtGpsDg/RqZSCHB/+1gHA2A0GAcrVph+3/toCdd37pH+X5NKaBgU2je3hv6HvULO/TW5AiuB5y4MfVvbkRqkCoEuMHUp2VvEFZNILzCz1Uz1TwwChVubD5TI6W4eZmAqnlnfI4KWX6n4cxkIpr0ypB5Vofg52wHrZMnnngCTz/9NN75zneiXC4jn8/j6tWrALb8PBwjhpdrVBgFJ0PJu7u7sbq6ivX1dVPwlif1zs/Pm2tDoRCCwSAqlQrK5TKmp6dx8eJFPPLII6b80/79+zE2NoYzZ85gaGgITz75JE6dOoVyuWwYKKtNXLhwAaOjo4jFYobpxWIxlEolXLp0CTt27MDQ0BA2NjbwG7/xG1hfX8cP//AP49ChQ5iZmUE8Hkez2TS+q97eXgwNDWFmZgZnz55FoVDA0NAQuru7sbKyYk5QbrVaxiKKx+PYs2ePCaTQPD3OOaHCtbU1M35ut9tUtL9+/Tp27tyJffv2YWRkBKFQCCMjI3juuefwyiuv4OzZs1hbWzN5VgyuIaxH32UkEjEBMlxjmiiuMLdCehqgBKANuuY61nu5DtTPq59RCPFz2xfGtc09SOuN92jEoSaAa5/0vbrnHepMjuB6CMgutqlQnTqJ1adFjVBxc4UhNOFULSAKOIUo+U6+S4WPvp//k1Golqx9oHZJuKRarRrmwGvViqTAIixDa4yWUSQSwXvf+17s2bMH1WoVqVQK6XTaWAYADKPjuzweD6rVqvnf7/cba4oRhKVSCaVSqS0EH9gShIODgwYeK5fLBta7cOEClpeXcfToUSwsLODw4cNoNptYXFzEjh07sG/fPsTjcSwtLbVBsuFwGPV6HeVyGcB20myz2US5XEaxWMTExASeeuoplEolvP7663jttdfwoz/6o3j66aeRTqcBbFlTpVIJQ0NDpqpHd3e36UsoFMLo6KixVprNJgKBANxuN3K5HEqlEq5cuYJoNIr+/n4MDw+b9QBsCQGG9S8tLaFYLKJQKCAYDBqmS6HUbDYRjUbRarXMOD711FOYmprCm2++iW9961tt1S/UJ8p32j4ejd6jMFIriIocFSddr5qDxXXEdUpo2La2+AxV0hSB0KR4jUa0/biEw9Uy5Bpke6gsOn6t70yO4HrASTeybka1eiio1D+gTl9uBgo1bmCGMgPbeV5ut7vtpGBbI1SmocJThZ/6zNRXQMagyamEpOjw5nsUQqSWq4zA7XYjHA7j+PHjePbZZ3H8+HET3k1mTIa/sbFhxkITt5eWltBqtTAxMWEYx40bN7CysmKsw0KhgO7ubgwMDJhyT6FQCJlMBpubmxgbG8Po6ChmZmYQCASwe/duJJNJ/Nqv/Zqpon769GmcPXsWP/ZjP4YjR44gl8shn89jcHAQXq8XsVisrQ0UZiygS4bm9/sxMjKCsbExfPnLX8a1a9dw+fJlnDx5Ejt37sRv/dZv4fbt20in03jyySdN4IRaMrFYDF6vF/39/VhdXcWNGzcQjUYxPj5uxoU+wHw+j2vXrqGrq8tAjkw2ZvV5Wr9ra2smwIU+u6997WtIJBLYs2cPAoEAVlZWEAqFsGPHDkxNTeHgwYO4cuUKlpeXcevWLeMb1UAYKjZcOwzMUKtZrX+ud12jKuB0vdpBEHakIgNACJnbeVgaqWjnADYaDWOtMnCKkLzP5zN7jutdERMqdXZ0okPb5Aiuh4BUIBCCsLF4xfO5+LlpufhtbU4j/tQq47NtoUXS67Q96jTne9gejVgkEyAz0rZTAPN5KnwpUPmsQ4cO4bnnnsPBgwcNo+XzKpUKUqkUWq2WSTSm8CZjzGQycLvdyGQyJpdpYWEB6XTaMKlKpYKRkREjQHi2FS2cYrGIUChkSkkR/orFYggGgyiXy6aKeyQSQXd3twnX10Abj8eDWq2GarXaxgjpS2IlEL5/165dyOfzmJ2dRTAYRDabxY0bN1AoFEzO1traGjY3NxGJRDA9PW3GnEyVbezq6jL+OA0Dz+fzplwT/YQUEFwbfr/fhMYzIpCJxwwOSafTOHbsGHw+H65du4ZsNov+/n7s378ffX19mJ+fRy6Xw8rKSltEHte3KkwMmycszXWjShHHTde5WkFcp3ZqiULqKhT5oxG8vF6tMApD9b9pMJTuCQ1O4njzvWoNO9SZHMH1EJCtVSpTpzBQjF4/UyHidrvbjo5QSIXMSB3xtoXFNjAHSw8P1IAR9a8ptg+gDQbkO+w2k2FpYAjDphlQUa1W8dxzz+Ho0aPw+/2YmZkx2nkul0MymcTGxoaJKmQ7GUVYKpWQzWbbjpcHtqPslLHQgmBlCADGV1apVAwjLZfL2NjYQKVSwa1bt+B2uw0MR6amvg+N2uPYMGmW40X/EQUFLY7JyUlTteL27dtYXFzEwsKCSRUoFApYWVnB6uoqurq6zOdsL60Dzq3OIRkmc91YpYNrRKNZGQREwReLxczhlS6Xy+SIHT58GENDQ7h+/TpSqRQKhYIpbRWJRLCwsACXy4XZ2VnzHrvSvJ10ruufY8X51TWoflhNEyHRsusUKEEhQktYoWuuX0UYeL8KXbaDv7UMmeZvUTDqOnGoMzmC6wEnLnQKFYVMgPaD7BRG5IYlQ9JkR7U+uFGYOMsNzJwYWgVk4mr11Wo1A58RilIrTa09hVl8Pp+xutQa5P1kpHy+wnvlchnRaBTveMc78IEPfACFQgG3b9/G66+/jnK5jMXFRRO0QV9OMpk0uUEbGxuoVqsoFArGYqCVREFEhunxeBAOh41SUK/XTaX23t5ehMNhjI2Nwev1YteuXVhcXEQ6nUYqlcLP/MzPAACef/55vOtd78LY2BiWlpYMow6Hw+a9JLvqPi0jBqmUy2UDp4VCIUQiETSbTayuruLMmTM4efIkWq0WXnnlFdRqNczOzuL27dtmDCORCABgdHQUm5ubWF1dNdZovV7HxsZGGxPmPPv9ftN/Cl22PRgMGkuSYxyPx+H1epFOp+H1erGxsYE//dM/xYkTJ3D8+HGcPXsWd+7cQblcRiKRwPj4OH78x38c8/Pz+MIXvoBbt26hUCiYVAQyec4XixyrZcL1ReL+4PqkpU3lTpVAKlu235YCjM9guSoqUhwLrm/Om1pYtn/NhviBbeGnCIhW9nDoXnIE1wNOCtGpRULhQ4bOhU/NEmg/qkE1Vb2G79DIK4UiaaEprEcGpni/DVXaARmq9apvANiuRq4WH2v/0cKh4x0AHn/8cbztbW9Ds9nE2toa5ubmDCNkvT7WJ2w0tpKDqeUySIGlgLRkFvO2aJmpVcvx6u3tNSWeIpEIYrGYCahgdGGpVDIW2s2bN/GDP/iD6Ovrw9raGrLZrGkbowrt+ea8EsKiQGO7Nzc3USgUTBtpnTAQotXaqke4sbFh/GO1Ws2UXZqYmDCHT6rFyfBzhvY3m00DXXKNcR1VKhU0m01TzzCRSJjqGLRoW62WOV9sZmYGN27cwOjoKKanp5FOp83ZZbOzs0gkEhgbGzO5d1euXGkrfsw1yTWkPliF7ThP9j5QtEDXOKFH+p9s/9X9rCmNSlW4nvPH5Gha0dxjStxjJFUMHGvrrckRXA84qf+Im4s/6txVgUSBY8NwCl1oAIcdLajP1EgtbiY74pCwkwpSfq7RguyPMh+G5hOSo9Byu90IBoPmf1pjBw8exDPPPIM9e/YglUrhzp07uHz5sklC5hlZLOpaLBaRTCaN1UpGAsBYIpo7RIajbWF1jkgkgoGBAYRCIQwMDBhrjNVMFhcXsba2Bp/Ph2AwaPxisVgMIyMjyGQy5ugSOt8DgUAblMux4PjQF6apAQBMdXiOU09PDzKZDCKRiKkOv7GxYaIvtd8cS/sIF2Dbou1UdZ1MPBwOm2K4DFYZGBgw472ysoJsNouVlRVMTU2Z9hQKBaRSKfT392Pv3r04ffo0+vv7UalUcOPGDQwODuKxxx5DNBpFOBzGl7/8ZcPsFZ5UZIHf2VYMSSNbbQuH/ytcqv3l3/ytPid9nn5OYaTH7HCPKUxuCycVWApZOtSZHMH1gBMFgobdKgyhBW4JV6iWaGum6qMiKVzHwAbex0RNMmFtEwDDTLjpFJIE0BYZpjAkBbIGeZAxBwIBI7QIz9Dh/4//8T/Gvn37sLm5iS996Ut45ZVX0Gg0MDo6inK5jN7eXhNmPDMz0xa0oRUxSPyMQRCExuLxuAlVHh0dRX9/v0mcZY4ULbpGo4FUKoUvfvGLiEajiEajuHTpEsLhsMmFeuSRR/DlL38Zt27dwsDAAEZGRrCysoJ6vW6OJwmHwxgcHEQkEjGh+pVKBYFAANFo1PhvAGB2dhbVahWRSAQejwe7du3C6dOnsby8bNq4vLyMlZUVhMNh1Go1Uy1DoxUpKP1+P3p6etDV1YWFhQUj1Dk2zGMLBALGog0EAhgaGjKHXPJZXq8Xi4uLWF9fx+nTp9Hd3Y33vOc9CAQCuHDhAsLhMCYnJ+HxeHDlyhV4vV7Mzc3B6/Xi5MmTeOyxx3Dy5En4/X688cYbyOVyRpnQPD6iAYTV7HSORqPRVhxaBYUmHTOxnXloFIK8T/eQCkj1V3GvcJ/RB6o5W7rW7chbrj/WzOS7HepM955h7dADRbpJ+FtDx1WA2JuBm4WkWjYZrha7pfNfBaANw9h4vG5oDV3X39oetSD5XAotjeAiHMbySYVCASdOnMDg4CA2NjYwMzODa9euGZ8KISqOD4/VIIOi1cJgDfotWJGDSa/qZ2A0H3O8yMxZj5F9K5fLBvqipUdfWL1ex927d824sQQTi+QWCgVzLAhLLrnd7jYh5fP5zFEhuVwO5XLZMDeWfapWq3jkkUdw6tQpk4O2ubmJtbU1pFIpw5QBIJlMYm1tDcVi0TB25pQRKmWABbANJQcCgbYgjJGREZPczfdRaalWqxgcHESz2cStW7ewuLhohNz6+jouX76MHTt2IJFImCK8AHDz5k1cunQJrVYL73jHO/Doo48ay1IhbRUsXF+cD90LtoLEPWQH5ah1CbSfyKwKH+ddrXJFOhTx4GGUnEeFK3ktlQNbUKpF6dC95FhcDzhpODg3hUajdRIOhO74WzU//lZLDUCbz0nxe9uK48biplMrjJuUzyZDozZK4ai+BfUZkMg4AZjjPd73vvfhgx/8INLpNK5du4YbN26gUqngyJEj6OrqQjabhdu9VYy3Uqmg0diqtsG+9/T0IBgMIhgMGh9MIpFAX18fUqmU6QcL07I8UyKRMMyZfrFQKGROOi4UCrhz5w4WFxcxPT1t6vw988wzmJqaQqPRwCuvvAK3241EIoG1tTXMz89jenra+KSYo0WBSOHrdrtNIIfX68Xq6irm5+eRzWZN8dnjx49jdXUV58+fx507d9DT04Px8XFks1msr6/j5s2bGBwcxNDQEDKZDNLpNObm5tDV1YW+vj64XFtnYK2vryMYDCIQCKC3t9dEEdJfQ8sxEAggHo8bC41ritU0KLiGh4fNNY1GA5/73OcwOzuLj3zkI2g2mzh79iy8Xi92796NWCyGW7duYXl5GTt37sT169dx7tw5/ORP/iSOHz+OWq2Gb37zmyiXy21ReNwfGhhEC10rudtCTvMh7aATWmkqmLS+IK/RKhsKc+t61shCCk1N+qcyBWynUTBIyYEL35ocwfWAkwZKaJitHe5LokbJ73UjKb7O7/SZmqcCtOe/2H4yjTIE2hN77URNvc72M/A9qrnyvr6+PgBbFsKRI0cQiUSQTCaNNaCWUCQSwebmJu7evWvaRh8UgzBoQbF9LNnEY0Dq9XpbxXJWtOAJvhwbRjvyf1omoVCoTbBEo1F0dW3V8svlcoa58nRiCnOv14t4PI5Go2HOASODVoVFx21zcxPZbBbFYtEUq71+/boZDwZV8DiSWq2GZDJpSllFIhED/dVqNWQyGeRyOUSjUZObRWZKxkvrIBAImELHVHLo02M0aigUwoULF9DX14exsTFcuXIFL730Ep544gnE43FMTk7izp07WFlZgcu1VYG/Vqthbm4Og4ODaDQauHr1Kp544gm8613vQjabxdmzZ9ugPPUNci/wt649rnX+5p4hisC/FdWw71flUANGOEccI022JylaodCjLVjZRieP6zuTI7gecLqfNaV4ux3VpHADrSPF+DvBLBpgYd+nkKC+Qzcx26qWm90eQoMayUeyA014Au/a2hpGRkYwNTV1j6+PwQB6XD3DlnXslPmwUrwyPoaE631k/uqvoyVULpcRj8fNs93urSoezKXyeDxYX183hzjS8iQkxrOyvF6vOWsrHA5jc3MTuVzO5ItpGgTbTj9cNpvF8vIy5ufnkU6nkc/nEQwGEY1Gsbq6anw/6tObnZ3FnTt3TLuLxaKxFmgtVSoVjI6OmnmjEGXSNvuq8+/z+UzFfAplALh69ao5tNLr9SKfz+PSpUs4dOgQdu7cieXlZXMczPT0NEZHR3Hu3Dm43W5MTU3hjTfeQF9fH06cOGGgzfn5edMWrQbPYCRdswof6h7i+lYoTteqohD6nf03n6mCjEKRVpsGcdBiY5i7hs5TgHKf6F5w6F5yBNcDTrqINTTc3jAabs777KhB/m9bUcD2plKHNdBeVUC/oxBSIaUJlGw3HdFkwtTUNZmXm5htJzxXKBTw/ve/H4cOHTIWA/OZms2t86para3Tc8fGxgwc5/P5jI9LrZxms4nh4WH4fD7E43ETPk/4j1UeAoEAIpEIKpUK7ty5g97eXkSjUeOPY12+TCaDu3fv4u7du5ibmzMloNLpNMrlMm7cuIFGo4GjR4+iXC7j9u3bWF1dNUeRBINBE2U4MjKCYDCIVCqFbDaLQCBgmDOZIOHOTCaDxcVF1Go13Lp1Cx6PByMjI0ZoJ5NJoxRMTU2hr6+vzccHwAhRrgdW7iiXy1hYWGgL069UKpifnwewlQN28uRJM/ccu0gkYn4uX76MbDaLY8eOIZVKIZlMYseOHcYK6+7uxu7du9HV1YWDBw+iUCjg3Llz2LFjBw4fPow333wTMzMz+JEf+RF8/etfx3vf+1589KMfxRNPPIGf+ZmfQTKZNHCawt1KalFxf2jgBtea+pd0b6hFrVX1aXUqRK5WnO5Z3VvcBxRibI8mWasvz6G3Jic44yEganmKzSt0xWvs4Am9Xy00DcYg2daTaqS2Fqs/vIfM1T4GRa072/KzIyHZP0b0HT9+HAcOHIDL5cLS0lLbGVGMPiQDY+RdPB43uVb0F7ACO60Z+mz6+/uNBUPLhM/2+/2IRqPo7u5GMplEoVAw1mKz2cTdu3dx4cIFnD59GjMzM0gmk3C5XNjY2IDH4zEHPvL8rHq9jvX19bbPK5WKcdbzVGZGlVEr53ywdFMgEDCRhsPDw8jlctjY2AAA8x3HmP4xMs5SqYRcLmc+Y7vIqJnsrP7Pzc1NU2WEcKJCXWS0rK8YCoVQLpeRzWaxe/duvP/978cP/dAP4caNG7h16xay2Sxu375tDs/csWMHnn32WdRqNczMzMDtduPo0aPGkjtw4IDxb+3cuRMnT540yccM4uGcsU36t/7o+rOhQIXXge0SY1ToVMAxlUT3mSqR+ky+Q2sPqj/MDgbRIgEO3Z8cwfUQkGppWgnDhkFUW9OqFBpsYfuV9H4VehoNpUKTz1YhSEGoJ75q2+g/I0yiVpleT2bF03affvpp9Pb2YmNjo+1sJp4ZxbB9wlnhcBiJRAJDQ0MYGxtDPB5HOBw2511Vq1UDTWn+Fp+tR6/TbxMKhZDNZpFKpcx1hUIBb7zxBr7yla/g9ddfh8fjQTQaRaVSMZUkmOhcKBRMVXpGSdZqNaRSKaRSKeMTCgQCJvGXsBfnhEnH8Xjc+KR6enowNTVlLCTmdaXTaXR1bZV4GhgYQLFYxNraGmZnZ3H37l2k02kTmWgrO26320C0wWDQBA7w/UwPoPLAyDwyeUKKLBHVarUwNDSEJ554Au973/sQDAaxurqKubk53Lp1y1SjHx0dxaFDhwAA6XQavb29ePTRR3Hu3DnEYjHcuHEDZ8+exebmJp588kkTBKNBQFzDnUiFiS2E+JkKN1XyKGA0H6wTskG/KBURXkeFiMKWY6cRjoSmVfA5wuutyYEKH3AiY6AfgpuO/hj1S6lfwoYwuGGBbcaoBVUVe1dGxqM+6OznZlILBUAbpKLCU/1x9LlokVL2j/6bQqGAY8eO4fnnn0dvby/u3LmDzc1NDAwMmD7xYEaGVLtcLpw7d84IrV27diESiZgw8FqthnQ6jYWFBZw9exarq6uIRCJwuVxIp9PY3NxEIpEwZZwYacbq9GT29NdkMhn82Z/9GarVKnbv3o2xsTGsrq6ayhvVahXJZNKUjJqZmYHL5UIsFkOzuXVe1uLiIubn5zE8PGwE0tjYGLLZLGq1Gnp7e824r6+vI5/PY3h4GN3d3UilUpiamsLw8DDOnz+Pnp4epFIp5PN5dHd3Y3x83AShnD9/HtVq1SgVwWDQhMjz4Ei/32+CNSKRCMbHx80aSyaTxg/HxOpms2mSsZlO0Gq1MDc3h+XlZbPmFhcXUalU8OSTT+KXfumXcOXKFfzyL/8yrl69inQ6jenpafz2b/825ufn8bM/+7O4ffs2/ut//a+4e/cujhw5gvPnz+Pq1asYHx/H7//+7+PmzZv42Mc+hv7+fvyf//N/8KUvfcmsQULC9K/RwiFSwCg+CmFFEPi3WlH0o6klxn7RJ0pSBIL7hRC6KprqV9UcQLXs1M/l+LfuT47F9RAQF7MeW0LG3ykYQ4WU+q54H7/jhqL2pxonNVkVnOp8BrYP7dPILC0OSi2S2rhGdukzqL3n83n09/fjne98JxKJBG7fvo18Pm/8YmTkS0tLuH37Nmq1mkkWXllZwfXr183xGo1Gw4R3DwwMYHx83AQAsFYiq0oAMHlOZIAMVGBOVD6fx+rqKm7evImLFy+iXC5jYGDAlCrat2+fKflULpeRyWRMiH69Xsfa2poR5ABMMeBcLmfeTWZGy47WFXPUwuGwsWwp7FhaqVqtIpvNolQqmchCFtRlDcFAIGCSXBmVuLy8jNXVVZM3RiHAJHAyfI4L1wpD3WOxGAKBALLZLBYXF5HNZtHb22tgw7m5OXzrW9/C+vo6BgcH8fzzz2PPnj0oFotmfXzta19Do9HA+Pg4jh49ikAggBs3buDw4cNoNBqIRCLo6enBtWvXUKlUMDk5iUceecRYN2o1qpWkn5HsAA6uW65FG1bkdVT0uF5V6GmgBYA2tIL/a6oA15dClwpv2sFDDt1LjsX1EBCjlFjIVCMJyRjpY+BnvE8FGe+hlqpVwhkwwYoEZFI8gsN2gBMyUsiS1zCvhhokk571vCUySL7f5/PhH/7Df4hTp05hbm4OX/va1wAA09PT8Hq9WF5eRiKRwJUrV/Daa68hmUya0O1jx45h586dSKVS5liSUCgEAMaaYn3Bp59+2kCR6+vrAGCqbFQqFXPMRiqVMgEKqVTKwH65XA7d3d149tlnjQXZaDSwc+dOnDp1Cul0GisrK7hx4wbK5TICgQDW19cxOztrxoin/fp8PqysrGBsbMy0NZ/PI5lMIpfLmQCQZDJpfFact6GhIYTDYayvr5vq95ubm9izZw927tyJs2fPYnZ21jBbl8tlogIprBmVmc/nzTEt4XAYkUgEQ0NDJoiF1kU+n0ejsVX4l/5EYKvG4ZtvvomVlRV4vV5cu3YNyWQSzz//PO7cuYMrV67g4x//OB5//HH84i/+Ij74wQ/ilVdewa/8yq9gamoKtVoNv/3bv42nnnoKb3vb27Bnzx5cvnwZyWQSTz31FNbW1vD+978fKysr+P3f/3288MILePbZZ/GlL30JFy5cMDltXF8A7vlNSwxoL2oLbCtPGlXKH0UyuPfsXEiOZSeho1Cj+tA0KIbrQk9b5m9tt0Pb5FhcDzhxcWtIumqDwHapJs37UKtMhZxuNF6n1SVoYVHAaDi47cwGtrVLtc70/dzwer4SgypojTWbTTzxxBN4+umnkUgkcPr0aczOzqKvr88k/9KaWVpaMsfO+3w+XL58GUtLS5iensaxY8dMNQfCV8ViEQsLC1hYWECxWERvby+Gh4eRSCQMk+nt7TXWFduj1etpdRD6Y0WIUqmEtbU1nD17Fq+//jqKxSJisRiGhoZQLpdNMAh/UzGghUnrB9j2OWolEzKuarXaZj3wWYyI5Lt6e3sxOjqKVquF5eVl9Pf3t1V70PB+9dto0A8tp7W1NRQKhbaahZxL5sPxnlwuh/X1dRSLReRyOSwtLZnE4p6eHuzZsweHDx/GmTNnsLq6ipGREZw8eRK7d+/G3Nwcms0mzp071xYhefz4cdy9exetVgsXL15EoVDAxMQEbt68ibt378Ln8+HRRx/F0NDQPWu8U/1Ljp9d+1Cv0ZQNXqNrms+1ic+h5UWoXhEJ7mPuZc6JBmvoPnOgwrcmx+J6wImMhRqZCi1uFmVo9uZUeM6ODtSEY/4PtDu5VVPUKEMN/VWMX53beq0Ga2iOC9v7zDPPoK+vDwsLC7h79y4AGEtkY2MDjcbWmVgMAwe2GEkqlcL58+fx3ve+F2NjY6bMksfjMYJldXXVHBTJqg8aDUbokGPEdnGM9SwxQnq5XA7ZbBaFQgGbm5u4ceMG1tfXMTQ0hGg0ioWFBXNMCH0tpVLJ1AuklaARmBTurKDBPnD8OD88noXBIMFgEGNjY7h79y5cLhfm5+dRKBSwa9cuFAqFtkhO/VvXAZlso9HA3Nwc6vW68fkx0KRTpXMe2MmKJYVCAZOTkzh48KDxEzWbTUxPTwMA/vAP/xA/9EM/hFAoZMo5raysoNls4vr163jsscdMjUcAmJ+fh8fjwYsvvogPf/jDiEQieO211zAyMoLDhw9jdnYW3/zmN03buVbVYtIcL655VcDsgAqF4LkHOgWAqNWkCgiAexQ4Xe8qDLk27ECMTiH+Dm2TI7gecGJVcGWqiq0DMJo8sH1QI7BdVoabA9iGD7nBuGkZ/MEKE9Q++eP1etvOx9LyUHrwoUZcKbOg4O3q6jL+FCYD/+AP/iAOHDiAb3/72/jWt74Fn8+Hxx57DN3d3bh06RLm5+cRi8VQr9exvLxsThxOp9MYHR1FrVbD5z//eXzoQx/Ck08+afpJ62lhYcFUjLh27RqmpqYQiUQQjUaRyWRw/fp1VKtVE7hAyJBQKcsfMVSd5Z5YbYOCZmBgAAMDA6biBiG4aDSKUCgEt9ttfEKsNJHJZEwpJgoujiXHkT4ql8tlhAghR87V8vKyOQuMVdeZkK0HIHKOtC6jQmNMFL5y5YqpOk9/oMu1VVvxxo0biMfjGBkZwcLCgoHr1tfXkUql8N73vhehUMj47mi979u3D6+++ipee+01fPCDH8RHP/pRTE1N4c///M9x8+ZNvPjii3j++eexb98+eDwe/OiP/ij+4i/+As8++yzu3LmD//yf/zP+yT/5J/jmN7+Jz33uc/jlX/5lRKNRnD9/Hmtra2adqQLF93P9c90qREcLiP5D7jMKdi3XRGhbUycI42t6Cb/TaFoNblJ/lwpMCkPHx/XW5ECFDzgpdGeHL3fKMVFt2o4mVI2Tm5KQFf1jCpd0gjA0FJ7XKbRF35dCnHwuSa21RCKBQ4cOIZ1O4/r16yiXyxgeHsbAwIA5GoN199LpNBqNrTqDPp8PuVwOa2trqNfruHTpEl555RXjgyKz6O7uxvDwMHbv3m2qb/CaeDxuknhdLhfK5TLW19dNv3m2Fiu+E9pj4rJaQdlsFul02ginPXv2YGpqCvF4HIODg+jt7TUFdOPxuAk7X19fx/LysjmNmTCq5sNRqWA+FSG7SqWCcDhsTjtmXhfnmxGVWgWeQkhTHTRAgMyWQoCCGoAR4gzmKBaLJpKw0WgYnx6ty66uLlOYt9ncOttrz549cLvduHz5MqampnD48GEcO3YM+Xwem5ubpm4kI0mfeOIJzM7O4ujRoxgfH8fGxgbGx8dN+0dGRjAyMmIqxOtaU8avQUbq29IwdF4HbOe3abShKmW8n2RD53rSuPrJFJ5U/7LOBfdsJ1jSoS1yRuYBJyba6ubSahWECm14QzebworMX1JNGNjacJFIpO14EbsdPp/PBFmoz82GH4F2pzShPW1HIBAAsHUo5OHDh/HVr34V8/PzaDab2LVrFwDgm9/8JjY2NrBr1y5zHAYA83twcBAulwvZbBY+nw9f/epXkclk8Pa3vx07d+7E/v374fP50Gg00N/fb6DIcrmM5eVl9Pb2olAomLqHd+/eNXlfZKIUwPQpMUpPT01mVfWLFy+i2Wzi+PHjeO6557CysoKvf/3rSKVS2Lt3L6LRKAYHB037+/r6kMlkcPv2bSQSCcNEWXyXzI1pCktLS1hbW0N/f785ruTNN99EJpPBvn37sLS0hIWFBfj9fpMzRp9LIBAwvjsNAVdri3OkFeMp5AOBAHK5HAqFAq5cuYJEIoHXXnsNp0+fhtvtxsTEBFqtlqmEUa/XUa1WTTUIjmFfXx+Gh4dx+fJlhMNhY1n/3//7f1Gr1fDyyy9jfHwcExMT6O7uxiOPPII/+qM/QjgcxrPPPovXXnsNb3/723HkyBG88sorOHr0KF544QXU63XcvHnTRIqyj9wrCsnRcvL7/Sblg1GBij7YqINCtnwux4lrXg+Q5GfqJ9XvON+8js9XhUitOIe2yRFcDzgRiqK2R21Sw3QJL6mWqKG2au2oZkmm2Ol7Et9DjV2FpOaQUZvlPTZmrxuU3/l8PoyMjJgSSJrzQn/W008/jfHxcbzyyivmQEcK1rW1NdRqNUQiERw4cACxWAznzp1DNpvFI488gt7eXoyMjJh3M8+KR4n09vai0diqIk/Loru72xxVT6umu7vbFLJVgU34kEymUCjg+vXrps+NRgN9fX1488034ff78eyzz5pjQ7LZLAYGBgyTYvCEzg2DKQh5sU2cM0Kog4ODJkqSARvAtuXBcGydF/Wtcc44P6okcb6UaWcyGZw9exaLi4vI5/PYvXu3aRuTuJvNphkvRQ2YGH39+nUUCgX09fUZa7RYLOLmzZu4desWent7EYvF0Gq1MDY2hpmZGQwODuLu3bs4fvw4xsbGcPHiRYyMjGB8fByjo6MmHF/XGseTvkYVahp1a69d7h2ua3vsFMqjlUbBR38z94vuE51fe7+xHeqHdKgzOYLrAScyR246e8HbzEcZjkJySvxOhZzb7Ta+FH0u/S18tl1AV53OdhgwfyvjolXW1dWFUCiE3t5euN1uE2odDAbR1dWFdDqN8fFxPPHEE8aPlk6njc+OfqLR0VGMjo5ix44diEajqFaruHnzJl599VUTas2E2larZRKTaX1sbm4iHA6bMWYleTJ7Ju9SsKnfo9XaPjCQzDCdTuPChQtYXFxEd3c3BgcHEY/Hcf78eRw8eND4nDKZDPr6+kwgAvPY1BfDOVdLgEKLJzvv3r3bpAFoNJs93zxFWudN/SnKjAkZco3wNwBj4TJK8+DBg0gkEsZH53JtFzKmdUffWL2+dRo0TzhmLcZAIGDGfHFxEW+88QZGRkbM2WLj4+NYWVkxCeVXr17F0aNHsbi4iNu3b2Pv3r3YtWuXKSOlFhDXNpUL7iH1KanfWBOCKawJn2oyvUL3drATsC2cVNHUQCrubUUrqAxqZKNDnckRXA840deiTMQWGsB2qK76nLSwpya4AjBMhRtZoQ2SapuEODTKUR3+vJeOfwBtWme9Xjc+olqtZvxAQ0NDpgxQs9nEkSNHkEql8NWvfhX/+l//a+zfvx8XL15ET0+PEYCTk5Po6+szZ0O53W4Tzr5z506Ew2Gk02n81m/9Fnp6evDJT34S4+PjBvJi5OHVq1exuLiIgwcPoq+vD11dW4m1tVrNRAwWi0W0Wq22HCEdA1oWZGysqkCo6cyZMxgZGcHk5CT+4A/+AJFIBE888QReeOEFY91xDDX4hT6knp4ekzhMATQ/Pw+v14u9e/fi5ZdfNtGKdoSb7fxXRqzh48C2T0ctWq4LCkzev3//fiQSCczNzWHv3r04ePAg/vAP/9CUiqKfLplMIpPJoFKp4PXXXwcAfOADHzBQNS1oYAv2TSaT8Pv9uHr1KhqNBj7ykY/A4/Fg//79mJ2dxZkzZ3DixAl89atfNRVSvvzlL2Pv3r145JFHTHQn/UbcB7rW2S9bAbRD/ilQeJ0eQwOg7dRl/k0rmSgJcK+/TXPA9B2q/DGYxrG67k9OcMZDQLSKqCFzYWv0IAWU/q/aHdBuBSmEA7TXI1SHsRYG5bNtKFC1TqA9MVMtMlosPp8P1WoVe/fuRSgUwurqqjmGntZJPB43hxG6XFvlknbv3o19+/ZheHgY0WgUwHbEXa1WM1abx+NBf38/hoeHsbS0hPPnz2N+fr6tGC3LLlFYhUIhk7SczWaxurpq6v8Vi0XDkDT4hVoylQb17/GkY5/PZyIV9+/fj1arhWQyib6+vrZDDNXHRAZLpUFz3lgtg4yxVCohGAy2WVt6r1rhnZLIlXF2Io2oo7Udi8Xgcm2dobVnzx5jPYVCIXg8HhSLRWO90ieay+XMuWfpdNoEzrCt8XgcfX19pmpIMplEMplEV9dWukIikTAVQ3jw5MGDB+H3+5HP5xGNRjE1NWUsdhW0FBAATHSkBmhwbNQfrNaoHVDBMaZPi9cpNMj3dwq+0IhH9Wlpzp220aF7yRmZh4BU4OhGpOBRC0utK0bX2RFPZO6suKBwHu/RxEndlKoJqqDUiClqudyoZJjc+Cyky+CJtbU1+Hw+TExMwO12o1Ao4Pjx46YwKSMfh4aGzLEltOzYT4ak0+kei8UwOTmJRCKBs2fP4vLly1hcXAQAYxGwDJP2hdYfq2WQYSu8pDCTRoCpZVqtVlEul83RHwxdZ9mpnp4eU64pFAqZvC7OhUZ9sr0AjNbfarWQyWQQCoXa4FeuEz6HzE8jRZVpqvDUe21fqUKA5XIZq6ur2LVrF9xuNxYXF1EoFADAHF6Zy+VMIJBa68lkEouLi+b0ZR7CGY/HEY/HkcvlkMlkUCgU8Oabb2JxcdH4QoeHh1GtVrFjxw7cvHkTw8PD2LdvH+bm5kyNRlrOSjoutpVDwfJWiqANEfJ+jdTUZ9qCiqSRwCrkdG9pW22I36FtcqDCB5wUzuP/9H14PB7j0Ae24QfNH2k2m4a5E86gr0PzcwiHUVvkZuW7dfNqmD2FFH0+/J7Mz+/3t1WEpw/pJ37iJzA4OIgrV67g0qVLePTRRzEyMoIbN27gve99Lx5//HHU63UTleZyubC6uopEImE2PuExluqJRCLm+BGOW29vL9LpNL70pS+hr68PH//4x9HT04Pl5WUsLS2Zunn8uXLlinkeSSM0lckDMDAoAFMiinNAQU0o74033sChQ4cMrHXt2jVMTExg9+7dpnguAxXW19dNNCar3M/PzxtIlOd2MVcqkUiYQywpnDgftAQ1QZ0Cm34Z1fC10DI/o4WbyWRw5swZDAwM4MqVK1hfXzdK040bN5BIJJBIJFCpVOD1eg2M5vf7zWnSe/fuxaFDh0zV/3Q6jUgkgomJCVy+fBmlUgmLi4v4tV/7NZw8eRLvf//7EYvF0Nvbi9/6rd/C1NSUWXfPPfcc/tN/+k8IBoN47LHH8Mwzz+BrX/saksmk2S9c03bEIWFZheoUAlekg3mHDHVnwBTXCq08XSvAtrLGtmhkI/ee7il+p0LMoXvJsbgeAlJHOhe5lqGh5gZsa9Z2pKBuDv6vobaqZet7dFPrs2yHvkY4khSyoaALBAI4dOgQjh8/jrm5OVy7dg35fN7kVM3MzGB6eho9PT0IhULGcR8KhZDJZJDP5w08w4MP8/m8cf4DMLlWDKgIh8Po6+szgRuzs7O4cOECRkdHkUgkjO+IcCB9POq01z5xnMn87Ag19X8B24EWxWIRXq8XwWAQCwsLSKVSpkQVoTNW9iCR2dLSUqc/K7XTf8VncE3YPjk7YABAm0XGOacF4fFsF9dVKy2XyyGVSmFxcRFTU1PYvXu3idZkVKPb7TaJ2EzkZnWNaDSK/v5+c7zL3NycgTx7e3tNP0ulEi5dugSPx4PBwUGMj4/D5/Ph7t27JhCGlvfNmzdRLpcxPT2N4eFho5wpHMq1QQVOfX8UVvRVqhWk88rxtet3cu3bVq++WwM11NdmW1mKdDjUmRyL6wEnhX248OlAV0iCsA/vIfPS2nvq/1D/DD9TaIkbms/R+zT0ne8H0Ob856ZXAUDh81M/9VPYvXs3fuM3fgPJZNJUE2fZpL1798Lv95tw8ZmZGZMndOHCBQwMDCAYDKJarcLr9SISiQDYhkLJgGOxGIrFosnZ8vv9+Ku/+isDLb7vfe/D/Pw85ubmkM1msba2hkwmc0/St8JBANoYDplcs9k0ofOMoiMTpJLQ39+PyclJ1Ot1nD17FgMDA9i7dy+6urqMEOvv7zeCnhQIBNDT04Ouri6MjIygUCggk8lgcHAQs7OzqFQqyOVyxv8VjUYNc+Qpx1w3zWbTWHL2mlGfp8JoFOpcT3zW448/bk5Srtfr2LlzJwYHB00Zp3w+3xaY09PTg7m5OSwsLGBlZQXP/v8rYnzlK19BqVTC9PQ0HnvsMdy6dcv4FwOBAL7xjW/gve99L6anp/HOd77TpEEsLS3B4/Hg8OHDuHz5Mr75zW/ihRdegMvlwsWLF02krELsGpyiihnXtPp8FRbns/gctVpJKuj4v+5RvpPrQn1ghMXZFgaUONSZHIvrASfVvpSp2NaO+mrIoDo53mkFUevUYAu1wqhh8xr6K2w/FzceI8XYPr6LWizPtRofH8f4+LgJNSdE1Gw2kc1mEYvFDATIfpVKJfj9foyOjqLR2Cp1pMEM9L9o6LhWbgdgBAkrxU9PT5uk3Hw+b5JlCWfpswkRkuGrr4SRmzouHDOOLf1v4XAYPp8P5XIZ0WgUk5OTCIfDZixCoRBcLpfJ1aIPzOfzmSNOQqEQ4vG4mZ+9e/caOE7bZCeRd7Kg+VuDctTnw3XCflHIMXCGzDyVSmF4eBgHDhwwltf6+jpeffVVXLlyBdls1hQD9ng8SCaTePnllzE7O4v5+Xmsr69jY2PDjD/PIuNJz2+++SaWlpbMydWEDTlWIyMjCIfDuHr1Krq7u7Fz504zd0qcF12jnGf9jteqv0/3iL3/bL+gPtdGIdQPxrVqQ4P6PIc6kyO4HnBSAQJs54eoRqiCyw5/1sVvQ4gKC9lwhTJndfTrJtfP7CgoZZDU1D0eD44cOQKXy4WbN28il8sZRkwroq+vz9T1o6VYKpUAAD09PQBg8p3q9ToKhYIRPBqU0t3dbc6bYr1Ht3vroMSRkRH09PQYAcFoRAZDcMx07NVPR+ZuO+85ptSkabWxXfF43ETSjY2NYWRkBN3d3SiXyyZFgJp8qVRCLpcz52hFIhFTUml4eBj9/f0AgF27dmF0dNQIGfoyCXuSlBFqIAkDXxRqVsGlc02oN5FIYHBwEPV6HZlMBtVqFQcPHkQkEkGlUkG9vlXT8ebNm7hy5QqSySRcLpfpk9frxezsLK5cuYKVlRXE43F4PB6srKzA4/GYPC/CvYuLizh37pwpKsyzvphewdOgWUh5cHAQ0WjUhKorvKuRgYoq6KGqqnipkO8EBfI6/uZY6fcK5dsQIBVNG750BNdbkwMVPsDEjUCHsmLm3AgKy+mmoIDh5m42m8a5bPtKNGJKLR1+znBzxei1wrueE0aYkvczNwkA9u7diw9/+MM4ffo0vva1r2FjYwOHDx9GvV7H66+/bo5mp5Cjlt5sbp2429/fj0QigWQyiYGBAeTzeQMphcNhDAwMmJB2r9eLubk5E5I+Pj6OcrmMkydPYnBwEBsbG7h48aKpbM620w9DC44MXM+1InzGPnJM6Iciw+R8MQhmx44d8Pv98Pv9OHr0KCKRCO7cuYP5+Xm0WlvH3LvdbhSLRWSzWaRSKSSTSezcuRN79+41Pr2jR49ibGzMCMhIJIJvfetbWFtbQ7O5FfUHtKdREF6mJWozb1qOjUYDoVCoLSCBh2aOjY1hc3MTw8PD6OnpQaFQgNvtxtDQELq6ukwV/2g0iqGhIRMlmc1mEYlEjLIRCoUwODiIq1evYmJiApOTk/B4PMjlcrh27RoSiQR2796NpaUl3LhxA0899RR+7/d+D+vr63jmmWdMwjoP+dy7dy9OnDgBj8eDr3/963juuefw3HPP4S//8i9N8Ir6HW0/pYbNA9tCib5UQqo8Z47P0qhCCjWufc3t0moihN7L5bKxWLnnGDlKJUwDfxxqJ8fieghIw7FVQFEAaVY/0B7MQaZkO6ppYfA6biwVYGTUvFZhSz0C3Y5+UgYAbPvkdu7ciaGhIdy+fRvVahUDAwOIRCLmYEcyR1qCmg+mkCQ1eg3nrlarpmoCmQqLr05OThofWavVQjwex/j4OKLRqAmWaDQaJszeDiFXC7ZSqRiGzM9o7XIutM4cn9dsNhGLxdp8Gs1mEysrKyiVSmZs6/U6crmcsaBSqRTK5bKBGVdXV9FsNrFjxw5MTEwgFoshkUhgfHwcANrO+GKbtNo814T6Tfk/Ga4ycVbC1zD1np6etohWRu0BaEtPoK+OJbQoOGghR6NR8/58Pm8qymcyGbRaLWMVb25uIh6P44033oDX60Vvby+ArRw21s2MxWLYt28fbt68acpQjYyMmDXINqn1o/1UocI1TmVM94dGYzJqkuvFtuIUZube4rzyHq4V3YeqDDnUmRyL6wGnTpFIKiyo5bVa7aG5qikSuqCgIdMlhEcGy0AO3TBkQHwO71dHtjJKaomK9/t8PuzYscMUQ11ZWUG1WsXY2BiuXLmCmZkZ9PT04PDhw9i3b5+pyk7rgZXDGfxQrVaxtraGoaEh5PN5k4RarVZx9OhRY+VNTU1hYGDAHFGyd+9efPazn8X+/fvxzDPP4OjRo/D7/fB6vebEXTvnTH84LrafhDUOGRxin5vG5OPdu3eb8WNiM0PBd+/ebYTv0tISMpkMSqUSzp07h0gkgv3792NychJnzpzBV77yFfyzf/bP0Gw2MTs7C4/HgxMnTiCdTptncj6p2QMwCcG5XA4AjGWrkC77QME2ODiI3bt3Y9euXcjlcujq6jLKBudX8wIpuPx+P4aGhhAIBDA+Po7BwUG0Wi2cP3/ehPIHg0GsrKyYgylrtRp+4Ad+AJcvX0axWMTu3bsRCATw7W9/G6Ojo9jc3MTly5cxPDxsYEmXy4W1tTXEYjEcOHAAv/M7v4Ovf/3rePbZZ83pAizbRf+i+oEVIVCUQfPPONdU/rgvbWicCqLuCe47KgUU8gqxazSsCkeH7k+OxfWAEzU7G0cn0+RC10g03VRq/RDL14RZWm18h24o27JTzF2TZNW/xndqMrPH48H09DQGBwdNvcGuri7cuXMHN27cAAAEg0FzRpbCcYVCwUSXaS24bDZrIL7x8XH4/X5sbGyYzV+pVLC2toZsNmtOTW40Gti/fz8uXLiAP//zPzfH1ff392N6ehrhcLjNB2gLLHXQa2Sm7WtUhu7z+dDX14f9+/cjGo2aflQqFaTTaWxubqK3txf9/f1otVrmyJR8Pm+OSllZWTH+Pyb8JpNJo6xQcLLgbF9fHxqNRtvZUnYghgphPSaeCgmvP3DgAMbHxxEKhbBv3z7s37/f9D0SidxzHI5Cajz5eN++feZn//796OnpaYtOXF1dRX9/P6rVKgKBAEZHR+Hz+RCNRjE+Pg63220CPF577TXMz8/D7XZjbGzMHH+zvLwMt9uN6elpXLlyBdFoFBMTExgeHjYKme6LToqJWo2KMNj7iHOtqR4cS1VYaE3ZyIW9jniNIipqGTp0LzmC6wEmhQ40xFYhNKD97C3ChraDV60EhTHImDXoww7+0Pu1DcT69RpuYgpJr9eLUqlkqrcnk0kjgBhdR7iFeVuEBHnSb7lcRn9/P4LBoLEqi8WiqShP7TubzWJ2dtac6VStVlGtVpFKpcyZV/39/RgdHcXNmzdx7tw5pFIphMNh7N+/H4888ogZd/VP2fCpjncnaIdMij6SAwcO4MCBA22Wba1Ww/r6OlwuFxKJBKLRKGq1mqlCz7OvisWigekikQj8fj+SySQuXLhgcsEIJ7ZaWzlN+/btQyKRMBAaj8XRdaVBOOrjUX9pT08P9u7di/379yOZTJq8LPr8BgcHEQwGzXpiJCSDaXbv3o2hoSFToaWrqwujo6OYmJgwBZEjkYjxpRFSZOSgz+fD4OCgKRFWrVZx9+5dXL58GZVKBf39/YjH49jY2MDS0hLy+TyOHz9uSnQNDg5i165dpj1qyaiCoYKlU+Qhx8YOYOE1qgwoWmErCAob6hxQSGn7FLFw6F5yoMIHmGg50OKhYOp02rBGLTEoghofP6cjmM5qQonqf1Btkm0gUbvm5uNzbYsEaM8R8vl8ePrpp1EqlXDx4kWsrKwgl8vhgx/8IADg9OnTxiEfDAaxvr4Or9eLjY0NzM/PGybUaGydD9XT04P19XVkMhm4XC584xvfQCqVQiwWM3lgExMTpozS/Pw8Go1GW3WKiYkJXLlyBa1WC/v27cPU1BSmpqawf/9+XLlyBdVqtU0I25aK5rfx+BEyIc5RpVLBqVOn8MlPfhLVahVvvvkment7DeyVTCYxMjJizhVbWFjAzMyMSdZdWloCAHNtMBjE0aNHkc1m8T//5//EoUOHzFjwNOWVlRW8/e1vR09PDy5fvoz19XVT+JZzTUu42Wwa/xojBiORCMLhMIaGhjA8PIyhoSG0Wi3cvHkTPT09RlAMDQ2Zdeh2u03NyWKxiGg0iu7ubsRiMfOOdDqNrq6taic7duwAACwsLJhDPi9fvoxgMIjz589jaGjI5OkFAgHs2bMH169fRyqVwsDAAM6fP49cLoef+ImfQF9fHwDg7t27+OpXv4q3v/3tSKVSePXVV3HkyBG88MILePHFF9tKaqmA1lJZjPjU8HRCfRRQHDsAJj1CBRG/o+VKGJIwoip6dnQhlaJAIGDucYRXZ3IE10NAdOSrYKFQoObPhU9SCI+L3/ZJEYa0w+Y1D0zbYGP83PgKn9jvr9frOHjwILxeL27fvt1WMXxychK5XA4ul8sce0+tlCcc8/h5Laba09MDl2urzp2WMwK2coxoxdGS4/HzjPBipOLOnTuxtraGtbU1VKtVc1T9yMiIifRjX5mLpce6aHCGMkSO+8GDB/HOd74Tfr8ft27dQrlcNgnTuVwO1WrVFKxlWD59R3fu3DHFaBkW3t3djZ6eHgwPD5siwN3d3W0pAeVyGVevXjVBJwy1p9VDBkr4jMpMIpHA2NgYgsEgAKC3txd9fX3mxGNWcmfUZaVSwcrKCjY2NhAMBg3TZ1kvjbbr7u5GMBg06yUcDptq8OVy2Sgl7D/HhYw7kUhgfX0dKysrRiFj0eT+/n6T2L68vGyE6rlz53DkyBFz3huPULGP5dFSZVQOFb5ThVBhQbW4uBcYecogG92zNlHJ0UAghTTt/edQOzlQ4QNMCjsorKHWDr9TvwuANnxcfRz8nxuLwovaMx32Nm5PIcR6bHyvjf3zGWwni+eWSiVcu3bNnCLMOoKt1laNxJGREVPuh7XtSqUSCoUCXC6XgcnC4TCi0SgGBgbg8/mMT4UMieHwPCyyUqkYgVuv102CMZkoj4FfXFzEnTt3UK9vnfUVi8UQDAaND0i1dI6fJujS0uL/Q0NDOHnyJKanp3Hz5k2cPXsWfr8f/f39CIfDJpSbYdOFQqGtBt7q6irC4bAJjWeACo9loRWoa2JjYwPNZhPXrl3DrVu3sLS0ZCL3GJRAZuz1eo0faWxsDM888wyOHDliQvL9fr+BZumDotXeaGwdhHn37l0sLi5iYWEB2WzWCEUteMw16fV6TYqB1+tFX1+f8XV5PB7s2bMHg4OD6OrqQqlUMmWuGo0GwuGwEUAMb2+1WlhfXwcAUyarVCphfX0dgUDA+AWj0ag5MFTz6hTmpRBj4jYFGr9XeN6O7gW2K8vbgop/837OmUYCq7+Zc6kFAhzqTI7F9QATmSatBVoQtEjIQLmJlHEqtKGOc16nG1XfpRCfHXigglTfZ28wBgawGvrx48fx6quvmiPqi8UihoaGUK/Xce7cOczPz+PAgQMYGxvD8vIyCoUChoaGcOfOHSwtLaG3txehUAhXrlzB0tKSGZObN28aH1U8Hkd/fz9yuZyxTiKRCCKRCDY3N1EsFrG5uYloNIrNzU1TKX5sbAxHjhzB2toaZmZmEIlEMD4+jkcffdQcfcIyURTaygAZDaf+Co/Hg6eeego9PT148cUX8ZWvfAX79+/Hj/zIj6C/vx/d3d1YXl7G7du3cfLkSSMMGGY+MzMDACiXy/D5fLh16xaKxSKOHj2K3t5eTE5Oolarwe124/jx46hWq9jY2MCtW7dMmgEDQL797W8bYbFnzx74/X4MDg6it7fXCK3h4WGkUil8+9vfxs2bN5FIJEwUJy05ALh9+zaazSbC4TDy+bwRhrVazZylVSwWcefOHfT19eH48eMG5gS2z7Di2jl27Biy2Swaja0DRBlZ2Wg0sLKyYpKIqQgAwJkzZ7C5uYmhoSG8+uqr2LlzJ44dO4ZWq4VLly7h7t27ePTRRxEIBPClL30JH/3oR3Hs2DFkMpm2orb0KWl+IpU3jfKjEGOgCwCjkAHb59px3asw0whgvlP9oXy/RhfyWerndehecgTXQ0C6+BWaoMWk8IZCduo4pgBSX4w+k9fS36VQig0l6sF8bJ+tZZI5DQwMoL+/H+fOnTPPC4VCGBoaMqHbAExVCcJd5XIZmUwGwFZlciYMd3V1GYiqXt8+sG96ehq9vb1GCFAQs09dXV2G2ZRKJeTzeayurqJUKuHIkSOYnJw0VkswGERfXx+GhoYwNjaG27dvY3V11USRcezU38iyVD6fz+RS3b17F1euXMHk5CSOHTtmKn/Q78Owfx1z5qixzp/X68Xq6qoJcmGQitvtNgEKzWbTBHekUimTaN5obJ1zxVqO9F8dPHgQU1NTZsw9Hg++8Y1v4MKFC/D7/ejp6UEmk0EqlUImk0G9Xsc/+Af/AMFgEHfv3sWlS5fg8/kMzMxnE2Y8f/48VldXzbE1hBK7urpMMeRWq2UsaPqe/H4/EokE8vm8Wb9er9fAgwMDAwBgfIDJZBJLS0t46qmnMDw8bPIDG40G+vr6cO3aNRQKBYyPjyORSJjivIpG0BLj2KtlxT2ge4tkQ4CaL9cpkEdJrTXd3wo5U0FyBFdncgTXA0z0QRBm4IZnTggDALSKhvqegK1NTnioUwUBCj+9nxuQG4j+CvWRUUO0MX+FFjc3N02Vh5deeskw62AwiB07dpgKD4ODg+jr60O9XjdRh9lsFjMzM/D7/Thw4ADefPNNfPGLX8TAwACWl5fR1dWF559/3kTNtVot4x/heDE/qK+vzwS63Lp1C8lk0hSjDQaD+OM//mOcOnXKCEhG7g0NDeHgwYP4hV/4BZNbtbKygmKxiLt37yKbzaJcLptABObp+P1+3Lx5E8FgEIcPH0Y4HMbm5qaBC0OhEIrFIsLhMGZmZgyclM/nsbKygps3bxrfHgVxb2+vCUBpNpsmAo/OfArpWq2GxcVFVKtV9Pf342Mf+5gpm3Tp0iXcvn0bCwsLGB0dRblcxsWLF1Gv13Ho0CE8+eSTiEajJvepXq9jdHQU0WgU73nPe9Dd3Y0LFy5gfn4efr8fu3fvBgADZfLMtPHxcZRKJfyP//E/TKDHvn37kMvlkE6nEQwGEYvFjO+rr6/P+MAolAkBa4JuPB7Hzp07ceHCBczMzCAajeKP/uiP8Pzzz2N8fByTk5NYXl7GzMwMJicncfnyZbz88st417vehWaziT/4gz9oK+/FNc/n04/rdrvbksy5nghra+6VCif1kWlZsE5+LiqPGqjBZ9nWl0P3kiO4HnDiglarSUv2kLSeoW4YCi2FMNTprBtGfWEUPnaOFp9vf6bVNRRCJDTG6EiWDBoaGjKJsOFw2FyzubmJUCiEWq2GQqFgfFu3b982ofDhcNiETEejUfh8PgNdeTwew8j5PlqltPA2Nzfh8/lw/PhxTE5OYn19HTdu3EAgEMDOnTvR29trhHK9XsfY2JixBObm5lCr1TA6Omr8KByHUqnUVm2hu7sbmUwGN2/eND6Ynp4e4y/q7e1FLpfDysqKqa24srKCZDJpGDfLL1FI8hRnRt2trq6ayDr1B/b19WF4eBiBQMAcp3L8+HEUCgWcPn0ayWTSBDKMjY2ZABr6IOkDGx8fx/DwMObm5rC6uoqrV6+aavGsMejz+UzAjd/vx44dO7CwsGCi4xYWFlAsFlGr1cxn9HOxViKh2EKhYNYvq6Io1BaPx03QCcd3fX3dhNSXSiXMzc3h8ccfx/Hjx/Hmm2/iQx/6kLG6yuVyW/6V+ol133CdU9lTJEGT77nm7QAPRUY6kQaG6HPV4nIE1/3JEVwPOGkgBIUJNWvNM+Hm0cRhLenD69RX1snJrA5pCh+11Gz4kf4zts3Oaerp6TGwFjXZqakpTE9P4/Tp0yiXy6YaOwMQfD6fCZ+ORCJwuVzG78NouUgkYpglDzkEYBipx+NBoVBAoVBANBo176bPptFooL+/HwMDA3j00Udx/vx5IyjC4bAJLlhZWYHX6zV5RbRge3t7TQ06zUWrVqvIZrOYn5/H5uYmMpkMFhcX4fV6MTg4aNrJ/LNWq2WOq19cXMT6+jqy2ayZX9b4S6VSJk2AgrhcLmNhYcHkVVUqlTb4slgsYm5uzjD2U6dOmfwyCnn16zBXCoAJgtmxYwcikQhef/11nDt3DplMxlSqz2azCIVCxrqmsB0ZGUEgEMDdu3exa9cuFAoFfOtb3zIRhVRsFELTYAhW4iAz5/W5XA5+vx/xeNwITwCYmZkxkGKlUkGxWEQsFsOJEydw5coVdHV1YWBgAMPDw5iZmTEKCdc11yutKK5dDX9vtVrGAtQcMO4HrWdJhUn3hqZScJ8qUqJRwRSgjuC6PzmC6wEnjQDUKgUUSuqXYjKo5pBoWDoAo9lq4IUmnRIOAbbztoB769HRKa+h9rQyGDzS1dVlLCu/328qYzz22GOIxWL48pe/jJWVFRw+fNicQOzz+ZDNZnHhwgVMTk7iyJEjpvgqKzgwWTWdTsPtdmN2dtbUpms0to49WVtbw8LCAlqtrSKvIyMjhhGRSQYCAfj9fhw6dAjj4+PY2NjA5cuXMTMzY/xddKAHAgH09vYiFouZYzV4PH06nUa5XEZfX585tHJ+fh7ZbBaFQgGDg4PmGBAmE29ubpoSSYQgWbewVqsZK4pWRz6fx8zMjIlELJfLaDQauHv3LtLpNFwul6m83mw2kcvlUKvVsLGxgUKhgGeeecY8j3lkGxsbuHTpkoEpS6WSCY0n7Hnu3DnjkyMMyICYWCzWZhlyrJi24Ha7cffuXfT09KCvrw/Hjh3DxMQElpeXsbi4aIojk8knEgkcPnwYS0tL5gRllmtqNpttBZPz+TzS6TRGRkbwZ3/2Z8ZqHx8fN6HzExMTeOSRRzAzM4Px8XGcOnUKL7/8simDpUEamsZg7z09y46+U7aJwoqlrqgoaoSlrczRBUDLk/s0GAyafeVAhW9NjuB6wInaJrVPjYCiBqjQBiEPzS/iD4UJQ8RVs1MrjTkpFFadQnz5Ps0D0/BnBhb4/X6srq62abf5fB6XLl3CjRs3TAUGwiPhcBjXrl3D4uIiHn30UXPiLY8jCQaDCAaD5liLbDaLVqtlirSm02ksLS1hY2PDMNO1tTW4XC709fWZEHqFOaPRKEKhEGKxGG7evIm1tTXk83lEIhEcOnQIkUgEb775Jq5cuWIiysbHxxGJRNDd3Y35+XkD57lcW2eDMaQfAPr6+kwQBc/e4tEsXq/XwIWsOuFyuRCLxQDAwKdut9tU0dAx1+AOAG0QU6PRMD6lZrOJ119/HYVCwfiXeG6Wy+UyQTK6vprNpknEnp6exvj4OGKxGOLxeFs+WqVSMUfRMO+sWq1idHQU8/PzWFtbQyAQMCW1aNlVKhUTrUcIj0EelUrFBNMQIuYa47riuDC6MRwOw+v1Ih6PY2FhAX6/H9FoFDdv3jR+1Gg0inw+3wblqbUMtB8ISWvI3mMKCzKAgsKMfmM72Zh7UxVGrWkIwLTlrWBGhxzB9UCTJiiqf6vVaiEQCBh4hBYEK2Xzbwo1xekZXad+GK30TsZAJqTOa73ettQ0FyYWi6FWq2FgYADNZhMLCwtG+/f5fKYEU7VaxaFDh3Dy5EmjdReLRQMhHjt2DEtLS/hf/+t/4W1ve5vpMwATRtzT0wO/349sNouLFy8ai8Xv92NkZAQATJIxE5YnJiYQDoexsLCA9fX1tiTgRCLRlkhbKpXw6KOPYs+ePUbL39zcxK1bt7C2toZSqYTR0VF4vV5cvXrVvINlluiLmp+fR6FQMO1mQV2eXxUIBAyk2mg0kEgk0N3djfX1dTPuPKWZMBMFDiPhduzYAY/Hg/X1dRMCz2r7Z8+eNTX82EYewzIxMWHSFHjWFst1jY6Owu12G0HbarWMb4rCg0E2gUDA+Bvr9a0Tn6PRqAnTP3v2rJmTYDBokqhHR0fNcTW9vb2Ix+MoFotmD7CYLhUyv9+P4eFh3LlzBxsbG6bqSqlUwvXr1xEMBpHL5dBoNDAwMICXX34ZY2NjmJiYwI4dO5DNZlEqlYwip4EWXM+0ptQaI3rBfQhsBypplRoAbUojBRqvoWKoe7Orq8skn1Np7BSR6NAWOYLrASe1ZoD2OnNKKtgYqu33+40/p9Xarg6vBXaB9nJRfI6WgWLRUQ3x5fXUejWHRX1pzOOhEHW5XAa2GxoaQn9/PwKBgPGxJJNJpNNpxONxuN1uzM/PY3V11fhnNP+mVqsZaI7Mk0EgPFRQ/XUsR0TN/NatWyaMnbCQ5rEVi0UUCgUMDAwYZs7cot7eXnMm1MbGBjY2NozAIPTGclCRSMQcUcI2RyKRNl8eBQWFCQ+etNMSbMubFpHLtVV9pFarGb8cA1eq1SpyuZyxZqhYJJNJk4x86tQpXLp0yUBjjJ4bHR1t84Xxc0JaFPC0DO2E7Wg0ipGREWQyGYMQxONxlMtl3L592xygOTg4aJQjKij5fN4IaLaB7yQkSopEIm0V371er7EuAWB1dRXT09NG6Go4usKGGtWnJ17bAkutIa4dwoZAew4Yr+E7GKnIezinei/3kSO4OtN3VTnjM5/5DE6ePIlIJIKBgQF86EMfwvXr19uuqVQq+MQnPmHw/g9/+MNYXV1tu2Zubg7ve9/7EAwGMTAwgH/+z/9529EYDm2Rbhh17FI7o/aufiwVMAoFciNpZr4+n8yBwsiOSOz0XI1Q5OcageXxeFAul5HNZk24uN/vx9jYGMbHx9HT02P8csBW6P7i4iIymQw8Hg82NjZw7tw5kxsFwPSTAkp9CLyGR5WQAbNwLcsVFQoFpFIp3Lx5Ezdv3sT169dx48YNU3j3+vXrphJEtVrFG2+8gdu3byOTyRjBz3SEZrOJ27dv49atWyZpt1QqmTyo1dVVExFIiDCVSrXlJTGJWXN2wuEwenp62s61AraYGaPw+D+wpURks1msrq6asPPFxUWsra0hnU6jUCiYqET6eBiVWSqVsH//fuzfvx8A2ix0+srUwqAPhn4au24jBQrXBytkEALt7e1Fb2+v6RP9cAzUYb4Z/WcUEkQBaMHw+WxHPB5HIBAwkGCr1UKhUAAAzM7OolqtmqAajVpk+/mjSeYKKXIvULFQpUL9VxqByD3L5/EdvKbZbJo+sZqGUzXjO9N3ZXF9/etfxyc+8QmcPHkS9Xodv/ALv4B3vetduHLliim180//6T/Fn/3Zn+H3f//3EYvF8MlPfhI/9EM/hJdffhnA1mJ+3/veh6GhIbzyyitYXl7Gj//4j6O7uxv/8T/+x7/9Hj7kRC2SlRAYYMDFrhFQ3Iy0TFiTT3NhNHsfaD/sUKuX63MZiQZsM0puOEZQ0a/DTVmpVEz48eLiIh555BEUCgWTSJtKpdBqtUwUHyHFl156CbVaDfF4HC+99BIuXryIj370o0ilUiYwgZF6yWQSy8vLiMViJsru4MGDppjvpUuX2kKqW62WiU5kODqPeQ+FQsZX5vV6zXEiZGzz8/OYmprCO97xDtNnWpPVarUt4pAh5YS5VlZW2gJDWBB3fHwcQ0NDyGazCIfD2NjYMMyQ5aZIxWLRWIbAVu5bPp83Y12tVrGwsGCUi0ajYQ7opOLCI2O4PqLRqJmz/fv3Y3x8HIFAAOfPnzdnYbFKvUb50VcHtFdQ57rIZrMAYPrLs7lyuZzxdSUSCQSDQSwtLWFubg6nT59GX18fpqamjC+TVf7J5DWtggIrmUxidHQUc3NzePrppzEwMIBGY+sU5nQ6jatXryIUCuHixYvYsWMHJicnMTY21nboKHO2KLRo5WjNTlrF6vOi0Gb/WbGFn3Ht8IdjBsC8m2PK33yWEw7/1vRdCa4XX3yx7f/Pf/7zGBgYwJkzZ/C2t70NGxsb+O3f/m184QtfwDve8Q4AwO/8zu9g//79+Pa3v40nnngCf/mXf4krV67gy1/+MgYHB3Hs2DH8+3//7/Ev/+W/xL/9t/+2LZLt7ztR4wO2Q2S1arsGVfBHk4c1dJ2WFbVnt9sNn89nIDcyJM3B0s2qjAm498gGtpe/6SRnqLRaZ6urq1heXobP50NPTw9CoRBKpZKxFli14tvf/jb6+vowODhoit5SELCyBOvaEc4kLEZ/VLPZbDt6gxUfmAjM2n8MEKA/hSHuTIqu1Wrm8EcymlAohEgkYqp4qEauUJRGo1Hgb2xsIBKJIBQKmeAC3ksLjMKa48Z3BINBU++Q60EtH84vmSgZPX2b2r5isYh4PG6s3KmpKbzyyitYXFzEvn37EI/H23yn2icNIGAUqyo0tLoJD3JtkKHHYjFTZJkoQD6fN1GKTAjXYCOuZ/aPlTgKhYK5JplMmhSJQqFgQvDn5+dx7Ngxk5BuCwbdR2odqeJDP5j6fnU/KFLB71XgK9yua8RObXFgwrem/6ciu0yG5FHarCP2wgsvmGv27duHiYkJnD59GsDWERaHDx9uy2l597vfjVwuh8uXL3d8D5mR/vx9Id00CgsqfEQi3KeBFQphUItTwaTChs8gqXOYwo2/CZGQWRI+0moOZHrMVaJ/JJvNIpfLIR6Po6+vD36/H0tLS+aAwD179mBkZARzc3NG82d+F8sQ+Xw+BAIBBINBU1aIVcJTqZSxetR/193dbUpQsSySXeaHUB8tFZ/PZxKeNYKT/evr6zPvIvE+zZfjmOlpv0tLS2g2myZXi2PP73lYJN/HOVVlhO9W3ydDrJncy7ZQqGjeFS2zM2fO4NKlS6hUKhgfH8fi4qI5nZmBI2SoWnlf1xewLcC0ikS1WjX+QZb04tlj2WzWnMFFK4ufMSqzVqsZy09rAzJCsdFomPwtVbyYz0dFJJPJIBgMIpFItMGtXB823K5wpAZuqDXEdcWx0P1E65rt53jrXuYzuPcoUFVpdehe+hsHZzSbTfz8z/88nnrqKRw6dAgAjFOY2hVpcHAQKysr5hoVWvye33Wiz3zmM/h3/+7f/U2b+tCS4uHcQIR2gsGgYTpkzgAMY6LAI2TFjcUw3UZj62wrMiRudK2bp85urcxBqIx5KAxooOBsNBrYuXMnpqamcOXKFbN5GUJNf9Pg4CBCoRCSySQ+//nPI5lMYs+ePfjIRz6Ca9eu4fjx4zh16hTS6bTxfczOziKRSJgwam0/Tw0GtnxErIDBgr/0sxGyoaDIZrOG+QwPD7eFQgMw2rvP5zMh+xROhG85PqrJ8zm0dHK5XJvPkdUfKFjo0+KYrK6ummAQVo1nealMJmP8TwyrV78IFQa+m32lf45zS6vlv/23/2aiKj/wgQ8gm83i29/+NkZHRxEKhUxldkYLMuiDVnwqlTLv5vjQx1gul9sq7jPniWH6DH3P5XI4d+4ccrkcTpw4gd7eXlNPksyetQ1VieJJ2bdu3cJjjz2GXbt2GYWA1UU4VjwRgO1noIeGrtvpEpxf7i0qBeofVguK96ufjNYn9w/3s0KR+h71kTl0L/2NBdcnPvEJXLp0Cd/61rf+NtvTkT796U/jU5/6lPk/l8thfHz8//P3Piikmh6wDRPqoYDcRFz0hGiooaqGx2fyR2E8birChhREep9GT2k+CwMWarUaenp6EIvFsLa2ZjRfmwEA29UyWK2dOV0XL17EkSNH0Gw2TYItNzkj+RKJhIEPc7mcKXlkB08wwlIDGnw+nwkQ0GTScDhsBDv7y3EEgFQqZSL4CC8ybF6hQA02UmGlwRTAdi1JAMZyZK1G9pnaPhUWv9+PVCrVFizDYBSNCqRVyXnnfCpD9Pv9Zt49Hg9SqRSuXbsGYIthLy4uYmRkxEQisp1qcbEqvEJsyqi7uroQjUZN3hvXzNDQkAmW4SGUGxsbppJ9IpFAT08PlpeX0d3djb6+PnR1dSGZTBrYlMm7AJDJZEzgx9LSkvFjzs7OmvmoVqtGCeB9tpWlARn2HFDI0KVBy5VEYcW9qhAi76WVRqHPd9t71BFc96e/keD65Cc/iS9+8Yv4xje+gbGxMfP50NCQKQWjVtfq6qo5lmBoaAivvfZa2/MYdchrbNKosr9PpFg6AKN5A2g7Z0oXuJ5uqxFQDIrQSCduRv5PeIyMjIJRQ8R5rW5CWl9kgsD2gY6s8L62tmbetWfPHrhcLpOA3Nvbi927dyORSODZZ5/F17/+dbz88ss4dOgQFhcXDRNKpVIIBoMGElpaWjLWJf0wDBKhZUULIRAImPFh7pcKJI4RGQzJ7XabgygrlYoprsuTiyORiKnlB8AUiy0UCoYhkUlRIaCgohDnSb+shsFajVqFX4MsWKxYIU4yTFq3nEMKVEJjZPRk5IlEwtQcpGV+9+5dU6/wzJkzWFxcxIkTJ8xY22uAlh37xxOQOebN5tZ5YKz+wSjHHTt2mNOo8/k81tbWEIvFsLy8jPPnz+OHf/iHcfLkSVNJgwrLwsICVlZW2qL1GD5/9+5dUxGFUas3btww7WRx42g0ahKbVVEjFMoAFFWY+B5gG9nQYBhFR/R/OyJYYUmuA+4bt9vdBoc61Jm+Kx9Xq9XCJz/5SfzxH/8xvvKVr2Bqaqrt+0cffRTd3d146aWXzGfXr1/H3NwcTp06BQA4deoULl68iLW1NXPNX/3VXyEajeLAgQP/L335O0fcmFz4Co+o5s7v1c+hUYfqi+BmU2ezPoPP4fsV9+fGo0WhR5fzh4JALb9Go4FMJtNWiLXZ3CqpxCCLyclJTE9Po7+/3ySRAjBh6Xwm4ToW4OUhgsB2ZCWZO9vHvCDCbPF43Bw9Qs2d36sPR4MtGFzBaM1MJtPmAyOzI8TK8bOZlCojWnGcvsFUKmWi+NRC4vhXq1UTnUnNX0t78Z1qIWgABZks28PnaFg3k6fpK2KYPROoWYWfviXm0GlACH+ALSVrdnYWN27cMFVN8vk8zpw5g69//eu4dOkSEokEhoeHjcDL5/PIZDJwu7cK67IdS0tLZk2wf2rVLCwsYGZmxlin4XDYKA9Msejq6jKwMcdO95DumU7BSLxHEQtVeDQ4g6Q+Qg2WUpRDIX7b+nKonb4ri+sTn/gEvvCFL+BP//RPEYlEjE+KR0vEYjH85E/+JD71qU+Zg+p+7ud+DqdOncITTzwBAHjXu96FAwcO4Md+7Mfwq7/6q1hZWcEv/uIv4hOf+MTfS6vqO5HCa+owJrNWZqXBG7yXn9GBr0yNAlDhJBV+wLbTXYMxGGRBDVU3L59DweH1eo22DGz77VgZgW2LxWKGcS0uLmJ4eNjkYPFd1IIZAbd//34UCgUsLi6iUCggHo8jFouZvCAAJhiCAoBCRsdEgw2oedPfR+atmjP9Jkzo7e/vN74YDWkms6MvSEkjBTm3FOgMGLEDbHg9k6a1/UC7b0UhLgoUAG05fBTGbDPHgPuQwm1zcxNra2um1NPq6qoJimHicSAQMIKKQq3ZbBoYcGlpCfV6HT09PUb5CAQCSKfTmJmZMYeB5vN5k+4xOzuLsbExRKNRrK+vo1qtolQqtaVdUFHgeDPZnWuVigzbk8vlMDw8bBLAeXyL1gHVAAnOoQZoKMzI52sUoJ3gr/vJVi7+f+y9Z4yk2Xke+lRVd1fOoatzmrwzs0mbuKQkkqISTdkSrQDQFg3YPxQsWBbs66t77QtbgiyHH7IvTAm2IQiCYcFQIqUluV4GieSSyw3c3Zmd2Uk9nXNVdeXUXen+aD6nnzrTI4v2NdCk6gCD6a7+6gvnO+cNz/u870uEhAaUjoHievj4lhTXb/3WbwEAvvd7v7fv89/5nd/B3/k7fwcA8Bu/8RtwOp346Ec/ioODA/zAD/wAfvM3f9Mc63K58OlPfxo/+7M/i+eeew5+vx8f//jH8Su/8iv/a0/yHTi4+LkJVTkoE4nWGplnGnfiJlOSBeEI4Ji1CBwrKeBYYepG1TgNz68VsQGYXJtCoYBarYZgMGgC96zmUKlUUKlUMDk5iUgkgmq1ioWFBUxMTJh6fR/+8IeRzWaNd0G4bXV1FS6XC88++6xhGR4eHuLixYs4d+6c6QW1s7ODxcVFwyhTgc75I1FABbw2naSiYByDz3hwcGD6QdFTJDGE0B+voTEYpYrT2gfQV+mczSi9Xq8pS6SCrtPpGBjS6/UaJU7PifdNT4/vkO+b1w6FQibupPUQqYBobNBrZ6krEkc4L4TTJicnTdWPfD5vYqHZbBblchlnzpxBJBIxcUm2RTl37hwuXLiAT37yk9je3sbjjz9uiiivrKxge3vbEFai0ShWV1eNYicsTEU8Ojpq7onGCnMQ6dVubW2ZNjUbGxuoVCqmuC2Vihp/CsMCMHCsGlM0ALn/1ICwY7pUUkyC5t7UPa7HDsbJ41tSXH8ZC8Dj8eATn/gEPvGJTzz0mJmZGXz2s5/9Vi79V3bYxAx+RgGrglg9KuCYvWRDHnatQR5vn4fX1SCyTeLQ5nu8Njfi8PAw/H6/EeD8jNASu/keHh5ibGwMIyMjWF9fx8TEBKLRKLa3t41VyntoNBpIpVKGCUYPKZ1OIxaLYXh42DAX2fmX7Uc09qdxBSoaFRqcD6C/Mj7PwRgUhajP5zN5X5x7zrfWV1QiDK14oB9aZaxOPScdjF25XC6MjY2hVCr1MTo5lDJ/cHCAcDhsEoLZswyA8Vj4fIQ9NXeK74DHMImc36fiBWCMGZfLhWKxaIrwknjC+WcMcnh4GE899RTeffdd3L9/HxcvXjQMS4fjqGsyGY1UwErMaDQaxpPmvqAnwxwyKi6tZs+5VsNNvSTOoQ1Hck7075wr2xvTvaEwIM+pScm2fB14XA8fg1qFp3jQGiNtV5NMyYSj8nG5XCYZV9mEdoVtCnulASu0SA9E41tqDdqbl9YlBQo3uNfrNRXXh4eHTbX14eFhfO1rX0OxWMTCwoI5LhaLYWVlBf/lv/wXfOhDH4LLdVQNncVci8Wi6U48NzdnCqmSbs2+Xbu7u6a0keY3qaBTgaJxOQojxrIII3HeqFicTicikYgRrkNDQxgfH0epVDJJw1RSjAMBMOQYfT8UloTp2BaEsThWGNEKDfQ0mM4AAB/84AeRTqdx7949fPnLXzbvgJAYK+n7fD7Mzc0hEAiYNdDtdk2zSXoqNCgobPkMvAcmXRPS3NnZMSSdWCwGr9drCDV+v9/UeuT5Op2OgYHdbjfm5uYQj8fxqU99Cl/60pdw4cIFPP744wY+LBQK5pr0SLPZLBqNBqrVKqanpxGNRs2cUmG2Wi1MTk6iXC6bPmetVgvpdBrRaBT5fN4odhteVWSDDUm5L5VAQcWkdRxpoHBt2cadkp049FiVAYPx4BgorlM+VFHQglaFRWWicSrg2BJUL4NCnNCS2+02sBNwTJHXY2nlagxIPTFN0NQNx+95vV7DxkqlUjg4OMCdO3eMtc/zlctlLC8vY3d3F16v1/Rh4rkIxUWjUcNYzefzyOfzRkmR0VqtVo1So5JQ6EbnR+fMJjsoxEpL3OPxmLJQmluVSqVQKBT6yj1R8Xm93r4EYiooCn5NaXA4HH1Gh0K0GpfifTGOGI/HMTMzg+3tbfh8PlQqFdRqNYyNjRlPtFarIZFIIJ1OG0gyFouh0+lgfX3dPAsZgoR9e71eX2sREkTS6bSJV7Iau3oghC21pBZLNpEGz7kmY5CGQSaTwfr6uiGCcG55DyTv8P15PB6TyrC/v4/NzU1Eo1EDKfLdq6FHRWITl7gWTopZ8buq1LiWta6iTbDgvlNCiULwNt1eUZLBeHAMFNcpHlQGuriBY7Yh0E+e4N8U+rAD/BR8is/rhlFIjMfrZlSvxbYaucGdTieq1appKEgB5vP5TGt2wl38XqFQMFRmAKa6Oi1ZtiaZm5sz1nu5XO5r9litVo2lXavVjGJQ6FNhMcZvNIahUCjnXAPqyj4EYAS81+tFMpk0cS72fHI6nSYn6ebNm9jZ2THzzHgh/1Ewa4UMW6gqUYS5aU6n06RHlEolzM3NIZfLYX193cTPGANNJpOGUcceZ1T4LD2lsRmtlMJ1Qk/c5/OZuVN4WMkRjFfZaQa6blutllE2zJNrt9smtwvoRwyoFGk4EP6kJ7q3t2fyB1kNnrA1FSs9L82jokLRlAUd3HMnETQUolfIUNcS15fCyJwXoim6z0+CiQfjaAwU1ykeCluowNIAsQoOLe7J79p11gCYwDs3E0v6UNgC/XUHHQ6HEfJKxlDlpcLL7XZjZ2cH9+7dw3vf+148+uij+NrXvgan86jdx5UrV9BsNvHFL34RQ0NHVdInJiaQy+Vw9uxZdDodU4WFQm9nZweFQgHvf//7MT09bZ6NVTGoxJgLxfwlWuKMAVEoqzChZ8EWJMwBUzo641QUpCxRRKHo8XgwPz+PUCiEnZ0dvPDCCwY68nq9GBsbQ6FQMOw4WxFwDqnEWOGeTS3pmWnRYFL2AeDWrVsIBALY2NjAxYsXTf3FXC6Her2OcDiMp556CnNzc6bkUTAYhMvlQi6XM/NMYc454vt0OBxmbpk8fOvWLeOBqfIIBAJwu90GCux0Otja2oLD4TBVSNrttvGQcrkcXn75ZTSbTYTDYcTjcbOWadxQMY+MjGBra8sQLqgotZ8Zr8NSYa1Wy3R1pmep60XbsAB4IJ1BDUjdl4p2KBmK51Bv0Ol0GsNAz6NxTLsKzYCc8fAxUFyneKjnZBMxqLAIG6lXoHADoUX1yPQc+l3+nefk9wkBERq0g/m6gUmvbrVa2NzchMvlQiwWM3GEWq1mqj+srKwY5cOGhDMzMwbqo3ejG7nb7RpyB2vXsTUHB5+LPwPoo6nrXKrS0AC7QkiaAM+isJFIxMTVmLwcDAaNwtGaeXfu3EEulzM5TyRxaOzQfi+M5ZD1Z8c96E1rVXteAwCi0SjOnTuHarVq6jhOTU0hlUoZIc6KF0zeVnhLiRlUXHyvVAysGOJyuYwS5LqkF9jr9foqeKgiajQayOfzpuVIIpEwNSG1/h8bU6rXubW1hUajYRiBhANZyYQ938rlMrrdrkkip6HFn3kNG9lQ70r3IH9WYo3CuSTjqEJTdITfo/HB37lPB+MvNwaK6xQPbiZd4OrZUKEohKQBY6VFK1Sj0BkJFvo9LSarjCpVTrppNZZGq73dbpuW9n6/38BnW1tbeOyxx9BsNg2UlEgkTN5VNBpFoVBAvV5HLBYz8Q8KBY/Hg2q1inq9jlwu19cSHoBRnO12Gx6Ppy9WQGGv8Q4+H5lxh4eHxlPiM/JYnY9YLGaea2RkpK8Wn8vlwuTkJLa2tgxJ4d69eyYZVlvE8J3Rm6AiZCFpVW4cfFdaRLhWq2FnZ8c00IzFYpidnTWECQDGC6HSUm+dMTR9pxS8qpy5NpzOo4ag7Njs9XoNZKvn5zvjGqxUKube19bWTJWOmZkZc2+cTyXL8BkBwO/39xlAWumfc8I0C9Z7ZOUY9Z7s/XJSqxY1KhTCU+NHlRafWctI2fFnQtY2C1FZwANSxl88BorrFA97A6llRuuPm424P4WQBsmB475ahPselhMGoI+dCPTHz3gtfpdBZyoEMueGh4dx7949FItFU6D1jTfeMMVkX3/9dbz3ve/FmTNnkEql8Kd/+qfweDyIxWK4fv06hoaGEAwGDbxWKpUwPT2Ns2fPYm9vD3fu3EEgEDBt53XQg2AhWy1pxLljFQ3WVuRz1Wo1dLtdk2zL83EemQIwMTGBeDxumI8sGsu5+KEf+iHs7u4aq35jYwNLS0sGhiS8pqQRQn+9Xg/5fB7FYtHE/NQ75HcIidJDeffdd9FutzE2Noa5uTlcvnwZY2NjqNVqhtzCeoyEfwuFgnl3usaUREAvm14V44lanzAajZpSSywAzeaZpLOz0PHh4SEymQyWlpbgdrtNNwA+H1MLCIcnEgmT31er1RCLxVAul00l/0QiYSrsE7ZtNpv4xje+gddeew3nz5/HpUuXDGTX6XSMkaEKSauUqKGgZAmuIzu+q/EqwsyMZeo+4bk1Hkbvi0gBDS7+bTAeHAPFdYpHr9fra40BHJMlNJdEkyX1u5ozxL9z41IYnUTusGm8/K5CkXovyrxTWJOtK8LhsKFZP/HEE8b7isfjRkHUajWMj4/3WfraisPhcCAajcLhOEqG3dnZMeQEKlgAfWw9phIoRMPzkSlJgU0vll6qxhOZfMy5ISNT4URV5L1eD6FQyMw7CwATdms0GiZwr9eiIuP7sRmNhN14T0NDQ301CzudDmZnZ+H3+1EsFrG+vm5a2geDQdNwk54J6eGE2oDj+Cifgz/rHPN+qQDJHKT3w1QCskN5j8ynq9Vq2NzcxMjIiKn3qHl5nF++E6/X2weN8l+hUEC1Wu1LRKZC2N7exo0bNwAAN2/eNN8h1Mx1o/UpFdVQb5Pvn++T+0IhZY2LKUqhnqye24bv1YvTfTcYJ4+B4jrFg4JWCRC0KgGYckoULJqTReiJrDBlilGAKLWem0aFKC1xZb4B6PM+FFqkEGScjLlGoVAIV65cQTQaxeXLl/Hmm2+i2+3ipZdewpUrVzAzMwOfz2dys7TqQaFQwPr6uikJdf/+fbz22mu4c+cOLl++bK5N4U3IMRgMGoFECjaTaLWME2vvcc7YaqNUKhmBwmoSfF4KQHoShKxU8J49exbtdtvAVYFAoM975JwrEYI/M27XaDT6WrOQQMHj+BkhMACIx+O4efOmydl65plnkEwmkUqlMD09DQB9kBirlQwPD5s+ZKyMQZiW64Hri54Uq7er0mu1WsYbCgaDhuXHmNKdO3dM/PLpp59GJBIxAp1GFqE/vtv79++b+oMf+tCHMDMzg8PDQ+zu7qJYLPbliOVyOVNIt9vt4plnnsFrr71mvLd2u43t7W2cPXsWoVCoL6eOigaAMTJ0vhQCVGWurYDs2BcAsz5ppCjKYcOVnEeFpwfjwTFQXKd8UMCS+QQcbwi15jS4zg1EC1Q3Co/V4LsdB7KJANyktndgx13oRSjDkWSBQCAAv99vNmQymcTW1hYKhQLGx8f7vBsmwPIZq9UqQqEQfD4f6vU6qtWqqUFIZUvFpZRsWr+0mBmfIwxDUgifW+eHBoFWjddq7RTSDsdR6wwtzcQitfl8HtlsFmtraxgeHsb4+Lhh4bGQrlrsfNdUrAAwPj6Oer1ucpwIPeq75/GEICuVirn/YrFo5lXXAZl48XjcMAvV4wCOBSkr46vH3el0TJ6aVgthySvGmgi3FgoFkzRPWj7jhCTt0AjicDgcqNVquH79uklg13jWwcGBKaRLJUOCSjqdNmWz2H2A6QZsbZJKpbC8vGwo8dwPum40Jql7Rwkduv75O/9GA8VmHdreOnBccYRduAeK6+FjoLhO+bCViAZ0bStPmVFKoed3KRQUqlA4SPOGgP4cLg0aa+KmYvGq0OjJ1Wo1U2KHXonL5UIikUClUjHkCj4XY0g+n89sXHblJUuMyo0CTCu5a7zI4XAYoUsFpwnIvKaSWDg0n00LAlMx0gtiZ19t5DgyMmKq4d+6dQu3b99GMBjEI488YpK+K5WKYcDxe1oM1ul04sKFC5iZmTGJ1vRs1NBoNpuIRqOYnZ3F1tYWms0mRkdHUSqVTNIzobpisWjKIlGxs68YlZDtAfBa+n651sgE5Tzo+rMhMSraaDSKYDCIRCJhoEstQaa1FpvNJnZ3d00BZRJuWAAZgIktMi5Iws74+DiWlpawu7uLSCSCdDqNg4MDBAIBE4NicjYbfNKQ4HrmeyBzsdFo9Bl2uv84FMGgQaXGJd+bxsoUHtY9OVBcDx8DxXWKh8aLlLlEujqAvo2jQk8tcttTIhwFHFPHTzoWQF+VBsX8tcSTWqCEymhBb2xsYHR0FOl02jSU3NzcNMSDK1euYGFhAV/72tcMFZrdjvf29rC+vo5MJoNnn30WlUoF165dQ6dzVFZodHTUCGey8KjECIc2m00Ui0WjcJRSrZ6OCiEyBamcSqWS+X48HjcxIipNJvkSVnS5XNjf38fKygrW19exsbEBt9uN5557DmNjY7h9+zZ+5Ed+BLVaDa+//rohwlC5Dw0NYW5uDvPz84hGo0ilUpifn8eXv/xluN1ujI6OIhqNAoBRWmfOnMH9+/fx8ssv44knnsD09DQ8Hg+2traMR3F4eNhXxePg4MBAl7rO1DvTdcBSWPR26XVxXtXrZbWLRqOBdruNYDAIv9+PM2fOmLqFWmqJnQHoLVerVVy7ds308tvb28PCwoJ55wcHB3jppZcwPj4On8+Hd955B++8847x6DweDzKZDMbGxrC7u4v/+B//Ix577DGcPXsWy8vL8Hq9eOqpp+BwOPCf/tN/MrFLrRmpcVsaOZoryTmyY12qhJTswX2kpa+4nwH0FXIeKK2/eAwU1ykeXPjqJXAz2daeTShQb4l/182iHhPPSWuTwkdjZ4yVKVOR12R7CxV03MT7+/umdXun00G5XEahUEClUsH8/Dzi8biJxfn9/j5YhhY087nK5bJh8VGR8DmbzaYRfCosKCjUCta4nU07VosY6PdOKdBJt45Go3C5jroEaxuXYDBoyB8kcWiJrZ2dHXzsYx9DpVIxxAhSwHl8MplEMpmE0+nExMSEUcjsZxYOhzE0NISJiQkEg0FEo1FcuXIF7XYbb731FqLRKObn55FOp1EoFLC7u4tMJoNut4uxsTHj6bFUk8Zz2KsMQJ8nSViQnomuLeAYwuZa0c/8fj9SqRRGR0fN3PLaQ0NDCIVCxgCpVCrY2dlBJpOBw3FUDsztdmNiYqKvYka73UY6nUYmk8Hdu3fhdDrh9/tRqVSwtLSEoaEhXLlyBRMTE/jDP/xD3Lp1C+fPn0ev1zNsRBZ3VvINgD4vXL1IKiklNimsR8OQMTXtFKBrk3OgkKTuXc73YJw8BorrFA+FGZQwQeGpJAkAfd1ZbSiPm0U3ipIxFHJUBcmNRw+GsRTguPI5YxMac+FGXVpawvz8PILBoGGY0SJ93/veh6mpKezv7yMej2N0dNR4BW63G2+//TbK5TJmZ2fhcDiwvb1tEm4VrqlUKn11DRnLItGCip8VK2whAxzDOExYpWCn16aVQ0KhEKanpzE8PIy9vT189atfRa1WQzabNXT0H/3RH8XMzAyWlpZw+fJlXL58GY1GAy+99BJ+7Md+DE8//TQymQzOnj0Lp/OoqgKbUgLHFSMKhQKcTidSqRRmZ2f7YNGhoSEEAgE0Gg00Gg3Mzs7ikUcewTvvvIPr16/jzp07+Lmf+zmcP38ea2tr+K//9b+ajtQTExPw+/1Gcfh8Puzt7WF4eBhzc3OGhEGiRaVSMZAh14j2OWPcyOFwmNqRpMg7nU5DwqEB4HA4TFKwy3VURf7u3bv4xje+YRqK9no95HI5XLlyBZcuXcLCwgIcjqNq8ZubmxgfH0cymcRXvvIVzM3NYXZ2Ftvb27h//z5WV1cxOjpqvK7R0VEUi0XU63XE43G89dZbcDqdprUL88uAY0ienjCVEPeh7j+uRa457gF+1yZWKUIxPDxs2vaQhavnU+NgMPrHQHGd4qGxAqA/8/4kPNzG2lVo23EpFfwc9jl5HrWoT4p1KAyiuV9kW1Go8X7oMc3Pz8PtdqNQKJgqFACMQCwWi3A4HIhEIsar4rm52ekN2t2YO52OIYMo1KMBcc6ZklhIvKCSpzDifDBPqds9qkC+sbGBnZ2dPoHldrsRjUbhdDpx6dIl1Ot1pNNpvPjiixgdHcUTTzxhlA0ZiozDke5O5p4yQn0+n1HqGssMBAIGrjs8PMQzzzyD2dlZfP7zn8fdu3fx9NNPG3iKZaRcLhfi8Tji8bjxUvheCV3xuuqhcj75rHyvZG7S2GEtw16vB7/fj7GxMVPLUb0RFgNeWlrC8vIyLl++jFQqhUajgUqlglgshkceeQRzc3OmSHMmk8Hy8jKSyaRJt6BSPDw8RDKZxP7+vokPMkdwfn4elUoFLpcLe3t7KBaLpvmoNjvl+6dS5dpWIobmvHFNKquWiAWHHcvjsUrcUKiae2swTh4DxXWKh03R1YXMxW4nQtrJwfo9jVXx/Hodm+zBTUSIjf9s4W/DbQrVMSmX8R+2NhkZGcHk5KRh3dH6B449TXohZBMy/2ZkZASBQMDE2iqVimGMUZgo21CFiOa+8Tk0HsjrU3BobyngCPKKRCLodDrIZDJYXV017VZGR0fhcrmQTCZNxfgnn3wS2WwWOzs76HQ6+MEf/EGkUqm+jsCcR8bMOH8ADHSoFRkYF9GY5cjIiCGuJBIJJBIJ+P1+7OzsoNFomBqEjzzyCNbX17Gzs4NisWiSglUxEYrjfdF71TUEHHdMVsYljZtut2uUL1MIqKwIq66trSGXy6FcLptSWh6PB6VSCcvLy4jH45ibmzOFlZ1OpykezC4Cu7u7mJycNHlpJGOUy2WEw2Ekk0ksLy/jzJkziEajeOedd8yzsso/60vqvlBo3X5uXWO6vwi3agK37mUeS29NjS0eo3Ez/f5g9I+B4jrFg0LDZuzppiEkoRRqhQV5jMZ8tMKGzXridynsKeBZnUE3b6/X6yt0yhiItrB45plncPbsWUQiEQPL+P1+VKtVxGIxvPPOO7h27RqefvppHBwcIBqNot1u4/bt29jd3YXP58PGxgaCwaCJh0UiESQSCbRaLezu7uJv3vqbxpvz+/xmDoY3hjHkOnqWP7r8R8ZT45xpmSeleGsVC7fbbQShw+HA3NwcpqamUKlUcOfOHdy7d88oE6/Xi/39feMpXrhwAaOjo3j77bexubmJf/bP/hna7Tby+TyazaYhAxCKJIxaLBZx7949471Wq1U0Gg1ks1nj2YyOjiIcDmN2dtbMLdve93o93L59Gy+++CL+7b/9t6anVbfbxaOPPgq3242VlRVkMhmsrKxgdnbWFC4msQGAUVaM2ZRKJVSrVQQCARPH0xYsVHzhcBjFYtHE1Oh9UtnzH2FZh+Oo9qHD4cDt27fRbreRSCTw3ve+F1NTU5icnDSsQXZULpVKePPNN+Hz+TA1NYVbt24BALLZLBKJhMnnIumDPd329vYMDX9lZQWpVAqJRAL37t0zxCI77YBrnc/APCs1+BgLVk+Je4z7hX/X5pEKEfJ3ha8H4+QxUFyneGgypHpQOhTGAR7s3HpS0JfWnJIybKKHPdQ7YUkatUjtCgHdbhc+nw8TExMIh8MA0Kd0+Y9FXkmsYHt2VvEulUoIBoOGtg3ANEf8wdd/ELVaDU1H01j65jmtR/jozY/C6XTipWdfMrX0eN9Op9MoXnpu9DYYv9Mq8U6n01DUq9Wqeaa9vT00m00EAgGsrq7i8PAQiUQCBwcHeOKJJ0y+EhOH2+02lpaWTIFcKqpsNot79+71VbhgiSV61IFAAIFAAOfPn8fk5KSZZ1awYKmlyclJk+eUyWRQrVaN90OG6NLSkoH0yAilQiKs63Q6TR1EGjyE0bT+o1LK2cKGkC3LV2mFe74D1jwkTX1qagoTExNIJpOGpcj7cbvdGB4eNp/l83m0Wi1TJYTPS4+PsG4+nwdw3LurWCxibW0NXq8XoVDIsE8J+ykszz3A39Ww01qSf9HeUZhVIXsbcrdh/8F4cAwU1ykeuqi1oCqAExWRxiZUSWiysV22RuFBnpOKTmm+SiOnd0IWHSE5ZUG1222kUikT59DW7ppkyv5V4XDYWMK7u7tYWVkxMCEVYa/XM2Weut0uDg8OjTDrdXuAo59wwZ9VQDCGw6rztKypvAjB6XMC/X26ms0mCoWCIS5QiFNppdNpbG1tYXt7G5lMBuPj45ienkapVDIeXaPRwPr6Oq5du4ZisWhqBlLgMw+LxkA4HMbU1JRRFKVSCZubm8jlckgkEpibm8PVq1cxMTHRp2BZp9HlciGTyWB3dxfJZBKhUMgQber1OtbX1w17k9f0er0YHR0FAAMp0qtWMoZCwySzaCPQarVqjg+HwwbSpCdHw6DXO6rkMTk5iXQ6jXQ6bcgqXI/My2OT0Ha7jd3dXZOYzHXEOWI1EBoZrNDCvbK7u4tUKoVIJIJisdgHfxNpoJGmBAuuSa5nNQ41xqWGGlETzefSfakxZu7PwTh5DBTXKR4UlifRYnUjUziTNccNQihMN5oKaVU2DofDUNZ5HoU+aIFS4DscDpM4rBRqWudutxtnzpzB8PAwSqWSwf9brRbOnj2La9euYXNzE8vLyxgaGsLzzz8Ph8OB3d1dfOYzn8GdO3fQarXg8Xj68ooikQg+8tZHjgqsNo9KHXncHkTCkT4BYit2zslH3voIvvjeL/bFGKioyAwDjpUeYzUAjNDrdrsmgZjQaKvVQjgcxvz8PJrNpoEbWTqqXC4jk8kYZuWLL76IW7duYX5+HoFAwHgZ4XAYXq/XNHZkqw/mbxFa2tvbQ7lcxu7urokJvfzyy0bRuFwunD9/Hjdu3MD09LRhzX3mM5/BP/pH/whPP/00stksbty4YWBbllFaX1+H1+tFJBIx1SnYCiUej2NpaQmbm5smn4vMwXq9jrW1Nezt7RnhfXBwgP39fbz66qtoNBoYHR1FKpXC4eEh8vk8arUaHI6j6iMsskxvGDhqKEpYs1gsYnt7G3t7e8brrFQqSCaTOHPmjGFn1ut1wzCkR0TiRTweN8ZDJBIx1eOnp6dN7zN7/XCNcGhhZq4d7jUqJPUu+V01ChUOtONZ3KsDqPDhY6C4TvGgda2sQpvxBxwLWY1jkRrPDcINpudWj45KUIU8cCz0lSCg+WI2Jd/hOKowMDExgampKYyMjBiYiwo2FothaGgI9+/fRzabRSAQgMfjQTabxd27dw1pQJUQ42gfvfnRo2oQzaNCtUOuIQwNDxlIy4Z1+Aw0Ak4iqihMw6FQmOaD0Vrn93mPh4eHGBsbMx4Hq8/3ej0sLi6iXq8bL21/fx+Li4uYnZ3FY489ZnLC0um0Ia+w+y/nXWEpekKJRAKTk5M4ODjA7OwsPve5z2F9fR0vvvgiLly4gLGxMbzyyiumvcojjzyC1157DZlMxiRK06Nxu91GAa2urpqyTVqIl3NZKBSwt7dnjJ9kMmmYn0wLYL4V38n+/j7W1tYQiUTMtTiPnCt6vPSECe+9+uqr2Nvb64NxfT6fiQ3u7e3B4/EglUqhXq9jcXERLpfLtMCJRCJmjxBCTSQSxihkbhxJQGR42mtcoXX+XVmB9J5U6SiTVfcsf1ZPTGPNA6X1F4+B4jrFg0KTG0OVCNBfyV1ztwD0eUj0LhRj11wSvY4qJaUCUzHwupqQzGuyivf8/Dyef/55zM/P45133kE+n4fP58P4+DhSqRTC4TCuXr2K//yf/zNKpRJ+6qd+ChsbG/jTP/1TfPnLX0YoFMLZs2dx48YNE9e5f/8+/mHlH+IwcWiIKD6fD8NDw33CQxWv5jvxHjudDj741Q/is099tm8+qai0mK7OLSusM7+oUqnA7XabXKJoNIrp6Wnkcjns7++bYrPxeByFQgFvvfWWibEEAgH8jb/xN5BMJvHkk08iFouh2+1ic3PTeBY3b95ErVYzXh3nmVDn/Pw8xsbG8NRTTyEcDuPRRx/FxMQEVldX8cILL+C1117D5OQkFhYWcO3aNUxOTuLRRx/F1tYWPv3pT2NychIej8e0Z1ldXcXu7i5qtRr8fj+y2SwKhYKBa8vlsvHO9/b2sLy8jNnZWWSzWaysrODKlSvGM7t79y729vYQiUTg9Xrh9/sNO1ONMO0awBglFUepVMLXv/51rKys4P79+zg4OIDH48HCwoKprtJqtfD888/jzJkzuHfvHm7cuIFHHnkEY2Nj2Nra6qv0QcXA1iiE/ng/w8PDppgyjTy+d4XReR7uC60uT0+RipdrSBUb9yQJQcBxvEuNLu4/TVcZjOMxUFzfBoNCS5mC3FyKh2sxWCoVxpMID1JA6GZSSFDjXKoggeNirvZGJMRGi/bs2bOIRqOoVCrY2NiAz+dDPp9HLBZDq9UyRXLr9TouXryIyclJrKys4O7du8hkMnj88ceRSCQME6xareLv5/8+msPN40K3riEMD32zcgaOqdsqLPjc6rHwGT70yofw4tMvPmA900ujsGKblFgshomJCcRiMZRKJSOogsEg0um0Iax4PB5Eo1FsbW0hk8ng/PnzOHPmDEZHR00r+2AwiDNnziAYDCIQCKDdbiObzeLtt9/G3t6eqYivMRW+V95/qVTCxsYGhoeHkU6nMTY2ZooVX7lyBVtbW8ZL8fv9cDgchtSyuLiIZrOJVCqFQCCAeDyO2dlZ02dL6eDN5tGc+/1HbE2uq263i3w+b2JJOzs7SCQS8Pl8iEajxst2Op2m4Sa7HgMwBBEaTZ3OUXfl/f19lMtl5HI5LC0tIZ/PG9II//GdcL7n5uYQjUbh9/tx9+5dXLp0yeTJEUkgZKetcrhGgsGggbtZTor7hGsB6K+mYpOluC94PJES9cR4z/pd9dr5vxopdrrLYByNgeI6xUMXMmNTXPRUHqq87A3BDaAbAUBf6SKtggEcK0klZ3AT8z70GIVLGO+ZnJxEp9PB2tqasaiZpwPAUMunpqZw/vx5uFwu3LhxA9vb23A4jsodsVdXNps9sjq/KSO63e4RY9BxzKhUC1gTZhWmobBSQWAHzjlXGltkIdzJyUmcO3cODofDVLWIRqOIRCIAYGjqHo8Hs7OzyOfzJjmZXhGtZ9LYu90uMpkMCoUClpeXcf36dSPwtZMwB+MobD1CLyiZTGJhYQFnz541TMNIJIJAIIClpSXjrbBB48rKivEwGZu6fPmyKTjLd03yRqvVQjwe7/POfT4ftre34fF40Gg0TJ4aCTmRSAT7+/uGEJHJZMx7IIsvGo0aeJDzQ8JJLpdDPp9Ht3vU1JMKb2RkxMyBy+UyEHQ6nUaz2cSrr77at3f4bshcDQQC5hw8LhgMotFo9JXo0rVDBaREFDXqlBavMS9buel+4uDas/fxgJjxF4+B4vo2GKo86DmxwrfCe1oxm3EJ/o1CR9mJvV7PEDLUuuQ/JYXYG5esNVYed7lcOHPmDM6dO4dyuYwbN27A6/Wi2WxieXkZTz75ZB/DkAK21Wrh5Zdfxic/+UmTcEyCCCFKj8cDX/sokbnb68KBfuo+iSnAcRKoKnZSre1EY86RemVUSj6fzyh4Fmc9ODjAb//2bxuiBC1wdlmemZkxzLxcLoe7d++iUCggl8shnU7j0qVL5h62trawtLSEV199FfV6Ha1WyzAaWX2D0BUFGYU1iTCHh4e4d+8e7ty5g5dffhnnz5/H1NQUzp07h3A4jIWFBVM9olar4ebNm5iensbCwgJ6vR5GR0dRqVTwjW98A3fu3MHo6KhRVtVq1SitZrOJlZUVJBIJAz0zWZqU92KxaKpPjIyMwO/3G48nk8kgm81icXERkUgE3W7XdJqmVzE2NoZoNGoqsJPuzyRtMiyTyaTxPHn9er1uGpIGg0H4fD5sbm4aUhBTFuhlKUIQCAQQiURQrVaRy+VMVRF6VcoqJcFDh5Y3U4MQ6M+LBNAX86OS47HqlWme5WCcPAaK6xQPxb6VZGHHbWg5K5FDLTZafmoZMn6jXpwSIRQ6VDgNOA4wt1otBAIB1Ot1nD9/HgsLCwgEAiYIPz09jT/7sz8zRWF5LQo2r9eLfD6P5eVlAyu1Wi2srKwgn8+jVCqZhFBH55vP0/umlersr+em90iBoV4kBZHOCQUnFTqNAz0vvZStrS0DewYCgb75jkajmJycRCgUMu+KDS0dDofxPEk139/fx7Vr13D37l3s7OzA7XYbMoP2hiL1HDgWnGq88HMev7u7awR/Mpk0Vfmr1Sqy2azxVJh0e/78eRSLRfMumb/F2o/d7lEBZSoy5kgpvMd74P3U6/U+D51loYAjQ0FbiITDYQPdsQoJFfbh4SGCwSCAo5ggq+GzpUm32zWKQBVkOp1Gr9fDzs5On5GlECOZkmS/0uukt0nSCQCjIE9CNRRCVK+dRqTC7TQg+U4VTVFShsaVdb0ORv8YKK5TPpScoUJVFZPtDZHuy9+5CZVwQaGjnhmVI72CXu+4VTzJHTwPW7M3Gg2cO3cO58+fR7VaNdTqbreLra0tUwqJrDGn02nKQO3s7OD69eu4e/euob6zagY9rZGREfyj2j+CP+g31j7QX5EbgPF0eP9UyjqPzP3R5yQZgx4b25TQc3A4HPjKV76CYDCImZkZjI2NmWrmjJ9MT08jGAwim82a51tZWUE2mzU5Y/Q2V1ZW8PWvfx1vvvkm2u22ga5UqHHeeY+JRALpdNqw85j7RliLg0L9tddeM7X5HnvsMUxOTqJarWJtbQ3ZbBYf+9jHTD3DdruNRx99FIeHh8hms1hdXTWGBnPURkZGsL+/j1wuh0KhYDx69UqYJpDL5YwnQQ+FTEjGtRgn29/fN0YQk7JpvGSzWZOf9dRTTyGRSJhUgHA4jJ2dHdNcdGVlBYVCAfv7+xgaGsILL7yAeDyOaDSKXq9nrpvP53H37l1jDNA729vbw9ramnlezq0m9+uzKgyo8VRVRrrOuGc0JUVJUvyurkv+PiBnnDwGiusUD1pxutD1d40x2XkgJ/3PDatMQJ5TlaHmnihcoVRgWtxjY2MYGxszVcd9Ph/u3LmDer1uvJNWq2UgPG5cegispWffu8bjDg4PEHAEjHXeaXfggKMvkZkCgxAL54PXajQaaDQb8Hl95pmVAk/rVivsswyTy+XC6OgofD6fKYzL+eI9sZK6tpAvFoumPQnrBq6trWF3d9cYJDovfG69h6GhIaTTaePNrq+v4969e9jZ2TF1G5Wuz5ylTqeD7e1tpNNp0+2X0O7KyopRtm632xg67Ig8MTGBvb09A08CR8qHNQYBPJDzRkXL4siaVEtiBj0cCmWfz9eXR8hkZO04QIVHQ8Hr9WJ+fh7AUQWMUChkGnOOjIwgm80aY4qV3Qk/U5kyFkn4kUxGrhdFF9RzV+YuDQ0AZk64hsj81PXFfUNDUteo/m/Hjgfj5DFQXKd86IK3GUm6sCmg9XhbwSmEpgpPYRAOjRHp5qOHwu+dOXPGeEoOx1ECcT6fN/CMx+Mx8BEA0zW32+1ie3vbtAJhnMrhcBgWmWFItjt9bEL0+okZFNz0JEngoHIiw6zdbqPr/iYMg+PkbQp/zgGf/fDwEM1mE+Pj4wiHw30kF8JTFO48V693VKZqd3fXlMdi7Oju3bsmKZZNNRnXIHxLgU3F6ff7EY/HMT4+bpRQoVDA2tpaHwVb3zNLRR0cHGBjY8P03yJ7bnFxEaFQCE6nE7Ozs2beSQhhWxM+P9ccP2PszefzmXkjq3JoaOioDNc3c9m4zuyEXV2ntoeiqQxUMLxWq9VCKpUyMdZkMmmq8zNuNT4+bhSdzgfrMNZqNQQCAYRCIdNZwK40w711kpGoHhjJJTSYeBwZwFzb9Kp13/Lda5ksW3EOxsljoLhO8bDLDelm598070QZS4SxdDNobhKFA3F/DoUMgX6aPYVpt9s1uVZTU1OmSeH09DSmp6eNkFpYWEAmkzFxBcYTvvKVrwA4KreTy+XMvVA56X3/H83/A71e77jCQjRmFBtwTNFnwmynK32UOkcCqdFsoNs7iomMuEfggAM99PATt38Cf3T5j8wz6TwTjnM6nSZpdmRkBBcuXECv1zOKgwQUj8eDsbEx5PN53LlzBxsbG6ZNfa/Xw82bN3H79m2jiBgjY3xIPUR6Tg6Hw8BZTudR5XQyCJeXlw0ZQmOgFKY0MJgXpqWQ2u02XnvtNdy9exd/7a/9NSwsLCASiRja+OjoqCnx9Nprr+Hg4AC5XK5PyGpNQACmlQlwRHXXorO8r+HhYdNwlAqLa0yZs1QKXq8X1WrVFN4lBA3AeLI0mkhwmZycRCKRQCqVMp9r7UK3243V1VUEAgFMTU0hk8n0GS28tsZ/FdFQSJ6f23ErXpd7kkpRlRvfNVvUaOWNgfL6H4+B4jrlg4Ferfqg2fmMGyn5QAuYKuShDDUNAKt1qYNKzva8PB4PpqamMD8/b6q1X7lyBQsLCxgZGcH6+jrW1tawtrZmgvAADGRDxUbmoHp9wHHc7V+4/gVcw8c5WK1W64hV6Diu9NFut9HpdtDuHBNTet1vVrXHN6nJriE4hh1wj7gxPPTN/lq9Lj555ZMYdg73VeemEuQcDg0NmarrbC7Z7XZN7CoSiZiqEY1GA5lMxpRMolAqFArIZDKGVECvV0kN6unRW+U7q9VqpqFktVo1dSDr9bohV/D+NCbCtXN4eGgMBFakB44SiV999VU4nU5813d9l4HomEtFb4SxQdvboEfJ98qhsSHOKZ9bIUadByUD2ay7nZ0d4+WxU7K2uff7/fD7/ajVaibuRQOAUCPnNpVKodPpoF6vG7iPLXXoMauyAdC3b2w2KwcJTTSkbEag7h8qRP3chidtMtFg9I+B4jrFQ5WKDV8A6LMCFT7UIDC/RyFBKx84jqHwbwpHquKj0CH0Mzo6igsXLmB2dtbEHK5cuWIKtz777LNwOp3Y3d1FPB5HIpEwDf+czqOuybRINS9MBVev14Nz6JuB7x5w2DpuPULPgFZ2p3ssZAj7tTttDLmG0EMPQ8NHHojP6+ujOvt8vr5qIvRA8/m88bBICKjX6xgZGUEulzNzQaVFq391dRX37t3D0tKSgUk7nY5pxUFqviZJU2Axx0iD/ZyrVqtliBGE79gtmu+UBBB6xfReuU74M5O6+c6vXbuGTqeDdDptFOOtW7dQKBRQLBYNC5AKj+uk3W4bJigHFTFhP1V0ahxwbdvEBnu9EkItFArY2Ngw9RN5HNMq2GaFDEIAxthThU6DKJVK4d69e1hbW0OlUkEikTDvhQpM1yUVqw2p67PzOLv6DNe4/cxEFXQfqyFpG3OD0T8GiusUD4VT1CJTiIlei8Iy6hGopacZ/4QEdYPxHKq0NLeEAfpnn30Wly5dQjwex/nz5zEyMoLt7W3s7u5iZGQE73nPe/DYY49hdXUVL774IrrdLlZWVjAyMgKfz4fHHnsMW1tbWFlZ6YvF2TTg5kETzsNvbnocxbdq1RrK3TJahy1TDoqKxOP1AD2g3Tn2ON0jbpMHRC+m1+vhpWdfgr/lNx5JpVJBp9MxVTEuXLhgPK5EImGeP5vNGoiQibe93lER3Zdffhlra2sol8uYm5vD8PAwKpWKsb61fBRjZlRwgUAAqVTKCM9Wq2USYjUO43Q6+xh67EvW6/WMwmKpKHpjKuhJfqhUKqYixrVr17C9vY1EImEUFlmQjM0QLqYXyHVWq9WMUuecezyevtgb51i9Ea4/9bq5XjlXTB9IJBKGaKHMQ42f5XI502srlUoBAFKpFEKhEABge3sb29vbaDabpgtBr9fDxYsX8fbbb2NxcbEPyqMCVOiccN9JSkURDc63zXxVaFGP05iewtYDxfXwMVBcp3ioArEtP4USlCVoB4bVE6MAVdiDSlCZi7rZ1HpkomckEjGNBR0OB7a3t/HpT38a5XIZfr8fP/zDP4xwOGxKPTGhkkJXE0eVBMJn42e/hl/D/93+v829dbodHBweHMONDpikZFrJh4eHR4oLDjhdTlNrTxmIVPoU8KSY05tReJAKi/RotspgXIMlrNimpFqt9lHzmRRu591RYYVCIXN+TVCl0WCX7OJc8L2RcKDUfipnr9dr7pNzRgVBRUSvjSWiSI7R/DGFo0kHp5Cm56CeEj0dKlM+twp9Qnmcbx7LIsMATKzI7/djfHwck5OTZo6cTqfx+DY3N7G+vm4YgyzazHdHZczk8uHhYUxPT5vY69tvv93XEUGNKd630tYVJlS0wEY0qPRshMSOp3I/MuVE9/VgnDwGiuuUD25q4Nhi42YhjMS/n0QPpxBTpiGAPsFEfJ5CRkv78BzdbhfxeBxXrlzBwcEB7t27h6mpKbzyyit46aWXTEt0xq+++7u/2+RG7e/v49KlS4jFYmbDklnH85OazGcxjLT6cZyq2+miVq2h0+2g1+3BNeSCw+nAkOMIEmTgH8ARScMxZLwCPnsymcTXvu9raGVbuHXrFtrtNqrVqiFjEM4rlUpGsDBB2OVyIZ/Po16vY2hoyJBEKpWKYa9Fo1GMjIz0Veug98FzuFwuQ9IgvKrvlXPUbDZNWgHjNvRc+B4p5OlJkcRBwa3J0LwnMgyp2Fwulyld1W63TXkuKlSgv14mvR4qQsabqNyopBuNhlmf+ozAMWUcQJ83yXOxgPHBwYExlnw+nykB1mw2cfPmTfR6PWxvbyMWi5kKGJVKBbVaDYlEAtFoFG+99Rb29vbQaDRMDtrq6io2Njawvb1tGKIaa1KPyE6voIGgsDxwDE/qnuOzAg+WjtJz0vtmXJLfG1TPOHkMFNcpH4qRa9sRoF9RqcelG0TjBvwOYRaNewHHQWObtEGL2+12w+/3mw60sVgMd+7cwf379wHA5DxlMhnkcjkjdOv1uokzkP1XrVbNhiXMQkVJq9flch0RLHDkbRn8v9dFr9uDs3tUYLeHYw90aGgITpfTeJj12lHPruGh4T74ql6vI5vNGkVJAUUvZ39/38xnMBg0QpcxDDaFpLLQ6vIA+hpnUkDRAyA0SGWtljU9LVrgSnrQ+BWVhw1bsYo9BWO5XDYeEhUFh8bYgGNPnBUtHA6HYbpxPSlMqIPCVu+Hninnl8L5JNYe/2lqA3tjFYtFbGxsoFQqGa+EFVZoaCSTSfMch4eHKBaLWF9fN/AnyTFsKrm0tITd3V0Dt6unS+VroxCKBnCd2oxDDs4rvWNFFfR5NWdS14tWwxmMB8dAcZ3iwU3ExW4vZmUPAsdBY5tkYR+jigzoJ37YG1GZbzxmdnYWfr8fHo8Hn/zkJ41wJDHi4ODA5HOFQiHk83kjbFqtFkqlEkqlkoGYbDqyQpWs/A4APeex59jDNxWr48GSTs6eE06HQFvDQ+gOHwmNP3nsT+AsHlVRKJfLRkjSk6HAZosWJtdSYJEUQmvY6XQiEAj0lQmisOJnFFiEB4PBoCkwS6+FnpjGRXg+WvGE/KigSSbR0ev14Ha7TR5TPp83XoYyGHWuldwzNDSE0dFRQ8bY2dkxz6IGFNcDn+/g4MAoJ55PUy04B6ywUa1W+6qbKDGHa65YLJq4I3uI0aMEgFwu16fA+b6ZUHzt2jWMjo6i3W4byJr1CMvlsonj8XlsAoaufZtYou9FYUNVbjyOyokeML1Unp/fU7hV0YfBeHAMFNcpHsq6swO2KiBU2Kki6Ha7fZYjNwhp2ralryWVVHlxY2cyGdy4cQNPP/00AGB1dRW3bt0y1vzh4aGpDL64uIjNzU088sgj6HQ6SCaT6PV6qFarWF9fN8QMKl9a51QEvPYDjK6ubGoHgF5/nKHT6aDT7cDldJm/01MplUr4/Oc/j3A4jFqtZjwQxoroiRHe4/WBY0FGb5NeEwkGAEzxWxZAVmU2NDSEaDSKcDhs+ncR8iJcS0jJjmEBMIqHXhorUDBGRU+G75/w3+joqMkLI81fad5U1FQYHo8H4+PjGB4eNrULOZg3RiKLQthqbDCGxxYhVF6slsHebLu7u0a5kQCkyo/vplarmTnWRGKeLxKJoFgswul0olAooFQqYXR0FMvLy/jv//2/4+rVq3jnnXdMLDKfzxsDjYpElQ2ViT4X4UIqJnrnimrQCFBP+CQvi+dTr4weH9+l0v0H48ExUFyneGhQlwKQG4bCXAO9ugGpEFQQaD4KN4paeSd5b8CxF9ZsNrG+vo4vf/nLCAaDpt+Tbu54PG6sZFZQIHTVbh+1CeHfdPOq5a8WMCvBG+UEh1FI5v7gAJxH/3d7XX549HkPaLfaR55br4tisWgUi8/nM8V+Oc+8NwCmwC+JBhTs6tGSAMN5V4iW88jfWQWCsKgSHRhX1O+rMrbXg+0B8J3ynmiw+P1+ozzYgoRCUZ+NQpMlq6ik2CmZZbkoTMl8pGGhHqOWrSIEy+96vV4kEgkEg0FD8tnf38f6+nrfMyqxgwxAKm8aB1T0LHPFIrm9Xg/ZbBYAUKlUkEwmMTs7i3feeadvH9lQq3pSet+6NtXg07ie7hV9d/QEbWVm7zEOpdMrVDkY/WOguE75UEuWQ6EJtlNQD0mDurQgdcPqRgPQp8TUqtSKDvTIhoaG8NWvftXQtCkoKfTYJp3QkdPpNEFzkh7UgqaAVWFOQdzpdPCvPf8arVYL/+fB/3m0mR1OwHHseR3d3DeVFHCs2HAEM6J3ZKX/W9+/hcvlgrvrNq1YWLGdBATgiOzAmBbnjbGeXu+4+K1dKohCyoZn+TtTASh4tQYgr0FFoIpPvQ+e76Q4pA71hNiHi8VpCU9qLI3vndcul8umjFU8HsfQ0FE/Nb5DfU4qKtszVsHb6XSMZ8c4aSQSwcTEBGq1GoaGhrC1tdX3fMAxJKmGBeeDa5gxU41VAUcKi/fh8/lw+fJlbG1tIZfLmefsg5edx3U9bZRDIXl9Ph7Pvfaw+J9eT/+ucKL+TatwDMbJY6C4TvGgUKMS0MCwCizGI/i5ChJuAAoQAH2Wn8KGGojmRlOPAjgmHZA+zDpwvV4PY2NjmJiYMF11mRgbCoVwcHBg8ogobDRuxPunQtEgfbfbNcqphx66nSNyhoEKe91jaBBHSq3dbcPr8WJ4eBj/b/T/he/QZyjhDPBT6bAeH3Act7FjOs1m08BapNKrJwvAKHJ6HBTuo6OjiEajpsI53wHjVPQm9JmViUZvhkQJ3jsNF56H9Rj5PSpalkaix6P5ffSs1Ptl/hfZiTSEmD6gSpoGjnr9hBNJN+ecud1uk9DMOozlchmZTMYoPQptnpcogXqVVBaMZ+3t7WFiYsJU7mfMlRUzdnZ2MD8/j49+9KP41//6Xxs2JZ9BKft6DRpTVKC8D94j94hWsiGywHfEoYqL86bEKf5MJczzD8gZJ4+B4vo2GOpVKUylcS39XDcMf+emUtqtwiEcFCD2OSlAlO6sioUeGeMymjsViURMfg5ZjRS6KjA0xqbwpdPpxK8P/zr+r/b/ZZQWYcMu+mEXh+NIuTl6Dvy78L9DMBjECEb6BJBCW/wu54ZWO+NVWmlD2YPAseWsSk4/47WCwSACgYCJY1Eoac4O/2Zb2eqB2JY6haa9DvQdKiNU15NS6qlUKKj1HdIoIb2+0Wj0KVhNBKYhwHnW++HnTHymp1Wv11EqlfoQAjXAlF7OoRT1Xq+HSqWC/f19+Hw+JJNJo/AYt1xbW0MikUAymexr1slz0pjROCHPQbIR1yHv5STa+0nwrXrF6kXpvtQ8OR53EtIyGMdjoLhO8SALj5tEYz2EnGixqWWqQV/CRSpkFJID+qm7QD9O3+v1+rq7AseVwDXWoKQKViGnsGPlCt4vGYUej+cBtpvT6TTldyhkaPH/S/xL/JPmPzmCCtEzFTIcOLZmHc7+ZFDmXAHHFe+1pA8rNFBocQ6UNNDtdk1vMJYWosLudDomJsYiwsAxLT0cDiMajRrFpEqfQ2NCjEGpcQH0U6RpIPBa9GporfNcFLAUxD6fz3hb9LJGRkaMh6xNJMnWW11dBQCEw2HjRe/t7RmIlUqcBBh6V91u18wL39/BwQGGh4dNVQ96XpxHPpfGbtUj5rujwqrX62YONjY2kMvl8N3f/d2mSzKL/d68eRPNZhPPP/88nn/+efz5n/85Dg8PzbrmXHFN0yCgQmFc037vNIBs5aRpKjr6jCuJp6kHy31MyHAwTh4DtX7KBzcEhRE3i1bFsIkAD/vHqgPcEBqL0XiFXltZcRoHUKu/1Wr1ETCocMjA42ZkAJ1w40keAq9rB8J5zV91/qq5v173m4Kkd5xozTn5V+5/Zfpp8bwUMixBxNYfjUYDtVrNxN5YQaPZbKLRaBiYUGnLvCdVuurZMo4Tj8f7BLzOrT4nn1UFGpU354eCm9fm3yhIlRlnx05owLDwLJl5TK5Wr5lrhLRyJnb7fD7E43GjUNUr0LXIHDXgOFWBELAdr1OP3vZcNR6rMTNdl/pzrVZDqVQyBprCzpubm8hkMjh79qwxsNTIYyoH4VS9V/7OQaOB+8VGB2zDT2F4e9/p+1dvnMcNxslj4HGd4qFMLQbVqQgYp+EGsnF3DfgDxyQNWznRggX66ffAsVCgIODfSFSgZ0Bmno3dB4NBQ0rodo8Yfbu7u31Qkl5PFbB6jzZ89quOX0W328X/0/t/ju4TxwqNypnWPIkBKhDppXIw5kYBozFAFa4qfBTasp/B4ThK4o1EIqbVvVrlKqROUjAKR6qHYQs8vku1/u24iCoXntPtdvfR/+v1uqmuQQ+DCoufuVwuk7u3s7PT17ZD73to6Ki2IytwcK04nc7jRqBCaFEFpPCpQrM671z3CvVqTDaXyyGRSBiDgQqHHaCvXr2Kqakp5PP5PpIK4VCmLHAOGo0GqtWq2VNU5gpz09NVr01/1xidDpvQwmH/PhgPjoHiOsWDyoLkDAAmOMyf9VgOKjJVUg6HwyTOKqyoFqEtRGj1MseGgkY9Ayq18+fPY3R0FIFAwLD2IpEIQqEQRkdHsb6+jvX1ddy/f9+w57j5tXUKPQeyz6go2XxSvYlfG/q1Ywu36zRehcJNAAyVm+e1k0r12sqS0+A9IUUqZSVTcK5p4YdCIUxMTMDj8fQlGauiIvSn16Y3RKOAwk7jZXzPFP78TL0VOwbF6zD/TL04DuaDud1uJJNJNJtNZDIZ7OzsGBq/2+1GLBbD+9//fuRyOdy6dct0RVZojTlrk5OTqNVq2NjYwObmZp9XqPlvjCUy7sn5f5jnokqNECkh7ZWVFQSDQVy6dMkQS8LhMA4PD7G8vIwPfehD+NjHPoZisYi1tTUDa6fTabzvfe9DPB5HOBxGOBw2a79SqWB7extf+MIXTEFhZR6qp0QIlUqfz6AGpo0sqCdp/z8YJ4+B4jrFgwLIVlZqvXGBO53OBzwjoN+qU6+D0JbCHMpwolAjE5CCe2joqABtKBRCKBTC+Pg44vE4zpw501dFgffPKvXVatVUc1cSAoWDXp8xJy0Qq4JLBYEGzBXCoiBljESFoXomGminMmBicrfbNYH7Xq/X1zZErXwNsgeDQVN9XI0GHq8GgcYZlSiiBAct02QLMh77MAtdvTNCt0pKoEHicrkQCARMHMrlciEYDKLVaqFQKJjYGK9Hos3W1pZp+UJ48fDwEFtbW0ilUrh69SomJyeRSqVQLBZNDh09IRIf+A44L8rmPImso++Oa0a97FwuZ1iLvV4PsVisr//W+Pg4nnnmGQwNDaFarWJ+fh7z8/OYm5szSonrcGhoCPF4HGNjY3A4HFhZWcHi4iL29/cfGiNTo0m9e4UT9XcORTr098F4cDh634Z+ablcNs0Jv5OHHaNSoa1xGwpOZZgB/R6FnWtkH6dQIs+lFiWhlMnJSbznPe/B2NgYgsEgKpUKqtUq9vf30Wq14PP5MDIyYurFfe/3fi+SyST+5E/+BK+//rrppMt7Vk/EZukRymEMgp4JcEwT58/0CAnT8HgKM3pjbNLIv3e7x9XE+b1Op4OdnR1DVPD7/UilUggEAkZQ02Ok8PF6vZiYmDBdj/1+v5lb3jM9TA2+8znsyhkKkyqMZr93Kn16Sw6Ho4/5p9ezCTm6jkZGRlCr1ZDP5835CZP5fD4DuanxUy6Xsbm5ia2tLezv7/fF3Xq9Hq5evYr5+XlMTk6iVCphZWUFn//85/uMCxtiVeanrg9eU70RJbpQcdFI+fCHP4wLFy4gHo+bNcrq8LOzs1hYWDDPxx5fm5ubpsYmPWrWhTx79ixmZmYM3f4P//AP8eabbyKTyZj3rEakrlWSb2iI0aCil6jwNfeweszf6aNUKpn2M3/ZMfC4TvFQj+Ik2EBJAifljWi8Q4kVNl2e56cQUaiKwftQKISnnnrKtEan9b6+vo7t7W0DDVLRMdbEWMP29raprO5yufryVeitUAjRalV2Fje6wpn6rPo8Nk2b98NagarkOHcjIyMIh8MYHR01AqhQKJjq5IQgmUuluTZ+vx+JRALpdNo8NxWEHdvi/fL7+m70eM0No/WvXhkFNQWeDRWrN8J5pRBk2xV6DEpWsdmqVFr0RMj6BIBQKIR0Og0Afd8BjryljY0NHBwcoNlsYnp6GvPz80gkEqZ9ir4jtZ9t40pjslrfkM9KhaAebiaTwdTUlEmgZhWUu3fvolgsGkOE3n2xWEQ+n+8jqTidTjQaDWxvbxsIlZT797///XA4HHjttdeQy+X62J82KqIGhCIB9nPr86tnNhgPjoHiOsVDvS0VhPybneOi1rVN0+V3beycXpzNVKTgcLvdqFar+Mmf/ElcvXoVQ0NDWFpaQqlUAgCsra2hWq3iqaeegtvtNnAgcCQgI5EI6vU6tra2TDUDhTSB/jy0k55VPRFVXCokNN7D73IONEmXnpUqdMaxNF4xOjpq4DLGUer1urlOIBAw16ViZ1t5hVr1fjjX+n712fhuVBEpgcX2lviM/Mw2SLQ8mL5rCnGFW6kQaKiQjMA54VDChMNxREKhAqWnwkToer2OTCaDZrNp5iidTpueZny3iibomj6JlKLGFe9B4UR6wfv7+ygUCkgmk33zXalUsLOzg7feegtjY2OGpMKKGn6/37SQ4XpaX1/H2toaxsfH4fV6MTk5iXPnzqFUKmFnZ8eUl9I1p9CmGmP6DEB/zULdC5znwTh5DGbmFA8lTSg5QxNPddPSUifEoQJOc1O42SnUbZiDno3P50MikcDf+lt/C48//rjpX9TpdEwQe2FhAbdv3zYW7tDQEBqNhiFE0CvLZDImnsIYkXoF3MAas1Irlp+rYtBNTiFHtpl6cFq1g/cEwND1eb5arYb79++jWq0ayjhjZISO5ubmEAgETDWNVquFsbExxONxAMdMUBZKVa9ClQ8VpVLlFcqzE3I1lmTXF+T3bViJ905vTXt3KSGAhA0KbMKrVNqdTsdUalflz+r6Y2NjmJubQz6fx/b2tqlDqeSYz3/+8/B6vQgEAhgbG0OpVDKwHgDD3OO9kADD4s1qhOk65XX0vbdaLWxubhpG67lz5wx8zRjs17/+dQwNDWF6ehqXL19GIpGA33/UEXtvb88gCKurq3C73VhfX8fTTz9tSCtnzpxBKpVCIpHoU778305/0P3LOKIqYb4PNebUEBmM/jFQXKd42JuVgli9LLW61cqnUrNhB91cAPqgIQr0brdrMPn3ve99ePLJJ3H9+nUsLi5iaGgIzz33HEKhkEleDQaDeP311xEKhUxR13K5jGQyiXq9jp2dHUM3J8GBMR4ARlCpEubQ5wceLDRrz4Mm36ply+9RCGrTPofDgUAggHA4bIQK2WSMSfh8PsOqo5JzOI56dY2NjcHj8Rh4lQqY96kWtb5L+93q+9X3Q0PDjm+pd81j+ewaP6FnR0OI5+D11WtTIg8VAY0FrifOGQssM7bFChyMV9BDrdfrplwUOz0nEgnzfT4D2Yl2PM6eAxXwfDadX56jXC6bihpcb+FwGPv7+6ZrdDKZxMWLF+F0OrG8vIytrS1sbm5iamoKDocDu7u75jqhUMh4pKz4QYXOoV6zjW7Y6IjNmLSNsAE54+FjoLi+TYZ6WAo56Gbg5rThRN3k2kuJ/9twDK3XWq2G5557Dul0Gr/7u7+LRqOBsbExhMNh0/U3mUzi/PnzWFtbQ6VSgcfjMZb41NQUstksNjY20Gw2EQqF+rB+vXetGAAc553pxuZ4GMHEFvyaA2cLOsJh1WrVtCfRxFwmIxMWZE4aBTeD9sz7AY4hUA4KfxVQFFi8vn6uc2LHujQWoqw0zocKbxI2eL86CKdRqZ009Fr6vqg8yBrle2BuU7FYNIxEnQc2Hy2VSnA6naZCPr1gQo6lUsmQfLhONdeKMCc9LSoyZYVy7fZ6Ry10Njc3cXh4aOKaqVQK6+vrBsmYmJhAOBzG3t4eXnvtNayvr6PdPupy0Gw2DRt2bGysrxHo/v4+NjY2TEdmr9dreqPp/rMhXoXxOa9KrrJjfYNx8hgorlM8KJwVPrIXt8amFAJkAJ5CXAU5YSwGtQEYuA6AiVVduHABV69exerqqsnNOnv2LL7whS/gs5/9LAKBAH7mZ34Gk5OTePbZZ3Ht2jWTr/O+970Ply5dwh//8R/j9ddfNwF+JgTzeWyvgc90UmAbgFEmFFB85sPDQ5NITC+A19Tq+VqXr1KpoNvt4uLFi5iYmEC73Ua1WjVlmugZRiIRsz/1ZAAAubRJREFUQ/Xmv2QyiWQyaeJgAPrmmzDYSZXN+YzM8aJXZxMjVIEp81ChMl0LhMKAY++J1+Za0vJWvBaP5T1S2fd6PeN1svYkk3xdLhdisRgKhYKhxTMZnXmHhIQTiQRmZ2dRq9VQKBSMMq5Wq0bBzs7Oot1u4+2338b29rZRNsPDwyZ2xh5oJE1oySeuAxpghHJv3ryJ27dvY35+Hg6HA7FYDIFAAKVSyaQtvPTSS/jMZz6Du3fvwu/3Y2FhwXTAnpycxOXLlwEA+/v7CAQCqNVq+PSnP43r169jd3e3LxmZ802vj/uV70BzF/m+bS9N14m+38E4HgPFdYqHWmwUZNyomvSqMJPCThoLOolxqIpOrcJGo4FoNIqpqSkcHByYHBjCfBsbG8YbuH//PoaHhzE6OopIJIJKpYJoNIrR0VEMDQ1hZWUFhUKhT8FSgSlkZyfTAuiLbejzq8ICjgWFnkMVMRU0k0M5Z8PDw4jFYnj00UdN65X79+/3eUpDQ8ct7ynUvV6vYRpqLE6FD/PelFSg3iC9AwoqhcFsiJhKhFAk50HfH6nxwDFkCPSTQqjsSTbROpMKU6ny4rnIqmy32+Znn89nrtvr9foSrnVOtJaiek+aUwYckXnS6bR5n6xu4fF4DAuQSIAaKTR6lOjCZ2m3j7ofj4+Pm1QNervAkZe8vr6O5eVlU/UjkUgY+DiVShlSh9frRbVaxe7uLm7cuIFMJtMHTasRxp/dbnefYWPHLvn8+h0lagzGyWOguE7xUIhJYw3cHOpp2RYbhZyy8Li5tNK8WvTqlUSjUaRSKVSrVfR6xx13t7e3MTY2hkwmg93dXXzpS1/C+vo6fvEXfxGPPfaYgYt4fxsbG310a8Yy7GuTYq2wj8bjqLC1eoV+32byUYBSaIbDYYyPjxv4rNfrYXJyErOzsybA3m63Tat3kkvouRJeZCxHlZl6kLwfjTvSiNDYBTsfk6Gn3g8Vhp3vZL9nhQbtWCavrV4aFXaz2TS0/kgkYpQLvTDCoGTZ2dBlPB43ayUUCsHn85mkXyoaerscZBEyH4xEDC1Nxs9mZmZw8eJF8/eZmRlDBqrX69je3sbi4iI+97nPGc9F2Z+E7gjf3bt3D8lk0pxnZmYGW1tbZo+Ew2HjQZ47dw7xeByzs7OIx+Oo1+u4ffu28S5v3LiBa9eumQLCnBdlvKoC031mt0+xvWOuH64rZb8ORv8YKK5TPBQHt9lGNjOMHgS/x42hApHHqoDXawHHgf9Wq2WaBw4NDWFyctJAO8FgEKOjoyausbGxgU6ng1gshlAohEKhYARJrVYzkBEtT1rKvV7PxDlUSVFxUXGrMlMLX/N2eP8qZKngWOrI6XQapQkAsVgMPp8Pe3t7RrnqXOjPqjhVcfEzJS3Y0Bvfn33fhAj5nLaX0+v1TBV3CkPN/7LXiR3oVyGp0BONAnsNcHDdaMK0Vp6nQNW5HB4eNsYH5+gk75hrWGNX9rO4XC5Eo1EsLCwgFAohEonA7XYbgsz4+DjGx8extLSExcVFo6D5ftXD7Ha7yOfzyOfzBtol3Mi94ff7jSdN8gUZliTrjIyM4ObNm3j33XdRKpXMM6r3rO+CPysUb5OF+LvGphViVCNkMPrHQHGd4qGKhoJc2WTqbWnAVzeJLcSVQabwoipACoB8Po9yuYyRkRHMz8+bXJdut4tYLIZisYharYZKpYJKpWLK+zBxt1aroV6vm0669Xq9T1hzs7K1iUInfCYKcnoIVBJ2wqtCnzb0yOdhg0HgiDAQjUYNmYRwosaGgOPeT1RWGmPiPPL6+s7488MShIHjGB+VoBJJOBc0APRdanxPISr+rInpthLm31XR2fEUfs+OPdrepCo/sioJkfI6Nn1fFTvnl9fUNAbGYkOhUF85Kr/fb3LsnnvuObRaLaysrJi5o/Gh91qr1VAul/vSCeilHRwcmHY0LBZNKJuVRFhNfnd3F9Vq1XiCvH9FQAD0zRFjsvzcTrrX1BBdH3b8cjD6x0BxneKh+T2qWID+xotq2TFWcZJiUhxdN5HGuQjnlctlLC4u4s6dO1hYWMD09LSBfiKRiCEnvPDCC/D7/VhaWsL09DRmZ2exubmJcrmMvb09w0AjfZ6eHD0hAAayYTIvFQite+C4KrjGTmwPksKLz+P1eg0MSQFy9uxZ+P1+I6QofAkJch75rLTe+Xc1JGgdK5yjcQq+Bwp0jUfyWhTmfDeaKsCYHPOxFhcXcXh4CJ/PZ7r9Mk7kcrng8/n6vDm2I+F9aLoDh1LQuS7Y5kTnVBU0e4aR7MFq89Fo1HiI+g7VW+Uc0usiS5FGCavp1+t1vPHGGxgdHcUP/uAPYmRkBM1m08RLh4aG8CM/8iNYWFjAv/t3/66vegXXAxmAjUYDW1tbiMViWFhYQDQaNcSOXC6HZDJp1oPP5zNeeC6Xw97eHuLxOCKRCJ566inMz8/jzTffxPb2dh9ETdIRDTE1cPiOlAylKQ36jgil6/4fjAfHQHGd8mHj4GrlnmTFq6JSz8Gm1nJz06NQq5vCuVwu49atWxgZGcHZs2fh9XrRaDTg8XiQTqf7ID/W9aMgazQaqFQq5r61soLG5tRjUCVKYc7PuPkVnlGoSQUABRtwHHdyOp0m2E6LmfAecGwN0ztQZqNCXzZJROdSvTAV2Eqc4FAGonrUhFdLpVIf2YHEkYODA3g8HuTzeVNNnpX0x8fHjeJRr80O+nP96PpQUouSQWzCCM9lM9+Gho46Djudx41AOae69vh99SQ5R1oKyeU6qpWYyWTQbrfh9/v7lGan00EgEMDs7Czm5uZQKBTMe6Dxo61quB6Hho4KITMx++DgwCRGK4LB+eh2u6hUKmg2m3jkkUf64pA8zmbHcu3YcUn1pPh+CLtyvQ7gwb/cGCiuUzxIiuBGVViFAkXhHFVA2hCQnynNmkLDJkAott5ut/HGG2/g3XffxY//+I9jYmLCtN2IRCIGbisUClhdXTU06VQq1afkyFSkIqMXwfgBvY2TYD87MZnCkM9GhcJj2MoCOK5sn06nEQwGkUwmjTJQ+jljU6weYXtx2gpFP7PjTppDd1IMRyFExk3oWZH2vbOzg62tLWxtbaHT6RhB3e0edRSmsiK5g/fj8/mws7ODQCCA+fl5+Hw+BAIBozQJi3HN0MAgM1IhLFUe2vmaa5L3y2fhHKhnxrmgUiZJhjEoJQ+pMuQzso5gPp/H+vo6zp07ZwwirtNGo4FgMIiPfOQjGBkZwTe+8Q0zH4R/yVqt1+um5FggEEAsFjMNQ1lEmeup1ztKMCcsubKyAofDgYmJCWxubpqkY84B1zDnl/PIPcX3p80queaoxBTi5pr5q1Bg9392DBTXKR8nxX34OTeG/l2tRn7G/9Vj4/eU+cTPuYG1nfytW7fg9/sRi8WMF8WSUNls1sSz2AJD4Sn1hMgcI8tQmYwaj1LlrGw92yqmErM9Uyp9v9+P6elpU1zXnkfCXZwnPrvtJdjxBgpbpaDz+dSLVVYnr0FhxmtRuedyOWxubiKfz5vz9HrHKQPBYNDkoanhAhwpyp2dHQM1xeNxxOPxvkaWWnndhoo17mRDXfwOlRqHehN6LxTodrxJ3yMANJvNvriXkhoIWXe7XWSzWaTTaVN3kPdL+DeZTOLs2bNYW1vD3t6e8d54X4RNud44D/qzEndYGYMNNg8PD5FIJNBoNLC/v9/XSFU9VTUaabjontP9yJ+5hzUurZ68jZQMxtH4lvzS3/qt38LVq1dNQdHnnnsOL774ovl7s9nEz//8z5sN89GPfhR7e3t951hfX8eHP/xh+Hw+pFIp/ON//I8HlM+HDHpGdgCdCocWKz8H+gP/qhj4NxXAFKwqtNTbGBo66ldULBZRKBSQyWSM10SBk06njSJifIMMPa0ryGvp9WylweewBQEt2m63a87LDa+xAQpjnjcWiyGZTJqcKwpNhVU5h4T2GI/SvKqHzS9jVDqXvA8lTyisqB4mrXASBba3t/useZ/Ph+npaVy8eBGPPfYYzp8/b+j7FMx6vlqthv39fSwvL5vyRSTQUElo7FBJGHwGGwK175/KSxWrKi56c4QN+cyEWwnH0mPl++S1qfToUXq9Xuzv72N/f/+BeFy73TbG0tjYmPGatGEq30Oj0TDGEklC6vlozzifz9dXpzIej2NhYQH1et3chx2z4jmUJEWlZcOquh/5vxp6fKcD2PDh41vyuCYnJ/Gv/tW/wtmzZ9Hr9fC7v/u7+Ot//a/j7bffxiOPPIJ/+A//IT7zmc/gD/7gDxAOh/H3//7fx4/92I/ha1/7GoAjS+nDH/4w0uk0XnnlFezs7OCnf/qnMTw8jH/5L//l/5YH/HYeKkjUYqbiUqubQkitN+1JBRxbqtxYhHGUsUhlQ8Hy/PPPY2xsDIVCAUtLS8jlciani4nHiUTCbHqPx4NMJmO65kajUROnYOyBwt6uoKFQJpmGyiLU2AMFIQUI4aVYLGZamHDuWHFEq4lQOfEanBdlgVGQkKxAiM/hcPQF0G1h5XK5jODjcRTIKuz5/NVqFRsbGzg8PMTU1JQpf9RutzE5OWlKSu3v75v6fw6Hw+TYsUqE2+1GOByG1+uFw+HoS+BlEi8JHPreqQRtz10hPPUGTvq+KnuNbema5f/qpdFr4T0wplev142Hn8lk8M4772Bo6KhEE/PFlIjj8/kQCoXMGmblDcKq7A9HYhCVSqFQQCAQwPnz5/Hqq68aL/jKlSu4cOGCmYdKpYLPfOYzyGazfZ4zvVml4eta1lgpoXGtIanKjUrZLh02GA+Ob0lxfeQjH+n7/dd+7dfwW7/1W3j11VcxOTmJ3/7t38bv/d7v4QMf+AAA4Hd+53dw8eJFvPrqq3j22Wfxuc99Drdu3cIXvvAFjI6O4rHHHsOv/uqv4p/8k3+Cf/7P/3lfwuJgHEMxXNwU2sAxjVgZgUB/mSgb3lIPhhuHlieHKklawLR6eRyp7kqe0G61ZLPF43FDm6egttlUtFrJyKLgosDhc1PwHxwcGEXD7zidTpMIGwwG+zwq4FgBKS2bFSAcDod5Vno6VMy8hlr5+h4U/lSvmFYz34FCbvRYeN/t9lExX6YdpFIphEIheDweVKtVNJtNMy+Ez0ZGRjA+Po6DgwMcHh6iUqmgUCjA6/UiFouZMlRMReAzMFZH44HxKhW2tvfFZz6Jyq7eqO0121Am3wP/dbtdU/yWz6TeiXpxh4eHpo4hCSjaLJM1BXVeeT1t4Fiv19FoNEwZLgDGQEgmk2g2m9jd3cXbb7+NQCCASCQCn8+H7e1t3LlzB5lMpq8QgN6nwpNcAzpPfC4aA/y+erxUgvZeH4wHx/90jKvT6eAP/uAPTCHWN998E61WC9/3fd9njrlw4QKmp6fx9a9/Hc8++yy+/vWv48qVKxgdHTXH/MAP/AB+9md/Fu+++y4ef/zxE6/FthQc5XL5f/a2v62GjXHrZqFg0M+A/v5PKlB1E+imULaYnotQDYUnY0Sjo6NotVrY3983sRd6TFQwBwcHGBkZgdfrRTgcNp4WBXqj0eiz4GmZcnPTy+H5SJigsKKg8/v9xoJlAV8KYgB91jxhHFWyFDaqTMjS45zQqrcZesoyVFIGcFyOS9l46tHo+221WqZ/lZ6Tz1YsFs38a1sSpkKw6/Tw8DCCwaBpr8I9ovN5Evyk71/XFI+ld0mYzh66PnXu+bt6HzRM6fFQgfBajPtpbJDGUKPRMHmE9LQbjYbJ09IWKfZ65zvUtUwvvtFomL5xfJerq6um2kooFMLa2hq2t7fh9XrN/XGeuJ90HlWh2zEwrjXbuOKwvd3BOHl8y4rrxo0beO6559BsNhEIBPDJT34Sly5dwrVr18wC0DE6OmpaA+zu7vYpLf6df3vY+PVf/3X8i3/xL77VW/22H1zoWipGGWAqUHUzcMFTYHBDakyDSoKKQym9rB7Q7Xbx7rvvwuv14uLFi4Y19cYbbwAAzp49i2q1ikKhgIWFBcRiMcP8IquNiqtSqfTlQfHZqHgUoqRCDAQCpmsxlc7CwoIp+Ko9v7jZqWApCAEY2JAloDjowfh8PvMZr6NsTApWu1oJn0eJIRS06qUovdzhcBgY1uFwoFarYWhoyNSBZEwqFosZSIkKPBgMGg9Z373L5UI4HMb09DTcbjfy+bxRDJFIBIFAwMyZVv3Q2BVzqqiUuaZ0LWqsip8xxkPvlXEhQtU0gkgyAWCIErZA1xgZjQc1pFZXV7G3t4dkMolAIIDNzU0MDw+jWCyi1WphYmICCwsL2N7eRqPRwMHBAQqFglG6JFu43W4Tk+X6YH1Cr9eLWq2G7e1t0wST60B/tj1E2/MmhM25VOXG9aHKr9vtmrxCMi51bQ1G//iWFdf58+dx7do1lEol/OEf/iE+/vGP48tf/vL/jnsz45d/+ZfxS7/0S+b3crmMqamp/63XPA1DA7wqMHVDnGSh6UbR2IrCiurdaOwIOKbhOp1O0+X18uXLcDqdqNVqcDqdBga8deuWoSXTs9LkU00y5jmpBOh5cdNzo7JEEy3jbreLUCgEr9eLdDoNp9NpYDIqEGW02cQF9U54D2qRKxmBykehH2Ug8jigv0eaxhLtd8jjeG+EEflemJtlsyf1OuoV8jO+Y3YdZgyF907Fr96TPj/fA3BcWd5eR7yeEk54fZvhqmtRyS265tRj0jnkcfTadE3yvRweHiKXy/UxJdvttmlKyZhruVw2RhYVK98d42cA+uaGSlXJHDasat83f7Y9bp1nhYsVzlfmoRqYdnxsME4e37LiGhkZwZkzZwAATz75JN544w38+3//7/GTP/mTJgCqXtfe3h7S6TQAIJ1O4/XXX+87H1mHPOakQQ/gr9qglarVpYFj+EQpxhSMaunZwV6lPauw5e/qlSlstLi4iAsXLmB2dhajo6NYWFgAAGQyGbzyyivodDoYHx9Ht9tFtVpFtVo17TBYD1Cte0J4IyMjRgEREkyn0/jgBz+IsbExY01Xq1XE43HjzZVKJWSz2T7yRKdzVHUjEokYz4rwmio1zh+9M+bWqKBUgaZellq/tIqVis85tT0VejoaL7OrWrD4rCYu0yNUYUZPhIqGJJB2u20ENs/N+oEUkOFw2HjwzMVSmJfzqEKYPyvMR6+Vz6OwnTLrOA+Ej7mO+c5UYfGc6u0xBggAPp8PzWYTd+7cQbPZxOjoKMbGxrC5uYk7d+7A4/FgenoaoVDIfF9z5XgOl+uoX1gkEkG9XofH4zFlnzRGxXui3KExwJ9J+GH+lg3VU/FoviRwbLhxblS5Udny+rqOBqN//C/ncXW7R62wn3zySQwPD+OLX/wiPvrRjwIA7t69i/X1dTz33HMAgOeeew6/9mu/hkwmg1QqBQD4/Oc/j1AohEuXLv2v3sp35FAvSfFy23MC+j0HKh5biNqDG9C2simUSam/ffs2HA4HxsbGAADZbBaLi4tGSPr9fnO/tIJJVSbUR0FEIRcKhUzMi9U4Ll26hCeffBLJZBJDQ0ft4Wu1mlHgFFwUvkozV/KBwjVUyBrP0jgVf1arWIWvDdfQCNAcLs6tCn5CfHpeGhK8R5ajohVOg4NxOCoxCmEKPoWT2KpDj6WhQKOF51OWo3qQVK7dbtd4wqrMVaDrPPAY/o3Gjnp4fEf/o9iOGlG6FnkOUtZzuRwSiQSCwSBqtRo2NzeNoUNFRUOGz9Xr9QzLMJ1OIx6Po1wu982VXptzRM+R9893z/euDEXdY4R0eQ475YeKVdcXjQjux4Hievj4lhTXL//yL+OHfuiHMD09jUqlgt/7vd/Dl770Jbz00ksIh8P4u3/37+KXfumXTJXwX/iFX8Bzzz2HZ599FgDw/d///bh06RL+9t/+2/g3/+bfYHd3F//0n/5T/PzP//xfSY/qLzNsmIFDIRAVihQamv9lB4819+Qk2As49uooLJeWllAulxGLxdDpdFAul5HP543VSeVEK7pSqZhyOpprpgpSSQOJRAJnz57F1atXTaUL/t3v95scsUKhYCogKDuMSkJzvBSyIUWbz2YLXHteHwbTqHHAOberavC8mh+mgojxJFVQ6n0pwYE/28rPvm+en7EsfpeK9ODgAMViEd1u11RH1/iKrhu9V1uh2/eiw/YSHgaf8ZpqSKnBxLWoRpvGmSqVilHc+XweGxsbxpuiMaNpCnxvJPSkUilEIhGzF1TpKyzItaxGiX2/VE7aWdyG7rkWuT+4H+mRKbSvBpZdtWQwjse3pLgymQx++qd/Gjs7OwiHw7h69SpeeuklfOhDHwIA/MZv/AacTic++tGP4uDgAD/wAz+A3/zN3zTfd7lc+PSnP42f/dmfxXPPPQe/34+Pf/zj+JVf+ZX/f5/qO2ioZ0BvQuMJFE60qhWGAI6Fl205AzD0b/VEbItXFWA2m0Uul+uDHWm5swJEs9lEvV43tHa2badnR+XicBw15xsdHcXExATe+973YmZmBhMTE6jVaqbkDhNHDw8Psb+/byojKKmCgsbpdBrCBu+NybY2i5HCRevxqbDjNTS2o16vzpN6MTqfVFwUgFowV6Ekvi87GK8wqMt13MdMvROFfvf39+FyHfWVIhNXY0iFQgEejwehUMhAhhSwuqZ4TS2HZTMk+X0dCmmq0qGQtmFqPjOPpXGh9+R0OvvgTsZGd3d3UavV8Pbbb6PRaGBzc9MQvFiJhP9o/CQSCYTDYYyMjGB3d9fsp2AwiFwu18do1H3Gudb8Nc4V759wKNePrfioOLXjNfeQ7k/ueRtqHIz+8S0prt/+7d/+C//u8XjwiU98Ap/4xCceeszMzAw++9nPfiuX/Ss/bItPg/cqAFTo2RuOw/a4bIHEfzZRgMKYAp6DypKKibEa5s1ozEY9QAryZDKJubk50+SPMQMAZpMD/Za/srH0WW3YVCE73rsdv1GlYcfhlDiiyuuk8+jc6efq/enf1IMg4YVMNaC/ZQgNA4V01Ysm85KwIxUO8+PUA6SHy2soiYL3SPTj4ODAPLuuP1tx8370mXlvyhbUd6/n0znSdaalozReBgC1Wg3FYhHFYtEoDVaOVyOMUC0Vtsvlwt7eHrLZrHnOoaEhlEolY5jwnrj+Nd7LZ+RzELZVyFHzvPR92tCfxrn0ugNl9T8eg1qFp3wo5ZobCTj2ljT4S0vRjnVxU9FqZeIucJzQCxx7I0oFV+9EY0f8Dj/f29szNHi/349qtYqlpSU8+eSTfbAMBcvh4SFGR0cxNzeHJ5980pA7aOky1gIck3MqlYohHVBBAv31CdWip8BRYa8sN84BPSONh/C7TOTlu1ACg61MGXejEqLw0meiotCE6kajYYQr3w29wWaz2Rfb4j8K+Hq9bkgaVDTVatXcg1LXyTJUBh/Xkip9Cl49B0kZqmCVlKACXuFark17dLtHBXW73a6B8Ahp6rvROC7v1+E4qgqytbWFfD5v5nFra8vEWknP5/kjkQjS6TTW1tbwuc99DslkEtlsFh/4wAdQqVRw8+ZNw2JVj0rjnxpX5DpWr4vvRO9Z51L3ojbd5DrjXGrM1PZqB+NoDBTXKR4aENcYFGEVW6Fxg6jQsKm2avXaEIVuSG5GelT8u56L1+l0OqbILoUvreBer2cqkOvxtOxJLKCy0Hwy3fRsxU7F4Ha7+1hYag2rZ0BYBuiPW9meo3pkVAxUUNoZmbE825NSi1p7d/Ed8H+F5ACYJon0KrQRo1YV4fX5T5UClajf7zewqpa30qRZ3oeuE40/2TAfDQH1jngvHFx79ufqsdsEBA79mYraHly3avwAMPliVML1et3cs5Ii2GfL7/cjl8uZWG2j0cDZs2dNnIzIgd4X14nG2biuVLnacSr1+PV7On9cR+qNKhw9iG89fAwU1ykeivXbpAB7YWvAVyEI2wK0PQqgv7WJKjdeT/F9xmS4MbnJKDDpdRDPp1DldVRZskoFz6UQiXoX9BJ5LP/pfOg92jE6beLIcyjDTeEyAIaqrXOjgktjZnY8QiE8FXgK86kBEgqF4HQ6Tcki2zOzCRsKU/KZ6Y2MjIygXq8bT0YFvg2VnqSMlFmo64cKlN/lHKthxedSeJD3/DCjQnMIqbRp1PAYrn2FNzUBnwrb5XKhWq2a6+o9sI6hz+fD1taWiZMlk0mMjY1hZWUFmUymb1+oMrep61RcHPqeVcHqM9gQsm1IqtLUNTkYJ4+B4jrFQ+MF2ptHN5Na1b1ez8Q76I1QENEKB9BXV7DX6xmyAIWJQoWEhVQJaZyCP7PfE9tAjIyMYH9/H8PDw4jH4yYWABx5Gc1mE0NDR039gsFg3zNTEGrJIOYBUZjbibwU4qpQVCAD/c0TbRjIFqpqMKiHykRXDeArbKlelg1TqkepUBPJBCyzRWVNYcvBa9I7o0JXGjihPb03eh+E+QhHqnLjP/Xaue4UBmOJKmVoap4gOwMoOUHnle+GCocCmtXrtQkmDQGFx91uN6LRKDqdDkqlkvmMkODU1BSy2SzW1tZM7cdAIGBSKwqFAmZmZrCxsYEf/MEfxOjoKD71qU/h3r17Ji7Id6MKku9PvSM+kyol3Rv8mxo0XGdaeYOfcS2r0huMk8dAcZ3yoZtABQpwzKZTa1SFA7/H7+oGUuvxpOPVC+PmpXUPHCc/q5DkfbE5HxM4GRTXgHmr1TJKDjgW9ApNqfCkN6cN+DgH9gZXaEpLFNkWrSo0PY/tUaj3RPjTjpfpcfo+7POqh6aeEJUQDQN6rkyotgP+fD4qMSYku1wuM/fdbrcvj4wwrnqmNAK4Rmxvh4pMPUp7fji3VMwKddlwme3Jc17Uu9Dn09HpdExeIL1AlpNyuVwYGxvD5cuX8c477wCAWXusMbi/v49EIoFAIIDR0VGkUil0Oh3s7e2ZFAsdChsqRK9KS9e9Qq/8XNeCrjU+v9bTVA/4YekYg3E0BorrFA8VqNwwqmgo4NVi1r/p9+1NZrPCuJls7F4FEa9lQyNqWQ8NDfX1ASMVmd6TwinVatUQMPgdBuDV6+O98ToqJNWTVKWgng6/r4LlpLiMkjwUSuTfgOMEa41V2PCWKlZeS98plRu/x3PbSpZGidZi5DmoQMjA5HN5PB6T08R4Gb+jMCmVD6/Je1DFqYqPc6fEAXte9D5sj0SFta45nlO9LM6pzYZVRWpDeR6PB2fOnMG5c+ewvr4OAAiFQvD7/eaYer2OM2fOoNlsYnZ21lTP2NnZeWC9cD0pJK3PYsdHuT9O2lM8RudHvSqmifA4hYYH4+QxUFynfKhgUKtNvR9uGG58fo/Qn1r1dmyIvzNPiH+z4yO6aVWoMzGYxzFviVAQc4eSyST29vbgcDgMfbjVaqFSqRga/f7+PgCYmAUZfGzuqDASYR0N+gPoS8ClMtTWIIwH6TGav0OWF4WqCjIKGB5rw4u8DzU2qLB5fc4P89O8Xq8xBLR3Fe+vUqn0JSxzPlgVQrs68x61vp7WjXQ6j/LcCNPyM43J8Nq8jk3ooNLV/lPKSiX0zO/a0Czvl9CyQnA0JpS9x3vj87GNS61WQ6vVgsfjQa1WM4nE+/v72NnZQTweRyqVMu+Ba6BarWJxcRE/8RM/gUAggHfeeQf3798375sJzKw2T09YjZt2u20YlVS86j3bClYVP98Vf+ba1vlnN4RBjOvhY6C4TvGgkFXFA6DPwlcogkKd/ytspXEazQOzPTAbItMNTYWhG1Xvg4Kafx8ZGUGlUoHH40E0GkWhUOirWcfSUOVy2dS3PDw8NAV7KYTZDJHXoGDWChGqLHT+1PvhZ8DJVR1sr0DjZjZ0ZQsiPQfnyIY91XNlixZWFuH3qDRVwTUaDQP1qXBUGBg4VgbM5aJHpUnRWhnE7tjLe1VjwYbC+Iyq3DkHXGO2589r2TRz3gsNEDUMOP8q1HnfnCu9r273qFrL3t4eDg8PTWyw3W4baDoYDCKTySAQCCAUCqHRaJjj7fvX9cFraKK+zoPuE36usVG9d55LYXjbK1UlOBgnj4HiOsVDlYgqFgpvWv78u2Lk3AikFzudR5RyKg1VAEB/ORslPqjVrQLa9kSCwaARtrxOKpXC2toaJicn4fV6EQgE4Ha7kcvl0O0eET5eeeUVtFot/OIv/iLi8bhpXU+BrsKTyqxarcLhOKqPqMrcTpJWocxzUGAqrZrKicKQHgSfWVlvJCvYPbIouDj3qjCA41gU41GE8Qg9ct75TijYSIoBjkk1GtTn81NpqSc1PHzUFZpzwTWgsLMaLnxebQfDe+BQtiP/ZscYVWjzn5KEOF/0Bqms1GDS2KneK6E/r9eL8fFx47FHo1E0m00UCgVEo1GUy2VUq1X4fD4cHh4inU4jGo1iZWUFH/rQh1Cv13Hnzh288sorZu4VuVCPms/IdePxePr2hSpWNWA4V3wezrGuNZtqT2+W738wTh4DxXXKh5a6OQk6oABWxaYYvH6HG4/wlQor24OiZambU+EbG4cngcLpPKp0XigUMDIygmw2a+jZVGr83sjICGq1Gu7fv49yuYxgMAiv12tYaczbIqGAkGK5XO5TRBqL0LJIfH7beta/67DjeLZXpd/ns6oSUGiR9wagT2jzXtSj5PviZ6yYT2WtFeHV2gf6aydynVA5sags/8775XMqpGWTB/g8Onf8XQ0j3s/DyAQ8hv8zdqfzpYnQTKLWtUslwvfrdB61tfH7/UZpDA8Pm+aZTD5WJZROp3F4eIj5+XmMj48jn89je3vblH5Sw4/3rUqdilXvxZ4fPdYm4egaUqKUQrG8riryAVx48hgorlM8KEAUVuGw403qGQDHXgTPo1aeTetVooBCIRpQ5mes0q4xNofDgXK5bKo4xGIx7O3todvtIp/Po1gswufzGSHK+/X7/ajVasjn88hms4YBls/nTd03VVou11F9Qm2JwblhHIKK/iTWnq1sVXAojMdnsoW4Cnf9HgWxKgTGgNTa1mtT4TFWQhIGz62tbGxrXYkQjBmpMaJzpmuJCp7wGxUjBenDDCP1etQzeth6VHiRnhXXmB0D4n1qrEchQNuoIh2fJZqYBtDtdpHNZhEIBEzCO+csGo1iZGQEOzs7ePrppxEOh7GxsYHNzU0UCoUHIGXOi2302GtCjYeHrTF9Dnud6bk0FqbHD8bJY6C4TvGwGVQPi0spdMPPVcBRiPN/VXbsR8XcEoWuuBG1b5MKOwpYp9OJnZ0d7O7u4tKlS/jABz4Ah8OBO3fuAADu37+P7/qu70IsFsPdu3dNzMrj8Rg48Mtf/jLa7TbOnDkDl+uo1QnhGF6H96sK5qQYlMJoKkgcjuM6fCpcNR7F+BRjelQ8nE/eAxW3epo8L9+VwrJqSQPHsJ+y/ur1+gNQYa1WA3DsobFgMY0Q9aR4jyyNxXul8uP77fWOiSKsWsIqFCpAbZhLPUkqbFVoqpiUKacEI62GoiQEGj1qlFAhlctlOBwOxONx1Go1rKysoFqtYnJyEh6Px6RKdLtHZahKpZKZE+DIA3v33XfR6/Vw4cIFDA0N4fXXX8ebb76JfD5vlB/nku+O60f7x2mcis+pRiPnTZUXDRM1UnSO7LiWrnPN3xyM4zFQXKd8KBxBy1gXv3plCp9x8FgKCIXJbEXI7+lmsqEhhXpUYNXrdRQKBdTrdUQiEYyPj2NlZQXDw8PIZrO4ePEi4vF4X/IrBf7IyAjW19eRSqUQi8UQCARQrVb7auEBMF6J0+k0gpbjpHgJ40sa42IsTK1e9Rx5DD0EzgvnQo9XL0UZaVopBOjPUVM6uVr4FHhaPaLdbhuBztw43iNjRTynMg4VmqIQ1blg/E29L2Wj8p4B9HmB6uEqxEghrN4W54qeJXPR1GvVZ+f8aWV6XaOMkWYyGZTL5b531+0esVmDwSAqlQq2trbMcyQSCQBHEOPVq1dNaaj19XXs7+/3KVs+P5UVFZKuQY1bUVlprFTXEver7kmuL77fk8hE6okNxsljoLhO8aCncVK8xcbjSZFWaIcCQ6EN3XC93nFCLXAcZPZ6veac3NT0ukhM4HkYwM9ms7h58ybm5ubwxBNPwOv1wuE4ajyZyWTQaDQQDodNh1rCfhRMd+/exf7+Pmq1Gn7iJ34CLpcL9XodbrcbHo8HXq/XNJssl8sPQFsav6NnohAnhWy5XO4rgEuBSy+EDDQ+I4A+AgIFN+NNWiaJnqQt1FVIK4lEvTkqFHqgjUbDMAQpHOmh2ooP6I8PcX61yC4FLhUJj+f6UONF41Lq2fE8ajxxaPyOxyj7lWkTzOnrdo8KBFNQswYlvSZS9gEYY6bb7eLOnTuoVqsIhUIAYNIKpqamEIlE8LWvfQ0ejwf5fB6pVAo+nw+FQgHnzp3Ds88+i1KphHfffRfvvPOOSZDX/UFFb8N93HP2euKcqTJThaWGjsa7aEycFALQ7w/GyWOguL4Nhh3w5WdAf6sJjevwM+AY1iB8olafWscafNfr8trqfSkdnXGKQqFgyjxFo1EEg0EMDw8jlUqhXq8jkUggFAphaGgIkUgE4XAYpVLJnLtYLGJ5eRmVSsWUhSJRg8cEg0H4/f6+dh3qESrbSynYfBaF9tTzUkXC+aEStD1UFWz0sKg4aWhoYVwVhhobUY9EvWfekzIqFXoEjstYUciRVahwJyEnhb50DSmbkYpKPSV6durZUsEr0YOCW4WyEnv4GWFLvjNdO4REbSMNgEkDKBaLBgbVxrM+nw8+nw9Op9M0II3H46aLdjAYxPz8PILBIO7fv286d9NTVZjUngcduq9o8NjkHc6LTWaiMcH1pX/n93XOFMoejAfHID37lA9uDLXwgAf7+9D6VbiBvyscYkM5KoQ1nqQCnxvNFkRAf8fgWq2G3d1deL1ejI6OYn5+HuVy2VTl7vV6iMViGB8fx+TkpKlRSOip0WhgY2MDW1tbfXAKlQ0tdgon3h9wzJrjvWo8hQJKGXg6D1QuGqOwPVfODwc9LVVg+l5OUoy8Nu9VITh6sszBImVeYzXVahXVatWkOPD79BD5Lkjh1ioUVIR2wisVJ4dCy/YzqwHEOdW1ph6Jfg7AsEN5HBUpYUuuA42r0RggFJ3NZs31FdKNxWJwOByoVqsmRhaNRhGJROByuTA5OYnx8XE4nU5sbm5iZWXFrGFFH3jfev+6vtSg072nMLG97v4iI4VrTJWUGlkDqPDhY+BxneLBRcy6dRp3YWFRCiDGQYBja9yuQGBbwYwNcCMqFVzhIgooClzGkdQr4PevX7+O9fV1TE1N4ZlnnsFv/uZv9gnlixcv4mMf+xjcbjdeeOEFlMtl40nVajVks1n82Z/9GXq9Hq5cuWJgIxagTSaTpgNuLpcz88CkU3oYKlxUgCiUR8FAIayQj8K0ml+lwlfn04bglCbP8yls6/F4zLwA6INtKSQZtwGO+k3l83lTIULz8FQB0KtRpUXlp1XvOTSupoQT2+JXb169Wo3T8X8V8Pbn1Wq1T0hrEV8Kdd5HtVo16zibzZp+W91uF5lMBgcHB0in0wgGg2i329jZ2THdt5PJJMrlMmq1Gn70R38Ufr8fxWIRn/vc57C8vGyMCsLAnHeNF9qwrCoTNSg05sc5VViQ39U8wW73uH8e50vXKdfZSW1eBmPgcX1bDLWIFZpQIaQKSr0JHque20nBZg7b0laqL69jQxjcqC6XC8ViEZubmyiVSgYy3NnZQSgUQqFQQKPRwPj4uEkYVeVKoZHJZLC6ugoAfXEaAKaUFBsGEg6jkKHCUBhLvScaAOp98X+FGG0KOpUhf9fuzPSQFC5kxQslS/A66tEpvPawxGBa74zzaWNJfU+8Nz4f3ztjd7Z3Zb9zzoEtTHVObc9SIU4V5jR6+DxcZ/quCXOShKPeDu+FxkClUjFtS4AjZVYulw3Mx7YwwFH3gcPDQ2QyGUxOTiISiaDb7RpvnvNKpa3zoPtHDUM1QnRe1ahTz82GlTXeae8n3XP6+wAqfPgYKK5TPHTxc3CTULgotEDBojg9v2MLBgoPZcAprKS4vAp123Pj95Q9tra2Zizi2dlZU8FgZGQEu7u7fRUleC/KCiwWi1hdXUWlUjHCSze3x+NBOBw2c0Jat0KfOi8UaCp01VOlwlFKtLLpFP7i8wMwCoHzo94shaJWzOD88ZqqrG3FxWNIoLBhQ75bHkdlqEnKXBO8hl7/JFhP4URdX/Y/9Sz0GNvrsL17AA+8H4Wt1fPRmGylUkGhUECtVutb03yOcrmMSqWCTqeDUCiEqakp7O/vIxqN4sknn8Th4SG2trZw48YNs6Zs4oxCgupZcp7sueI64DE21KjPrAYDr0uPWedMjRlleg7Gg2MAFZ7yYQshCjv+TasOUEhpcF4LlJKsABy3WtdAuio2GwbR3C4G+3WzqvJ69dVXUavV8MQTT+DZZ5+F3+/H22+/jVQqhb29PeRyOcTjcZw7dw7NZtPUixsZGYHX60U2m4XD4cDOzg5mZmb68my63S4CgQBmZmbwzjvvoF6vA4DJUdL4DEkdyoyjYCZcRyGhNHbOkbLj+GwUslSUhOk0/sN3QgXA6+m9cah3rO+B7EYyBXkuCnNCnnq/tldNxcr7pnehJAP+r/EkO36j6RRcc+oV6LtRI0tjq81m0/QCU6+Ja1DjZIRo5+bmUKvV8LnPfQ75fL4PygSAmZkZpFIprK+vm/t65plnMDw8jI2NDXzwgx/E2NgYvvKVr+Dtt9/G9evXTc1LVtVX4o8da7L/VyiT98450ngm50ULNvM4m/QxMjJiWtBwHgaMwv/xGHhcp3yodaqDglAhGxuDJ5NLFQs3F3/XKt5KFOAG1TiFWs26+RTaGhoaQj6fx/LyMlZXV+F0OnH27FmUSiWMjIwgHA6jWCzC6/ViYWEBs7OzCAaDfV6ACm7GtrRiucPhQCwWQywWQ693zHxTqIUCwPYkKYi1UDBwXHSWz2nDqVRAOlc25ZuekVrg9pzyH5WSenvqZVDI01vS3Cv+Y94TPWctXWRDTifBeif9ne9QyT6cA3023iefRZW0CnJdNwonalyV82t7OixdRSYhawQSMpyenjZrh7C0y+XC/v4+zp49i3Q6jW63i9XVVWxvb/fFHlXpq0KhEaEwH4d66lRMmkBue6k8p0LNfHc2nM9z6F4aKK+Hj4HHdcrH0NBQX44MPShuBBVEjUajb+GTTGDHTOhZqAUP4IFNpzk+jCVR4VGxaDyEAqTZbOLWrVvY39/H+Pg4Lly4gHQ6jbt372JhYQG3bt3C1NQUHn/8caRSKYyMjODzn/+8CYjHYjGcOXMGq6uruHfvHqampvD888+jXq+jXC4bxtgTTzyB69evY29vz8RJut1uH3kBOE4M5f3x+RkfUciKFrN6KoxpNZtNk+OmhXg5D6TuK1uN70EVu9PpNDAi6+qpZa7H8v4VtlWPiO9UoUq+L86BzZAkvMlBkggNBnoKNHycTifq9br5vnpvnB968HbVdq7TUCgEh8NhjIxer58IwRYnfB4AWF5extraGg4PD03Nxs3NTXS7XVy8eNFUYqEHmk6nUalUcPv2bfyDf/AP4PP5sLKygjfeeAP5fP6BeJZ6OKpcda451COj8UQvT/ebxvi4jjR2xnNxXjSRXGF3je8NxoNj4HGd8qEQnf2/sgBp4dpWmgottf5VuFEYaiCZFrAdizoJKlTLUS37fD6PxcVF5PN5TE5Ool6vmwre29vbGB4eRiKRwNjYGLrdrolVsQEgm/yxrTqZeIxTRKNRxGIx+Hy+PrgHeNAr1JiExl4UFn0YUUXjMvSUVMnze3wP6vUAxz2XbK8QeJDkoF4ZcKy89LsaA1HaO+eP9Rz1ndvfPTw8NPEzJSDYhBSNefLvdixNSQr8Lr1RnSd+bsOe+h0AxotcW1vD5uameRdUPOFwGFNTU9jd3cXOzo6ZZ5/Ph2w2a85RLpexs7ODfD7ftyZ0vSvxR+NbSl3Xn3ncSQQfHqNkJVtZ8fwnrS2Nbw7GXzwGiuuUDxuu09wZjZucFOCmUKXgUiiDG5KKi4JJ4SPCNsCD1GYVSoSp1EqloNnZ2UGhUMDU1BR8Ph9KpRLcbjfu3Llj6N7pdNp4hsFgEJFIBF6vF5FIBE6n0wgoPisp8sFgEOPj44jH431ei8abgP5YixZyVebdSfCQKnnSydXj0JgQvTAKK1UUakzYcB2/r4rCLjZrK2Dej70uRkZG4PF4TII2n53vTxUI4Tleh56orhneD+NsShywn0OhXnu9cC0ocsC5UAVHZeZ2uzEyMoJMJoNKpWK8voODA5PQHolEsLy8bLoNsMdWLpdDNBpFt9vF/v4+tra2+jxvra+o69ueI/Vsub7t92AreT1GoVSFITkf9rpTQ1L34GCcPAaK65QPKhjdEBrL4gZUK00FiW46PY5CUwPkFCKEk5gTxL8plKEKVH+n5U9hs7e3h2w2i1gshosXL6JcLuPRRx/F/v4+7t+/DwC4cOECnn32WUSj0b7yThcvXsTFixdRrVbxqU99Cu+++67xJtgP6+zZs3j66adNHT9NZqVipTJSK5hWsUJ+nE+FhVRws/wUCTDamZhzzLicGgaMRSl7jAof6M8RUio96fSM75CZyfdj5241m03ToFK9In3v+s5U0Cr9Xwk8qigB9BUO5vpUKFXjjUrh13glY3f1eh31et2sU6fzqCUOAGQyGeM9BQIB9Ho9lMtlJBIJjI6OIpfLod1uIxwOY3Z2Fk899RRGR0fR6/XwoQ99CL1eD4uLi7h165Z5j1S6nHN6wdrVmgYU3//w8LDxTjl/3Dss7ss1Y6da2EpMv6/Kk/emil8Zv4Px4BjMzCkfhANtwUNhRytWrbeTLHS19hQy0XMC/Swy3cC2pfwwCITn4320220jyGOxmPGELly4gFdeeQWNRgPJZBJnzpxBq9VCsVhErVZDvV7vSz7e3NzE8vIy0um0edZGo9FXPoqCUefLzl1S61e9BX02FaRUUnwXfD711uil8PxqbKig0nugd6FKi0OPVwiW86lUaQrebrdr4nxkyun39Rp27Mb27GxCgg5dXzb0pfE9NZDU+9I54jPxelSUpVLJxLIYS2Vdw3A4jFarhUqlYpTZI488gkAggEKhgLNnz2JqagqVSgXb29vI5/N970ihS30XvD/1nqiQ+bm9b3St6fuyPSxdN4p48O+2p0vG6sDjevgYKK5TPriBuIHtzaBVH+wNw01plzyiwKCVRyFrQ4f8uwpDW5FpRQ8eQ+VHr6RYLKLb7SKdTuOxxx7Dq6++ilQqhcXFRayuruLcuXM4d+4cJicnsba2htdeew35fB737t3DrVu3DEzIAqpzc3OIxWIolUrwer0Ih8N46qmncPPmTSwvLz9Abbe9BXo/FJpaGUMFCoWukjRs+jbhJqYgKAPQhpKU1Umvi/Ot8KXH4zHJ2XwGUsT5LI1GA+12u49EwndOBa4Bf3p9fAbg4TlHfI/02nisrgmFwuyEZaZd1Ot1NBqNvvXF56cnCfSThHZ2drC4uIjd3d0Hcv/i8TiCwSDy+Tw6nQ6CwSDi8ThmZmawurqK119/Hb/wC7+AQCCAL33pS3j77beN13aSUcf54fuk98T51Hej71uNOp672+32edq2cQIc11yk4eFwHCfP83NFRgaxroePgeI65cO2umwLj4MMMlVouvDtStQKEan1awegVRmqV6fXBfop5EoaaTabKBaLBpJj/GF9fR1erxepVMpscr/fj9HRUQQCATgcDlQqFZRKJaOw8/k87ty50wePccOzlcr6+nqf8lSSBJ/bFjyqsPk8fCZ9NoVDKbz1/KoMFW5Ur0SZc0q84LxxnglDMVZFGJQsNioU/s45ojDmM1Ih8medA/5se0Mac9LP1UvhO1Y6O5+F98T1qEqcSl5JMISXCS2z8LIqE7/fj6mpKTSbTXPOaDSK+fl5NJtN3L1711RV6fV62NraQq1WewA1UA/X9kb1HdsxRn2HGo/iM2tMTPcAFRkVkaZl6L3puRXOHIyTx0BxnfKhlrRuIM05YjzBViJa6VytOAp00uX5HW5s1rpTyIvWI8fD4CIeQ2p4s9lEPp9Hr9eD3++Hz+dDMplEIBDA/Pw8Op0O9vf3sb6+jtHRUcM0dDqdyOfzJsGYcbatrS0Tazp79qwRbqTRRyIRFItFADBtXtRr0DnkUIhTlTMVCedBW2/YeU9amkoNAaA/VkSBx7iKXfrJVgQcVHQUgsrkowWv96CeBZ+DVfH1b/ZasxWuTVzRuIwKdyXmKFWegphrTosBK92fMbpcLmc8RrZ1GRkZwdTUFJLJJG7fvm28/EQigfHxcSwvL6PRaODs2bNwu92o1+vIZDIPtKNRRcR5tGFjNUz4DFzTquztPWCzUQk36rxppX1C2FryTL1aGz4ejP4xUFynfFBocmhuEP/Of2rBqUcAwDCy+F1CQoyL2JuWFj6Vgp5T70stSA6l2A8PD2NtbQ1ra2t49NFHMTc3h729PbjdbhODqNVqaDabuH37NkKhEN7//vcjk8ngxRdfRL1eRyAQMAp2a2sL+Xwee3t7SKfTGB8fR6vVQj6fh8/nw3d913fh3r17yOVyAPBAC3YG1TWOpF4B6eE2DZ3PRfYdIUIeax9/eHhomIhMnqYAV2+vWq0ao4D9ybQ6PxWT9mVrt9sGguM1bSiOpBJV0MyVUkHMrr5cJ3YSrcvlMt4f4UaPx2OUCs+jc0ABTQOIv9vK3+12w+v1YmRkBGtra1hZWTGJ6r1eD4VCAU6nE+95z3sQDodRrVbN/Hu9Xly8eBFerxe3bt3Co48+iieeeAKdTgd37tzBrVu3HoB++Zx2zI1zq4YEDQtFEvT9qlfGvaMIgMKNCgNSYfHeuDbs4wfe1l88Borr22CoZcdNr6VquMGUhWRDWMCDpAqem9Y7N5wy7ihwlUigFqF9DxSaVIZO51G34sXFRUxMTCAUCplOtvfu3TPCxOPxwO12I5fLIRAI9Al8Cqtms2na22ezWWQyGdNziYNtU9rtNvL5vBGodtxPhROFicJ3J7HA+HyaM6dwIs9PhaDnowWueV4aQ9N3wvenP3e7R6WuhoaGUKvV+mj6PEej0QAAozDUs1Gqvpag4jOosOT8KCNVY3O6Lm2YkXOh0KGt+Hn+QCBglPX29jZyuVyfYB8eHkYkEkE0GkWnc5S/53a7jVfucrmQzWbhdrsxOjoKv9+PcrmMra0toyxtIoSNEHB/8HltqFX3n50CovCjem3qYasBokqOx2uMWWOhg7JPf/EYKK5TPnSRq8LQDaCJjnYMjILA4ThO4ASOS93oBtUYDo+hFalQEPBgPzDdwPy7/nz//n1MT09jfn4ek5OTaDQaKBaLhl7ebrcxOjpqIMJkMol0Om0qNrCCCJ+hXC5jZWUFY2NjGB0dNbX7fD4fUqkUWq0W9vb20Gw2TSUNW9nS+td50GaHdg6U1i1UoWYzyoBjerkqdK3QToHOpGpbSFG485/TedTSZXh4GPl8HoVC4YE0CRah5b2yxJEW8lVihHrKKmCpoNrttmnQqGQXW/Crp07DgILXFtZqFLGvWj6fN5UttNN2PB7H1NQUut0uCoWCUYakwHe7Rx2Rx8fHkUgk4PV6sbKygo2NDfNsRBVsOO8kCJ7zw73C98SYnc6Rzj0Vtc4N16uuBSUAaYNPVZQDQsZfbgwU1ykfCjWoEqJQ4tBNx2Pozahw43dUsHCD2V17lfk0PDxsauupsOY9au2/TqdjlEWv14PP58PS0hJarRYeeeQRfOQjH8EzzzyDO3fuoN1u49y5c9je3sbc3Bze85734IUXXkA0GsXCwgJ8Ph/W19eRzWZRLpfNc9RqNXzpS19CvV7H448/josXLxohFI1GEQgEUCqVsLu7i0aj0RfPANAnKLSFPBWpEi2oOLRArBIO6Jmqha/QHu9ZIUT1auwgvwo6pjtQcTQaDZPD5PP5kMvl0Ol0MDY2hkceeQTVahXLy8umw284HDaUfiVn8B0znqQKRRmkNFqUcMK8NvXk1bMEYK5J4gsrjrBbMRXW5uYm1tbWUKlUTG5Xt9uF1+vF008/jW63i+vXr5v3ce7cOTzxxBMYHR3Fn/zJn2B3dxe/+Iu/iImJCXQ6HfzZn/0Zrl+/bhTDwwgp+rMiGBrXpWfFvcRnVa+Vz8x9xGM1cV+hXCpIPUaVKA0pHsu9ORj9Y6C4TvlQxUPBDBxXJuDmVA+CcB29MRsuUQtaax/SytTjFD7SCgQa87Ita0KLtFwpwHO5HFZWVpDP5xGLxXDhwgVD3KjX62aTJhIJFItFhMNhRCIRVCoVbG5uGpiOAnR/fx8rKysIBAKGjUglOjw8jPn5efj9fhQKBTMnlUoFQD9jUOnY2lRRDQP7nXAe9H7Uq6HCodKzg/6cNyoy9aT1vnTk83k0m03s7u6axF3G8pjLBsCQU9h0kTRtzou2YuG1+DvXmOa/UVDzPdNLoCLnGqSQVkVHhU6FyGs3Gg3cu3cPOzs7KBaLxhtpt9sIBoOYmpqC0+k0UKDDcVSR//z58ybReG9vD1NTUwgEAuh0OigWi1haWkKpVDLvkvdjw4W20lFvCugn6jDVgftD943OkXpgqgBtb5rrw74nhbRP8sIH43gMFNcpHzYZQll7aglyoSvWfhK2TzKBQh6Kt1PQKhNKC9jyWkB/jIMWKIPUtMpVqFerVSwuLuILX/gCnnzySTz99NMolUqmHuGrr76KnZ0dnD17Fo1GAysrK0gmk3jsscdQKBRw//59I0ioIO/fv49cLod8Po/x8XFjjXs8HoyPjyOVSqHb7aJSqWB/fx/37t0z3yXDjUJRyQ2q0OxCqVSCOo+cY4WR+Nz6Lvl3tmGp1Wp9BgHPQwKGCsdOp2Pa1G9tbcHj8SAWi5nY39LSEjY3N1Gv1xGJREy9v06ng0AggEQiYc6tkKEyDbXFBj1DAH1sQN4/YWRlWFJxK4Td7Xbh8/lM8WUq3Vqt1tdnzOl0YmFhwRgcr776qlF24XAYc3NzePTRR7G3t4evfvWruHLlCi5cuIBWq4XV1VXcunULy8vLfXPPZ1A43IbS7bgvlYgagFwj6inrHuH37HQKhfj1e0RQOGcaBtC9PBgnj4Hi+jYYXMCab8ShG083GYWs4vPcaKp49PwapKaAU2Gqx2v8xhZS6oXpfVCgr66uGiiQlRDGx8exurqKra0tnDlzBl6vFw6HA/v7+/B4PDhz5gz29/dRLpf7SiZ1Oh0T7yqXy4jFYgCAUCj0AOHi4ODAFOjVOeJzqEBTb9Jm4qmyVxID/65zo8pLY34aw+L70BgkPWgK3sPDQ3i9XszNzeHixYtYXl6G03lUtT2Xy6FarWJpaQnFYhEjIyMIBAJwOo/p1ryeQpWtVquvpqF6DOrZ8365HugB8d2rccX/e72eqZnYarWwv7+P/f19bGxsAEBf6SzgqKyT1+tFLBaDx+MxlfOTySSy2Sy8Xi/S6TQODg5w9+5drK6u4iMf+YhpbbO3t4fFxcW+2B0ND4W1+Y7oVdvrX9+7xpv4nuxYrhou9j5Rr033m/2/xt6UCDRQXA8fA8X1bTDUI6JQJEzDf7Yg1g1rbx7dyNwgCivyOOCYoaaf6ebV86pgVquVipPW5u7uLm7fvo2rV6+a+oRTU1M4ODjAxsYGcrkcUqkU0uk0tra2sLW1hWQyiZmZGdy4ccNAo/R42u22yf959913cXBwgGQyaQL2yh7UuAG9Q/VcFZ5TwWUH5TUxWD0tZfkp3KNQHABDyadVD8Ak12q8LRQKIZ/Pm5jm6Ogo0uk0AoGAUUTb29u4d+8e7t69i8PDQ4TDYXMPbJY5MjJilJauB43dUDHZ8S3OC59T0wEAmPdMejy9V84RPaJ8Pm+MGD1nr9czCsvv9xvYb2xszCQVJ5NJxONxrK2tmWTjsbExxONx1Go1bG5uYmNjo49oo8iDxjSVHGMrJ43J6bu3j1VFzz3G/TkyMmLaxCj7UOOgGkNTL17nczAePgaK69tgUDhqPEs/488UZqpotIyNQj12/IbxKO3mq8pIFaN6XNy8dhBcNx8t/1arZcoO3bp1C5/97Gfx2GOPYWJiAmfOnMHk5CTy+TxeeOEFxONxPPPMM6agajabxfz8PPL5PLa3t/tgvl6vh2q1ikajgddffx137txBJBLB+fPnEYvFMDMzg3A4jPHxcQQCAWxsbGBnZ8fQq9WDaDQaxtvhs2mgnc9oQ0WM+QD9tGkqCc350Zig2+0278CmWw8PD8Pv9yOfz5vYTyQSQSAQQCQSMYpsamoKLpcLL7/8svl+rVaDy+VCLBbrg+L4/vW9nRTjoYelngs9SxX+VMCEH1n95PDwEJubm8hmsygWi8jlchgaGoLP5zNEjUQigUAgAI/Hg0QiYejvVPi3bt2Cx+PBE088gUceeQQOhwN/9Ed/hHQ6je/5nu/BxMQEhoaG8JWvfAVf+cpXsLu725fSwXeoSojPr7FHvlMmcCtSoMxE3XP6XhUmVaiZ1+I5lNhhU95pONr7ajBOHgPFdcoHNwkVhm2JnQSFcNMpnq6WniZDKjymm0YVlgaZT6IUc2hsgfel1QJUGADAzs4OIpGIidWwkngoFEI2mzWNKMfHx7GxsYFer4eZmRkMDw8jm80a0oXmcbVaLRQKBcNOCwaDqNVqGB8fRywWQygUwszMDAKBABYXF00hXxJbOCeaZ6XC2n5e4LhDskJPKvT0PfIYTTJWdiKPJbGgUqkYVmQ6nUY4HDZEB7/fb7yrubk5eDwelMvlvhSAk6jcSsKw70GVEgCTkO3xeEzldK4VhdNYV5BGQKVSwfLyMkqlUl+SNqnprHwSDAbN94PBIIaHh1EoFExL++HhYaOYd3d3DWwci8XQbrdRrVZx8+ZNZDKZvvuyn1mfSeFfjS0phGsbbLoH1YjTfaPzdxL5SZWe/ZkqUDvmNhgPjoHiOuVDFQ6HLmilMTebTfMZgL48HqC/lxcVGz8H+ls26CYDjj0qWoY2XEjojoKSsJFCT1o1weFwYGNjA4VCASsrK6asj8/nw/d///djaWkJb7/9Nmq1Gubm5vDII49gfX0dHo8H58+fx9jYGP78z//cWPz0QHjtRqOBcrkMh8OBxcVFBAIBBAIBPP7446aH13PPPYdSqYR79+4Z5h0Th+lxUFhRqGkyr8YL2cpFY1acr6GhIbjdbqOsqJA6naPEayXYKKuROVvtdhvj4+N48sknTZyHCbisQnL+/Hm85z3vwZtvvolsNotgMIhkMmkUAPPhaFTw/ilY6WkDx4WTKfxVIXEe2NgzEokYeI9J4VRYfOdsVdJutxGPx7GwsIDp6WnTLLTdbuPMmTNIJBJYXl42ycjhcBhXr15FIpHA9evX8cYbb+ADH/gAZmZmEIlEkMlk8NZbb+HNN9/s83RsRMKOZVKx2HC3xsQU4eB82BVkuE/smK7NvtXST/Ye1jgqY342XD8YD46B4jrlQyE9hRUUhrLxerUibS9A8XXb2rQtVYUXNS7wsPtgTpJSfZVQokKdx1erVezu7mJ5edlARmTOLS0tYXV1FcPDw5iYmMDU1BSuX7+OVqsFr9eLsbEx7O/v98GaKqiAo3hBo9FArVYzLS7y+Tymp6dx4cKFPmp1sVg0beKZA8e5sBWSCjL1evUeeLySLHg8Y07qhRH+7PV6CIVCRtGHw2FMTk7C6/Wi0WiYli+1Wg337983XaSvXr2KarWKr371q6hWqwCAYDBojBS+CyWiqCLj/VOA6/qjIcI5pcfHZ1tdXcXKygpyuRyKxSKGhoaMUub78fl8uHz5MmZmZhAKhbC7u2sIIrFYzJST8vl8AI6qoMzPzyObzeLOnTtwOByIx+PG69za2sLt27cNFM37t2OMttdlrxfgQZIF50UZiUo+USjYjoXapBD+XUlRtqerClPX0mCcPAaK69tgcJO53W4jEBW+4O+0mk+ChFSx2VCF0tb5/8NymIB+VqFuLlWiajUqzNjr9foSeZ3Oo2TixcVFI7CSySSSySQmJydx8+ZNvPvuu0gkEvD7/Yaw4XQ6cf78eZO8ynp6JGzo3NFLqNfrWF5eRrVaRaVSQSwWQyKRwOzsrIl97e7uAjiuYt7tHvdHAo4rWtgwK9BPdLHnhD8DMLEeQrlUklT0jG3xs1Qqhfn5eTgcDhPLY7+pt956C6lUCp1OB7Ozs2g0Grh9+zZKpRKazSYymYxRIFqYl+uCigc4ZqWSoq7QsRoiZAuSxJDNZvHuu+8ik8kYRUQvjTBqKBTCxMQE5ubmTCy2VqvB7XYjHo8bFmk0GkUymcTy8jIuXbqERCKBr3zlK6hUKpienkYkEjGxxOvXr2N5efmBmKLtTdmGmXpJQD/ioJUtbIafGi6MQ+p7PmlfqFerc6m5Zbaho+jGYJw8HL1vw9kpl8sm2fI7fajgp5BTIoR6FvwbIShlKtmBZY13cXNSCBMKIcGCm1QD9raHw15D6qXQq+KwE3cJw/C54vE4Jicn8dGPfhRjY2MolUpYXFw0RXMvXbqEixcvIpPJmPYmLtdR65SlpSVks1nUarW+iveacMvcIZfLhUgkgsceewyjo6P44Ac/aGJFu7u7KBaLuHXrFqrVqqGhUyFqG3udB4fjqPWGzqEqcvVOeZ5er2cENmFCehzZbBa7u7uYmJjA933f9+Hxxx/HyMgICoUCWq0Wbty4gTfffBMvv/wygsEg5ubm8MM//MMIBoPI5XKm83SpVEKn0zHtZZxOp2n90W63Tf1DxugYZ+P7p5dGuI9/Y2ypVCqZQsF8r6wnyPXldrvx3ve+FxMTE0bptlothEIhLCwsIJlMmjheLpfDpz71KRwcHOBnfuZnsLu7i//23/4bLly4gMuXL5smkffu3cN/+A//oU/InxRHopKwPXHuCT6Prk+uUX6m5a5sWJDH0iCjp8c9wORlGpb8npaU0r3M79tG4XfyKJVKCIVC39J3Bh7Xt8FQmMlO7lRLThWVxmds0oVCGEoesK1RQo08pwoBbmLgWLlyIypNnZuPmxY4phIzlsNn2d/fR6vVMrGsQCCA8fFxDA8P44tf/CKWlpZw4cIFJBIJzMzM4O7du0gkEkin03C5XPB6vVheXjb3R6GmLdWbzabxFMhC297ehsPhQDAYNASIw8ND5HI5lMtlI5j5nCRrcPCdqMdn16CjdwPAsOqU9cZ31Ww2UavVsLW1hXa7jbGxMUxMTMDv95vK+M1mE8vLy1heXsbW1hZGRkZQqVQMc3JmZgaTk5MYHx83FUkKhQJu377dV+Kp2+32JRwz0ZcUeq4neqyMbRUKBeRyOWxtbZk5YF4W1x5wRLgIh8OIxWJIp9MAjqrhUxmkUilT3YNr7I033kCxWMTzzz+PXq+Hzc1NOBxHnY8DgQBarZZpNkmolbliqgS4XlVhce0qXKqGhyoS3QMcCqmyMooaj4xPqcKhMaDJzLxHjbvp/tRczb8qyutbHQPFdcqHQkk2C0qHbiCgv6Mtj1WK+kmsJm4gXk+ZckxkZV4XYS4KD42zqdVuw4b2tfTzw8ND5PN5vPPOO3A6nbh8+bLp35VMJrG3t4dMJoN0Oo2JiQncvHkTlUoFo6OjiEQiiEQiaDab2N/fR61W6/N27Pno9XrI5XJotVpYW1tDq9VCLBbDxMQEPB4Pzp07h2QyiVwuh3v37hkPiferxBY1LPhPA/RUZlrTkLlJlUoF+Xwe1WrVKHvWhIzFYrh8+bIpe3X79m0Ui0XjYVLRt9ttZDIZfOMb30A0GkWj0cDo6ChCoZCpnj82Nobh4WGTgH14eGiIEUNDQwbeo9eo1Unq9brJJTs4OECpVDJkD51XehYkuoyNjSGVSmF0dBQOhwP1et1456FQyEDDJKQUi0XcuHEDFy5cwNWrV7G3t4elpSVEo1HDOi0Wi1hZWcHKygocDscDkB5jU4x5KSHJVkK2olCFZys9Xae6tm2mqB0/VuPOzuvT+1GDURXrQHGdPAZQ4SkfFJC6AbjRmA8C9HsxtkKwz8U4BM9Da1o9CVvY6ybSPDAN5Gvelg4KQLUkKVCowJRJFwgEEA6H8VM/9VOYnJw0VOjV1VW89tprWFhYwKOPPoput4s33ngDTqcTf/Nv/k14PB7cv3/feCIsL0QhRcFBRcI2IAsLC4jH44jH43jqqaeQSqUwOTlp5jGTyaBUKmF/f9/EcXSeqOQJrfEzwpRUFk7nUYuXVquFp556CpcvX8Y3vvEN3Lt3D/V6HdPT0wCOrPmLFy/i/PnzmJycxP379/GNb3wDf/AHfwDgyJOp1+umJBRhPHpXGmeamJhAOBw2MUIVsuo1NBoNHB4eotlsolAoGKIIvTImL/Mf55MK2+Px9DU3TaVSeOqppxAMBtFqtZDJZOB0OnHp0iWjwFlwFwA+/elP4/bt2/jIRz6CCxcuoN1u43d/93dRLpfx4Q9/GAsLCwgEAnjhhRfw4osvIpfLmXXGPmOqDNTA4z0qAUXjTScpNM2X5LPy72r8qOGne04Ti/l3+3+iE9xrtvLV+qDfyWMAFX4HDt0U3FQ2Ds7NpN1UbXuEwtS2PBUSVAvRDmoD/VUW1PvQ/7kJ9bwnWZknKUjmJzkcDlPGiTX2otEout2j9igbGxtwu9347u/+bszOzppqGfF4HLOzs/B6vUgmkyiXywbuUxjUjtHlcjk0Gg2USiVT+4/eBz2+YDCIcDgMr9eLer1u4l/0Wgin8T25XC6jPOiBeL1ek4AdjUbhdrsxMTEBt9uNkZERLCwsoNM5KsA6OjqKaDSKra0t3Lx5E2+//XYfhMp50ir8hM3a7TYqlQoODg6QzWZNDpbf7zfxOq4VeizM1yIcyFgpc7dUaSlZQd8zcGQcsTNxKBQyHlivd8SUZI1GLTe1u7uLtbU1jI2NYWZmBp1OBzs7O6hWq5iYmMDo6CiCwSBcLhfW19eRz+f7DCd7nau3Y7NhdT1y3aoSU4RD94nC4XZsyob9dF0rLMu1QaWkilT3kx1DG4wHx8DjOuVDPS5VCApZaNIs4ybM6VLFQgGjnhoHrUyek9fg5rOtyJMUqH7XzmWiFamkDHoM/DvhNK/Xaz6bm5vD5cuX8T3f8z1wOBwoFAq4desWrl27hg9/+MOm2saf/Mmf4OrVq/jQhz6EbreLarWKGzduoFgsYnFxEdls1jDyVMCot9hut+H3+xGJRPDUU09hcnISqVQKs7OzprElvRQK+FqtZjwdVmWnwmLcSGE4zlsqlTKsO84985foJR4cHJhKIHt7e3A4jijlfr+/jyzD++faUCIFj6GSJSTLOBPJMVpkWIU7FaF6lFRsfJ9+v78vwZvpDGQP8jzDw8Mol8vI5/MAjjzEO3fuoNls4sd//MfN8VtbW3j99ddx5swZnD9/HufOnYPD4cC9e/fw67/+6yiVSgaqtgsRMxVD6eg2NZ7PwHWvSkLjs2qM8X8blgTQt5ZUgWnskO+I96L7xN5DOs9/FUo/DTyu78BBhUGhSUhNFZLNctNAs0KMaonawpsb2o498X8lelChqadm59HYAuEkmrBtXfJ+PB4PHI6j6gurq6vodDq4dOkSUqkUEokEzpw5g0ajgXfeeccE/t1uN9566y2cP38eoVAI9XodbrfbkDt2d3dNuSjmQfF+9bmr1SqazSbu3buHRqOBRqNhmH6Ew9SborAlpKbeh7Io1fJmPAgAstks8vk8stksrl27hmKxiFarBZ/Ph+HhYWQyGTQaDQOhct5ooCjEqoKP5z88PDT3GQwGTbUJMgXVI+FQmEwJNjw3/8bCuGzsSK8IgCGZBAIBEzdrNBpYXl42MT0SVN73vvdhcnISlUoF2WwWS0tLODw8NIxDt9ttmKRsS2MTLU5SLpxzrlEqI3uN6xxoDFgp9qpsOGxEQhENVaZahkpjZ9wX6uHx/Pa8D0b/GCiuUz5UuWi+D604bTSnMRxVUrqpARjPycboVZnwmrp5dPPS61Cqsb2x9Rxq8Sot+CSSBoW7y+VCpVLB2toabt26ZXKVUqkULl26hN///d9HLBbD008/jfe97334+te/jldeeQWzs7NwOo8KzJKNFgwGjUdUKpVQLpdNpfmT7mtvbw+9Xs9Y9MFgEH6/3+QwRaNR47HwuyxfRCFFuI1zr1BcLpfDwcEBrl27hrW1NWxsbGBpacnMh9vtRiAQwMjIiFGYgUAA9XodrVbLxKtonGh8knNOCJMCVOFFhb107ilc7SoUTCgmdOh0Og0cSGIM12OtVkOxWES1WjUVPPx+P2q1GlZXVw2TcW5uDo8//jjOnDljIMVbt25hc3PTEHIikQjq9TpWVlZw/fp1HBwc9FXxsBWXrnmF8dQDUs9f54vzw3lQNEP3hsLdqvD1Mx6jnrHuJXtP6t5RBToYJ48BVHjKh8a1ToIL+bluKG2gpxtbf1YPSuM+pIwrrKJsKDtuYGP8WhFclZnCKvy+NubTILUK2G73qPDtyMgIZmZm8Pf+3t/D9PQ0hoeH8eKLL+KNN95ALBbDxz/+cXQ6HfzxH/8xVldXEQgE8HM/93MIBoOmR1Wv18PW1hYqlQoqlQp2d3dRKpWwsbFhGGH0alhwlUKOxXhDoRC8Xi8mJycRCoWMInO73X2Ki4qFCbuc13q9jlKphJs3b+Lu3bu4ceMGKpUKisUiIpEIkskkwuEw9vb2DLuQFHV63d1u1xTPpeHCXC0qGYUR+RxcJ41GwyhVHq/fUY+QSqLT6ZhnTCQSpuAvIc3NzU1kMhkcHBzA4/EYwgTfM++fHvOZM2eMsmu323jjjTdw/fp1hEIhXLhwAVNTUzh//jxcLhd+//d/H6+88gqWl5f7PEneJ73nk7wZjVVpzElzs7iXVHFprEr3m7IWuU54L2okqFGmkLuNYigZg9/7q5aAPIAKvwMHFcNJVFoKVW4MxisY47JhC5vlpHEvhT0UErRjAnYQWc+hHpwNAWq8QBUnB6+pv2ssrdVqYXNzE++++y58Ph/Gx8dx7tw5ZLNZrKysoFQqIRAI4JlnnoHL5cL9+/fh9XoNOQI4EsJ+vx+NRgNOpxNjY2MYHR1Ft9tFJpNBuVxGvV7vg9q63aMOwjxHPp/HyMgIyuWy8TYCgYA5N2HEUChkaOaMi7Ggbz6fNyQTKgqfzwen04lAIIBUKgWH44igUigU0G63Tf4ZPR+SQShgeYzGuJR0ocpIvQSFnzlISqHCo4B1u91IJBKYmJhAr3dUkT+fzyOfzxsIj4pE75nv0+fz4dKlS0in033dmff39/H666/D5XLhqaeeQjQaNfNXKBRw/fp17O7uGuWiCfiqZPjMdqxIUQld2won2vOiHg/3FY0xhcl1PdtGnXrCmgeo19byUOr9/1VRWv+zY+BxnfKhUAW9GZIbgH64ghsbOLZI9fWqkqG3w41Dz0qtRIU77EAyz6cb7SSLk/fPc/A8VJRUtHof/J7N0iMz773vfS++53u+B2fPnsXa2hpeffVV9Ho9XL16FXNzc2i1Wnj33Xexvr6O9773vYjH4+aeC4UCdnZ2cOfOHaysrCAYDOLKlSuGgXft2jWTU0WBpQLf9mQ1+E6lRSVEJUJKPCHeVquFjY2NPmV0cHCAVquFVCqFZDKJQqGAarUKn89nKn4AMJ6gls/ie2ThXiVwsP4iDQV2tFa4jB6c1+tFIBDA5OSkiTMCMExGKqP19XVT6YLrgwqAzwEA4XAYkUjEGBlkQ/J58vk8FhcXsba2hkcffRTz8/NIp9Mm9ra8vIyvfvWr+NznPmfWMJ9bjTj1nvicJJsAMIaKohfMy1NoUdejohS8jh5re2p8B7p/FLbnXKmRqBVdNBbH9UQD4Dt9DDyu78BxEsym3otaeL3ecVt7bgg7iK8biRAFN5Ud4+JnqqxoQfI7GsAG+qtda/xE79/26Gy4Ue+F1ioZeIyTzM7OYmFhAdFoFPPz8/jiF78Ir9dryBjnz5/H17/+dbz88sv40R/9UVOd3ev1IpFIIBKJGKq83+/H1NQU0uk0Ll++jGw2i729PcOeUzIM700VAQUWK2dQOQHHiqZer5tK6Q6Ho69SvCoAKrhyuWzemVZLAWBytdSaV2+Z0JkmSSu8pf9IqCDln9AnB+NajUYDmUwG+/v7hibPe+MccN243W54vV6cPXvWNL4MhUJot9uo1Wool8vIZDK4desWDg4OEA6HMT8/b2Jlw8PDKBaLeOWVV3Djxg2zrvjsdnzIjq/qutbSW9xL6u3zWDXUFGqkkUfjy34XJykWPReVE40Hm/yhn+l+sWPFg9E/BorrlA+16BSq0JqE2g5BrVFVLlQaGvtQzB44tmYB9HkVpM/rxrahEP2bKjIqSN6XHXS2IUXg2MOz2XkszpvL5XD//n28//3vh8/nQyqVwuHhId59912cO3cOo6Oj8Pv9WFhYwPr6Ot5++21MT08bmn0wGMT09DTq9TpisRju3buH9fV1TE9PI5VKIR6PIxQKmTp8tVrtgXk/KVCvibmEpxizoKJSQoudkkDDo1gsmuvs7++buQgEAg/EOYFjyjvn3Y5fqafNAr70/hKJhPGoSPlnnpXL5YLb7TbFien1h8NhVKtVVKtVc88U7B6PB8lkEul0GlNTU4bQcnh4aFrIbG9vY3d31yRIM95FlmK1WsXS0pIp3KuEIDWcVHGd9Dvn21YIilDoz3b8SfeQGiuqALk+VSGp0jnJ2yLxg989CUYfwIV/8RhAhad8EDqgValQiSqP/6+9c4/tqzzv+Pfn+I5jO+DETkKckHEJKQQKtCFDVaWSlTF2a5mEKrSittpUChNtUdWyW8tWlWqTtu7WbtO2VprUonZau6n0RqHASsOd0IRAuAVMiC/YxHac+BL7d/ZH9H39OY+PU9JL0h85j2TZ/v3Oec97fb7P832e9z1LlixJFJAVlheTF4ff2WUvjHElT4Nooboce2rk5KX58w55moRPsTeYmpLiyR3xjMSieIWVu2lDZ7TNzR150+7NN9+sDRs2qLm5WQ899JB27dqlffv26dxzz9VFF12UKLe7775bAwMDamho0OWXX65Vq1apq6tL3/3ud/Wd73wnvRl5bGxMg4OD6uzs1KZNm9TR0aG5ubmU0GF6y6fLOzXe1jTfrWUga25uVlNTk6amptKBt25XfX19Doy8UdneGw0Caf48QH/e0tIiaf7EDNJQBkomZjixxDSa96zZoPCYjo2NJeB1vGzNmjVqaWnRwYMH9fjjj0uSli1bprq6Op166qnq7e1NwLh69Wo1NDTohRde0MjIiMbGxtTf3582eC9fvlyrV6/WqlWrkpfX2tqqLMv04IMP6vHHH9czzzyjsbEx1dXVpWQSj73XRVNTUzIKOI+ZlEEvjPPbZTDGRYMrHtnFhCePL8uRlHsDdtzALM0ni3i8uUYZ3yVo1qB6PmYpqcI3oBCk/NoSejUMRvtaf+a/uUE5xpak+fRbW+dcMPQuCCT+jB5cpPlMJTH4zxPhrUSKvAjXy59Vq9WUCl2tVjU+Pq6nn35anZ2dOuuss/Qrv/Iramlp0fDwsJ5//nk1NTXpwgsvVF1dnd761rdq165deu655/TUU08liuz8889XtVrVHXfcoWXLlumUU07R4cOHNTg4qAcffFDd3d1au3atli1bps7OTk1PT+vUU0/V8PBwShZwfM5nDLKdjDGaTrPYK6IR4e/dbmczRmoybktgXCkm7Fip8+QMp9g75uS+tUfpewxuDQ0NGhsb0yuvvKLh4eEEyAZS76WbmprSzMyMRkZGNDs7mzwmbyno6OjQRRddpM7OTrW3t6fzCk2lvvzyy7rvvvv0yiuvaGxsbAHY0NDiZzGjj0JKLs5jUqZcbwQwG2B+ttfIzMxMKjtuRSAlznXqOdHQ0JBLijHVS8PjZAGtn1ZK4KoBsdXH5IlIZ5CXNyhECi9uwKSXY6XlawlqDEpbYTIQHi1Wem3+3sqliHqJz7EQtHiNF/uOHTvU1taWDpNtaGjQhg0b9MILL2jHjh0p6WDNmjU6++yzVVdXp2eeeUbj4+MaGRlJJz20t7cnStDPmpmZ0Z49ezQ4OKg3velNWrp0qZYuXZpOPJeUYmDRO3IMy4rcwMIAfLyH+4YYg7TyttXP/WFWnjYOXD4Vvg2e+vp6tbS0pDhbW1tbyk6cmppKtN/s7GzabO2yDh48qJdeeimBqU98X7p0qSYmJtKmaRsUfX19Gh8f19jYmKQjntnatWuTp+UXRro+1WpVO3fu1BNPPKGXXnopAR37yYDg+UBjjGnsBu3oWZECj/RcBEP3X4wn+/7F5mlMXIpxW9fPc9jMA+d4Gdt6fVJShTUgpmsYXOfRSbasabVJ8+nQ0jy1IinRdpXKfNo8Mwt5nA9TdKUji88p3hbTkIy5+For5LhPy+ATN7pGq9PlW6yEJaXA/gUXXKD3v//9Wr58efKYnn32WT3wwAM6dOiQ2tvbdfbZZ2v16tWSjmQW7t+/P2Xctba2qlqtanBwUK2trek7793yqzgqlUraYzQzM6OJiYmkrCcmJjQyMpIs+tHRUU1OTiZrncdlSUqJHHFMfJYfT8Tws6emphbEyeg1uJ99j+nV5uZmLV26VCtXrkzPsHLev3+/pqen1dLSopmZGR04cCBlJU5MTCTvq6urK5V17rnnqqenJ22ePnz4sFatWqVKpaJXXnlFhw8f1sqVK3XmmWemg3S9F81jOT09rb6+PvX39+uFF17QY489lrYiSMolfcQ4IueKP5fm9wK6b6naOMf4m9eYkjdQut+5/cAGJA0OApHFnrIzR+lZGeSchcqYIqnLkyGjUCqpwjesMIAs5d+qamUYqZCYKcXsQQtThKkIvGC498SJEc7qogUcLUZSJWwDFYYVIj3JomA5FYmUf71KXV2dxsfHtXv3bu3cuVMbNmzQunXrUuzJRwjt3r1bIyMj6u3t1YUXXpg2+voVHUuXLk0xoF27diUF6WOLOjs7E6g/++yzko6kehvge3t7NTMzo4aGhnT4rl//YiC24jIlx+ORbIj4Lc70FjgevpdUL2OETq5gsoazBE0X+uzELMvSKRwGJMfgxsfHUxtaW1vV0tKS3gnW2tqqZcuWpfnjeJnPgpyZmdGmTZu0evVqnXbaaWksDEiO9Q0ODurRRx/VwMCAhoeH03vCbITZMKIHanAm9Sfl34xgj4kp7mQj3N9FMSj3GfvUc9dlG3xsHHCeMmGj6KQMetUWGxiuV1y7NehXHBcpPa5fciFHztgGLT0qdSmfJsx4FBejFYKVb4wR0OuJ4OZYDilE0jPMnvKzrSxJSdpblPI0IKlOWtVc2AROewSrV6/We9/7Xq1evTod8XTw4EENDAxoZGRE+/btU19fn6rVI5tpN27cmDIMW1paNDs7q8HBQU1NTWlwcFADAwMaGhpKxz+5X0zb2fvzwbI+k2/JkiUaGxtLyRa2xn3ElKSUWDA+Pp7a8tprr+XeI2XvwV6qQd4WuoFfOqKUTe/R+/bRVE1NTTrzzDNTOYcPH07Pm5s78i4sb+AeHh7Wnj17UpblKaecomXLluVoyrq6Oj3//PN6/vnnNTk5qVWrVqmnpycdTGxvcXp6WiMjI+mN0n4Zpo+E8nhzvhlsCDj8ngBRRAfaw/W8IR0Y2QPfYw+t6M3EFDMVfBNDBErOW4JhjKURSLkeuRfzZJDj7nF99rOf1S233KKbbrpJn/vc5yQdsahuvvlm3X777ZqentYVV1yhz3/+8+ru7k739fX16frrr9cPfvADtbW16brrrtNtt92WBqyUeaHlRc7dfUWPx4utaGFXq9UEHqQ0uHiLAI/Zg1JeiXBzZvQSoj1E78x1ZNYh68nfsV5FNGJ9fb3Gx8c1PT2tO++8Uxs3btTZZ5+dXp5YrVbV0dGhNWvWaOXKldq7d68GBgb0xBNPpFRtx3wMABs2bFBPT49eeeUVVSqVlFVo72Fqaiodf7Rv3z4NDQ2lV6Ccdtppam1tTQfx2ptqbW1NMTErJWcVSvMJG85U9EkbkdJin3Ajur2WmCna3NycAKxaraYsRJ8I4liLvUr30Wmnnabe3l5NTk6mg4l93+zsbAKtrq4urV+/Pr3w0Vmlw8PD6WSTHTt2pFiaswQZj7On2dTUlChuJzRQydswsAfrdsYYaYxx0UvjHPT3nicGOibW+H/XhSxAEbXtMv2bHhQ9wAiKRXO/lGL5qZHi4Ycf1r/8y79o06ZNuc8/8pGP6I477tDXvvY1dXR06MYbb9S73/1u3X///ZKOTKirrrpKPT09+tGPfqT+/n69973vVUNDgz7zmc/8bK15gwqBgvSFFzav474d0m9xL0sMNscyYwKHhZmJDJZHasb3OW7AWIWVpP829UnwIk1IGsZ1YrzBiu3AgQO6//779fLLL+vVV1/Vr/3ar6WT3ZcuXZqUSFtbm5YtW6bBwUGNjY3p/vvvV2Njozo7O3X66acnOqy7uzvFKkZGRlJqtz02H3Nkz+fQoUPau3evRkdHc0kQnZ2dicaTlLwQ3ispJXO4D+hBu52kVRmX5PXMVOzo6Ein6hu0fMKGx3np0qUpfvb888/rkksuSRmHbufAwICmpqY0OTmpkZGRtMl53bp1OuOMM9IeLIP/6OioHnvsMfX19emVV17R/v37F8zDeOJFNI7o3cb5SCCLoETqugj0GUfyNdHTi+uC859GpOtTVJ7rT0aDGYQsm31TgyTYcZefiiqcmJjQRRddpM9//vP69Kc/rQsvvFCf+9znNDY2puXLl+vLX/6yfu/3fk+S9PTTT+vcc8/Vtm3bdOmll+rb3/62fvM3f1P79u1LXtg///M/6+Mf/7heffXV3K79xeRkogolqb29XZXKkbfUGhQIBFQGMbjMDZu2VJk6HamTmDofuXun8rpcZmD5Pu4fMq3khZ1lWdoITAvW35Fi5EJ2+baEuU/HHlsEyAsuuEBr1qzR29/+dvX09GjFihXp2CJb/BMTE3rxxRd18OBBDQ4O6sUXX8wdWbRs2TKtWbNGra2tOnz4sKanpzUxMaFdu3ZpcnIyeS0G0ki3ui6zs7Mpi9Htn5ubSwDg7D0njNgze/XVV1OAnwaCFSf3adXV1eXeldXQ0KDLLrtMK1asUF1dnfr7+1N/epza2trSnFi/fr2mpqbSizdXr16tgYEBvfLKK0nh+oBhA3Jra2vyVu21bNu2TTt27ND27ds1NzeXPE/PE4Kv6+O5wDR1eqKk25i8wjkoLfTsYyauWYfp6ekc/UqPyBLjTPa6WMfogRWlwzNpxP8TqH0/93UVAe4bVY4bVXjDDTfoqquu0tatW/XpT386ff7oo4/q8OHD2rp1a/psw4YN6u3tTcC1bds2nX/++Tnq8IorrtD111+vJ598Um9+85sXPG96ejotcOkIcJ1MQhCRlKNPotI3305LjuDEWJIVGONgFi7a6MFxMfoac/5UAIzP8TuX7x8CFakeXhupGAKZqSUrSffPU089pb6+Ps3Ozmr9+vVat26d1q9fnzLrnHzQ3Nys2dlZjY6OqrW1Nb19eXBwUMPDwxobG1NXV5dOO+00dXV1qaenR5XKkQw6Ao3Pv/MLJt1P9l5MZ/odVgzUL1myJHmFPqNudnY2vbeK/UeF6XkQlaFPyJiZmdH+/ftTrMynZjhT0h57T09Pqqvfk3Xw4EH19fWpUqlo1apVKTnDVGhTU5MaGhqSNzkxMaG9e/fq4Ycf1r59+5LH7WzCmZkZTU5OSsrv9TMYcezdJ5yPTMiI9BtpdP8fvTB/52cZMIs2J7tf6dFF6tH1YP0sZDtYH3rD/tyARYAu5ehyzMB1++2367HHHtPDDz+84Dsf4+LXFVi6u7s1MDCQriFo+Xt/VyS33Xabbr311mOt6htGHAuS5hcsaboITlxEBAPHUHzigsHG91iYuh69uqgkSF9RSPOxHIJhtG7jdRZeW2Tp2huIysxe6rZt27R7926tWrVKl112mZYvX66uri51dXUl6tBZhU1NTZqentbpp5+ugYEBvfrqq9q/f7/GxsY0MjKSNtwyAWR0dFSHDh3S+Ph42r/letXV1SWPyZ6y/7cn4jY1NDSoo6Mjxbfm5ua0dOlSTU5O5jyEurq6dEqKs/aq1WoufbyxsVEtLS3p5ZZzc3Pq6upSW1ubhoeHE5D5nVcNDQ06dOhQMgac1LJixYr0Y6Xb0tKilpaWNE/q6uoSJbhr1y69+OKLaauGn03jhvPMHhjnk5R/o7PnHmO0pt34vQ0BJ5wQFDhffE/ctxjncBGNR4+aQGYQLlpLBD2uH+7pIt0YAbyUhXJMwPXyyy/rpptu0p133pl7PfgvWm655RZ99KMfTf+Pj49rzZo1x+35J1oix+6FR8uR+3+o3EidsTx6OosFtvkcK1pJSbHSAyCg8H+m0Vspcm8LrU8DIDMmpfy+M4M4rVjSmYx/OFmhUqlo37596ST5pqYmdXR06PTTT1dnZ2d6e6+TEQxMpgL7+/vV39+vvXv36p577tHs7KzWrl2r008/XaeffnpKh7fnNzY2ppdeekkHDx7MvRLFFKQPm/ULIR3rcaJFS0uLxsbGND09raVLl6YMxNHR0dQ+gy3T3z0+pvTa29t1zjnnqLm5OZ1I79ex+H1inZ2dqq+v19DQkIaHh9M5iR0dHbrkkku0YcOG5C1J+SO6+vr6tHfvXu3Zs0fPPfecDh48qJmZmeSB+YxHGhZ8jb2BvQhYGKtlDIxHhUXWgPsPmaXnQ4/juokJGfyOG+Y99w2a0fv3XKXhRQB2XXgostvluhHQTpb9Wz+LHBNwPfrooxoaGtJFF12UPpubm9N9992nf/zHf9R3v/tdzczMpJfiWQYHB9XT0yPpCCXx0EMP5codHBxM3xWJN4KerEK+3kI+nNfxRAUp/+JHggTLZezA9/hz0oHR64lxikgv8p7GxsbciejSfMq3y2RdLdFKpkfGWEhUfL7XsSJmQzqTbmRkRHV1ddq5c6dOOeUUdXV16cILL9SyZcu0YsWKlGywevVqtbe3q62tTQcPHtShQ4c0ODioQ4cOaWpqKiUkmE477bTT0ht/Dx06pIGBgfS36+i42NjYWKLvTHVSyXV1deUOvnVKvRNE2Pe06puamtIxVpI0PDysLMvU2dmp9evXq6mpKRkVU1NT2rdvn1577TVVq1Wdc845Wr16tbq7u9N+JdP1k5OTKdX/6aefVn9/v4aHh3Np/vZ6OA9sqNALJxXoMeMG48guuH9M7dqb5DwgSEZPz2Dock0z85xNzttInRfFXikxvsa1ZImnctBQ87Xcu1ZKsRxTcoZfo0553/vepw0bNujjH/+41qxZo+XLl+srX/mKrr76aknS7t27tWHDhgXJGf39/VqxYoUk6V//9V/1sY99TENDQ68LoE625Ax6Jl5s8Vy7yOnTAnSfOqnCC5pUiJQ/4sbXOD2Zb0VmAJrP8FQycFop2AqmMpHyJwMwXsd2UyE7g879ICn3nEiVus8YV3DfuC7cE2VvQJI6OzvV09Ojc845R5deeqmWLVum5ubmlJX31FNPpTcoe8NsXV1dSpFft25dymjMskyDg4Pat29fij11dnaqWq2qr68vHbdkD8CbvJcsWaIVK1aoo6MjeT0vvfSSnn32We3duzdl/bmPHK9Zu3at1q5dq66uLg0NDWlubk6dnZ0644wz0tuJ7QkcOHBAe/fu1eDgoFauXKm1a9dq48aNqX+eeeYZDQ8P6/HHH08nhBw6dCjVx/W0p2BvJHrEnksGALMEnn9MUomg0dLSkqPyPL5MMmLs1nWhl87PuT5iHMzzJBqJvpfGltdL3IjMuRrL4/00yLihmdTvySC/8OSMpUuX6rzzzst9ZgvTn3/gAx/QRz/60ZRB9Ud/9EfasmWLLr30UknSO9/5Tm3cuFG///u/r7/6q7/SwMCA/vRP/1Q33HDDSe1VHU28CKSFezyih8IgtH/HVF1SM1T2tAJj9hdPJedpF76XVqoXs8tjyjafQzD2SRNWOFQObgOVgtsWvUkrgKjIfJ2tb58mIc3H9JzUUV9fnzbI+qWSK1eu1KpVq7RmzRq1t7ersbFRvb29GhsbSxudh4aGNDMzo6GhIR06dEhLly5VR0eHGhsbUxzMAL18+XLV1dXprLPOSu0zbbR//3699NJLqlarOnDggCYnJ9XS0qIzzjhD3d3dWrdunbZv3572Vvk0DPfX8uXL1dzcrImJiZwnaLrW+8hmZmb07LPPav/+/TrvvPN0xhlnpDMfZ2Zm1NfXp/vvvz9twuaJ85wnkpIH6f6T8skOnk/SvMHCDDrOB457ZAI8zxjTjGvBc5qGUTSAmBnI71kPxkwjw+D6+1oaSEx6cb18fWQt4voh0JeyuPzcd/z+7d/+rerq6nT11VfnNiBblixZom9+85u6/vrrtWXLFp1yyim67rrr9Bd/8Rc/76q8YSROYlIRBhJSbtK8Urd35gVIq5FcPYPkBBdTLabD4kL2NTxRwWUx5mDAsBLi/hbGK1wfb9p1mxx3IICTvqFHRc/RbeP/brfr6Lo4XmQLfXp6Wv39/frhD3+YXt3xjne8Qz09Perq6tKpp56qqamptFH45Zdf1v79+zUyMpLOQ6xUKsljMA3oEySam5vV09OTPD33nU9Mr1SOnHXnxI/+/n51d3en14aMjo5q//79KaZED8T9tGLFihTjGh0dVX39kbctj46O6tVXX9Xo6KiWL1+uM888M73w8dChQ+rr69MjjzyiJ554IvWH5xT3ONljZaIE4040Wlw3j2lMOqL3wjGzR8x4F6k/evg8PilS31wfMbHDc6LoFSk02OilscxIJXKdcc14jPlMr7HopZayuJRHPtWAWLF5IXFB+pQFKkZuICa9ZrGic3zD1zHLilazlH9TLFPfebgurVJa5DFu4O9MQxr0LARPeo60sKPFSqCOWWqkNr0h2p9bUTFgLykHaD4jUDqyt6u3t1dvectb0us5vGk5y7KUEHLgwAGNjY3p0KFDeumllzQ0NJRe1eFDfV1HMw3VajV3rmB7e7u6urpS2rkzFg8ePJhLbDAIO6vQmYazs0deLeLDgKNX1tvbq/Xr16uxsVHd3d3p2Kv//M//1K5duxLwEozY1/HV8x5rZzzSqGAc0m11PMzg43I4tpHi5VmZ/uGc4tjTOKInQ6OL3jiPJXNbyTQQ0GgMFhmIjNX5ua6PDQEaarzORsLJkqRRHrL7BhVutKQCICVnbyHSL5HHl+atTWkeAHyfLWWXQUXAcqw8uAfG1xAk4/8RyKj0GN+IgEsaiRasn29vo1Kp5BQqFRv3DFHp+D5morkeTlm3d3bw4EE9+eSTKQHJsSOfvt7W1payEru6ujQ1NZUSIcbGxhL119bWlug7Zh0eOHAggeXBgwfTO6taWlq0bt26dISUx8TXzczMaHx8XJOTk5qYmEh7wObm5pKh4r4566yzdPrpp2v58uVqbW2VNO/h9vX16cc//rHGxsbS9XV1dTlgiTSs5yPnpceKhgBpQM9XP5uel4VUtudSpMZJsxXNE9aHDIHLZayUJ5VE6py/41z2/TSsIqVvtiOuJa5rUvilHF1Kj6sGJFIdkRvnvqvI40cKR5qPPTCF3s8gVUFqiFYilbyVF5M3HK+KNB4XqJ8T9/IQNOzNzc7OpldLEJjpZRUFtP1s15deZQQw9qWUVyzulyVL5k85n5ycTM9vamrS3NyR/XGdnZ1avXq1LrvsMnV3d6cTJvyCRXtLPqDXJ7EvWbIk7a8zLeVDeJ0QMTIykiglZs8Z2E455ZTc/PAGa/ehdCTRwSeBNDc3pySRnTt36qGHHtITTzyhffv2pbGx4VN0WoTnkq+Vil/FwfEl5WuwjM+KxlTcD+Zne957PjH+ZuOFL95kwgRBg3OK8zJ6/ryOwrIY940gGY2lubm5tDmbTAbn98kgpcf1BpWYiRS9ENNdtNqkPLD5u6isrdRJp9E6jgrflAqpDi5wWtVFNB8D81zolhg7cLtoUVPBkcKKCiVSU5HKIbVJxen/6aGSnnI9Yjr3+Ph4epXK1NSUVq5cqeXLl2vTpk2JVvTr7n3s06FDh5Iy5dFVrr/3gXnvHAGrru7IgcAeD6f521ixAmdbW1patHLlyuSF1dXVaXh4WPfdd5927typ/v7+BbRwbKvHkAq9iPpyG+gpma70uPla0nZR4XOOeq5HNiBSgByXIm/d9xJouEcssgSSUuZonK+sM+c71wOvJb3P57kfWa9SiqUErhoQ0gtFwECPyn/z9G0uBCqDSPHwGVQkRffxeJoYy/J1tGy5gJ2VGGMnLoNeg5UW92LFPqAS9OcxFsh6FSk3S7SYaTTYgnd/xX1A9E537NihF154QR0dHZqamtLatWu1atWq9BZl791yCnyWZelNyTwlvqWlJcWCSK3a+2tqakp0o1PKXe/6+no1NzerqakpeV4GTcc3X3zxRT3zzDN66KGHNDo6mtpJms39EgHDQC8pZzww65N9Z/GcsYdEg6AIMMgmcH4wuSPOaRpfjl1FGt315ss66UmSvmS7WEacOxEobRBxjvM6riM/J8aXS1koJVVYAxI9GWk+RT56PtLCk6ajsidQkZYhZ1/kwdAzK/LcXB6Dy5FusbKW5r0ux1CKFAEBmfXMsixnvUdPhGDHuB2pP9NxVvJOcLD3I+WTNKrVau4EBsZAqtVqov8MQu6zpqamRCO2t7enpAvXp1qtanJyMnlqfmZbW5t6e3vV0dGhtra2lOZuitfvDRseHtZrr72mSuXI23p9FqNPtvfxT9KRONrw8LD27dun/v5+7dmzJ23kdWLIwYMHU3udkej20VspeotA0T4sf87kBAKjx8L9H0EseiAEOnr1nOesh4GfrEHRmopJGa7v5ORkqifB2nWMnpXnlUErxr54LevpORePxnqjS0kVvkEl0g0ECyoALygGnJk+zOu5+IqC7H4uF3WMPRCMWIYz3hg/sJKPliwtUQtBuMiDi7QMKafoYRJUXU9a5ZIW1DEqwRir47VW+PaUXA+DgD2w/fv3a3R0NIGiMwuZ1OJ9UpJSUsjAwEDyunwSRktLi2ZmZjQxMaFXX301neDR1taWwNzelsVnEU5PT2t8fFxjY2OamJhI7+JiTIixTCpa9ynjpjSSqNSjZxGpvZhoUeTBxPFmfWi0cSx8H+ebN95TWCfPizjOpNYjYDFORe/ex03ZIHJfOW4W2YwiY9NAV9KFi0sJXDUgViqko2yZekHR07BVy0XBvyXlFE+0IAksXnSMR3EfD5WTJcZq+D0Xc1Q0BGGCWVHsQJpPDDDl5LKK7rHCi/STvRcnnzBLkkAelXWMI0UPxPWhte0y/XqUqAidwUevdWhoKF3X0NCQy/JjvCfLMk1OTqax96ntbO/+/ftz5yVKStc4a5Lg7ja5fowBuq8iyNszowdBIOBLTGPM0POD3jyBkN53NLKKKEPOPYMSs3B5D+ee+9/jGQ0wlhsBl2BUlGlL2pFnF5LKZP1LKZYSuGpAYiICLUNmTFmZzszM5Da10lIlDSLNW4zxHV1FliEta1/n70j10eNjPd0OKiAeQRXfZ2Wl4b+jl8isM2fqUUm4jc40JK3q57pekUp0H7iuTN32vbToXYbb5WOgWA+eFM7TOtwPbiM910pl/jgt79NymyqVSjql3UBC72FiYiIZOAY714NARMCip8REH26R4P3R0zfYxc8JNDSO3OcEcsYynXjC/Vs8pNZ1IkDTu4uxYJ/Gb3qU/cxn0wgheLscP9Nrh8dLkQ7383lIQPS0XT/3q8+0LGVxKYGrBoRAxQCxPQ0DiRVq0bmA0jyQMHnBC5nKOV4bkxys4GKMg4s+Ptf3RzAjtcdgtDfcMuPOHka0YAl2VpJFgW33H632GHAnrerPfC+fFT0paR5oY909DjHjk+LnWolZUbvOLtdGSlNT0wJvkt6hQdkK2nU3SNBbcfuY+EGvlte6v2Km5WIxTzIF8TqeIRipwCIKzd/TaIr9yDnFcfOYxRMz/DnpPSkfZ4r1o3FX5AESSBnndV8w0YbrxxR7nOOlLJQSuGpEPImLjqTxguR+rsXEC8SLxJ9xkdBC5j4dW/LMXpOUynJ9mAzh+11fL1pSj6Rd6AlEajBa6ewHt73ohZbx9RXVajVHtTqrjPE2WuruE1rfUWnTY4unkUePzR4EPReXwb63JxvrQXAuimFaEft6KlF6QTGWFb14ezz19fU6dOhQ8jYNfG4vPUaOCY0S95PBlzQvvW/PZRtiBkjOHb8slMYT5xJZBXuUpFs5htK8QWWDg3QfjS7OHxokBDK31QZDTFbxKSmm8n1Cv9sT44KlFEsJXDUkpO/sWcV4QPQ04oKKtEr0jqT8qdU8c83ZZaSNSG0xlubv/buICqOCiPXi3rTo3dBrY3zBfcDYC2lOWtB8Jusc28IzAGlRG4CiVW6goOfC0+c9XqaS4vOo6DkGkhIAc4wJQEwOcV95/AwEBrzoAUWFLCk3/u4/end+PpV6NEKisUFjhPQ050z0aAh09KZZT19DZsLPpzFDKo8e3uzs7IJXsnA+cn6wzmw36WJfW0RZ0qOM1Lwp3RK0ji4lcNWARJ6en/EsNX9OBUN6TsonU1gpMbOKIOfySBkW0TjRSic1QqXEz2MGlxe+n8nrqRwWy3iTlFNWVtKxTi6Xz2O/xs+lecW1WBzMnzG5w8qQnob7ml4zJSYukMak8nY9oxfA4L6v5dwgYBMI2IZIhzKGR0Dmc6NhRIOFZUvKeSkEtsWMniKF736NdK/HNfYL50ecd/GHZbAeMf5GQ4j3cT7Tk43PifMrGnElcB1dSuCqISE4USEzxkKgohUXF7tBgJ4ByyJARCCKr2ygtcv4juscF66VspWQFzdjZ9E7igqFAFOkQBw/KYqDRKXoswKpMOwRzczM5Dawsqx4/h6NgOg1VavVlPVHS9yAH9vmckwBu688NjyNn21n+wzg7Dt6rr6GnqLLM8ByTtAAMM3l8gy6VPCcl643QZV9F9tAr7nIw2QmaeyXGCerq6tLbzco2mfn8SEFzrkQPcKiuJspTNKW9Fb9LLed9C3fnEDwLmVxKYGrBqSI4rJScYp0tOysqKanpxfs07LQE3OZlhgXiRl/pJeo0KKSotXPHwJs9ICigowelsuOXpQ0fxJCBNgigGAgPnp7RcBJmspUIetMRc02Finu+Ax6dQZeekBUaDFZxmUwJsTnc8xsIPD5pJAJkGzLYh5rjC/5x0o6JifEfon9G40lzlX+TWCMnn2W5c+cNDARNNgGGjg2FHwv+61oLnI+kw43CLlM9jOzX+P6icZHKcVSAlcNCD0RKz4rTQNYtXrkNRH2drxwqOS9KOOC5/3+m94FT/Imj89gMjOlqBB4nZSnsayU+V4lAjAt5kjf8bqYBEBqy/cXxWh8P5Mo3DdMkSbo+TR1Jk3EGBPbbEtcUnqFjJ9VV1eX9pFF654ASi+YoEivxQF+ggFjSh7/6HmxrpEK9jPdB+43Zq+6T+OeriIv2OXEg3CZdWnl73kX28Ax9HyiMUKv0c/32LjdPDDa/UQWoL6+XlNTU7l5EelhztF44oUNPR8i7D523zk5x/UnBc35UYLX4lICVw0Ig/y0UCUtUBxehNwg60VjmoV0ijS/f4THGRHsqChJ5UTLNoIO6UzXmc+l0irynqJyip+xPgyCc8Ez1kcrncqdsSQLwZjeJcHKz/VvtpvfFXkRvoaJAPQKivos0nn83iDgz9xWemz88XVuF/uXlJaNGZ/+7zGP8amjxbfohUWvKoJQTDbJsiz3niz2p/92G4tik9G79rPi1gt6WnGPFec/qUquNxtMfC63DHgs+NzIABBIS9A6uiyMEJfySydUBvRkpHzCAJWgP6eS83VS3oImvWSLNO4x4UKil+TyqeB9DZM9vA+JJxZQicV4lRVEtEAJIBFkixZ8pLJcL9ctppazTm4HlTuPdqLHGstnv1hI2fq6WOfYPvYB6aUi2ovjwf/5GfvYXs/RaKoiBep6Oc4WPVk+y/Urykykl0iwcNt4TqTHiOBGtiCCVhwHrgm2gePhZzAl3uc+up94D6XIaIhbTjiOrKfv5zov5ehSelw1IIwVSMpZhrQkIwXIQ2Sl/CGiFnpFpBPpqUTF5n1gLpNgxcVJD873FVmcvN/lMROvyDOjh2kFQ6s8ens8KNaxvEhvuu/cLv8mcFopkQal5+nraFzwc/azxzKCMr09xrMqlYXvEHP/mv6K4xPpPJfL/U/0wvy9FTQ3QrvtBHgpfzYg9yP5O85h7mNiP/qZVPb+f7Gjl1x3bzOIniMTkrx+PP6MUToOzGujZ+b2uj98v42ZLMtyp/j7zMe4/YExLXrZpLPd7lIWlxK4akC4SK0ASNER1Hx9/IxK3df4/mitW6H5HlqNRVQdg/vSfEyIn7EspiT7epdJxVNkxTu+EjPJ2BduH4ErZqK53JhQEUGafehy4v1FVGYRxRrbG/uFYBeBqkiiJ+qsNraJVjwNBcYVub8rlsnnsD1xPvkZnEssg0dc0QjgfIhUGeNdrgcBxnHGGGt0/7lONHIIqGQaOAdZd9YrGoxFBhXLiJ4y53Rcf4z9lfKTpaQKa0Qi1+5FG70aaT49mDRc9HRImVFB0oOIZ9JFZU5qjMqNC9f1iArabbJi8f/SfEzP1j0XtZWXpOSRkRaNwEIhmNLy9TPdDt/PPov3R1qHio6fU0gXkXZirINebfT2GMdj30eaKW5vIJDZ6+U4UYFbitpDBU2w4fwheBR54r6enlaR8ma743zj3CboLFmyJJ10b686zm0/i14n5zA9Hz7DXhPXmcuIGbRss+vA+RRZDI5XUayulIVSelw1INE7iJaqhafIEyi8SBhjiErQi5AxEUtcaEy7ZkYVQSPGrPx6ex8OywC3X8FBWogWvgPfpsQiPUTl6fKkvOVOsLISIpXkulJxuUzfayXP/qHnyTIYTyGwGCDjUU7uZxoJDPz7WbTW/Znvm56ezmWtRcVoT5V95znDtHXGo1jvotgbJR4czPd3OXGhKC7lcjini04sifPf2Zo8MNe/CVCc577G8yi2kR4UPVHPF8bkTF8SqL0OaBy4v71GmVUY52WWHaEcJycnF/W0SymBqyaEqbz+iUc1UWF7MfiHyjkGg0knUTFGmo6KwOW4Hr6XFmZUCoxbSFpw5A4tayp0fscYjutJSi7Sdhb+z/6wAqTVbmVky5/HatGDJRi4nm5fBDO2m/3MxIMoBgpeT8/E7eSxSUXj7f6i0mZcxfeS6uKYxO+i18j60FiJ4xDrFA0Gz18aQBEsDbT04CLAuGx6ovSWpqen0/2M/7H+ce6yfMZgiwxI9380VDh2cR76h/R+CVpHlxK4akD4anEvMO//oUUpzWf88TtSIlI+3sHUY/LvXDj8m9YiFZSfQ0AhbXPw4MGkLOwNOGDNs+S40Amufm9UpVLJnVBAhWTAcSIGFQ4VcZEFz37hpmuCKz0gKtIi7yHGZtw/8X++IoXK0u1knxaV5VPiDx8+rKamphzFyOPAimg+xlmi4eC5wXbQo7ZXYQXO18QwBhW9nmhUsWxSjUUGFbdtVKtH3s7svogertvBA5SdHDI3N6fm5uZccgafTfE8iH3keXT48OHcq1Lcvy0tLcqybEEczuvS9fT8MWix3aUsLiVw1YgQbLwQOMH5eQz+S/mXPzKV2tdEcIrKQ8rva5EWnrhAC7fI65LmrX8HuJkZGT2nIlqJipHtZnsJpkV1Yx1pSbMspl6zPLclZpu5P+KYuY4EYX9GQDH9WvR9BC2PURxrUqVsm8vwePkzAye/51jz2dGb41zwmEVvj+1jHaP3FUGBCSkEWPaf+5uebwRj3ucyeSKJMxs5Z8huuJ9p9BTVJXqlTB4i9Wtw5OcGLfZDKT9ZSuCqAaElHOMPXEC0NGOqN9OuqSQjCFm8SOO5gV5sVo6LZb1FasXX+Pm0PKV8csTk5GThaRZsI+tMCix6oAYf3xsB1cokgmxMKPBnMXZiRUxai30VFTfrQYUbva0IBDF7LcYuSbOxbS4v9hXnlMvg3+w/XhczM/1sn/cYQSne789iHWkosc9YV7IO7hPPbfcPPUzGKl0W41IxcYXj7O9I3XGO0hOmN+5n8MQM93+RV24gZZ9FA6iUhVICVw1I3IvFxUievshqJRXoBREXHWMCc3P508u5GGk1RuWwGFVJZcv6EBC8oO0BuK1MMIjgaG+NcQYqCpdHBRe9M6YfWxk1NzcnioeWOu8lRcl2+ZBWttP/s48sNgAi5Rv3iLl+/Iw/TIagte/7mHVXqcwfQBznjoX0WpFSdXnRGCIA0huJMdbo3SxZsiTF6kwfu+9df8dELR4jzlUCGvuOfeZ+L/Io49w2QNOAoqfte+npmkGwcRjXow0ptslGJBNlSjm6lMBVA0ILzYqAJ3fTomNwmBam/45Wd1Tm8bkGzZgxGK1H3hNpFFqufh69FysJe4gGv6iA/Zs/9PysFKInRa/GdXJb4v9UmPzbdXXciUrJ9XA8L/aBy7YiZD8S8E0bESAl5RShn+fnRGCiZR+9T8+LJUuW5GKDkgqNDXrcBF32L2le3kuPks9mneLYRA/Uc5d9wbFgGQR8Xsf1UDTm9DT5PdccQdfX8Nn+jMbi0STOP3rx0UArpVhK4KoB8aKU5k+/8GLiaQJWoNFKt8JzINjCxWqlQQ/KVmH0OIrAyqDhUwkY9+AzCJy27Jng4EXtkwciAJCmZPJEPLzUfUPaNNI1bptT7ZcsWZIOwqUSpMEQrWH2cYx5eCx4xqT7gn3qMWVf8fn2kGJMi+10PXmv601QZ6wny+ZfqGjPhRlwRX0VMxQlJU+EHkVR7IbGFcsoSk13P3I7AqnymBziPo+xJWn+sN5YZ9bNSRv+YYIQQdLjw60jNBT9LPcn54tT6mkUVCqVlGTieeh6lbK4lMBVA0KqiXQdeXUeqkuqyQrRizBaoFwgvpdxLV5HwLGFyXciUTnR8vbnfK7v9YbYSJNUKpXcafekcNhu7ouy+DlWpvFYpWiVExyLXjnhMkmz0XO05c39Y8xodJ/Sg/Fn7mN6zdELdv9F+jF6AvG4peiBxG0VfA693CJFz1feuDz2G5V7pN083nFOsB1FP5wrBA4CH/9nf7EMnrLC+B2Bj4aD20Kvj8BKDzTOE3rCi93LunPjMz8v5ehSAlcNCC1WKlIuAi7cuAD4d9Fp7v6fys3P8G8r3Go1/8I8WqEGCdOLpjS50Gn508NwkJop2PQu6VUQWOilEeCoPOlJRKubRoDrZ6HyKlL2BEEaBKyj+9x9FcsncEQg9OdUklGxM37HOtFy96ZXen4xVsb/7TFwDtAwYlviGLAP4143xnX8HJbH+znnaHi4TYsZVr7f9xBAOEdi5mw0Djkuca2xvQRRGgzse0sR+8A54/qV8pOlBK4aENIv0jw9GDPS4kZJKhsufNIrPH8t0iKkIK3gGxoacqdfkN7wMVFWOH5+fX192m/kujlW5DaZ6rPnUqlU0mZRUznxHEJ6VpboqRiM2XdWVgYUxpB4GK+FSi/2jb0rZ9ZF5STNJ5n41App/kgnUoCmkqgYCZiOo8Wx97WMN8WEFAIdPSEbGU7qqKur0+TkZDrJn4fKui5uA7P64juuOH51dfPvHeNpJUwOIVB43vhaevUEboKVQdJjEgGAHrjHyWUv5nW5b0klF4FsnJOum8eKY2ghBeryadyVcnQpgasGhBlztFLpgXFBS/Mp8aTepPxxUaS3GJfgK0siVWYAo7VPjyda/r6e6cquH8u1wjIQUNFSqVABeMGzHqQqXXYE4eitsL4Ew0g/EfRc9+h1ss98jYGeZXG83HaOs4XtsuJnXQ1CpHhtBBiUqMj9bIJxUXIHPaLoaTIW6s/9TLaN3gwNCo4p2xm9SdbRY+L4Ke+Pxln0OjlHCeouhy8w5VrhZ9FD9We+js/k+LkNpN8jSNPYZPmlLC4lcNWAUPly0VpJ+G8elsqYBT+LtFMR8MUAPJUe04+leerOC5RH9rgs3kdFZqUaT7iwV8DrmWpOQKJCJOjRcrYCIshx3xWBx/cXJWHYsyBNFa8lQBUBaAQFKt+iWE2MpURvzF4j20srn31YFJuLRkWMJVLZ+nvPNYJ8c3Nz7jpKtXrk5BPfZw+Xb+8mZRbjPVbqBBZ6MZFR8FjHsWUWpMfRc83XcK3E9sd1w+fF6ygEoqJ1xTpHBqGUYimBqwaEmV+0XqmcGHegQmVKeEy1phdRqVRSLIRKkAvfysqL3enfVKqk33wfFaIVpZUIKTrWVcrvGaJQ2VsinRSpmlh2jNNYcbg90YuSlI6VikYEab8IElmWpSQTGhesPz0C182GBxUhx4MZoq6L7/XYSEpZkvQ0PJeK6Dl6NQTKojiW+41HTZG6Y3/Y64ttjp/Z64+0HPegsT4GRPd1PI6Mnqm/N7VL+pjePQGWcywm4PDzmMEavT6yEuxHz13OTZ5uX0qxlMBVA0KQsTUq5S09Wmy07P1dUXKClD+6iH/7WTG9nBa8QSE+n5YrqakY5GZMhEKFQwCJSowgwE24bpefG08nWKyu7msG5OkBROqMQBITEVyWFdLc3FyK88S4B+N89M5i/8Sxd7tdX3uFNDyoOO25cM+c+4v30QNjDNTjwD5yOWQC3Bc+u88eN/ubrx3xXPBzXA7HyOBDo4Yg7LbGcbJxRFCkAcL1xfglwYXP5PWuP39It0pawFDEtcR+iF5eKYtLCVw1IFyYpE1ordJCrlSObJSlJ0SPgIrG15Mycpkx5kLr2f9TuVB5WBjzseKIVj8tYkk65ZRTlGVZ8hYspJSskOg1UCEWgQjjMDFTLabOU0ibkWI0RcgDVSUt2JfmGJfH0UqafUqF6aQX0qsEfdeXwOnYJL1DJrzMzs6mw2AjXed2x7lEoHEf0quPMUX2tYW0sY0IX2uvkuNGTyt6Sp7DHAO3022M5fleAhmpdl/jZ9OYoEHAOKTbbNCnUehrmOZOQ4tJP5yfBLAiurGUvJTAVQNC0KqrO5Kh5XcQUZHxNPFIV0SO3kLlRKuTijcqYn5PhSTllVt8DqlBf+//nVFH65ygxDKr1WouzT4qWisLKgP/tgKJ1BX7mR6LFT/7mRl9BiTX08IMxEix0YCIXh/ji0wo8GdMLIiUMQP8/tz38yitIouenhvnATcHc/5wTkajxSeL8EzD6AmxnzyXvJeP7eHY2UN0/djH9KjpIdFQIxNB8KRXH2OOlhh3ixmUHGf3d319vSYnJxPFGLeicCwiA1DK0aU8zbEGxErcSm8xipBWnqQcAJCio6K3kqdYqcd4GBcUPYdoHVMBRnrOadZF5ZKeo3dHStDXUdnQI/BRRlRe8TN6qwQAl8e6LeYhSfksvAgOVHQsg56aFVpRW1zPomQFtp9eAecKY0wcVwIjvV0aGhG4Y538HHs5S5YsUWNj4wLQj3MvtovzjDQp50JMYIhjE+cy5y3HM84vllVfX6/GxsbcfOaYEfw85tEIiDGsaOD4uYwt8jfpyRK4frKUHlcNiJUiFbmUX1DeJ8UMPdMSVt5OHy96zxSVO9975GcxRT6+78p0Db0EnoEnLTyI1AHoohM/YmCa1JDbw2OfXB5T/2nRxv1spANpJVOi90ZrnmPBa6V5JcTTJ+JhtJJymYiM3RCsGGOiMi4CB/dFpF7paZgyI61s+pC0pNvkRAYLDRLPMdedHrnvJ0B4DNhWzg+Cqueh6W56rjY6DAoxzhkBzc9gBqvH0c+dmprK7ediW/2s6J1HqpZj7bGJp8nY62ICEN+OHI3KUhaXErhqTCI9wb1ajKEw04lWMi1Al0NFSEuXsQYp/54k/0/6LlKa0vyCbm5uTnEbemH2DmJKORVW3I/GuB3pJ4NqpAapUOnN0YvhNVYeMQ7IurFPfR8zJ92njB0S7Nxut4FAGcE0AhXHip9zbAgc/i5SlC6bAMh5Er1RGg6uP/uVWYQEGtJ+pMOiN5Jl85ub6RWzfyJz4DHn3InziPN6MTqOWYRuC0GXdDW9VXtR8TtTmjRgOF9cL1KtkUYtZXEpgatGhIkSXLwELdMdpDW8kGxdx6w2x52khadVS/OWozRPtUSqL1qR/PHijunWvt7pzFFpUtkwuM56MPbG2JrrRQqMIBBjOTwnschr42/SsuwD1zceLOvvCFQu30JPlEo1AghfpUKvxTRdTHFnRiXnDg2aeDqF77UB4r7hPjrSl64HQdjjQk9HUopnxu84VjENnYlE9saZYMF14c+5PcFlRqMrjqPv56kv7N8Yj3RfGGjtaUejLWbeuv+YtUtwL+X1SQlcNSRxrwgtSipe0ij2vKSF8ZkIGHyOPyOoRYueQELPImbmuW4EU37H+nDhF2U/SvMAQiXte2K50dOggo3eAD2GovZKecChl2TLm5QSvR4L28Dxi+2PcZqj9b0/s9K2AqZXRhCMZURPqKmpKVd/egzs50i/MuvOYF20PYD1iEKPMPa1n8nxovKnNx7nM/sz9pvvZXIL6+DPeGyVn+0+Jy3IthYZVBTOlbhvr5TFpQSuGhKe3m3rTsq/iFGap6fotZAqIY1jZWuhFR69Jisyx0O82GNw3+W4brw/Ki4rC25iZVlFCo6eoZ9VpGRZBuNA9A4JLkWUKpVapVJZ4LX6e1rr0bBgmRyH2CaPk+tBAyJ6GCyXbeMz3K/2VNgWPjfGbwgapIxjXSMw01OLz+HeMc4d1zd6GwSB2D+cAxw3Ag/7vqgesZ9sXBGMWTY9Us4Tg7U/pxHl+npcvF0ilkVgLeqLUhZKCVw1IFHhUpnQ4qflTO+BFrDLK4ofLMbvUwnEcrwgncXmPUgWl8X9NVbyTAbxYnVAnuAUYyqRJjUV6YxFKlW3wfX1wa8Ef3qC7jvui2Javbch0BiglUyK1X3lcuIBu7w3ZpUx+cT9aeqvKMjPuBypXYNFBGl6eKRTGSd0f/hZbCM9YRszMU5IEGDMj2PLMXVd6LFToUfvmWn3/sxJSqRCfRyV56mf5TYQOPjKHs5/9n0ENhtdMZZpoy7uI2NSC4GzyFsspVhK4KoBqVQqKW5AkCLw0HKlYo3WNa1YKtx44gIVMBMuqKzsgcTyaHnTs4pejRcwF3cETFrzVG70Gg2CrL+fb+Xo+vH5BHu3iWcVEsj8LMd6Yjsj3UTPysqSxxVF5RTr7noxbsV6OCOTgMiT7T034qkSfkYc/yLwNQhGb4cxJ/ed+9hjyj6Nsb3oGVKB01Pjc+N4RVqO3hXHkQYXvVb2EdeLJTITlOgx82+32c/k82ko0GCkMRHbU0qxlMBVA+LJTUVJL8lWsTTvoTBozgC0PZUYb6J1HC3xSJuQwuLfVFTcb0ZFGampSEExOM/7ouXu+kd6ht6olYHpPfYNASXGNqKHSiUY409MOPDzirIg2W73uVOhDdK+nsZBnAMEBbeb40bxNfQiqByLFKyVeqT16Om4PjQgfD/3j8V2s6/jfPOY0iji3GE9qeSLAIR1I20u5U9pZ/q8r4lHUZGxINvhNtvIicDPLRMcW46d+4tGaCmvT0rgqgGpVquJorLisNIytcPsJVqPXhC2xGn9F2UqesFZeZFWkY5Y9VaEkjQ5OZk7FYDvZaKiYqq4n+tnMGZGCtDluR1LlixJB9a6bpH+pNJje6X5Uy8i5eg+YPYYFRUVIf9mTNFCIHXdvB+KGZ8ek8XiR1H5S3kvlCf/T01N5fZtMauOzzK1xhMq3A+M/ZB6I/DaWHA/MiOUJ2+4ruxPGgO+1mNCL4z0L8eHIMmsQmYm0gAwLUiQiQBGw8RiWtfrLQKQ68JxsYdH75QUO8eSRgINERtsRQZIKQulBK4aEy8aLkIviBhz4YLl/7RYeXacP6NicbmMmzAGYsCgUnadYqJB9BYJhgQGPtfXUolbGRAcrJz5TH5H6sftMND5f/Yl4ywEvnjGobchFNWR90b6kIqXBoeVbQz4swxf6+9p0DBZht4z5w//9nxySj0956Ljp3gfY3XcWM15Ri82zmO2nV4b2+tr6RG6T0z3EbAizWihNxPjmQQSeuOeHzb6IvPActne6FnR++bcdd05XtGjL6VYSuCqQeGk9/9MeIjKUzqyaKampiRJTU1NyUIkZUFqiPuu4gLnKRkGHVvyjlf584aGBjU2NqbPfL/vZf2KKJPm5uZc3eN7uWKGpTRvyTILz9cyi9Kfuw/sGVFpRxCkxR5jXFRiTEnn5x4fKk/GsFhfP6/I4GBM0Eovejj0Xq3oCdgEYSeARE+S4MfxKdqa4ef4c58Ob+VNz8597Gf6VBcCCscyxoQImvTGXH/XIwJCEYDxNA33mYHc1CnXQPS8Pc88PmwvxzIaPNzLFinNUo4uJXDViHBh0hrn/hkLwSvGQmgB+hrHJbhIaf1z0Uavg4uZVrOviRa+60faMHqO/JxUnculd8X6MYFEymfq0QMhtRcpKdePdCUVKqlA/02l6nry2ujFMcYj5U8Xj5QUlSKVMj1Lg3dMAmEb2V+k5qIyjx4c+4AeAwHT5TCWRjBjxijjr4tRgfTSIhjQOy36O463v2c7OGbRg7IYSBmvtMTyirx2S6RrSXd6rEjFljTh65PykN0aES9gW2m2oL1IiuIRUj4TzQBlryNmMRUpDC5CKvBIZ7mcSEs5huX7fR2tbYIB2+qFbbB0vXiChP+30LtxXzlNngqfbSadxvMZIx0XqUz/JkhZ6ZP+jMoqlkePgOWzPyyuK8vyGEelF/uU9WdfReorghf7uoi+dX/S82W7SIVZUUfw9hwmVcn7OH+iQcb+ilmnNAAiBcd72B62z2Wwf91e1mexPuR8Yxui4cL5WspPltLjqiGJ9AMtW75A0Yq+qakpUUo8zogL2pa3qQtp3lsy4DQ3N6eX7zEGU0R5RYueJwrQAqaSJt1E65RB80h9ko6h9Uzwdf19EkQRheS6+f/m5uakfBl09zOlvKLnZu1IJdEbnJ2dzSXEmJpj3ejNUHnHvqISrlaPHBJLRerxY1KIn8Hxd3n0BqOnSBrT86vIO7IRxfb7etKFnEOcywQFf8+5Sw/X7fa8MBVNYyKCh+Nh9ODdPm/pKAIX92fMsvX1WZYlQ8prhPfS+CNrUQR8i710spSFUgJXjYg9JS8eUmaScgpYyp84wcQAW6mmF60cWQatfyp1pthzYUr50wkiVUnlxHKikvd9cU9ZBC3GN2Kb+TmVb1QoVNJUWARXl82faLVTQUbazXE1WuQ2OOKWAp/ezzJJWbKu/G0hkHBOFP2mAqbny3gmr+M4sG98L0GLgMR+oLJnudF4if0Xgcp1owHCWK37l+uDWX3cksC1xJgm6UzONRoWcUzsMbkOFAIuPby49nxtKT9ZSuCqEXEauheq03Wd0UaPivuTyMEXeTR8FYa9LCZN+LMiAKOidL2Ylk1PgUASaU1milEhRiqFQEhl4GtinaT5fVZWLGybqVfHMyL9SFB1+e5vaf6UBdfXpzjQK/W40PBwv9rKZgwlAj1fDkoAMAVHb8pttLLlKzaozD1+pk+jJ0bw8PMaGxs1NTWVtiMwOcRAHMHH40Ojhh4xKdRIQUYjIdKKBB6Oh59HY8eg5OSheLKI37TtPov0II0Ixgv9LB9uzbnAfWFejwRbrkn/zezIUo4uJXDViFDBMBDO45Vo5UbLO3o9ptKiZRoteQIT6SkpDyhWmlZM3FcmzWerRYuaCRWMy5F69LVFMQpm4vFef+/f0SP0vf4dQZVKnPWL5xG6L/2c6DXwcz6fY0Mwi2NAb8L31tUdOViWXgDH322KfbDYbyrqonYQTLjZmmDPU9Kjh+x6+3vGvTg3eF/0xDk36Bn6e45x9PY45qTS/RxSltHDjR6d6+Ax5DyJ2YX0UN1nMWGICScxHlbK4lICV40IF6YXvBcBJz69mGi5Ro4/AgZjaFHBSQvfzMqMQGbMUZG6Pg7K0xuMVJQ0H1eSlLxKKzoqtkjTUGH42njmXqQRaWUTBKicpXkPNt7v6xhbctvsZfl+AnD0FqNFz/YVpaFzLHheITMxuaHYdbBnRFovvqKG84Lj67nBeFORN0IlT/rN/RYTVPxsAhTv8TXsL48TY4qej/T8OJ6kKi3un2j8uA+5x5HrKxoS9rQ4T9lHLpOes9sc50JcY6UUSwlcNSLR6uNGT4KGlD86SZq30rmp1tfH/TD0yryoqazoVUnzFiuVBRWelQeVkqm5GHvzQvb+HwOB76FXRUCi1xaPjIqWvak5ghHPEIwp22wrwc59FYGXGZSRauJ19ACZwEAPwn8X1YVt5NwgbUsvmtml/OHYu36eP1S8VKjcesD2up3+jjQnqTTPRVJjLDPGL4s8JYJynKsWzi1m4kajxmLPkXPebaTRELeEsA40kgjOFo5X9LZL0Hr9Uqaw1JAwZiTlU7Et9fX1ufgMf2LA2WX4Hj+DSixSiFxgtFil/OKV8spbmj9HMHo8XPwGEWbPuVy+G4yA688MAAQnZnLZgraSJ0C7vo5JUQE57kGgjXuVXKdYPsG8oaFhQSo/lWo0IPybWyBYNmNc0nycj9Y84z30LNhfbruvd7nRY+Cci4rWdXTc0HW0xPbwTceeQwQ9J6xwHtDY8HxiXeJ8dF+4b2wIsZ/c31xDpMRJ7XG+0Yhz+/x8gmuM03FNxDUVx7OUxaX0uGpEPOEjxWCPIVqo0sJ4BtO8pbyis4XMskizRMqI5VoJxtMmXG8qyCK6y3/Too0AwD7ws+nNxdgCrdroHbI/mGXm+rEv3Q9OriBQss6+z0YDn0PFSmUW+9FtdP3ZThoF/s1yotfr59KDLvKuGhsbc5+z/YxHcR5EZcwxdB9kWf6tyfSE6JW7vAgK7lNSrDR4SGeybU5tp5fq+tMzp0RanX1ZrVZzqfTRe2biBcc7xr8W6yeDYxGAlrK4lMBVI+KFYGtuZmYmtziKKBUuIGlh5h0VuheTvQ4vJi9aP48WboxXMamC4EDrnp6dqSSDL+vnMrnPzHVlTIQeioVKi4rP9zMWFJUY4zVuH7ch+Bp6NP7bHhVByn/bc+A4EJAIIozP8Bn0ZBaL47mNUv70khiLIZXlU+r9GfdExRRvlkcwYvacvbZ4CC8TFjyepBK9X8p9YKOEHjA9wbhtgtcy/sW2e9uB2+q6cRxoUHk+eb66bsyM9fNj37q/Yly5iFK0gUCjoJTFpQSuGhHSPvyfQusvLgqCztEoPv4taYGSJ0D5ugiErh89gCKLlsBh5SBpQb1pmdNj4CJnm90XPIOOioRtZl2pYNiOIlrH31nZUkFHb4s0XLS8fS0VWuwzgkusC8vzeHIjKz1BXs/T6qNHxvrx7xiTJK3FNtvwcZo4FT29Z84XGiN+Bst33bmdgRu6beC47Ng/HHfOL8+x2N44Zi4vZi5Gr5rrj5539I55PRNp7NmXcnQ5phjXpz71qdxgVCoVbdiwIX0/NTWlG264Qaeddpra2tp09dVXa3BwMFdGX1+frrrqKrW2tmrFihX62Mc+tuAssFKKhVSgF52VgzR/MgKteyn/Hix6IAQeemtUhvaGuMCpYF2mrWx7DrbcXU97I64bPUYrQStotodKm1auP3f8iUJFQXou0kQR0H0fwZSZg66jlT7PifQzvMeJ9/FEEse4Ghoa1NzcnOtHjx9Pu6CFT9B0/V0mDweWFlr6rie9Ypc3PT2d29vkttHbMvg1Nzen//meMrbB82dmZiYdrsxn2sPxWLscnjDP+eg+cdtZd3tl/t/1phfDF2x6DjU2Nub6jfPGfed6xuQcgo/nob9jjNReI48eiyn8ZiDcL9EYLaVYjtnjetOb3qTvf//78wXgWJ6PfOQjuuOOO/S1r31NHR0duvHGG/Xud79b999/v6QjiuCqq65ST0+PfvSjH6m/v1/vfe971dDQoM985jM/h+a8cYVUnv+nx0CLkveQIivi2qMiX+w50dOh5WxL0aDExc3EAwKIyzYtxTiE6+vfjM2xfTE1m5auNE8ZMkGD/UAFFD07KpeiOASBgRaz76UX5TrQGme8JFrrVKDRK3afRFqJFCONDCpLAwi9aZfL7MtICVtI+9pjilQdDQDGcFwu54z/dtkcX9J9nKORESAdW61WEz1Z5EGSco2GWhHFxzVBY4jf08vnOikC2SLPLjIN0QgrpViOGbjq6+vV09Oz4POxsTH9+7//u7785S/rHe94hyTpi1/8os4991w98MADuvTSS/W9731Pu3bt0ve//311d3frwgsv1F/+5V/q4x//uD71qU/lXgNfSl44+blAIj8v5c9x43cEFi8ovh2YZUgLN8r6N5W0NA8ujHGw3gSLqCAtkQaLipHtsCXLWEikGelZ+G8qYgK0lStBPtJaRX1gJWjlZon0ELPh/NxInVHhWYH5GayD2+N4DvvB1xHgKHF8SVlFMCe9x/7gM4sUNUHAoC4pbWfgd/SCPW8IHHzRqK/1PPOciQyE68j20dCwgWXv1P0ZE1siuHKtFfVdBD0aT0W0Y2xrHKtSji7HDO/PPvusVq1apfXr1+vaa69VX1+fJOnRRx/V4cOHtXXr1nTthg0b1Nvbq23btkmStm3bpvPPP1/d3d3pmiuuuELj4+N68sknF33m9PS0xsfHcz8no0QKw4ozBvut5Ei7EUxo5ZPqMvXE76LVTbrN11ARkTq00vG+LCn/sr4IrEdLlOB3VEj0cpyUwmwz15G0D+k7Ky6+LZk0U/RIpfkXX5Ke8+9o7VtRT09P56gzgiWBmvSkx80/BD4fLxXBkQku9j7cftNSHn9mSc7OzqZtBPE9aa6nE3Us7DeXxyPDfDRZPHKJYxaNCfabY1g0kGLclKBBg4BzmoDk6+zpF73PjfOURzjF+vr+ItDhNQQ5l8mYLNdBKa9Pjsnj2rx5s770pS/pnHPOUX9/v2699Va97W1v086dOzUwMKDGxkZ1dnbm7unu7tbAwIAkaWBgIAda/t7fLSa33Xabbr311mOp6htWopVeBC4ECf8fvbVIKXHR+38+y0IvKdKOcR9TtMRZ76LMPz6XQpCipxI9BHp+MfjvukdPUcpbxawL+24xiYrX5UavMnpTpAyLPDv2A71lgla8LnrHVPr8PHoHWZY/WJd14mZcti0CgoVjUURrkwqOSp3jyvpGI8dCT5flxvkfPeKYYOHPYv/7eXGMouHn64pAklQp6xeNQak8q/BY5JiA68orr0x/b9q0SZs3b9batWv11a9+VS0tLT/3ylluueUWffSjH03/j4+Pa82aNb+w5/0yStFi9m8uesZn4oKyEFx472LgxeewLv47nu/m8nlPzM5iGawvF3RUahFII53nNjJ9Pdab9aGnutj+tKJ6FMVD/HlUmkX9ReDmfUXKlfE5A0xUppGOcnl8q3ClUilMneeciIBujzcaSJx7pNTiWHLe0LugkRA/4z0RjGikLDZO9qBjkpG/jzQixy8CcRzT2E9xfOP90WixxLhzTP4oEzR+svxMkcDOzk6dffbZeu6559TT06OZmRmNjo7mrhkcHEwxsZ6engVZhv6/KG5maWpqUnt7e+7nZJS4gKIiiRIVZlQw9ED4Oz5nsTLjIo7fFYFd9AKPVv5ilBAVWPRaYhmxbIITY0NU6EU/RYZDUZ2iIqfCZbtjHxYF7otAhgBQ1N9FXm58drw2glbRdUXfx/rEZxbdQ6q5CNBj+2kIxfYUUY1x/vK6xaQI4GLfFpVXFBOLBtbR1ufrWcOlFMvPBFwTExN6/vnntXLlSl188cVqaGjQXXfdlb7fvXu3+vr6tGXLFknSli1btGPHDg0NDaVr7rzzTrW3t2vjxo0/S1Xe8LLYQihaRL7OCpELvEgR8nfRM6IULfTXW//FlAQVfJGSi4AQ67qYF/F66kiFQ29jMRA6mqGwWD0IAgY4KuPF6hvbV5Q0wXvoIbAMAmPRfbG8xQAhjlOcW3xukUdUVE78LPZFzCosKpufRY8ojtHPQ+J6XCxmx2vitbGekVYs5SiSHYPcfPPN2T333JPt2bMnu//++7OtW7dmXV1d2dDQUJZlWfbBD34w6+3tze6+++7skUceybZs2ZJt2bIl3T87O5udd9552Tvf+c5s+/bt2Xe+851s+fLl2S233HIs1cjGxsYySeVP+fML+6lUKlmlUnldn/uzout/UvnHcs/R7v9Zyyt/yp8T9TM2NnZM+j/LjlgAr1uuueaabOXKlVljY2O2evXq7Jprrsmee+659P3k5GT2oQ99KFu2bFnW2tqavetd78r6+/tzZbz44ovZlVdembW0tGRdXV3ZzTffnB0+fPiYKl0CV/lT/pQ/5c8b4+enAa5KltUeuTo+Pq6Ojo4TXY1SSimllFJ+RhkbGzvmvIWa3KZdg1hbSimllFJKgfw0+rwmgWtkZOREV6GUUkoppZSfgxw4cOCY76nJ0+FPPfVUSUcO7C0pw2LxXreXX375pN0+cDQp++foUvbP0aXsn6PL6+mfLMt04MABrVq16pjLr0ngcnpsR0dHOWl+gpzM+95ej5T9c3Qp++foUvbP0eUn9c9P63jUJFVYSimllFLKySslcJVSSimllFJTUpPA1dTUpE9+8pNqamo60VX5pZWyj44uZf8cXcr+ObqU/XN0+UX3T03u4yqllFJKKeXklZr0uEoppZRSSjl5pQSuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpqErj+6Z/+SevWrVNzc7M2b96shx566ERX6bjIfffdp9/6rd/SqlWrVKlU9I1vfCP3fZZl+vM//3OtXLlSLS0t2rp1q5599tncNa+99pquvfZatbe3q7OzUx/4wAc0MTFxHFvxi5PbbrtNb3nLW7R06VKtWLFCv/u7v6vdu3fnrpmamtINN9yg0047TW1tbbr66qsXvNy0r69PV111lVpbW7VixQp97GMfS2/OrWX5whe+oE2bNqVNoVu2bNG3v/3t9P3J3DdF8tnPflaVSkUf/vCH02cncx996lOfWvDutg0bNqTvj2vfHPN58idYbr/99qyxsTH7j//4j+zJJ5/M/uAP/iDr7OzMBgcHT3TVfuHyrW99K/uTP/mT7L//+78zSdnXv/713Pef/exns46Ojuwb3/hG9sQTT2S//du/nZ1xxhnZ5ORkuubXf/3XswsuuCB74IEHsv/7v//LzjzzzOw973nPcW7JL0auuOKK7Itf/GK2c+fObPv27dlv/MZvZL29vdnExES65oMf/GC2Zs2a7K677soeeeSR7NJLL81+9Vd/NX3vd8Zt3bo1e/zxx7NvfetbWVdX1zG/M+6XUf73f/83u+OOO7Jnnnkm2717d/bHf/zHWUNDQ7Zz584sy07uvony0EMPZevWrcs2bdqU3XTTTenzk7mPPvnJT2ZvetObsv7+/vTz6quvpu+PZ9/UHHC99a1vzW644Yb0/9zcXLZq1arstttuO4G1Ov4SgatarWY9PT3ZX//1X6fPRkdHs6ampuwrX/lKlmVZtmvXrkxS9vDDD6drvv3tb2eVSiV75ZVXjlvdj5cMDQ1lkrJ77703y7Ij/dHQ0JB97WtfS9c89dRTmaRs27ZtWZYdMQ7q6uqygYGBdM0XvvCFrL29PZuenj6+DTgOsmzZsuzf/u3fyr6BHDhwIDvrrLOyO++8M3v729+egOtk76NPfvKT2QUXXFD43fHum5qiCmdmZvToo49q69at6bO6ujpt3bpV27ZtO4E1O/GyZ88eDQwM5Pqmo6NDmzdvTn2zbds2dXZ26pJLLknXbN26VXV1dXrwwQePe51/0TI2NiZp/lDmRx99VIcPH8710YYNG9Tb25vro/PPP1/d3d3pmiuuuELj4+N68sknj2Ptf7EyNzen22+/XQcPHtSWLVvKvoHccMMNuuqqq3J9IZXzR5KeffZZrVq1SuvXr9e1116rvr4+Sce/b2rqkN3h4WHNzc3lGi5J3d3devrpp09QrX45ZGBgQJIK+8bfDQwMaMWKFbnv6+vrdeqpp6Zr3ihSrVb14Q9/WJdddpnOO+88SUfa39jYqM7Ozty1sY+K+tDf1brs2LFDW7Zs0dTUlNra2vT1r39dGzdu1Pbt20/6vpGk22+/XY899pgefvjhBd+d7PNn8+bN+tKXvqRzzjlH/f39uvXWW/W2t71NO3fuPO59U1PAVUopr1duuOEG7dy5Uz/84Q9PdFV+qeScc87R9u3bNTY2pv/6r//Sddddp3vvvfdEV+uXQl5++WXddNNNuvPOO9Xc3Hyiq/NLJ1deeWX6e9OmTdq8ebPWrl2rr371q2ppaTmudakpqrCrq0tLlixZkKkyODionp6eE1SrXw5x+4/WNz09PRoaGsp9Pzs7q9dee+0N1X833nijvvnNb+oHP/iBTj/99PR5T0+PZmZmNDo6mrs+9lFRH/q7WpfGxkadeeaZuvjii3Xbbbfpggsu0N/93d+VfaMjdNfQ0JAuuugi1dfXq76+Xvfee6/+/u//XvX19eru7j7p+4jS2dmps88+W88999xxnz81BVyNjY26+OKLddddd6XPqtWq7rrrLm3ZsuUE1uzEyxlnnKGenp5c34yPj+vBBx9MfbNlyxaNjo7q0UcfTdfcfffdqlar2rx583Gv889bsizTjTfeqK9//eu6++67dcYZZ+S+v/jii9XQ0JDro927d6uvry/XRzt27MgB/J133qn29nZt3Ljx+DTkOEq1WtX09HTZN5Iuv/xy7dixQ9u3b08/l1xyia699tr098neR5SJiQk9//zzWrly5fGfP8ecWnKC5fbbb8+ampqyL33pS9muXbuyP/zDP8w6OztzmSpvVDlw4ED2+OOPZ48//ngmKfubv/mb7PHHH89eeumlLMuOpMN3dnZm//M//5P9+Mc/zn7nd36nMB3+zW9+c/bggw9mP/zhD7OzzjrrDZMOf/3112cdHR3ZPffck0vZPXToULrmgx/8YNbb25vdfffd2SOPPJJt2bIl27JlS/reKbvvfOc7s+3bt2ff+c53suXLl78h0pk/8YlPZPfee2+2Z8+e7Mc//nH2iU98IqtUKtn3vve9LMtO7r5ZTJhVmGUndx/dfPPN2T333JPt2bMnu//++7OtW7dmXV1d2dDQUJZlx7dvag64sizL/uEf/iHr7e3NGhsbs7e+9a3ZAw88cKKrdFzkBz/4QSZpwc91112XZdmRlPg/+7M/y7q7u7Ompqbs8ssvz3bv3p0rY2RkJHvPe96TtbW1Ze3t7dn73ve+7MCBAyegNT9/KeobSdkXv/jFdM3k5GT2oQ99KFu2bFnW2tqavetd78r6+/tz5bz44ovZlVdembW0tGRdXV3ZzTffnB0+fPg4t+bnL+9///uztWvXZo2Njdny5cuzyy+/PIFWlp3cfbOYROA6mfvommuuyVauXJk1NjZmq1evzq655prsueeeS98fz74pX2tSSimllFJKTUlNxbhKKaWUUkoppQSuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakr+H5dW4T1RPbNVAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eYxk13Ue/tW+d229790zPRtnhutwRIqkuJmSIRuSJXiJLUcxhNgIJAOOgCwyHCdWjAjxPzEcK1aCGDaUWJGtxJJiWaItUQslmuJODmffunt6X6q71q6tq+r3R+O7/dXtaspy9JOm7XeAwcxUvXrvvrucc77vnHuuq9VqteCII4444ogjB0TcP+oGOOKII4444sj3I47hcsQRRxxx5ECJY7gcccQRRxw5UOIYLkccccQRRw6UOIbLEUccccSRAyWO4XLEEUccceRAiWO4HHHEEUccOVDiGC5HHHHEEUcOlDiGyxFHHHHEkQMljuFyxBFHHHHkQMmPzHB98pOfxPj4OILBIM6ePYsXX3zxR9UURxxxxBFHDpD8SAzXn/7pn+KjH/0o/u2//bd49dVXceedd+Kd73wnVldXfxTNccQRRxxx5ACJ60dRZPfs2bM4c+YMfv/3fx8A0Gw2MTIygl/91V/Fv/7X//qH3RxHHHHEEUcOkHh/2A+s1Wp45ZVX8LGPfcx85na78eSTT+L555/v+JtqtYpqtWr+32w2sbGxgXQ6DZfL9f97mx1xxBFHHPnBSqvVQqFQwODgINzu74/8+6EbrvX1dTQaDfT19bV93tfXh8uXL3f8zSc+8Qn81m/91g+jeY444ogjjvwQZW5uDsPDw9/Xbw5EVuHHPvYx5HI58+fWrVs/6iY54ogjjjjyA5BYLPZ9/+aHjri6u7vh8XiwsrLS9vnKygr6+/s7/iYQCCAQCPwwmueII4444sgPUf4u4Z4fOuLy+/2499578cwzz5jPms0mnnnmGTzwwAM/7OY48vdQXC5X25+/7bXfz29dLhfcbnfb7/TzTvfW3wIwv9/vWfbnb9UmfWanZ+133/3+/Vbv/Le5dr9nO+LID0J+6IgLAD760Y/igx/8IO677z7cf//9+N3f/V2USiX80i/90o+iOY5Y4nK5oMmm/L+tRIEdp0P/b9/Hvq7Ttc1m0yjEVqtlnuVyucx3/JzKvtlstv3N37rdbng8nrZ7bm9v73kPfQ6FvweARqOxpy/0OXa77e/tf3e6T6e+7tR/7DvtI+1PbbveT69xu92mrzq15W9r4JvNJjwej3mm3XaXywWPx2PaaI8rfwvs9LEabra30z21H3mNjqPdTr2P/b193/2eZ//bkdtHfiSG62d/9mextraG3/zN38Ty8jLuuusuPP3003sSNhzpLLYh6aRYOxkbfmcrFl6rik0XrH1//Z0aLn6mCkmf20mZ6/t0Uuydnq+fq2LspNj4u04KulP/2Yazk3JTpMX/A7uKuJORt5U2+47vYLfBNhK2MrWVPduhhl7fjffkNfb763ja48j31/fid/o+nfpY55S2R+VvYxzsPlSHxe63Ts6CttGe9/tltHXq405rT/tb+9qeS3oPjv1b9Ysj+8uPZB/X/6vk83nE4/EfdTN+6LKf8n0rlMD/259x8arit39vG4VGo2HQjLbF9qy9Xm9be2xP3+PxYHt7e4/RtN+R99Tfsw18Fn+rCsTn88HtdqNWq7VRW4pE1NDquwMw7eN3Pp/PPIPX+f1+uFwu8x58fqPRaENIqrRU2dMoqYKzlTH7SpUc38FGoXy2/pboh58r6tL+c7vd8Hq9aDQaexSwzhPbIBPJEuWyfdvb23uMh8/nM9/Zc5L95fF42sZc+0nb2+nd9Hl8z/3Qtc5t3p9jq07JfqhWv7OdgU4ovpPhtg2s3vMAquT/J8nlcujq6vq+fvMjQVyOfP/CBaITX5UfFyq/s9GGKjYbSXBB8l6qYHXxc9HqdbZ0omVs5Wu3Ua9VNMH3VUOixqYTwrINmdvtRr1e33Nf7S/tg2azucfQNptN0yeKgNS4quFRA9ZpfBQ56DvVarU996YR0D7SfysaVDRtzwV7rOz+tp0a+90Ufek91BmwxR4rey7Zf6tRVWeI19jo0uv1tqFT/Y1SyZ36jv/fD7Frv+i6o3HlWOkY7of4OiEyu02d+tSR/cUxXAdEqPyJZmzaBEDbAqaS9Xg8qNfrbQpGURMVKpESlaXSTl6v1yhQVfpUygD20IN2DIoeN6/zer1tyqaTorEVgXr+zWYTwWAQAFCv100b+By+j3qxeh81pgD2KEnbi6aS5Ge1Ws30L9vO/mu1WqjVauZ92VfsW46bbdzUufB6vWYMVck2Gg1sb2+30V2d4ld8HzWGqlx1DLV/+FtbufPZfM9Wq2X6nf1Do1mtVvegQ0Wiahy0z/lZJ8qVbfP5fOb/Oq85puxvZiE3Go02VEZRetCmyO35wvmrLIG9hgC0zXHOPR3DSqVi7q/zSeerrmdH9hfHcB0QsdEKFZ7SMoqcbOpCDZEqLSpS0jhcqDZ9oxSKogU1lHyeKgLb6yYlZdMiNhric3mtKiz+ht+pMVAkqUjLpmhIOdLYkcLS/lIlanvPapRUyVFJ8t52PFDRkfYXx4DX0ihQwdlt09/ZSNO+DkDbd9oPNtJR6UQ96nV2LM2+tz6X/9b5ZTs+/K1SgDpndI6qwdX5ouPQKYbYyVirk7JfIhBFqU4V+1qd951Qqu3k2fPHkbeWA7EB2ZEdUUOh/9fv9W9gB43YwWfb0PE3anxsw9NJaDRsZKBKkoYUaI+F8DlUPErZ2Iper9ve3jZKrFqtti10NXQ2IrE9at5flZrP59vj6bNNANrQrv2ueq06AMCugaWxpJL1eDzGMPGdbAeAv+N7s502StH3tClPdQI0McdGx0SM+l4ad+Iz1aho/2xvb6NWq7WhWrZVjb+NpG1ESdHP7flJZ0XHBMAeo6TvaaMlPoOoTOeIvoO2Wx06nUM693Q8dQy1X/m5tnu/debIXnEQ1wESW0nT+wPavXEuINsztRcj72HThqQ5SHmp8eEi7KQoSCvWajWjvHmNy+VCtVo1iobvoMqTos9Spcg2UxQR8Rp+rp6zKniN3yj1psa12Wy2xTCYiKFtZiBfjZaNwNgfVIz6XmpAFC0Qae3nNOg7sB0cW0XOfG4gEDDvWa1WDd3M+5DWUhSrhpWUqMY3+btOaNJGjkozK73GuUxDx3mn84pjUS6X2+g0/p5zl7+rVqttlLpSs50cDHUadH3ZTo3dz/y9jps6LLo21XByzDQ5iX84fxVtOrK/OIbrgEgnWoeLS7P9gHbP1Vba/EN0odfZSEyvt++hdBDbogbP9v6p0HitUjiq0JU2UQ/ffn9VGLy3evH29WybKlw1HLYnre+lxlEVt44L+53vwPsQKWl8jkpL+8Iea/7NvtG4WKvVQigUQr1eb1O6+i6dvHc1+tp+m9rlWHLM9b20bftRcLYR4zzTe9q/URSi3+k80zHnNbbjo44O26j0ubIEndqu85bGr1KptN3bHnfeT+cYRcdBnTb7exvdOvLW4hiuAyJcSJp+Te/M7Xa3BY9VadhevW3kgF3lxN/a9CHvwe9I/xBJ6G/Vk1UqSFGaGh5FTXaAnZ8FAgGT7MC+sNGWUjya3qw0pj6XQgPu8/lQq9WMAQiFQuYdSbcqIlKFy/+zn9WjtttGJaeI1G6X2+2G3+9vQwzadzqmNlXL/+v4Ep2wT/k+ttFQh0PHVhMcFAXabdF5pRSZTQHyPmpA1MBQiMbUkBBl8Rl8V4/HA7/f3zbPeB2TRezYrzphOpa8B/vJ/l6ROueOPYeVVrQdTXWuaNDZH7YT40hncQzXARE7gGwrcqU5+H+llVQ01qFKw6YNgZ3FyoVJmkaVro2obNTBBayUmb6TetAUjSmoArARG6/l+ygi1OtVMdtJHzYSpaKs1+ttxki962aziUAg0KZAbSeBio9KSmNzqsg0C5JGiterAeY4sO9VqfIP35VjYNOlNm2sFJ/OERtJ2UbLNpLMKKToPdkORYLqlFC0nTq2dGTsvtPnqXQyDprByvtqG/mOdATs+WozANpefR8aHkVWSlNqG3RsdP52QsqO7BXHcB0Qsb0z/b8aIVVkSueoAlIURAWgHrmNjoBdmkkpI/UulXKi8rBpD6UmbYRhe8+qZGxlb7+nKh81etp3+lu7LbyGbaZhsGNJ/J1N89kUpa2Y9Tttj76fOgY2RQvsUphqQHm9PWZ6b2ZW6nuqYlVDp8jGNuaKHu3xYNsUpel9+W+7v7U/dOxth0vnls/na4sD6vP4OdvF+amGSueJvo8+h85EJzpXnQWOi52+z2fru+o87cQ42Akvjry1OIbrgIgiKHqEGgAGdo2Peta6cG3u3ev1mgM6uZjshUwvlKKKn9cSkanCUmSj1CGAPf/Xv1VBKuJQykbRk03H8D2UNlUDpHEI3pvUJ+MfbKOtuGkI9P33o1VVOhl//luTE/j+2j/6jjoOoVAIAFCpVIwBYx/yPW20pX1FxKlZeXxHvrMiK16j76cUsTIANI6aSafjSXpWMyU7zSs1njo+RKf2nLWZBE260TZwPdmGlM/XxAk1cuqUAHudCb1O34v/1jnF+yrVrvSyI28tjuE6IMJF12w222gi9bKVlrA9Sl389gK0jVUndKO/5XW2gta2anDcNlT0aGk0FZmwnarMbQqJ16sxtxc8/9+p3erxqhJUj1mfqdQb76uGuROStQ2JImA+g+3TPte+4P/5W+1TO7miE9rWpBZeR0fERn36XKUmbaVtv4POAdtAqtHX2KrOXzUO/GPTeorOdSw5JrZB4Njw3nbsTNP+lQrUZ9mxPN5PGQfbWGoCCH+naIyfK62ujqEiOUfeWhzDdUCE3rHGZwAY+oTeqB0Y1oWmytFGIuppqxeu1B7vp6KeMdujqcy6wIFd46pKQhe8er7aRl30SpdR1Pu3lbIiUP2N3lfvre3Q/tLfKfrQ+KP9TL6XJlgA2BMztN9ZlbPOATvWZlN3ndqqRlzf2fb49XlqwPhbex7pc3g/zkfbwWF/aYKF9olmINrvrChJnSA15Hof0n025aj3ZWUNOk/83naOKGy7xi1tQ2SjO/1OKVN1EjQl354jjuwvjuE6IMLMOgoXj9/vR7PZ3LMfht6cUjhAe5KHy+VCIBAwqIHVKTpRg4oQVMHb9+R97Sw2bZPSVNp2NZoA9pT0oaKl4uK72yiF/6YCVeOnhs3v9xuPl0qDbdH72anVwG6mnsY4+LmiNFVOagxUGdvIWWNt3EdHg8B72Zuc7Xdn32t6v/anjqW9R05LfvGZ3AOmc0/3XXVCesw01M+0MC/bR4PgdrvNvjHtG0U+tlHge+lcpPBaTcXf3t5GtVrd43jYBpaGhPsSvV6vKdlkGzfOD95Lk2jUiVTkTMOqJbn0b0feWhzDdUBElYkiJXqv6glzwaty4/fqCfNvG5XZqE0VIdC++9/OTtT4kVIsanTUW9XYAz+zY1p6L/Vc7XdRRKHUkNJ7mhHJ+9hCY9MJrdp9TCHqpei72v3H+3S6r+0A8E+nLDptPw1FpyQNRbvabo2pUFnb80ANDeMwnfqcyluNcif0y3nA5BJ7XnLsFD3rPdRA8bmd0vo79aGifEWatkHm/e1Ynqa822tBUa22T9eFfW9dA/Znjry1OIbrgIhNTQB7M/zUmOj1GkdhIgURj6I4pZ+4QBlk189onIimdJFqQF/jMPR4mWauiknfSxVaIBBoyxSjslHjaCeFUPYzyKok2XYizWazaVCcUqTsM7saAo22JkewDYqMiDh1LNToa/zMfg7fm/+29z5pe1SZq5G0EWkwGDRonFmH29vbpkKInf5eq9VMv6hxoiHTPrCRi85HtrWT0VG2QJMjOhl+vqsieTU+itg4z3WeqYND5G6jW847tsXeAqLGUdcj+1MTN3g/HWdF8LbT4hiv7y2O4ToAQlqGtB8XnR3Tsb1Xe6HpAukUU7IRlCY/qNLXALi9X0zRkSocpez03rYC5ncA2pQiv1djquiBaEKNAdulhkn7VD16RQM2CrKRUqcNwVrQt1Ofc3x0/NTYU/mqQbALEvO+tqJWQ7BfjKtTv9pUrz1vbEqMRpyUox2bYx+rg6N0nbZV26fIXJ0wRYq8xk7kUOeIn9mnGWhb2Z5AIGA+t59pJ0/YbdW5ajsPOs56nd6DxtTl2imDxj7RfnTkrcXJvTxgwkmuCozKXJUgxS4zoxlwVI5ctIxJkNvX+6tS28+bt6k99URtpWgrXrudusDVK9c4k63s9Lf7PVf3vSnFpN/pfWz6SY2dTdtSms1mG+JUJW4bcDX0+lxFG2qc9zP26oxoe5Q65DuzGK4aARpfzgl1FjhX+G9N3unUL5yDvLciajVc2mcURSK2Q6Z9pu9pxy63t7eNEbcRmaI/Cktn8ZlkBbxer4nx2fNT16GNCPV7tk3XFt9JY1/8u1OfOLJXHMR1QETPPtIJz8VBmouLVxciRb1LGiRg7/HqSlEpwmDg3KalqGjsSvRcsEqtqeKlYVI6T6kitkHRk6IweuD0nFWxUWyaTNtCj1oVP5+pdfXUIPAz3luVpl7Ld/P7/ajVam19rJ51IBAwv7P3NNkJNzrmqry1/2l42D5FG/oZ0F7hnP9XpKgoSTPq+EeNm/arIkQ1Zvp/Rfc65xTJ2M6AUsX1er0twUFRntfrRTAYNAYsGAzuoevsPWb8Th05tkNjfxwDZSU4jzSuyTmshlLH3S4nZZ9x5shbi2O4DoBQIdj7PZTeUKVP2oqLTQvqUpHblB2/t7PcbPrC9nj9fn9bEogqEKBdIVHB2kVO+RkXuU2hKbVG6URR8jmKQhXZqcIGduNFdjq+Ukd8Fu/Bv7WtNtLUzeGdFKBtxLXfVCnaaMxuD7B74CTHin3fCRXbMT+lgGlkXS4Xtra2TFttWlLnhBpwNb7qUPE7Ver2XFKjZiN4fSe9n/aVGlsaNT5PnR11zPh7Ghy+l/5Ox9VG5zq3OSZqEHVNadxXhc4m30OpXocyfGtxDNcBEA362obE5suBvdlj6hXaaETjHPqZjdYUjdhepCoym9MHYOJzep0udPWCbRRJpUGFoocK8l3ZB0RKdnacnXSiKe/ADrLx+XwmGYQGXA0/FQuzBzspaxoCtkspNZdrNzHGpr5sw6gGQe+tsRter/SYXTFeDR9/z7FUhU+ngYk6ahQ6JV2w7ZyTuqHXpjC1HZwLOqd4b/ZrJ1qQ7WN8TdG4bSx0XDS+pvPf/p5bQhR52utDjZn2u/aPIkWl3/k8PQxV/7YrdThG63uLY7gOgCi1pZSSUmgA9igKexGrQuKC0nvxj5bk4QLU9HBd0Izl2LE1oJ2uVESnJZaA9oQDRRNKg9mIShWrjVTYBzYqsL1oO1Zmox39vf07Ne5qPFWRKoK1+4fPYyYbFavGrPg5n6P9ZT9Xf6v31/e06S51NDQRgr/ROJUWn9X+5RxQha0V3PkZjZwaDkVSvFYdk04ITceIaEUpN0VBdr/pOOo9SROq4dF3tKl1NWK6DUD7tZODaSc06fywHTfHeL21OIbrgIh6op2UqNIZash0oaqh0wXaSaEA7TEcDXJr7EMVoz5L76kKQZUU29xJMagyUGNmKyGlWdRIURHYe5vUqKuBsCkim9rkb3lPtkVRlhomNfLaD2oIbBpMkY0mpPDZ9pjav2V8xEbR2nb93M5YpGFSdGqjQaVTVcEq7agoSpGxGhGdE4qSdVw4NzRGqEaVjpEWJ9Y9gPbzFH3pO9sOhfYZP1MjbyMmpfe0bfqM/RwifaZtBB3ZXxzDdUCECsqOy6hiUcXLz4Ddo955QizvpzEzXXAMwmtqtipvVRo2hWl79WyXJhfYXrAqUv2/KjsG2+1kDVZB0La6XC5zNpPuzVFjy/Zrerd6v4ryqPDYr0pNAbuBdlZYUCVr940G7Rm3VAXIvzt58W/l9TPzjc+kMtd4j96b9yBFxzaSNt1PSXNc1DjqczopbAAmcUgpWEX7uodMFbtWt1eHQ8dF55LSsWyf7sPjb/S9tUIG0aI6dkrlsb36b16nTIJS22o02W5NtlIqk89zjNdbi2O4DoCo96vIijGdTnEl5feBvVl16vnx/2o4dPGoEiZPb2daKa1kf66LU6kkKl9b0eiiV+9f34PX8jNFQ1RSqni1z1QZq/JShamK2+/3m+s1S1LRm0172UhE78nf2/GQTmOh/W+jRBotNfx8D9u4aj9q2xWB2GNl318NsI1M+c6dEL7G1nS8dExtB8NG47YjwPZo2zrRskpX2xSvInqbddC5zzbu51Dws04JRva6tGlQe9y1nx3ZXxzDdUDEjm+o8lWaQhUbPVmiKNtb1c3GtrKgaMaiPs+m09hGpQJ5vf5tU2hc8Da1qO/Edtj1+XRjsU2TqRGmR63P0jbq+6oXr23k+9LQ2hXv1ShpEozeQ9+P99H/qwHgbzspOnUSbLRKsct96ZywY2SKDPhbe1zV8HM+KILSOaWGlc9Wx8JGLmzX9va22R5gV/+gqEG1y3exfXwfe06SVlT2ge2zN1PbhkP7X/uEjpi2y57L7Ds7BZ7PU2dF56Ij+4tjuA6AtFqttlp4VAA0SqrM7Ymv3r2NLtT714WumYM2wqCiogJQ6hLYTdZQ40AFpcrBNgyaks722TSRKmq2lX9rggKfwyw8m4JUQ2Tf2/a09R35O0WCmiVHCorP4Ge8j8/nM3vh+I5KHWo9ShqtcDjcRo9qPymtRqSpdCf7Ro2IIvROyFYVK6/jZ2yHxt/UcNgIzqZX7TG0ESDnDx0NRcd2rErHS6llPkfPmVPDb2dJ2giUY6Nt13mh848xPDpNdnaj9onen+9jv5Nmrzry1uIYrgMi6gHahkppm07B6E70ir3RURWUVq/W8kC6+GyDwsVpGy01lGwv/7YXsU0FaeajjcboqdvvpYpT78U4kE392KhE+0ONM++nStBGv3wX3kt/b3vUnRwKHWel/Siamcdr9Hd6H0VS9jjrPZUe1H1z9l47nXvsD8at9J1tpGz3tbZBHYlOCFz7pxMVy2vUACkS1rFVmlrRJL+zkbo6MLyXvo/2h43gbTTG97CdOvteaiAdeWtxtQ5gT+XzecTj8R91M35ooptEKYwT6X6hSqWyh/6j4VCvWgPQtqGx6UZd9EB7EgiANg9eFzk9Z4072aiFSkcVvT5DDS/jTNVqtSMK4zRmuR5gV/nbaIQIVuM3ivL4f6Xv9lO6zWazbX+RIlJer/1ABebxeNqcB+1fNUB8tvYJgLZYo40O1NCzf4hg+GxbMXeK3/B+amTVOdD4kY0u2Idac5H3Yn/YsS++v42AFIF0aqP2M8fe3jdolzDTuUDjwj7VNabtUxRo7x/kPjjtc/aHtpGixav5DHUUDqBa/jtLLpdDV1fX9/UbB3EdAKFisWmiTgjEjjFRlAKk8uDCspGNjRZs7l0VqCot/lYNJa/RNulitWM7SmspjWYjBa080ek+ijZ0XxGVJg2Ooj19N1X8ilo7KUtb2djvRwMN7MZZtGCy3e5O/aTK0L7OpvfsNhJRqYGyaTL7vW3UalOOiqA5h/h8+x1s50fvr/NKq1iog9RpTtsOi7ZT312/sx0lGkZeQ0RrO2+8l55wYMdFOe+1SobtNCgq7YTWHfnbi2O4DoBQ8agHqB6/nQ2oCogLRctAqdi12ezFzmeoQrIpKf5tKz/eX3+j3L8dONcYinrtRCe2UrVTodUgs99UwervNR6lMSS+Ow2bKjEaKl6nSlY9ZipEbYe+r522rp9rf/IeNHJqOHTMlTa1kw74Puqg2LFGG6GrgdC+oTOhCSOcf4ro2S6l3+w9hrYjwHfQgxXta7UvbXSi81H7Sils3kvRJ+eYJpsoauQctttiz/v9jLNuR9AqGrrObAfPMWbfWxzDdQCEClQXm1JRmpDAz4BdD1UD3txrpDSF3lOND1OUlQ5UJazUj/5fFzKNjla40D0stsJhe/R+fBdVllQQSgHZSrkTUlJ6jtSOKjvdo2TXjlPqlH+rQVDDpdXJtR06Vup82MZIaSaNzXEsNEvUvs4eF93TpchNHQn2fSdnAmg/hJOf82gQGhwqZ/ajPlP7iGPPbFc+S5GMGkFNqOiUFWqjGRonRbcUFgtWtMV7aDq9znObfuTZZIriOV5KUbZarTb60a5faRthva+dJepIuziG6wCIKlY1YLZ3DHSugsFFYFN+nSgg21Ao1aXKzkZY6vVr7Ij3UoVApWVTYADaKELbU7a9Wt1vxN/aHrGNVKiEVHHoPTopTipiTZhQ48lr+Jl69Opg8D20T2y6yFbAvB/f1x5ndRT4vSKJTmjQfm+Omb3XjYrXpuv4njoH2Q5+pjSp3WZV9Haf6zyj2AkNOv467vpvvZca5U4xTPadPXc63VMTWHRcdRx0PnCO8ne2kdW+sfvLkf3FMVwHQFTB24qVi0j5fjVQusgovF7/D+wuUFZ8t9N4FQHZ6cpsk3rdiq6o6DpRK6rwVKGrgtL/23ECRaKKNpR+tI0zn9PJ+CmasL1f+9+2AeLzVQnp8Rv07Nkf2i6OhU11KcrQRAJFpaqk1WBpdQ6lYLUPtKKEjonu7dJ5ogreRlLsQ/Ybn6tJK0ovahYgFTzfk+PJ9tqOmFKfNvWmCJuJOIqytF02KleDre/VKVNQja/2qdKkOs4ejweBQADlcrltHHQ7hGO8vrc4u90OgLyVp6w0k+1dKgLRa/UPsIsoNBBNIU1jowNdcPpcfqdeuyI5ir3nxf6b37E9bJ+NAjs9Sw2hbaBtdGO3mf1BA2MjK6WieMig3tdGw9pGW/HbaM9uV6c+7OTh6/xQxczrtC/5frze5/OZMVQKlKIJMvbzdb6o8dHn8Tnalx6PxxhzHU8dBx17t3tnD5ym3/N+NtJhH3Bfn93XvJ+Ota4D9o0dH1SjpPNR5xbng95Xn9sJCaqT0mmOOtJZHMN1AES9bQBti0MXgr0AgL3HS+h9VFQBahaeKic7UG97q7aB434wO83YjrHYKfzaXv23rahUEZBSo1JUJaVtorG1/71f+2ikbMqPSSNEDKroOhlyJpdQOeomZFt52VSsKlSOB8dQ0ajSdbayVbShCldpQI4p31eNFt/N7XbD7/fv2R/m9/vh9/vbnAuNddmonm3XZAideza61nGx+7nTvymKwOzsVJ1Pug6IxNSBILpUB0LnYKe5y+frlpVWq2Xqa6qRtN/DkbcWhyo8AKL7YJQq2t7eNgFdXUj8jY10bEpEOX4qRw04d/JqbeTHgLp6+opC2GZbOWgbgM6FZe19QrZnzOtsGpJoSPfVUCHbBozf2f3Sia5Rg60Il8ZN9yrZCS1K3dKQKYph/+mWB15vJ18o4lBqz3427wfsUmY67s3mbpFiitvtNoV2eXozk2tozDiG9j4kvTef3Wkc1TGw/8/PlDbjyc4cA+0ne16xoK4aA/6tmbX2OlFaU6va67zgHkIaWJ1Tumnfns+ca5qkVK/XTeUbO06p69CRzuIYrgMgNt3BSW8nGnCxKF8OoE3JA7vKRT1IWwlwcdsUj8ZMdHGzHUqL8D6KCG00xT+qTNT7pGJWalGRBNBeOFcVlb47v+M7axUDvUbfh/+2jVSnd2f7lLq1UZgiH+1DRTQ2raV0oX5P5dopZqjvxPszu07RKQ2XPX46ZjaFRcVunwpgU7/aJ4osFM3bBlMdE3vMaCTYdzpfFKXos+17qhG1Y1LqXOi/bcZC5yTf26Yk9X42GlfGQpEg55hdrcWRzuJQhQdA1FNUg2MvEFWWqtRsr5i0jiZR6IJSQ6ef2zSM7kuxlZxmMtrKg8qPYhssVTiqKPhv23ho2+iJ6543vaf9O9soq+LpRAVpdQZ9D5vu4fsqOlQngUrYNpq64VuNmF3Ul6jSbp/9jkolat1GHQ91cFRhq/Ojpb8Yc2IfKAWpStlGmzpXddxsw2yLjr89/zQGq3Qp311RoSIZjqU6e+zLarXaNod4f7supb0uNAlGESgLAisroE4hP2P7nFT47y0O4joAEg6H25SIeum6R4WfK93ABcUgPK/jqa+8p73J0i5ZpJlnzebezblKYakyshewIhhVurZycrlchsbStGe9n8an1Hjze6XlbDSjXroiA42jEJnZtJLSeTY1pGOhDoO+r/7Ne/Hfajj4DnaSBoA2JWjH89RoADsUF40zlbEiTu0rIhuOk1JYHHNmxGlfdTpPi33daY+UjcT5zjadqWPQarUM/UtDrM6Qx+NpK66r2wjYJlLrGgPUDFS+l+7303dhPxK98np9jtvtNs9RR0rnoxpZOiE2k+HI/uIYrgMktsfJxUiDREVvKw4uCFWYQHuJHf2sE8qyf9spDqP/10XZSZmqIrbficphP9qJiEV/TyWnm1gVQdrKXZW2jQps9KTK3VYudgzRpqQUpaijQGWslUuo1G2aUZ0QfQeKXss+UiPP91I6ioaP/9bDI3lPdQR0zHQe2JmYaqQVwSq60LnLZ6mxtPtKHQkbrWlbbcdH26blmuz1ofNO5xPvre/B++gBpOwnzjO7dJTORZ1Puv7YBhowR95aHMN1AGRra6stMO52u01Vi2AwiEaj0XYEiNJPdgBdFQqP2LCVFRcWsKvI/X5/G0qzEYcuTFsR2QqXcQH17rXiAIVGVIP8nd5HaRqlBCm2grMNj/0OqgC5MVeLGtsGQWMUahyIHsrlsjHG9L7tKiWKQuy+VWOufa9t6IR2dEMxx1DRNt9P2w2gDWWqMbWrVigVyD8af+oUn9O4ohoKHT8mMXCOqxFTOpPtCQQC2N7ebsvW0z1eShHatLYaYu1H/p4GXZGq0nm6jnh/nSM2fajrSREp55ney5H9xTFcB0RUKQEw1dKVbtHsPUVONv3F8jwUpd1shWUr9k6xBt6Xonto7NiSHePgs22kx89tg2a/j/4GaEcb9vs3Go22gzVVwSvSoufbyXPXd9fviC7tOIq+p8ZjdMzsfrKFiRiq8NX4qBHR8VQHRNusJbfsTbx6nc4Z+x72u2mshm3ohDZs1KHvy/mhCErLlLnd7rbMPhvVKK1qrxeNtfJafm6/q85Ve26rgdf5x/dk36uTqc6GOpX8ntfbCMyR/cUxXAdAbI8R2E2N1vJIFC4gNQL6nV2bEEDb4u+kDFXhaHkg9bR5nU1z8W+NW9ieN99NFQa/08XM5+qRGNoP+kxbqdjGlkaM3wNoQ6EaL6OoAn6r59i0mVKT+jw1SKqQ+b3SXHblER3TTnEuG5nZylxRmRpbTfrQ9toKW5EFUQq/s/f46diq8tZ30TlCJ4PPJkq1nSg+W5/XaU7r/3Uc9H14HVP/+R58N5sStJFqp/dVqtw+igYAAoFA2/zXdjqyvziG64CIHetRWoQKxk5WUCWmcRO9TukkRTpceEpP6W/shAlVFq1Wa48HT9HfKZ2kC5730zI9bIt93hY9Vt2HQyFia7V2Nn1qwdtwONxG29l9qOhQvWaNYWicgqhIlajGaIhsAoEAgHYKqRPSIq2nY6F0pd5f92rZdCh/rw6AbazsOdbJCSJlRiWuJZFarRZCoRAAtB3XYhcYBmD2hwE7FKqOvbaJ7eV7sp86GQwaCHsudooN2siLRprrQ2l09qE6eKT4lBLl32Qa9B308E/GX5UV4Bl6OmedGNf3Ficd/gBIJ09ZPVdV7nqdTYdw0asyVsVh70exv7PRkipAeqmdUsrVa1eEwe/tfVgUfT9VqjbtYmfdMWZgowUbkTCGQmEbbK9aFaLb3V45wjbEFE0T19+qslUFxzYx28/n8yEQCJjn0yCSMlMUqkaX2xz0OTaasx0N9qXOKx0fHVObmtM2aDyTn7Ef1HDoH+1je96xbTQU+2WX2nSjPXeUMlaxUS/HsxP9p/NXkaiNvjo5IZ2cCS0XZjMNtrPnyF5xENcBEF1UNj2lSRusGqC0jXqzgUCgzQhqQFw9e0VWVEj0ktXw8P5EQraB0OoR/Nz2jNk2jfVoqr/tJTPrShWXBuP1uA+2TQPrNrrTPtI4m9Kh6hSwWokaXD6X3rtSu2yX9rkqKqWKiCbVgNpHcCgatEVRA8dL97MpguRzmBlnj6Uml9ARUCNjI2pNMFAD12w298wNJqto1QntM9sg6nzinOBzOb6KZnTO67EmXC8aI6TYKFPnoxo4jhHbq23nPNDn6/YU9pkmJ3EvGtdZJ5bCkb3iGK4DIGoslPpR5NEJ2diFZhmU5wLTpAS3291m+OzFowaNClqVGWkhLmA7m1ANie6BseNviqS07Z1iWWp4FQkoMtG4gVJcapy10v1+RkGVkY1qlWJSyovjpfERRUC6bwvYTbjh77e3t03MrRONpzE07S+lPrU/7SxNuxSXGlgegKgKluNjIxJFVJ1QK/9v03TqKNkIUeecZpWyjexXGstOjpC9YVjfk4aEbIGN4LQyCT/jiQG61YFzwKbc9Y/2laLHVqtl6jtq3zgJGt9bHKrwAAgXhm4iBtrr+VH58nouOi24qnEuYBcNAHvPp7KVuC5E/p+LWvl+VVZUmvSsdbGrZ65t4N+qLLUdSsHxXalY7IQPKktVPuwHrYrQ6fda2YKKUjdlU2GrAdNx0X7TPuW/SRXZNKDf7zcbfe1tADYFpc6LjpdNZ3WiTO1itira37pXqRO9yCLKiiRtWlmpSHuOKAK0C/fyHRXVKeWpiFhpN53j2m/2PFDnTA2k7bzoGNu0K7+3N/Brf7Nden/b6SAboWvEkf3FQVwHQNSbs+MIpArtIL96z5pKTJpEaTWgvfq7x+NBMBhso0x4DelGuwyVTZFp1iM/Yzs1m48Km/dXpKg0EZEWFYQiL74jaS5eTyOn7df2qlHT6gVaMFU9fd5HlbmiXypTFvgltcTx4LvSAVGKtxMNx1iaFpml2PEx9jkNviIQKnYdd35mzxelntlmjpPOOzUGtlHTsbQ/Y5ttI0SjoCWv2H6lXdUwadvUuHKe6Lzhu7B/eT9eQyHrwG0YpBptB6WTc0Tjx360+4HP0vPBtJQWr9d+dqSzOIbrAIjtMXPBqNLSWIYaNaC9FI1SO6oEuNC5uGgIqGDtxaexNtsjV29VF6XScqpgqfRViXZavNreTihGlZZ617yXetLqebM/1DtWr90W28ir92z3qxo49g0Nl9vtRiQSQTAYNMavUqmgXC7vKSmk/aZ9rKhBUSDpLkUcajBsGlGpMx03RcU6t3iNlmPSz5UiUxSxH3Lj/21pNnc3Tms/65xRlKfolffUNHo+zy7pZBsMnVe8r200baNqzzPtZzqfOm68lmPqZBP+7cUxXAdE6P0B7d6veqU2zaBcPpMHOnl0qgiAXYUEYI8io3LTU31to6Vp152UmhoUXfx8Ry7mTvRbJwNk0078w42rig7s52nb7WtsNGlvA9B3UsqS727HKoLBoKHWAoEAfD4fhoeHEQqFjDLN5/PIZrPIZDJtCQSqPJVq0z5ln+lRM3wPu7qDLZ0QFN9JY4D7UcedKEAbVXWae8om8HdKtWnb9DsdK17bCR1r22wHUI26znm7Xdpv2nfqwHGM+Bt1CFVsB01/p+9nz0tH2sUxXAdAqICoyPR4B3tviG5WtdPM1UulkaDCsIPT+ns+n0hG4wBEEJVKZY8RsVGHKjMAbRliNHJ6gKFNC2pMh9epwmGbNNWa9CH7hhlm+k5sKz1z+9wr9oudgs5rgsHgHmPPMdIx9Pv96OrqQl9fH+6//37E43F0dXW1nUK8tbWFbDaLW7duYWNjA+fOnUOxWDTvZ6dc26hZjUOlUjF9opSpbcDs+aDKXLMc2f/BYNA8V421IigaC/5O6WylMm3ErqXCtG6f0sfqNKlB13cjvcdkIL4jqW51quzsWraR7STFTuOv/aioW9GfUurMzrQNI50bddbs2JsjncUxXAdAdOMpsBt7sOkSRRPq/dmesn7Pz2wv2zZA+gwqJioOfTaVj9I6+p1SlTZy1LZ0ys5Sw6TtUcqK91D0ofEHVcR236koorM9eO2j/Wgujhd/5/f7MTo6ioGBAQwODmJsbAyBQACBQMDQtB6PB5FIBKFQCK1WC+l0GrlcDnNzcyiVSm1G3/bSdex0bihtynHQeWQjV+0TjmUnVM8/Nn1H6YSa7GvUsGsbbaSl9LjGHjvd336W0uJ6lI6Nlux5qFS8ojV7nqojqEbcNsg2Y6CGykbvDtr63uIYrgMgum8EQBvto4bDjrO43W6Twku6iKIGyDZ46sUzSaNWq7XRMIpQ6vV6m4epSp2KVJGMZrTZ1Avbth86UM9b28J30X1P9p4bfXftO9swMhnCNtRerxeVSsX8m6n1uk9I78OYnt/vx7Fjx/BTP/VT8Pv9KJfL5h6RSMSMKVFJKBSC3+9HKBTC448/joWFBUxPT+ONN97YgwIVJfBIDyo9Tdihs8NxUWPAa9i3HCd1ePgd+5iGgNfQMWC7dD6RHdCEBLu/gN2K67q3SceUGZc29W2PK9ug2wjU2VMEqgaF7SdCV2fIRkIul6ttn5saNL4jr7djzEqnK3PA9hCJdaJ0HdkRx3AdAFGPTo0T0F7xnYveNmKdvD7el6JGhv+2Fyqv03bxM/VcdbErhaMGQBMN9B1J43SK19nvRYpG+8H2oDVWocjLRllUHvq5GkbbsOtvqZTUEBAdeDwe9Pf349ixY0in09ja2jJKXJMGaNxVabdaO1mc/f39AIDLly8b46bttdP0O8WheG+dO/beJntcFRVzDNnXSk8rOlHkoZmT2p/aHtKIOta6LcHeq8etDDbtzXZxjEhhK2qzHRbbMGjdT9uBo+j3tlHTtthJK/Z8thGVjqWN8B3ZK47hOgCimWQ2olJKShW/vSESwL4LSe9nGwRVbjaNyAWrcSVVXkoFUpmpB8y/1RgqpajeuMZLVDmqYulE26kStA2qZlIqtaP3U4RgG3WbLuOzNeYBAJOTk5icnESr1UKxWDQUaz6fN7G8ra0tNJtNdHV1tSlpAEgkEvB4PIjH49ja2trjHNg0qe4p0vG1U7T1Xe0MTx2PTkk2tqLu5KyoM7Lf9Tbip1OhG4v1PbT9tjOhDh6NVqci1DYCtd9XjZN+bqNX7QcaaXte23EtRVI2Tcjf2J87slccw3UAhNSGJmRoEJler16rlBI/VwRiKy8qJ6IB3fyqBop/2/QbgDakwHtqogXbroqC7QV2K3uoFw/s7vVSI0EFosVfFR1oirGNFon62I98D6V/+Aw7Q5L34fPYNqVDuU/N5XIhEongrrvuQiqVwtraGkqlErxeL4rFIq5cuQKPx4Oenh4UCgVsbGygt7cXqVTKKNB0Oo1IJIKenh48+uijeOWVVzA3N2cMmGZNBoPBtrG131udCY4X+9ROJ1d0S6NHtKPjr8iJ84dp+DrO9v4wt9ttqE1FGTrX9FkcC63crjEsdeKUStW5pLSmGhR+r5Vj9BwuRauKjNVIq8Hn9/yNrkVFm+x7nX+O0frbiWO4DoCox2wnTXCx+P3+PRtH7YC7UoW62DspOlVoQDtKsT1hRV3aJjs4TjSoMQ29N59tZ7LZ3n4nz13pP/t9Ot1PDZx+pvfRrEqtq2dTXoqObJowlUohHA6b/VmlUgkulwuFQsHEy8rlclv8slgsolKpIBQKtd2/p6cHY2Nj2NrawsbGRsdqKQDaKEh1TmxnRdvMsSLlrN6/Kl5FR/vRi/pvHX8bXasjpfew0Yw6ETYCV4Nmx474nca67O0MNmugc1adEo3p2oZQjY32sc5Bzvdms9m2zUH7pBMN7UhncQzXARAuDB5logkHVCSaIKDevwbolaZQ7842FroQ9T5EY0A7KtLAOxWAesqquBqNnYK9NKqMYah3ymcyJZ9etHrCuthVWWr8hUqXbWZCRbVaNdsIlPbhbzSOpGPAz/kOmtjAd2IfN5tNDA0N4ciRI0gmk8YgZTIZtFot9Pf34+zZs2g2m9jc3ESj0cDp06eRz+exurpq6MOFhQWkUikEAgGEw2EMDQ2hVqthZWUFrdZOwVpFGOrgsN4gFagiGUUfqpw5tryfbeAVaWtsipuEbYXPflXKmKL9TWqvk/OhBkO3QOiWBn03Ggel8dQ54vohwlcEx3dl+/x+PyqVCtzu9nR4RWFsuz2nuA4VCdqMxH6G2UFdby2O4ToAQsOiE5sKnd+rIlLjoMpI9ycpilHqRBck0J4mbVOQvJcd97ERjYpSUOrhKrWkz9S/9bl8NtujsQrb41VFbFMzdvyDisXOoiMaYR8w80xpMnvMurq6kEgkEA6HzXOCwSDC4TCSySTC4TA8Hg+KxSLq9Tq6u7tRqVSwvb2NwcFBVCoVFItFuN1u9PX1IRgMIhaLobu7G6FQCKVSqc3jJ8qgQtZyU+pIqDPDMVJjoX1u08Q6jrbDYDMDdDyYwm7fn+OusVMdN/5fjRD7VoXtV0Oqc0iZAH2vTkaI80OfrW1m2xSZ8Z7a3/Zc13uxf5RG7MQsOLK/OEV2D4DYSlgD0aoM9A9Fs/eUotOSTsDerCv7WAv13NVz5vPs1GsuSNuDVEWiMQhVrmqg9DdqKDUeo8/k9Ur/qRFlKSV9b+2X/Qw331UVi1KIfBefz4dwOGyMUyKRMIdHNhoNJBIJTE5Owu12Y3V1tS2zjs8rFovo6urCyMgIKpUKcrkc6vU6wuEw4vE4+vv7TcIG2wXAxNc0lsg2amyTn9ljbhsjtkeRpX7OeWJnNdp0maJ9ReD2eNn0s70RfD9aW+eSPW+U1rZp9k7zlv2g72XPg04Okhp/in29xnN1vmof2FS2I53l+zZczz77LH7yJ38Sg4ODcLlc+MIXvtD2favVwm/+5m9iYGAAoVAITz75JK5du9Z2zcbGBn7hF37BeKQf+tCHTHUAR/aKLjgGkWlUbK6fi7xarbalTBNF6MKyF5l6zaRlaERqtZq5p4oaB/WSuQhZ5shGY1QKNBJ2pQkt4mvv+2k0GntqzfH/vF8nD5Zet2b9qedNqkeL3pIKokfPPtSkEFWEPp/PbCJmooXP58Pm5iYKhQLGx8dx8uRJ3LhxAy+88AIqlQqCwaB5x2AwiK2tLZw7dw71eh3JZBLVahVzc3MmNX5ychJ33HEHent7DWoDdk8XpmEKBAJtyp7jyb9tRGCjakXBiub1expJNSa8B+N8jOmw/7XIrc5Fj8djNmSrMdFEByp/O96kip7f1+v1tvJXFM0S5f45voc6QnyurgltL+cWf8fncD7bsUBFc2w7nQ2dy50QvCPt8n0brlKphDvvvBOf/OQnO37/O7/zO/i93/s9fOpTn8ILL7yASCSCd77znahUKuaaX/iFX8CFCxfw1a9+FV/60pfw7LPP4pd/+Zf/7m/xD0DUw7XRhYp6a3aiBABDWeh5SxqX0mQMjWdRdFEp+rGNFq/1eDxthkDRoCJHKo/9gudUguqxq7Hku9sUj16jVBDQflCmGlPbG2e72Edalor34b81RhcOhxEKhVCr1VCpVBCJRBCPx+F2u81hiolEAvF43LS1r68PfX19mJ6exs2bN5FMJhEIBFCpVNBoNMw9BgYG0NfXZ56vWX+q2LWvbarPRkfaN/wNx4hK3FaqvF5RjY2o+Tyl3Cj8XrNmdex5jW1gFf3qeKmBo8PxvShlu386oXm7r+x1oH3Ke6mRYh/yc3se2wWRHXlr+b4N14//+I/jt3/7t/FTP/VTe75rtVr43d/9XfzGb/wG3vOe9+D06dP49Kc/jcXFRYPMLl26hKeffhr//b//d5w9exYPPfQQ/vN//s/47Gc/i8XFxf/nF/r7Kpz4XLDqwXZa1Lo49W/1lpUSI/euVB6wWzVeURSfoRUW9jMI+hmvVY9fabZOlI4aHo0pqLEAOqcS29SMIi1VRFT0pOzsU2ztLDf2oypnNVytVgupVAr9/f1IpVLGoMRiMUQiERPoj0aj6O3tRTKZNF73wMAATp06hUqlgpmZGYTDYaRSKQBAuVyG3+9HLBZDb28vxsfHDfqmh69t5ztrH/HvTjErRQw27aZjyc9tNKT9yvHjPLENlI65Ur1aoV7H06YlNRlI5yffV+eYznMdR/5GDRHvZyMwzhPtK0WFdlYpnT41sLpOeb19ErP93o50lh9ojGt6ehrLy8t48sknzWfxeBxnz57F888/DwB4/vnnkUgkcN9995lrnnzySbjdbrzwwgsd71utVpHP59v+/EMSpSRYeomfczHY3iQXLJUar2fwXM+EokLQLD5SaH6/39BPtlJSj5if22n4AAxaULpFM7d0I7AaETUImgm4H9oEdqsfaKYYKTR64ao4eT/1rhloZ9/wN5oST3G5dgq3MnWdBui+++7DnXfeiYGBAeRyOeRyOaP4isUiCoUCPB4P+vr6MDk5idHRUaytrSEUCuG+++5DNBrFwsICyuUykskkPB4PZmdnsbGxgVKphO7ubpw5cwZ33HEHurq62ihD9eY7xT1J37H/OVY2YtHPlVJTBMFnco40mztFeFlqjPfhmCmKb7V2sjE5f23Dp84BDYnGRTk3FVXxGt5PE39sxK7vZ5dvYpySc9KO6XVCe5ohy3mja4r9zfJoiti0PJkj31t+oL20vLwMAIbCoPT19ZnvlpeX0dvb2/a91+tFKpUy19jyiU98AvF43PwZGRn5QTb7QIh6k+oBqie8X5BaFYgqah77oWhFPWcqDEUcamDUeL0VZUlFYyMg/s3vtd1sp6IHbWcnY2O3X/tOvXtNH1dDrN5yp3iGnZ3Ge2u8gpXi+/r6EIlE0Gw2USgUzPetVqutZqTbvZN92N3dja2tLeRyObRaLSQSCWxvb2N9fR2t1k7B3Xq9jo2NDaytraHRaCAWi+HEiRPo7u5uKz6rTkaneJVN1akS1tihfY2OgyIUzXi10bL+2zZQen8boWv/2Ikb/Dcpb3WabNZB57LOTRoqO8PS7hN7PukaVERrI279jNeroe+UGGXH0RzZXw6Eef/Yxz5mvFZWy/6HJJzUPMeJi40LXauLczHR46MyUUpJ4zW1Wq1tf4ry78BuUoYaHlXsVB5U6HroH39Pw2HHqWwkoAaFnmyr1WpL1Oi0N03T6nXPGT1pLZpLSpTnYfG5RLPAbszKNjKq+BUlVqtVVCoVhMNhbG9vo6enBydPnkQwGDTHa8RiMYyPj6Orq8u8W6PRQKFQQDgcxuHDh7G9vY35+XkUCgXce++9GBgYwOXLl9FoNHD48GGEQiHcuHEDN27cMErvnnvuwRNPPIFjx46Z92I/hEIhRKPRts/8fn/bfiP+YVIEx5AIlb+xEyn4GcdADQjnh85Rv99vnqEZjYqGbOOrsUsdEzVmnBNsL5/P+xA183o1bCxmbCPIZnP3QE9lFThmnBM69+r1els7bONHJ5DxTqUrNelHx8SR/eUHarhYDHRlZaXt85WVFfNdf38/VldX277f3t7GxsaGucaWQCCArq6utj//kIQLUj1SRT9cMIoGNNmBi8YOYAPtKb1qtBTB6LOUXukUEwHakxXU8+Xz+H9tj3q1ihrUU2Yb7YVNo0VFaHvtthLQtHjdFmD3De+r/c1naDYhlR5poKmpKXg8HmSzWWSzWTQaDZRKJQA7c5mZlrVaDVtbW/B6vejq6oLH4zFFeLu7u9HV1YVcLofNzU3jjRcKBZRKpTYqjkV8ebaXjhPHg4ZGkSzfUZMXFKFx/NTIqcGw50snmliv1f7m2Ou92VaNdaoRUOSvil/HgM6ZbRh0vtmGsdOc0vmmiE5LltGBsdeTTQ2SqleKn/2shkqdS3UUHNkrP1DDNTExgf7+fjzzzDPms3w+jxdeeAEPPPAAAOCBBx5ANpvFK6+8Yq75+te/jmazibNnz/4gm/P3RpTK0VRiDfwqBah7nvg7WxkoYqChU6NE0ew0VTa2wlFFZVM/VBo2BadGRg0b388OUneiFRW1KQKjkgXQ5tHaCMJOUiAi0L7Q73UrgraHdFlfXx+OHj2KfD6PW7duYWVlBblcDisrK2YzcTQaRTQahdvtxubmJra3t02MqlaroV6vmyM8yuUy1tbWDIVYLpextbWFUChkjkSJx+MYHR1Fd3f3HlRDpWwrRVWYGgPV/tB+5ftyznXKutM/7GuNKXaiZtlGW5Hb91UEo4iOc1epSpfLZRIr2G51SjRmRqRoU8GcgzbdqE6czg2l+2zUZFOXOp/t6+z15Ehn+b4rZxSLRVy/ft38f3p6Gq+//jpSqRRGR0fxa7/2a/jt3/5tTE1NYWJiAv/m3/wbDA4O4r3vfS8A4Pjx43jXu96Ff/pP/yk+9alPoV6v4yMf+Qh+7ud+DoODgz+wF/v7JBofUc+OxoZbDVQBAe01BGk4SL1RAbF0EekczUwj1ai0jnqhzWYTgUBgTyo76RI1SuFw2Pxb94OxLXw234toR4PzwG69N1Uo3LPD9wTajTyv0b4D9p7MSySmClqrIWj9O01GAIBoNIrBwUE8+eSTuOeee1AsFhEKhRAIBHDz5k3Mzc3h1q1bOHz4MOLxOAYHB1EsFvGtb30L9Xodo6OjiEajxlAVi0UTM9va2kK5XEZvby/m5+exuLiIYrGIoaEhNJtNlMtldHd3495778Urr7yCixcvtjk27NNgMNiRylLkqwhYEY2iBvaRHY8hJW0n4fA5TADi/6vV6h4Ux3ZrkhA/J+1LYfv0On6uaI3fcx1xbqiB7hTj5TyyUaqdEdvJ+HAuaiFndaaULubvuBb4f0f2l+/bcL388st47LHHzP8/+tGPAgA++MEP4o//+I/xL//lv0SpVMIv//IvI5vN4qGHHsLTTz9tKlcDwJ/8yZ/gIx/5CJ544gm43W68//3vx+/93u/9AF7n76colaaLXD1R2zu1s7To8WnsSBW5Tecp6iKa0NgB0L7xVw2VKgRFi0DnElBUTHymGkYbienvNctPlTDvoe9M4bsyDgbAZALW63VUq9U93rkmH1AhBQIBY/hIz/X19aG3t9dkGCYSibbxYcysWq0ilUohkUggk8lgbm4OiUTCGKlSqYRarYZAINDmMPD/tVoN6+vriEQiyGaz5tr+/n6Mjo7izTffbNtnxtgK+4z9Q+qLcTqlgzWzU+cD55KOmW3gdRw4ZlTS3K/E8dHf6O/sftPx1PnOz3XTst7bRu323LMNs9Kf6gDa17M/tM6jJsDo722USYfRRmicy+xTR/aX79twPfroo2/ZqS6XCx//+Mfx8Y9/fN9rUqkUPvOZz3y/j/4HK1QWANoUkKbgAjCBaNtbU2NG71oPnQyFQiaBQb1Sfa69uNVo0qNUr9ymHjUgTa9aDY8aRSoe9ZRVyal3rIaJwX3tM3r52me8V6lUMkqXzgCzAqnQSXexHTRifMdKpYJkMont7W2cPHkSQ0NDqFarmJmZQTAYRCQSMQVyaYQCgQDuuece9PX14Stf+QoWFhZw+PBhHD9+HNevXzdIhFXl19fXsb6+jlAoZDY2b29vI5fLIZvNwuPxIBgMor+/H1tbWxgfH0c+nzdJNzTI7CcaHL/fj2g02tafwC4S4lgrsnC7d7Ig1RmiQVbKj/3NOaKbgam0iew1nmY7YXYsinODY6Poh8bRdsTYFq/Xa96NyNPlcqFSqbTNaRtxkvZUg6UGkXPVzkS1URbbaDtb/I7z7K2MrSM74hTZPQCiHLyiLhoHGhs1JjYCsRehZjHZ8QpeZ8fQKLoJlPfWjCxgFyVqnECVkmZ68f5UbjynyW67okDbs+V3auRoaLivKBQKmQQGAMjlcqjVasjlcm2xQ96D7a5UKm3evP670dipZsG9VfF4HOVy2dyb77+9vY1SqYRyuYxqtYpgMGjqDWYyGWQyGQwNDSEWiwHYdVDUeKrh9fv9prQUDS43NQPA1taW2e7AuaNUL/vGjrMA7cfNsK/tMk12YoGiQSai6FxVxoD3VkdD47EcV/v/6kjZ85JGjsZQHSHb8eHcVCOoRlGdJ/5eDYrSkHQWdQ6q46UoTDdFsy32vObnnahYR3bFMVwHQJQuUoWvaEMpHE0xtheUesOaQMEFyOtIf9kbRm3q0V50bKPX6zWxkE6eqbZV78fr+H5UrvTolb6h8VXaSisRBAIBxGIxpNNpRKNRs1EX2FEigUAAxWIRxWKxjXLStHpmBNIjVkqMRjEYDCKTySCZTCIYDBrFzezBbDaLtbU15PN5lEolVCoV8wyfz4fV1VVcvXoVx44dM1XfeSJyOBxGLBZDPB43mYSFQgGFQgEDAwMYGxtDpVLB1tYWPB4PBgYGMDo6ajbt80gOtoVGj/3IbQGRSMRkOSo9Wq1WUavVUCgU2hRvs9lEJBIx6JSGVakzNUa8jmhL0ZTLtXM+mToLbIMiDzUqOq+Yik7Uz/nCOaHVOPhMTdZRtMY5zJiaoiOl/Gx0yM9tpKrIS+czhfNVnUTOL0f2F8dwHQDhItANrLpwqGRoeDSRQ68PBALmfKFgMNgWu7HREqkwKjv1UPkspUd00SpNx9/xc3sPkSojIhvdC2ZTilT4SjXZVeyDwSDi8TgOHTqEeDxuKLZqtYrV1VWUSiUUi0VsbGyYAxsjkYh5LquTUAGT5gPQVgSWinx5eRkPPfQQQqEQ5ufnsba2ZvZdZTIZvPrqq6YqBmsT8iDIs2fP4oUXXsD8/DwqlQp6enrQaDTw2muvYXNz06TH1+t1FAoFZDIZLC4u4pVXXsH29jZGRkZMcgrpxPe9730oFottCQjNZtOc59ZqtcwWk5GREUQiEVOKyuVyGVRYLBaRy+VQLpcxNzeHfD6P9fV1XLx40Rhj/U2pVDLGnM4H+1JRCvuuXC4bg8cqFZxfnHsAjNOizo06Q0oH05hyzZCVUMZCkZM6TooO6Xgpa6DJI9qvmkCiqfdakUYNoZ2IoklE+rcj+4tjuA6AUMGrsVI6C2hPH1cKh4uI33NBAe37Sfh/9SrVU1RDo+hL/6+/VW9YaRp9F6WxNCitbWb6OjfOkuLS/mCSQau1UyMwGo0ilUohFosZb75Wq6FcLmN9fR31eh1bW1vo6urC5OQk+vr6zOZuJg/whOJisYhsNmsSHMrlsulvl2tnY/FTTz2FQ4cOGYqQY1MqlbC+vo6uri7UajWDzhhT9Hq9ptTTzMwMarWa2aAcDoeRzWZRqVSwubmJ1dVV0x7KjRs38MYbbyAWi6FarWJ5edkgD6JE7g8DdrcFaBmibDaLra0trK6uGrqWafnlchler9cczcLKHvF4HJlMBi+99BIymYyhPlmNnn3Ejc/BYNAYDcY61bAotcY5TaWvhsFeDxT+lu/YCbmok2fTkYrsbJqOBgdop6Fp0GjsdI7retA/Or/t7Qq20dJ3cGSvOIbrAIima3NikzLUdFr7b+Xq6dnp4lXUoLSfUnZ8rtInSlEqatIge7PZNEaL91FDS6GSUiOrh2CyziA9VE0CAHbT3qPRKFwuF9LpNGKxGILBYNuJBER0jAf19PTg+PHjZk8Vq05EIhFDMZEmLBaLxjiSjuLzo9EoTpw4YdLeS6USIpEI1tbWsLi4iPX1dUxNTSEWi6FcLqNYLKJcLiOfz8Pr9WJ8fBxTU1PI5/NYW1vD+Pg4UqkU0um0MVLlchmbm5tmDGkIlpaW8Mwzz2BqagqRSASZTAaNRgPFYtEgNVKE/EP6j8kZKysrBgmoYq5UKqhUKkgkEuju7jb1EmOxGI4dO4ZqtYpoNIr5+XnMzc3h5s2bhgpk/3Bztdu9U6WCz2TdSaX81KhyTiiVrAjHpgDVcOncUCeO46aGxnb07LiYxqZ03rJddrKPTdur88fP1eGzqXabtXBkf3EM1wEQ3RhpoxbGkXRhKfLh7zVJQL1FXaCaPad8vGYjqicKoC2+oYtODYsqDXr129vbJgVbDSO9cuX99R25QVfbnEgkkEgk4PV60d3djVqthtXVVZP9trq6atLFH3vsMYOsmAav/aGo1ufzIZ1OY2hoyCg6Gm8ilVqthnPnziGbzRrDWa1W8bnPfQ4rKyuIx+P4yZ/8SYTDYSwsLODGjRuoVCrY2NhAOByGz+fD2NgYisUirly5gng8jomJCfT29qJUKmF0dNRQqFNTUwgGg5iZmUE+n0cul8OVK1eQy+UwNjaGra0tU6qIfU86LxAIIJFItCEVFqwOBoOmAr3b7UYsFjN9VC6Xsbi4iJWVFdMvpF/vv/9+3H///djc3MR3v/td3Lx5EzMzM217pQAYyk1LStEZ47XVatXQ2KRGOR9oqNRYMfHE7d49IgZoR/U693nmGWNfisz4XlpOTKlJGnU1Qm632zAA+lsAbf9WQ6X7J8kwqFOq76CJS47sFcdwHQBRzlw9VJsStJGSepadPFGiGy4+TdRQdMTveE/uyVNK0P4/n0XlYgelFYUxqUIVhHqtmk1JhcYkAGbrkc6q1WrI5/Nwu90oFovIZDJIp9M4evQoJicnMTQ0tMfQ28pue3sbmUzG9DERCRMV6DCwT1ZWVlAulzE4OIhms4l8Po+VlRV4vV7kcjmsra0hHA6bahks28SMwFAohMHBQVy9ehXLy8tIpVImS8/lcqFYLMLj2TlkkZv0X3/9dbMnrFwuY3t728SpeGKyGgwAKBQKJkXf5/OZOCdjTBwzpvDzd/V6HZlMxlT5X19fh9vtRk9Pj4mP3Xnnnejv70c8Hsfrr7+OSCRiUJUqaCaLaAyIhguAOcGZ8VBFSbbzpnvVFM2oU8a5aMdabaqRaJaxTXsO25Qj0H4QpqJDXmfPL65Tu736fzshxZHO4hiu21w42e2yPMFg0GS4KeXBya/XquHRBctr+LedMccFTQXCRaWFSzU9ms9Qw2i3j56llgPSDEaXy2WOuld6qNHYrWav15MOCwQCqNfryOVyZk/T/fffj2g0arL9OiWaaGyFf1erVWNUaDgqlYoJtNNo8Z4bGxuGwiwUCsjlcmafUL1ex9raGs6cOYNDhw6h1WphZmbG7O3ivi6eZswNyIODg6bgLmnEP/3TP8Xp06fR19eH/v5+LC0twe/3Y319Hd3d3ZiYmIDX60WhUMDW1hZcrp2kCTW+tVoNfX19JluR1B77r1wut2UiRiIRbG/vnCXWaDRQLpcxPz9vHATSgaFQCBMTExgbG8PU1BRefvllLCwsmOeUSiVjyIggg8GgmRs6NpxPRMQcKxoq/lFnBtg9AJLrReemnQhB6pSUts5b9hXnCf/WfYr8t1KLGu/ls2j8lKngNURddhzZke8tjuE6AKJohbEWraQN7D2kTgPPyuerYtDguGY9Abv7Y6ikmYqtsQk7SM7ns22KoBhXU+Sm8Qc+U1GlGkIqF96b7+Tz+RCPx03cpLu7G729vTh27Bimpqba6Be+D2lKOw2ZCJTGk3Qi0Q6VT61Ww8bGhvlNNBo1FBfLWali7O3tRX9/P+r1uql0MTIyYipr8J7lctmUiUqlUgbRBINB5PN5XL9+3dQw7OnpQTwex8LCgol5VatVrK+vo1AotNFMrKzB9jF1Xrc/MBNQEzQ4PkRG7IdcLoetrS2TfAHsblr2eDw4dOgQurq68Gd/9mfI5/Oo1+tIJpPI5XKGVq5UKgY9a+yU91AHh6n4mu6uc9ZGlpw7HB+l/PhenPu8XhkIGkNFPpq5S7TPeysdzrZxjnPe2wkhNLJcB7ynjdQc9NVZHMN1m4suNgBtC0UpOFXy/J3+bWdO2VQFFYguMFJxvL8+w94MzbZR8QHtRXSVAtSYgsbU6HUz9qUHB/J7Pof3YSJGrVZDOBzGqVOn0NfXh56enjYDWa1Wzd4m0mj01EmBMfkgGAxiZGTEVNGgQWeMgn1OI8DkECpln89nthxsb29jeHgY3d3duHbtmomFTU1NmaoV29vbKBaLyOfzBh12dXWhp6cHg4ODSCQS6O3txZUrV7C2tobl5WXce++9qFQquH79ukn35wniNCZEdcz8Iw23uLiI7u5ubG9vGwPEcWCfKMrgH8bKeDqDzkHOL4/Hg0gkglgshve85z24cOECXnnlFYTDYXR1dWFzc9MkaWxubprf6PxUQ8P708jwuXaWIUXZBr2fTcUp1a4JFvy37htU+pt9om3TjcJKy9Nw6Zy342oaY+50nSOdxTFcB0A4iUnRhUIhQ5NRiWr5G2A3PV73fPn9ftRqNZNdpotPaRYqL95b4wU0TKrg2C4+U4v+KuICYJS7xrB0gdMT53voniAudKLA7u5uE+t45zvfiWQyiZ6enrbyPow5ra6uYnl52RzMyFJK9NR9Ph/C4TCSyaRJviCq6e3tNWnqGxsbKBQKmJ6eRqlUMsbQ5XJhdHQUiUQCfX19GB0dxc2bN5FIJHDHHXeg1WrhypUr8Pl8uPPOOzE6Oorl5WXz/Gw2i+XlZXR1daFYLKJeryMQCBhar7+/H6+88gouXLiAubk5PPbYY3jqqadw6tQp3LhxAy+++CIOHz6MyclJdHV1GUP9+uuvAwBCoRBGR0cBAG+++aZ593g8jlqtZgr7Mj5I9MAzvfr7+81+Nyp5IiGPx4NEItG2Cdnv9+PBBx/E29/+dqytreF//a//hfPnz6O3t9fM3UQi0VZuSxOCAJizqziHbHRMo6/znnPJdubUgdM5TQPGNmjyko0mlfrmeuDfSsXS8HKd2g4jgLbi1jZrohSjI53FMVy3uXABasxJs984we3gMb1FUkKKirgwlAYC9tZfU2SmHqAqEo0v6GLv1AZFj1QEyvcrkmSMQz1h/mHWYb1eRzQaxZEjR4xSrlQq6OrqMmiHe5S4MXh9fR3ATop5JpOBy7WTCUglRjooGo0aZMC+LZVKWFlZwcbGhqmAQSVcLBaxvLyMWCyG++67D4899hjuuOMORCIRRKNRU1MwnU5jZGQEtVoN2WwWiUSiTaGVSiWzf8vlcpmqGMlkEhMTE23HpCSTSZw4cQIrKytYXFzEO97xDrN1gOhqa2urbXzc7p1iwNx7pXulSFdqeadsNmsqjHC7QDqdBgCz141ls0iP8vRnGsDu7m489thjiMVieO2119oKbrO9utmXbaVyV3pZ095V4dOh0vnaKXGJ19tUNx0IO65F0SxDpe07GV2l4xW1KZqi46YGVylQbip3kFdncQzXAREuJMZyOLl11z0NGrBbT1CRlR7ZQQVgF7jlYqIC0SocRDu8nijOTnQgjcYgP5U/n6X0kxpL/k3EpQF1IihNOX7HO96Bu+++G729vVhcXES1WjVK0+v14saNG1heXsabb76JUqlkYjxEdWwv37FcLpvU6VwuZyg4brydm5szCSJEfQDw8MMPo6urC4lEAoVCAS+//DLe//73Ix6PY319HZubm8jlcpicnMQdd9yBEydOIJPJoFQqobe3F8Fg0KTGkyr1eDxIJpNwuVzmxO+zZ8/i5s2buHXrFs6fP49ms4k77rgD58+fR6lUQjqdxubmJiqViolpDQ0NmbbOz8+jXq8jFAqZxJDNzU2jICORCBKJBLa2tsxRKqw92Gg0DKJaW1szWxo4J2ZnZ9sQTE9PD86ePWsqhZw+fdog0jfffNNkT3K+hkIhlMtlFAoFEz9iXJVzRcsjuVyuNmPHecN34fyxS1BpBivnZqdN0GpwtFIK20t6lXNTWQyN39pp8WyDVvFQ1GYbWMdwdRbHcN3mYnuVGqSmMVIKQxc2sBsEtjOW9ouN6e/UM6WS0grWmvigiRh8pqIspjsrVaPUDxe8Fi3l91zgmv3l8Xhw//33Y2BgwGTDAUBXVxdcLhfy+Tzm5+exurqKXC7XtmeMikUNBe+rlSNYP299fR35fB7ZbNZk2XEcwuEwDh06ZCg1t9uN2dlZLC8vo1wum+QJzcxkzMbOkotEIgiHw4jH4/D7/dja2jL9U6lUTHuBHcQ4MzODVCqFUqmEVCqFUCjUNtbNZhPDw8Pm+suXLyObzRrKj8aA7x8OhxEMBpFMJhEKhbC1tYVsNmvGjuNUKBRMYgTHhd9R8W9ubuLKlSsYHR1Fq9VCd3c3otEoxsfHEQgEcPnyZUxPT5vKHkpP857qTOmcVmVOqtJOwuF4KhrSa/i5IiEaXj0s1Kbt+H9uJVC63d5UzfvyuWr4OlGB2i5dq47sFcdwHRDRjZFKMyilR1F6hMqfSttOv+X1wG4moaIxLTRKZaVJFzZ1YisYpluXy2Vj3NieTlShxuoUPXKzJ0s/HTt2DOPj4wCAjY0NeDwexONxeDwebG1tIZPJmJODiRK1/5TaoeImSuXeMGA3cYNIol6vtx2DEQqF0NfXZwxROByG3+/HzZs3EQ6Hsba2hrvvvhvBYBDLy8sm65AUmypl9jf3WWmNPtaZDAaDiEajCIfDpthuPB7H8PCwKSKsdF8sFkOr1UI+nzfxS25SJvLS2AwAYzipwHlECttaqVRQrVYN8mQb+ffAwAC2t7cxPT2NjY0Nc3imy+Uye9SSySTy+TwymYxBh8BuLUiNddrZgjaaUQpR5zTfV50wHX/ek3OeRlNpQpsm5zznM/je9prg79SZU0ZEDZgdO3P2cn1vcQzXbS5qCHTR6om/VLr8v2bq6YLRgp9UCrxWFzevszdiAjuKnLEnGzHoRl0qImbwcTEyZkF0pW3Q6hqqnKjoQ6EQqtUqnnjiCTz66KMAgJWVFZRKJZw4cQKRSMSUIFpdXcXCwgKKxaJRAjQ2ilyp8EgrMbGEZ12xYC/7mUjqxIkTCIVCJpmDyo71CNfW1lCr1bC5uYkf+7Efw9TUFL785S+jWCwaurdarRqE5fP5TDkoGvB6vY5IJIIjR45gbGwMsVgMExMT8Pl8GB0dxczMDJaXlw2qGhkZgcvlwo0bNxAIBEzqOgvuMvNxfn4e6+vrbUYwGo1ie3vbFB4Oh8Pwer3m6BQ9+sXn8yGXy6Grq8ukq6szcuvWLbOvbGFhAd/97nfh9/sxODiIeDyOSCSCrq4ufPCDH0ShUMDCwgL+4i/+Ao1Go21vGfuCxsfOVlVUopuVtdIL47Bsu6as6xrjGqIDQdoY2EVKfD7bQCEVq1sMOIfZVu7700QnG5EBaKueb8fZHNkVx3Dd5qKTW2kE9fBIQSltYtddU2/Qpg7tYLUGnJXr14wt/Z2iFY1DsE1qONRY6DvyfkofEsXUajX4/X6Dbk6ePInu7m5sbm6i0WggHA6bCu75fN5UpmCVc5tu5fvQoNLLJ03ItHAiPJ5ozHcAYNCeViNPJBKGgmM/UWEyo1PLLGk8Uav10/DTeWCbt7e3EQqFMDQ0hPHxcZTLZVy9etVkV9ZqNYRCIYPaeMSKjaQajQZu3LgBAMY4h0IhADBIENjdu8TYFsePsZhQKIRYLGaKACtiXV9fNxXfW62WKT01OTmJZrOJbDaLZrOJnp4ejIyMGANH9Mt5rShdUbI6XorIeJ1uQAbaqW+9VoVzhc9R46iGjXOH9yULwTlmJ0wp3U4npxNLoXRmp/Y5sivu732JIz9KoaJQbw/YNWhKR/BzYDddWKlENXxqjFQ5UGnr/fXeGmy2RfcBkVakAdN0ejXGirCoGOlxNxoNQxkxS+3EiRMYHR2Fz+czMah4PG6ezSw8RTY2ramKid40DReVNOvluVw7FeBZBsnlcqG7uxuDg4Po6elBKpUy78aEh3w+3xaP0tgcjwahQSSNyexDt3un9l65XDYxplwuZ6pUsH8SiQRisRiy2Sx8Ph+i0SiWlpaMY6B97PF4DDpkqr7uxWq1WqZKRjAYNEqVToPt9fNAzkajgVAohFQqBZ/Ph1gsZorxer1erK6umsr63Bydy+XMnLp16xY2NzcRCoXw+OOP46677jKZjUzsUdpM/9a5y/mmyEXbrEZBqXZN2mB/6fzg9eoM2hQgmQKbyud3vN6mFJUq15gx26Xz1pG94iCuAyD0pjWhgp/TK2UMQvd22Rt2aRx0kWk6PDepamyJgXld7LwvFzCVrRbcpRB1sa1MKFFEQuOs9I7P5zPZbGx3Pp/Hu9/9bsRiMayvr2Ntbc0kEhBlFQoFc44UvXf2GfuIRpVtCAaDJn6kSRM8ZRjYMco80uPkyZNGWYdCIaytrcHj8WBkZATnz5/HhQsX0NvbC4/Hg2g0itnZWaTTaZw4cQKzs7NYXV3F+Pg44vE4FhcX0dvbawoF8z2Xl5dx48YNQyd6PB7kcjnMzMyYjMeVlRV85StfwfXr13Hs2DF8/vOfx9mzZxGPx1EsFpFOp00Mi4bF6/UiGAyiWq2aDdGZTAa9vb3GIHJTsvYV9/+ROg2FQnj99ddN2SvdLF0qlbC2tob5+XlTgSSRSCAUCuHFF19ET08PRkdH0Ww2zb60Bx98EB/60Ifw0ksv4dy5c5idnW1L5Qd2KTvGTplVqHOIc0/pO64VzgPOX6Uegd0YE9GkoifdhM420dho6TV7Y746ZlrCiuuUWbm6Drm2HNlfHMR1m4vSRLqXSzf8EknRiABoMwx2ZpTGCKiclG5RVEaDo14l0J6qywWt9+Hi1PewaZC38kB1sQeDQWxubuL06dNIp9PY2trC/Pw8stmsQSL5fN5sDibdpZ4zEZSmLLMf2QfA7nEeVCqsWM5kj3g8bgwJq2wwAYSxn1wuZ1K+u7q6sLy8jDfeeMMkRRApJhKJNmSniq9QKBi6LZ1Ow+12Y2NjA9lsFhsbG1haWkIul4PX68XKygqy2Sxu3bqFy5cvG8TGTERmC5LqUkPCfWOkVTm2nEOkBTm2RL6kM6m0Y7EYurq6EI/HMTQ0hKGhIVO6ihtxU6kUPB4PVldXTdKG271TdPj8+fPIZrO455578I53vAOnT582bWGci/NbkRXnE1GKxi7tRCGd/zoXdM7rPOS87bRm7NiUGir2s1Lt9prhWOvaUDSoiN2RveIgrttciKaUStOsQgalNS2Xho6Lkif7cjFpXTlVBkRU/I6eOhccDSUPGGS8hEgL2I1LAWhra7PZNM/VgqpqWDQOwRgIvfszZ87gfe97H1ZXV/HNb34TpVLJJBu43W5zzMj6+jo2NjZQLBaN0tI0ZT5LMwCBdq8bgFH4Ho8HS0tLprL6yMgIotEoEokEotGoOWhyaGgICwsL+M53vmNODw6FQjh58iQqlQpeeeUV+Hw+ZDIZ+P1+3HfffUilUtja2sLGxoYpxkt0s7y8jIWFBQwODqJUKpm4GM+14sbgD3zgAyYj7tq1a/j2t7+NaDRqqmccP34coVAIrVYLm5ubZuOzy+XCwMAApqenzRlZfr8fgUDAlLrSLDemswcCAVy/fh3Xrl1DIBAwRn5kZASpVArhcNgUKGafVqtVfOUrX8Hb3vY23HvvvSgUClhZWcHo6CjuvvtuzMzM4M0338T09DQef/xxHD16FEeOHIHf78cbb7xhkBXXA1G8bhjWsbMNlxowm9Kjw2dTjmroNLEIaD9NQGNR+jvNeOTzOO8UZVWrVYP+WbDYoQi/tzgm/QCITuRO/D7QeX8UjQZ/RyHKoCHUqhGankvRQLLdFntvip36q8aJKEaVDZGcep9MQWfV97W1Ndx///3o7+/HzZs3sbKyYgxuo9EwFdQVWdqeMp+tqI4Kn+9BZcgafwy6k9pk9p8a7ZWVFXg8HqRSKVy8eBHz8/OYnJw0pxyzVuHg4CDS6bRBTzdv3jTxqVKphM3NTVMZnmiA9BQPhgyFQujp6UE6nTYIKZFIoKurC36/H7FYDNvbO0eybG1ttVGldEC2t7eRy+VMdijvSSTFRBH+Ierq7e019Ojq6io2Nzfbqu6TbtXNwnz/RqOBTCaDV199Fc1mE4ODg+jt7TUxuaGhIZPYcv36dVy/fh21Wg1vf/vbcfTo0bZ5zzJeHE/d3qGUuMaObNSjBk3Rjn5vO4m6pmwaj+tH1xrniLIVem8+i4yGrlFNInGksziI6zYX2wjR0HCRcDHYmU00Bs1ms20PDlEUPUBFckBnj5PP0IxBoN2gqmfJRaoGSe+je7aUktQ/AJBKpVAsFuH1enHo0CEAwNLSkjlihAqyUqmgVCoZRUZFqpSg9pedtEKUCcDcV5EmS0ClUimTxOBy7RwZsrq6ilQqhd7eXpw/f97U4AOAubk5zM3Noa+vz/RVT08PkskkZmdnAQDDw8Omr2KxmDHATEPXKh1MUefhjrr3qNFotKW0p9Np07/aJ4xF8t244ZgV5jnPNG2cBs7j8WBzcxMLCwvwer2YmJgwMcBEImGyOz0ej5lznBderxdLS0uYn59HMplEOp3G9evXjVE8deoU6vU6bty4YfbfPfroo200IuepInyuEZ2HRNd8l07zQOejbZQ6GTvNELSRls4pRXecT2yLFo1WdgNoPyNM0ZquH0d2xTFct7no3iwqeGC30kQkEjF7o4BdA0KjRCXEwrhcYPyNUig0WvxO6UOgfU+Z3p/tVF6fbaESo2iavm00+D2wk7q9tLSEEydO4LHHHkO9Xse5c+ewtbWFWCxmPG4AJvOOcZxwOAwA5nwrVUo0btwvwz1CNspUxDM4OIjBwUGkUinz71Zr5wDJSqWCs2fPwuPx4Jvf/CampqZw8+ZNtFo7Jy9/+ctfxpe//GVUq1VTUun48eOIRCLIZrOIx+Po7u7G8PAw7r//fnzjG9/AwsICurq6TFp7NBo1SKNYLGJ2dhYbGxtYXV3FlStXzLuePn0aiUQC2WwWN2/eRLO5UzmDZ21pqa6trS3cunULwE6WIONQOheazZ2iwrx+eXkZc3NzGBsbw+HDh3Hs2DEzZkR9jPPl83lTwJd7vkqlEr70pS8hm81icnISW1tbeOGFF+Dz+fDzP//zAIBLly6hp6cHa2tr+PrXv4777rsPP//zP48XX3wR165dM4iU9KHOUZu24/y0sweBdhZB41dETzYzQIePfWSvSW2Drls1jvZ64fog3ar7xtSZdGSvOIbrNhed7Ixb0Yu2N/Xa9AIXohqKTlSFnW2oCo7XaaKFUoIUrT3IRA1gZ4GzMoKdHsy0c7aBRoSGaXh4GA888AD6+vqwuLhojBbQvl9MlQGfS4TBa7WP7PiHJmconUiKJ51Om1gbURCTJGgIFxYWTGr70tKSoepYnJZ7xW7duoXt7W2cOXPGUGiDg4OG6mu1WtjY2DCVKbxeL3p6etoqeRQKBSwtLWFzc9O8ZywWw9bWlnnHXC6H6elp9PT0IBqNtmXfud1uZDIZLC4umsMnlU7kXrByuYxGY+fwyPX1dVQqFUSjURw+fBiJRMLso1MKmAaRJzy3Wi0TN6vVashkMrh69ao5cbnRaGBrawuXL1/G+Pg4Go2d+omJRAIXLlyA1+vFfffdZyjkK1eu7EEmmrihBkk3tGv6ul6na0CNHg33fgZL0+81kxdoR0+kEJXJUDqT2z5syt2hCt9aHMN1m4suEGZwAbvpuSylxHRg5c0VXXEB8j770X2dOHeK/l9pRz5DDZcmePB6LnjNvmJsSYPaLpcLm5ubeNe73oXx8XGT2MFjPoLBoEloYBUGHi3CfV+NRsNk7eXzeZTLZaNANPWeCoLKjDRfrVZDLBYz50gxhuN272TUsTIG07KvX79uSh1Vq1WUSiWMjY2Zahyrq6tIJpMoFArm3CwAWFtbQzabxcDAgNlDxXdgfDAWi5lToSuVCorFIlZWVkwWICtYlEoluFwuYyQWFxdx7tw59PT0GOMSiURMRQ/Sj+qI8PdsN7MJWXljbGwMwWDQZHbyc5biqlarWF1dxdbWlkm7Z6yHB26ur69jfn4e5XIZPp8PR44cwbe//W00Gg0kk0ncuHEDtVoN/f39uHr1Kp566ince++9KJVKOH/+fFsMinNMjRTnoF7DOWofFKl0otLHmp2oxqbTn07JGbqe+HsaT6Xrde5pCIDG0kFdncUxXLe5cFLTq+Pk1mQCNRpUdqSHNL6lxyTQcPD4DGaz0XBpXMDm85Xz5zPpOfMa/ZzokIsT2E2h1+rdVJDhcBiPPvooHnnkEaPoGYe5evWqOSIkn89jaGgI8XjcoCBWcKcRisViqFQqJuVbURZjQtwwzArvVMY9PT0AYA5PTCQSaDQaKBaLBhkODw/j4sWLePrpp3H06FFMT0+ju7vboLSlpSUTV8pkMgCAfD5vFO2tW7cQi8VM8gafSYQxNzeHVCoFl8uFTCaDXC5nSiHpHjpuFI7H4wB2z7JaXFxEIpGA1+tFIpFAT0+Pqd6RTCZNcgvHXZXx6uoqDh06hEajgYWFBaTTaQSDQdy6dQtutxu9vb0Ih8NIJBIYHh42FO2FCxeQy+WMczAwMIBms4nV1VU0m02sra2hXC6bcldHjx7FPffcg//zf/4PxsbGcPToUczOzmJoaAiDg4P4yle+gve85z34uZ/7OVy+fBkvvPCCMUKaVQvsOj4sqtwpmYJrStkBojeuH0qr1UKpVDLIUQ2YUt1qBNVZ5LrkdbwHHYJCoQBgN0lJ6UcHde0vjuG6zYWxFtubU49Rg8O6SIBdxKYLTfd/Ka1hZ1MBu4jMRltsD9EbvVM93gFo3+Sp6IYLmhtd/X4/CoUCurq68Mgjj2ByctLcn0VZa7Uarl69inw+j1gsZigtIiM+s1gsmv1YjLvE43Fj4DSjsVgsGrRKapFGj3FB0kREQx6Px1SP8Hq9eO2110w7iR4LhQLq9TpKpZKJMbKfeD/1xNkexu0ikYjZdMw+4r6sWCyGRCKBxcVF9Pf3G4S2vb2N1dVV9Pb2mirwW1tbqNfrCIfDpuYjq1LQ0GiijiYz8AgXPlMTfpLJpDnFmXvNWAmEdGZfXx8OHTpkMhSZMJLJZJDNZpFKpbC8vIzz58/jgx/8IJ544gl8/vOfx6lTpzAwMICXX34Zx48fx9raGl5++WW87W1vw9ve9jYTa9OyS2wX+59zmu/CvrYRPt9fk4p0bJRe5294H84Jez+WIjhdexoP49EzNnrk2nDkrcXpoQMgGrvhoqGX6fP5EAgETCxCC+Sq0VJlzdJFXDC68HRxavaT0mxsk9vtbqtizpgMF6iiPqVCtKwQkU6xWMRP//RP4+jRo+b3q6urAGA2sS4sLODy5ctoNBoYHx83G4PHx8dx+PBhVKtVgyKq1SquXLmC+fl5zMzMGLqKZ0CRyvT7/Th58qSJQxFVMBGCG3SXl5eRSCQwMjJiDGGj0cC1a9fw4osv4vHHH8f09DQ2Nzexvr6OSCRivHl67DTq6k2n02mkUil4vV4sLCxgfX0diUQCg4ODuHXrFjY2NsyYLSwsmDEtFApIp9Po7+9HuVxGPB43+4CGhoYQiUSwsLCA3t5eMybFYtFkabLYLTMZmfzRaDSwsbGBRCKB3t5eZDIZJBIJ+P1+lEolbG1t4ciRI7jzzjvR3d1tEE80GkW5XMatW7dw/fp1ADtJM2+++Sa8Xi/y+TwWFxfxxBNPwOfzYWFhAd/4xjcwODiIb33rW/jABz6ARx99FIuLi+awyfe+97144403kEgk8K1vfQtvvvkmfuEXfgHhcBjPPPMMvvvd77ZR5OowAWhD+jRWjMXZmbZ05jpRgRRep3FgYO9RKnpPxq7IipCyVoZD16gaOkf2F8dwHQDRDb3A7j4szYiiqKeof5RP1xI19PBIP6rnqWciKcXW6XlceFoySdumCRRKo9BI3HPPPbj//vsRCARw5coVU/fP5XIhEomgUChgeXkZxWLR7KVyu924fPkyjhw5gvHxceRyOYNUaCSTyaSJO5GOoafOjbpTU1MmZgjsKDyWkMrlciazLpPJoL+/38R4WOQ2Foshk8mYMkWNRgNdXV0IBAKoVqumejoABINBFIvFtvJYpPtYzomp5RqvpAHk+BUKBcRiMczMzKBWqxkjyf1lLOJLZ4LvrIrSRuOMJRYKBaRSKUSjUSwuLiIajaJer5tU/UQige7ubkMtcgwXFxdx8eJF1Go1hMNhjI2Nobe31xxpcu7cObz22ms4c+YMjh49inPnzmF6etpkf6ZSKRw/fhzFYhE3btxANBrFPffcg7/5m79BOp3G8vIy8vk8RkdHcfr0aTz33HN7Mvs0M1KLJtPx4pzSeawGR1GnOnFqnCj23KaxIqLSLSK8ThOqNEmK12kbnfjW/uIYrttcNL3djhVxAbAihcahiKI04MvFoUFjZrspRcR72F4oPVU+xzZMNHy6kVmNnVKZpAmbzSaWl5fxK7/yK4hGo1hbW8PW1pbJpOOepo2NDdy8eRMez86RLNlsFhMTE7h8+TLOnTuHe+65xxgF9g2RTK1W29NHijw1IYPxnlwuh5WVFeTzeQAwlQ2Y2VgoFJDJZHDjxg2EQiEsLS2Z6h08VTccDiMSiZjKFPT4SUESFXMD8sLCAlqtlkkEoWjWI78H2stTUbnyLC7do6fOBOcP4zss26T7AHU7RKlUMsetsF8TiYShubhRe2FhAVeuXMEbb7wBv9+PeDyOdDptKMZgMIjTp0/j6tWreP755/HUU0/hqaeewhe+8AVD7XJP14kTJ+B2u3H+/HkcO3bMoL5UKoVr167h1KlTOH78OJLJJDKZTNscVESrtDj/zTlg0+rqgHVy9mhQNCvRRlo6RuoEKSXM/2uilRpKTct3UNf+4hiu21xsrxjY9Zpt5KW8OhWWVkzgd9yca29AplFSb08TPjRBRGNgtpeoiRuqGHSB8r02Njbw4z/+4xgeHsZ3vvMdXLp0CWfOnEEqlcLS0hKKxSLy+TxeffVV4803Gg1cvnwZExMTuOeee/Dqq6/iySefxMmTJ1EqlbC8vIxKpYJ4PI6uri5TWml9fR0zMzMIBoPo7u5GV1eXiceQQpqfn0exWMT09DS8Xq+peM7yRs899xxOnTpl9lMtLy8jGAxienoaoVDIFOpl9p/LtVNNnpl+zebO3qpyuWyK8xIlZjIZRKNRHDp0qK1sU61WQyKRwJEjR7C+vo7l5WWTIchY2vb2Nnp6euD3+7GxsYFyuWyy+pS+BXYUa6VSwcrKCgAY2kyPh2El+nq9juXlZYyOjiKdTiMQCGBwcNDMQcbh/uIv/gKvvPIKgsEgHnvsMUNhMymG9NhTTz2Fa9eu4bOf/Sz+43/8j4hGo/jKV76C6elpTE1NIZVKoVqtor+/H//7f/9vXL58GXfffTeee+45DAwM4Fvf+hbK5TIefvhhvO9978PXvvY1zM7Otq0JGhdW72BGJteTvZFeU+c5txWZavKQFqSmKLJjRX0iZU2g0ljZfvSi272zfYRzRbehOLIrjuE6IKLUnXp2NpLQTCf9LY2WvYeJnj+wux9FEwaYuaUoThexHoHCdnDRkjLRrC1+BwClUgmjo6M4ceIE1tbWzF6oRCKBer2Ozc1NbG5uGqVOOszt3qkwPzs7i6NHj2JwcBDf/OY30dfXh6NHjxqDyCoOXV1dZtsA91EVi0VjwIm+2E4eJhmLxdDX1wdgJ7MwEong3LlzuHz5MlqtnSNK/H4/1tbW2vaj8T159IrP5zMFe+kQsEBwMpmE2+02SI3Zi83mzubyZrNpKFBgB2Vtbm6acSFq5f23t3dObyaaZCIGsIukdNtCuVw237EvNEOVe8sikYgxXLovj3UVeVRLMplEd3e3MQzcD9ZsNg0anJqawuLiIhqNBiYnJzE2Nob5+Xnk83mkUimsr68DAO688048++yzGB4exqlTp3Dx4kUcPXoUV65cweTkJE6cOIHp6WnMzs6aflVGQg2FJiRpf3Ad6G/tupmkl5VG57851hRFW/o5nQfb+VRDxq0VwN7UekfaxTFct7lo+jhFs6e4yZNeHpUPRYPIwI53TSVNek8Xk1KJirw0TsAFx8woIjs7o5EZh0plkSqrVCoIBoM4e/Ysjhw5gkuXLgEAksmkSQp46aWXkEwmsby8bN45Go0iEomgVCrh+vXrKBaLGB8fx2uvvYavfvWr+K//9b+ir68P/f39Bp2FQiHE43H09vZicHDQVGnP5/NGkRNl3Lp1C41GA4cPHzZFeIla+vv7cfz4cczOzrb1X19fH06fPm0SEEjhsW+5WTkajcLlcmFpaQlXr17FkSNH8PjjjyMej6PVaqG3txdDQ0MmppRMJtFqtbCwsGDqA+ZyOSwvLxuUSGMeCoWQyWQMRdpsNs25ZOoscKxIA5Ki8/v9KBaLpnwVk3DS6TSKxaJxAFg7MhQKIRwOY3Z2FufOnTPGnvOkWCyazdkADL3JzcWnT5/G7OwsHnroIbRaLXzmM5/Bq6++ig996EMol8uYn5/HmTNnEIlEcPXqVTz44INIpVLw+/3I5/P4sz/7M/zGb/wGYrEYzp07h+XlZQBoS9Tg3OU4cA7pXi7OT3vTvdJ2urVDqWb+u1qtGnqXFCCNOg2hXTBAE0PUQHJtqJFzZK84hus2F6Xd9N/0EnmN7aFxMZKuoOi+KUVJ/I1mMALtyR7qJWpGoo00uOhpFBjTsTl8prlHIhFDLfEepVIJx48fx6lTp/D666/jxRdfRKOxU4k+FAoZBMLNsmfOnMGlS5fw6U9/Go899hgGBgbQ09ODWq2GUqlkCsb29vaiVquhWCwC2D31Vjcqk2LkwZJENKFQCIODg9ja2jJ9SuXs8XhMWjirZRQKBeOp0+vnn6WlJQA7tQvdbrcpCcXSSTTySsOWSiVUq1VTUZyGnH2Qy+UAwCSjEGUypqJeP1EFj4AhXejz+ZBMJvdQWcVi0bwPacV8Po9Lly5hbm7OoD0iTb43n8H4J8fB4/GgWCwiHA5jfHwcXu/O8SykVtfW1gAAIyMjeO6553D69GkMDQ3h0qVLmJycxPz8PGq1GoaGhjA8PGwyUHWrgc5hCueQHdPlutLr1DnplLTBexOdAbtISal7O91e2Qu9VuNgNJhaLs2RXXGqw9/motUnNHCs/DtpG/1ejRE9bt2jpUZHy9FoFqG9ADXQrZ6pIjO9nyoHfSav0wQJGgM+Y2FhAQ899BAeeOABHDt2zBS37erqQjqdxsjICI4ePYrJyUmTUn7XXXfh2WefxZ/8yZ/gO9/5jtncyZgTEySooJmFR8qQqeKMSenBiZFIxKR984DGrq4uxGIxlEolrK6uolAotBm0aDRqDm9UFGDXBNREGZaUsiksbgnQjFCPx4PBwUHEYjFj/La3t7G1tWX2dul9ODb2+DIuQyS6tbVlDA9/n8/nsbKyguXlZdNHCwsLuHbtGmq1Grq7uw2aIdrgHCF1u7GxYU5Z1gSe7u5u+Hw+rKysoF6vmz13AMyG8JWVFRNLrNVqSKVSmJubg8fjwdTUlLleEypsak5pdkU97GN7jXHOEpFqpXddWxSNj6mhUyaDa0Fj00pRss/tA1kdaRenZ25zUWrCTorQOIJmhQG7nqddLYPxKS5QUjyaIq2Giv9X42MvKOXlSXdoO7V8Eb3IcDhsNhGvrq6aIy+OHz+ON954A9/+9rfx4Q9/GPF4HJcuXTKnDrP0kyaXuN1uLC8vw+Px4O1vfzsymQy+8pWv4OWXX8bDDz+Md73rXSbgrYcrRiKRtuK1PP+Ke8G4IZh9y0KzPMRxe3sbm5ubWFpaajNuwC7Fy4oVfDaPaunp6cHIyIg5V8vOwGQ/kzZi2abZ2VkEAgH09vZibGzMnK3VaDRMPIoVQlSB0tAxjkIFTyoxFAqZiiBzc3PmBOVoNGpijLlcDul0Gg899BDq9Tr+/M//HH6/H4cOHcLY2Bi+8Y1vYGRkBJlMBrVaDdFo1MTAWGOQdRlv3LiB973vfcYw9Pf3Y3FxEZcuXcJ9992HY8eO4Y033kAsFsPAwABefPFFPPLII4jH4/jiF7+IU6dO4dOf/jTe/e534yd+4ifgdrvx3HPP4datW2beEimrQfB4PG3zV6lx9rkiINLxRI40RJx/FDpFttNG6p4oVNeQHXdTNoQJJI50Fgdx3eaixojGwzZE6rkxNqF0Br07oP0UVlu5aUxCDaYGkbUtirLUi2eKtf0dFyzjLDQSzP7q6upCT08Pzp07h1gsZpQOjUdfX59R8kRM2pZ6vW6SHMbHx7GxsYE///M/x/T0tEm/171qpK3q9bo5uZhHlrDtREiNRgOlUgkbGxvIZDLmoMfV1VWTMchzs9Q5YPIDPWgetJhKpUwJKRozTV0nWtre3jaUXzQaNUqRcSjurWKdQlKC9nyxjRjfiWiLz2Rh4FKphFKpZK7hfba2tvD666/ja1/7GhqNhimNtbGxgVgsZkpWUVHz5GhgN3ux1Wohl8uhr6/PjCFrUM7MzKBUKpkjXJrNJnp7e1GpVDAzM4OTJ0/C7/cbtPXyyy8jmUziyJEjGB0d3cM40AlTw7BfDUD2k71RXJkCXqfIi9eQVqTxseNlndYL1yeNqu0oOtJZHMN1m4siF3p0AIznqIFjLUPDhcp7aIxKK7VzUWtsivfTP5oxyAWnCFApFvUWlR6hUmAA+vjx4waNMM06Ho9jYWEBx48fNwo2HA6jVCq1FR4NBoMmvkPDxuA40dKRI0cQCATwhS98AefPnzcbeJlirsH7UqmEWq1m4kUM8jMbjoqcNBwRFI0wAHMuWD6fN9RfIBAwRjqVShnasqenxxjOaDSKUCjUNt5Ufs1m08S1ksmkOWVYjZTH4zH7rOgw2HQX31U/12dwnLmZmbQjDTLn2+LiIv7oj/4IX/rSl0y5JxpUGmpuC+Dp0Iy3bW1tweVymROqe3p6zFyamJhAT08Prl27hoWFBQAwBoRp/jMzM+jq6sLhw4eRz+dx5MgRs/dtYGAAY2NjbQ6UUtico7qdg3NJ14cd5+L8oNHV+JTe06YF7X7WEm26b1LXYCdHw5HO4lCFt7kQdXCTKBWIUlGkHFqtllHI5OS5x0cNl21MuIh5nQbxuV+FG2JpTBij4sLTbDUNepOG4X2JHk6ePGnS4G/cuIHx8XEMDQ0hn8+ju7sbDz74IMrlMiKRCHp7e005Kyp7lpOioqjX6wgGgxgeHjaJFwsLCwgGg6jX6/jd3/1d9Pf349d//ddNDT8WguXetq6uLoPw2PZWa6fuYKFQQLFYxMbGBnK5nFHmjIUxjZ7KjYV0ef4WqUTuF2P1jL6+PiQSCeTzefO8UChkYkWJRAKVSgWXLl3Chz70IfziL/4iFhcX8Vd/9VdYXFxEKBQy6eP5fN4k5XBu0JFoNBpt5bp0/IlEKYVCwWTKtVo7WZHpdBpDQ0M4ffo0isUiFhcXDTUMAI8//jjW1tbwf//v/8XP/uzPIh6Pm8r3RIOJRAKvvfYaFhYWcPbsWfT19aFYLCKXy+Hw4cNoNBr4whe+AJfLhR/7sR9Df38/FhYW0NPTg1OnTuG1117D5cuXTUbg6dOnEQwG8fLLL+PkyZN429vehqeffhobGxttMVnGkLh9gPEtNUB0doj++Vvdh6WGjfNa1wrnPsdYK97we01OsrMVtYwbf+dIZ3EQ1wEQO16ku/f5vS4KpYMo9PI0M1H3ZfFzm6PXeJidHafPoiLQvVbALo1CxeHz+ZBKpfDQQw+hVCrhxo0byGaz6OrqQq1Ww9zcHI4dO4aenh6DDFm8lXuiQqEQXC6XKauj7+RyuUwSRyaTwZUrV1AqlTAyMoKVlRW8/vrrhl5jAgNTvXkIo8YiGo0GKpUK8vk8NjY2zIZfIlzNItM4ksu1czRLs9lEV1eXUXKDg4M4evQoEolE2/leNMZEOiwgzHZtbGwAAEZHRzE+Po6+vj6MjIyYklQcg07JPBx3pSI59kpPcS4VCgVsbm6iWCwadMr4XCqVMidQ8z6FQgELCwvY2NgwcSAqfq0kUqvVkM/nMTw8jOPHjxskyWQQZpfOz8/j2rVr8Pl8Bo2mUil0d3djenoat27dMnNvfHwcFy5cQKVSQV9fn9l3p3sHaQDUyLC/OH91rdGg6542Ghv9ju9oozz2PbBbeFeTNbSv9ZmaOOPIW4uDuG5zUaPExaa0j6IteumkQBj4Zpq5TTdqZhdRGheTpsTzWfpcLmIqPUV0Sj0SndGrr9fr+MVf/EU88MAD+J//839ieXnZUEELCwv49re/jY9//OM4fPiwSXrg4ZHPPvssDh06hOHhYdNO7knj3zRusVjMVCznRuDx8XF87nOfQ6vVwuHDh41yO3bsGEKhEA4fPmw89t7eXvPOc3NzyGQy2NzcbHtn3bDMPWM0DmxfJpMxp/rqOHk8OwdlxmIxuFwudHV1IRQKYXNzE8FgEH19fahUKhgdHcXw8DBef/11fOc738Hp06dNMkOz2cT58+eNst7Y2DDzQY+21y0Jmgqunj3jo4wfaoyLiIuUYG9vr8kA9Pv9ePnll/H888/j+PHjuPfee7GxsYHNzU2cO3fOnDXGSh4sAuxyuTA/P49QKIRAIGAK5k5NTWF9fR2vvPIK7rvvPkSjUfMOsVjMVCo5dOgQNjY2MDIygo2NDXzta1/De9/7Xrzzne/E9vY2bty4YeapbpRnLJdzlY6LolGdz2qcNEalbAbZDf6WdC2dPvaxbv7W79VB4mZnRYOO7BXHcN3mQq8e2DUYQHuFAH6nC40LhIsFwB5Kwo5b0dBoOrZm7qnHqIFj9RLVwGpCgCaHsKgtM/OItli9fGRkxMS6+A7hcBjr6+vI5/N76ryph8oYGhVSMplEtVpFd3c3gB3EMjc3h+vXr5usN8ag+I6ZTMYkB7CgLYvqsg+ZJMK+57+bzaZBHc1m0yQoNJtNpNNprKysIJfL4dSpU0in021OBDMc3e6d6u+5XA6pVArBYBCFQgFXrlwxqIcGktl7ugePY2CjYt6b48C2UzTDDoCJ4dXrdfT39yORSCCdTsPn8+HVV181WZlerxd33XUXUqmUSWJZXV3F+vo6CoUC8vm8OVRzYWEB0WgUXq8XExMTiMfjCIfDyOVyyOfzZv8c0+97enrMXHa7d85A6+rqMgWAu7u7TSbqwsICxsfHMTExYSqk2PObNDAzYbke+O40KpyvOsb8P8eV425vReE8VKey0Wi0UdBcu4rG2E6nzNP3FocqvM1FF4NmH5EW0kQLNWpvte/qrSi/Ts/l/3kd0L4xmv/XZ2hSh8YLWB1C6aFUKoVarYatrS243W4MDQ2Zo09IUzF7LZPJmOK7VDTcZKxng2UyGeMJc+MuUc/U1BS6u7vNO1y9ehWzs7PY3NxsOwKEFTB4EGSr1TLoSo0l445UVow1at06Gh9Ws4hGoxgYGDAGhxXkI5EIotGoKWzrdu9UuJ+YmDBH1y8tLRn6jWMQCoUMDQjspGfbSQREU3aiBrC7141j4HK5zD64UCiEkZERU5GE6MTn8yESiWBgYMBsuN7Y2DCVKcrlsim4yxqOGxsbuHTpkol11Wo1hEIhc0QNadvt7W3MzMygWCyadHSvd+dYmoGBAcRiMayvr2N9fR133nmnMaYDAwOYmppqo95oxDX+qmyDJmqQAtTr2MdcL9zuoTE+dejUEHHdKjOha1kzHDl/HLrwe4tjuG5z0QxB3Z9CJUV6RxcgYzBciPQKdfGqAePvNemBC4rfscI6FTHvpSnDmunINnABcgPxu9/9bni9Xnz3u99FMBjEmTNnEI1GTXp5f38/BgcHTVJIrVbD6uoqJiYm8PDDD2NzcxPz8/Nt+7m2trawurpqDFqlUkGjsXNq79LSktkv9fzzz5vqEiMjIxgeHsbdd9+Nw4cPY3V1FTdv3jSJCXNzc5iensbc3JypWA/sVl5QZcdx4h+iPhr5paUlhEIhg377+vrwwAMPYHJyEplMBjMzM1haWsLo6CgmJycBAHNzcwiHw7hw4QKef/55AMDRo0dRLBZx7tw5hMNhjIyM4IknnsDJkycxNTVlNiJzDBgvU3SlSQGdkjg43n6/H93d3RgfH8cdd9yBWCyGWq2GmZkZfPazn8X09DQ8Ho85tZmnTNdqNUxMTODw4cPmLLPV1VWcP38eFy9eNDRmpVLBf/tv/w1/+Zd/aSrrT09PAwDGx8cxPj6ON954wxxxw1jXXXfdhbNnz+LOO+9EPp/HhQsX0NPTg8cffxwXL15EMpnEI488socFAHZPMLC3anBcuSGetLMdu9KsS6UdOe+VItdrdR3wd1zPmtCkqJ3tc6SzOFThbS7qxSm1oEbJDghrMoV6hLoQFTlxodl8Pg2UxsV0UXVK6bUXoHqv/f39mJiYwMzMDObn55FIJMyBhwsLC8jn85icnDQFdimkZZhmTm+eaeFMJtD0+FgshvHxcZP40dXVhQsXLpgK7CzP1NXVhaGhIYTDYWSzWVy5cgXFYrGt0KqmTfPdiXRt423TP3Qa3G632bfFpIt6vY75+XlsbW0Z5UyDe/78eQwPD2NkZAQXL15ELpfDHXfcgUajgZs3b5rqEXfeeadBr4lEAuvr68Y46fja1K7OCTosbOf29rbZkzU4OGg2ia+vr2N1dRWvvfYaBgYGDBImkuMeuGq12kbn6oZxbj3gu7722muYmpoyfbawsIC+vj709vZibW0NS0tLmJiYQDgcNm10uVwmQWdjYwMrKyuIRqOIx+PmPLOenh4sLi62jY0KHTX9jv3Gz2zUpHMAQFvGrq4zTdhh/zI5ifdiRmynte7I9xbHcN3mQvqAyluzmjT5QbObiJo0XgGgYwkgNTx6f/VWdWHyPvw9sBsH0HR6epOk8xKJBB5//HHce++9+MM//EOEQiEsLy/j9ddfx8rKiknpvu+++9BoNLC0tGTOfWo2m5iensby8rLZ31UsFhGJRHDlyhVTMX19fd0ciRKJRHDixAksLCyYKhD33HOPObxwaWkJZ8+eRaVSQSwWw+TkJLLZLP76r//apNMzgYFnenGzMAAT71LjrsZOjcLg4CBGR0fNKcE9PT2o1+t4/fXXcfHiRfT09GB8fByZTAYvvPACXnrpJVy5cgWtVgs///M/j7e//e3maJezZ8/i4YcfxsbGhqnBmM/nUavV8MQTT5g+rdVqKJfLZvtBs7lTbZ5Gn04FzzYjgq5UKvD7/RgbG8Px48cxMTGBzc1NPPvss5ibm4PX68WDDz5oKM7NzU2T3UflzqzNhx9+2MSkwuEwms0mXn/9dczOzuLGjRuYnJzE9evX8cUvfhHvec974Pf7ce3aNQDA4cOH4fV6cePGDQwPDyMajWJkZMS0Y3x8HD09PVhbW8Nrr72G48eP413vehf+x//4H/jpn/5pPPzww/jSl75kYodqSDhHNY6lRorxUV1fFDV4mr3LcmUq7CM+U1Eck6gY9+KGbQDGQDvp8PuLQxXe5qJeIIA9hgdorw5Ao6bJGzba4m9sQ8h70hBS4en1GuBX0XgZjRUXJxHG+Pi4OWPK5/NhfX3deNQsYzQ1NWWKvtKDZ9o7DybkBlkedcKNp0xvJ+21sLCAGzdu4MqVK7h27RrW1tbM0SKrq6tYWlrC1tYWMpkMgJ1jTKrVqlFALFar6IXvqUpIvXYb0VarVdxxxx3o7e012wGYZUdDMDAwgEQigevXr+PcuXO4du0aJicnMTo6iq985Su4dOkSkskkNjY28MYbb6DRaODQoUOIRCJYX1/H/Pw8FhcXTX3EoaEh9Pb2IplMmlgYx5mKVrNOOU+4z4kxqWg0ikAgYE51Hh0dxV133WX6IZVKGYRWKpXaEhzC4TAOHTqEwcFBRKNRdHd3mzT4/v5+kwDU39+PK1euIJFI4I477oDP58Pa2hpWV1fNJu35+XlTxmpjY8McgTIxMYGBgQEzX5LJJFZXVzE/P4/Dhw+bPlcDQGrPdjD4HsBu/EkTOpRNUMStv+fa0KoaNiOia0vXp66ZTijZkXZxDNdtLqweoIhKaQkNMitfr4vVRk9aMQHY9Th5T1I/auh0MWusjL/TrEENRPPaVCplKkfweUyNZsB/dHQUhw8fNoqS6f2FQgGRSARHjhzBXXfdhZ6eHuRyOSwtLZl9XUx4YHq13+83FBqNWDabBQCjdC5fvoxMJmOOqwdgtg7QW2aSBd9NKUBgd38chcaa7z44OIgTJ06YQyvd7p2isvl8HrlcDgMDA5icnEQwGMSNGzdMgsjGxoaJ7z399NO4evUqHn/8cWSzWbzwwgumNNPVq1dx6dIlXL9+3RSyVeXZ1dVlNj8TfdgxTCLLVqtlCgcTfa2vryOTyaC7uxtHjhwxJ1Nz+wQ3hBcKBayurmJ1ddXEymKxmEHddD76+vowNTWFoaEhVCoVJJNJRKNRZDIZDA0NmfjX9PS0OQ+NaJrjmcvlUK1WMTk5iampKTSbTWSzWUOfX79+3Rh+zkWdu5rtZ68TXqvz3jZC6vwxpmln0fLeaqg4N3TNcl3y/5oV6iCu/cWhCm9zocfIzZC6D4feGTlzAG1BdqUlAOzxGm1EZRsj/sbOWtQsRQBthpOp6AAMxdlsNnH69GmkUilcvnwZwWAQzWYTDz74IEZGRnDr1i1zNtfx48dx4cIFoyx41Eh3d7epZ9dq7VRz4OGJr7/+Ovr7+w0KYXvuuecexGIxXL9+3Zzzlc1mcevWLSwvL6NareLy5cuGpqnVahgdHcXFixfbTo5m4F4TYcLh8J5sTcaIYrEYhoaG4PV6MTo6iqGhIZO2nkgk4PF4cPHiRayuruLBBx9Ed3c3rl69Co/HgzNnzmBlZQXPP/88Go0GBgYGUCqV8KlPfQof/ehH8RM/8RPI5/P4/Oc/j83NTXzzm9+E3+83e6tyuZwxLDRcNB4bGxsmPsQxIi1GtEtDwczMubk5bG9vI51Om1ObmfzCCvnxeNzMTQBmztG4eTw7pyRzj9rQ0BBSqRSef/555PN5nDhxAr//+7+PD3zgA3j44YfxzDPPYHFxEc8++yzGx8dNXC8SiZhTnxcXF/GzP/uz6Onpwc2bN7G0tAS3240TJ07g+eefxwc+8AE89thjWF9fN0khjL9xXnOOsd2hUKgtsYgoSml3jj+/U4QUDAbNetF0e9L9pOq1ZqLSkFyvpB35G0f2imO4bmPhJOfkVS9ZqR4uFs1e0jgV0L4fRSkuKplGo2HiSUB7mRqlLey0Xj6LXj4XHn/H36TTafj9fqyvr5vvR0dHkUgkcPXqVZPu3mg0TOZfo7FTkZ1tnp+fR6lUwszMjKncwL1G/f395rgMJlcMDw9jaGjIJB/4/X6DeiqVCpaXlxGPx3Hx4kWMjIwgnU4bBFAoFAx9qlXBdVw8Ho+hPTku0WjUUGherxdbW1tYWVkxVc7D4bA5eoTGPpvNYnFxEZlMpm2jb6vVwtLSkqFIv/jFL+LBBx/EwMCAMaZ33XUX6vW6qbXocu1sIdDUbcZRSHmxQjyVeCKRwFNPPYXx8XF4PB5cunQJ1WoVsVgMmUwGXq8Xa2trWF9fR7PZxMDAgCmlVSgUTOFgvjOr2udyORNzpRKuVCqIRCKmYggRoNfrxd/8zd/gZ37mZ0xSTSaTQblcRm9vb1s5JK/Xi0KhgGZzp2YlK6vk83n09/cjEokgl8uhp6cHQ0NDxnBxLuraUIpQt45wjVG49UT3VXINdlpn/A3Xke3gKINix5Ft59GRveIYrttY7AnPfyuC0gWoKe78o9URtNK70ia6/4v34qLjAqK3qIteDZPNy+vz3W63Oc03m82iXC6bQwBpgKiwmY7e1dVl4k+k3lZXVzE7O4utra228kgej8dUyABgKqrzfC0axGq1ahR3KBTC2NgYlpeXEQqF8Nprr+HIkSM4ceIE3G43/uqv/sooXN2CYFNLGqeIxWJIpVLw+XzY2toyz7ty5QrGxsbMuWJ0OBhTy2QyOHfuHC5dumSMOY1Po9HA6uoquru7ce7cORQKBRw9etTEXgYGBkwhW6U0ebYXx77VarVdwzlApPqOd7wD3d3dWFlZwdWrV82BlpVKBeFw2KS/J5NJ9PX1mXqPrPjg9XqNwzA6OmpoXjoeNJ5sn8/nQzwex9bWFgqFAtLptEm0mZiYwMLCAur1Omq1GjY3Nw1a4hzlHjuWheLG9EgkgqmpKUxPTyOdTuPQoUP45je/abL6OO+VueD81SQLO/5FA2evMa4VTeRQJ0edSr67GjxNsuK48H6O7C+O4brNhQuN6epKJXAxqdenxkqzEYFdxEZkRKWrtCEpDN6Lz6eBsWlITfDgwtc4WCQSMbX3lpeXce3aNayuriIQCKCvrw9ra2vI5/M4duwYkskk1tfXEQqFMDo6iueffx4zMzNwuVwoFot49dVXkUwmDV3o9e4c7MiEBI/HYyqQc0OuxspKpZL5TTwex6/92q8hn8/jk5/8JIaGhrC0tISenh489dRTiMVieOaZZ0x7qHh5j0gkglgs1oaAgR1FVavVzGm+3N/04osv4md+5meQTqcRCARM9YfPf/7zePXVV7GwsIBwOIwrV67g7rvvxtDQEK5fv24oyo2NDXPsx61bt3Do0CEEg0FUKhUUCgXzLJ6vRYWby+VMAeKRkRFz/trIyAhOnjyJ4eFhc7JzpVLB6uqqGWeWkLp16xZGRkYwMjJixplll4rFItbW1nD16lVTCeW5557DxMQE7rrrLmxtbaFeryMcDpt5yfqEx44dM4ky0WgUJ06cwKc+9Sncd999uP/++3Hu3DlTz9Dt3qkmwu0O1WoVS0tLmJqawuHDh3Hz5k2srKxga2sLJ06cwOc//3lTWuzzn/881tbW2pwMUuqMkTI5RUsycQ10clY0wUOvYzKPOonqCCrlruwEALNVgk6SI/uLY7huc6EC0h38XCSKlgC0eY82d64eosa19Bk0TrxekZ0+R2kORXfqRVK4GImYstmsUZ4AsLm5aWrhMYGAqdPr6+solUqIxWKYmZlBrVZDPB43G42JKnggJdumG0n5PjRmrIjBaucTExO4++678cYbb6Cvrw8vvvgi+vv7cebMGWxubuLSpUtYWlpq63vNPmNpqFarZdLPWekd2InRxeNxFAoFvPTSSya+w4oeX/va15DP5zE4OIjFxUVEo1Fsb2+brQCMtZDGpWHc3NxEIBAw6e5+v9/0i9LBLI576NAhU4ljaGgIJ06cwMmTJw3iO3/+PLa3t7G8vGwUKhGOz+czsTkqeNbVi8fjaDabWFxcxPb2NorFojkduaenB93d3QgEAuZIGGDXcI2NjSGRSBijlEwmMTIygmvXriGRSCCZTCKbzRrDG4lEkM1mzfxiKj5rWZZKJeRyOePAZLNZdHd3Ix6PY3V11awPey43mzvVVxh70gxdRVl2UoeyHLp+dH1oMoe9rom+bMeHThmwW5rKkXZxDNdtLDQonLz0FrUsjcaVuChJRdmLgdfTKGn9NEVjjH0or69p8+qF6mK2D+BjDOjYsWMoFotYXl42GW2jo6Nwu92YmZkxKePd3d1YXl42CGN5eRmtVgtra2uYnZ3F6dOnsbCwYFLIh4eHAewabFaFZzHZubk5tFotJJNJNJs7lcpnZmYAAA888AByuRxqtRqefPJJ3H333bhy5Qpee+01fOlLX8Iv/dIv4bHHHsORI0eMB7y0tGRS5xmLW1hYQCKRQDgcNkelaAJAtVrFxsYGwuEwbty4gRs3bhiqisd9dHd3mySJXC6Hixcv4vDhwxgZGcH8/LxBBvTMuXcrEomYhABg16FgejrH9OjRo5iYmMDVq1dx5swZtFo7paueffZZPPPMM9ja2jL1A6PRKEZHRw36Hhsbw4kTJ8z93W430uk03G43stksYrGYoeeYev+d73zHlGH6zne+Y2jESCRiag8WCgXMz8/j6NGj5qDIbDaLhx56CG+88QbefPNNk+5PCjmZTJpTAhqNBl566SWMj4+jUqlgbW0Na2trKBaLmJycxODgIL797W9jbGwMp06dwubmpjnQksaE60LXjjIIiowoRE/MNtVYLuc+1ycdHBp7XkuqlNdz3ZEa1cxCRzqLY7huc9FFpvw3DY8eu8DsQvsUZOXldXEC7dWwScnweYqc1DvsVDGC1AgzsIgQwuEw+vv72zZcEgEsLy9jcXHRxDt4gjETLEjd8Hh7bo7t6ekxFBefT4qGBqpUKpkYF+MjhULBHHTYaDRw6dIl5HI5hEIhxONxHDlyBBcuXEC1WsWbb76JdDqNRqOBvr4+hMNhJJNJXLx40fR1Op1Gb2+vqXVon83FfmMcSOndzc1NU3miXC63HVxZLBZRq9VMZRAiAr4vx0crm3M8uJWBTgrHhvGmhYUFc2RJJpPB2NgYDh8+jGg0ahIimIrv9/tx7NgxxONxEyN0uXaOjSGyVCq7UqkYpTwzM4OHH34YtVoNb7zxhqk9efToUTQaDVy7dg3VahWVSsWgY2BnOwKPceE9adhXV1fR39+PW7duAYA54iQcDhvHpVwuY2NjA4cPH8azzz6L9fV1DA0NmTgYx8XOnLWRkZ3EpEjbTkxSJ41jwLFmjI9jxucqFagb1+17OsarsziG6zYXTnAGpamM7HR0eze/encq/K7TItL9XzRcGkfj4qLB1HtyYWt2VLVaRSqVQjKZNNTT9va2OVvpueeew+XLl5FMJuFyuZDL5cxCX1lZMe9Ar7ter2N4eNhkmVWrVUPVURHT+GmZJlYp5/lSHo8H8/PzWF9fNwp6cHAQiUQCfX19mJ2dxbVr10zJoFQqhUQiga6uLszOziKfz5tzpnp7e7G9vW3q5DHbjfuWNOWaBkoTXzhepDSVluVmaSZJqMOgjoi9V4lbEoi+Njc3EY/HEQgEMD09bcZheHgY9957LyKRiHm/RqOBmZkZkzCjiI7onMkf+XwemUzGxDFpFE6cOIGbN2/i1q1biMfjOHToEG7cuIF4PI7x8XGsrq6aNjITMhQKGeXO7FDGs5hEcu3aNfT39xtKcHl5GRcvXsSDDz6Inp4eAMDMzAzy+TzuuusuU3mjt7cX0Wi0zTBQ7EQkpQI5HvYa0hqPvJ9S5ryvrkc7aYNrSGPM9rOcBI39xTFct7mQgtOAsi5AGhsaDCpKKjNNa9dsKD0Iz6YmaDCUytBKHPyMSpMlkQCYiuy1Wg2BQABDQ0OYnJzE4uKiKVPEM5f+/M//HB6PBydOnGjbfFsulzE7O4vu7m5kMhncuHEDY2NjAHY2ZHOjazqdxsjIiInvtFo7Vd2Z2t9oNAx9BMCkXpPSY0p2pVLBa6+9hlarhe7uboTDYVSrVUSjUfj9fnz729+Gx+PB29/+dgwPD+Py5ctYXFzEqVOncM899+C5557Dpz/9aUSjUVy4cAFLS0tte7xIoW1tbZkxYnYjz0Cj0qfRWltbQywWM79lm9RhAGA25arSY2URzpvp6WnMzs7i8OHDJkU8lUohGo1ia2sLGxsbePPNN7G6umrS9jOZjMn6K5fLSKVSiMVi5j2Y1JDJZFAsFk1/b2/vHFNz9uxZvPTSSyiXy0gmkxgYGMC9996LmZkZU8y4t7cXAEyVFLfbjVAoZLJA+Yz5+XncddddOHToECqVCvr7+wHsGJAvf/nLeOc732lqNnKbAynql156Cb/yK7+C06dPY25uzmxD0CxA0nScz3bCkiIgpck7OXpkQlgxhkZYDRX/TbTMdc51qrFlRzqL0zO3sShFYfPoANo8bf5fPXjl69UT5D21cjUXsNfrNcaHxkvRGz9XGpKfu1wuU3KJC7qvrw/RaNRkt7FyusfjQSwWQ29vL/r7+5HNZs2RH7OzsyiXyya2kc1mTSYhq0MAO/uPms2dqgmtVsukmpdKJVNtYXNzs62GIo8NYdYhy0QxYeDWrVsmvZwZeuVyGa+++iouXbpkSiEpbTs/P2/azyNQNAFG6Vg6D0SzPLaFx5AQMVHBEgXRMaFiU+WpxV7p3OgYEKXPzMzg6tWrWF1dNQiOpzsz+YVno7ECCd+H40bly9hhKpUySIw0Jc9VY6WUarVqMjtpVFieCkDbhlufz2eo4FKpBLfbbc73CofDWFxcNJRkOp1GPp9vy/Ts7+9HIBAw5b2Ycdnf32/216mR4NqhI6aOmb0HSzNslZHQBA1F0Rwb3bfViQmxqXwtLOBIZ3EQ120sinQ42YmOaEAoGgwGdr1BvY6KRVN4mUjQarVM7Ef3bily4GJSOpILTmkVBqI9Hg9GR0fNCcRUqBMTExgeHsbb3/52pNNpHD58GOFwGLFYDPPz87h48SImJiZw/fp1fPWrX8Xdd9+NRCJhMsSYVNLd3W3iMsCO507kpB5wV1eXoaDC4TCA3X1AgUAAIyMjKJfLxgAyxsYKDZOTk8jn8/iDP/gDPPLII/D5fLh8+TKee+45Y2jHxsbwwgsvwOVyGXSksQ6tIsKx4PlX7N9oNGoqf5DqZIalGiOlj/nbZrNpyi8RdQPtZzyxXNL09LTZCH3lyhVzz0qlgtnZWUPLzs3Nobu72yS8UKGTgmRaP+laokFuMh8fHzfV/4ne+vr6MDExYSqesOzTxMQE6vU6isUiYrEYHnjgAXzuc59DMBjEwMAArl27hnK5bAxuq9VCf38/HnzwQZw/fx4nT54EAHNy9K1btxCJRExx5ImJCYyNjeH69etmXXGec1z0iBHdNsLnkbbl2DE2RbSp48uYl+4LIyuhzgfnqtK7dvaqI3vFMVwHRGzaQlFYp7OA+BtmL6niswPTGnRWOpKLjkkS9Aa1eoby+EqlcNFzUbMNPMKjVqshnU5jYGDAVFJgmjWTO1577TVEIhGMjo4aD5/Ze9wcTM+de3iYOt1oNBCJREwyCN+V76milF0ul4Pf7zfV34GdNOtIJILBwUG8/PLLiEQi2NzcNAkEAwMDWFtbM0kCTAqhwWK/MB1dUZju0aMBUedB0RX7W2NnNiLQeUDlxzgSx5Z0KLCbGEAHp1qtmqxBNWikX7VSC4+eIUrnM2KxGFwuF7q6uhAKhRAKhUwtQZ/PZxJ3stmsQWSJRAIAsLKyYtAzD5RkqaelpSUMDg62bbTu7e3F5cuXMTg4CACmHiUNSjqdNlmTqVTK/E6dQlKwpPA0U5D3IgJTY8N7KTqyE586JX6ocdPUfBp/ojVH9pfvC4t+4hOfwJkzZwzF8973vhdXrlxpu6ZSqeDDH/6wqYTw/ve/HysrK23X3Lp1C+9+97sRDofR29uLf/Ev/oXjXewjNo9uoy9Nk1YKwlYmQHt6uyYvaFIAn0fFSqNlLz4NPtN7VXqKi5JeOL1UKshsNmuSAphxxg2wXLzz8/OmkoTf7zfIbX19HSsrKya2EwgEsLm5iYWFBfNc1gVk0Vie1cU+ZR8pGlUDx1RzJiGwcjoTScLhMIaGhkz1jZWVFXOcjNKrmjShVBIzKbWYMQ03+1ydCl0fmtEZiUTM5l6On46hJgMwbsRq9ER49mkCXq8X8XgciUTCUK58R9YxrNfrWF9fx8bGhklWYbUQ0mnATpZgT0+PMVY8bmVtbc1swm61dvb4kSrm3q1UKmX6raenx1CsAMy9gsEgLly4YGoo5nI50//cdJ3NZuHz+ZBOp9uQoaIejhPT3JUu1LXFhBKlGnUdMWbFcdb1a1OPFPYnpdNeTEfa5ftCXN/61rfw4Q9/GGfOnMH29jZ+/dd/HU899RQuXryISCQCAPjn//yf4y//8i/xuc99DvF4HB/5yEfwvve9D8899xyAncny7ne/G/39/fibv/kbLC0t4R//438Mn8+H//Af/sMP/g0PsDB2pBy5jXSUXlBaiEqPVAnvp38DMNlcREQawwBglDlr/BGBEUnQADKGocovn88bo8RYUXd3N2ZnZ1EsFvHYY48hkUgYamdhYQFzc3OIRCKYmZnBmTNncOTIERMTqVaruHjxoumP6elpk3m3uLgIAJicnDReNNvFtPLt7W2zOdjj8ZjNvuvr6/D7/eb9+Z1mXTJFnRU6Ll++jOXlZZTLZYMAl5aW9sQxeFJzMBg0+5CYkUikWSqVUK1WUS6XjTNCpMDMRp/Ph+3tbXi93rZKD+qEcAwUiQO71FQ8HsfRo0cxNTUFn8+HarWKwcFBE5/jgY9Xr141NRvn5+fh9XpNdqHP50MymUS9Xkc+nzebwFdWVsxGZR6YWSqVjGHWP7lcDuvr60in06YyBmNVvb29KBQK6OrqwrFjx4whT6fTxrkBdui96elpRKNRVCoVvPDCC/hH/+gfwefzmUNJOQ6zs7Po6+tDX1+fWT82ncp+0jWmMULOd74DU9+B3f1z9XrdIHw6GppFyvtxznLMOMdYE5NtcwzX/vJ9Ga6nn3667f9//Md/jN7eXrzyyit45JFHkMvl8Id/+If4zGc+g8cffxwA8Ed/9Ec4fvw4vvvd7+Jtb3sb/vqv/xoXL17E1772NfT19eGuu+7Cv//3/x7/6l/9K/y7f/fv2mqaObJLEdr7pjTepVQRP2eCABcvjYytWDslgADttBopQy48/sY++oTX81pScIrocrkcZmZmTK0+j8eDzc1N3Lx50xwmGYlEMD8/b+JJm5ubJlNL6bXZ2VkAu2eBBQIBU31DqS1bGZHKVFSjCp/UHftBM/lYlV5pNNKAvF7pPyZgMGOO33HzMctJUekxruXz+ZDNZtuSZ+z20NjRwemUNQrsboFIJpMYHh422YGcI4wZck5ks1ksLCwYNKZrkuPJGA/Hg89qNBpmvxSzAgG0KXI6FUTXfAbpWSIQGkFe19vbi/Pnz5t75vN5ZLNZ9Pb2ms3tzMSs1+tYXl5Gs9lENBo1WyfU2VKam44Nx4+IivOC60ERM+eNZv3SueBcU1pdjyjivFX6X+epI28t/09pK6ziTe74lVdeQb1ex5NPPmmuOXbsmKk7BwDPP/88Tp06hb6+PnPNO9/5TuTzeVy4cKHjc+iR6Z9/KKK0oKIpenJK2dnxLRo5zYCyg7+sMqFZasDeQ+80fqWeIBeyep9UBpFIpE0JuN1uQ+mx+niz2cTS0hKuXLli0shZgy+RSKDVahm0wywztqtQKJj5EAwGkU6nEQ6HTR3BWCxmUAQVtE1Jd/Ky+UeVlHrO1WoVvb29GBsbQzweR6vVQiAQaPPMlbJj7EgVJuc0M/aIlgCYjbSZTKbN+9bUaU2S4bjpfjtSyGyPx7NTIDedTpvsQM4BUrg8poQlqWiAeOQLqUyOBw2XxmN4hhe3PmSzWZMJStqxWq0aJM8SXCwpVS6XTZvC4TAGBgbM+IRCIVSrVZMEUalUsLKyYujAxcVF4zCwYnw2m0Uul0M+nzfoWxMz1GnROc6+o2Fl32vSk21wyDbQeNlIjffkdbyW9+S46fpzpLP8nZMzms0mfu3Xfg1vf/vbTUbP8vIy/H6/CbRS+vr6sLy8bK5Ro8Xv+V0n+cQnPoHf+q3f+rs29cAKDRa9QdZCY2YTJz+wS2dwMZC64D3UIHGh0kvndRqX0ettD1QRlJayAXY98kajYagZ0kD0wKPRKKampsyG2IsXLyKTycDt3jnqhCnijF1pQgg3EheLRQwNDZmSQ4xfcM8W0YsG1hVJNZtNQ9kpQuJ3WgWDCSZ8x0qlgsHBQZw8eRLlchlf+MIXUCqV2jYJM0HE5XIZNMNDHqkkmYYfDocNbUb6l0Vhgd2Ueha3ZVyIY8QkFdLCbGsoFEIwGEStVoPP58Pw8DC6u7tRq9WwsbGBTCaDbDZr6vQRIff19aG7u7sts41VLtgORdNMiGHsMpfLGcNQKpWwuLhoDuqMx+PGeHR1daHZbGJ2dtZU7F9dXUUqlTLJHENDQ7hw4QLK5bIxqppEsby8jMOHDyMSieDb3/42HnnkEQQCAZw8eRKvv/66yfqMx+O499570dfXZxC/Zm8qUrJRExEzx6bV2q12r0ZIY8xcU/qdMhZ2TJLOpZaRcgzX/vJ3Rlwf/vCHcf78eXz2s5/9Qbano3zsYx9DLpczf+bm5v5/f+btIhqXUhqjWq0aBajZZHYcSz+z0RK9PYoiuP2yoNS7pChVqdl0yWTSFLrlgvd6vejr68Pg4CDW1tZw69Yt5HI5RKNRpNNp9Pf3m/p/AEypJCo2FpgtlUoYHBzEsWPHcOTIEXPIJIPnjP3w/agYWF5IU/nVKDFGwb1sdv+RWtzc3ITH48HQ0BAGBgYQjUZN2r3GMzg23OTKuJRuHWBqPhVjsVhsy1ojNUgkwdgYladmu/E37DOiBh65wr1Z3HMGYE+CD4083zccDqOnpwfJZNLQnXyuIkv2s51FykomrVYLo6OjZtP47OwsSqUS/H6/YVGYMs4kl3A4bOJrdAg4JnROSEsWi0WUy2VTNorXsr4h9w7afWUnYNh0XacSapxbNORsn/a/0ubqEGrfqnOi1KVDF761/J0Q10c+8hF86UtfwrPPPmsKnQJAf3+/geeKulZWVsxu9/7+frz44ott92PWIa+xRWuZ/UMSTnSd5BpPYIUKjXkoZ64UoXp9GphmQoIKlZ2m5WpMTA2YUhtc0DQMpO6oUKgsR0dHEYlE8PTTT5sjTo4dO2YqJhSLRfz0T/80ZmZmsLy8bJIDisUiZmZmjKI6duwY+vv7TVyGVTP4DowvkdrhPNJkFAAGoTImptmQ7GcqGMZXFhcXzdEgTzzxBF555RXMzMwgGAy2nUKs48B+ZzWMVqtlYkWKANSzV2eAR5gAQDKZNBSjptFrkg7pVJ46fPjwYXOYJ+s2ulwukxqvqfvsGxYQDgaDZsM3EVSz2TRV7Dm3fD4fIpGIKZrLk59TqRQ8Hg+y2ayZG+xH9nehUEBfX58xXoVCAfF4HIODg+a4FW6HAHb2vRF989SAtbU1pFIps4Ga48tkir6+PkQiEVOEWGk9Ch0vOgbFYtEwDkRFROkcX12zOqeUGrSTQkiLa8II+1+dAUf2yveFuFqtFj7ykY/g85//PL7+9a9jYmKi7ft7770XPp8PzzzzjPnsypUruHXrFh544AEAO1W5WV6G8tWvfhVdXV2mCrUju6KxKvVkuRDUk1PKjsZHs880HZv3VoSlyMOmNjTuo4F4FSp3tpNVC7hwSb8xI21zc9Nk0PX29pryPidPnjSn2Ho8HoTDYdTrdXMkisvlMunqAIwCAmBQBpWM0jXq7bpcLoOsuNcoGAwaA6MxDv0O2K36TsQyOjqK4eFhgwxIu1EJsV9oaDRuQsXGftNEAR0fYDdLMJ/PG7qOyEvvQ1HKMJlMmsQFIrytra02pMQ/zGzkeNGQMcGEG8F5Flo4HG6jmZlFGQgEzNaZkZERU9exVCoBAI4cOYJjx461xZzojPFYkq2tLXR3d5sqG6RuaZj5XDpQXBvaX9vbuweLclsF26rsgm4DUdSlsSmdV2wzx81OrQd2NzfbcVSNTaszyuc58tbyfSGuD3/4w/jMZz6DL37xi4jFYiYmFY/HTYXtD33oQ/joRz+KVCqFrq4u/Oqv/ioeeOABvO1tbwMAPPXUUzhx4gR+8Rd/Eb/zO7+D5eVl/MZv/AY+/OEP/4NEVW8lipyUrgOwZ4HZdB6wu7lY78OF3ul6RStqMNXz4++pWLWKAz1M8vubm5tthjQej8PtdmNtbc149KlUytB8lUoFV65cweOPP45SqWRiJ8lk0uwj4snIXV1dAGCSHlhVnuhSA+iqVDTZhKiS7aOhVwVORcn3IBJSunZoaMhQ2LrPiPQg0H7ApypCpXmZBEI6j9faikxTqe3kAqWMXS6XiQsRaXCDN+lbYJcK0zGmUWUWHh0fJsG43W6Uy+W2PWB0fmgc1AiGQiFUKhVkMhmT8Tk4OGhKTN24ccNQrbwXE2+6urrM6cwAzAZ2xqeI0Ji4wXilnojNpJJAINBmrDjmNgXO++r40ADpvFGKj2uNCJI0pYo+S9ccxTamjnSW78tw/cEf/AEA4NFHH237/I/+6I/wT/7JPwEA/Kf/9J/gdrvx/ve/H9VqFe985zvxX/7LfzHXejwefOlLX8I/+2f/DA888AAikQg++MEP4uMf//j/25v8PRQ1MJzgTMzgAuLi0nRoXcxAe0UFGhoqlU6cO5W3/p5KjGhD0YAGmNU4ADCp3VRekUgEL7zwAgKBAH7qp34KQ0ND8Pl8WFtbwwsvvIBms4lkMonZ2Vl4vV5Tfujq1atYX183x9rH43GT7EBaigqTwj1A9JJpVNhfgUDAFN5Vw66btxmH4iGRpI9CoZChFQcHB82zNzY2sLa2hm984xtmb5NWD2EyDBUr0TApqHQ6Db/fb2JDRC5sM6nFYrFoaibSeGm6PbMEBwYGMDo6ikOHDiEcDptx4vO1T/gsZjjyOlKX3DzMc8/U4SHdCOzGRIPBoLkn3xuAyWLld+94xztw6NAhfOc73wEAg66y2SyuXbuG+++/39Ccy8vLCIVCCIfDmJubazPALLA7NjaGqakp9Pb2mo3jjcbOVgwmnjBjcz/Kj0yFxjh1vakhI82rWy/U0CvNzt/z3C2tF0ongc6pY7z2l+/LcP1tOjIYDOKTn/wkPvnJT+57zdjYGL785S9/P4/+BylquPQz21ujoeDisMeJC4PXcpHy/voMxsCI8hRJ8d76W6V59LNGo2HiI8BuAoAWVx0aGkJXV5c522l1dRVTU1PGOFLhFItFk/JOqpAZhm6326At0lRUADQWVNCqpGlMtc2KWJROUpqUhkyzOBkvSSaTCAaDCIVCGBgYMCnvgUCgDSGwDTSUdARY6FeNilJLGitj9XelrkhVsh8SiYQ5VobHerANSmsRDdqxZNJx7BsaH6IaRRs06KQVOyX00KFqtVrY3Nw0+7MikQhOnDgBr9eLr3/96yaexkoY5XIZ4XDYVBpRWlONjcfjMRXiY7EYwuGwma+1Wg2ZTMZkoiq1qYyG9gvvrwhW0RfQvt/RTmzSxAsbSela0so0XGtOgsZbi1Or8DYWTcVWr5A0DYA2akppMC5Mes5UQKxAoWWF9FoqbS5IogMGt5Vm4+dUfPQW+ffExIRBBWxjKBRCIpFAf38/hoaGsLq6ikKhgJmZGfj9fpw5c8ZsHE2lUigUClhZWTHV4vP5vDGGDPQTbXAvFakhPfiQCSO2F83ivuwzKhIaTPYfka7H4zEHWjItnRXLGXNKpVJ49NFHcePGDVy8eNEkIDDeQSWuGYw0KDyzi/UEeaKyKlH2dbVaRXd3t6EWg8GgMfi9vb1Ip9M4evQoRkZGDMpYX183sSvOH6JHYPecKMbiiGaYDs8U/kajgdXVVRP30goswA4zkE6nDe1cKpUMaq3X68jlcqagbk9PD8bGxvDII4/ga1/7Gl566SU88MADSCaTKJfLuHz5MiYnJxEOhw1NSMTGbQBsUy6Xw9raWpvhzmazpgL++Pi4OdhU54HNGChVzHR4pdB13RFJ0xAB7fsg+SyuQaUpiQjVISIC59x2ZK84UcDbWLhASB1o8N323johLU3cUERme6rqERJF2B6ftkVRnwbklXbR39GDpEHj0RXMQCX11d3djUgkYk7gJcXEo9pJydAAd6rcQcXK0kA0skRYRBZMaPD7/eb/GpshBcW/NXaisS9mItqljbq7uzE0NISRkRFjCIH2BAzd46O0nToViogV+dEQAruxTG7I7u/vx+joKAYHB00SSzAYRLlcNmdfsQAuEymA3e0R6rgoXWj/aTQaJtMxm82aP+x7GkQarkKhYPqJqfKtVstkRvp8PoyPj5sq9tzzx/qU9XrdVM/nAaDRaNRsjmbf0dgDMBubgd1i1Eond0JMui40AUSZDjsRg+vDZirsGLQad42p2ewKY6mOdBbHcB0AsZWXemGaRaU0hiZX6H2UAuHvtZqEeom8nnw9hRQWFacuYHL3rVbLlPBR2o1KJJ1OY21tDblcziANpkgXi8W2ezClm/ty7Iw8VaRMJCCyojKhEOUwxbuT8SMlxj6w94TxGmDHMNLzB3YzKoPBIFKpFEZGRsyZWnx3trvZbJrKFLwfDS8VHL/TpByOF2NvVNq5XA6tVgtjY2MYGxvDyMiIqV7CP6TmEokEYrFYWxYlx1+z5diHNOxEnooAaZiy2axxMvQ7GjceYZJOp82RIwDMXr/t7W2TqXzz5k0AMHG5bDaLcrmMWCxmzl0DYNAnk2E8Hk/badfc7MyxV3rTduJsWhBAWyk0ZT40lqv3sJGXxpQ5R+moKE2pf3RNOdJZHKrwNhbNXKM3zomv8Q6iATt21SnuReXLhakLmChA04L195rEQCRFKpEnEAMw3u709DTK5bKpDg7AFGOOxWKYm5trQ2QjIyPI5XKGPlpbW8PNmzexvLyMkZERALvp7lTWbre7bf+VGi+iKyISPp+p7eyDUqnUpmxpVDT9nW2kB769vY2VlRXcunXL7F9kIJ7KOxqN4tixY6jX63j11Vfx5ptvto0NaVtFX81m04w5awXSeSDCIV3YaDTMoZo+nw933HEHJicncezYMUMx0zB7vV5MTEwgl8uZEk/FYhFra2sAdostK0oAYM744nuzfc1mE/F43BiyhYWFtr4KBoMGAdKgtVot9PX1mXvNz89jfn4ePp/PJLiMjo7i7rvvxle/+lUsLPx/7P1njKTpeR4KX5Vz6Kru6uo8PTlsXnIDo0VxSVG0aICU4QMfmTyGfxGSIUiGIPDYB7BsmdQxDFgGLMoyLOjYP2RZlGlDgbK8pMSgDdzl7g53cuqZztXV1VXVlTpV+H40r7uveqaGNu3P8ixVDzCYmaq33vd5n3CH677u+1nF8ePHMTIygt3dXayuriKXyyEajWJjYwNbW1sGsxLO9fv92NvbQ6VSsQLFZ86cwbVr11Cv1+0IE44/0H9qgiIJXAMkZXDfEVnQ/aFzqWtR9zI9b40hq3fNNakJz1o1ftiO2lBxPcRNYQUudHczqIUG9Ad9VQApwUI3KIW0KiPF/9VzowDU2Jnb+FwmlFLAqZVOb4l09263a8dzsNhsMBjE5uYmKpWKCXKWgdLkUlU0fA+FV5VYAKCv7qDm3+jv+Q58Hwp/WvYkYLCcEPvAc8OoYEiWmJycRKPRwI0bN6zSPb0oheU4tlRkNBIIVXJcSDnXckUsc3TixAlks1kbL/WgGPdhfUBChGrUuB6Heoe8luPDWIzH40EikbDkbHp5zJ0idNjtdu0AS84BUxl4baPRMLLL1tYWxsbGkEgkjOXH8SfxQvuoVdnpjbbbbUxNTVklf8aU2HQNcPzViFODhh4TmaocJ/VMuSd13Pnug/atSwzR3EOXmDVsR22ouB7ipoqHOSKuInJhPjZNaATQtzm4sdSr4GbRpgqBG5HBYwpMxej5Ny1Geh7RaNS8IpI1WPGD1cKz2axZ6VRqm5ubVhyVwpullZR+DfSfsaXwoFq6APrgLioZFRLqUWlOlyr4cDiMVquFZrOJQqFg531poVwVbiRLjIyMoFgs2rxxDqmslCBRr9ctxlOpVKwYrzIkvV6vJdWOjo7ixIkTGBsbs7mnItG6jYFAANFo1JKH+V6EjNUT13XDppAXz7ki5Eo4l+9HJUQPzev1WnqDrgmv12uHUq6urmJlZcUO61xeXsbZs2dtvkiUoCHBOowk/tTrdUs4ZuoAGYmsuKHxRDXCOO9MLeGa1xJdVDQcJ8brXNiPUCDHjHvZhWTVIFJkY0jK+P5tqLge4kbBBhwF7LnRKQx4HdB/lDtjTW6AmFAFYSRuWre4JzeYXsNNpgQMDUa7yrVUKmF1dRWJRAKzs7MIh8OYnJzEiy++iG9+85v44Ac/CL/fj9dffx1PPfUUfD6fJYnSawFgyauNRsNq0PV6PbRaLXi9Xqvdp8ozHA6bMCRr0IVNCQG5yotCTNl3an0zTra+vo5qtWqVHXgtK2RwHvb39zE2NmbHzC8uLvb1R615zuf29jb29/cxOjpqBBWe18UcM85jKpXCo48+imaziVu3bmFtbQ2zs7N4/PHH8dRTT1ncjNU24vE4QqEQms0mrl+/bkqRnimZiR6Px2oocn1xvqkYeN9YLNanXLa2tgyG5JhlMhlkMhmrIM8Y3/r6OtbX122dezwenD9/HhsbGyiVSuh0Okgmk1YwmPPPc8n8fr+tBSqrra2tPuhzdHQUhUKhj1Szs7Nje4J7Sr0kNSrU2GPTeJYafryOML7uExelIPrBeaURofGuYbu/DRXXQ9wo0GhlstHzcRe2S8pQL0GFuluH0GWK6UZU6MqFJZXA4cIsFBjlchmtVguRSMSEYj6fx+bmph3fsbKygh/5kR8xpZhKpe6zQknh56ZWsge9iG63a1Y1qfEkODD+oYJB44G8JxsJCUwSVviM40+F78Y+6H1wzuhFTk5OolaroVQqWS1DtcI5HxSYFHrRaNTqCjKGpzUi+byVlRVcuXLFjg7hqQsUoPV6HdFoFJOTk3Z2GeeckKomRBNy5bhxzdAjILxLj5jzy8LBumZZ/okeO5UG5yMSidgYswI+KfQ8HTmRSFgNVK/Xi3Q6ja2tLVsrrLbC8mD1et0MAIVFqZQHKQaNbSk0qGvDJWfw/1TsVKbcu9yb7nNoiKp3p2veJQ0N21EbKq53QCMbioJRA7ZqKSvLTwWbbgySI5TgQIFIIQ2gbxMR+gCOoDTmoFAQcSNq/CMWi+HmzZuYm5tDPB7H8vIyWq0WHn/8cbz11lvw+/1YXV01ZVculy3G1W63US6Xsb29Db/fj9HRURNuQL9i4d/qFSUSCfMYaIVTebH/fI6OB70NLV6rCpLjFY/HDX5iEVmSKZh/trW1hatXr+LrX/86gsEgPvCBD1gli1u3blmtQMY1KID5PC2gnEgkrD4iP+f88JyptbU1bG1todvtotFooFAooFAo2Fl3t2/fRiwWw5NPPonZ2Vkkk0lMT0/j9u3b2N3dtcRwjheVFgkuzGHrdDoYHR3F2NjYfXAX554V5TudwwTtdDqN2dlZq+K+vb1tscNut9sHJSeTSaTTaYyOjqLRaGB1ddXy+Y4dO2YeL+N1jJXyVOnNzU28+OKLyOfzOHXqFL75zW/imWeewezsLLa2tpDP5+23LNSreVw0INgnnQf1hFQx83c0RLhPNZVAof9BJCnGcvlceqTDdn8bKq6HvKny0BgWoT33e24m/k06tcZ8NJcIOFJcLgzCgDO/U6/CDTYrzKhBcyYY0+Ltdruo1WoWmygWi0ilUuYRaAkcXk+LnF4Bn6OKkgr3J6/8pL1/p9PBb5/6bRsHwqcK6bksMgobCiG1pLWiASEnAH2FZv3+wyNEqtWqHZq5urqKdruN8+fPGx389u3bRqrQyu7sO9+TnkskEjGvlkqXnihwKAhzuRxmZ2ftZOhOp2OxOFaq0AK1p0+fxvT0NFZWVqzaBJUVvS0aRHq0iOYVqsfNpsQRequRSMQqVtDDU2IKCS+jo6NIJpOIx+OWjM2CzHxfVhjJZDLm5Y2MjGBycrLvfLHx8XHkcjlLfA6HwyiXy8jn85iYmMDq6qqts0gkYsV/+Rn3GOdf9x8VHedJY6RKGNLfcO8pIsH1x99rqTH97bD1t6HieoibyxrU+BP/DfQnK2o8iwKIQpjegxIuAPRtFFqYynTzeDxG9WVsRfOKtL8USnxOpVKx87Yo7FmMlgnIPJKC1Q/oQcXjcVSrVQBHzDEKhE6nY0KYivcTb30CHd9Rf7xeL/7mrb95qNjahxDYHz71h/exBoEjS1ohMY6xG4/SOSH1m/CTVpwol8uo1WpIp9P2WTAYtNJFrFrBGoB8TzIJGUviEfalUskscM4LadiFQgGPPfYYAoGAGQpupXwqikKhgGg0anX7EokEyuWyvY8mbWv8zx0LHTdNwHYNGJIy4vG4nc3FGKLXe5jOkEqlEAqFkMlkDH7kvcfGxtDr9cwzIlzK2Gev10M0GrVjV1iIeWNjw+6xsbGBYDBopyEfO3YMa2trWFlZsfhSo9HoM/6UlOHuPb47FbxCxgrv0eDT8eA46x5WiFDHddgGt6HieoibYuj8v7KSut2uJWi6+R5MzASOYL8HbQRazIrR85k7Ozv3QR1K0tCYmtLOeXwGc7FmZmYMErp79y6efPJJq3AwPj6ORqNh/c1ms0in03ZytsI3WoWDSsLn8+En3vwJwAMToMARs4+W8R728JNXfhKBQAB/8tyfmMCit0ABpB4GY00uzVlrIZIwQuXO+xwcHKDZbNp5UTMzMwiFQtja2jLCBu9Hij+VzM7ODvb29vD+978fY2NjqFQqdqgm4UDGq0qlEl5//XV4PB6cPHkSP/dzP4doNIpYLGbszIODA+TzecRiMaytrWF9fR2Li4t4//vfj7Nnz+KVV16xslrqPXHdcX5ZDYPelI6zKjQ9lSASiWBsbAzpdBrr6+uWJkEvkmNDxeoqiFgsZicIdDodi6NtbGxgbW3NYnydTse8tFwuh7m5OVy6dAnPPPMM9vf3sbKygmq1imvXruF973sfwuEwvvzlLxvxRcurKeStMSwaZvR4tb+cf64l3ader9co/BpHJCSs3hXX25BZ+OA2rJzxEDduCKW2KwtN8XHF0rnRuPm8Xm+fQNfAskKHrH/HzzUfym0UKhr7otLSCgOMTWxubqJaraJYLBo7sNVq9VV059+MMekGJ81a35P//4k3f+K+ILYqe7OWfUfC9a++8Vf7xlPHhUJavTEli9AjCYfDVgex3W5jfX0dhULBisem02lLeB4dHYXH48Ha2pp5nPSy6DkxXsk55UnRPKyR55slEgnrK73UD3zgA4hGo7h8+TJ8vsOTmU+dOoVAIIBKpYJqtWqJ1gDsTLRQKISJiYm+WKUyKTVuxd+S9s74Iv+tECP/rx6aVnJnqSnWH9R3Z26XeoC8Xu/DHDGmWDDelU6n+xTIxz72MXzqU5/CRz7yEWOu+nw+ZDIZjI6O9jFidQ9xTegfXetcC6rsOJ8PIlmo166Kjx4Y/1bjcdjub0OP6yFuFGjAURwJOMLDe73DUjuaWMzfAUcJpep58XtN0OU9dUNSWNPCVMiRFrbGnLRfhO4IB16/ft0YVpubmyZ4rl271hdHiMViCAQCdkJtqVSySuusnuD3+/Hpu59GIBhAYvOQgNHzH+W+KGTDMbB+oT9u8JFXPoKvvverNpYuHKYBd44f42okcUSjUezt7eHOnTu4efOmCf4LFy7g/PnzOHHiBCqVCrxeL7761a8iEongp37qp1Aul7G4uIiNjQ2r48f5TiQSOH/+vCVnt9tt5PN5HD9+HDdu3MD6+ropywsXLuDDH/4wzpw5g7m5OXQ6HXzpS1+C1+vFiRMnMDU1hVarhf39fWQyGWxvbyOdTqPdbqNYLKJarSKfzyOXyxnbMZvN3gcBsrIElRI9eoVL6dlXq9X7BDkAI3YEg0HzqKnseD9W9tjb20M8Hsfo6KjBn17vYb4X43Y8mXh8fNzO4trb28MjjzyC69evo91uIx6PW6UUJRmVSiVkMhmcP38ey8vLpkA0AZhzrt6fa8i5sVCuJa4nnuXGhGg99FONKpKjuGeGMa7v34aK6yFvau3pYtZYD9BP4lBIUeNNKpjdGI+rGJXWq54dcJTkC6BPoKnC5Hf0ukhbpvXeaDRQLpdNqHDjs+I6c7AY36HA+Zu3/iY8Xg983v4TcPmO7XYbPfTg8/ruEzJsOoYfeeUj+NL5L/W9KxUgGxW0KjX1MGu1GsrlsiVcdzodnDx5EqlUCqlUCisrK1hcXEQikcDZs2ftfUZGRlCpVLC1tYVyuWxECK/Xa8dzNJtNo66HQiGriuHxHFa9f+SRR+xk4WKxiHQ6jU984hNYX1/HysoKLl26hFgsZjEkejj01tbX1zE3N4fR0VE7WXkQO1Uha863eu66Plj0VskvVHZsNAI0T5GKh+NKJakQdrPZRKvVMoYlk7Sr1SpWV1eRzWYNaksmk9jd3cWXv/xlg1gnJiasbiJTL9hXrluNbeo61rWjMJ7LMnRTRzS2xXuoQqTC597Qew3b4DZUXA9xo2CgVUfvh98BuM8qU4Wi37kCXoUwBbUqKJedqEFmPleVof5x2VNktyUSCVy4cAEvvfQSer3DArqkuTebTYv1sGKC3+83QQt8L37l9cDr8fYpbvWM7I9nsLIfZMlSQCozTJW/C3kpXNntHiYH1+t1s5ZJoCBp4+7du7h8+bId5ri9vW0xD1bHZ7V0lj3iQZqtVsso6UzCJjuSFTZYRX9lZQXj4+M4f/48HnnkERw/fhz/7t/9O4yNjSGVStl9Go2GVVlfXV3F2NgYcrkcNjc3USqV+hirTMqlYiezT9mlGgfkXPAeHA+NjfI7oJ9YRKVNr5seJ9MUqKyo3Agjk9G5tbUFAObV+/1+HDt2DG+88QZ8Pp8dAdNut1Gr1ZDNZi0FwIUDXW+R5Bo3zslxcONybC7t3Y1b6z4mHK37a9gGt6HiesibWmAasFUMnBuBsCJp1m5w2WUt+XxH52lROLER6qFAUs9LN5cyHKk8GLxmBfALFy7ggx/8IGZnZzE6OoorV65gcnISFy9exPj4OHw+n0FYXq8XL7/8Mq5du4Z4PG4V49vtNn7qzk/BFzjyfOjdsC+u8HAFRLfXhd/rv4/G7PV6jcVG2j4FKFlvbvIy++Dz+ewoj07n8Dwowre1Wg1Xr17FK6+8gmw2i3v37mF7e9sUVaVSQalUwsjICFKpFNLpNKanp610Ua1WM0KG3+/HyMiIxWNIUPj2t7+NQqEAABgdHcXo6CgWFhaQz+cxOjpqAjYcDhtl/JVXXrF5LRaLKJVKOHbsmCmIarVqLFD3xF+OrZbN8ng85h0CRycOUMm1Wi0Ui0WrJaiMRaZrEJLM5XJGAKGS43Epm5ub2NzctBqM9LYYT3z00UexvLyMQqGAVquFhYUFZLNZjIyMIJfLYWJiAhsbG0ilUlhbW7NqHqlUCtVq1ZLklX3L+We/uTfoTbLvnFPXMOI+4jxwPHUfcu9wbvn50Ot6cBsqroe4qcdACxhAn5KhFUwlpZ6ZS8VVwaPenAaI+R2taYV7+J1apqrs1CNrtw8Pc3zkkUfw5JNP2lEWpEYr8YKbmV4AKyWMjY2ZgPs/b/+f8Pn7CSh8pln63Q7aB/0Jw3x3F6ah1+QqbR1PvV6VIqsz0AtjfIUCtt1uo9lsYn193ZJ7KVBpKDQaDQDACy+8YKxEjpHP57MCsRwjVp4gnMh8JdLkNzc3TTF6PB5sbm7acSq5XM6o9Z1OB9ls1qjfnKt4PI7x8XGLe9GrY0zGnXuFpimU6T1RQOsRKPQm+S5MH+C9GDukQcG13Osd5rJVq1Wsr6+bcbS/v49oNIpIJGJMQub70UvlAZLBYBC5XM7qVFJBsc4kjTyd4we9p8LuXB9aJUP3Eb9XogjXm+4phea5z1W5Ddv9bai4HuLGjUyF41ph9ApIoqAwBY6gQhci1I1Br4uCQguPugrTJX70wXK9foYhld7e3h6efPJJnDp1ypQhK1msr69bfcFms2mVKHw+n5EwEomEvQsZgXy2wii07NudNtoHbcBzlOeksTfGvVQR6djyHfQsLqU1AzD2ncK2jM20Wi3zhGu1Gmq1GtbX143qv7OzYyWIZmdncerUKTz22GPmYWQyGROq9Co4Z+FwGMlk0ry+SqWCnZ0d8zZIFy8UClhYWMDW1haSySSefvppK7HFXLlAIGAJ3cpuzGazOHHihHk16s2qYFfBrYqK3hNjXCqwWS2D93N/w7ni2CrJZmtrC4VCwapt8BlUGru7u5a2kc1m7WQBHijKsdEyaR6PB61Wywr+0uvR/aGKle/K2BzfT9mBNHpcJIKNn7v7R9cX9zv7MGyD21BxPeSNgpKKQ+E44JCp5XpiGszWeAKv0c2lrEG18FXhATCBoaQF4EjJaVyLibU7OzvI5XLw+/2oVComsMLhMG7duoXx8XGUSiUEg0G8613vQiAQQLlc7juivVwu49N3Pw1PwtOvLNFDr3sI/3Xah5BTDz34fd+rDO+BETUC/kAfC5LjSOFITwQ4quvHPDElHLgxRlr+JDOwJFU6nUa1WjV69tNPP41kMmlJvn6/H5OTkxgbG8Ps7GyfgKxWqyiVSrh9+7adK9XtdhEMBjE5OYlIJGKwXzQaxdmzZ00gLywsYGNjA7dv30aj0YDX68XMzAx6vR6q1SpyuZzFetS7qdVq+LM/+zPzPvL5PIrFosWy1MgJBAJWYFfhLsK2Oh5cDzQGisUitre3sbW1hd3dXYOGqbBYcYN0+Fqthk6ng7t376LX61meFRO5qbBY23J/f9+MgHK5bLGwYDCIq1ev4k//9E9RLBYRjUYxPT2N7e1tNBoNHDt2DCsrK7b21UhRqE8NQ91zhI8JLav39P3IFtzHVFLcg3w22avDdn8bKq6HvCmcpTAfvQZVTC68weZCHloRgQpHax4qVMENqLRwJTuwL0qnZyItISJSnKn4EomEnblE2jM36fb2tsFTGxsb+KmFn0IX/WQJxqs67Y4pMUJP/oAfXs/3+tPrwuu5/wh63sMldmhAXBWcCmbX8+X70/slFEYBzDypdDqNZDJp8zU6Omr5RoTxVlZW7FiPe/fuYXd31xRXIBDA6OiowV2Tk5PI5/M4ceIE4vE4EokEJiYmLB5HD4fJtaznl0gk+ooVd7tdJBIJ7O/vW45drVYzSFOTfimYOWZqxNBjorDnmNMToVfTarVMqQNHxBf+mx5Xs9k0BUdmJcePhgXnZWRkxLxcshN58nG7fXjgZ6VSQSKRQDabxcbGhik1ply4xp1bMYRKRteKvjs9Nv23KkE3BsuUEjfJ2L33sA1uQ8X1kDda+RQW3ByKl3PTuZUy+Ht+r0eX00pnLIO/ZQkhVZLMvdG+UODSStbcJyaZPvvss/D7/UYXBw69kmQyaeywc+fO4ezZswBgp+SOjY31HcOhDC5lXymxglUJlEBCGIcClYJXlWy328Un3vqEUeLJDmQxYgpsMvdarZbF4zi+Wgex0zk8lZieYy6Xw6lTp5DNZi0lQOfsjTfewNraGtbW1ixGxVp7ymxrtw+P6uC437p1C8FgECMjIxgZGcHU1JSxFn/0R38UOzs7eOONN/Dmm29ifHwc8Xgc6+vrOHHiBAKBAEqlkiXw0psksSSfz8PrPTyheGtry85JIwFI43AkeTB+SUXF9Uhok99tbW1ZHLBUKgE4NBJI7KBSIsynMVjS4AkTJhIJpFIpS2AOh8N23hmLLEciEWQyGbz//e/H9PQ0lpaWcPHiRUvivn37Nt797ndbjUcqEiIM6jVp3IkKyOfz9eU1ck3w92rk0GtVkofGVPl/NaiGbXAbKq6HuKl1r9YfLToGtd34lcZ/lJyh3hPvw+9UoKpCdPPEuFHpnQFHCccKL87NzeHEiRN9AogKs1arodVqGduLhwYSVuK9/6/F/+uw/15JrvZ60OkexZ/8Pn9f7IL90fdm3pkLf1KxcSwZb9HvFMZRKrOSVkj5ZvmtSqVitfOUgg3AKm6wevsbb7yBQqHQd7y9Bvw5vxRq/D8A8yZqtRq2t7dRqVSQzWZx9uxZjI2N4eTJk/jzP/9zrK+vY2RkxJTsyMiIzSGp4YVCwbyzZDKJ0dFR5PN5XLx4EaOjo+Z5qeCmEuV9uWY5B4QUObZerxflcvk+Zh3hv06ng0aj0WdU6FjwOgCWsJ5MJu3evV7PjBPCv4FAAFNTU+Zp0uigoiN8PDU1heXl5b7zs/geg/Yl14h63sq+1NiX/oZjqEQPXqMkKUVUhu3+NlRcD3FTT0OVlkIXCuPp9+p5uGQGKim9hhtOvTbXc1MKNJsLH5IZeOrUKYyNjWF9fR37+/tIJpOWREvPgUeBkLRAwUVoCx4hg3R76KIL9I7eSRNUKSzYRyVyaL8HjQcbFR4ZYi4ZRsdWlTrhrV7v8HDLer2OVCqFTCaDZDJpNezoQfZ6PSwvL+PatWsWj6I3q/cnjKbGA3B0pAuZfDy4sVarIRqN4tFHH8Xp06cxOjpqpy5Xq1X4/X6sra1henoa2WzWIELCdiSQbG5uWsX7VquFUqmE6enp+7wA9TKU0cp+s2IHcJik3ev1LMdN1zGhSGUmqpGg1yq0q+NA6E9hb6/Xa6cfU5ES/qzVasaaDAQCdlYYY2eqnDRXy103CpWr8ab7VX9D1MRlL3I98+8HJc8P22EbKq6HuHFzDiJEcHOoIFHKrgpAoP8ICr3HIEWnGxE4Kj7Lz0hKUFyfAfhms4m//tf/ujHZrly5gkQigfe+973w+/0oFotGlX73u9+NXq+HK1euGEy1vb1tMJzf54fH64EHh2WdOt0O2vvfYw36/JaIrLE2/aON/VelxnHx+/34P278H/i9C79nxkKr1bKYlR5eqTlIzKVisVgmIodCIZw/fx75fB6RSMTmj7T1QqGAN998E7Varc/yJ0OUY6sQLyuKMEGZxYHpjVDZVioV/NZv/RZmZmbw2GOP4b3vfS+Wlpbw1ltv4eLFi1hZWcHBwQGeeuopZLNZrKysIB6P4wMf+ADq9Tpu3LiBlZUVLCwsYGRkBKOjo1hcXESr1UIqlUIwGLRDLTV2RY+J648xPk2a5hlaZB3Sw6NC13qEmuOlhzHSO6aRRehQve5wOIxjx46Zd6ex1EgkYnlba2trBoMmk0kAhxAh6z8qSYP7UL1MNeI0IZvrSkktXD/cc1yHin5o/tjQ0/r+bai4HuKmno0qFlqT6h0pXAf0V87Q+JNr4T3IQ3OhD4UtNPhMttfe3h7C4TDy+TzGxsbQbrexsrJiMFosFrP7kvqeTqftbC5a2oyfsP8eHEIn3d7RZtZyThpHcC1VVfDqpemYDbpOGWMcZ/ZPPTx6WlpPkvlWrObAGBwArKys4O7duygUCsb6YwqBelicPxJdxsbGkM/n0ev1cO/ePaytrfXNNd+fxW6bzSZu376NZrOJD3/4w8jlcjhz5gxWV1dxcHCAV199FcFgECdOnLB4UDabRSgUMlJEt9vF9vY2ut0u4vE4Njc37QRlkkq0wK6Ou8aHut2uxUx3d3ftuBXGvhT29Hq9RrJRb0zXpCpqAJZeoUekUEExebndbls1DrL0mMvGY1ZoCPD8M46vQuKaYkJFqV45v1OYUL14jVPze3pZbuxsECIwbEdtqLge8sbNoYfuAf3HRihGzk1DYUKl4GLqujEUf3c9PCoD5hXxHtzoHo8HzWYTjz/+uFU9uH79OqrVqm1wCoiDgwOEQiF89KMfRTAYxP7+PlqtFgAYXNXpdFCr1fCZxc+g5+tZYdyDgwO0O4dnMAUDRxVCOD4U+g9iDaolTCFLoUSPikQDCkBa0cxz4ri12+2+Y0hqtRq63a6VEPJ6vSiVSjZvd+7cwcrKCr7xjW9YsiwtfFZs1/qPTMrudruYn5/H888/j1OnTqHb7eLixYt47bXXsLy83Dd/jN94vYcJ3nt7e1hcXMRXvvIVzM/PI51O45FHHsHS0hIuXbqEixcvYmpqCs8//zzy+bzFLoPBIE6dOmXJu7u7u1b4l59xzOl5hcPhPlp/JpNBIBDA+vq6FcylJ8px1IRvPSaF68YV5lSU8XjcDA56dKxUwvqPuVwO9Xrd8ury+TwymYxBpWS28mDJdvvwxOZsNmtJyfV63Z7BedFai6p8dK8Q8uWaIxLhxq94+oHei+vT3ZfDdn8bKq6HvNHzUQ+HC13xcF6nEKIGwF0vSpON9TlqNfJv9dhU6PR6h4m/Y2NjGB8fN+YhhTarjPd6PYtbeTweg4uq1Sq2t7etnA8ZVZ+59xl0g9+zZD3fS3I9aKPXPczJMivYc0jWYHOD5Qop6TgC91f9Bo6Umlr8eq3GAZnAq4SByclJi+3UajWEw2E0m02srKzgzp07Vo+RzDIqXAB9lr3GTVhlghBWKBSyXCV6L4S22F/1gOg9cX5GRkZQr9ext7eHhYUFq+c3MzMD4CjO1Wg0TKnS46SyovKiMbO7u4uRkRHEYjEzZpRERIXI2otsqgjoCamhwXtwvHg6MNe7etFc8xwTnqbNwsQci/X1dVNyOlZM8C4WizZHXAMksrjeEPejGpG6zzTWpX1VWJtepxs71fU3bPe3oeJ6hzQXynLZgbyGf6vVSiGo2LpuIOAIqnHjQOrVsBE+63Q6mJ+ftyRjN9YUDoextbWFQCBgybikrrMsUqlUsnJIkUjkUFB22vB3/eh1e4BX3r3XT5bweY9O93UFBSEZzTfScQD689Ee5LkqAQGAUcAppHkdYbNOp2OV3ZmXtry8bPX/gP6jMRjToXLiHJKq3m63UalUUCgUsL+/b9UjmIDMU4CpPBkj4/izXNLu7i6mpqbsDK1O5/AE6Tt37qBSqZhS3dvbM9YnBXan07EyUPv7+0ZsoCBmGgHTBmigkKauUBw9GZ/PZx6YQrMaD+KcMHdN2XZunJJzH4lEABwyPQOBALLZrFUUuX37NlZXVzE1NWXPoNccDoeNxEFFpGkoCjezr7rX+B6qtOlFqtGj6IYLc/M+CgMPKfGD21BxPeSNuD6AvpNS1ZKjoOLn6nWRSOAKbY0daDUIFSKqCBiXAA5zsUZHRzE+Po5EImFeFgVWMplEpVLBvXv30Ol0cObMGfPyOp0ONjc34fF4sLW1hStXruDatWtotVrmTXQ9XbQ77b4jNdgnfXda4Kpc+E6qtLq9o/wZVfKuMOJY7O3t9R0nAhyy4prNptGsmUNEIoDX68X29jbW1tbs/K39/X0sLi5ifX0dwWAQJ0+eNGFNeCuXy1nSsPaPZ3RxbJvNpvV3cnISc3NzBh+zcjoV59tvv21ls1iBZGdnB3fu3DG2IyEyr9drfeY4sHYfAIv5KHmASoFwqsfjMYjP5zssOnxwcIDx8XFcuHAByWQSN27cMIiOa5EeHeE1epVk0iaTSRPoZABynjnvSs6gd9RoNBCJRJDP5zExMYFLly7hpZdewttvv40TJ04gk8lYFZGdnR10u11jYMbjcWxsbPQlW3NduUiEC9dT2epaVSNIP9/Z2bE1yfFVZT2Mc33/NlRcD3FzISv3c41VqSDWa9xNM8jzUuKFxtMU2uB1u7u7OH78OHK5HKLRqOXdHD9+3E783draQqfTwcbGBiYmJjA+Po50Og3gsHL4ysoKut0ulpaWUCwWTRlQMLJcU18cDj14PYOp+JqkqhCSKt6AP2AGgFrsajkT9mHuEe9JirsWA87n88b0Yw2+UqlkygaAVQzhfQ8ODpBIJJBMJg2+SqfTFl8iHEw4lUqT80KBToXBRq+Tx79MTEygWq1aHhXTAaiQk8mkHXOyvb1tR6ooWQA4ot0rMcLNMeLYU1EfHBxga2sLrVbrMB75vfgYDSkSJ7rdrsGG/L3G+ThP9Og4prpW+VtNF6DnyMRsr9eL27dvY2FhAdvb26jVaqhWqzh9+rTN7dTUFOLxuMXsNJ6sBCdNClfviuuH+03nUT13/k6NRa5fhQsVchy2wW2ouB7yxo2qXoVaZ+qRqdLS0jtsGkdRQc/mxoG0kXEViUQwPT1t50Nls1lkMhk88cQTdhTGrVu3DJ7K5XJIJBJWEZ4We6VSwe3bt1EqlWyjU3ihi/s8Iff0Ylcx8f8a/zNiSzDQB3+q0netZcJu9CgAWAkkelqZTAYTExPodA5LEzWbTTvhFjiMm5DtpgKNeUTRaNS8I1UUVE6qiLR+H70ffu/G6Oi1zM7OIplMWnFaEgxIDeczkskkQqEQ6vU6isWi3YdVQDQWpzmD7Dfn0+v1WsHknZ0di/EtLi4in89bJZJKpWLK1yWjsI88gwtAX61EGjYK31GBtVotU847OzuIx+OW2N5oNMyjZP4W2ZJer9eqm+zt7WFjY6OvAgrX2aA96f5RRaNMwUEQtAt1Kuw/bP99bai4HuJG4aswGDeCMq24kQH0CTQV4FphgwFpegLcxK7gB46EYaPRsNygc+fOYX9/H6lUCk888YQJfAo0wkNXrlwxyAc4UgAjIyPY3t42z4uUagqSwN7hcSRkkO3u7cLr88Lv8/cpXvU21WPk30xKpVClcHQp83/w1B8cwj77HhNcoVAI+/v7aDabBv2Fw2GcOnUKmUwGrVYLGxsbKJfLfQdDRqNR7O7uolAowOs9pLsTUpycnDT4iwpELW1NnnbnhveiglRoUeN+ADAyMmLVLwKBACqVChqNhsFw1WrVKsTTs6O3xvfgOuJY6eGNekYYSRX0Puv1OrrdLqLRKIrFIjY3NzE1NYVjx44hGo1ic3MTBwcHZlixIDNzvVg30K2LqOxOnXOPx4OlpSWUSiV7j3Q6bffZ3t7GrVu3bD1tbm6aAmftxosXL2JhYQELCwt9cVr13IH+5GElNzG+yBilKjvuCSp6KinG1shkBfoRFj5jmM81uA0V1zug6YJ2rTK30ClwlKhJSx/oh9P4/0EJkxog1yTLsbExnDt3DnNzc0in03bGEXCokG7evGlJpufPn8fExAR2dnawsbFhz2MMjFRkzYNyvSHmanW7h8V0vV4vvL7vVQlBD97ukfDQ91Sl3e60+zw19eBcsgt/Sw+DBAtWeggGg1b9o9c7PICxXC5b1Qsqtl6v1+cZBQIBRKNR89RIxtASUKqE+TsqLTVKCJ1xPKmIdV1w3tjn8fFxhEIhizvRO9T55XN1DNzKDQrdstoE42dK4lCiCXP41tfXMTMzg0wmY3l7PFnZ6z2qru7xeKxmIb1dzq2+n3qaFO6ErOkBM+2AdHnWUgwEAqjVarh8+bLBgiSdhMPhvuNYuDZcD0q9Jr6zQs5UVgrJ95GKxBB1S62p4nINkmE7akPF9ZA3FWgA+jwrrTdHhaNCjpuKlvmgWJAqLmVsUZjy/j/6oz+KY8eOwefzIRqNIpPJoNls4jd+4zewsrKCUqlkhUs/9rGP4ZlnnsH8/LxVAudZU+12G8vLy7hx40ZfDs/Ozo6RFNqtNnq+nlnGB+0DhENhu7bT6aDb6/YJMcafmOzr8Xjg9RwqO31HWsgq4CnAGPNZX1/H2toaIpEIRkZGLE43MjKCVquFpaUlbGxsWEmjmZkZU1pkGDKfa2RkBPl83mA/V0FoMVZ+zj7yXup5U7GysgTni3Ov8UxWlE+n05akWygUjBwDHJJAXMWuxg4VY7PZNGVFr4GEETWIANhYZrNZ1Ot1S3eYmJjA7OwsNjc37SDLTqdjNH8AptA0/9Dr9VplDYULCd+ySDBzseLxOBqNRh+jUT0lO0nge2PJ2JaWrdIx5P7Sfcg5ofHAOVGjSPcrqfn8nmtQ0y/UKBm279+GiushbuppqWeiwkLptGqZ0nrTuBiVkMZV1Nrn/xUyJDORR8GT0l6v13HlyhW89tprBj/yu2vXrmF2dtYUHftHFtfy8jJWV1f7oD5CkvTMyJY0peM92txerxfdXhe97tEZYEB/4Nvj8fQdPqmKWeEcJQVQQJfLZWMV+v1+jI2NIZvNIhAIYGFhAcvLyyY0AZiyVANCBS4PMVRI095DBJ42TWDV/rNxPJURqopY4yhcF7FYDKlUCo1Gw8aA91TYUj09jnkoFDJaOmFOjhs9X8KYeqAoFQ7jXqwdyKR2Vq7QxFzgiEGrMUyNc/Ea1wg5ODiwOCV/m0wm7dw3vqeLKuie0TQHjaO6XqgSejjOHH/XWNJ7qffGa3U9UIm6zxu2ozb0RR/ixk3kfubi6C6MwgWviagUUhrodgUcm7LHmNSZzWaRz+cxMzODdruNhYUFvP766xZQ7/V6qFQq2N3dxebmJra2trCzs4NIJGJnI9FKpmLQXCt6hZoDxWoZvd73Do1UWBNH79Hp9hehpWfCnCb9TJWKS0U+ODiwM50Y/xgZGUE6nTZhvLi4iEKhYLEdFeSDGoWxC/vo+OrcaKMnpkpX50iTfV3ChktuoRJJpVIWZ9N78f4cJz6fXiGL7iqJhnlkjAfy/K+Dg4M+Bc38PFLmk8kk0um0PUdrDupaVsXIsWq1Wna8CcdH62gSnmRMr9c7rOTBOJQqIt07QD+7j0qEe4r9USXnQs+DUAvNz1LlpXFqvq8SXzQ1Ytjub0OP6yFu6jUpnASg73gHvZaWsG4+Wu9uAqcGjik81YIk5NPtdu0UWo/Hgz/90z/FzZs3USgUjDLNzckj1FdXVzExMYFkMmmFTBm/YEVzVVgUOu12G91OF+1eGzu73yvm6vOj0+3A0/Wgh+9Z3gdtE0Dd3mHV+B6OYgNkLnY6HYSCoYHJrr1eD//xkf+Ixlajr+hrMpnEqVOnMDExgZGREQDA+vo6FhcXcfv2bXi9XuRyOYvTbW5uIpVKYXx83DxGnls1Pj6OVCpl80VhxtN8lTBCAcwxHbQeOOdURqrYCIkRbiN0qrR2FvQtlUrGotP6gArJATDlpHE3KnE9z4tHsgDoOxqExgMPr9zZ2bE+AIenCXB9dLtde2/OIb1njT1RwbDfml/Gqi3pdBrxeByxWAzvete7LI9NY6D0ynjyM1MD6DnrHuLaUaNPm8J9fG/Oh9Y41FigKkb2X4v5DtuD21BxPcTNtcI0juF6S/QaFKbQcjJqiSscxOcAR4JGMX0SFV555RXcvHkTAHDjxg1sb2+bwKUQ8Hq9xpaiUCAzkFRownEsF0RFw/cKBAKAB4elnro99Dw9tPG9/K7e94436XzPE/FKMnWnC6/vSADs7O6g0z6Mhe3t76GHHg7aB1Ztg+PFmna00gktsb5dMBjE5uYmFhcXce/ePetjLBYzgaoJtIyXMVeKlHPOh8JDOtYuLV49NQpPV6DRI3fJJu66oDCloE8mk+h2j2oD8nwwzoHmLDFnTD18zl+5XO4j+Ki3RsXH5Gf2iWeVKQFEBTrXnaZzcG0ppKt7hHGoTqdjycfM5yJz8tixY1bfUWFeGmycM8KoCrmrsmM/9PfKJtTfce9qPMydZzVGNTTAv4dtcBsqrndAo4XrYvK60PX//Lda4/RuKFBUAKrC4/1d7+7mzZt9BBHtA2EzF44DjqowaEmpSqXS91wqOt5PYRgqqW6ni46nY8/v9rrwdo/60+v2TIC12200W0308D0PYO/obC3Cpx548O/m/x06jY55Dt1u147eIJkCADY2NrC+vo5arQa/349EImGkCgojnQeWZKLSci1t9hlAHwzmQlhqGLhEGo63Wu78XmEmjYdS4DI9QBlxGtN0YTF6S/SYisWiQblusq4aSEy65nrxer1WxioSifQpcUUB+G+thsF30bFT1IDxUTJBFeILBoPI5/OYnJzE2tqa/Y590likCxG65cJckobuEx1PhTB1XavhqTFe3cvumhi2+9tQcT3ETYO0iqe78Q5lMfF7whT0fBTS48GGvJ73dunVfH4gEDDyBXNw+DsNohPSHB8fRzabtaTlcrkM4LBKRKPRsPJCrsCk0Psnvn+C//vg/4bH64HPe+TRtTuHVjV6ADzfExrf+3ckfFj0trhZxE5rBwftI29zd28X3gMv0AOCoUPo7P+b/f+wVzpUuIyFhEIhzM/PI5FIIBaLWT3FW7duWaJ0Npu1GBEPvSRkSAXu9/stGZvUeAB9JYsUtlWFwXm3d273H0/DPy7RRL0lJjczb0s9Qc4pIToy8La2tmyt1Wo1eL2H9H6WRGKNQlbk4HNIYGHMSfvPiig6x3x/jovGIf1+P5rNZh9Zx/WuCB8SSuT7sRhxt3tIiSdUx+smJibw/PPP4z/8h/9gzEI+8+DgANvb23jqqaeMGXvr1i2Uy2VsbGyYYeWSKnTfUGEpWsH76zrX/aoGHpUpY5EA+u4zbP1tqLge4qaQAS0xQny06lw4QZUYYSKg/9wq9ahotXPDqSUO9J/1RcHD53o8HoOfqMD29/etsGm327Xq7yxtxH6p4lT4khbu/xv+f/EFzxfsen0HAPDiKObi9XjRCXbQ3e+i2Whib38P6AE+/6FnxXdCD2gfHN6flj8FDqEixuTYN0KJ9ADYlIBA2E0D7oNiFBpPVC+D80TvlOOoc8HnD3rGoDgQ1wy/42ds9OZYa5JnVTH+qJCc13tI6+fc08siPEclqzCjxjEVmlbokd6YGj28nkpUvVB6rupFAkeKg3uE8CQ9M35Pkg37zrlnnC+dTmNsbMzISDwIdXV1FcBRbM2FBPXfGuNST5kKSWF5l8iha8mdr2Hrb0PF9ZA3ClUAfVY1NwUp8iQ3cDMwhqQCgQJJY0uqwID7NyJwdHilemNMQqXwyuVyFi85deoUYrGYVRjnicf0XvRodMJXGizXe8PZuxSA7d7Rce0+7+FBkwcHBxbH8vl88AcOK8wf7B9YrUOfz4cvjn4R/u4RO461FAkBArAj7QuFAnZ2dmyc0+k0ksmkWf48V6lUKmFiYgLxeNwIEXw/zfNReEytd84HPyMxRoUfBaIqKHom9IgJlykUybVDYarJz6xy32q1UC6XUalUbL5d5evxeMy7pPfNNUZFq2xFjR/p9VSyjH3pmqNXqEw8d+5VSdHb42eMX21sbCCVSiESiWBnZ8dyxWZmZrCwsAAA9rvZ2VmMjIzg7Nmzln/36KOPIhQKYWNjA//m3/wb3Lx5057JfvG9adApaqDz6Spm3VMADMVQdGUIEX7/NvRFH+Kmm1oxcYUp1Ovi39xAKngoDFxsfRAdm8JGBSeFvN6TcJQeI3/u3DlEIhE7JJIwXLvdtiM+1BPguwxibn3e/3ljrVnrwViF6B3+35QWvR5fvzXb6/WMdfjFsS/2QTThcBi5XA5jY2NIJBJ9ngyhKFLCI5EIksmkxbc0cK/Pp+JVmjnHix6EkhOUhMM/nDOy/LS6iBtXcZmS6gnpvV1Plx6rz3dYlisejxuERgiPMSOWb9re3r6vXJWuDa4J9UD1OsLXqsSUyODGSXWu+C58L+b5qSHA92JNQs0J3N/fx/T0NMLhMCKRCMbGxjA2NoZkMonZ2VlkMhl4vYf1DsvlMnZ2dpDNZvHCCy/gmWeesfGiV6QxLY6rxhy5H2lcuHtbPTiNU+r+G7bBbTgyD3HjplYoRK04F0qyxFvBxl2B5cZGgP44lwoiDYxrwJnnFnW7XYyNjVnpnxMnTuD48eNW448BbwqjRqOBzc1Ng8z4LIWEuKHb7fZRcqrfdxTX6h0SNQ7aAot1e+h0D5mFJF50e114ut8TJl6PeW4U6sChdZ9IJDA6OmrnOGngnEKW/ad3AsAEF8fMjUOpglBSi+vhqhWu86ZGCxWA0syVsMPnKGTIz+hdqQHk1sAjZEgvk2tEc/2azWZfThzXAudKKfqsKUhoTJN+1ejSfDFCaQpF8xpVBqoIAVjdRPVkCFFXKhU7goVe6MzMDIrFIlZWVgw2PHXqFM6fP281JlutFrrdw3qLx48fx+OPP45UKoU333zzyONvH5175sbvuJ/cmJgSo9hn3k/fTdfAsA1unt47EEit1WpIpVL/u7vxv7xRaOkm5ibRGJfW7FPrXoUArV29J78j5KVEC1r4DMRTeIbDYUxMTCCRSCCRSGB6etqOqajVanbOUyKRwPz8vJ1I6/F48NZbb+Hll182qjIFngodFeJkAAaDQfw/vf/H8rkO9g8OCRcU9L0jGNXv9x/S6XuHCotC+J9F/5l5F8yxeuSRRzA9PY1sNmsCZnR0FH6/H7du3cLVq1exsrKCRqPR541of+mVxONxvPe97zWvTSEfTTbWeSVRhgqC46QCSw0NZbhxLQwK4FMg0jNQyBjoP8iSrdfr2aGTJKLw3yQ+sMQV1w2rVFAxuQqa8axOp9N3bIoShqj8mKhOqJJ9JcmI92etR0KNygykoeH1ehGLxZDJZPDss8/iwoULViNxZGQEHo8Hd+/etbU8OzuLWq2Gb3zjG0Ya0TJRTz75JE6dOoWrV6/iq1/9Kt56662+GoO69izu6j1ikiq8qTFlzqV60OqF/mWBDLe3t60Q939vG3pcD3HTxa9eAHD/6b1Av3el8JFr/ZMlpdi8enW8L4PpvK7X6yGVSuGZZ55BKpWyY+Op4MrlssU6YrGYVQwPBoOW8EqigwuPqPXN/lMQHhwcoN078hAMJu10D5UUcJSETAvX6zFiBktDqZAPh8MYGxuzCg4UJCzPRCGoAkZjKPF43PKfKEBZIUS9x0Fzpv9nf6ncKLAUZlNhqJ+zXxw3XTcUiKpkVYDq+KpCZ94dUwR0vAKBAHZ2dswri0QidnIA51UZj4T8FAVQmJFGGHDkWfF3VJBaukm9QPVG1XslyYUVTcrlslHvt7a2sLW1hVgshpMnTyIej2N0dBT7+/sol8tWKX90dNSq2y8uLuLq1atot9t44okn0Ol0UKvVsLCwYH13x5UxPd13Hs8RkanTOUpN4Xvp+Og8k6k6bP1tqLjeQU2hPW5SFXT6PTez0nAZc3EhFw0S93qH50Vxg3GTTU5O4r3vfa+d4tvtHh4bsrKyAuCo0nUikcDe3h5OnTqFcDiM7e1tJBIJfOc738Ht27ftIEMKMIUHgf4zwzQO8oXoFwza+dndnzWPDd+T173ukVfp7Xnh8/vwz2L/DAcHB4dxuIOgVWf3+/1IpVJIpVIIhUIWxGfpouXlZesrx0zLEfV6PUQiEeRyOeRyOaytrZkHyhgPc4m63a6VxBo0nxx/vpsqGBoYVJ6akKysNY6/q/gYi1NaPfOdON68J38TjUat/1RcClfziHuugUajgWw2i6WlJdTrdezu7pqAZgFfNwZHSJDxTwB9h2PSE+f76xEnPNOMXieVOtcQ1w+hwfX1dXQ6HYyOjqLT6eA//+f/jG63i4mJCeRyOZw4cQLj4+OYmJjAsWPH0Gw2sbm5iXQ6jZGREatd+ed//uc4d+4cXnjhBczOzuLv//2/j0aj0QfLqnesNHjOj8bz1FhTWJHXDiLHDNtRGyquh7hR8Kl3pcpJWUyuh6X0do3buErOteQp1HhtOBzG/v4+3v/+9+Opp55CKBTCpUuXjDJMJeT3+1Gr1QwiImGDhyYWi0Vsb2/3VW/X2nqqpJRRph4lhdTnA59Ht9vFL7R/4fA69IyQAQD/NPxPLb7ixviouLQwLj9nlYy7d++iVCqZkCV85PP5LHmXUBJwmJ+WTqftOXyWC/O4/1dlpvOnf+uc6n0V9lXvSWEmN3eIc6zrSWNI6hkwj42euVL/o9GosT4jkYiN3dramh1jA+A+w0qfBfTXSNT30xiQelVcJ7ouNK6kcTZeoydLU0mPjIygVCphf38f8XgcZ86cAQCsrKzgzp07uHz5Ml544QWkUqk+6PD27dtW2iuTyZhxwnXAueLzdL+yj4RGFRJkcz/X+w5bfxsqroe86SZ2N7kb1HUDwoM2PhMzgaNyNUD/IZUkJPDZfr8fzz77LLLZLNbX11Gv1xGPx5HP542I4fV6Ua1WUalUrKhqNBq1BFUmcmpflYmmXoZCQ67A0xjL5/2f73s/Cr5g4LCKOWnsHCOlgRPGonVO5bu6uoqVlRW02+0+Nh8hKM1HYxVynrdFIeQyyNST4pxyzHWueC29DWUgqnJRj1vHjHOqbDXtA9ePKi9ld/L38XgcgUAA6XQaAOx8K1WC9Ba8Xq+VVEokEsboo3Ln+3KtqVGkioseCMktLjPPVVQa4+M1Pp+vz7NUGNzvPzpduds9LEXGxtMO3nzzTdy6dQuLi4t497vfjXa7bQdUdrtdbGxsoF6vW5X9zc3Nvnicq3T0Hdz8Pc4/m8bIdO6HbXAbKq6HuGnuFHD/sQm6aSmQuHHdmm4Go3n7mWu8jyoPfs6N/vGPfxwjIyP49re/jVu3buHMmTPIZDJ91OhMJoPjx4/jrbfesiKvk5OTKJfLWFlZwdramm1IQkSMZTC+4irkQe8A9OeaUUgBR0e9U0gAsAME6dHRm0gkEiY4Dw4OjE323e9+1057JnuScbtu97AgKwUd4108GFNr6rnCU5UOBbAqLuAI1mWcRBVEt9u1qhIejweRSMQUgxtDIzRIj3mQh+0myirjj5UlksmkedL1er1PgXq9h+WbmCP1+OOP4/Tp05idncVLL71kRA8W2KVQJlOUCo9eESFBXqfwtlLvNRWB64XrieuIJI5er4dGo4FyuWxxqw9/+MNYXV3F8vKyMWQrlQq+/vWv48UXX0S73UY+n0e1WsXdu3exsbFhHtSJEyfsIFGNa3HsNcFePyOKoXAi9zfXJZ+hdQ8HEW+G7bANFddD3NSac61vF4JQuJCfqcVGK1DhFFeZaVyB95ydncWZM2ewurqKy5cvo1ar4dy5c1hbW8O9e/cQj8exu7uLVCqFeDyOeDzep0Dq9TpWV1cN5otGo3akiUtk0LibehKEpFQBsZyUKmq+LxOTKdiZ1EphHI/HkUwmsbu7a/GTg4MDKwRM1iGFpAoa9URjsRhisZhVZFCPRD1YN8bDexHS1ca51TQEhbxciImGg76neiwKHQL99fSohLgGlCBAwUmyBtmlFLY0qjqdjpEzfD4fcrkcLly4gEajgTt37qDRaBiBhR6/joXOHceKXrWSLijcVWlxfrT1ej2jwHc6Hauisbu7a8nmu7u7WFpaQqdzWDGkXC7j1q1b6PUOj0CZmpqyGFkymcTIyAgymQwmJiYQCASwvb2NRqPRl0fGsVXkQKHSQTFId89y/vmuQ6jwwW2ouB7iRqFNAaPQkApTjXnob9XiU+Glgkk3DxUXPaZOp4N8Po9cLofl5WUUi0V4vYcJmisrK3j11Vdx4sQJNBoNnDlzxggKGrva3NzE0tJS33P4bP5fYVAlaaiQVi+BMQda87RWlUnn9/st/kIhG4/HkUqlMDIygng8bkmpZBAy90y9Ix03F+IjRT4Wi9n3CrnxWoUB1WtWi5qeDoW11u+jwKcXqu/pGjckZShk6Hp7Cru5cJT23+PxWO5atVrtq7yhfaHHGo1G0e12LQYUDoctRWJtbc3qHnIuNbmbZbYe1Bd9T/ab+0PHntfSS+71enaGVyQS6UtNCAYPCTv37t3D6uqqJaMnEgkAQDweRy6Xw5kzZxCJRBCPx9HtdlEoFFCtVvvmlcYF1yfn0SWRuPvT3e/8jRo5w3Z/Gyquh7hxYWvJICVTAP2n/qpFBxwFx9WrAYBIJNK3kagYaOUpsYHHzlNBer1eFItF1Go17OzsYHFxEbVaDZ3O4UnJmUwG7XYbyWQSBwcHuHLlCm7cuGExD61Bp3EPtTDpOShURi+Q4xEMBo3mzObz+exo+VAoZDUTO53DwzBHR0cxPz9/X2yIHkO320UulzOPkEZDIpHog3w8nqNzrkhM0KbKisJVvTEAfUJcP1dvimxDPeadUBjfWw8LVfYg/9BzIPw3KGdOa2C6/eBvp6enrXwXYbZoNIp0Oo12u42trS2Uy2XzFHlq9sTEhMF5zPtiazQaBhvGYjEcHBzg7bffRrVaRavVsvmPRqN960NjlircGZfk+mCS8PXr1xGNRjEzMwO/3496vY79/X3Mz89jbGwMv/u7v4tisYh3v/vdOHHihNUsBGBeeSQSwZ07d3D79m28+uqrlt8WDAbtOBwdLyXG6BpVBifXknpp6iEPFdeD21BxPeTN9TqAfo9FPTF+p/i75pqolasQEeEaTRzlb/f29tBqtTA2NoaJiQk7nNHv9yOdTlvdQZY5IoTDvJ9KpWLVxjXorEQTKjC+D58PHG10bnItpUTBDhwxDunxhUIh6wO9Ip6vRWucMZxGo2FxJXqUOv58Nwpe9WqUQOAaCEqG4P/VO9LrOQ7qDfMd1ZtWCI1NGYXqhajSVCiW3yls6JIJ1HvhNRzTTCZj0B/7qgYG2YgArI4i/1DxBoNBjI2N2XVkMZbL5b51w37yj46pW4eRzVXApVIJm5ubyOfzCIVC2NnZsTXS7R5W2eh0OshkMshms0in00ilUtjf38fe3h52dnbQbrdx9epVXLlyBbdv3+57Fg0xVVjsqwvfc75ocGj1DZ1310Mbtv42VFzvgMZNq/AZPRcrRov+GAqFmQb3gaOAsJIfFEp0A/e3bt1CNpvFc889hxdeeAHLy8uoVqvmtX3729/GwcGB5eGwdmGn00GxWMTS0pKdfMzNSIFJwcHGuBS9JMZS9L1INqBSZdO4QjKZNBIFFWw2m0U2m0Wr1TJLnxZ9vV63saE178KvvJaCl7CYjptCR8qY03iH5q/xOfxePWD+X+MohNXUO1aFptAg+6ZeHe9PZa9KltCkXs++cA3y3XK5HNrtNgqFgs2tegm8Lz20bvcol2x7e9uUINmLsVgM2WwWoVAI73vf+1Cv17G5uYmrV6+iWq0ai5UJ7Ts7O2i1WkZWSSaT2NvbM9i31+uZgeHxeCzOeuLECUxOTpqSphfI412OHTuG8fFxU2bBYBCJRAKXLl3C7du3cfHixb68LSbfDzLEdH5dL1bhbP3cJez4/X573rD1t6HiesgbhQHjNADui3VQqFLAuTEPF/9XKBA4KvgJoK8EU6fTwdbWFhYXF/Hkk08iEolgZmam77lUVuwfNx9jRqwArs/U+/OZ9CSUEcjNS8tU42TqSfL+/I0rqFOplOWjNZtNO+2X17Fy+CBlqda8G1vUeBitaBVUg4LvrmJRGEkhQvWAB8XaaMQo04/XsymZQ+dYIShVuDp+KoB1/fC3gUAAqVTKvCt63gqRaT9YsJjXkI3Iahxer9cMjmQyaUnKjUbDktZzuRwAoFQqYW1tDW+88UbfQZWa60VDj++3vb2NWq1m8B773Ol0TImSqbm7u2slqvb393H16lXcu3ev78QFjr0aVXoYKsd2EHtU50LHVQ0XN/41bP1tqLge8qbCDDiCmGg1K/QDHAlX9RyAfoouPS2F4JTBBxzVm9ve3sbq6irK5bJVTMhkMqY8w+GwMbYoFFi/j5RxKhZXqDG+QYWl1T74ORUXvSsqZxWqzMtSwUyKdDwetxwrWur0AlqtFoCjOBGFPyFPjoEy/BSW41hr8VmFcPlHmaAuNEfhx3fT8dAYDr0VegfRaNR+o2xHd91w/JTF9yD4kO816D76vpwDVgqhB8vG92ayrRYkZjFjVZb7+/tGeJidnTWvdmZmBtFoFNFo1KBej8eDSqWCpaUlrK+v4969ezg4OLB0CjUkFC4vl8soFovw+/3IZDLGPCUDkaxVrqVu9zC/r9FoWJV5zUPj2Oje0T2m+1bjWfpb15vi/A/jW//tNlRcD3nTTaGBdy1BREuTEIzP5zP6MgWIlqDhb1WAAv2Js+pN3bp1C2+++SbOnDmD8fFxO7MoHo8jFouhWq32QZEUPPV6HdVqFQDsN9y8FNq02CkUFDZhlQvCioxxsX9KzuCmJzut2+0imUxiZmYGACznqtfr2X2pMPS8M74DcARtcgx5f1UqhMR4XypbCm29H/vId1HPmK3dblsOFE/y7fUOD7RcXl5GMBhEKpXC2NiYKVrG4HjsSiqVMiE8CH5Sb5tKjwWE1SBQ6E89d43jxGIxhEIh1Ov1vrgWIVGW3FLKvcLdHHc9BofjNTk5iVwuh8cee6zPMMtkMjhz5gzm5+dx6dIl/Jf/8l9Qr9cN8lW4m+PcarWwubkJAJidnbXTmzudDsbGxmy8yZ5kqsXu7i6OHTuG06dPIxAI4NVXX0WlUrF5Z+xTDQMAfUQYKkPGTjkOSjBhnzkmCh0P2/1tqLge8qYxB7X2tRinWshUclQC9ERUKXCjubCcegcKU3W7Xdy6dQupVAqJRMKsZuYyMaeKjDFeo8pMCRUUaCrcNR/L9RQ1tqdxIX1n1+INBoMYHx9HLBbriyfoseh8z77zvnDkCeoz+Rz+Vsddv1ePRfurnptbo47XdjqHFdmr1So2NzcNXqP132q1LCeJsSWOLz2gXC6HbDbbZ7Tw+Vqtnc31TtgXVVI6tkr4oQLjHDGGp58rhK3vq3Cpm4DOa+lZzc3N2RqjwRKJREwB3b59G9evX8fm5qb1mcrCrWdIZc74EZPnR0ZG0Gg0+pT1/v4+Njc3cXBwYJViEokESqXSfZX8BxmR3DuKLPBajY3qWnc94GEb3IaK6yFv9EQo2IGjGJcKcCoeWrfE8VXwEKPXOIur+LjJWO2ALL5Lly5ha2sLnU4H73vf+yxeNDk5aWV+KCzHx8fh9/tRLpdNWOzu7hrcp5AhLVOFzhgrikQixjZjhQ3CeApTsrID2Yzj4+OYn59HPp83S5/wJWFErd5NajrhTjaXvUehHQwG+yjwmvDrNlrm9ED0hOVOp2O5ZgBw+fJl3L1714gFzDOjgGSZom738AgZjhXvxZJbPNGZnrey8Tj3FJy0+NWz4rv2bLwzSQAArJdJREFUej1T6sFgsC8Ow+uoqFhlhWd67ezs2Jogo5CxWBcaZb+UKUhFXygUUCwWkc/nrWizrqFkMokXXnjB6mHq2ud9dTxZGLfRaGB5eRlra2sYHx+3lI6trS2Ew2HMzc3hxo0bVgV+bm4ON2/eRKFQMIXIeeTec+Fd4CjVgOxB7kVe66ascHyHpIzv34aK6yFvatG6LDcKUvXIlBhA69ONzbjxDQoNZaUxgXdychJ+/+H5VKwYwNyVer2OUCiERCLRB0kSKmIw3Ov1Gq1YyQC0Wqko2Td6dJOTkwgGg31HZvB6nmJLoe/xHJZBmp6eRj6fRzabNQWnCt+1btkPjdHwemUG6ucuNVvJE9/PatY4lD6Dxsn29rZ5rSR+UDCS0UhvW70g3ptxvK2tLav+oVa+vrt6WDoebozFzXmj8lEI0l2rVNIcH17vKkdVYiRKcE0ThuM6SqfTlhisscdOp4Px8XE7L2t1ddXGhrAjDQb2NxwOo91um3KNx+OGHjDuub6+jmKxiN3dXZw+fRrRaBSXL1/G/v5+X94b14F6rlxr7Kt6Znxfzot6Xa4Hzu+H7f72AxXD+vVf/3U89thjSCaTSCaTeP755/HHf/zH9v3u7i5++qd/GtlsFvF4HJ/61Kf6qkUDwNLSEj7+8Y8jGo0il8vhF37hF+4rezNs9zcudA20K8wAHG0CN66hsJrCMRRKLkmDf0ejUVy4cAHvfve7kcvlMDIyglAohEqlYhubjCyFSKhkaenSOnWhSVWa2keWUcrn8xgbG0Mul8PMzAzGx8cRDoctRgUA0WgUY2NjOHbsGE6dOoW5uTmMjo5aHImKUksjcQz5b5JKdNz4HsFgEKFQqC/RV4Um34WfDyI68P10vPV3HH9WG1eiil6jc6e/UxjM4/GgXC6jXq+bAaLxTb2/C3fyWncd6LEiwBHhQ99TodVwOIxEImFHx5BMwvO73GcDMCIE46LVatXSNkqlkuV00UCi8j44OEAikcDc3BxOnDiBvb09q/xCI0zf1+s9ZC8yvsS8MQB2Plev18Pt27eNuj8xMYF2u41qtYpoNGq1FRU5cMeDn3PtcU2xuSSjQUngQ6X14PYDeVzT09P4lV/5FZw6dQq9Xg//9t/+W/y1v/bX8NZbb+HChQv4uZ/7OfzRH/0RvvSlLyGVSuFnfuZn8MlPfhIvvfQSgMNJ/PjHP458Po+XX34Z6+vr+PSnP41AIIDPf/7z/0te8J3cKAgYTHdjAL1er0+g8jRdDRSTKKGbnb/ntWT8qfXIYPns7CwmJibs4MSxsTG8+OKLaDQaOHnyJCYmJixOsb+/j3q9jmazafCdxj8ovJrNph25DqBPqPM58XjcCAihUMjgQtejSaVSSCaTBo2Rar2zs4NEImEkEa0+QWGiniW9PkJfHs9RsrPCtcD956JpXFC9L1dYufAa4StN2OW9CKuynBQbn80isoM8VTJBPR4PxsbGbLw0bul6ByrY2UeuIa4HKmo9j03jZUpG8Pl8Nq7AUeUTjhPfmeubhogmMrNvy8vL8Hq95nVtb2+j1WohGo0aBJzJZPD000/jpZdeMqVH6JjztLu7a8xM4BCGLxQKVkx5aWkJjz76KHK5nCnxUCiE73znO7h+/Tp8Ph9qtZrdU2FXNfz4b+4JNV44tmoYqGEDHOXUKToxbP3tB1JcP/ETP9H3/3/yT/4Jfv3Xfx2vvvoqpqen8Zu/+Zv47d/+bXzoQx8CAPzWb/0Wzp07h1dffRXPPfcc/ut//a92/PX4+DieeOIJ/ON//I/xi7/4i/iH//Af3lc6Z9j6TwTWWIBChcD91RMeBPsopKXXu/EZQnTVahWpVKqv9E6lUjGPjKQBAKa4SNRgTAlAnxCnwmUAXL0fF9qiIqKgU9iJfWJiKqnZvI791TgPcAQ1ufEV9YjcWKCOsY6tC9Wq56GGB5/nxjTU+2KlD+YgMY5HZcbcI4/HY0edl0ql+4gsAOxoeyoFpfur9+Za+Bxnd81Q0esa0liVxlsHQYhcp24aB8cxHo+b8UQ4j/eiwqlWq8jlcn2/9Xq95tnH43FkMhnU63Uzphhf1fSOSqViOWT7+/u2hl555RUkEgmcOHHCSlVVKhXcvHkT5XLZ4FrgiExEKJLzTGNHEQ+Os3vmnMbElMSh4zNsg9v/cIyr0+ngS1/6EprNJp5//nlLBvzwhz9s15w9exazs7N45ZVX8Nxzz+GVV17Bo48+ivHxcbvmox/9KD772c/iypUrePLJJwc+i+4/W61W+x/t9juqqVBTyE+VjMYdVOi6+SP0IBg/0A2lFqBL+KhUKkin02g2m+aR7O7uWm7U2tqalXRSMgj/poDm/SmY3LJT/DdJHMlkEt1u16Aj9SLZb8KGACxvi8pSYT16Bi4tXQ0lwjX8nsJIhSSFv0tgcGNHek9tvAffVw0Men7sAwUgP6cCYxwsl8vB6/X21VnkM9VrJnGC5Ag3Psb5cPME2V/X+OF7ezxHlU/IzOTnqrgeBH+5cR+SO8jsU3YpjY9qtYpMJmOxL46bq7gYm2L/6fUEg0E0m01TbFQmhLtZyqler5s3t7Kygnq93mfU6LrVd9J51rXPzxS6pxHAOXDXxKD7DttR+4EV16VLl/D8889jd3cX8Xgc/+k//SecP38eFy9eRDAYtMPn2MbHx1EoFAAAhUKhT2nxe373oPaFL3wBv/RLv/SDdvUd31QoAv1Jm9xIVBD0XNSSo/BlkFrhRXdjAf0eBZ918eJFeDweTE1NoV6vY2trC+Pj4wgGg1hYWMD169cxMzNjSZ0ss6ReHTembtT9/X2LK7FaRafTQbPZNKjw0qVLaLVa8Pv9GBkZMYVMYUtFXKvVzJhhaSAeZqn3ZrKpJjYrY1MVPuMnvFbjSlQAbG5Ct+sR8D35h4pC/wCHaQTMEeLhhZVKBTs7O5iYmMD09LQx4FKpFHw+H9bW1szj1QNCuSYoCDUdQJWG0uUJp2qtSqD/zDN6foz/0aOjMHc9Oj4nHA7ft9YImbqkGXdcmNJRLpdx7tw5hEIh1Go1mwOeZDw6OopMJoNYLGb7gXuE89pqtYzskc1mjWB06tQpBAIBlEolfPnLXzZDWefM9ZJ1L9ID1XJeqrC5/jU2ChyV6lJvdpCBOmz97QdWXGfOnMHFixexvb2N3/u938NnPvMZfOMb3/hf0Tdrn/vc5/DzP//z9v9arWaJpT/sjYvfrTmonhU/V+iLiZG64UgV1hgRcATLccMpJFcoFHDz5k0cP34cgUDAgtO7u7u4d+8e2u22QYmEp9zES6CfXcWYGuMYmpDr9/sxMTGBaDSKW7duods9PMPLzYVRkooqKJ667PF47IRihej43hqvUgGtMSkqtUHWtQpaV8C45Ab3dxpTUoXokh4A9L0z+0rPD4BVllC2G5UQj30h7VrjLOwnf8OKIp1Ox6py6NrRflHZKZWe76bzrGuMyl/p4qrINK7IZ6iHcnBwgO3t7T6PRCE6GhicL74zx7DX61lhYK4PFtzd39+3vMN2u235buynW7WF9+Tz3Hl3G/vGeyi6ocpQjaJB9xm2o/YDK65gMIiTJ08CAJ5++mm8/vrr+Bf/4l/gb/yNv4H9/X1Uq9U+r2tjYwP5fB4AkM/n8dprr/Xdj6xDXjOohUKhvvyav0zNjSlQACj8Qc+BTVlMFEwqOPhv3Xjc3Pw/N3E0GsXCwgL+4A/+APl8HslkEo1GA6VSCYuLi5iamsL09DTK5bIVXSXJYnp6Gnfv3rVnAkfH3atXRmHg8/mQzWZx7tw5dLtdrK6umnfCSiAKNZKFd3BwgEgkgmg0atR2Le2kxADCie122w6LBO5n7VF4A4fHb1CBKOGAjcH0aDTap4g4jgrH8XuSPjSuRMOACoOMNiZ0s0KJx+OxgxsnJycRjUZRKpUs140KiuPAeCJzsdxxZ6NiJMzG5noQ/J0SNtz35GcaV+TfGu8iOuBCyFSO9BD39vawubmJcrmMbDaLSCRi88g53N7eRrFYNC+dHmQymbQ9MTY2hmAwiBs3bmB5edm8Ha77drvdp6jogfL9OE6qpGlE6D5jDE3jnpo7qJ4px8KFUYdQ4YPb/7RaZwzh6aefRiAQwNe+9jX77saNG1haWsLzzz8PAHj++edx6dIlFItFu+bFF19EMpnE+fPn/2e78kPXHhTX4nf0oggLqtXGaxTm4me6YXRjqXfH+9OTuXPnDt566y289tprtukbjUZfEqz2IRwOI5vNmoIiw4v/VytZ349QXygUwujoqFHiKSgo5A8ODtBqtSzmEwgE7NwsN37E4ykUMuJYaJ6S/pbeopITKAiBIwhJq2BwvDU2ozEer9drR3voGLMfJGMoMcEVYjRGqBz0CBmuA31H9ltzABWOo7dKSNNNrHYThjXXT9cTFZa+u64tJXdwzDnuOh/6h3E+nScSLVTpEdre2toyuJpzqH2j8k6lUsjlclb/kOOtEK5LyFHvT71gfX+Okb4nx0rXDtcC55KGhX7PtTNsg9sP5HF97nOfw8c+9jHMzs6iXq/jt3/7t/H1r38df/Inf4JUKoW/83f+Dn7+538emUwGyWQSf/fv/l08//zzeO655wAAH/nIR3D+/Hn8rb/1t/BP/+k/RaFQwD/4B/8AP/3TP/2X1qP6fs3dyCrENMalNGz+Duhn8tHrYLxAFZhCbq6lx881sM0ETi2fo/Exxj9ZIoqxJQputaY1KB2NRi0HsNvtWoHcdruNlZWV+yAvQo0+nw+JRMLurTAqBQKtXfbBheb4zlpQVwUscBSb4/WDDAN3/vRv9lu9F60oTiVEY5CQLPPItGoI556et0JbCkHymv39fRPQ2g8VmJxHvSeFuHoZbArX8tn0dNwcN86dMu5UMLtKletFvXEAljDMslZUkM1mExsbG+j1jhiKNDjo/eia7fV6Vq6M7FiOqTb2k0aEKmxdN1wnfDcqTV7DvcgxVMOH/eQ16hEPldfg9gMprmKxiE9/+tNYX19HKpXCY489hj/5kz/BCy+8AAD45//8n8Pr9eJTn/oU9vb28NGPfhRf/OIX7fc+nw9/+Id/iM9+9rN4/vnnEYvF8JnPfAb/6B/9o///vtUPSeOC1qrUXPwKJ6kyAvoZTITTFIbRRiGocRcXe9ccIz6X92e//H4/9vb20Gw2cevWLZw9exYTExN4/PHHsbCwgJWVlb5YlHo47XYbkUgEY2NjOHPmDKamphAOh1GtVhGPx61SB4ukahV6n8+HdDqNaDRqz2fSMIVROBw2D42elJ6yrAxMBvXV4tUYHJUg3wM4OgrGFer6t0JSSk/nPPN7Ki/Gp6g81bsjMYI5TBwD9p3kGxa4pcIm/Mm+stAsoS1VYOyXphIos47fUxDzOVQ6KsT5fHrM/J3mHCqUq8YQY3VUYrdv30atVsPZs2cxOjoKr9eL1dVVrK6u4s0337R+qKLhcxi7ajQauHv3LrLZrJGBCCtr1Q9VNGo4qgLX2JoLG9Lg45hz3NSz12vV0FKlPWz3tx9Icf3mb/7m9/0+HA7j137t1/Brv/ZrD7xmbm4OX/nKV36Qx/6lbeoFcWGrpaobgRtdoQmXgqvfD2oUNAqFKPTBZ6mHx3ytVCplgp+xGHpC8Xi8LwGanpa+QyAQsERixnoI/fn9fpw6dQrpdBqlUqkP3guHw0ilUtYXhag0x02VrHquFC56T9crcsdEDQS2QTEgvp+rvNz503+zD4xHUbnos9ULodKlAmJTKE4bx0UJDHotx4X91Gojuk4U/lKlo8aU1tfUv+k16ji4MLd61vobGiCtVsvijaVSCXfv3jXDxi1mTAg2nU6j0zms6djrHdasZKyUyfL8jc6pvrcSffgZ303/zXfV9aAICMdN4156D10nw3Z/G9YqfIibblZd3HpsPIA+5QYcMdQYoAeOFI5CN7wW6D+1l1Yr0F9PTmNG3NT0hObm5qzCRblcRrPZNMjP7/djdHQUu7u72N/fNyYXBXSn08HIyAhOnz6NM2fOYG9vz0695WGUTz/9NHw+X9+puJ1Ox5Qbq2PopqeA5nvTG6DA03enF6PChGPmVpGg96KEF4V9FE5yhRafy7wnVWb0tkhSUdIJf6cxISXf+HyHJz9zXHiSNJ9P74ywIwArjaQxJiVTeDyePoWoUCm9IRoKCgFrtX1dk0px5zvrHChk5q5lXYf1eh3r6+tG4vmzP/szLC4umhdJZiCRiF6vh2AwiGw2i5WVFbzxxhuYnZ3F1tYWHn/8cXQ6HSwvL9vzucY1PqaNMVt9j1AoZOOp+4owOQ/M5Bgo25Xvz7QVVYzDcniD21BxvQOaS9BgkFnLICnUR+HJuAmJEwrZsKmA4H00qM0NRAGungXvxQ3JOCWrbzNJlnCdem/8LBKJoNVqIZlMYnJyEiMjI9ja2jKYj0IzHA4jGAxaOZ5ut2vnG7H/SodW5QrA4DOFXF0PS2FXFegUsK4Hx8/csWJ/+Ld6InqNG0+kYlUFpSQRNTbUM+HvstmsxRiVAKJzrV6W2/RdFJ5UD01JC5x/971dxe0SHQZ5c6owFUIb5NkwbsVTtrleuCcIe2qOGtdQq9VCo9FAOp1GMBjE7OyslShTaHDQnlPIkPOhClm9Su27G3vUeCBhQ4UGB62nYetvQ8X1EDdXWLqelWstK7av0BOFj1p7/L1avvxDxpZClXpP/o59oaWph+fxQD7SmdVSp8JIpVJGGMhms3ZIJSt8k+WmBz2SLt5qtYxaT8hqkMejrEV6CO6Jxio0VFkOamolq5Cl5+UaBy4MxPni+FKhUqEQRmVcU1mIui6o3Fh9XxOreXgn/09PzlUiCmXpGlC4j3PMMXbh5EF5WVwbXCdUIA9SdLyfjo/Og7Izqdg7nY4lE9NwSqVSaLfbVvZL9wfhQs793t4eEokERkdHsb29jc3NTTsOZW9vz5Kwda2zvy6cqkQMKjWFpNXjZ9/ViNHYp66jYXtwGyquh7jRs9JCndwAzWazL36hHhCtQG463ovXcWOph0aFpsQPClNuVgpVheR4HlYwGEQ+n8eVK1cQCASwuLiIEydOIJPJYHV11WDBQCBgJ/sSygwGg5ibm8P09DQikYgFtKPRKNLpNEKhEIrFIra2tgwazGQyVkxVPUg3pgIcCXCfz9dXPUOJD8ARPKbCSuOFqliU+q9J1pwjCrVut4twONxnJChkyHtRuJMCnslkEAwGkUgk+jwlzg/777IJI5EIMpmMnSacTCbNAKAQpcID0JfvprEuCli+JxVpr3dE2FDYj9/xb00kpver9SZV+KuX58YAdT0ypsnnMHew1WohlUrhPe95D06dOoXvfve7+PKXv9w3N7FYDIlEAq+99pqNzzPPPINcLodvfetbuHr1ap/hpmxPNRbZb/U+qdip+Li2Nf6nkB8/4/jyGTS0tASby3IctsM2VFwPeVOrWGNW+p2SNlSZDQryqjWnQtCFrQZBHSpIuLEomGKxGEZGRkzwsko8IT4VOG4AmsKdSoHQl8JkTD7tdDpGd6bA1DFxoTCXbanCmXET9Zz4TCp2Kju1kgcFztVDUchRx82dV46zG+/x+Xx2iCYNF4V/+Ty+r96TyousSqV/q7eoc6AevCpxzb3SdcDf62fue6jBREXNmKH21/V0eQ8XmuN3aozt7e0ZUYPKJp/PY3Nzsw+d8HgOE8p9Pp/Vedza2jJodXNzE9vb233GiHrO6lHpOwxSaOqlqRem3p8bX9Yx1Gr/w/bgNlRcD3Hr9XpG+QYeXFLGjTu55ATg6CRWVwBToKh16N5XlQCbQpCsO5hOpxGPx63mG+vAAf0bnsKQgfSDgwMjJWhpJ7L9gKMyQzxuhRAhvQVep8m2CrVqH3SsPB5PH8mA3omWDNIgv3omKqwUClJjgJ6rKgWOnyoh/olEIja2pJXzelr6gwwZJT7QO+Z7KNWe60qVKn+vSp1rRxUU54ACW5WTelvuGlIjQdfVoOaiCArNqeGk6Rcs5XTnzh3Mzc1hbW2tz9MJh8MYHR1FIBAwaJVnCu7t7RmZSOdYFaQ7p+ynGhJce7qfdI5VSSlk6+4vfd8hXPjgNlRcD3lz4wLE1NWq19iKCmS1WNXT0ZiOKhO1FPWPG89QGLLTOTy5t9frGZ2d8axGo4GpqSmLgxFaVCsfOCRO5PN5JBIJi0UAsLwjKrZcLmdWaaVS6Xs/vhPPJDs4OLBCtRR0jMG5RBP2hf3ku9L6jUQiNhZaX5EGAokCGtTXBFrOH5WMVtcgbEelSk+TAlSrrnPO1BNSb4bfMV5CSJTP13lXQgCVHseW88OxIxTGJHb+AY48R4WZ1WvjfQYxNdU7U6+PjMBms9kn8KmoUqkURkZGsLy8jKtXr5qCf+utt/DGG2+g1+vZ2tnf38cTTzyBCxcu4ODgAKOjo9jc3MQnP/lJTE1NYWdnB6urq2g0Gra32LrdQ7Yg1zPHVan8aqC4Y6v347y4Bo4eg8J6k2oUKUNz2I7asJLjQ94UPuGmcdlNFF6Ku/O3rudBIa6WoAopVQIqpBRy00a6PhOleQZWMBjEzs4OIpFIX+1K1oFjHT0WTmU5KFW+9Fa0Grl6P6R2qwXLd3KhMY6HG5fRmJPH4+krTMt/A7jvXtooiJXFph4JFYOW5qIyUAFO75XlqdwyU9pPd01orIuNykIrhGhTY0jXgCo4tymUpx6I67G7kKG+o46N9uNB88f+8x25TsrlMiqVCkKhkOW7+f1+Wyfs69TUlB0amUwmcXBwYIzX3d1dIxLR6FClPAgWVk/QNQr1/d054f1p4AyaE3qJLoll2Prb0ON6yButPHpeGs/SU2JpuakHpt5GMBg0r0fP41Lqu8uuc60/hZW4UQOBAPb29lCpVJBKpXDq1Clsb29jYmICV69exTPPPIO5uTlcvXoVa2trKJfLAA4VXrFY7FMS/Htvb8+qGXADx2Ix+Hw+O1SSz+X1SrEHjgLmFGDKLuNz6vW6CUV9b17nkjZcj0G9Pf5W4Uday4T/KAD5Xa/X6zuhl14Z349WOO/N32l9PgpBGiaq3BVCVU9d0yN4b4UBSaLx+/19h3gqjKUwIXA//Kfjp6W6lPDhrjs1rkh2AI6KGNNrpjdGCjs94mAwiFgshk7n8EDRQCCAsbExpNNp3LhxwyqndDodpNNp7O7uYmFhAUtLS33eOA0EMgy5htR71vfV/cB34Gd6HIyuASouN36pnvCwPbgNPa53QHMVh1puCu0B/RRo3TQaw1AKs8Yf1GLUgLILK6olykoGlUoFvV4PqVQKe3t7diYS68TxuQqX8Rm7u7t2Wi/Qn6xLBUrCAQ9VBI4YcUrVVsucdHkKBoVzVFm43peOgWt1u/EIjqHGDXl/F06jsHKv5d8sVcW504oeOt/AERRJCE8ZkepFf7/3cT05jaHpPKsHwLXkfs53dtcIr1GBrl6J9lGhbI11qYfHRGeWumLFFo6DnhKdSqVw/PhxNJtNNBoNjI6OolgsIpfLGcRdKBTuI7i4f2uemfZJ51jXE+FSZeRqHBrohw5duNv1/Ibt/jZUXA95003Opgw2tYIVhlHhoxvBFRoKeVDQqJCmUFcL3t2wBwcHKBaL2NnZQSKRQK1Ww+7uLiKRSF9cQDeoQjqdTseSiVWhsa9KPNDfEFIDjgQBFbfH47FyVO6YuOOr1j/HQP+ocB6k0Nl0THntoMojCoHp9VpHUedZG3+nyatuSoB6NRy7QaQeV9GoUud93OR1l4av8Sn3fizuyz+EfKm8XEaewm36GcdEoWTGv6jcSaxptVpWtWVmZgaTk5PY3NxENBpFPp9Hp9PBiRMn4PP5UC6Xsba2Zu+q4zLI83H7qJ/zb+4njRWqh6brza2K4X4/VFwPbkOo8CFvqlhYUgmAUceVCTUoZsH8Gw3ya0CZ1yqLSgWTEg64+Xh2FIVqMBjElStXMDc3h9OnTyORSGBrawuTk5O4d+8ezp8/j4mJCayvrwOAlTACjipaFAoFbG9vY2RkBAAM/qMA4L8JFenvWW9ud3e375h6ngwci8VsXNyxJfxKQcScIyagqgIAjgSce9qwel/0Lvl/jWNRMLGPKsA4noSo+M70GvnOShxRz4AGgMKDqnQUEuQ1ekqyeoT0XHg2F9ebKjdlaCoDkvDz7u5unyCnIlfoVr1I9UTVm1SSDt+pUCigUCggFAohk8nYSQJvvPEGut0unnjiCUxPT9uaOXHiBCqVCh555BGcOXMGS0tLeOONN/D222/bHA1CF7jH2Dc13GggkfmrnpWrfN050DHU+eO/XeLQsPW3ocf1kDcN4rqBf9dKpjXuWooUmsp0Uy+G12iVCfUa1ArkBlWadbfbxfb2Nra2tgAAs7Oz8Hg8SCaTWF9ftyK8iUSiTwByUwYCAdRqNVQqFYtr6f1V8AOHjL5EItHnRajXyXFTz0av0zFSAczv6eko8cUlRej91BPRpvPlxof0M1epuH9cWrpa9gqrUeHx/QHcRzahB6XjpF5Zr9cziFeTcPk+9L7ZB5cCr+Oq60cVpZJU9N9cE7xGPX+OG2OM9XodjUYD7Xbb6kb6fD5jtqZSKXS7XfPMtra2sLy8jMnJSQQCARSLRayurqJSqdwXC9Rn6pjretOKJ2wK0fKdXWREERBdU8ru/X4IwbAdtqHH9Q5ohMDUOmaZJT3CQi1DjUVo/IvWpSY6urAENyA3lUIdtOApwGhpr6+v49q1azh16pRVL/D7/SgUCrh69SrOnDkD4NDbWlpagsdzRF33eDxYWlrCzZs3LRGZZXeAI1o13ykYDGJqagoLCwsol8smfAkfau6YepIez9HR8BQQLpzHd6a3pgKLyp//5jhHIhEAMA+DNHSNG7oWuI6rGgO8Nwv+DopTESoE+o+VV+YnlT/jQmpsqCJUejdjR0rBpmeoRBldC2zshyo5VWbsA5+tMTiFTd1nkyiiTLx6vY6NjQ20Wi3z0ElnP3bsGHZ3d9FsNtFsNrG7u4tEIoF6vY58Po8TJ04gGo3i9u3buHPnjnmo3W7X8gpV+dCgUyVNb9BVdro+9Pw3rVbvGo2ux0UlOgjaHbajNhydh7xx06plq56CKxxVMCkhgYKLEAc3zqBAsOu9uBAjn6vU/N3dXTQaDTSbTSSTSWMNhkIhrK6uIhKJYHJyElNTU3Y/pbKXSiWsrq6iWq0aTEd4lMIAOEow1gRdCnO+o9YuJJSjFq0qDvUW+K40BOipqLfC8XQ9WypIzpML1+mccIyBI9iP17jKxY23PegP1wpP/3U9I/XQlD7Pd2s0Gmg0Gn1nXw36w98ovMh357sp/Kz3Um9fPVVNz1DUQOec997f30etVkOr1epTMJw3ogq1Wg31er3PoxwdHUUkEkG320WxWDTjRPeBIhj8v5tmoteponGVthpcWgDALbGlY6tw7VB5PbgNPa53QHOTSPnZIFhBISm15inAtXwNN50KFr2PkjHYVMhrTKLdPixuWq/XMTExgbGxMayvr2NqagpLS0vGmKOFzLgJFWSlUsG9e/cwPz+PiYkJ6ycFLS1xWq8AzJJmnIrjRCGj3gLjVipMOAaseKDvpALZjUEBRyQRhU85PuoBqmDVpp4R+6MesEJKD4IPNe7i9Xr7UgHceKcbw9R+7e3toVar2ThGo9E+xe7OO+n6rrDmtVqvT9ugWCDXGj9XI4X9VeHfaDRQrVbNU6KHHQgErK4jAKOxj42NYXd3F+1220qFNRoNbGxs2LrQmBr7pp4ua4W6a5995B5RI5D30PlxqfIaa9Y1p+tg2Aa3oUp/yBsFgLKxuNgVXlBPwOM5zMUhhKWCk8JJK0nwd2wq/NVq11iZKlNCPLdv38brr7+OSCSCD37wg4hEIhgfH8fk5CTW19fh8/kwMjKCUCiEeDx+n7dy8+ZNfOMb3zAhs7u7i729vT4FxqD//v4+pqamkMvlrLQRPQ5VQt1u1wSXxlM4poyDaLFZ4EgxUZiw3iIFEIUzFSOFoFrM6j2QRMK507idGw/ivFNZs3wTmwo4rfGo7+fzHZbUInxKSJb9VS9ClYnP5+vLp+NvOObu4ZFsCn/xWvdd3CLOGr+l4mWeHRmjnCumQRQKBaytrdn4r6yswOfzYX5+HseOHbPz3bxeL6amppBOp+204/n5eVQqFVy8eBGLi4vWb8YG6e1qDFYVmMKfamC4XjLHTPPYuI/1/Tkuute4l+nxD9vgNlRcD3kbBBEC/d6Oy0bi9wpXqAWsm0etukGkD+D+84EU7lKvjpZst9vF6Ogojh8/jp2dHYyPj2NhYQHNZtMqvmtZIwpZssWq1WqfsNA+KgQXCoWQTCZNQBMGda1hPouek5IRlN5NRaZejbIDdUzYLyYFa2yGglA9H7WoeT+NhVExEwJ1LfRQKGReKwW8KkYqKIXVdO4ogIEjRaIKTI0RzX9T5aOKzk0iHrRGdY2pQtc+cSzc73SthUIhRKNRhMNhbG9vWyJxt3tICiKpp9froVarYW9vD/l8Hslk0mJX8/PzSCQSKBaLWFxc7Ev81abzw3dQBEONDF37uiZ0nnkdDQs31qn35DzqWA7b4DZUXO+ANohVpkqKHpPGogjB6Qbg9RS2/J7KTYW+u0GBwRXANbbW7XZRLpftYMj5+XkUi0UkEgmsrKxga2sLkUgE09PTVjGCz4lEIvD5fH1JoW4cSZ9Hz48sMvVI2Cjw6SkpgUXjLW7pKPaLiouCWvPGOEa0jjWGph4GvTMqAjaN0fFZroBXyEi9HPXc+J0bO3OVDGNpnHtWHWE/3RjWg5iWyqZTBaVzqUaHGxPkWhvEnFNFQgOFxggRgWq1akYC+8/cLTJbe70eZmZmEAgEsLS0hBMnTmB8fBzdbhfLy8tYWVnpI5gozAscVW/XMdYYnc7LoO8UFdE9rKQLXq/Kmo3r0mWpDttRG8a4HvLGBaxxGLXqGLfiv6mAgKOcJG4u9UrICKTQVCGigkbhIldQsQ985sHBAQqFAr773e/i0UcfxcmTJ/H7v//7dtLxK6+8go985CN47rnncPfuXYMPaU03m03s7+/ja1/7GtrtNh555JE+L1BhHAqFdDptsS7S8ZW0QYiP51O5qQV8X1VYqiyV8dftdu1cK5cU4Hqog+pBknnHRq9OITR6UvS6VDlyLlR5aqCfRYpbrZYpFt5/Z2enL67Gd3e9PD6bc837M/eOSk09RfXo6UlqZQjCpDyGhOOrCljflb9hfKnT6dhJx6VSybzDZrMJv99vSe/VahXhcBhPP/00Dg4O8OqrryIWi+HZZ59FIBDAysoKvv3tb2Ntbe2Bioh9USiT7EzdW8oa5G+VgKHGkRqHrtHEMeLzOJ7qiQ3b/W3ocT3kTb0qQl8A+jaLK8xUwbjMMoV/FI5RC9310lShAf1le9Q7ocC7deuWBb+PHTuGu3fvIhqNotFooFgsIhgMIpPJYGxsDPF4vC8W1+12sbKygoWFhT7s3x0LChLgqFSSGzvS2n4A+iz3QV6sO258DqszKLyono47vjoPOp4K2+7v7xt9ngLLhX7dZ6oXRg+I8+fCc3yWzhub3leVL+9LCjoFK9+Tykire6iH4b6/fu9C2lRcg9IGOBbsy8HBAarVKgqFgilGrgfGtGq1Gmq1mhkyd+7cgdfrxenTpxEIBLC9vY179+5ha2urT0noWHB96Dpz94o2XQtsVLy6NnTMufZcz0vnbggR/rfb0ON6yJt6Q5pDxAKyGoxXK38Q1KPKKBAIWABdBQHpugoz0svQCg4aRFZIo9fr4a233kIoFMJjjz2GD33oQybsRkZG8Pbbb2N6ehrpdBrvfe97cfPmTSwvL5tH1Ol0sLa2hldffRXnzp3DzMwMgKOzjvSMrkajYQJwamrK8nsAmEDhMSoaj6AXoqWTGAhX5aLxGuBIKKnyVwHEf/P+/FxZZ7yGZ0gpFKXWuuZe8bnRaLQvaO/CwnrSsGuk8G89CVkJK0pECYfDpqg4HjyvinUjgSNIjQpOE5s1f4zvwc/5juy7QpTq7dOD2dzcxNraGkqlkq35RqOBZDKJ2dlZBAIBo7afPXsW3W4XjUYDP/ZjP4bJyUmUy2W8+eab+M53voN6vW5raBCpgntFY4Jc11wr3BsKg7oGjBoEamzyb0U/1PN3K4sM2+A2HJ2HvOmi5oIH7vcKlJGk2DqFkTKatLnewiBIUAWsWpLqKWg/yuUylpaWUCgUEIlEMDMzg16vh8nJSXS7XSsjND4+jqmpqb7SURSarHRQr9cBoO8UYr4XDwX0eA4Lqmaz2T52JL0GHQuOKQU3hY97nY63Gg8uG9AVeGotu8QQNSQUxtOYo3pLChFSqbPfLMfEOJrOEe+tcS1dE7pG3H4BRzFQGjbq3fJd/1skEIXE2PTfbgxP54VjF4vF4PV6sbW1hWq1amNAtimrsbAocTweRywWQ7lcxvHjxzE1NYVgMIiVlRXcvHkTxWLRnqsQrc6JOzY6ptpHNWp0zHmNem28rzZeq+QfPlu972Eb3IaK6x3QdNNQSdA7UqhFBZsKI92MCpEpjOPCRYQ2VHi7EKLGm3RzN5tNg/v29vaQyWRQq9WsjmCj0UCv10MikUA+nzeWYTQaRTQaRa93WET13r17KJfLJmSUYt3tdvsSqWOxGLLZrHkUwBEBgp6WphTwHmpta2KsNvd3nJNBRAO1uNXD0nnUf7uwkCo09k+Tn9VTokLT+eZv1ZtS4geVoSYRq9Klx8ZrVCm7zEvts76bC3/pWOl4qvLStdjtdu0kAADY2tpCvV7vU9i93uHBpVwrnU4HIyMj8Pl8WFpawrlz55BKpdDr9XDjxg2srKwYOqAkEVdxsc+cb/23euK6F3Rv8B04J7rGVBm5Bo7CpbrXh21wG0KF74Cm8QyFsFy4wo1zqSfR7R5Snt3KE4wBqWDmdXy2Wo2qJAlfarkeQkSFQgEejwfPPPMMRkZGsLm5Ca/Xi0wmg9u3bxspI5vN4ty5c1hZWUGv1zOacjweR6FQwMWLF7G7u2tem8JaFCrsx8TEBObm5rC5uWmVFdySRgpFsTEHjAKEwh1AX8CdAlXjMFQUfG/1fvm8QV4vhZ2WdlIFBOA+MgffV09fpvECHFUVoUfLo+r5Wyo/XRuszOIaL2zKxOQa5JEiOjZKZ9cYFhUEFSzXF9ck+0YoOBwOIx6PIxQKoVgsYmFhAYVCwfpAMhLP2drf30e5XMZTTz2FRx55BN/+9rcRCARw8uRJ1Ot1XLt2DS+//HIf1Me16u4h3StqfChETA9a4UC+A7/n+tJ1BMCKZKuXzrWgsTvXEBy2+9tQcT3kTYWdWvC6YVRQUKCRKPEgai+FjSYSAw8+I2mQ10dBChxZndonFXrZbBalUgkjIyPY2NhANpu10lCkxrO+nN/vRy6XQygUwsrKCjweD06cOAEAxqyjEOU7UklNTU3B4/GgXC6jVquZMHH7pqQWF3bV9/F6vX3eh44PhSCvZ0yHFr3OkwuZ6Tjy9y6cp2MK9NO01SPQe2gS7aDcKIVb2T8V0vo8hVNdqFlJLsBRTFHXiip39zOXhMD7xGIxUw6Li4tYW1vrg+yCwSCi0Sji8bgp3ng8jlwuB5/Ph0ajgccffxwejwebm5u4c+eOvTOZjy6V3/V0GP/i2GjMS+dW4UB3jl1YWK/hPXkPhUzdew2V1+A2VFwPedOYAv9P65fCmsJbrftB7CT1yCg8FQ5UgabMLhf2oZfg8fQH3d34V6PRgNfrRTKZxNTUFDY2Nqy8EBVSNBqFz+fD2NgY6vU69vf3EY1GrVTPlStX7CTliYkJK6bq8XjM++n1DhNP/X4/JicnkcvlUC6X8dprr5l3EIlETAlRIVBh0hugxwgc0Z05FgzokxygY6qwKr9TEgnjVyrkgaNyUyrMOC+8XgWX5rWpIcH55Bxp8nOtVjNDhpR3NX74HPUkVFGwvxqDYd6bknVUwdHzZK4YPXq3wDGVK6nyVMg7OzsoFAq4dOmS3ZOQqVL+Wdn92WefRTQaxY0bN3Dy5Ek8++yzWFlZwUsvvYTXXnvN5oxjq++v46sekM6vGiNUfqp8+F5aiFihaX6m46VGEfcOT31mrpxrzAzbURvGuB7yNijbXi0zVSyqOBSGUazdhcpUiKiXwPgIG4Wt+1z1YFwLnwohEAgglUrB7/djeXkZyWQSx48f7/NYcrkcEomEWbss2ru/v4+dnR1sbW2ZEuK4aHCdgo2KgFZ4NBrti/upd0IDQEkc6iVyfDS+w+fu7Oxgb2+vz0Ag3Kc5TSoctWIFx1LjSa5npAQL10vQ+JXLNOS86PO0pJHOH/9omSe3rJP7Z5DXz3vqeuQ8qhGg17NRyNMLZhK6wuD8Xkk0jUYDgUAAY2Nj2Nvbw8LCAk6cOIFYLIZSqYT19fU+xc01rt6lQuT8v0J5rqfs7gP1wtk/3t81JvWeCrW6xocaJsM2uA0V10PeFPJho7JRQcfN6eZ5uZtPN4QqM7UQ9Tp3A6nlPSim5kJT9JBSqRSSySTa7TY+9KEP4bHHHkM6nbZ3S6fTyGaziEajRnemxxYKhVCr1VAulwEcHQGhybccHzLOyFrMZrNm2bJmoTsWavmrQHMJBKoIKJB5H41LqPGgcBuVkJaH0iobrlGiRAoda44Bv+c9eQ/1HNxYikuyoWLg9zqeruLl9VwDOo40Atz1oeuEXocrqDXet7u7i1KphEqlYv3k9ZwjEjeCwSDGxsbg8/mwsrKC/f19jI6Owuv1olgsYnNz8z7viQqfCkbHh33S/6tn68ZGB0GMSuWnInZjYrpOVBHyexpPQ2/rwW0IFT7kjQLPVV7AESykUI6LrTPW5QpTXuMyxGglEtrR71SpET6jNU1lAfSfv3Tx4kUkk8m+2oXNZhOvvvoqVlZWEAwGra7ciRMnEA6H8d3vfhfVahUAMD4+jnw+j52dHbz66qs4duwYTp48iWg0aice84+OWa/XQzabRSwWg8fjQbFYtOtZHsqtREGiCT0mZZNx7BQOY/FbejMkQlChhsPhvntQEbCP6p2QVKGVM3R+9FoKxm63a0WI+T5kG/p8vj64Ur0MKimFTTmnerK1MhSVwMA+qcHANcjnA0eV/Gk46LtQsPPemUwGXq8Xr7/+Ou7du2ckjL29Pezs7BjRJJlM2tEt58+fx4ULF3D9+nUsLi5ibm4O6XQaOzs7eP3111EoFAzSJHzK/USoXY0UslaVZKKwoJJYuA94DauF6HzSQ9dqG7rvVIkBR3FDhSOHbXAbKq53SHODt7SSgX7LjxtGP3M9L7WaB1F52VTIKaTiWuEKUbowzPr6OtbW1uy4krt37+LVV181LL9cLqPdbuP06dNIJpPodDpYWlrC7u4ugMOSTtPT0wgEAlaHLpPJWGV7JWb0ej2LKVAZUdg1Go0+5aH9d2N/+l78noqLAndQSSeOAYUxlRsFtEu2ANDnvTAmpIpfK/hrGSiOdSQS6YtNAUe5WZoArHPPPlOIsx+uglVlpUqKsRqOgcZV1ZvQeJJCrny+Mjfj8TgajQYKhQIajUYfNOvxeBCLxTAyMmJ5fl6vFzMzM8Y+JdOw1+uhUqmgWCxaP/meVED8TCFPNQr4LlTSnE9eq3tSIU71NrWElhJDuE7omSmrU++rCnLY7m9DqPAhb7rRB0F+ushdq5yxC26mQfkiD4IRXS9N76Oem95Tf8fNuLm5iaWlJYTDYczNzSGZTGJzcxOZTAbnzp2D3+9HvV43IZlIJDA+Po5QKASfz4d4PI50Og2v12u5XRsbG2g2mwCOYl0Kc7pCJBqNIplMIhaLods9TIDe2dm5D4phn1VA7+7u2uf8LhQKmaIkrdodPx0rFz51x0gJE4QhSefX2A6VvdfrNa9OvSoKSioxVgchhOxa+A+Chdl3Clj3RGf93n1ffqaCl+9Ar4kCfG9vz+A+wsHb29u21gn7kqwzOjpq9x4ZGUEmk0Gn08HW1pYls/t8PmxubqJSqdgcDhpnHVdV4Ly/kmPc+BSbG7vS99braGCxcQyVfKPzMlRY/+029LjeAY2whlqL3AhUSPQ0KLwI4REWYyzF9S5oyQcCASuPRCGnsRiNhRD2IeTD+/Ne9NS63cNjJ15//XV86EMfwrFjx/Cud70LFy9exMWLF5FIJAxu3N3dRaFQgM/nw2OPPYZ8Po+7d+8imUzaicjtdhuXL1/Gzs4ONjc38aEPfcggHuDo4EgdI7/fj/n5eeRyOZRKJbz99tsGybHOnQoMvpPGlbTyPMeGMa4HwazAodCkUub92ehRUvGwaggJEloZg4Vkvd7DosfVahXtdtv6z7PECJnGYjFUKhU7/oPrR+eWgjsYDN4HkanCoaJxzypzPSv1Orle6JVR2aoBFQ6HcfbsWYyNjQEAfv/3fx9vv/022u22HWRZq9Xg8/kwOTmJcDiMnZ0dNBoNzM/P4/z582i1Wrhy5Qrm5ubwrne9C3Nzc1hfX8err77al7PG91TvUuN9Oq9KzCFEr/PJNcLfqAGoBpRbdYPvz3FRZEDREp2jYXtwGyquh7y5wXouapeRpJvU3Qj8N+EJ15LkxqT1qRCKsrDU6+CG1CrZfJbGBfx+P2q1Gm7evIlEIoFoNIrHH38cr7zyCtbW1uw3PJoCACYnJ43MQaXBceh0OigUCrhx4wYef/xxjI+PA4B5UJFIxPpDRiMp951OB6OjoxZ/2t/fN8tclS377sKjvC9jP67H5lrVvB+APoXO+XKtdD6TComGRjqdxsjICGq1Gra2tlCr1SxuxHqNVEQUihSejHupd6bHsHC+lMatXrs73+q1uB65wrYcK00V6PV6iEQiSCaTyGazOHPmDDqdDlZXV3Hnzh1UKhU7FJPrLpFI2ProdDqIRqPIZDJIJpPY2trCysoKnnrqKaRSKQSDQRQKBUtm5xhz3AdB4Vrvk5+5EKIqctcz4vioccL5UEiX3iuvoTLXtaIxN46vrqlhO2pDxfWQN6XnqqXHADitSYUeuIn8fn/fseO0Jl0FSO+KglqFNK1OJQioAHOFPT0j3osb76tf/Srq9TqefvppvOc970E2m8WXvvQlJBIJZLNZ1Go1AIcKlgpsYmLCAvRra2uo1WpIJBLweDy4c+cO/uN//I945plncPbsWaRSKVOiZJzxvXksfSAQwHPPPYdO5/D49m9/+9uo1+tWigpA39lZ/Kxer5vnk0wmAfRXf9B3VxKCCkPOD9DPFFWhRVgSODIapqamLHWgXC4jEAhYDT+fz2fCfmJiAuFwGEtLS2g0Gpao6xJwVFnSIw0EAqbgvF6v5byxEXbk7136PfuqeWpk/xEmi8VimJycxGOPPYZwOAyPx4Nr167hjTfesNME/H6/wbi9Xg8nTpxANBpFtVq1ONjp06ftpOPXXnsNiUQCc3NziMViaDQa+PM//3Pcu3fPFDUhSY6Dnhat61dTOVQx828XJtTvNZeRykm9WB1z7htNFHcVlqswh+3+NlRcD3mjBQscCTP+e5Dl62LmrpXvxrH0D++tXhYFtHpvruUJ9MdXlPDBQPX29jbu3LmDbDaLyclJzM3NYXp6GqVSCfV6Hfl8HrFYDPV6Hc1mE/F4HJlMxhTXvXv3UCqV+ry7xcVFJJNJJJNJ5PN5O++p0+mYd9Hr9UzJK/tSvQ4VPBwn9RzoLfFaFTLqtbJvWj9wkPdL4aXeCD1CZeJFIhGMjIxYvGdkZATj4+N98NTdu3cBAJlMBjs7Oyb4tSwWlRM/I9THNaCNHh8NnUGNxonmBRJuVo+P7+3z+ZDP53Hs2DFEIhE73uall17C7du3UalUzBPkXCWTSUSjUezs7PQpwrm5OfM+2+02crkc4vE42u026vW6HX0yiBnIvqsXpnPIMVXjT+dMkQp+x3mjcadrX/ugxo16UqrU+ByFGIdtcBsqroe8qaUOHFnvuuAVpuAfbiRCRvytG4DX37ibh0pHKdOqkB7UXwo2fR4Pmbx06RKefvppxONxnDlzxso8AUA8Hoff70e1WrXEUlLMNzc3sbu7awLY4/GgXq9jcXERiUQCFy5cgN/vN4XEChwUoGwarCdLjUe/U6hzzKlc9LRmZTJSgGlF+u8XpAf6E7ldq1oJAByLUChkntjU1BQmJyf7YnP0vlOpFNbW1vpyibgmeB+XYu0SLGioDCKTuDAi703FxTFSij3zrcLhMGZmZpBIJOwE4oWFBVy/ft0ShAlrejweZDIZTExMmBKOx+MGtTEmtrm5iUQigVwuZ8/W/C++H+dQjTL2nXNEOJpeEsdV9wTnTkkrLmzoMijd/aZevT5D4Wj10vnZsN3fhorrIW+6kGnVu7EtVSbcUMwvooBV6EetQ/WuXAXJz7QCgCotVZKEkPgs9R5IniiVSiiVShgbG8MzzzyDp59+GplMBnfv3sVbb72FfD6PU6dOYX9/H0tLS2i32zh27BgSiQSOHz+O69evw+v1WhFZAFbPzufz4ezZszh//jyAQ8+Ip/7SG6Cg8HoPi/1mMhns7+/jxo0bKBaLlvBMOImCizlFmqCsZZx4b5ag0sK2WtVeC+pq7JExKJ/vsDQV4UAaAIxxzczM2DMI7T722GNotVpmYDSbTSwvL9t8RSIRg04JCRPK5TsBR+d0eb1eSxrnWCmpgkKZJyLrOmWcKxqNIp1O49SpU0bAqdVquHXrFl555RUUCgVUq1Xs7OxYdY2dnR2Ew2G8613vQjKZxP7+PorFIi5cuICtrS2EQiGcPHkSnU4H3/nOd7CwsID3vOc9mJychNfrxZ07d/Ctb33LYGH2m0abrlNFBVz4m9eykDFZo4wpMsdO1zkVn5IvOLeq4DSOSLKIGgW6v4ce1/dvQ8X1kDduLhUgQH/JJeL17qJXq02DyBTAivMrlOHCHGyuRUi2mj6Pm1lzySjA+e87d+5gbGwMuVwOU1NTCIVCuHfvHorFIgKBACYnJxEKhbC2tgYAOHbsGE6fPo2DgwMsLS0Zk1Ct6WvXrqHdblsSKskrVGAUMGQocgxZVZ45ZTz2nu8I4D6BQ9KJKiWNWyk8xDkhfKbXKZwGHLH4CJt1u4d1AbPZLDKZDAD0Vezg+1ABJRIJxGIxYywylqRxHgpwwnvqeXAt8fecX4VSuU6UecexjUajCAQCmJ6eRiaTwcjIiAns1dVVLC8vo1Kp2LEkZLoyBpbL5ZDL5bCzs4NisWiVVlKpFHK5HGZnZ1EqlbCysoJEIoFMJoNwOIxSqYQ7d+5YbEv76cJ+6tW6yk3nXD1MfubuuUGGnhIudM+pcuQ9iYa4cCLXrjJeh62/DRXXQ95UoKjCIfSgyorClPCRa0kC/VAjN4huONcjUC9Br+G9gKOYmMImVFwqlPkOt2/fRqlUQiaTwalTpzA/P4+PfexjuHz5Mi5duoRKpWLssWKxiLt37+J973sf3vve96LVapmCIzsQABYWFrC8vIzNzU2cPn0aU1NTOHXqFEKhkJ1bxQRfKhG+2+joKPL5PPb393Hz5k2Uy2WDnAgVul5pKBQyxcHxZxULJQEwAVnhKno5e3t7fbR8ji+VRSKRwPT0NFKpVF+tPfaJeVEU1vl83ur3sbwVvSx6Ecpmo+JlzI9zHg6HrY9ka8bjcVtvmn4QDoeRSqWshBfn5eDgACsrK9je3kalUsHly5dRKpWMys94HN/x3LlzSKfTqNfrWF1dRaPRwPb2NhKJBD72sY9hdHQUvV4Pf/RHf4R8Po/HHnsM09PT8Hg8+MpXvoJXX30Vu7u7Nqc7Ozu25pXc5KIF7r+5F1iHUpmVAGwNq9HHz9Tg4PgQlnZjaMrk5ZpRpTj0uL5/Gyquh7y5MRPNRVEYRIUloUL1xnQD6ibSTaXKRpWPG/NQWMPdkKrM2Dc3EO7z+VCtVnH58mVjm2WzWRw7dgy1Wg0LCwuWa8Wk0+XlZYyPj+PkyZPY2dkxhp1u7r29PVy/fh31et1iICMjI4hEIgZjDco3YwuFQpiamkIqlTJIkp4d310JLhrjovegwpBNY2DqJbJMVDgcttwtzhGJGWQGcn7USHFz9wgn8rh61i9UT1ChSV1LjL94PB5T1BSg6i2qZzExMYF0Oo1cLofJyUmb93K5jO3tbayvr6PZbKJaraJSqaBer5si7PV6RqrJ5/NWhLnX6yEcDiOdTqNUKlm5sF6vh9XVVXi9XszOziKdTiMYDKLZbOLu3btoNptWdomogq6/QTFZrn1VGg9CGTRmqXProhq8l8bD1NBz8zFVaalHN4xxff82VFzvgMbFzRgSLTugv/QT0H9cCXCkQGitK/2W9+Z13HBAvyWoG1atz0GbjQqSz1JIkc/js2/dumV5OtPT08jlcpibmzPqea1WQz6fx+nTp3Ht2jWjfe/s7ODmzZvY3d01YUDlsb29DeDQmxgbG8Pk5CROnTrVJ/QZf9Mx4nul02nr0/b2Nur1uikBHQ/Gtwi7UbDrHKjlzXHg9VQQVMx65pfP50MikTBPi96hEm1IUiEE6/f7MTIyAr/fj1OnTmFxcRFbW1t9sRzNteK8u7URNV7KOdTcwEAggEQigUgkYqcMx2IxAIcwZrPZxPr6OhqNBur1Our1OiqVCmq1GprNphlSoVAIx44dw9TUlBVW5jodGRlBMBhEuVw26vva2hquXr2KiYkJjI2NWQ3KcrmMUqkEoJ8QM0j5uEaFrlfX+6Jx48LwGu/TPadxM+5Jdx/qdcDgvD/991BpPbh5eu/A0anVakilUv+7u/EX0hTSU+8HgMV6CCGy0O2gjauQoAav+Qz+zVNadVMNsgo1XqAbjpY6hR2Vrf6e9/T5fHZW10/91E8hlUqh1WphZWUFkUgEX//615FMJvHoo4+iUChgbW0N4XDYCuy+9dZbaDQaJrz1efQS4vE4nnzySeTzeWQyGczPz/cpWvUclWChlvrW1haazSa2t7ftTDFVAOqp8tkqAKPRqMWhCGOVy2VMT0/jkUcewdbWFu7evYu9vT1TnKR587iXUCjUd/oyE62bzWYfHNzr9VCv17G1tYWtrS1L8u71Ds/m0oof2neFqaiEvV6vjTf/ZDIZ5PN58+673S6azSYWFxdRr9dtbHZ2drC0tISNjQ3rC72sdDqN8fFxzM3NGemh1Wohm80iFAphaWkJly5dwvPPP48nnngCCwsLeOWVV+Dz+fDjP/7jSKVS8Pl8uHXrFr75zW/i0qVLNi7NZtPWOseba5mGhhoganAA6FNUWimG13JeByUj65gMgoUJCauS1rlz42F/WWJc29vblh/539uGHtdD3tQzUohBqbSqzPgdrXetWK73dHF1FXzctMCRx6bWuAaPXVaiCnwX8qAw5Kb0+XxoNptYWlrCzZs3ceLECSSTSYyMjNgzy+UyqtUqkskkut2uVQ6PRqOYn5/H8vIytra2zEtT5h/ht2vXrmFrawuTk5PI5/OWxExmoHpNfGeFxUZHR5HJZDA2Nga/349Go4Fms2keBuFEfWeOH8dFhVmj0TASiCpYCnWWbYpGo4jFYiYQ1fNyc6xcL3B8fNxid0wg3traQqvVMuWisRSFUpWJGI1GEYlEEI/HEQqFLNbV7XZNETYaDZRKJfOomFO1vr6Ora0tq+4RiUQwNTWFkZERm2OWtorH43YKwPr6OgBgfn4eXq8X6+vr2N/fx+nTpw1S7Ha7uHr1KhYWFgDgPgXsUv3Vw6SRoXR5zg/XrlbU4Lr1er1GxuH6VEWo3rgaP7yPe5Ck3kdjZlw36gkOW38bKq6HvKlHo5tIq1O48IiL07v0Wn43iAHHDa0JtirI+cxB/dSNx37w+kEBZ/arXq/j4sWL8Pl8OH/+PEZGRtBqtRCNRrG4uIirV6/iqaeeMrJGq9UCcHjkCRXV0tJSn0eo1vbGxoYdp3Ls2DHk83ljHmpsila6jisFSjAYRCQSAXAobGu1GhqNhsFgvd5R/UJNVFVoiONKiDCdTiMUChmjLhqNWmwyHo8jkUiYklU2KXBYzUM9PH7OMWXsLBKJGAyZSCSMtEG4lN4X+93pdBCLxUxxkX2odPn9/X00m01sbW1hb28PjUYDtVoNrVbL6jNWKhVTWgcHBwiHw8jlcpiZmUEkEkE0GjXCTLfbxejoKEZHR/Hd734X6+vrOH36tB0Quby8DL/fj3w+b/G3zc1N3Llzx6pquMpDjTwXLVAPi9dogrhbFUUT04H78/YYc+Q9+Hw3hgXcr2D13sr4BXCfcTJsR20IFT7kjYFzbgRabUA/Q0nhMcIR/Ldakvwd/1aPy2Vc6UZX5pQqIf6OlifrAzIO58a9BsUgPJ5Dmnkul8OTTz6JH/uxH0O320WxWMS9e/dw7do1+P1+PPLIIxgZGbHTbaPRKM6cOYNAIIDf/d3fRbFYNJIKrXIW8GU/RkZGMDY2htOnT+M973kPIpEIdnZ2jMgQi8UQi8WQSqVMuDcaDRtnKhcKcsJie3t7lsisljYZeRznaDRq8Sufz2fPZsyLYzk6Oop4PA4Aply0Gki5XEaz2UStVrPf8lBFNTDcuE+32zVvT5W2G3/Rs8lIWe92uwZzHhwcYHt7G61WC61WC9VqFc1mE/V6HcViEc1ms68vs7OzOHbsGCYnJ63/t27dQjQaxbFjx3DmzBmsrq7ixRdfxJNPPonHH38cBwcHuHr1Ku7du4ennnoKJ06cQCAQwPLyMl577TX88R//cV+fuV9c40kNMY4f/821TUq/FsdVCFhzsqhgVCmxWLEiH/oMl+Cj8KASrXR/DqqH+cPYhlDhD3HTmAlwxDADjqw1ZTLxGv29Kin1fmhBqpDjb/WZCsNokV9VpGrNctO7HprGCfS+pVIJV69eteK5o6OjVgXj29/+NtrtNj7wgQ8gHo9jamoKV65cwfj4OObn5zEzM2PxI429tNttUzLd7uExK4T3mISsx6gwx0i9Lx5GyHwopfiTSEFIj++lVGhS15msHA6HEQqF7DRlFYIUZLT6dWzV8KACWlxcRLfbtQob4XAYIyMjZuwwOVbhY0KoCh+7a4LQFvtIZddqtewMNSqrnZ0dbG9vmxfKivjBYBDxeBzRaBSTk5N9x9MUi0Ujj3S7h+W7Xn75ZTzzzDM4ceIEut0u7ty5g4WFBczOzmJ0dBSRSASlUgn37t3D7du3zUhSph7XMdMElBSkjFq+qyoTek4uKqAwuhIrXGiS4/gglIQHfOr3GlPk/bWfwza4DT2uh7xRiahHA/QrLtd7cZWSC5+o9Q30n91FwauWN+NHAEz4AjBmnltSSp9Fa1KPVwH6vTpWtuB3586dw2OPPYYPfvCDdozH4uIibt26hd3dXVy4cAETExPY29vDlStXsLGxgXg8joODAxOe9ILoRTEuQ4uaCjUWi+G5557D/Py8HZ/BdyPkSFIE4yM0EiiQ1BPid4lE4j4hqOOkxXypIHq9nnk6pPHTkq/X65aQHQqFcHBwgMXFRXzrW98yZUsCxbFjx6zcVSwWs5wzVYauV6Leta41jmGpVLIK/pubm2i326hUKgYFUhlyrpmIPDY2hpGREaRSKdTrdbz00kt9cCq9lVQqhfe///2Ynp62Cu+3bt1COBzGj/3Yj1my8Ve+8hV861vfMmjYFfa6J1Q58LNB0Lobh6VBRU8sHA7D6/Wi1WrZvnOTt934MxEK7hsqKO4h7ZMaDR6Px+499Lge3IYe1zugcWO5hAf3e+B+C50wB7+jVTmI1svvqcBI7HAtVzforZCU3offaTBaladCmQqdFItFXLt2DY8//rgV2yVU87WvfQ3Xrl2D1+vF448/jkgkgtdffx23bt0yCz8UCvUdNqmVzPlOLMi7t7eHixcvYmNjA6dPn8YjjzyCZDJpuVU82JFCiEQJzQNzFYE7L6qgeB2VjXrBjEspyYQkiEKhgMuXLxsTM5FIoFar2XvSM+BxLVTUFIThcBiJRMIShhm34vyyAgdZfiR0MG6nRIxarWYQKr/nuvL7/chkMohEIpicnEQymYTX68Xy8jLu3LnTBzsCMGLKM888g9nZWSwvL+PmzZvY3NyE3+83MkcsFkO73cadO3ewsbFhOXBaeUK9fUURaKS40LgacC56ofPqVshQUobuARp9blIx+0Ao2IX6dW+pofkO9Cn+wtpQcb0DmmsZKguJG831pvhvzeNSKEU3Bu/B++j99BpuWMIkqsRcSFGbChSNh6kXx0ofXu9h4u/6+jqWlpYwNzeHVCqFdDoNABgZGUG5XMabb76JM2fOYHR0FE888QRWV1dRq9UsYTWdTuPNN9+0WBsrZtDroKIAgEKhgFqthkqlgnA4jOnpaRw/fhyhUMgSaPnOu7u7VrBWhaFb5krjkfo3rXiWVeK9gsGgeYaqPBqNBtbW1rC8vIwrV67A7/cjnU5jdnbW+kxKfK/X64MradmTYJFKpSyxOR6PIx6PW4FaZQvW6/W+Ay0JS7KmIMeDSouHWFJBZrNZxONxO36lUqngypUrxgatVqu2HiYnJ3Hu3DkcO3YMHo8H9+7dw/LyMgDg5MmTVpzX7/djY2PDko0V4tPmGkvuvnGNPFViXOODPFJ3H6hHp0aZQr1U/txP+mySOdRLJLtVSR7DNrgNocJ3QCN8oZ6SVoCgItAjMVShUDBSCGkFdBdKBPpr87ERLiNh4UFQC//vemV85sHBQd+92NTqTCQS6HQ6yGazmJ6exunTp/HUU08hEAigVqthc3MTt27dQqvVwhNPPIHjx49je3sbb731Fi5duoRQKGTVFpLJJK5fv45Go2ExGr5bPB6Hz+czocyxSSaT+MQnPoETJ07YcfAAjOathAZVVITkNGFXiRL0LrW6Az1En8+HpaUlrK+vW74Ya/Ztbm6iXq9je3sboVAIIyMjePTRR7G7u4s33ngDwBGkq7EXnSOv12tMSjISw+EwZmdnjeXX6/UMGuS/Gduq1WqWPkCYi0nAvd5h2axUKmUFdoPBIL71rW+h1+shlUohHo9bPhwF+wc+8AGcPn0aoVDI6kn+3u/9HoLBIJ588knMz88b8/LOnTt48cUX8fLLL9vYa+kzF7bTNekSVHSN6mc0pJgLqMpRjUFd8zQQFBWh8gJgqRL8v8KIfJZ6xopeDPO4HtyGHtc7oClur1YdGxe3BpG54ZQmrRR3ZQO6OUju/bQf6sHxM1VwjIFpkVs39sV+KaVf42pUwMVi0az88fFxS8plMu5Xv/pVLCws2DEY58+fx61bt9DpHB4Umc1mja3IM5vW19etpiCJESrAWq0WarUavvnNb2JrawsXLlzAyZMnDVpLJBLodrtG46Yy5meu5+WOIceWdQYprLa3t3Hx4kXcvHkTlUoF1WrVaPeMG9Eab7Va2N7etir5NGxUcGtJKBooNPaYF8VnMG9MjRIyCqnQWWmf65CxKbZMJmNMSTJC2+025ufnEY1GcePGDRPYNCyoNA8ODlCpVOyd5ubmLPE6Go1ieXkZb7/9Nm7fvt1nYLG56ADfv9vt9uVduc2Fr9XwY1N2ps6fG19Two7Cf25MTedKSRn8jULEw/bgNvS4HvKmsIcKp0H5UboJXCUG9CsbLdir8SgKO2L1hLaUmKCwCZs+X/9P4UZKugqRQQm/LrOO/85ms8jn8/jxH/9xTE5OIhAI4A//8A9x48YNxONxfPKTn0QsFsPy8jKWl5dRKpVMKI+Pjxv8RliwWq1iY2MDnc7RicskM5DiHgwGkclkLPE1nU5jfn7eEmhdD5UeAP8ojAgclX5iLpfff3j2WLFYxMLCAr72ta9hc3PTFAcASwIm0UPjgZwbet0cd84v55LKaHR0FLu7uygUCjafrVbLmI98F43hKCTNdccztnK5nCn0bDaL/f19FAoFbG9v90HVvH8ul8MzzzyDWCxmhIf9/X2Uy2V861vfwv7+Pj784Q9jfHwc6XQayWQStVoNv/Zrv4YbN25ge3vbqk8cHBz01Vfk2Lj7hGPhek78TNe5/p/FhzWtg2vXrZCi9UA5B+7+UM+cz9B4mhtv9ng8pkh/2NvQ4/ohbmrp8W9XKak3xP+7kJFadxSQmnzpeki0rLmJXMXIz/SkZPaBgks9LQoHem96HX+nQoabnfXv7t27h0gkgvHxcRw/fhzNZhNra2tYXV3F9PQ08vm8xVpu3brVB9WQ2EAFwhJFpNzTOyHLsdPpoF6v48aNG4hGo4jH46hWqxgbG8PMzIzR2iORSB/LkPfh+NFIoMAiC7FWq+HmzZtYWlrC3bt3Ua1WEYlEEIvF+mKJWkqI80gvT5ODeXqwUqup3LrdLkqlks0F430UvBwT9pt/+F6EEP1+v1H/U6mUrZXl5eU+FmetVgNwVAuRR9NMTEwYFMk6kLdv30a328XJkyeRzWatYkij0cDt27exuLiIVqtlhpYLzRGGVq/INRzU03FZfGx8Fz6Diomfuwn/fP4gGFEVIRufTW/Q3dfst9aNfAf6FX8hbai43gGNwltLyWh8SD0o3RC6gZUIoUqOgkUtS1VswBGOT0HqBpoHxbQUHlEGlkKdSu134RgSNvgdSxZdvnwZ4XDYLPjTp09jd3cXt27dAnBYrDcajWJ8fByFQgGVSgXFYtFOFOahjIlEAqVSCR6PB4lEwhJqOQaxWMygJlLr6/U6dnd3sba2ZvdMJBIW02E8xi2yqt4xx3V7exurq6u4ePEi1tfXsbGxYXE3ElEojEmgqNfrNoZUrloFneMZjUYBwMgBnDNlkhKycwWyPpdKQQWxx+Oxslw0aDY2Nqxf4XDYIL/R0VFTdBcuXMD4+LhVy+h0OlhcXLTqF0888QRmZ2ctudvr9eLWrVt47bXXUK1WTfHs7Oz0KQQqAk2zcEsuuWtQYXQqaiUmKYxHb0r3m65X/Z1rTOpe0T1LCN3d46qk9D7Ddn8bQoXvgKZUccYJ1MLTDQfcz5biRlciBjeyBq81PqOekgayCbOwKRQD9JMser1enzeg1qabmOwGwyk4XA/T4/FgZmYGzz33HH7iJ34C+/v7VnGhXq/jAx/4AMbGxhAOh/H7v//7uHz5MsbHx61k04/8yI8gm83i4OAAX/7yl7G+vm5QKPvNGBk9GBa0JQGD70N6PMd2fHwciUQCyWQS2WzW4Lhe75DosLW1ZcSOzc1NFItFVKtVC8xnMhkT/ru7u1YjMBaL4eDgAMvLy30lqDj+hCjpXabTaRwcHFhyMA0F9bo5voQK+d6E4QAYeYSCP51OY3p62jxPllsaGRkxj5ieXCwWw+nTpw1apTdWLBZRKpWwtLSETqeDfD6P+fl5Oy05Eomg1Wrh5s2b+K3f+i1TikQG6D26SoIGmB7sSSON1z+Iqce1pzmLGn/lv5m3qHuPFfoVgVCYTyFcfqfemvaH70RmKNffD3sbQoU/pI2bSqGiQczBQZi6KgRazXooIZWIKiQlFShcx+erUlNYSeEl9suN9+hmdeMOLgSj96dA7Ha7KJfLuHPnjh33nsvlMD8/j5s3b+LevXvw+XwW1J+bm7O4SCAQwJ07d0zQ+P1+hMNhq6TR6RzV6eO4KMuu1+uZl6JGAUtCdTod8xiULQjACAh8Dmv70WuiR8j7sGIF353KlQK00WgAuP+sL9LrFf51x1a9P7fwK59Fr465WdlsFmNjY8hkMnaS8dTUlJVJajQaCIfD8Pl8RtSYmZlBOp1Gt9u16veFQgGlUgntdhvPPvssRkZGkEwmjZ7faDSwuLiI73znOygWi2ZMERrV2KwaUhpfVcWlMUFVdIQNVZnzt+7fihK4Bh/XqXpX7POg/ajP1/6odzgkZvy321BxvQOaCnYVMKo81Htxg9G6wXRzaV02tz2Itci+qKAA+pOjB8URFKrhO7F/FJa6iSnA1SOk4Gg2m7h37x7W1tZw7NgxxGIxHDt2DAcHB7hy5Qrq9boV0n3yySdx7949hMNhzM3NYWFhAVeuXDEvJ51O99G+W60W/H4/xsbGEI/H0Ww2UalU+o62YNyJSoLeZLfbtbp9pVLJhD6tcj5DYT0qUI1L8Tl7e3uWXKyQIwBTlurFcn6o9AbFOBk7Y21GNVqoqAg1+v1+JJNJI6kwKbtWq1mcq9FoYHV11ZKa/X4/Lly4YMVweV7Wd77zHUvkjsfjOHnyJKanpxEMBg367fV6uHz5Mt5++21cvnzZ4j3sp64tlzTBcR20HnVv6PrWNahGlUJ6LtrApsQMeq/8TbvdtmRjzclSo1P3gSqrQX0dtvvbECp8BzQudIWHVClw83DxayIjoSVNeOTvlLL7IIxdBR6ViMtw07gC70MhxiM0NLfJDUzz3ypkVaBQQNOSpffx2GOP4d3vfjeefPJJjI2NWbLuysoKbt++bcnCExMTuHDhAubn57G2tma5YJcvX8bOzo6x9kjE6PV6iEQiyGazSCaTdgzJ7u6uxcEYI6LiopdHwaXMTM4Dx4/jRg+K3o3OIb1E1txT74B/c1xJTmD8R+E0JYpQuarC4rU+n8/iazzckvNOaJIQab1eN8VKT3hmZgYTExMYHR2Fz+dDo9HAW2+9ZYc8siIJD4Hk0Sk0IO7evYubN2/iD/7gD6zWYSQSQa/XM0YqG+FZKi5VWly3Cv3qd9xPXFea96YsUXrWHB+Nh7HPnE9VWm5MjfCt7jPXE2ZTWB84Sgv5YW9DqPCHuKlQdwPKbhyIUJgLg2gcjPeigFSGHzenKi9XWfIebmxNmwoKXqOemsaA1Hp2vTBl6/G57XYbi4uLVnGCB0UGAgEkk0n0ej28+uqr2NnZwejoKGq1GorFIgAgHo8bHFgsFrG8vIyxsTHkcjk7yJLnbbVaLYOystks0un0fcfQU0gxxqOloQD0KW4lpGjOjyrpdruNZrPZ5y0w94xjyCNWWq2WFculV6ieLBWVEi74nV4TiUSQTCbNc+KaYN+Zt8ZUAQDIZrP2HsePHzflv7a2hkajYQSWqakpzM3NIRqNWm4dn727u4uNjQ28/PLLuHfvnhFQFDXQtcTxURKF7hE3XsvfDDLK3PWqRpq7x+ip8p4ugcP1bDkneg83B5L3GWQcDtv3b0OP6x3QlIVHgaOeCJWBC2dxQwHou57QleL/3DTqIVCocdNqOSIVJLqZB0EqXq+3L2iuVuugKtuDvC9Vfvp+Xu9hjtcnPvEJPPLIIzh79iwAoNls4s6dO9ja2sKlS5dQqVTQ6XSQSqUwOjqKiYkJ5HI5RCIRq8RRKBQwMzODg4MDvPLKK3bkCIUzy0H5/X4rNlur1RCJRNDpdIxoEYlEzBtTz5TeJ6+h90XPCzgitzDxl/leAMyj8nq9iEajdvaV0u05ZgpRanUGAHa99pW5aeFwGOvr633ePPtB0kCn00EkEsHs7Gyfp8hyTayg8b73va/v3DOyHBmju3z5MjY3N1EoFLC5udkHF3Nt9Xo9I8Ro0VkacFy/HCOWDlNYnWuH1+u86G91n7jw4YOUiRvnVWMMOCrwq3tM+8Y5V2WpBupfhvYX7nH9yq/8Cj73uc/hZ3/2Z/Grv/qrAA433N/7e38Pv/M7v4O9vT189KMfxRe/+EWMj4/b75aWlvDZz34Wf/Znf4Z4PI7PfOYz+MIXvtC3gIbt/ubGjYD7YTcKL0IduvncGJVafry/WrKq9HTTuTi8Ki/XW9P4Gr93++IqrQdBktzMGivweDyoVCp46aWXUKvVLLaVTCZx8uRJ5HI5+P1+lEolFAoFLC4uYnV1FdevX8fMzAzm5uZw/PhxxONx3LhxA7VaDcFgELOzs3bS8dbWlsVslpaWkEwm7b7qGdBbGER1JsxGD4bFZjnOVO4ce4V6NQ+JCoDXcg3oOFFRkFzCsXLnzOv1IpVK2ZhTCbGOokJc8XjcnjMxMYFIJIJMJmP9WVhYwObmpiVp83BMzhkZlKurq3aO2OLioh2vMkjQcz1qP1xSA9/FJVqop6OV2AftBX6nz3aPlXHJHPytQsIaL1YFyT8uiqDenBsXfgf6E3+h7X9YU7z++uv4jd/4DTz22GN9n//cz/0c/uiP/ghf+tKXkEql8DM/8zP45Cc/iZdeegnAoXXx8Y9/HPl8Hi+//DLW19fx6U9/GoFAAJ///Of/597mh7Sp5QgcQX4uVMfERdJ2NYmVAo0CVC1KJW6ox+Z6TtzYg2AchZ1UGamnpApPlZa+C79T4a2KkM/rdo9yjDqdDm7fvo1ms4n5+Xk7sJCJwXNzc+ZlJZNJO0eqWCyiUCgglUohmUxibm4Ot2/fxt7eniUWkzpPAobP58P29jZyuZzlejHZNpVKGemBCoNjoGSaQaxLCkG+Jz0dFcYcIyokV8gx9uYqOMahXMOHJyTv7u5abhVjOlSgkUjE1g0L9U5PT/cpUi1QTGMgFouh1+sZFPjd734XxWIRKysrfV4g55nQmholHC961rquqDCIAPAaXa96vc6FjoELT+uaViWn8+aiAq5B5/5WiSUKYQLo8xrddx9Chg9u/0NQYaPRwFNPPYUvfvGL+OVf/mU88cQT+NVf/VVsb29jbGwMv/3bv42f/MmfBABcv34d586dwyuvvILnnnsOf/zHf4y/+lf/KtbW1swL+1f/6l/hF3/xF7G5udlX/+xB7S8jVKhCX6eMioGbhN9zcyg8p2QK/Y6xC4UkNT6jz1d2ICEjCijF+HkfPVWWwoG/1f6z371ez35DYgKD79oP7SOFF6GvZDKJqakpvPDCC5idnTVB2263+xiA29vbKBQK+NrXvoZqtYpQKITHH38ciUTC8ri63S42Njawvb0Nr9eLtbU1iwuSiMB6ghyfTqdjx9pr4VsiChS4mjOlQpHvDBwWsuXnrB6hFjxhNCpwPblYGYoA7PeMM7Hq+s7ODhKJBMbGxgDA6iLyFON0Om3xLL4Dq5jU63X0ej088cQTiEajiEQiVr3kzTffxJUrV6z+osaD2Pdut2vjxPXnMiR1rXINM/lZPRwqDyVXuAYA1xkVjuYg6p6i8ce1qhCgGgu6/3QetH9qEPJ+CnV2u12LK3L96B75YW9/YVDhT//0T+PjH/84PvzhD+OXf/mX7fM33ngDBwcH+PCHP2yfnT17FrOzs6a4XnnlFTz66KN90OFHP/pRfPazn8WVK1fw5JNP3vc8Ztuz0cL9y9Jcy8617lRhKNymikh/q8pLN4ey0XhvhUHUOxhkcfI3avlScOj/FXZRqxTot5S1bA6FgFrHVMZUCuxHqVSyXKFjx47h2WefRTQaNQo7SzWx0sW73/1uLC4uYmlpCa+99hrGx8etACwPRaQnOzo6inq9brX9KFDp4RA+jEajCIfD6HQ6VnlD4TCXPEPhpQYC/63nXdGrUjhMDREdp0HwlXqzFOwej8diZp1Ox/p9cHBglUiYQ9doNFAul1Eul1Gv161OYT6f76uP2Gg0cOXKFSwsLKBarcLn81mOGz07nklGz8v1rqks1GtRZMCNfep+UO+V7+7+n1Asx0ShRO4lelr0Lt0Ug0GkI3fd63xwzbokKTfGNYQKv3/7gRXX7/zO7+DNN9/E66+/ft93hULBSt9oY/kdXqNKi9/zu0HtC1/4An7pl37pB+3qD03TRe0qBrUkXQye12mujm5sCkKFLlwFNyh2pbEwwh/aHwpEVSwUypq/pM/U39MSVa9MvRQ3/uZ6oPTYrly5gsXFRRQKBSSTSaNjp1IpjIyMIJfLIRgM4tSpU8hms8hms7hy5QpWVlZQqVSs6jxLF2lCrApWxn/K5fJ9wlCVh3oI7LvGN/iOrndARafXcl4J++r1rDofCASM5EFlxTwqXqNzydgW+8lKFp1Ox8pdVSoVbG5uotfrYXp6GplMxkpoURhvbGygUChgYWEBlUqlz9ugwtGUAXd98f+6rlTpKkXdjT1p6SdV6Op9KjzNfUPCis4N30c9ZVVuqjx5H86h6+WxD3wHZSi67699H7bB7QdSXMvLy/jZn/1ZvPjii2Zx/kW0z33uc/j5n/95+3+tVsPMzMxf2PP/dze1LF0WlQuXcPOol8R/K82ZliuZfUp+4AZXaIbPUAiSNGkXpmTSKK/XJEw3zuAKE/XIeE+toaiQp8KgFBKkkbMqxv7+Pl577TUbS7Lj/P7D03VPnjyJv/JX/gpyuRzGx8fx/PPPo9Vq4erVq1a1/fXXX0c6ncbY2BjOnTuHQCCAer2Oer2OarWKTqdjQtz1JtjXQCBgCcjsNxU5Yz7u+zGxWCtwcN45nwoLEmb3er1Wfb1er5vhkM/nraIFx2t3dxf1eh2pVAq5XA6hUMhgUY/Hg7feesuONOEpyk8++SSi0SjGxsbsmeVyGZubm7h3754lgbdaLfModnd3+wS3euu6vvj+7oGYrveiho0aRJq/xb913bleLvtBT9b1UBkf3N3d7Vv7SphxY8NKLNJ30nXqeoCaDqLGxLANbj+Q4nrjjTdQLBbx1FNP2WedTgff/OY38S//5b/En/zJn9g5P+p1bWxsIJ/PAwDy+XyfIOH3/G5Q4/lLf1mbbnJd2MCRl6WbkrEONhWI/FstVfWGVFgoNEdBoZYhlaL+W4WR4vXK7FIKPID7rG5eR+Hs8/ks1uGyKPU3Gkfj8zV/igIFOBTYN2/eNHx9fHwcmUwG4+PjiEajmJ+fRzabxejoKN5++21Uq1Ura5RKpRCLxYxaz/OtWJXe6/Ua2aHb7dpZYLVaDTs7O0ZM6PV6ViYJ6BdeGu/g+Gt8kb8LBAJWKYPjr4oQgDEAp6enLf+LlTWYe3b27FkEAgE78XlnZ8e8tWQyiXw+b1XbR0dHje7Psbx+/ToWFhawtraGra2tPmOGczmIqcq1QQXsevaqYHQ96331/3qN/h/oP4fO/VzvodCzq0wGweTqcSmMqOve7btC44O8P7fvw9bffiByRr1ex+LiYt9nf/tv/22cPXsWv/iLv4iZmRmMjY3h3//7f49PfepTAIAbN27g7Nmz95Ez1tfXkcvlAAD/+l//a/zCL/wCisXif5eC+stGzhgEjelC5//dk2AVnlArUTcuhTxwBEu5NHTd8G4sSqEwKhr14BQ6ZFIu45VqfarS5H34Duo1qvCgwiUMx8br+W+NHbm1/AiXMnF5fn4es7OzeOz/1965xthVXXd8zfXMnYftmbE9tsem2CEhgRACbUljJlVUqVhQivpI+YAi1KI2akViqqRBUZO+oK1UolZq1VYVX9rCpxYlVUmrPBAEghsIj0AxmEccTElsAoONH+MZ2/PAs/vB+p/7O//Zd4wJsbl4L2k0M/ees8/ea++9/mv999r7XHRRZeSPHTt+duDhw4er7LhDhw5VUcfIyEgsW7Ysjhw5UiUrdHW1EgsUldAL16nzBw4cqA7D5aI893Mxg07A57QxvX+9cVjnOA4ODlYn4Ov+pUuXxvDwcKxcuTKWLFkSk5OT8cILL8T+/furLQXLly+PpUuXVmt2GgNzc3MxPT0dL730UuzZsyd+9KMfxfe///0afcpjmhjBcO2HY4fRitqu+/zNwB79i/YWA6CxLp1zjdTpQEZtjMqkSya5uPNIZ0L19nlJ1oJUIhOOPLNQzynJGe3lpCKu5cuXx4UXXlj7bOnSpbFq1arq80984hPx2c9+NlauXBmDg4Px+7//+zE2NhaXXnppRERcfvnlccEFF8Rv/uZvxl//9V/H+Ph4/Mmf/Els2bLljI6qFhN6q5ooNAb6nydoy/BzTcgXkvU9EyX0vIj6eYKkayKiZhgIjO4BM6vQy3Rw1bMFRJ5pp+fxOhoRfU6aTYaWzxaVKkBJKVVvWp6cnIzx8fEYGBiIlStXxvDwcAwNDVWbdPv7++PAgQPxzDPPxGuvvVa9uHL16tWxatWqSverVq2q6nPkyJEqQUOGVGtMg4ODVQq96nXs2PFDeJVWr8iqr68vpqam4tChQzExMVEZP531p9T1FStWVMCjdbDDhw9Xejj77LNj6dKlsXTp0mg0GjE1NRXbtm2LY8eOb9C+8MILq3eCKZJTP87MzMQPf/jD2Lt3b+zcubOiTOUE9Pb21oCV/ce+p/OQo8foYDGC0XccL7yWzIA7ZQT5dnvtJGIFCECM6HPzhHPNI046YYwV9FytezGyK9Je3vIdv3/3d38XjUYjrr766toGZMmSJUviq1/9anzyk5+MsbGxWLp0aVx33XXxF3/xF291Vd5RQgpiyZLj7yWiB086jB4gJ7lP/ojWBKUQEHQtDQ8npH6TuqMRyUVV3iY+V587fcK1kYjW2pnoNRdfI1Cb5EEreaHROH6iupIqDh06FDMzM/Hoo4/GihUrYnR0NN7znvdUm5rXrVsXK1asiGXLllVrXEoA2bdvX3R3d1fRTH9/fzQajVi5cmWVjac6aQ1MWY56q7B0rZc0qu3d3d0xNDQUx44diyNHjsT4+Hi1BUFRpNZhdBagEkoOHz4c3d3dMTo6GiMjI7F8+fJqrOzfvz/+7//+L44cORIbN26MjRs3xvr166voRad1TE1NxYEDB+LgwYPx7LPPxmuvvRZ79+6t+pbrqoxi1De+pslEGxp5OjFyxNifvF//K2rmMUs5sFPkpfHjzAQpayYGqS2+BqbrGLn5nKMuVB6ZBdWFDAXnU5G8lCOfOkBksJkFKBBQxOPZdjJM2itD+sW7nB4wqRSuMeg6Uia8xrPG2vH/pFa4JsAkEAKmvzadhpzgLD2pbNaLhkhgwMQGRm26j9l4irxGRkaqfV4jIyMV2PT398fU1FRs3749XnvttZicnKyOMOru7o6LL744BgcHqyinu7u7SlyQAZuZmaky8FJKsWfPnuqU8YioTpfX2pTWuHR6fKPRiMHBwSoRJOK44b/gggti+fLlkVKKiYmJ6Ovrq96ltW/fvti5c2esXr06PvKRj1TJFhMTE7Fnz554+eWXY8eOHTE9PR3j4+MxOTlZJU4owlIErAhQQCpHgK8h4djg2hEBTOJrfHRk6Fj5Oq0iVN9yQOH6GSlnrVNGRO1wXFKTTHhi9iujOyV66HPR5AJNT8xgok5EVFsPPCp8p0o5ZPcdKjTsES2v1BMUSEXkPN12PkqOdozInz2oie68Pg0S/9YkZMTGenH9jMDIevn1WjPzOuWoJY8W3dOWblWeMvj4/rMDBw7EgQMH4uWXX44DBw7E0NBQ9YLE4eHheM973hPLli2Lc845J1avXh1HjhyJ3bt3x969e2P//v3x5JNPxvLly2Pt2rUxNDRUUZTNZjOGhoYqKk4RFw2X9pNFRLVZeHJyMpYvXx59fX0xPj4ec3Nz0dfXF4ODg1XbtHl6+fLlERHVgcGTk5Oxe/fu2LdvX+zfvz/OPvvsOPfcc2PdunWVMX7yySerRAuBqUBLToP0pn4htUbK2Pvdxek2X1PVdz4eeb3TdHyWxovTdBw/ZB0IUoyoIurRoMrmfT6OmeChDdZ0rJwuZVs7MJ44pVIirg4Q31XPiKMdHy5w4UnxnByamLl9QJ4NRg5eE1IgwBMPNCkJbLqP9KFO2+BaiDxdpuvTu202m5U3zbpxPYNt0NqPohmtLckYeYTp9JLAS9cp2UBtj4gqaeG8886Ls846KzZs2BDLli2LFStWxMDAQBw+fLii2CYmJuK5556Lqampag1OmYeMlFUP7rvSazxWrVpVGcGRkZEYGBio3su1ZMmS2L9/fy25RuVOTU3F0aNHq1eyrFmzpjoNQ9GgMgMfe+yx2Lp1a1UPHcLLY6ykE0VfSrhhsgT7L6XWW33Vd6TuSMtx/JEGZgZiO4pZ45zrZiqHz+a9mkt8nkf06g8meCjq9DnGaJ/MARNbqCeKg24HmuY3JSXieodKzmN0qs2jI19nkPHg/hMZ+Byvrv81AbmplpPLPU4ZZXmSXFNQeR7xEIDopUe0jBGNoerG6E2GSoab+mEkyXUY3i8h3egg7pmUeqvx008/Hbt27YqXXnop1qxZExs3boz3v//91ckbOox27dq1MTU1VemEhl0OgTIYdRLH7t27qyOlXn755Upnzz//fERE9eJL0Z4RUb1fTNSZPl+3bl2sWrUqzjvvvOjv76+yIlNK8dRTT8V3vvOdeO6552pGmSfJS+/SnT7P9RvpP9FguaiCbadjQb04fe3rrKSeGWFR/NmcW7zGozp3bHS9klZYppwstZfrcxy7AkrqirrwuVhkoRTg6gDRYG5HW9Cb1P/+49SNU2++JuQGnMaFXq97uPqf62pOqeT2g3HScpJH1Peq0agxw9DbJQ+ZXix1oOhJn0tYFs9DVFsFzPK0I46f2zc1NRUTExMxPDwcr776avT09MTKlSujv78/hoeHo9lsxuDgYC3KouGXKMlAddq4cWPs27evitz0/L1798b09HQMDQ3FzMxMzM7OxsDAQHV2ofpKSSXao7Z06dLqbcY6hHjPnj3xwAMPxPbt26vT8fmqFYEoIxvvS0bU7iTQ2SI48Ugn9jOjLIK7nAeOJa6tsn5OG7cbU4uBajuKUn97khJZBo07bi1hPRwwdT9BuoBXeylUYQeIzpGjMaWhoNAoyNBH1PepKOmBHDwnPukrJi8QXGR4tZnWF8K50dfrqMlNus4pIK3ziIZhIoXaoXp5hploLBqIdsbRaSXp0KM+6cNTnru6Wut4pMt09NmKFSvi4osvruhDUX/Dw8MV9asNxI1GozpTUfQoT07XwbFzc3PVeZ2KoknZqr5qU7PZrBJJ9LyZmZmYmpqKu+++O5577rn43ve+Vz1T/ULHR+OCfcuEGhpd9ZMiN2cHPCFDz1LZ6jdGbOoL7tcjnSuw133uNHEusH89quIY8LnhkScBmkCnqF86cseSwEydao6fKfu3JIUqfIcK92ZF1LOiPKEiImpUXcTC0wAkPM2C3rF7iBIaewcyFwKrAyNfV6Ifes7825/D+pE2IjBRnHJUuYzYnKah16wyGDWwjUqmUB3UHu3b0gbjZcuWVXujmJShzbw6uV2bmXkQsE5d5wG1AjUleniErLrrGl0/NzcXL7zwQoyPj8fLL78c3/72t2NiYqLaHqC9W274SZ3SYEsIXNQj9coIm2OJ0Zn07e0g0Hg9/GR+AqhH4iyLfe9RjztTPq54fJozIvrb5w7nExOCHNAKVXhiKcDVAaIBTspLXr5TggQBRigR9Te9ygiqDE1AHr1Dg8PJToqN4KMfPz/R6ReCTI5WIuXCpBD3fiUOuHwWjZKiI0ZkEbEgS9LrrTa5AeTfBG8uvs/MzMTu3btrqeNa3JfouojjG/q1OVn0og4FXrduXXW9Nh0PDQ1VoEYgUR/ouKm5ubnYu3dv7Nu3L+6///7qIOF9+/ZFV1dXtedMBpUGnDpnEg6fJ30Q9Bm1karTb2bUuZHXc9TeXBINozmP6hll0XnRb9ZpMSeNfe0RF0FIY5iRoUdOnsDBscssxxydWKQuBbg6QHiMDr1GGYqIetqvqCXRLsyuiqjvC+MZgDKWuf1cLIfp+HqGGyLdx8lLTzmi/etaPMtM15P+cu9UEYeAl164r1vxJAgCjp4vmpXRAevtFNf09HTtpHXRuXyHk3Ss33oHlfpJ92qTMiMNAbiclUbj+J4tnfQ+ODgY/f39sXTp0ujr64u5ublqXUz6PHLkSLz00kuVbrSPTSn4otu4ruf7q+gMcL2R9LMcA1J21AH7ystn33NcKBLkGNHzmSGqzxnJiGWg7unc6RqOa4GZr0H6HkQCi0d+Gtt0MNmXjAQ513zuFclLAa4OEKcC3Wg7gLm3q4nD90rRe1ZZ9Py5DsF60KhG1LMFGTmpPqQF9TknrwwljaFTjx7pyEARkJw21DoP05hVPxkzpzFZR/f2GVHK6NJQMrIgfSS9SRe+PsZNqQT85cuXR6PRiMOHD1f1JmhrnUp7s0QjL1ly/FSVgwcP1t5hJyMvsNKzeKq66s/EFgIM+5VrRyqf+tG4cAqXToDTrozSeQ2jIpXh1CPHicqTzkj5+VhjHXMvnWTZHkE6C8BnMLJkJqvf43vi1Bcl4lpcCnB1gLRb4KUh4wRmVpOnJOt7GgYaIU00RiNMMZfnL+NJeo1gxYiEk1rtkUEhmLJ9NDgSleMUFakVHVHEiIBAs2TJksqgU6cEBrVZdXbw8gN9mT4uvZNuk/50AK+iMRpArSupP2ZnZ6tNyb61gIfOvv766zE7OxsptfbFUZcC797e3tq7qrgnSWXz2WqvIlQCvx9YyyhIDpKcI/W3og/Rluo3jgsacKeNOW652VnRs/qC9C/Hu8aA9vbxHWd8N5hT0Iz6PXLj2CYAzc7OVk4KGQc6lSyf9dH/RRaXAlwdIIpaCDSc3BJNREYOuTWKiNZmS6ZlC4SYCs01o4g6Rcm/aYBy6xmajKSQnIpReaLO3GvXvbpW4gZFz6fnyugnF2XR+Ea0KKRGo1GdQqG+IAXGCMo9an1P6lORj+rS29tbo6pUF4ER96SRRpMB5zqP02C6VmUzuqXOKdIx+yVH53Js5TIt2Rfez+pbXUPnyakzjln1K/XvtB77wMcW+5dOA4GQOmBfkp2gXhnZ6Rl8LQnr5npmfT0ZqMjiUoCrg8SpJxoyTTDPFOSZbQQG0RduePkcGksaJCY2kEpxcODnuaQHlkUqigaEtBHLJKXjkaN+fF3D60EjxjowWUNGlk6CnsstA+wTGUgHcJalz+np60fgxnaofqqvXnfi/STDyfoQLN1I640M/JzZliqf9eXapUdbns1KoNM9NNISRkqsH8vmGPU9Zl6mj2WyBw4aDsjsbwIrM3t97qkNTqG6MyidEhQ1HimFJlxcyj6uDhBSMIxwIhYeGxPRmkyiS3iNU42MxtxzlRH0LEMfMjnQ4oTkehQBg1EbozBmpcmQ6hqdWECwkR4IDAQEBzbdL0pMdfBzFfVcGjDvEwmzNAlU7hToXoIWwZR1iahTlh45SofenwQYZoDqM0aubB8NP42x/vdraMw1TnSkkdoicBCdR2Dnyy/1HOogF13zyC2PuiPqtKDqwTVdB2Y6ST43SPfS8Wind0aB7HtnSlwI/qpvB5rlNy1lH9c7VBQ5OS1Cobce0VrH4ATjtaRAVC4jMEYvXKwnUDiVoueSqqGRcZrT6Rte73VmdOHlqw66l9lqfko4wcUBtp1x8QN9VWe2gaeJy5jTmLIcj3RzFJHaQ8eC7SWV5XpjX7A8luHUqp7PSERlsU+9fipDxjYH1KyfZwcSXARWuTqpXhwH7Af/O5eBqnpzjrCduo7Omp7N751eVT951Mx6uqNIRsTZA31epL0U4OoAoafMxducB67JygQLn4CkSHgvvVmVOzs7W5v4fFWFR3sENtVbz6GXy3RxRg7tjDhpLn3nQENDzldpUF8EFtI2jHyY3s83NasdnhItcaCRl69yGWmwTx10fL2LuiZYaizIyNLL95PaZUw5HlgGHQ9+zjHmaz6k3jz6UH/xZBZ9zzMv9b+vgSnadNpYbSV9zGxD/a1+Uhu45kSgd5BU25mcwoQQByzd5wdZ00ngPFN56luyGipPfU7nochCKcDVAUIDownHSInSzuPlZBWFSMNPY0UDSWqE1KGfOiEDqfsJiizbk0xIM9IT9qjBQVf3ELjm5+drYCUjQYPLslkuvXN67jTaXHdyvfI6ro/kaDgaNbbLoyFGtzmqilG12kAAcFDUfe5csC3+4xQe/2ZUwHUhjik9U2BEnRLoGZEQlCQpLaTK3ZFjZMQxoudEtNbQNGa6ulr7I5kZqDaxLYwyOR/pDOQcSbVF1zilyPrx2iLtpex06xBxz80/0/+ctPQoSVfRi3XD4UBCg8+Iil4zIxcaEZapw2OZks2JTFClIdD9jCRz4MHvVb7u5cI4dcF20VtWeTnalMbLjQxBkN56O50qEvM6ULc0amofgSe3zsNr+WxFaPyczgZ/fHx4uxUZsCyCM3Ur3egelkUK2ek9GX2vpwuf32g0ahGbfrP/fB6R3nMg9/U2b5eDjtP5DuBsK8cPy82tWxepS4m4OkB0GkFusjCBIDcpc7SDIqb+/v7a5lydLH748OGIqBsJgeDRo0cXrCvIWGiy67BZ3aP6yBAxC0/f5Yyj02q8R/pYbJKL5hQVKF1wPxSjFtWX0Wmj0Yjp6emqPXz1CKlAtUt119l/Kl96F+3EaEFl+162+fn56mBd1Vu60vutSJsxyiOA6nnNZrN6yy+jT757io4Cjbn6VPepzlwz5JoN+9XHqB+k6xE31wA19vQ9nQ+NAWZqpnT8HXOM2Lg+lXMc1GccdzlK2ClH1aevry96enriyJEjtfGjccf5o/p4lKzxQfAv0l4KcHWIcKJwUsu4iI7hpOQkYzSm+/i5DJyMsyaezsDjplNFUDz7kCDnlJYnDnDxmaBF4IpoAQuBiy/i44sGZeyYqRaxcB2wHQVDQy3DLX14cgV15kDL9RLWL/esRqOeQcbnSzd6pqefExxotLl2p89lJAlMDhYqS/dxrOSiTt7jfS+DzbZrbPqrYljPiHryhsrT/6RqeY0cFNaR448ZhlxvzIGugJzfMfIjWFPf7hx6lCbgYuTviULunBVpLwW4OkA4aWTcaTjp5bnxoZHgNbnEDe34j8gfCKoJSNDjWpKEa280RDTKjNr0v55Bw6v/ZcCd9iQA0COmsSaFqWew/Nyz9T+9ZhredtSi7vOkAwJaRCsBgeuJ7GudxqHooatr4f4sAhDX+HSgL9f89GzpyCMHUpP6zCNd6scBj+NIYJ+7j/rX376m55SjOwik1Ri56HtGoYwevRz1P8+K1PMJJtQ1+4vREvuJbSD4s1/Imvi6WQGvE0vZx9UBIrqIEy+inolHb46ThRPbX6MQUT8eSqLJnyubtIauVRmkcvQcTyZgmV4Pesdsm55D480Iktfq8FwaF97vIKsyI6KWki0P3Kku3cPINiK/9kJqVP/7vR4N09gqrT6ifgCs6qD60JtXlOhls050XByA2VdMTqBx9XU9/abhVV21Dia61WlNAot05RGyjqtiexuN1j4w9gGdGtZFoig+dxq7jqoisM/Pz0dfX1+kdJyCpCPiuuTY5xiTs8A2MPOV40O6PJPWuco+rneoaJLn0oQjWoZUFAfPl+P3EhojUmM5T1cTyLPeeL1TNxJfiHbqidEMn0kgci9WRsaNkkcRue9oXJkmrnoQrBgt+LXUoQw811u4nsF6ukHUM5h44JEygVmGkcBPI8oUfDoYDhaMmqUf9gN1zbqzj9RuH4/Uh57PNhKwc2tz7C/PMmXkzHY4iFLv7pi5g0AHILd9Q2OCWybY/5yHKkPPoXPmkTHnCuuRc4CKLJQCXB0guclCz470ia9P8B5PWRbQ0WDKG+WiPSM3TsCIWGA0aITlZaqejP74XKd3dD+9bxpORma6XkcXMWpiUgvXkgjyfBaNsq/BcS1kfn6+Ss6QntolJijq4GfUv4O5zihU2+mt836Wo3U/RZtc8/HoVWWpn2SMcynYpKQdLP1Uc75Ch5GvEllIUbJOpDgZ/RLAOQ6obx57JYeBY5lApnpzbx71o/6nPujQ6fPu7u4qMiPVmHO6eJ87YhqTPOLKD5wu0l4KvHeAaALqNPYcBRQRtT099N48moqoe6TMluP9moSaVHqLbkRrHYsL1SpXv+kd0/ixTRJ+LkNCelL1JTi4B677F4vWfD0r54nTgMu4kYaKaFE9dBJULp2JXFTCe1jPduDBdbHe3t62KejUKx0cj4gJIh7tOBXNtrRbm9EzuVnay2XkynHg5anvPS2dzhd15ZHT3NxcBUIco4xWNd45FiJazpg+J53HZ6kc/VYGKcHQ663xyjnGNvMaHwNFFkqJuDpA+CJJ0kKctFxcdqpLQi9dk4UbQxmFREStPE40p8y4/qHfpHk4USMWpv3qb0/eaCc50PMjevQcX+diyrWDmEeepPVydSDF1E7HMmIsT9d41BmR395AnZBS4v25rEMaWpbDLRI8cigX3ebKk04YDfJsRUWkfDbHHMeVruFY4WfUL8eg2kEdM3JzdoIOhNpIAKSO9IJV3cuoiGPN+4eivuLZje7k6Pkcc+3KK1KXAlwdIL73JKJ+OoUmBicUDRvpFJUnukX7c5wK0vU0iMqcorEgaDLNmF4rqT1GXoyMNLGZwcUEENIxnNxMXmBbWQ6NjtNVES1jxrUhritJv6qL1hFVD+4jUjnSEQGKumcEySiEtBKNa0TU3lbNtTT37DU+urq6akd2qV/5gkley9NQuKakcpvNZvW5DtQl7cV+9B+BhxIcSLepDp5U4utuuehNThyjSIIeAVP/9/T0LNCLJxGpr/QZQVOJJvp+enp6wbzgu8A01wRiqs+xY8dqyURMTCqyuBTg6gDh+W4CLBoNGsyIWDBR9RmNLCkUTUx50Yw89Dv38kCnigiATlHp8xwAcaJ7mz3qYXlco3Mqi99Tf6yv9OMgKsMlw+jtUT1Ypt/DpATqTUIqyakhXcu+5fP9md73/lzVVaff+725yMwjYtZX7XaQ1f0qW6DL1+hw/HCNiQ4MMwOpEx9PjGbZDo9YCOwECKcjea3a49Gnr8VSL9Qro0KCKXXMZCCvY5HFpQBXBwiNYkQ9Aouon0+oicQDSWWY+VZalefRkrxCvkqEBtCjFiZDsA5K5VYdent7Y2ZmZoFn7uWqPRGtU7ppWLiGoAQJ3wytujFi4j05oGgHep6e7/c5vUjPO6LlwXu2GTdXq229vb1VX+SoOYIRkyIYFVNHBAqODUVubuQ9CiQQqF56di5bz7dDqA8VreciCkY3pJ0JHIw8ucaac9D0ehlShryG39Mh4ZpqO3qU9WGZHAOaO4ro1D+KNAVUpPo9+i/AdWIpwNUBoskRUX+pH70/GgDfiEtjx8mcS0fns3Q/y2HChBsgp4fo3bthonF3715GhKJo0zO0fL2EBprRmDK1GHFSdx6FudGmJ06HgfSkPnPDxz7U8wgeHkV7UgrrRkeCyQ6kgz1phVQk+8yjCa490vDLAPNeN665McloQtczo1HPzhnqnN58TGmMkIngGFHdtZmbY4d7tlT33t7e6kxNghQdPjoozGLkc93RazTq70WjztlW9kmRxaUAVwcIqQb/nIaKk8uPEsrRVRF1A0SwYASiMvXbKS56pDTOTCmnMdC1jLL0P42BA4J7/jR6pGIcQB1UZXRUHo2KyhF4OgCxP3L0JA247iFVSaPK6JUG0mk89Q110mw2ayDqwv4WVaeEA7aDfch1T5ZDZ8ePveLfHKeuL0ZSBEkCtdqpMuRsOGhI3zzkV8/kJl/2PftL93I+kH5VfTWWVCce4ZWjDDluOTY4/3yOutPm/VIkL+XkjA4RThQHKX1Pw84JTXDziIaGmntvfJGZk4rGOaK+KdWjIR7oSqOp+uYoM5UhClBGg0BC0OPfbuhpOGQgPWokkLBNOcOjtvC9WYwcZbR02gnL0HFMHv2w7kxmIW1Jj546pHFXuVo7Yb3d2SCFyPs9ciW4el3dcVFfEIh4r8oiZcjyCAT+3J6enqpcOWV6FvWia7hZnyCpa0kLqp7tnk9gZj/L6ZG+dZ+/186jRNUvF3lrnJxJdOGbOTmj7OPqAKFRogcZUfd2SVNEtOg9N5JaA3GPUX/z1RM5cOKakYQG2iet6kWjyTUKXU+wpEfPeigTjQbB68j/CdAydNpEynvp+dNoyDCxL1SWR0a8j56/R7q+D4trUkxPZ7mqO/vJ0/CpJ+lNRpaJDuwT3SvnQYDFyIdA5GNJ9ZFeCO76350ap4g9YsuBSW4cufg8cNbAxUFd/cBxzXHPeSi9eF+zj9X37mSqbu5gFnnjUqjCDhFfH/LJxYiKXjtfIcHIQx48Ix2nkXyR3iMP1UvP52kKNCKss2fE+R4dfk6v2Nd0WBYB071k0pM09Pqf3/FePd/L5doc9U9jlgMRJtTkomX97949QYXlMdryNnu2HI2vdJK7hnXgOFAUwM9yoj7hte440SFhf0t0HU8bUZnUKSM7jh3uT2N5fLZnFLZri36UZMRIi3OGbRAQuXPGce1jjHpvB7JF6lKAqwOENIgmjB/sKeNy7Nix2mJybg+Ysp7ocTebzQWcOzcnsy6M/Gj89VsARi9b3qyoHqeI5udbrwGR0fJjl7Suo+/0bKbY811XPIk7ov5KFdJLnqmm66RLGjHPPGPGYY6GE3CqPjMzM3H06NEaQIku8kxEJtlwjUXAQ73TgZC+REc50HZ1dVVUppwTUpPUmdqhvhJtSZDg2KCuVA5BSM9iJh2jErabz2C/s0256Fhjmw6ArvXtHnSKNN7cAeOYYOSr/9V/qr8oQEb4EfXXr0gfuci9gNeJpVCFHSAyMJ4tFlFfV/GoiGtC9KwZmTGCclDSs3PeJaMZlauTrj2CoyGjwWWZMvIODPqM9JrqybUftamnp6d2BiDpJRpK1mFubq6WEaZUfpWv11GQQpX+SKM5eHCtim102ottklF26kzG05MC9B1PxGf0yz7zv1U3XyMi2LIfWUeOKdJiOYpsfn6+2rzMV9HQSHvZHPte/5xT5iDFPuE4la70nfTEdU+WzbLYZo67iNbxUP48pyJZ9xxALUZtFmlJibg6QGggZPh4AG5E69w+GlNSS6TcIurp7TmDoP8d7FQfXUfPWeUxO865fO7N4tFDfH+Ul0mDz8Vsesi6l8DA09JllKanpyOidSgrAUSfy2Om3iJaUZ6e71mPEQtfSEk9dXW1UrOVqMEIkW1m9EPg4v4s7yPpyQ/AdaPMPuc6jdOJpA3pJOjZPKlFyRNsMyNXAasnCvEZdEb4vwBZjgkpOAKFona2WU4IHTSOGR/rvn7FMSjxNdScI6Hr/PUxGit+yLPTsUUWlwJcHSCasB6tRNRfpugeYkR935e+o5ccEZUx4MI8IwEHwHYAJ/GUZhkERhIqi0ZZBpNUma7h0UhuXFWWJw44SLeL6AjMuWw61p2G0718Plf1ZATmXjcl51QwgpNe6cQwWmXUobrRwNKwOp2nNvBootw6KseERG1lBEEniWCs8aq2MHrnfQI2UdUE8Vw6Pp06B1SPGgWG1AnHHtsgfZNi59YTrrnxPWh0LKg/tZlzVmVTf67jIgulAFcHiCYmF+NlPLnQnDPGTm9E1Dcpk/bQZGTE40aQAEcQkUHnyRgEFlIrjJA0Qel9EijUXhoEfu70H6kWebFutOnhNxqNyinwpAK2MWcIuV7C+xjJehTFcrk47/VmBKX7WU6u/awjTzZn5CVdO/0nY85oyMGTY4PAwb5t5+jwHqew9QwHUk8IIeAwQtE9nv3olB77hTqkA0LQURnSFbcesH/4TIm3LSKyR26xP6mzIotLAa4OEE0ST8vWd5qwzWaz+swnpoRGM6JFmYjukRCgfE2BhkjPE7VGAyiqTpOfe7J0LRMwuDfKoywJ15loMGREVDeBKI2og630pcV8ethMEODfDoQEI/UL9UEQoN4ZQTi9RoPX3d1d27dEys0ja4Iy9wLROZCOqVc6Puqnnp6eaDSOvx+MlLDKIA0oOk5lOUh5hMv6kvJT/V1ndB5yf3Mvl/TmdfNxpvVYzSmOSTodmhcetTKpReOO45dOperKd7ipfwRmnK/t1r+KtKQAVwcIDSYBa35+Pvr7+ytDmaNG2r0mgwDGMhm1EEz8tSE0KLw3om68KDSQjDScqtQ1Tp0QMBlhUE+6nhEf1z1oPEk7RdSPeuKzeEwRDWdu/cmNreqhv2nUpH9ulmX7c+OAkYf6ikafe71IZ3l/tDOWqqtAP7dHiWWQYmV0QaOe00UO9KkDgrN/z/o4MJKq9WiRoCSngOtknD/UMx0blu3jgeuEDj58ju5TxiEdtVwEVmShFODqEJH35rQh6UM/TduTB7jHSJODu/w1uTxLcXZ2tkqX16SkR0zvcn5+vrqWlGJE60V6EfUUfxonGQ9Gl3ye2iijyDaq3U456Tlsp2821t8ql+8+I1BJJ4wsWTfSU57yrfdW8dT6iPpJ+Lq+r69vQd3pVDgt5nvO9DkjHwnHCVPVuYYk+rSvr696hYnaza0UBGACOA+tZX+oTgRN/aYzpTdae5TjQKXfemcWdUpRue1ocvUJ35+l55JiJbhL72pvLmLkuFSk5xGut6XIiaWkw3eA0IMjEIiycQomtxbkXiCjD37vUU+7dQunCgkAXENxmpLPVn1ZjtrIMrhJk22ld++RCj1hApBHirpWBpc6I+3o0SaNl+vaQUggJeMrmohGnbqQMfTne/TCs/qkd/aHl7uYJ89IUPpmv7Ac70c6G4zSmFnI9HxG8rlxqnJ9mwK3RXj/RdRfUMprtJWBTo3GuurpGaPqK6fLqSv1D2lIf75HiDnGol2SU5H2UiKuDhFNXk7k3ORgdENAIZDkNs3yOf5bniwXriNaWVY0ZD6RJYxcSBM64NBI8l566w4uLNv140DDCMG9ateLRwYEGWbeUR9eZ0VvbBczLXktyyDQ6fmKrtW/fAb1RSGAE2DcmPIaRidzc3MVILDuuTUpOgcaDwQsMgYCL66dsS8iolqbcnqYz1NkS+PvY4/tygGJzyFFXQQyd3w4D9RWghyTjSQcB/xOdfUyi7SXAlwdIKJCfLFde4FkiHgQbUQdLGRA/NR4nmJBQGFChj7j2gpBSIfhytiKtpEBjGi9J2l2dnbB3hbVS1EEwUMGVN48kztIP0kYtYhaosFTQoanLcu75uI5jQgBUX0iYZakg2qOAmKkJiDR/6ScaKwdQAVo2tjrTkVEVK/uIGXpp6d7W9RndHBIM3J9SP3CCE1gpb7TCRKMfFU+o0k6Lt5vElKPXENTIkxOVx7RE7RVR4EO17xIAQtYObc0nwjq1Idn3tJJocPkbIDGQJHFpQBXB4hPNIl7vLrG96noPk0w0ooedTGC0r0EB0Y5/J/fc4OxynePm89y753g4941Ix++Sj6nKxo3/S+qjt4zgcWjIEZKpIKYDeYgnFtLJBVEvTuwuqGWTkmjsf+9nwgI1K2uYVsJoO08fYIAr/EIhq9ZkWORK5914phgfb1trK/3k499j+a9H1l/j7TpMCzWZ1xL5Pimo8a6si2sG2nmdhFzkbwU4OoQcTqGhsO9Ynrk5OJp3PRdRGuC+uT2dS2nSDTpfILm6BeuvfFagSoNQETrZIucl01w9ue6N8u2MrJ0ms9Bys9bzBnfiPrakHvLOTAi0BNo3NAtBqTz8/MLUrT1HUFa7WCZ3le8h4Dn44736j5FXe0cD657+TN9LJFmJVCrDj7uCXiM+Hxskt7MMQos039rrLDNvE8OEOvu48XXY3kNAZK6LnJiKcDVIcIsNe3taZduzAnlRp+TnG+B1fekQJQGLvDgupmMR19fX/T29laZZipXE1YvJXRajwYoom6sGaE5eMpoM7MyImpZgExjFmW4mKhOAgMZX4JGRH39iQv3jCzUV2wj3znmYKt6E4wEhrrGaU0+Q/UnkMuY06sngLDePFKJYM8ECUauDqh6hvYo5SINla1xMTc3FzMzM1VfadxxvEgnBBv99jFEB4BjTW3t7e2tUaWkN0nxMgKS0AkUWKl+HtFKZ/rx9VZm3jYajdp482i6yOJSgKtDRJNBxoEnmtMY0pDyzEACBQ1MLjKRgfNJTM+ZnrJ7xhELF8SdHpIh0/9cF9H9jBR9/SGitfjvBqcdpcWNpQRNP5GBUSwNZS4S0d/8nFQqIzt97uU5nUVP3a/T9zSm3k+uA3cI2Ic+fqRr3pOLfEjdMgOSSQkcA+wLru1pzHJ9kDpVH2sjNMcRI37Vg+dVEoC9HR59cjzkxr87HHRWPOLndxx/Gu/UjcaX1oULZfjGpLwBuUPEEyM0YZSgQSqRHinvVYTS19dXi2r0t6cok2ah4dXE5r6liKjRN06tOTCofg6ipHpoZOWN5uhC6SAXocmTJb20GOD4PX7oL9fl5ufno7e3t6q704QR9Q2yNKieFKDohhSbnu80LssmtcUjiZjxyTap33R/DqQJCIoQeGJJs9msxpMDFDfUauzRAeF4oN4ZGet6RvzcDsJIy8tW+Yw6dY8zFD7W1DeaB+wz3yPJ3+wPXcvNxT7exFSIFdBYFgNCJuFMkDfzBuQScXWI0NP1CMv5eHquOYPXzqtz40IaT+Vz0jO6YGTim0RznjQ9ftZP5eVoIIISI0p9T2MkofGgt0zqlQkS0qHenUTDJ0BwA6c2+z4q9Vtu+wFBjJ43nQAaSM/Eaxf90ugReLwM1dP7wYHHxwzrwCw7Xi9HQ0DM9VbqQrpmJh6pO/Wt08kcG+3GHAFNm5npCOg7Ol4eFUsvPg7VFrXdx5e+5z4xRmP6Id1LB6bIiaUAVwdJDoT0NyeZf8/jouTlkcpyWop0YkT9nUZ8nq6XgeLkZHoxvXhO2BwVI+5f6yZ8Ts7gygAyMmwXHeaMq0eMBGOVTdDyzaZO+5FuU5leV9JHNM5ulPmZhHokvca26DtGGRwrvomX6dt6Bg17bhy6Q0HnhQ4Qy/F2eHtUNxl8rU1x35s7LwRA7xcCpb7LUexsl77juHUHLNc2p6HVf3yeokoBKK8lzVrkxFKAq0NEk0VJAc1ms3ZIqHuTpA5p0LSps9FoHWvEdYSIliFz48KoqqenJ5rNZrWYzldQqD6+JiKDSk/dDWOj0UpZ53Vc0+EeIlJKiioIcH7COI2kUzKeAKPPtAaheug5uaiJQo9cx2DJaSCIN5vNmoFVG9Vf+oxGXTqVgdTzfXOxR7ARscCok1Jz4KHefCwycmDSj1OBBHiVp35W/ymdXs8WHSkaWDrXKRjc36exz7U2d6L0ufTD5BUlitAhINVHilXP4NhTmzjOe3t7K+dB40nOD9upexmhFjmxFODqENFkpuFiZOHGk0bKI6qIVlYavXz3Hn2PDaMiGdeenp7aqdfHjrWONxJIMtJguW5ktUDN09C53sLIkpO+XZva6UXlelREfTn96Av3Xo92dBsN3czMTHatUs/1qE2f+/fsfxljrhFRH6y7AxDHlo8BXc/2Uice3Yqm1BmHnkihZ3v7qXePMv2E+2PHWgcSC/g0zhgtsq7eXrIP+vGN4/ztAEy9cm2O0RIpQYGtgMn70el3j0yL5KUAVwcJj12SURGN4gBESiqiZbCnp6drkzyiNSl5ugVBSoCk/7kOxAhEE5Nlqxy+UZiAJaDS3/rRc2TAlDrM9nCjq07E4II+66brnJ4jlRjRegmm6kvdkxJjXWWg+L90IL0fOXKkliRCwCPV6oZSYNDX11dtgVDbZDy5LhTRihylE663OM2naEURPJ0XRuXuNHV1ddVAyp0KReQaE319fRX9G9F6fYh0wtMvNAbVN+r7JUuWVG+w5ljkeNXYGBgYiIioUu/VHt9GoD73KE99rj7h6SikVkkpu0PE8arrmVCk7QFkSHydskheCnB1iMjblOFjFESDyiSBiLqnTIMbUd+cTOHxTTTCXGTn2gaNt4wWkwecfuI9MpKk+EgBSXQ/PWpSZwQnZiASpD16pB5OpCf3wB2kXKc8Ad6jRpbv0bMk51zk6DYZdUYnBEe+Yy0iapEZoyU6KKyTAxL3gzGJgm8O0Pc83kv9Kz0T8NhGpy1d5xKuw/k4TSlVyTW5qMvXo3wDM8ca+911Q/ZAz+cWC0aFjCYZRau+HOdFTiwFuDpIZCTI70toDLlewghDhp5ZdEy3FhfPycMohZlbbhDovTL9nmtwTAFn5KR25WgaGgR6pzQ2nlHmCREqn4ZZdZVwbcuzKR3wdF07g+pgzchG1xB0eR9BTG2hw8D6uqGljlUHrvGp32k8VXdGLX5YsPTsY5FRAp0p9Rd15i8aZRkEe4IGo8lcf2j8MpLRWOb6reqfy/rUvaT8nG0gxUcmgyn6nDssg+LOpjt0Tp0XaS8FuDpERKd4tMEoLGeQuGCthW0tRus6LmbLiHBzsCcERNTfnExDpM918K4+X7JkSRWJzczMLDjNgnvIJKRXeBoIacB2UYqAjgkbBEGCkKISRQjSW8RCD5geMqMyAZP0ybUNef+emu8L/V536lcUlf5n1KD6cj+bns3nic7VGY8y8BwDbAdPb2figGcwSk8sh3olUFCHHC/UFQGZ60U5J4eAxHnAhApdxz4j2GqMO0WnMUyalPPEGQs6HAQ2r5OX40xCkRNLAa4OEQ7oHI3Ca3wC0BDws4i6R00vn4Y+ohWR0ChG1DPxIlqTnZPXozUmatADpSftXrnq2S41mtGC1911pPuYQMA1C6cQPUpxcPW0etVD1/JoH+mP/UEjSPqMz+SzdA/FwdizKV1fHtm4A8Cy1Gd+srxTXaT4GPkz+vJompSd/vaNu7yP17Pu7HOOfzpyXBtm1ENw8ec5DSlgJ23KQwBUZm6dinNNYMg3JZBmLbK4FODqEHGjKuHkp4dLo0yvnd6dyiU9Jslx7TJGnOCMamgQOPFze1y4lsFojt616iFjFtFaqGeShJ7D+z2Vmc/0KIH3Mb2a9SXA0TumsczplOCsOrquPFqOqG9qZaKEnssz99xj9+eRSlTZXE/y73N1aDc26ID4WCEVpjp53Xi9QN31rOewXDojnjjhtKAfYcX6U+8cD3QQSHGr7qyXj2WOV92Tcxr1fHfoipxYCnB1iBAAaKjovXPgMzGABoNl5ABIRjEiatQG94zpM18/i2hNdBktZbbxMF8mfmjCK2OOE1lArDUGN5DcE8MFfl2jtnPPG9eMuKFYIoPnxk2fKfOMnzNaUz1VDjdG6x4aUVKevFb9KR145KC9X3rfFb12Xcfz76R3Zr/lInMCjNNgOpKIUa2+Z5o6s0GdIiSQM/JWO7z/NB7V1wRw6V7tJKiQ0lb/MKri+Nb4U90bjVZWqfSobD9nLxyQpGPt42qnT5Wta3xLQ5HFpQBXh4joBxooGhqnoAgKEXn60L18957dK9Zn/pMDD3r7EQvpHv8sZ9iVbk0vm3QPvfqIeiYXowWVp/UTrvt5u9ybj6jvD8vpkverfd4uj3w8wo1o0bGuZ9KnXPhn+wR+NJKkZ9m30pvqoQghF/3SOcmNKUmOtnWHhu1yg+4G26MSjW8+j2OPlJ9HkozAPKmJWbg5kFUkx1ej8DkSjyynp6cr54O6IN3MvnRHoMjiclKE6s0331ybLF1dXXH++edX309PT8eWLVti1apVsWzZsrj66qvj1VdfrZWxa9euuOqqq2JgYCDWrFkTn/vc54qX8QaExoIDXK9Wj4ha8oaMuO7l/xH1w08j6hNV98hgCAR4EoCiPU3qiKh5tpqQnPQOgowudB/XBuT1ih6kqFxFQUw/J8DRQEZE7Q3IMj7MJiMgyfjTOM7OzlYHoSrpQkAoz5+6JFgTTNR+rrcRIGUcGYkQnOid02GQKOpTJMtolnUWaOl5pLb0Hdeq9Fy1rdlsLjglQmU1Go3qfqccGX1pI3tfX18MDAzUjklSn6l/NSYEZNKJoiLpj0crEdyVoKQofHp6upbxyGfrHiZZzMzMxPz8fAwMDERvb++Csx25Xki96VnSncau6k0QL3JiOemI6wMf+EB885vfbBUAL+gP/uAP4mtf+1p8+ctfjqGhobjhhhviN37jN+LBBx+MiOOD7aqrrorR0dH4zne+E6+88kr81m/9VvT09MRf/dVfvQXNeecKPXXupXG6RpOVxpMbImXUc9RaRMugcN1H99LoMsJidOXrW07bkd5kOTQQpNboLev6iPrpEnrvllNuEa0EDHn13MStunJdhTrwKMXB00FRhoeRCfuH5ZImY3muO1GTMoA5MGZbc7Qh14ro9ZMKpm7ZTtWTgKVnMjoVTcYoyCN8j7TYt54okRtjfJbGOf+n0+BbJFiuxiAjPe8Lzg8Br1O53g8c/xpT09PTlf7o2BFkJdxEXmRxOWng6u7ujtHR0QWfT0xMxL/8y7/Ev/3bv8Uv/uIvRkTEbbfdFu9///vj4YcfjksvvTTuvvvuePbZZ+Ob3/xmrF27Nn76p386/vIv/zL+8A//MG6++ebKGy6yUGhMOCEj6qDgdBcnIBMD3BBrgnINipOTtAfvcdqIRkSgyXUlevr+Zlo+S+XxBZGksBxgeaadJ3l49iCBjGXl9ExjxLZ6lOO0Ja9XfRyYGRl6JK3ncE8c9UuA8HuZ8elOC8FVdZPnn3MeSNHS4aBuOfbUdo65do6NokGOJ44rgVNuOwYjVb6M0+eIrsnpk+PJf5zK5BiKaL09QNfw/ESPnsh8sF2cg+rLIm9MTjouff7552P9+vXx7ne/O6699trYtWtXREQ8/vjjMTc3F5s3b66uPf/882PDhg3x0EMPRUTEQw89FB/84Adj7dq11TVXXHFFHDp0KJ555pm2z5yZmYlDhw7Vfs5E0aSQ55vLBOSE1ITT9aKd9Bn3HaV0fJMo99E4ODIKyRlietqauDxdISIqmo0AIuPjz4toAZ0oJxpOGgTVSwZFos/dm+WzaOSkR2ZPUhdMmGBd9AyBl/9PT5zbBQg8agv1J3pJkgN3RlpeXxlTJpAw6cGB26NPfU4qk/3j+pOO9KPx5mOG7VE0QuCnLrh+REdH15DqzEX77Cs6FIxeNcZ4vdrIbQCcTwRmd3w0n7gWy/r4+hap3CInlpMCrk2bNsXtt98ed911V9x6663x4osvxkc/+tGYnJyM8fHxaDabMTw8XLtn7dq1MT4+HhER4+PjNdDS9/qundxyyy0xNDRU/Zx99tknU+13jHg0QMkNejfONHpc0NY1bhByHrVHDBF1D9kjsIhYYKx8orMOuQjOswr5fEZz+p9GXUJDQ2PqPzRQXmd61Fqvcmo012c02A46/F/GnoAsAPQTTtgGXcuoMtc+6Y3JKypP9/ghtLl2ePv8+RwXdHa8LJ7gIkBi/7Jc6pnjipS4Z70S7LyPvF5OATq4EcwZbTuwe/29r/lMH2NF3ricFFV45ZVXVn9fdNFFsWnTpti4cWN86Utfiv7+/re8cpIvfOEL8dnPfrb6/9ChQ2ckeHEichLwf9I07tm6+GT1qMmfLaGBYiQmydFuOaCS8eJk5nWsgz/Dv+ffpGEYTeSoGDeQEfWXOOYimRwVyz5g+3wtUsbP09IFKMzC8/sZNfoaJPsh1++MsGiYc23U9fqc44PfUYekaFmu7mV9qQM+k3rX/wQOPZcGn1F/O+eNv6kD/s6BDucD+4F6ZSTLfsxJLuJ3Z6xEXW9MfqwUluHh4Xjf+94XO3fujNHR0ZidnY2DBw/Wrnn11VerNbHR0dEFWYb6P7duJunt7Y3BwcHaz5ksHp343xH5tHUK1218sjgo0jh72Z4q7vX09SEXf25OaDRIoxEkCCbeLteTG2G2ieshi0VQ+jvnUbMt7tGzHI9cGdVJ3FDnwDNX35zuqTvPXnOj6vXPAZKDdO5+Ao5fw+iYz8tFZ7mx7NFUjq7ztlFY/9xc8H7mfT7ecu33cnJ1aQe0RRaXHwu4pqam4oUXXoh169bFJZdcEj09PXHvvfdW3+/YsSN27doVY2NjERExNjYW27dvjz179lTX3HPPPTE4OBgXXHDBj1OVM0Y4iWjEcp8tNun9e5bP3yyzXX3ebDty9SIl5IkLjBB93UNtyj1jMeCkUW93rdOIBEMHFAI9y/dnLhYdpbTwVIl2bWB/sz5+jYO4P3cx48rrGW15nXIAniszR921q/OJrmk3dtv1t55/IqfEy1xMcuM4952v95EJKIB1kpJOQm688cZ0//33pxdffDE9+OCDafPmzWlkZCTt2bMnpZTS9ddfnzZs2JDuu+++9Nhjj6WxsbE0NjZW3f/666+nCy+8MF1++eVp27Zt6a677kqrV69OX/jCF06mGmliYiJFRPkpP+Wn/JSfDv+ZmJg4Kfuf0nFP4A3LNddck9atW5eazWY666yz0jXXXJN27txZfX/06NH0qU99Kq1YsSINDAykj33sY+mVV16plfGDH/wgXXnllam/vz+NjIykG2+8Mc3NzZ1UpQtwlZ/yU37Kzzvj580AV1dKnRejHjp0KIaGhk53NYoUKVKkyI8pExMTJ5230JHni3Qg1hYpUqRIkYy8GXvekcC1b9++012FIkWKFCnyFsjk5ORJ39ORp8OvXLkyIo4f2Fsow7xor9vu3bvP+O0DOSn6WVyKfhaXop/F5Y3oJ6UUk5OTsX79+pMuvyOBS6nCQ0NDZdCcQMq+t8Wl6GdxKfpZXIp+FpcT6efNBh4dSRUWKVKkSJEzVwpwFSlSpEiRjpKOBK7e3t646aabore393RX5W0rRUeLS9HP4lL0s7gU/SwuP2n9dOQ+riJFihQpcuZKR0ZcRYoUKVLkzJUCXEWKFClSpKOkAFeRIkWKFOkoKcBVpEiRIkU6SjoSuP7pn/4p3vWud0VfX19s2rQpHn300dNdpVMi//M//xO/8iu/EuvXr4+urq74yle+Uvs+pRR/9md/FuvWrYv+/v7YvHlzPP/887Vr9u/fH9dee20MDg7G8PBwfOITn4ipqalT2IqfnNxyyy3xcz/3c7F8+fJYs2ZN/Pqv/3rs2LGjds309HRs2bIlVq1aFcuWLYurr756wctNd+3aFVdddVUMDAzEmjVr4nOf+1zbt9p2ktx6661x0UUXVZtCx8bG4hvf+Eb1/Zmsm5x88YtfjK6urvjMZz5TfXYm6+jmm29e8NLN888/v/r+lOrmpM+TP81yxx13pGazmf71X/81PfPMM+l3f/d30/DwcHr11VdPd9V+4vL1r389/fEf/3H6z//8zxQR6c4776x9/8UvfjENDQ2lr3zlK+nJJ59Mv/qrv5rOOeecdPTo0eqaX/qlX0oXX3xxevjhh9O3v/3tdO6556aPf/zjp7glPxm54oor0m233ZaefvrptG3btvTLv/zLacOGDWlqaqq65vrrr09nn312uvfee9Njjz2WLr300vSRj3yk+l7vjNu8eXN64okn0te//vU0MjJy0u+MezvKf//3f6evfe1r6fvf/37asWNH+qM/+qPU09OTnn766ZTSma0bl0cffTS9613vShdddFH69Kc/XX1+JuvopptuSh/4wAfSK6+8Uv3s3bu3+v5U6qbjgOvDH/5w2rJlS/X/sWPH0vr169Mtt9xyGmt16sWBa35+Po2Ojqa/+Zu/qT47ePBg6u3tTf/+7/+eUkrp2WefTRGRvvvd71bXfOMb30hdXV3pRz/60Smr+6mSPXv2pIhIW7duTSkd10dPT0/68pe/XF3z3HPPpYhIDz30UErpuHPQaDTS+Ph4dc2tt96aBgcH08zMzKltwCmQFStWpH/+538uuoFMTk6m9773vemee+5Jv/ALv1AB15muo5tuuildfPHF2e9OtW46iiqcnZ2Nxx9/PDZv3lx91mg0YvPmzfHQQw+dxpqdfnnxxRdjfHy8ppuhoaHYtGlTpZuHHnoohoeH40Mf+lB1zebNm6PRaMQjjzxyyuv8k5aJiYmIaB3K/Pjjj8fc3FxNR+eff35s2LChpqMPfvCDsXbt2uqaK664Ig4dOhTPPPPMKaz9T1aOHTsWd9xxRxw+fDjGxsaKbiBbtmyJq666qqaLiDJ+IiKef/75WL9+fbz73e+Oa6+9Nnbt2hURp143HXXI7muvvRbHjh2rNTwiYu3atfG9733vNNXq7SHj4+MREVnd6Lvx8fFYs2ZN7fvu7u5YuXJldc07Rebn5+Mzn/lM/PzP/3xceOGFEXG8/c1mM4aHh2vXuo5yOtR3nS7bt2+PsbGxmJ6ejmXLlsWdd94ZF1xwQWzbtu2M101ExB133BH/+7//G9/97ncXfHemj59NmzbF7bffHuedd1688sor8ed//ufx0Y9+NJ5++ulTrpuOAq4iRd6obNmyJZ5++ul44IEHTndV3lZy3nnnxbZt22JiYiL+4z/+I6677rrYunXr6a7W20J2794dn/70p+Oee+6Jvr6+012dt51ceeWV1d8XXXRRbNq0KTZu3Bhf+tKXor+//5TWpaOowpGRkViyZMmCTJVXX301RkdHT1Ot3h6i9i+mm9HR0dizZ0/t+9dffz3279//jtLfDTfcEF/96lfjW9/6VvzUT/1U9fno6GjMzs7GwYMHa9e7jnI61HedLs1mM84999y45JJL4pZbbomLL744/v7v/77oJo7TXXv27Imf/dmfje7u7uju7o6tW7fGP/zDP0R3d3esXbv2jNcRZXh4ON73vvfFzp07T/n46Sjgajabcckll8S9995bfTY/Px/33ntvjI2NncaanX4555xzYnR0tKabQ4cOxSOPPFLpZmxsLA4ePBiPP/54dc19990X8/PzsWnTplNe57daUkpxww03xJ133hn33XdfnHPOObXvL7nkkujp6anpaMeOHbFr166ajrZv314D+HvuuScGBwfjggsuODUNOYUyPz8fMzMzRTcRcdlll8X27dtj27Zt1c+HPvShuPbaa6u/z3QdUaampuKFF16IdevWnfrxc9KpJadZ7rjjjtTb25tuv/329Oyzz6bf+73fS8PDw7VMlXeqTE5OpieeeCI98cQTKSLS3/7t36Ynnngi/fCHP0wpHU+HHx4eTv/1X/+VnnrqqfRrv/Zr2XT4n/mZn0mPPPJIeuCBB9J73/ved0w6/Cc/+ck0NDSU7r///lrK7pEjR6prrr/++rRhw4Z03333pcceeyyNjY2lsbGx6nul7F5++eVp27Zt6a677kqrV69+R6Qzf/7zn09bt25NL774YnrqqafS5z//+dTV1ZXuvvvulNKZrZt2wqzClM5sHd14443p/vvvTy+++GJ68MEH0+bNm9PIyEjas2dPSunU6qbjgCullP7xH/8xbdiwITWbzfThD384Pfzww6e7SqdEvvWtb6WIWPBz3XXXpZSOp8T/6Z/+aVq7dm3q7e1Nl112WdqxY0etjH379qWPf/zjadmyZWlwcDD99m//dpqcnDwNrXnrJaebiEi33XZbdc3Ro0fTpz71qbRixYo0MDCQPvaxj6VXXnmlVs4PfvCDdOWVV6b+/v40MjKSbrzxxjQ3N3eKW/PWy+/8zu+kjRs3pmazmVavXp0uu+yyCrRSOrN1004cuM5kHV1zzTVp3bp1qdlsprPOOitdc801aefOndX3p1I35bUmRYoUKVKko6Sj1riKFClSpEiRAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkoKcBUpUqRIkY6SAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkoKcBUpUqRIkY6SAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkr+H7xZ6ESqvP06AAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXCk13UdfnrfG43G1tgxGMzKWbgPhxIpUqREibRkOZJjxSpbsVRxlSMl5SgVJ3K8xHYqSqVSFZcdxS5XEnmVN8WWy5ZFWRJpSiIpcsQZLrNvGOyNrdFo9L7+/kCdh9NveijT9k8ipO9WoQB0f8v73vfePfeee999rlar1YIjjjjiiCOO7BJxf7cb4IgjjjjiiCNvRBzgcsQRRxxxZFeJA1yOOOKII47sKnGAyxFHHHHEkV0lDnA54ogjjjiyq8QBLkccccQRR3aVOMDliCOOOOLIrhIHuBxxxBFHHNlV4gCXI4444ogju0oc4HLEEUcccWRXyXcNuD796U9jYmICwWAQJ06cwIsvvvjdaoojjjjiiCO7SL4rwPXHf/zH+MQnPoFf/MVfxOnTp3H8+HE89thjWFlZ+W40xxFHHHHEkV0kru9Gkd0TJ07gnnvuwf/8n/8TANBsNjE6Oop/9a/+Ff7Df/gP3+nmOOKII444sovE+52+YbVaxUsvvYRPfvKT5jO3241HH30Uzz//fMdzKpUKKpWK+b/ZbCKTyaCnpwcul+v/9zY74ogjjjjyjyutVgtbW1sYGhqC2/3GyL/vOHCtra2h0WhgYGCg7fOBgQFcvHix4zmf+tSn8Eu/9EvfieY54ogjjjjyHZS5uTmMjIy8oXN2RVbhJz/5SWxubpqf2dnZ73aTHHHEEUcc+UeQWCz2hs/5jntcvb298Hg8WF5ebvt8eXkZqVSq4zmBQACBQOA70TxHHHHEEUe+g/L3Cfd8xz0uv9+Pu+66C1/96lfNZ81mE1/96ldx8uTJ73RzHPk+EpfL1XGSfLuJw+/1OPvvTt/p5y6XC263+6bv9Of1Pn+9dtqfu93utnvd6rhO/7/ePf4ubXHEke+EfMc9LgD4xCc+gQ9/+MO4++67ce+99+JXf/VXUSgU8BM/8RPfjeY48jricrnQarXM7293HP/u9D2l2Wx2/PxW5/C6brcbrVbLnK/Knm1sNpttSpaf67HNZhOtVqvteXjtVqtlAsX6PYHHPtdW5p36yAaRW91D23urvrDbq+e8Xv93upY+j7anEyjb93C73ajX6zedp23Qz+x3pW0HAI/HY96Nft6pbdpnne5h94H9ru1jvguJ1Y78A+W7Alw/8iM/gtXVVfzCL/wC0uk0br/9djz55JM3JWw4crPYCpnSSeHZk9pW4jwG2FYcjUbjpmPdbjcajQY8Hk8b4PBcW3neqp22AuQxNijZSknFvr8qQYKDtpvndPJ8Go1G2zF6zVsptFuBld6HollSek/tDxsACSR2/+n9+ZwKOryfgmqnPtZ28dhbvQv7e16XbeBv/t3pmTr1Wafx2+l8+326XC40Go2OAG2Pq05jke/HNkZU7Gtre25lFNlif2f//+2MDAdE/27yXVnH9Q+VXC6Hrq6u73YzvuPicrnaLFOdVDrRaA17vd62SWJb1wpIBC615DspC35uHweg7T783FZ8aj2rcqcnxWdsNptt7fH5fG3/2wpA/1cFQyVsg5QqN/XkOnkyHo/H/F+v183/ttjKU5/H7is+i7aN7ePze71e86w8rlN/8lp8V/zebiffN4+3PRyv19vmSdnek56n405BW5+n0Wi09YsNiAp6bIf2tcvlgtfrRbVabetDHV/aN/a79Hg8bc/jcrlQr9dvGn/8m8/h9XrRbDbNdfmdtpHPxnuyXZ3Ak79571sBro6B7yfZ3NxEPB5/Q+d8VzwuR/5+otYsJ7J6DqoA+L/9dyew0x9bCXCC2hanDR62Vd/Jogd2JrcqwE6eYKf22+1RxUOlwO/0eVX5aHsUyBWs7GsoYGofsQ21Ws38bytwBUf7ex6j74zK1n7v9nkA4PP52t6p2+2Gx+NBvV43fev17kzxRqPR1i6772kU8fNGo2HOtz0ubZs+r75j27Ow+1bHrW0/a5xO+07HO8eCTbvqWOb/nC82aOr5nYBYxyDP0fvq+9P+6UQFq6dKw4Iguwv9h++qOMC1S6TTBLInBZU3FY4qRNJUtKppndMzo9JrtVqoVCo3TUD9Wy1TCu/Fe7M9bKPf77/JS+BzdVJuajkrsPp8PtNuG7ipeKmgbe+S11WLmt9RAbGdtVqtTcHaFjbb2Wg0zDm8L9tiewN8B7yG7RHSy+S7UZCnB8a+JljbgKLvXPuPHgjvzeso3Vev181xHo8Hfr8f5XIZfr8fPp8PtVoNjUbDeDC8Dj1D9hnfUbVavaV3wbbYnow+H59Bz+dzKrugniZ/sw0ATLt1HOt7Vu9WvTi+Q/VAdawpaLtcLvj9fvNO6DXzb44lvVa9XjfGh/3eHHl9cYBrl4ha+7TKbaVu01G2BalKrpPHpNSSTbWp2MpIP+8Up1Hvhoqq1WohEAgYZa5Kwfbu9DpK+1DZ2G3pZL3rM1FU+Sh1pspcDQQFIIIzwcYGGrZDlSCvQRCw+7ST50AQaTabhqYkOPN62nder9coYwBt56hXZlv62t92vE6NDHp0/Nx+Ln1m9eZsT439z+vZNCCvr15OJ4+W17G9Zh3fei2OG3rJ9pzh+UrJkxr0+Xwdz1Eaks9tx1B1bul4V+qyk+fpSGdxgGuXCJUGFSUnk8axlKJT8FCLFGi3/FXR8BzbqrSpEN7b9jAodmYYAENf8f6qpDvRm508DCoIPr8ey2vx2urJ2EqMf6vS0HbSWu8Eiuwfem71et20x/a69J5si8/na6OtOvWV0knqmdXrddRqNQPYdqzFHi/qyanHo2NBx4MCF9+veh18z3wvjD/xfrwH34EdP9UxSiXPa3UCJNtLq9frbZ679pV66DomeB2OT/alemF6HFkJXluNEY0b6zPa1+lE9Wp8S8HYfj+O/N3EAa5dIpx8HOycCOqB2Fatcul2woMqE07ycrlslKtSQppRSKta76HtUE+ElrSCrsZ9KpUKvF4v/H5/Rw8HaI/5EID5/Lye1+ttU4wAblIGVHi8JhWtej48n8kAShtpf1JR8fkI+qrktC3qHdXr9TaKTylX20shiBAcFXj9fr+5rr4fAgnfu3oPVNadkkvUk7PfhT5/JwBk27TPtG3q4bC/eT7pxFAohFqtZoCd40Pfi9/vN8Dt8/lQLpfb+oj3I/jo+Lb7QL0eAkunGC7PY5uUQua7ZBvoSSsVrWCo1+U4sY04R/5usitKPjnSHgugKFVBwNCJoYoE2Mkc4/V4DVqsOplUoVIIgDY9aFMmBEi1nqlsdNLyWCpsm0pU5Wf3hU1JsW3qabRaLeM9qUVfq9VQrVZvonZshaz0nfaTKjH2hR2zs6/Fe1DZqWdG4bVtj0P7gO+Hz+73+81xPFfPt98TwUmVth6nHoB68Nq39MYqlUpbX2sfalsYB2RbvV5vGyDoeKH4fD4DYrYBYY8/fS861hU8+Bxer7dtXNtGEttke+g6HpUu5P80SmxKVsFdqdlbzU9H/m7ieFy7SAhQtOhoZXLi8xigfUGnKitOLk6+YDCIRqOBarXapshoWQLtNJBNwVAxaRyGignYoQXVE9BrcNJTCdJC13iJekUKegxss+0an+KxVAalUqntfgrUqlxs2lCtYQUqBQF+7/P5bvJqeV3eg0Bqx7h4TcZ89LpsN6+vsRo7EYVeDceIJgnQY+E5BAf1XvQ9K2hqX+hxNsjbywXoXZLe7NRHpBxbre24pyY4aP9p3M5mGghGfEfKFLAfOKZselPHPQ0be92i3SecN+rpaeKFMgecs7wvsGM4KrjxmTuNDUfaxQGuXSI6IexAtHomnfh/tTx5nFJ8SitRoZGK0smrXpqCIr/Tya+AoMfwf22jtksVjZ01Z2cragq8tkVBTNumClX7jGCuHoDtDdnxPl3fpt4Vr6fvQtcm6We8np5nKz0FVxoJfG/6v3pD9D75/jQuQ8Cv1Wpt17Djgvps6rXYSlbHjN1ejf0oRcj+1P/tcapetQKoXpPPpgYZ34UCLdvLpBU75mcvLdE26RhVL6lard5En2v/0Kiwv1dqW6lvhy58Y+IA1y4RpW1oVdpUkB2DAdoVtB0n0ZgD4xDK56vFbgOnKiabHqFVr1SbTYuo8lDFxwlN0XuqorQVlqb/K9Bp/wA7sS4FPfYlPQJg20PTPlUjQMWm4PiZUp68pipvzQxVr4rSKQ5lK127T9UD13YpEPC+fN88nn2vXqsmD9BTUrBjX9rPr8+mfaQgrR6iAiefQcH6VkkoChLa7zxfk0N0rKlBpQaCHqvjSN+/PQaUklQDhW3geFZvTNkRHSvafkdeXxzg2iWik8621PmZ0jK04JloYVvuQHvSAD/jxFTKRykc0nI2RcQJp5PfnuBUaARI22Ozn8n2fnhvVfjabqA9e1HTrLXflF4jtangxb8VtOjFsK0K1qqA+Z16AEpB2v2lSle9Iipxm/b0+/3mGbRtzLhj3M4GA7aLXofb7UYgEEClUmnzsDgu1PJX44NtUc+SoGYDJlPIbc9GlbW2Vd+/9hGBln1se3UKNLqGTA0ipfRswFKw5BhRipX3srN6+Z2+C96DtCDnklLfOrfUs1SwdeT1xQGuXSL0Kmwl02mgK00GdK4Gofy+nV6ui5K5GJlxBaWgOil7tpNKUi1M23PTZ7Oz2Wzlpc/GZ6LSV0+HnpeCjSZDqOek3h/Pt+ky9rGeo/2rikj7Q+kmtkXjVryenVWmx6oiU8+N17dpQd5b+8Cm1mxaTJ9Tx4W+K16f/aXtUC9NwUnXj/Ed2V6gJplo39hAwP7S/3ker60eqNJ6Oj7shec8RwFSvSWbTtSx3imVXq+r41HBUMebHs97qCfsyK3FAa5dIqTHALTRXKpQVBHTetVMLyoYOx1bgVB/a4yL99QFrjpBeY6tZFQR8hgFEFtxso3qGdn0ld7TttTtuJyCCEVpR15LvVEbWDWtXz1Wtlf7kqCtSTCqlFX52X1BRaptVwWt/6vHp4Ch71A9CD1WaUwFTX6vXkgnA0XjUUpx2R6exvm0bbbiVupRr6mp5toG7X+eqx4Zr6XjjqCgSwuUaehk1KmHaYNzJ2pPxxDbTKaCCR/6buiZ8W+dN468vjhFdneJ6IRRi1yVo82X23Eg4GZFrpOJ3/N85eT1f7VGdQJrNiHFLmpqW5kul8vQKLQ0lcpUC9oGFLWyOyl4WthKR+rzh8NhtFotk1FnAzyfnWnZ6pnpeh5em+fweXTRKduq3o4qYRsAFZDVE9N3TOG1dA0dgV9pUFXsCsL6btkW+976HH6/H9Vq1QCBrXD5dzAYbIt3AmiLRSq48/p8753Gtho5NgDa41XpS16bhhzHvW2w6bOqB00QVU9TgUznmF5TMx3tsdhqbWf0Ki3JuGqneN73sjhFdr/HxVYkShmR3uNx/N6mkfR7pWj4OQFSKR9VGDZlY3sgAG5S2PYPcHMaMIWfs836v+1BAO1lh5SO0fbxb1uB2/SfWr38zFb8CjA83qaiFNRsD8m2E9XztA0BfSe2h6yerA3YdtxHQbUTzUkjR5/Nfj49R9+N7RHrmFFwIZBwIbI+v4KwgrNSwex7XqeTF6deGb1kG1xoVNhGkbZHMwL5nDa9bBtL9JrYXt6DbVZvzk7Y0PdnzyVHOosDXLtEVNFzMgDt6eyccHaCArADODYA6fe8tp2EoMfbk9qmj+y0ZB5ney1cO6TKk/dlW+xkDKU/2Se24rOtdaUdbTqoVCq1KSJ+x3b4/X54vV5UKhVUKpWbvAN9H7TK7aQB23JXjxlo9w7pKWhpIx7P69vAxP7S57Qrcegz2rE4Pqudzcf4JJ+Nbee5BABVvGqwEKT4jNoWtl+rWxCQeG0+rxoPzWbTJJMoSNjjQL0zNRQ6xS9t44rt1cQktlGBlOexLY1Gw1SCIdirEcIxwfv4/X4AO9VB1Hhw5NuLA1y7RDolWyhHD+x4UExIsJW+WptKC6kS7pS4oJ+p0uRvluqxgZHxDo2duN0724AoAKqFbqdV85lUGSg42rQbf6sy1uew+0yBmt/r4l5+z+ek6PootbBtT0CpQ/W+KH6/vy0Bgopcsy+1bZ3oNRtg7LFiU4v8Tj1MNX60jVziwPvSAFEjRZ9bKW0tBQa0J9JoexR42C4aIQQu9o/t+arBQaDT9mhfdOonPrv2N9uogKbGHz9TL46f6/hVA0UTbTr1a6c2O9JZHODaJWJ7OUD7wloqUCpTm8KwyxvxO056pYOA9gWmvJdauQQmBTGlEWnd28khCn5KR6my4N9a383OELOTEfi3goleTzMMVSkq+ClIaCZkIBDo6N3xugpy7FcboNhPVOD0MPgsdnxGz1XvTZU3jQCbVlTKWAFd1+nxXeiSAQrBQrNLberRXtKgSl6r9qvxpKDHflfPhn2q3r++Kxskb0Vh69xQClMNPft+6sXZgKjPzX7VrEm70LI97rTv2NZOzITjbf3dxUnO2CVCZWArWFW8FLfbbSgnTa1VpWBTV0oL6jWVylGLlZOc61V0t15tn1KLANqUL7c1UW+C7WZ7bcWk52uwXC1XfqbXUCVD4THcroKKQ3fcVZrPNgCoeNRYsJUln02BV9ujVj+fk+1Wmsw2Smzjo5M3aYO50mxUnnbyTKvVQigUQqvVMlQtM0kV7HmOXUld95ciMGpSCp+bHqVN3SnNrUaLjj1+p4aI9l2tVkMgEDDjgt/xPXBc25697d2y+LOWC1OjSj1V2yvjNTjGddzZGY78TL247ydxkjO+D0RjKGq12mnqagFTWdgUmT1RNJFDlYQqWU5KKkC1GNWbUmWqCoggqaCoXoFdqJRiU4FKFany0Ew1tXgV6G1rWq+vXhM/V7CwgVT/V2+Ifaz9CNwc1Nd3yRRu9d4U9NUr1ufT2BLflyZOsF87eRna1+xH+3p8n/q/7VFqXxAUCB62x6T0pHprNsV3K/ra9u70+dTD4zjQUmG8ji5b0LnEd2OzBdpWbYOOffWkeEynbEOOJTVa1Ohx5NuLA1y7QEj/KMWmCl8VocYf1Ark5xqHUauR1yLvDsDEotRr0EC5Kk4tbqpApWtsbGpK18ko6AE7VRAICAo6qpAp9jNwjYztmSgtaNc8VOWoHiDb1mw2EQwGTWC90WiYCg2aUGGv++JzlMvltrawDwgEqnT5HS1z3pvWOxUzlauew8/szRJVCXNhudJU7GsdY6QF1StVULDfBd83xxG9MH3v7E+OEQV9ih0fUtDQzFH2nQKRvkc1tGzKlPdXY4/X5N+aBWkbSJxDOj75Pd8bDRLuJq1g7PP52moeqtflyOuLA1y7RDiZ1EtRBWOLxkB4vl3E1Y416LWU3gHQtk8SK3krTdUprsP/CZjqpdjxDaXybA+F31EZ3spr4r1UsdvxM35m95ttTfM3lRT7SlPf7fP1ez6XHb+wYy6dLG9tO9+F9ievo3QvP6PCVwCi4VAulw2Q8Bh93/b70TihtlPHmLZb+1Y9N9to0LHG69pb6KjRZXt2vC5jgQp8NiVLJkLBRMHcZgb0vdnGoY4R+91qxqweb3uW/F7HJPuR7XPk24sDXLtIbIqMYtMWFCoPVXBK+9jXsS1Pm7ZQ0Ox0306UCs9TRa8KjoCktCOfkzSOUm9Ae5UHm2LRDD5N7uB5NsCo4tDnteNJ6l0o+NvXZ7+rJ6LWuN5PQco2SjTJhMrejkd18jxulTRBr4OemD1O2B5V6rwu26HvV0FH37n9HApuCmAKANoXnVL5O42bTkaCGk62h8a+UfpY3x3HoYIz31mnAs76DjUZhuNO+4BVM3g876tG5a0MUEc6iwNcu0A4yXRnXrXabWqHk4q7yzKwbmcc6mcA2mgPoH2dFK1aggzbpbvU8jMAbcFt3SZdLWSbmtPzbbDSdusaGAUnpakYb2Db6OkEAoGbrGtV8gpOek9a73wOO5am19HzVRnxbz67HUfj3+p5KUXMihW8Bq9Hb1iXC+jeXfq+7HfMPtbEE333/J7PqckYmhHaKe1bwUG9LCaJ8D3rMfb44zWZbcl3rEk9akRojFTP60SD6phVFqDVarWtIeQY1/ej/WAnXvC+rdZ2AhLfl44ZLWfFOc21go58e3EigbtAVJmpxQ7c7BWpslWPplNciAqOlAuVATl5VXgKJErX2d6HelC2grQ9E30GTl71JjTRQxW5Wu42paS/lebR+B7FToJQZcbn1WvadJf2sSY78LcmSWgb9Bw1Png/VfK2N6Pv26aj7OvrdZTqVIWv79WmH23Pmv2k/aaK1u12t+3IDOxsoqhjzvbIgZupSh0TtqinovQcr8Mxws9tcFODodVqtS0/8Hg85n/2px1j1WfQ9+b3+9uupUYcxzJBi+NFn9P2dh25tTge1y4RTgTN0FIlozy/TvZOE9WefPxOlZlNQ/G3eje2KHcP7GTEqZWs5zJmpYpKPRG9Fy1nVda8nyoLWyHbSlKVEK1dJnKoolbFzWezaSiCg/2ebEveLrjL96htspU1rfhOVrp6k/SCAbQ9l1JS6gkq1abt70TJ2vElioKgUmc2aOu7to0mvRY9Qf5m+9Wo4LGauq7r0uz0dDtN3vbk+TeP1/vYY0efSwHbfs+2AcJrqsfPMa8gbRszneaWI+3iANcuEFIXnNRa8BPYWdBorydS5aLgpkqMmU6qqEulUpuVTHqHigVAm9WosRwqFJVOGzpq3Mf2pCqVilF8/EwLyHKycz8pTSDhPWyvQ9tIUTpLLXb17jpletmxFNJ3CmI2MLKNgUAAXq/XZJMFAoG2/ldQVmOE4K2BfNvjZVYjj7XXgLnd7psWaGsVE9uLpTei/cfxpgCuY4fvNBQKoVgsmriSprp38i4VnOilVatV0z/q+fCeutectkPBnO2lQUD6XD08UvCcW/ou+TydgJ/zwK7swffO8+1zNHOXtKPH42mjUB15fXGAa5eI0ggKDgQFpZ2A9liDppnbipGKSz0vvaedxgy0B/HVo1Eg4L34244r6QSlYrLTyHmsegYKlJolSa/L9k607dqH+j/70g7aa3s6tQtojzWp98e4iHotBEQ7k1D7QUXvrQBqP5f9bmxPq9FotAGUrVQ1AUTbo9dWI4LPocsC9NnYb+o92zsU6PXscaveF71hbZOCn3otXOysXq2dZdkpcYZ9atOwCjYKYAr8CpiagNTpfM3kVKOPPxoztI0lR9rFqZyxC4SWsk449Xw4+dUrUUXGya3AospPlZ1SJ6r8lI7S2Amv28miBnYsVwUZe/0WqTEqLFrFStlQVOHb3oetKNknwM1bpOjz8R5KXfJ79r9a3DxeaVttpypAKlOeqwaH0ppK72lcTv/n3/q9nkvFqt4L26c0WCfF2wm41OBhf2i/axae0p36Pm2wtd+P3R5NtrGNMGULGo0GgsEggG2GwF7OwXN0Yb6ON3p1zWbTjDc+k8/nM4aHMhWsgkFA1LYoKPL+t/pM5x8BTdumz/H9IH+fyhmOX7oLxKaNlJZQ5QqgrRIAlRmzqlTZcVIDO5UWVEmqwuHvTt6DHcRX5UelqgtYbe9MJ67eS0FAlSvbroF7VerMjFPr1QZq9Rrseypg6n2U5tHYiG7JzrZolpkqJNu6pwK1z9c+VeVtU2Z6rB6vFKdNX2q7dEzZcTF9Vn0f7BONZfE5fD7fTRSz9jGfxR67+p45NliOSr0tXedkA7b9rvi9Db5qgNk1BnVu6Rjl/XT8qPdkZxKyXzhe+cz8X8eZgpm9ls2RW4vTU7tEbE/G9jDo9QBoU0Z2lpN6Skp/6LVsINB7Au114oCdckdUHsrfq0elHoAqAl7T9lwotsfBYzTmYVM0dsCd56jXaveF7aXqfQDcpJS1zQogtmei1JWew+t3AhS9psZ1+MxaKYLn2fGZToBNUWCzEw7s5+I70PPU4OD3eo6d4GCnomu2pSp+BXilOlutVltyjjILStfqGFIjQo0FtlcXMqvnqO+S7bdjpXw+jQ/SK7T70O4je9zq8RzrToLG64sDXLtAqLCUclIPQSedx+OB3+83u6lq1p5OeFIhSkGqMrGt5U5VEDSBQgHgVsCjlJ5ax7RGGYdRy9qmOim2V8fveQ8u+tTEiFarZdZxUXnYtCjByaaXSMNqFYZWq2XKOHUCVj4bFa6Wb9KEAN7HpoP1Oam47bgj70kFquuD+Bz6/m06kdme2ldU+HoPBVfN2NN3TYOF8S878UPHBgGLngvT6BVotK02Pan0uV5fM1n1OhyrTGxS40WBkeNCY6YsaabVY3gdjj99zk7zyX4O+/2xbQqujtxaHODaBUJwUBpPLTROXqDd2qZy1ZX//I6/7cQNVXq2p0Nlo1Y60F4ZQyextrcTLaSTXa1PKiVtG7/TeoCqkNkeVh0ndUWQVstfqTF9br2XZoopLaUKV98Pf9vXsZU+72fHG9Ugsa/Lc1R52zE7AppdO0+vp/dUr8b2Vu06l2rA6Pvr9G5tb7qTEcPxqgun1TBSQ4XXU0OH749LGGzvxqa7Nb6nyw30mko98zMbLO1sWTUatL36/gicwI4xZI8VPcemNh3pLA5w7QJRxa5KU4P7/J7p4fQQqtWqKagKtK/8p0dGJa9goBOfx9up9eotUNlpejuwM+kJGgp62n4FZAVhtaL5fDrh1cJlO6jA6R2xDzXeo0CgfWgDPJ9bgdsGJHujSACmaggVnno8lE40ZiclyOfstMyA/UMgUHBWb8r2arW/+TnQrtztGFEnulABQMeO9l2nd2Erbe07vhP2ETMLmZChfc33cKuK9rwGfyi2x69/qyeolKLL5TJLLmq1mlm2QWNKDUylBRWU9Tfvxf81IcSR1xcHuHaB2AoVaLdcqSyUMuIx6v2oN6QWue29KSCo5UmxrWxVgrwHY2Cq4PXawE5mGRW6TZPZHiGwkxwAoK2CBxWFUmW29WuDt57Hzzt5pnb8xqa8Onmp+sx8NjtOQiAEdixtfmfH6Ox3wmdV78aOUdpGiFJX+nwKyEoX2tdRIND3pmOI59seJMeBXk+3rVfDQPtA70nwttP5bQNOPWMbJG0qlUlKmqbeKXbM825FQSuQ6/uyPWAK76GUq73zgiO3Fge4doGoQlBFqcF7KkYCk53FRGvSBiteixasWoGqBFQ5cvLyXqpwOBEJKraXw7RiXltT+Hl9GzT1WH3+ThSk1hO0AQVozxQD2uk4fQ6lqRTwbPC1LXwFFd5PM+9sipJtU9Cwkw00lqhZiApc/J6fab/bsTw1Jniu3+9vu7d6wto/eh7bru9Pr6HGhB0HUmChYtd7qOLXPtfxrorffp+2caLXZV/wfF1j1imtXovoKuOgc0c9XPV6bVr89d6XesAOcL2+OMC1C0S9GE5iO6mAgMKAMSlC/q/X0sK6BABdR8XJxXvxGIKMDY6dlCD/t7dpULpKQQbYye7i5Nd2qkK1i/aSItOiumrhKjXDGJha/ryOrTQVhPR/AKZqh1J4vLatKIFt6pAKjscpOKllbnt4fBYmMXi9XlQqFfj9fkMD2++Bz810cpdre32c3+9voy+V8tV1TewXtluBolqttr0r+/1TbBDkc3Ls6vopUnD6GUW9fs2cVCPDrl6hNRLVs9P+IeioEXarijA8Xz1nbZM+F+cFx456frw3n7dTDNWRby8OcO0SoQJQ4NKJqNa8HTzXzDKdjOqN6OTS7+0JZ9NpjGHY3pveH7g5M01jIbRQ1SvS8+xzbarL9jzUO+H3PM+2jtl+9V61bXbyilrgvI9msqn1rDEYChWurk/itdXL4/+2N8qEBLuiCcGIz2/HpnRcKGDr2NLvOgGhXldTwG3vXY/h/dUAUhC0KVY1ztinOuZ0zOu9OnmJeo4CCc/n5zb1bNN3nSqr2O9OjQ47tmh7XuqR2bSlPrMjtxYHuHaBcGKq52DHh4D2ckhUnrSYOZGAHUXEhAxVIkr/qeJjO5TC0zgbPR8qZVUMvKft3SjdR4+Ax9jgy3Tpcrl8EyDabdLYg+1JKXVne1G2ArTTmTUGaCtUpWX5owCmQMN7qSK1jQY79sV3CuxUS1EDgmCmz6Lt0uP4uWYmEvgUvBqNhlHm6olTIdMD12sS2Pnc7AO9P9ut9KS9TUynd6GGiRo3BFR73KjHp33BOoj67ju1Ud+hjku+I3vMse3KFGgGqPaRPqPOH7uPHOksDnDtIlHFwglJJawbCCpVwQmg/LuCExWeKhj1JDTGoAVTO3kntsejSof341oZFg22FSjQDiB2AdJAIIBWq9XmsXDPIxtEVSkoqAA7C00JHnwmu6irWssUDf7r3wDM+iztH90/TPtMrXP2oXpzur0GP1PwspW60qdK5WocUj0DrmnjM6hnbifWUCkz6YbtUdCxPdJO48QGFop6zeqFk9rU/bFssFGDjp/rNZSdUOFxpE31WnzPjOdyLzTS71ynpoaHjn97OUez2TTAxPHGvudYZf9rvzjSWRzg2gVi0yq2QlFqxPY67PUxaiW+HuDwPupxcELqQk3+UKEpmGrbNRtME0AULNVbUSWttJ/ttalCopLUenc8VpMV2Fd6TSowpQ3tfrOvp/QblT3bapd90r7gj6apq1fo8XjMwmYFNds7s4HA9ujYJzxOKTg1bFTJ6mf6/lUJKzjp/Xh/Ta3X/lZvg8/Ge6iHovelkrfLPalXq16hZvvZlKsNmPq8bDuzDHkcwUupczu2R4NDvUH2t84H9bIIUtrPnEdqHDjSWZwiu7tAVIED7ZXNaaFRGeoWGzYYsUgoFTQnJyk+Th5b8Sgg8lrqjXGS0YPSgLdmF6qXqF6EKla9hj3ZqQBIf+r6NFWq7C/bw9LvbC+P7aGXY29VwkoJej0qQH0eKiO7srz+zWsqrWtTf+oxKDjbn9vp1gREJlToe9Z+soXtst9Dp+1s9BqaAGG/Cx0/6l3bQMjrqPdjgzDHQaeF7tqfCuo0JLjOSseqepD6XB7Pdv1Jbjtje9rqJes71Lbxf7aB9yPI8n8dfxxTnFP2mr3vZfn7FNl1PK5dIDY/rvSHJlnoxKIS04mjFdrVkte/+dv28qhY7JR620tTBcg2aTs7KXI9V1OjVTkodUR6SvtHLX5ei/1hLxPgNTtRWtp3tKw1a1G9CKVXFXhsik6VJJ+RlKd+rv2hQM9rc1dqPVbfh8bl+M7Vkrc9a/aTXo99TcpTFasqbTU8dKzomND3o16NGkLq0WsbOp2rVKGdlamUJ8cqQUiZAfaT7UVrX6gHp4aGelTsF9vw0diYjlGds7wGKUL2LanHXehLfMfFAa5dIEpHcYLQqwFupg71f9ujsS1ZemEaHO9EXXVSKAQCUof8nO24VXzJ7XabxBC1km16z6ZigJ04lv0s2i5bAfIz9VLt/qWXpM+hhoKt2O172QrMXp+mbQBu9vgotieiz6WKs9P7ZjvUK1JlTQDTWGCr1WoDZipUjgk93l6sq8+roEWxAUqNJ116wecG2jfj1HGmz6h9YAOQgrxWjwHavXFtt76/TsCubdMxwv5XalDP0/emAKx9qs+p81nnmiM3iwNcu0A0oM4JoQpEs/mUvuvkhQDt23Uwu6rV2snc4/mML7ANtPhJCxH4lB50ubY3UdTkgU7Po+1xuVwm4N1qtQxNY8fiALRRKJ2ATr0M9oXG01TJUYEw6E7wopWuytkGVztb01Z+qpTUY1TlWavVEA6H22itSCSCVquFYrFonl/pOH5GOkvbRBrYjh/aVKTtLfBvjUcSEIHt5Jd6vW4yOvm8jCfpHmYa62FfsL2q3DU5iEpbwUkNGx1DfGb1Mu10dRpUpOZ0DOtcIBDzHfE+mnwCAMFgsC1VXtujY5nPV6/XEQwG4ff7zQ7j9rk6vvjMHH+d5owj7eIA1y4SpYDUUrWtPT3epo6UVlF6h/SLZrWplagZbhrsViWhIGMrLm2n7RVQcauXoJNY78dJzuvxfIpazHbGntvtRrFYBNBuCdOSpgLUbVnYN3YMRu+lPwoKdoDepm47AQz7itegdPIaNSFG26pgZitK28Pgd3bMUfuc40zHnt5HAVHbr2NAx6pScDaY6v01cYX35WealWfTqhTbM2df6HPpvWjQaQq7Zmfq+1PDiucy09AeGwDawFPHqJ1Z2YkRcORmcZIzdoHY8QDb8yIQUJh2S4VrJ2TYSqfVarVtQaGKSZU+J7lahYw5KdABaAM8jQWRtqHiJmApMOoxtiLi57yHLdpezRC0PTMFbDv+ZNOj6vVoZQf1OmzvT6+hCtOm7tRbshU1AZ3vmZ8TQPmsmulpX4dGANO5mQCg3h8VtG2c2FUqtH81FmNXeVcgtmk1G2B4/04eOp9Vsym1vUrb2kaBetq1Ws0smdBKIjaw24adPQfoBWpf6ZjgmFaPm9ek96dere0t20bC94s4yRnfo6IKFGiPj9i0jMYOms3mTdSRejecaJpRyOuo0lDvSkEBuFkB2HEdTVjgtQG0AYNmrNneE7Czv5NaqlQGtJYVkCnqZdjtYVvVCOAxCiq8R6eF2ur5ap/y+dTY6ASW2re2t6ZKX9PB1eNSeo4VHlSZ21ShehHsRwUOtp9ULdtij0U7NsPncbvdhh6zaTEdqwryvJaOLdurtj1rgpa+B75PW+mzH9VD1/eiHpmuR1Pvn/dWILc9RH0v/Fznlnp/miBkz137c0c6iwNcu0AULJSCUKuaEwW4uRyOZoGph6EenE3v8RhdgKyUCycowYaWvE116b07nWtTNgQyPqO9Jkw9O93GQ2knWyHYFKsNZmoEaBtVYTLjSz02vZYaAva91HuyKVa7DbaS1v/txAJ+xv5Xj8M+V/talb0+uwKjeh/ap+rJ8H52rNUeT7Ynr4BsJ3/wumqcKTOg410zHO33qH/7fD6T1m9fg+3Qvu8Un9RnUGNG56YCKseH7RnzfbCP7WonNFqcdVyvLw5w7QJRCkGVLsECaFfQNrhpVhSVls/ng9frRblcblOi6v0o76/Kn5PRVmKc5HZcgZOWyR71ev2mxAKXy2WsdaWxqAyUkgNgdnlWGkxjHXb/aYxBaR+1tu1KFTa9SiWo1jvvqwrNNiaCwaB5Bio69XZsIRDZnh37QN81n0mTS7R9/F77To0a9RJsWvVWYGlTw43Gdnq/UmYaQ221dpJZ9F1on5BytmOomvjBdinNyHdnH6P0m2Z4aiKNtoVep4KYXQNTk3c4FhR0Wq2W2aOL70qzJLUvyuXyTQvg2cf6nh3pLA5w7QJRyowWmf7Pv/lbN7uzM9l4DukgTkalR3TC8zzN5lJ6TVN47dI/agWrxU2lqhU4VNlSwSidqMqS99RMNbbVLsGjbVAPUPvU9hD4XNofwM37XSlY2TEyBXCNq/CeqqRU+anFru/A9pDsH6U3dSGs9od6BVpPT+lDvZa+X/WINIam3hnbr2BM6lGrmai322mDSb2/9ovNBNjJDASXToCn71zHuvYrxxmBmN9re21vyI5V8jrKPihbwr60vXGeY8cJHeksDnDtAlGFp0pCq0wAO1SaJk/oZNU4mcYbKOrJ8VpqqfM8TkhVtNpOBQwKgUjBjTQkgDZloCDD/3UyM5bDRbwMvmt8ie3S1H9VUmqZU/l0ehZbyalXwOfstK2K/tAbsksJ0fPlOUpBsa4h70tlbK99U+DQ98a263jpNK409tgJEO34lJZ6oifIZ7cpaB1fnahR/Z7jwR6P+r/9PHod3kMNKXpG2rfadh3vtxq7Sk9rrFBjm3b7+E702jTS+P5tBkHHjbbTkc7iANcuEK7ZoZLzer1te0HRogPag92dkgOA9nVFtkWp9GOjsbNVOievWt5K57GQrAagVWFQcbEdVHZUflxPpgqGBVY1tqT7WunaGu655Pf7jZIgwCmFBdxc4VstX96HSpQKlaChsSulvmyjQL049RrZz6FQyKxd6xTXCQQCqNVq5v3q+jl61QpgnfZ34lihN6hlrNTYsWNhNnXF/mg0GqYv1QhRWpTHq7fMd620NkUpahoEGkvSGJZSkHx/NGD4v3pwduzT7Xa3FcfVe1J4fZuS1Xek/cz5CaAtOYZtCIVCqNfrKBQKBkjVe+Q4U+bDkW8vDnDtArG5b40N6MRWD0Ytb+BmekItRo2lKF2kXpp6LrYlTCFgaeFQpZpsOk6Bx7Z4ObFVkSmA6nWVsrOfTZ+FacwEvls9j3p8Nugr5dnp+fX5eB6VHj1kfdZYLGaql5RKJdTrdZRKJeNFagKE9oFStXYmHd+/vl/2KWk2G0zZbwpW7Aven58TKPQ59Fm1HxXUtP3qbeh9bTrcvo/2BcX25LTv9f0qsGmcTa9tv0N9bp2Hepw+v3qB7Gv+by+e1uuyn+xYpiOdxVnHtQtErWulPoCdSa00laY427EipcU4gZX20vN5/U7gptUcFEQAtAGkTmRVWpygbLNa3ur52d6CWtuqqHSNDM9RGocegx27YrKJLZp+rhSWxlVsKk3bZVOysVjM9Flvby9OnDiB4eFhjI+Pm+QK9kcul8MXv/hFrKysIJvNmvdDQKO0Wu0VJqjwbW9Xj9f3qn2loGPfg/1uAzY9ZV6H/dGpT3hvjfWwn3lPxpbs8akerwKqDXw6LtVoUXDSfmGbNDvVHldq6GlFEe1XfQbtLzXelJZVUFYwo9jX/14XZx3X97CQHlIKw6ZOgPbJyR9a/FQINi2mngxwcwVyVdSdaC2d7LyGHbC2qTMNXKu1rxScehIav+I91Sq1rXnbHrPjLnbAHbg5tsf+VIqQz0eFr/1OA8Nen+Xz+RAKheD1ejEyMoJ9+/bh6NGj6O3tRW9vr7kGQadYLCKdTuP69eu4cOECtra24PV6USqV2gL9fE57HKinY3ug7Csqbya4lEqlm56Hv/WdanxTx4u2Q++tfaNjQSkziu3B8Z4cbxzXOob0XNtgUHDSOKF6q52MLI5xfdcKkva40kQQBW9dGM62cMmAlu+yPTBHvr04wLULRD0sYMda9vl8pn4clYpOIJ7L+JIqd500eh8Abd6OrkPhMTaoqKJR3l+VnLZJz7M9uWazaWJbnPC8rk37qEKl2IqA99XrKP2oz6QKne22lbF9bQXdWyUG+P1+VCoVHDt2DHfeeScGBgYQi8VMvM7v9xv6rV6vIxQKYWRkBB6PB6VSCbOzs8jn823eik1XKQCrUlejgtSVPrsCtI4FpVf1fdkJKPY7oMJW40GrftwqTqhUrG14sG/V6NB3pm3ULErtCzV8+L160Wo4KUWs11JjST059pNthKm3pV6feqXat53oZ0c6iwNcu0BuRSPYnpXugsxAsQ1OBAbNbNP7UBmw4gZpGuDm9UBA+1YrvDcBwA5y294Oj9EAObMDda2YKjje07aGdaNK25L3eDxtQGo/N8UO1vP+vKZSjJ08BR7LRBWPx2Mqftx555340Ic+ZBbDrq2toVgsYnNzE273dnHdSCRi+n9wcBB+vx+JRALpdBrnz5/H1atXUalUUC6X2+KDfE/aBj6v7a2QbqOC7xR30Wsy6YXPqe9eE0EUnNhvfB+8jnraanyo0lcDTXcd0PfMdvCd67vQ5CF9Fn2vasTwuWxqUe/NQrnAzdU19Djd144UqgIVkzjY52yrZgG73W6zLtFZhHxrcYBrlwgngE21AO2Vve0kCLUC1Rrl/7YCVkBQT0ZjITyWv5VKBHATONjUT6ekCKXWbIta6UxKJzrHppHUilcvRK1u7Ve2r5PlqzSSy7WTCMN1N/qcPJ9Zg11dXThy5Ajc7u3sx0wmY5QZQahcLiMQCNxUssvn82FkZASNRgOXLl1CMBg0GZPqZbHtCqraF+pJ6IJc9qW+Y8ZGlUazPVR7DNpjwP6eoh6eptarR0sg5GdqlNhLHXRs6Hvp5NFoe/TZeC7jhWxnJyryVuNJ76lzRI0onW8cR+qhadKMQxm+vjjAtQtEOXi1MHWy2UDF88ilK71IK5pWH69DqdVqRukCNysb/a2Wqk5CfkbLU2MIek0FU7ZHqRs+E4A2Oo3KVddQ6WcAblIgfAb2IxWQAkWnOIcNalTqGs/w+XwIBoOmHZVKBYFAAKVSCf/0n/5THD9+HNeuXUOhUEAkEkEgEMDi4iJyuRyAbeW3sbFhPB2fz4fFxUVks1ns378f9957L86cOYOrV68aIAkGg6ZiBfuRNCvba1NV7AP11tjfNDiY5UgwdbvdKJfL5vl1cS0/05qYSrXx3uoV8jwdJ2psKVjZi575PjXBQpN4mDlqxyjpcdretnp/ZCl0fPPd2Nm7Oi6VFdD+1SQXrdChnqP2kwKcDfiOtIsDXLtAqFRtaoNKiYPe9jhUEVDUsuMEYtkkWvKdOHpOfrV02RZSexprUK+JykEtfZueUgXbKbZgx3TUY1Tqhm3V8+34gSocmzJUS5/XsOkom4LVv/V5eO+xsTF4vV4sLy+btPjNzU3Mzs4awGs2m8jn80bxTkxMoNVqYX19HSsrK+jr68OePXswNzdnlDqf104eUAWsXmWnOJHbffOuxp3eKSlj9QjsfrW9atsj65S9qfdSL96muDl2NLPPzqy1vSo1hmzP3I5r6dgg8Nqp8Opla5aqLknQeCjvR9Cy1xPyufReNpPhSGdxgGsXiHoySm2pgrKpOaAdDDghWWvNXl+l5+n1NI5h00BKmSg9p56LxrPU+lWqxQZBoH2/I9sSVe9NFas+j20N82+NqajCVzCi0lBDgc+t11TQ4HXVA2M8cXBwED6fz2wOWSwWcf36dWQyGQwPD5trVqtVU4preHgYPp8PtVoN+Xwe1WoVY2NjSCaTWF5eRjAYbHteXdyq8Rz2rypB28NUihmA8cht5a1ejsawdG2b9pWOA0160RgUz7fPIRiwTwlcPE7fo7aT48SOcanoO7eNPG0T26FV4fm/Gnaa9GKLjrNyudx2f/aDsgvsa0deX97wVptf+9rX8J73vAdDQ0NwuVz4/Oc/3/Z9q9XCL/zCL2BwcBChUAiPPvoorly50nZMJpPBhz70IcTjcSQSCXz0ox9FPp//Bz3I97LYoADsAIEqbrU0G41GWwFY2+NhkJ+fcRdgWvys6MBJxooUXN+k3o4NFjzO4/EYOstWehof0J2PlSKi0otEIm1eIq+jAKyegCo2Kr1gMIhwOHwT+Cgg0+PUPqaVr8rLPp99roAcCoVQqVQwMDCAnp4etFotdHV1wefzYXNzE5lMBv39/Th06BDi8TgCgQD27t2LQ4cOYXR0FGtra6jVapicnMTg4CDcbjeOHj2Kt771rRgeHkYqlWrre46FUqnUZvXzt1KjfH+awacp7qRbtU4ij+WzAjAxOe1T3ddNKUM1OPhbgRpAm1Gjm5ryOy2kzL3F1Cjhj01JapvVmLKp4U7vU0FZ2+vz+UzJsVKpdFNsWZmQUqnUVlRamQzuFt4JPB25tbxh4CoUCjh+/Dg+/elPd/z+v/23/4Zf+7Vfw2/+5m/ihRdeQCQSwWOPPWasDQD40Ic+hHPnzuHLX/4y/uqv/gpf+9rX8JM/+ZN//6f4PhCNqah1S2tPYy86AVTZqJekFI7GldTLoIVseyi2x6TXUepOs6LsFGMNZNMKV1CiMrFBUhWyxh1U+Dy2MrE9Dz6btluz4/jDmBMBXtunwMb/FYyj0SgKhQLy+TzC4bCphjEyMoLjx4+jt7cXoVAIkUgEPp8PiUQCk5OTJl4WjUYRDocNgI+MjKCvr68NVLQd6gl2ojj12VSUUlRPmH1pU6cqNt2m44PjU40sGgg8To/3+/1t8SBg2xAikCq9aY8XArTOD4J7pxR3ns+xpG23aUc+B9unXiKfTbM32XYaTVqwutlsthkOCqoK7I7cWt4wVfjud78b7373uzt+12q18Ku/+qv4uZ/7OfzgD/4gAOB3f/d3MTAwgM9//vP44Ac/iAsXLuDJJ5/EqVOncPfddwMAfv3Xfx2PP/44/vt//+8YGhr6BzzO96boZFNKQYFLgUgtccbCaGnbMQmlKdRKVMpPJ7wGs1VhaTZXJ7qnEyWnouBFq51tUsuZn/FaSvXo3wrwANpiI0qRsR/0OexYDkFLPRM1ALQP9TputxvRaBTZbBZbW1vweDxm25apqSns3bsXpVIJoVAI4XAY2WwWHo8HQ0NDGB8fx+zsLAqFAsLhsKHvent7MTw8jNnZWYRCIaysrBiPlH1ImtL20NlnpBXtd257L0rFab+TKrOVNc/V1HwFeD0HaF/Mq8aAen8qNGT4t45bgpo9rtRAUsNLr6nPzetpO5Q25BjSOpJavcTv98Pj8Zj3ZVOBvL/ubNDJO3bk9eUNe1yvJ9PT00in03j00UfNZ11dXThx4gSef/55AMDzzz+PRCJhQAsAHn30Ubjdbrzwwgsdr1upVJDL5dp+vp+EGV46odTjIe1H+qSTRcytJTR7UOMOqvDV+6DVXKlUDN2hFAuwA6BMNCBgKlVnUzb0CEKhEEKhEBqNRltFdLV4O1GMvJbGReytOmxrmNel9c52aHtIFdIqJi3FzD218hUotbAvszHpVfl8PsTjcRQKBSwuLqJer+PEiRMIBoOYn5/H8PAwDh48iGw2i2984xs4ffo09uzZg9tvvx1ra2u4du0alpaWkMlkEIvF8M53vtMoRJY+Y8moVquFcrmMcrncVpW+0WgYb0G9MvZrIBAwAApsK9xgMNiWFEPvlyDAd6tAqbEl7UcFeo4dUtL8AXDTsdpGrgXj9xxvfH56h0rnMetUCyFrHE69Vvtzv9/fNq4qlQpKpZLpawU3HkNAo1SrVZRKJZRKpZtA/FYZubah5sjN8o8KXOl0GgAwMDDQ9vnAwID5Lp1Oo7+/v+17r9eLZDJpjrHlU5/6FLq6uszP6OjoP2az3/RCUOhEXShAUGloWi4tvE7UkIKUfbx6JPxOLXid6JrdRQuV/7NtSp8oAFcqFaOQgM4emXpxNmiwjVRabJvddipejQ3a1KdavNov7FPbA1Xr2I6r5XI5TE5OYmxszJxbKBRQqVTg9/vR3d2NfD6Pra0tE3/jQt0bN26g2WwimUzC5XKhWCyiVquhUChga2sLLpcLBw4cQLVabaOhbBqLMUCbftL3yH6h56Dgr+NDr6H/29Qu+0DjVfzfPlY9c5tCtscjRQ03GiRa31LpQk2WIBh1YhLUKFIv3KbTNfaqSxDsYzuxELy2fm97svq3QxW+vuyKrMJPfvKT+MQnPmH+z+Vy31fgxQlPC1CVAtBOd1Ch6+QHdray0Ilh00Wc7ARE3puxBwKHBr+Bm4FSr69xCQVDXVSqAEBLutXaSZ9WBce0aX1mjb/xGdk/qlB5Tb/fj2Aw2ObhsY9sOoqZfbwXlbu2g/1FzyoQCODw4cP4wAc+gP7+fjz99NMIBALI5XJoNBqmSkapVEI2m4Xb7UZPTw+OHTuGer2Oubk53LhxA4cOHUIymcTc3Byy2SxCoRCWlpaQSCTwgz/4gxgZGcGf//mfIxaLmexDJsSw7fQCtdSTxjT5bui1a19q8oOujdPUb5t6Zj928o7pBdlJFQoqCkQEDAUhG0x4PN8BwYLbwnD7Hx2fWg3Gpsk1tZ1eYbO5U1WebdW5qdvFEKi0D/hc6tHxt8ZhFcRtytORdvlHBa5UKgUAWF5exuDgoPl8eXkZt99+uzlmZWWl7bx6vY5MJmPOtyUQCJjFp9+PwgGuyl6tyVtZbkplqTJWz8X+XxW9vXU976UKS70u9bZ4rFrsbDeVl1KeBCs+p4KTtlFjXxQqGz5zJw9Pj9V9kxS0O3kB7DuCNTMx2ecaB/H5fIhEIsjn8zh+/Di6u7vb3pnP50M4HDbVLxjzKhaLcLlcGBoawvz8PNLpNNbX11Eul9Hb24vFxUXk83mzqLnRaCAWi2FqaspQYcwCpULWRbf6LDbQ6BYl9ljgMfruVXnrQlmNMSkrwHeiQMk+57VsL5vGh2aWsl0U2zPT90xg1ntqdiDPseOo9Jb12TUeqB6mtkW9f/tzu638v5OxyXmuwO5IZ/lHpQr37NmDVCqFr371q+azXC6HF154ASdPngQAnDx5EtlsFi+99JI55qmnnkKz2cSJEyf+MZvzPSO06pXaUMXO/9UatakGW2EAN5c80k0Y7YmjFq5NIdkUIP9WL8pOTb6V5we0B/V5LGkv+75KwWgWIxW23o/eIjdxVNqxXq8bpa/3Jr1Iq96mkqgQ3e7tFHhec3x8HPl8HvPz84jH46ZaRk9PDxKJBIDtTQbL5TLm5+extbWFrq4uxONx+Hw+rKysIJ/PY2xsDIlEwijz/v5+pFIp+Hw+9Pb2YmBgwCQCMN5E70izAdkujavYyw60z3i9cDhsYl8cH+ohaJzIpiT5nZ0lSK9Hj1HA0P61K6t08up1PNJwohfE/rAzE3UMcn7xfZIpoCGgzwC07wHH43Ru8hiOe22r9rVNvarRZVP7jrTLG/a48vk8rl69av6fnp7Gyy+/jGQyibGxMfz0T/80/vN//s/Yt28f9uzZg5//+Z/H0NAQ3ve+9wEADh06hHe96134F//iX+A3f/M3UavV8PGPfxwf/OAHnYzCWwgnAwPY6jEAO5OaoENlyx9OSLtop+0h2dYmaTO1WlXRsXyUemi08tU610rzuq+SegOkdBQYeE/1AjTl36aPgHZKS7eVAGDW3WgskH0QCATaFBkTXWhF0/sMh8PmGnxeKjcqy4985CMYHx/HlStXUK1WsWfPHly/fh0LCwsYGRlBKpVCq9VCX18farUavva1r6FSqeB973sf+vv7EQqFMDc3h3Q6jfvvvx+bm5v45je/iaWlJdx9991m0XJXVxceffRR/M3f/A2Wl5eNF6TARYXIccB3x9iYKshQKGRoRibOBAIBk5TAJKH19fU2upTvngkg9By0UgT7l95xs9k0u2uzxJjS2eppK1XLZAwdj+opc1xr7JPv0Z4rHCfqnatBQjDTdnPMamYkz1XKnG3ic3P+KWjRKwTQBoA6Jx3pLG8YuL71rW/h4YcfNv8z9vThD38Yv/3bv42f+ZmfQaFQwE/+5E8im83irW99K5588kkz4ADgD/7gD/Dxj38cjzzyCNxuN97//vfj137t1/4RHud7U5RnB3Ymm03vKZWhwMHJqBZeJ6/K9oh00vJzpTn0eHsbE3L9mlkItFfktq/BZyBY2hSVWteMlwDtClppHS6Q1Z2Fw+GwUZKhUMhkDNK7AmDW67A/Gd9Tj4X31hhKtVrF+Pg4xsbGEI/HMTo6at5PNptFOp1GNBo1mWmBQACxWAyZTAZLS0tGmXMzRRooVPDLy8vIZrPo6ekx72t4eBj79u3DxsaGARZugaLKm++g1WqZvcH0fXg8HkSjUbN+TMGNNCjXm9ET4j1cLhfy+Xzb+1EDSGOr6nUoNcmxwvVv9u7Y6oWrh66AZdPU6lXxHpqqr2OdYlOTbL/NTNjttlPteawaRxxP2keaccv3YXufjtwsbxi4HnroodftVJfLhV/+5V/GL//yL9/ymGQyic9+9rNv9Nbft8LBbscOgJ3Ct2739maAVMjlctns16UKBrh5Q0EAJmmBE5UApV6cpiy7XC7jbek5Cqa8hyqLVqtlCsFqdhfXvyhVpcF2YCeOop4DF3gyNsb+IbD19/fj2LFjGBoaQiqVwsDAgLlnNptFoVBAOp1GJpPB6uoq1tbWkM/nsbKyclNCgsbRVEnys0gkgrvuugsDAwMoFotmaQBpv0wmY2JXPT098Hq9uPvuu00/M5W7VCqZVHGu+2q1Wrh48SLC4TA8Hg/i8TgqlQp6enrw+OOPY2pqCp/+9KcNXUkPyKZUqRiLxaJ5hlqthq6uLuTz+TYaL5/Pm3cWi8VMUkl/fz/q9bq5Bt+JVmPhe+A9Ffg77dVGloDJDurhKGBpcVqOL50XncBBkyEIODoedTGzUsq3AhB+zvZzPKvxpF4gPV4KPUvux8Zrko4maNsMiSM7siuyCr/fxfaqgB1L2Y4P2ZSIKg217BQk9PpAO7BpVqBOYvXEgJ3t3m1goXVue21qTauyVKtdqSBVkPQ4td0K5KT1br/9duzduxd33HEHuru7kUgkTMp5vb69YWO9XkcqlUI+n0cul0M6ncbKygpefvll5PN54x3R6uZ6JyofenORSASTk5OYmppCNBrFzMwMarUaotEo8vk8isWiASUChMfjQXd3N+LxeJvFzjVJHo/HeI1erxf5fB6rq6vI5/MYHh42yj0QCGBiYgIjIyNYWlqC3+83wKVGTrVaNYCYSCQQjUaRSCSQSCTQ19dn+i8ajaJWqyGXyyGTyaBareLVV19FOp2Gy+VCIpFAKBRq88Cj0WgbhaYp7joW6e3ZMVPGi3g+37d6TByTyhooRa5Ao9/biRC2p8/xamcz6v3sMc1razzKpqB1/gIwVVN4rG0A0ZNjdRZHbi0OcO0S4cTkxOIk0omqQEQFrrSeHt9pAqsFzGN4X3uiq8XLz/UaNk3D9il9YmcIqmdjW8KkWuz72tlilUoF3d3d2L9/Px599FEMDQ2hv7/fHJPNZm9Khe7q6kIikUCtVsPAwAAymQzq9TpWV1exsrKChYUF8zwERQXOrq4uNBoNHDhwABMTEwgEAqagbqvVwtbWFlZXV82+W9lsFrlcDl1dXQiHw6YyhsZEmHARCoXgdu+kq2cyGWxsbBgqj88di8Xw3ve+F6+99hrm5+exubmJQqFgYlOsOB+PxzE0NISuri4DXJFIxCSMEEAKhQIymQyy2azx3rPZLIrFIlZWVrC6umooVYI5Pfh8Pt+mxBUYWLdS6T2OW4/HcxP1CqDNY7fHEcUGOAUaexkIAFORX8e21vLURB2dc5r9p3/r/dTLU++rU+Ytx7IaAQ5V+O3FAa5dIDroGf/RunRqmVKx6mRnvEezpjRmoFamxgEYMwHQZo0ys4zXB3ZS0jUtmxOQlJvtIWl2lrZfSxixnYzzMQZGT6PVapl08kAggA9/+MO47bbbMDY2hlAoBABYWloylUW2trZM3CoajZq+pQKORqOIxWLo7+83gHPq1Cnj6dTrdRQKBayvr5t+KJVK6Ovrw/33349AIID19XUMDAwgHA6j2WzixRdfxI0bNxAOh5FKpcyuxsFgEAcOHEA2m8XVq1dRLpcRDocRj8exvLyMRqOB1dVVnD171iR6ZDIZvPzyy5iensa+ffvwAz/wA6hUKshms3jXu96Fd7zjHTh79ixyuRyy2axZNxaNRtHT02MselKO9CS5oSUTU/L5vPEYY7EYent7jbHDorGlUgmrq6uYmZnBuXPnTB8SBAm+9CB4HsdENBo175ZUMWm3VquFXC5nwIsUaKFQaDOOSC2ybZo8pPNHKWwde8DN2YkEGzWUdG0jhaBMA6JUKplj3W63odZ5De5pxnvyednWYrHYdrwjtxYHuHaJ6MTU5AylyAgIpOZsYALaKUVuEc7/1QpWy9FOjrBpSRVOeN5frVpeS9fGADuLkanEqIjsIDafkyDJFHamhu/btw8nT55EKpWCx+NBLpdDsVjEtWvXjOdBCs3n86Gnp8dQcayOr0F8ekAjIyPo6upCsVhEJpPB1tbWTZ7DI488glarhfn5ebRaLSSTSSwtLWFlZQWLi4uGJovFYsarqtVqSCaTGB4eNnEwUpiRSAQAcO7cOZw5cwbr6+sIBAJmndjq6ipKpRLe8Y53oFQqYX19vS3eEolEEIvF4PF4EIlETFYn42gAbjIQ+KPp9dFo1MSkqPS3trZMrCmVSmF0dBSlUgmXL182wMh3yT6y62nqZqbqcXSqsGF7ufaY1rHIY3RdoJ3YwR+dV0qja+IS6XKlr5W2VEpUFyCrQafxXP1MDTh6nppo5MitxQGuXSC6UBdojyPp+hL1zCg8VmlAjTcB25Yj06B5HU5U/uYEVQCiglDFozEOTkSd7BRbmdHyp0dFZcWJrW2mwqCSd7vduOeee3DfffdhbGwMjcZ2Kan19XVsbGzg6tWrJsZEi93v92NqagqJRMKUW9JqC11dXeZ56TmRPgqFQpiYmEAymTQGwJ133olyuYzV1VWEQiG0Wi288soreOWVV1AsFhEOh1EoFLC8vIx4PI69e/ciFAohmUwikUiYElButxuxWMxQl6dPn8bs7CyazSa6u7vR3d0Nt9uNjY0NQ9nVajWsr69jc3MTXq8X5XIZwWDQxOL4XjY3N80zMaMxHo+j2Wya2oblctlkKLrdbkQiEZM8wrFB76lWqyEcDiMWi+Htb387+vv78eKLLyIWixnvgf1K46NcLhtQYqkvgoNNu9FAqdVqqFarbdl8tueu66IU9GyQ0WLL+pnthfF57bivshs6f/gdP1fj0aYbdW7ac4LP7SRnvL44wLULhAOaQW1dJ6UTHdipgs5Jy8A1A/PATgYXPQy1CqmkFLQ024ptIbXDmm2kiZSfV+qRSoixN52gHo/HZNUx0UGtXoJUvV43HhKv29PTg5MnT+Knfuqn4PF4sLi4iHK5jFKphOvXr2NpaQnXrl0zae9bW1twu7eL08ZiMWSzWdMGUqx+vx979uzB0NCQSa7Y3NxENps1MZ9SqWS8G6aNE6D6+/tx/vx5PP3003C5tlPFR0dHcf78eXi9XkxPTyMWi+GOO+5Af38/enp6sG/fPrz66qsmY7C/vx+lUglzc3NmEXC5XEYkEkE4HMb6+jr8fj9yuZxZr9bf3w+Xy4Xp6WnkcjlTwikajSISiWBwcBDhcNgAjt/vR7FYNMZFsVhEsVg0G1fS841EImbNWbVaRV9fH7q7u1EqlQyd98ADD+DRRx/F4uIifv3Xfx2ZTAZdXV0mQxKA8aYDgQDcbjcKhYIZB5ubm+ZvAgqBit41DSyCAMcxkx6UBtfsQ44ZjkkmryioUTgWdF0f9zhj+zRebHtzBCtdb8h5ynHLrElm8hK0dW8yR15fHODaBUKwUIsUuLm4JwFHF/h2KkCqqd0ar9LzCFQEF9sSVg9LeXta0mqV6n35mdKAADpOWI2j0WJXr7OnpweHDh3CfffdB5fLZRQvFRfT3RkfA7YLPkejUfT29raBJT0Beorz8/NwubYrVQSDQUPx+f1+k6TAdnE7En6vwFooFNDT02M8G24wSdCvVqsIhULo7u429BmAtsSLjY0NBINBFItFVCoVs68XKU6CLRU9vVMCMauoM3uxVquZeFMmkzHV5Le2tkwWJQ2MZrOJWCxmKDsaFsxEJPgXi0V4vV5MTEzg/e9/P770pS9hZWXFfE8QpTfCNvOaWrlCxw3fNT/TJRz0xvjsNNCAHcpax5jOGaUImZbO+UWPX0GKx9njl/FjAG2xNjXgNEGD5ys1rp9r5rADYrcWB7je5KKDHNjJvLMtOn5OhcBYgZ3WqwkR/JzARMtYKxXwGF0QaidfAGjzuHisJoiUy+U2pa4VDQieBFfGowi89GhoYbvdboTDYXzoQx/CgQMH0NPTg+npaXOPUqmEdDqNbDaLZnO7ynowGEQ0GsXY2JhZRJtOp5HP57G0tISNjQ1zfrlcxtLSErq7uzEwMIA777wTiUTCeAzNZtPExxqN7V2HmZ1XLpdRr9dx+fJl49kcP37clHKanp5GV1cXms0mrly5guHhYSSTSfT29hpwIl3ocrkQCoWwsbGBSCSCra0tZLNZ7NmzB7FYrI0aLpVKeOmll+D1erG5uWkSTZLJpIl3sd+5kLlYLCKbzZrkDi2vxHcTDAaxsbFhPLx4PA6Xy4XV1VWMjIwgHo+jr68PMzMzWFpagsfjwT333IPjx4/jE5/4BDY2NjAwMGAq4TOGw3epxhaNJN25u1qttilyAiTByuPxmKQIjhO+R44rUqBkCnTtFOePUnmM+5EpIFuhHpoCkc4TpWIZsyOdTq+QwMdsUY2BBQIBMw+/37ZveiPiANcuECqSTjy5UngEDZ1AtCSB9pJOmpKrC44VnPR6eg1dbMxzNMVcqwQQEBnr4DoqTfxgewhcrVbLZCcqhceEBrfbjaGhIezbt8/EUxjf2draQiaTQTqdNgtkWSswFosZpUSlXSwWsbW1ZdZaUVkGAgHjiXCNU39/v6H22N/r6+tYW1tDNBpFV1eXSXjo6+vDvn37UCwWMTw8bKirYrGIkZER44HQwldlxiozjUYDqVQKQ0NDWFlZMfQe117l83l0dXUZJb+0tGSSI3w+H0qlkuk7ek3MGFxbWzPUZ7VaNf0Xj8cB7GS40esolUomhZzVR5aWlkw8MB6Po16vo1KpYHNzE4lEAh/60IfwhS98AVeuXMHY2BhcLpcBEI19dqoLaBs3akjxc55Hg4JjnQDI63FhPfuafytNTRpUn5nX49jXdnB+0XjQWqJ8jxTOWU2kUmbE/o7z2knSuLU4wLULRJVbp6CzndKu9JvuJqyTQGNidtaebYHa99KFnVQS3GhSKRWbZtFMLz6LUjO8JqktVRRUzoVCAX19fThw4IDZziOTyZh2r62tYXZ2FisrK9jc3AQA42HVajWsra2ZWNfCwgKq1arxOhSQablnMhnMzc0hEAiY2BMVb6lUQrFYxJUrV7C+vo677roL0WgU3d3duPfeexGJRJDJZDA2NoaLFy/C5XK1Zft1ShtvNrczAtknIyMjuO2228yyhGAwiEgkYhZN+/1+VCoVbGxsYHNzE8Fg0FRMIQXHviWwZLNZbGxsmEohXF9GS5+eoyZE8D01Gg1T05C0qsvlQiwWw+DgINbX17GwsACPx4P7778f8Xgcf/iHf4hcLmeATxMpeF07Q9U2yHiOJkJofEmLJuui9VqtZjwxUrc2hWhTlHaykcZ1+TlT25US17mn1DrHniZZ6Tyzswv5DI7cWhzgepMLQUUL2mrarMa41PJTIKBS4PGc4DppgB2PjJl6LDSrMSZap6o0FDw1FZ40D61LbohIxcK2kFqhBU1FrgVygW2QnZqawn333YfDhw/jxo0bZmPF0dFReDwezMzMmJ24C4WCoV7oQSwtLZk4TrFYRKlUQiAQMN4M28y4Rb1ex/z8vPG+WN/wxo0byOfzuH79Oi5fvoxWq4VvfetbGB0dxXvf+1488sgj2LdvH9bW1nD69Gl85StfweDgIMbHx5FMJnHs2DEMDAygUCigWCwiFAphc3MTW1tbSCaTiMfj2NjYMPt0NRoNfOUrX0E0GsWFCxfMeq+trS0899xz2NrawsGDBw2QXb9+HVtbW4hGo2YhMT3d1dXVtl2SmcRTLpexuLiIeDxuPFym8pO6LBQKyOfziEajGB8fN+MgHA4jkUigq6sL165dw7Vr13Dbbbfhvvvuw/Hjx/HzP//zOHv2LKamplCpVJDP543yt4GJY5nfaWxJayVqGj9pPZ0PCjIcm7yOrrFivJJr25rN9t2WgZ1MXE380Psx1sb/7RguhWNcK2iwnboPnU3XO9IuDnDtAqE3pBQhAUHr96m1xs9pJWpMSr0mXks9OR5nVxq3A9v251rpAtipv6aFRpVe1Gdh2jXB0p601WoV5XIZQ0ND6O3thdvtNouJuV8bN1NkPIV9RkXAhA2uM2JbmOWmbdZ+JZU2Pz+PgYEB1Go1zM/Po1KpIJPJGBqtXq9jenoaV69exdjYGM6fP4+LFy/iypUrqFQqxtPy+XwYHBxELBZDLpczsY1SqYSlpSWMjY0hlUqZorelUslUat/Y2MDFixcRjUYxOTkJAFhZWcGdd96JeDxuAIleVKVSMd4RqVPWP2T8UL0ELjxWapaeKPuF5ae4ezM3xQS2q5D09fUhm83i4sWLOHToEHp7e/H444+bMch44OzsbFsyiSYp6LgnOCq9xvZzDOqSDoKOLslQSo8JLWqw6VjmZ7wv783rEkzZHp5HGppjHdgxKJUt4fWUXtSED53njnQWB7je5KKTgBYeFa8CiGbuKTgptaL8OwPXpKcUcAg0pJlUaXHiaZYgvSwtV8SMKU3mYNs0QM0YBpVLuVxGNBo1QXQG7Rkrm5ycRCAQQDabRTgcRnd3N1KpFNbX13Hp0iVcvHjRBOe5Fmt+ft48p9JUoVDI3AvYVlZU8tq/uVwO6+vrWFpaQigUQldXl1HqGxsbqFar6O3txbvf/W5cunQJp06dwtjYGL75zW/i1KlTSKVSqNVq2LdvH3p6etDX14dQKITV1VUUCgX4/X6T5r62toalpSUMDw9j//79aLW2S0b5/X4cPXoUi4uLWFpawqVLl1CpVExZp7GxMZRKJbRaLRMj08STgYEBk7jC7wAYwK3X6wiHwwBgPApgOxWcsblWa6cKisfjwcrKioltkioOBoMYHh7G+vo6nn32WUxMTODtb387fvAHfxBvectb8JGPfAQbGxsYHR3F4OAglpeX2wwiXTelC6dVyasoAKjhptfk+CZQc9wTTHRBvLIayijovCIgqsGoCS2kPjneCMz0EoGdSjQKUtrvjry+OMC1C4SAogCmiQrKr9Ni0zVTQHuqrXpXBCFOIqVUeF+Nf6k1zs94HEGB1Ix+bk9IKhqlEnXBJUFM1+50d3cjGAwai7mnpwepVAqhUAgXLlzA9evXUavVTEYdn1HX4bDiBfuTWWx8Tj6rKjZWm6DXx40dt7a20Gg00NPTY8oiFYtFXL9+HX19fXjggQcAAGfOnEEul0NfXx/6+voQjUYxNzeHCxcumDVrPp8P8XgcoVDIxDoIQCyJ1NXVha2tLayvr5udlAksfMcsZUXDJBQKoVgsYmFhAalUyijvQqFg4mbsdwL45uamUeD6w5gRaVdWxkgkEgYUs9ksfD4fMpmM6YtYLIajR49ifHwc73nPe/Anf/InmJubQyqVMjFGGic29c0xrQDE/zWZQmlwt3un2gX/t+lwjnvel+9aS5vZc0I9Q2UmeH07TgzcXMuTn9nVOXRO0gDUElGOtIsDXG9ysZMkONnsALMu5iWocbJocgUVsdIb/IwLOZUioTXL63CxMb/XOIPWUVSLVIFRPS6lZXSC87m4topb3g8MDBg6hgtu4/E4arWaiWtRyWsCi/Yhla1mmKmlyzhFpVKBz+czsS6l06rVKlZWVrC2toZQKGQqntNjY8bgwYMH4XK5cObMGZNa393djVarhcXFRVy/ft14Y+Fw2CwU5v08Ho+h4qLRqHmWpaUluN1u9PX1mdqJ9hbzkUjEFA9m1mQqlTJgFolEUCwW2/qYHjXjhvTMNU6qSRpMDikWi/D5fKYUVCQSQa1WQywWQ71ex7Vr13D58mVEo1E89NBDqFar+PznP49Go2EqhHBtmxpCvBfHFsc5RQ01Nbi4yFj7Ud+dxk3VALPBTb/Xe+pCZ6W+2Qb1/Di31NPndTVFXp9Nj3OkszjA9SYXBSfSNLR8NasP2Em+IP/PCaTrpzhRFAArlYopU0QlxqC9Tkh+T9oPgAkqM2jN87VyQaVSMd6MtiEWi7Wt01GAo+XJ5xscHMTo6CgikYhJCZ+cnES1WsXFixdx8eJFpNNpY60SnDXzSz07TZ0m0LBvtZq4ZvMB23SOgk5fX59RNIuLi8hmswiFQvjsZz+LvXv3oqenB+9617vg8/lw8OBBs9dXKBTCvn37UC6Xzdoklmmq1+uGwkwmkxgdHcXa2hqCwSD279+PI0eOYH19Hf39/aZmod/vRywWQ6VSQSKRwNGjR5FOp40Hd/78eQM2ABAOh5FMJjE3N2fGD4GLZaVIUwI7XgINFfbbysqK8Q75nknLxuNxk7b/+7//+5iZmcEDDzyA973vfbjzzjvxK7/yK6hUKujr6zPjTb0PjVMqW6AGEN+r0sCaUERw4Vzge2WavNLk6u3Rm7WvwbljG4acAzovaEBx3nAsK7Ogc4sMBD1JJznj1uIA1y4QpUiUS9dNHjU+QMuNHpNSf8rTU8GrFchr6oRT+kWtUq1Bx7iWxtl4TSoVpSY1hRlot3ipFKLRqMlGjEajpsis3+9Hb2+vyQLkjz4LgDbwYluAHeBnwoMqblVw9Ea0igWTG7S/e3p6EA6HTXwPgMnqO3LkCEZGRkxsiYuIAZj7NxoNk47P9W7MXmT6PgBcvHgRBw8eNN7R4uIi1tbWTNULJmeEw2EMDw+b9vb39+P69evIZrOmHby33SdMYNAMPzWI2E8ch7VaDYVCwRhSTDkHYPb8CoVCOH/+PK5du4aDBw8iEAhgYGAA73znO/HFL34Rq6urplI/vXEaN/SuVeErgNliL7zns+n7UkDQa+g40XR2zgedU/SiFGyV7uR5bK+yHmQx7HHfiUlxpLM4wPUmFwKWzacr1QDcTIlQND2eE4KKSakWVlnXycbvbY+IXhKTN3Ty2ZYt/9Z7UxFr0Fw/I9VD65MZeclkEtFoFPF4HIODg23fM/tNn5vencYzGIdgNiGTMfiZxn3oORDcqtWqWajKDMZwOGzWZmn6fzqdRrVaxfj4OAYGBpDNZrG0tITV1VUDUltbW+jp6TH9RsudiRrpdBpbW1sGUK9du4ZisWjS5em9tVotbG5uYt++fWYh8cDAADweD5aXl9Hb24vR0VHMzc2Z56XnwGvzmfm++cO+4Xu2z1EvguulOG658Nvl2k6X58JwbpVy7NgxtFotfP3rX8fW1pYpRKxUmXrQNIAIJOxrzRzUuCTHnxpgBBuCLsecUpQcV+rd8VxeU9PYtUanTXWqx89rE/jsOe6A1d9dHOB6k4sGbW1vyQYzKh5a8TqJSeHxfFJ7tBiVPiNd1Ww2zZ5JrJOntAeDx8wmUxoQgMkMZFtVobhcLhMjoSLS4Hyz2cTy8rLxQO68806Mj49jeHgYAwMDZnFvOp3G3NycWXDMkkStVsvsTqzWLSlLKlnek5+rVc94GLBdfod9ogWL2dcbGxsYGxszSQ1bW1tmPVV3dzcWFxfR29uL/fv3m2y89fV1Ex/z+XwIhUIm4aRWq+HatWu4ceMGBgcHEQqFMD4+bvbAajQapuI9Y3zveMc7sL6+jq2tLUxOTpqYIONH169fh9/vx8DAgKlkzzGkwKTeDRdDE5T5nkulEuLxuKmYoXQrwZfGCA2iWCyGxcVFs9lnX18fjhw5gr179+Ly5ct4/vnnzZhi/7NtvI4NNranTiND1zHaiRvAjoepCRgKaiwppXFYjlsmB+lSENLnmoLPMc3xpMabpvKzTZyPutDZAbPOcvOGSo68qcTm94EdOoRgoxmF/F75dU5K4Ob1KWpZU+HrAkhSkVx/RPCzLVS2RxMEVHGoAtBr6HfaVoKZ3+/H0NBQ26LYUqmEra0tkxlHL6gTPaTXVgXNNvN8VRCqOLmBIWOFgUAAuVwOiUQCPT09pliv2+0267TK5TICgQBWV1fx2muvIZvNoqenBwcOHMDBgwdx+PBhFAoFo8RIPwaDQVO1fn19HcvLy9jc3ESjsV2t4rbbbsPU1BRSqRS2trawsrJikjmmp6cBbCv3XC5nsj97enpM0geNEL5r3R2AY0DXr+kY5Punl60JJYz/lctlUyGDZbEIsI1Gw8QDGTtbWVnBxsYGarUa7rrrLrz73e824EHjQhcic0yo96y0myZA2GNK40ia5ET2QX84Bniu0s3aJ8pWKLDxOnoNjctpwhLbyPM19uwkaNxaHI9rF4hWmtCJpdl5allSITJOw3NZvJTBfGAnXqHZgoy1uN1ukziglIlSjbTMCRwEG35nB7C1IjsVksfjaatY0Wq1UCgU0Nvbi6mpKezbtw+NRsNsSZJOp00MjJUvWHCV8SgmCqgyAnYATekmxlIoCqqNRgNra2toNBqYnJyEy7VdYPbhhx82aecADGhduXIF2WwWXq8XIyMj8Hq9yOVyuO2221AoFFCpVNBoNIzHMTExgVarhZmZGUQiEbNP19e+9jW89tpriMViJnGGQLu2toYbN24gGAxifX0d3d3deOWVV7C0tGS2Opmbm0Nvby/i8bhZQnDnnXdifn4eMzMz5rr1+vaeZlqYWWOaNEhCoZBJsSd9uXfvXkSjUczPz5sdmz0eD/bv34+DBw+aWpArKyvIZrO4du0a7r77bsRiMbRaLZNWXy6Xkc/ncdddd6G3txff+MY3cObMGVPJolQqtdF09AqZ8UngUKNEvSgta8bzNYPRTuDRSvMEbBs47Tgu55jGn+kdqtdFoNMEEraZ70Bjao50Fge43uSiliPQPgkA3GRxKr/Oial0CM8lh8+qEbqgGNhJqqBVy8lGZaYBe7VG1XpUZaCWvFqoek+/349QKGQUY1dXF/r7+9HV1YV0Og0AGB8fNyWp6H0BO5XB2S+kP206le3Xsj2qhNiPbLcugk4mk6YQ7/DwMDwej6HrmJa/tLSESCSC5eVlkzXIHYvZ56QHWSy32Wwil8sZeopUYz6fNyWOKpWKqcDOqhVcL8e2Z7NZU4V+ZWUFpVIJU1NT8Hg8CIVCGBoagt/vx5UrV+ByudqK5gYCARQKhbY9oZRC1rHDxI5kMmk8RhoB3OU5HA63VWRnJY3h4WHs3bvXABKfb3l5GW63G1NTU+a+ly5dMl6eeiQcS9ouvmOCDf/X8zlWORY0S5Ljj/PEjqPp+FDGQQHGPpb/a1KIXl/niP29I68vDqy/yUWVpyoppXbsiQGgzYvQCUxLWqk8WpWaoahp4XZCCK+tFKTSfkqtqJLQ9WNKF/Ja6jV6PB709vait7cX4XAYs7OzmJ6exsrKiqktR9Cg92WvZaJy0RR4fsYYB61xTYdWoOdzhUIhhMNhLC8vY3BwEN3d3QiHw3C73WaN2ebmJmZmZjAwMGDAl1U3Lly4gPn5ebPmibUZNTOP0mw2jfKv1+vGS1tbW8PKyopZzExvmIkry8vLbTHLTCZj6MBQKIREIoGRkREMDAwYY4Jxqmg02uZBAjtZmapk/X4/hoeHMTk5iUgkYjynUCiE3t5e9Pf3m8/Zh8y0LBQKOHfunEmh57ovev/pdNqU9XrooYcQCARMPIljVGlNjjvbY7YBhWOf47BTIgXHjE2vM/6o6xk5Vik6j5QRUfqR99QMRz6X7U063ta3F1drF0b/crkcurq6vtvN+I4JB7lSdkxdBnZoQ7X2yKE3Gg2jJFmjjhPDBh5SG/yfE0u9PtJBOsEJNsDO7sqa+s7zSLnwunotbQ+9kUceeQSTk5PweDx47rnnjALu6urC8PAwenp6zOLVr3/967h27RrW19dNhXQbrFShkRKikqdo7IGg12w2kUqlDHX1rne9y4BTtVrF8PAwhoaG8Au/8AsoFot4/PHH8eSTT+LKlSumhmJ3dzf8fj8eeOABHD582FyL9Kbf70cmk0G9XkdXVxfcbjdeffVVPP/88xgaGsLevXtx4cIFfP3rX0e9Xjfgw6UBXq8X2WwWjz/+OPbu3YtCoYBGY3tblEgkYrY5qVQquHDhAi5fvmy8WDu+R8+LdQ8DgQAOHz6MRCKBWCxmUtdPnTqFdDqNRqOB/fv3o6enx2w302w2kc/nMTc3hy9+8YsAgJmZGWxubmJwcBAPP/wwlpaWsLy8jGAwiI985CPI5/P4+te/jmAwiIMHD2JwcBDPPPMMPve5zwHYToRh8kur1TK7OdMYaLV29vLSucOsv3K53DZnCCBqdLEvODY08Uk3w7TngsYOOcYI2BrfpdHIBB9dWK3MAA0GO7b2vShMqnoj4lCFb3JhJpfSgKpodFU+QUm9B2AnLVdThDXTz6ZClN4gwOjxnKAaU2BbNdGD91RwI93ItpO+0/tGIhHE43Ekk0mzgHZgYAButxu5XM54b9pHWutPFz8DN3tQfA7elwqJFj0pSD5fb28vgO21WR/4wAcwNDRkdrtlUobL5cLa2hp6e3vNuqQ9e/ag2Wxic3MTyWQSGxsbJkOP69B0J2UueGVW3uDgoKm3WK/XMTQ0hGQyifn5eczOziIejyMQCJhq7fl8Huvr67j//vtNRQ2OB4/Hg66uLpOiz/6gV0aF7/V6EYlEjLFDmpFVSnw+HwqFAtLpNJaXl+Hz+TAyMoLh4WH09/cjlUqZahjZbBYzMzNYWFjA8PAwSqUSkskkVlZWTIX6bDZr+nl8fBxf/epXzWe333473v72t+Opp54yW9fY41jnAbBD99EII8BwLLMvNK6k2bLq9XM+cZxwLqnXpYYfx6KOb9ur49gjmHLcATtxYo7D7wfQ+vuKA1xvcqFFDsB4TJxkpBaAnVhRJ4pOvTCdoMDNa3dsulFjG/bk5v0084vHalvsILiuGwLaF0q7XNt7O9GjYpC8v78f9Xod+Xze3C+fz5vni0ajSCQSmJmZaQNEuy22kGbyeDxmC5R6vW5S6VkTkIpzYmICkUikbcdgj8eDbDaLXC6HaDSKZ599ti3uFQgEsLa2htHRUbOoGoChDNmXTH7gZpSJRMKUdWo2m+jq6kIqlTJxLgBma5TNzU2EQiEsLi6ip6cHHo8HuVzOeHFMuPH5fGaNV6vVwvXr11EqlbC+vt7WHnrqBJVcLodyuYxCoWC2dBkcHMTAwABSqZSpds+1W41GA4uLizh//rxZw6XJPMvLy6YvBgYGcPHiRTz00EOIRCLY3Nw0GYfj4+O4/fbbcfr0aVM8mYvddbzRINIEI02GUIqRXrbS0+o9Ka2n2ba2MUSQUgpQ56XG5jhv+D+XURC89G87BufIzeIA15tcmA2oliMnrYKJWpPcW4mTTiepemRU1pwg6rFxkhaLxTavjEpWr6cBcoIUJ65WnyfVqYuhWXEhkUigVCohGo3ih3/4h00BVtYMDIVCmJ2dxYULFzA2Ngav14vr16+j0Wigq6sL3d3dxutZW1tDq9VqA3zN/CJFRwXV1dVldvVNp9OG4hkcHEQ4HMbW1hYOHTqEEydOYHx8HLVaDVtbW2i1WqZc0YsvvmiSEK5evYpIJGK8iqGhIdx+++1461vfilwuhxs3buDixYvo6urCiRMnkEwmzQJevr9oNGrq/m1ubqLVaqG7uxu33XYb1tbWcOnSJVOWCIBJinj++edx7tw5HDx4sM1TZ3vd7u0SX36/HyMjI+ZZmOmnAN/X14euri6T0l4ul+H1enHw4EFEIhHs378f8Xjc7PzM9WJjY2OYnZ3F5z73OWNoFAoFuFzba/fq9TrOnj2LI0eOoFgsYmxsDH/wB3+A9fV13H777YjFYpifn8f/+3//DwcPHsSP//iP48iRI/jiF79o6E0aNAoINh3MMWfHtQCYhCMdu3qMGnf08HWhMcey3ovzjIaCnqteGj16tkF3UwB2siQd0Lq1OMD1JhedTFpfj1Ya0E6ZKJhw4nJND2lFBSFOfl5HJyxFJyXbRMqGgXVem5aiUopKqxAEFfC40aPf78fevXtN/GZzc9PQJuvr65iensbly5cBbCtqgmAmkzGZbsPDw2i1WlhfXzcAxLVadrBc16qxgjyTPYaGhkx23/j4OI4dO4Y9e/bA4/EYBc3khkKhgNXVVZM5qAVem82m2bNrYWEBi4uLWFhYQLFYRE9PDw4ePGhiVKRlS6WSoSe3trawtbWF7u5uLC8vmyQOVovv7e1FNptFPp83YP2FL3wBtVoNw8PD5l0Wi0Xjdd24ccMoSyaoULmTrgoGg207PjNrk+ADAP39/aakE3e47urqgtfrxfT0NPL5PILBIJaXlw04V6tVs+Qhm82ahI+DBw/iueeew2233YbR0VG43W7Mz8/jypUrOHnyJO666y5kMhl89rOfNV6x1sjkWGIyh84dTX3XRCAdyxSl/NSr4zzQeaZzkuNc5wGANk9K47ksUcY2cDmHZjruwvSD75g4wLULRNOeOfHC4bBRssDOXj/2ZGLQmp4GsDMB+VvpDlIunNxcK8PtM3Qya/UALdJLQOQ9yekrbVOr1RCNRk1777nnHjz44IMYGxuD2+02np7b7UapVMKXv/xlXL58GZFIBKdPn0a1WsXRo0dNbOill15CV1eXUXqNRgOrq6sIhUIAYAoNs5IEAZsAGwwG0dfXh1QqhVKphLW1NdTrdfT29uKBBx7AyMgIent7kcvlkM1mMTQ0hEQigXA4jKeffhqvvvoq+vr6sLGxYTarpDIqFAp4+umn8c1vftMsYr777ruxurqKhYUF9Pb2IhaLmYrtTHVnTcOuri6Mj4/jr//6r1Gv101aPuNIKysryGQy6O3tRSKRwJkzZ3Dt2jW85z3vwYkTJwxlNTs7C4/Hg+effx7ZbNYkd3g8HvT09JgxEAwGTQbivn37sLq6iuvXr5tSU93d3ejp6cHU1BRqtRpKpRJisZjJFP2v//W/4plnnsEHPvABs1B8Y2MDCwsLmJ6eRrVaRSQSwfz8PEZGRpBMJvFv/+2/xW/+5m/iq1/9KoaHh5FMJhGLxbCxsYG/+Iu/wCOPPIIPfvCDWFxcxFNPPYVms2k8FBo9brfblP4KBoNmYTcBIxQKtdHtGou1Y1nATuYuF7hzvpGZ4NglBUsgZZKIMg2d6EnOL7a5U4q8I53FAa43uXBiKUdPALAXKpIWYmzGjisprWFbhHo/PU43nKSnRPCkoqISUSuWypK1/3gfej7AzhYijUYDb3vb20wyA2MLbLPuNEyA3NjYwMbGBlwuFwYHB9uoyGAwaDyRer2OVCplrkWaplgsGqo0FouZ+BE3h/T5fCYdn95dvV7HxsYGSqUSUqkUYrEYAoEAbty4AbfbjZMnT2J+fh5nz57F6uqqeR80DCKRCPr6+pBMJtHV1WUqs3M9E4sGA9uZs/l8HslkEr29vRgeHkazuV0Xj/tyzc3NIZfLYXNz07yParWKRCKBdDqNV199FbfffnubN8A1YPxsZWUFfr8f3d3dALbXw/X397cl5dRqNaTTaeMZDA4OYmRkxFQVCQaDiMViKJfLuH79Op555hlMTk6ir6/P1Cr0eDwm/rixsWGejZU/Dh8+jHe/+934uZ/7OWQyGUxOTmL//v146aWXsLS0hKeffhrvfOc78fDDD2NlZQVnz541RpAaYlw8zHHfiZlge5RhUBpcmQS9FoFJyzTRKGRbOF94HbIdmsCksTR+pt6ak5Tx7cUBrje5qJekyRhUcAoEVEY2JcHPaA3SUtVJqxSJJmsQELhTLq1ye3LZdAuVhqYCk9KhVc/2DQ8PY2JiArVazdBK1WoV6+vrJr7CShi5XM54ekygGBkZwR133IGtrS2USiWT1DA6OoorV64YagvYKdqqtQbZls3NTVSrVYTDYaRSKRM7YxywVCoZi12rL2SzWYyOjpqY0cbGhimky/dTLpcRj8fNZpIs0sv1c0ziII2Wz+fNFiV79uxBd3c3otEowuGw+QG2PWEqZ7aNywZOnz6Nxx9/3KSRb21tYWlpCcA2QAWDQWxubhqPgqBPBc16ixwX9BAY02I/EsCmp6fx9NNPIxqNYmpqyvQB9xRLpVK44447UCgUcO3aNZOIw8ocx44dQzKZRD6fx+zsLE6ePIkDBw7gtddew/T0NL72ta/hsccew0MPPYRCoYD5+XmThadeCg0tTapgTMwet+o9qRGogKQAqLQ6QYgelnpv2hb90evzvXN+aDJUp4XxjuyIA1xvcmEgWNNktZioUnv0bnw+H/L5/E2WnCZUKO2o1qDy8UA7nagTX8GOVRCoJFQ5ECCUUmH6MUshPfHEEyiXyzhz5gyKxSLuvPNOpNNpnDt3Dt3d3aZskMvlQm9vL/L5vNmOvtVq4dVXX8XHP/5x9PT04G/+5m+MR/HP/tk/QzQaxTPPPINLly5hc3MTvb29ZsPMcrls4jJcgEuQaTQa6O3tRVdXV1uW4vDwsClVVCwWzTqmYrGIz3zmM8jlcnC73YjH48ZLJbXo8Xhw7tw5k/RRKBTadiMeGxszi27PnTuHQqGAWCxm6DZm4WWzWRNn03HBOoErKyvo6elBoVDAU089hYmJCcRiMZw+fRqLi4s4efKk8RxoMDAtn3uzkT7kQmtmSfb09Jg1YUwn39jYwKc//WmcOXMGPp8Pd9xxB2q1GjY3N801/X4/IpEIJicnAcA81/DwMLxeL65cuYJ4PI4f+ZEfwczMDNLpNL7xjW/g/vvvx/T0NJaXl3HmzBns27cP73nPe3Ds2DH81E/9lKHoSNtxPuhOB5ROBW0184+elZa/IjBpXFkpb49np6Au2QEFOraD84pxPnp0ypxwnjNz0pFbiwNcu0A0UMssJZsGZJxGJwKVLdBOORKMONlsUepE76Wpu+rlacxLaUz1/ji5qUwIvIcPH8bY2JjJwGPR1nw+b6jBQqFgYlUej8csjmXiRKVSwY0bN9DX14d9+/bhwoULKJVKOHv2LO655x4cO3bMVHdgLUClJHXt0tzcnKHbqLQJhMwqo9LJZrO4ceMGtra2kMlkUCgUTPIGS0PZ74FloQYHB403Ro+Hfd9sbpdAIpgwBsIFwfl83qy/0iQCpoK73W6zhmtpaQldXV0IBoPIZrNwu90G/FnYt9lsYmFhwdyLld+54JhrwLgnGsch++D06dP4xje+gWg0it7eXuONcUwAMKWtZmdnUa1WUSwWEYlEkEgk0Gg0sLS0BI/Hg6mpKXR3d2NpaQm///u/j8HBQdxxxx04deoUlpaWcObMGRw8eBD79+/H6Ogorl69Cre7vbQT54zOG11szv5SloFAzv6z114xHmh7T5wnvLfOMU1A4ly1hcCn3mGndWqOtIsDXLtEWq32nYS5aFYVH+sOktLjBKUVR4uOBW1tOk/3kyLwqBfHyUdvTBd5akYhjwd2gI3xFwJFKBTC2NgYTpw4gd7eXpw6dcossm00GnjllVcQDAZx/fp1c12Xy4X+/n4MDg6iWCxiZmYGgUAAfX19+IM/+AP8zu/8Dn7xF38RJ06cMEounU7jiSeewN13341sNouBgQGjgEj/cc1SuVw2RXsnJiaMd7u+vm7oSU2MuXr1Kp5//nmsra2ZxAcqnUKh0LbkgBtCplIptFotZDIZZDKZNnqQCpPvI51OY3Z21ljsXBRdKBSwvr5uYl6qpKvVqlnfFgqFkE6nDU3MBcCsUsBFxrwmPUSWkuJ7pvfFfqtWq+ju7sbLL7+Mz3zmM3jttdfg9/tN/Gx4eBj5fN7QbPTUmaXJbEyWrmq1Wrh06RK8Xi/2799vaMrLly/jG9/4Bj760Y/igx/8IE6fPo0XX3wRv/Ebv4EnnngCP/dzP4f//b//N1544QVDSbK9fFf0Shln0i1S7OUk+htA29xQ2pAgyGQmgg3pRd6Hc4zX5XvkuOLcscFS56UT7+osTlGsN7kQeJRbB27OPCJNoRUldGIp/04lx4nEe9gemNKGOrlIazC5gufTO9PANSeuemW0bvv7+9HX14dQKIRKpWJq8lUqFSwsLOCuu+5CMpnE0tIS+vr6zDqm++67D/fffz96enpMLb6TJ08ikUjgc5/7HDY2Ngz1x+0zurq6MDU1hUQiYcCCKfTc8oNJBvQYGo0GNjc3USgUUCwWUSgUkMvlzIJfgo9SiT6fz1THVxqrWq2ahBLdsViLJNdqNbMfFUtMLS8vY3Z2FvPz87h+/TpmZmawurpqlCHBhwYL4ya6hGJjYwOZTMaMCR0jfE/RaBTJZBLJZNLQpbr1ilaH527PX/jCF3D69GlMTEy0pZVrXT+Oo0KhgEKhYAop89mTySS6u7sNHcqxEwgEcOjQIXR3dyOdTsPn85nlCPl8Hk8//TQOHTqEhx56yBhLuuU9aTzODe5bZs8nNe7UQ77VXLQ9OY5v9i3/J5DxPAXSTnOX4K7xZUduLY7H9SYXDRyrMlAKjsqFAKFxK05qtfY0zgW003062TVGQMDhOaRmdB8sKksFWTtFX/8nGJG6K5fLqNfr2NzcRKVSwf33349Wq4Vr165hYGAAoVAIe/bsMckbTGuv1+uYnJxEV1cXfu/3fg/ZbBb33XcfotEoisUiXnvtNRw/fhwjIyOIx+MmHsdn1RiFLuAmwOiGm1QwjLNxcbBd7JjXorfDLUTW1tZMNuKxY8cAAPl83sTduKB4YGDAeKJra2ttcRV6hUyMAGA8L6ayK1XLUlD0mu0kBY/HY7ywZrNp9vNiLI8VNTiGWFfxS1/6Evbs2YNyuYzjx4/j2rVrJk5YKBQQCATMeFMPhJ/19vZiaGgIpVIJ165dM9mRXHc3NTWFqakpXLt2DePj4+ju7sb6+jr27duHGzduIBAI4K677kIkEjHr2JSK5rjmbwVXzZAlE2G/O4KQfqdzRbM1+T/7kEaeGo2cV/yOxyn4cTzeCjwd2RYH1t/kQkuQCpUDXTMICSrhcLjNC2LWl1J4tnLlVho8jsqcylj31qIHp5YkJRwOIx6Pm2w3ehwKiLyOx+Mx91ULNRKJIBQK4ctf/jLuuOMO3HPPPXjb296Ge++9FwcPHsTRo0exubmJtbU1FItFDAwMoL+/H16vF5cvX8bCwgIefPBBAMAf//EfI51OIxgMIpfL4Ytf/CL+6I/+CPl8HvF43IAHEx642eHg4CD6+vqwvr6OhYUFk/6+sbGBpaUlXLx4Ea+99prxfrjeizX8aNmrgUD6Tnf0PXr0KH70R38US0tLZg8vxr+YXDE4OIhkMml2fWZRWbd7e00SsyWp5EqlkllITdBk0saVK1cQCoXMHmYEISpJeqD0PpvNpsmO1CURXq8XFy5cwH/8j/8R9957L5rNJh588EG85z3vMfUlC4WCoQqZPXn9+nXcuHEDoVAIwWAQi4uLuO+++3DkyBGMjo4im83i+vXrJtZYqVRw5MgR/MAP/ABu3LiB559/HouLi3jggQdw+fJl9PX14bd+67fQ1dWFJ554AuFw2GSrqoHE5AhNZKLRpftzAdu7PQeDQRPPojGifcm+4HxQT0ozd8lKEJw0kxeAWT9HI1MLWjve1rcXx+N6k4tOQjvRQsHI5sQJCBrLAtorVRMwNFityRi8Nq190mEat9D2aE08m7vXhBDeizERZsgxzXprawv33HOPqQTf3d1tFOrCwgIajYah9ggQ2Wy2rSL6wMAAXnrpJRw+fBjj4+NotbbXfk1PT5situpBAjv7gTUaDczPz5t0ey4+BXZS5uPxuKEpuS6Ma5LoBXIDxGg0ing8jlQq1ba2h1mJzDLjomMmf7jd21umcBuV5557DsViEa1Wy1CcrFDP+CSXEQSDQePxMBmC75qJI4yRqZdt707Nd0tALpfL+Iu/+AvMzMzgrrvuQiKRQH9/v8loZFYlF5evrKxgbm4O5XIZqVQKY2Njph/pbcdiMTQaDayvr5uEHGDba9LyXm63G0eOHMGlS5cMTXvw4EHcfffdOHv2LM6ePdtG12mSEgGE8SmOX6UOaZjZKfAcJ8p4EGh0rnAu2EtYlPqz41bqAdpGnn7vSLs40P4mF12saHPrNhhRYXKC6Up8Wo4KIrT+CTicxEqrMF6i1Il6YLxXpVJBqVRq21ZCrfpO9+VW7ywNFI1GTSry+Pg4fD4fYrEYUqlUW8yCHpvX60U4HEYikUA8HjexMiYPxONxXLx4EZVKBcFgEF1dXbh06RIWFxdNcotei96ry+Uy7eIz6eaXxWLRrOmikicYqTJjJY++vj5TiYIZcblcDufOnUOlUjGLoIvFogFgtgWAAS+Ws6J3QS+PCTQEcoJmNps1YMCaeKy2sbm5iVwu12Z8cL0eAAM+pPkY35udncWZM2fw4IMPGtpwenoalUoFe/bswcbGhkmY4XosUqpM219bW0OhUDBbE9HzzefzWFtbM5Sn2+1GKpXCyMgINjc3cf36dYRCIdx1113I5XLo7u7G1772NRw4cABHjhxBPB5vAxoCrgIHvRul1TmmST/bzALHrVJ+nBP2GjJeX2O7nCuaacg5we+UOnTk24vjcb3JRS3fTp4WJ4FSiKQltNqGTkZSSbyGWqWaUagAyB1tNdlDJ7Rao1SkwM4CaS0rxe3km82mCbxz8i4tLWFgYMCUE4rH45iamsKTTz6J/fv3m4QH0m9MwhgeHkYqlcLi4iJKpRKWlpawtrYGAHjttdfQ09ODWCyGUqmE1dVVpFIpPP7440gkEnC73djc3DR9lMlksLi4aBaVqpU9NDSEYrGItbU1EzdiyaaFhQVTOkqrlNNDfeaZZ3DgwAEcPXoUzWYTN27cQCqVMinkV69exebmptkccnR0FD6fD6dOncJrr71mKubzGeipcJt40q8AzG9mRHZ1dbWl12vWYCKRMKnp4XAYrVYLo6OjOHz4MLLZLNLpNC5fvoxLly5hdXUVjz/+uPHi1tfXsb6+jjvuuAOPPfaYoU79fj/OnTuHjY0NY/Rsbm7i2WefRTabxbFjxzA2NmayLW+77TacP38e58+fx/33349EIoFcLoexsTE8/PDDmJ+fx8bGBr70pS+Zeojvfe97cerUKQSDQfzYj/0YQqEQ/u///b8m9sqxqawCl2qQEqzX62bNFL9jf2qhXI5f0r1MIqLhQxCikcmxxNglKXKda5pxyzHCsUaD0ZHO4gDXm1yUptDJqAsidUJ0ynBSupGWolqgmi2oiRU2IPFz/UzTfZUO5P3J8zPtmnQNsO0h0ENqNBqGOuzt7TVr0lwul6Gg2BdMJa5Wq2YhLDdjHBwcRLlcxsrKCoDtOn9MtKhWq2bn4OnpaczMzBjaUK1t0oO0rhnoZ3wkHo+bIr5UavT8CNL01hqNhtkt2Ov1YmtrCwDMHl5MqqAHRyFN2N/fb1LI+/v7TbyIiTn6HnUpgsZL6L0x+YXPxD7utK8aq3Ssra1henoap06dQjabNd4ixw3T5J955hl4vV6cOXMGb3vb2wx9Svoxn89jfn7eVJEHYPqZRYWTyaTJ4ozFYsbL3bNnD3p6epDL5bC0tITV1VUzVvft24dLly7h0KFDOHbsmBlTml6uz6WJFDTibIaCtDzZC51bdkauVn6354cyJMoY2BmJykYAO6DlANetxQGuN7koIOjE4ufK5+sCTMY2FHw4cXgNTkhd2a/UpGYiMp6j67M0OK2xEY2dsCYgKRu2raenB6lUqk3BZzIZXLlyBT/0Qz9kYiQ+nw+JRALr6+s4e/asofUAmBRtKjgmB3g8HoyOjmJ1dRXXrl0zIDA8PIxsNmuSWJ588kkcOHAAjz/+OEKhENxut1kITUvc4/Ggv7/fKJJoNIqJiQmzu3E+n0c2mzXUXKvVMptd0qLnNiupVAp+vx/hcBhjY2OIRqNYXFw0ngDTzAOBAOLxuPHgDh06ZLypVCqF1dVVdHV1mY0pqeC2trbaqmmQ+mP8LJfLweXaTmfn/mUsscRMQS5wHh4exsrKCk6fPo3l5WXccccdSCaTWF5eNtUuTp06hUcffRShUAjf+ta30Gw28dGPfhStVgurq6uo1WrI5XJIpVIm4SMYDMLlcuHUqVP4yle+gkOHDpl2pFIpvPrqq+jv78eRI0cQCASwsbGBkydP4urVq/jTP/1TNJtNjI2NIZfL4YUXXsBtt92GP/uzP8OP/uiPYs+ePZiYmMD09LQZu3YWrq6Jo3AeaIV+jmEajEq10xAgENoGh21Y6rxQ47FTZQ3N2iUwOnKzOITqm1zorZB6oqhl1wnY7KCuJkWoaHYi/ycQqvemVAfvoenyGtymAlBOXy36YDCIsbExo+RzuZxJ897c3MTk5KTZhJHeld/vx8rKislWY3V0Kn3GnWjB12o1nDhxAgcOHIDf78f6+rqpFMF1WY3G9maHi4uLBiRJ62i/UPkTzOkxUvlofI994fV6Tco66Ta2uVAoGA+MfRgOhw0QM7uyXC6jUqmYrUO4BoyZkCzNRM+LdCkLzdLzAGASOLg+i+BMzyibzWJxcdF4c1tbWyZrMplMYu/evWapAgBTSsrt3q7e39fXZwoS63Yd3PJlaWnJxJzYP9PT08hkMqjVavD5fKa6x+zsrPFMuTnn4cOHMTIyYtZ6dXd3I5PJGGr14sWL8Hq9mJycNGOPY5oxJ74z/vAd83ubRdA5op6ZGnhK0etc43k2aPFz/masS+c0+87xuG4tDnC9yYXWGNC+kp/AQmpKty+hpWbTDZ1oCU48vaZ6bcDOxNUMLJ57q/I2mpKvsTgAJmmBFjmpEWbI7d27F4lEApVKxShZVi/n9ZjcQU9iY2MDxWIRGxsbmJubw9LSEnp7e00lhnK5jOXlZaRSKbjd29umsG7ixYsXTTkkNRAIPsFg0GS66fIEKm1gG3i4rQgrvdM75J5h2WwW2WwWmUwGHo/HtJ/nezwek0nJrEt+x+K2/f39GB8fN8sCarVa275eBFk+h6Z1EzQIKKVSCYVCAVtbW0in07h27RqWl5fhdruxvr6OixcvIhgM4ujRowCAxcVFeL1ePP3007hw4QJ8Ph8WFhZw7do1s4A8l8sZr5Je6/r6Orq7uxGLxUwWZTAYxNbWltlLzOPxmDjq4uKiaQfrMu7Zs8e8S5/Ph/7+frjdbqytrSEajeLy5cuoVqu49957zR5iHC+a9cpxzSUgNLLoPamxpONcEzkY/9I9tZSW5Ty149M20Nl/8zrKjDjSWRyq8E0uSl1wItBSVxpBqQ4FCWYt0crUDD/l2BncB3a8PGB7bYtmEPKHFSLYDi1HpVU0eD0ABlzf8pa3IJVK4eWXXzagy2y/oaEhHDp0CF6vF/Pz88jn88jn8yaTbmBgwCR2JJNJrKysYGZmxsTPqAhZCaK7uxvDw8NYWlpCJpPB8vKyqfSQTqcRi8XwyiuvYGVlBQcPHsTg4KB5Hr/fj2QyaQCgq6vLZECSMmX6PGk5vi+m5vO5E4mEUYo+nw9DQ0Pm2VjMd3V1FaOjoxgbG8PMzAw2NjYwODiISqWC5eVlA2zDw8O48847sbCwgHq9jkQiYag7fSdsCytsMFZHr2hubs4kKgDbADkyMoKNjQ0UCgUkk0k88cQT8Hg8eOqpp7C8vGw2s3zLW96Cy5cvo9Xa3kH64MGDALaBPRaLmbVc9MSXlpaQTqcRjUYNder3+5FIJNBqbdesTCaTaDabeOmll1Aul3Hs2DF4vV6k02kMDQ3hHe94B77yla8gFAqZ3QDS6TRuu+02XLhwAb/3e7+Hn/mZn0E+n8enP/3pNkOMMSuuS9OMW3pnOqdIhdOYYUILEzjUgGSKPek+3o9UMUUXugM7hiQBT0MAjsf1+uIA15tcNOirNB7TxjkBNXWd55D64vc64eyFyXaqPLBT0Z3nclKxNqLG39Q6pUfEc3gdACa+o+uZMpkM5ufn0Ww2kUgkzLNR1IssFosmkWJkZAQul8uUuqpUKqaShX7OUk9zc3M4e/YsgsEg9uzZg7W1NQNyTOZgZQ5mpvH51XLf2toy2464XC4DUvRumHzA9H56WdFoFAMDA6ZYLak+JmpEIhGT1s/dgblgmIkUwLayZBuXl5dNvzDxIRwOG+qS8RmuSVP6TA2RaDSKnp4eU2mjr6/PxJnS6bR558vLywgGg8bT4U7JGg/a2NjA1taWMXr4Pre2tswWJ41GA5cvXzZZovv374ff70c0GjV1IJvNJmKxmEl9JxWZz+fRbDbR19dntjY5dOgQnn32WdRqNUxOThpAJrVoLwdRz7larbaltdMD0nEHoA20lOHgOfTGeL6yIjp+bE+M80czDXWuOnKzOMD1Jhem1AJoU1ykfXTAqwVH8OB39EiUruDkVR4eaF/dz52PNdCslCCtRM3M4sQjcNJDcru3N1tMJpN4+eWX4fP5TK0/7mV1+PBhVKtVzMzMmFJQi4uLeOWVVwyY5PN5eL1eLC4u4saNG2bNVDKZNEkOPT09uHTpEtbX1zE+Pm48nr/9279FOBzG3NwcPvjBD2J5eRmvvPIKQqEQrl69iunpaYyOjuKuu+7CV77yFayurpotSvL5PFZWVrCysmIWCgcCAWxubiIYDCKVSiEej5uNHkmJ0ZqfmZnB5uamid+Fw2HcdtttpmAwgSOdTuPUqVOmGO3GxgZyuZwBNVYpyWQyhq7q7+83z/OXf/mXBhyZVbm5uWk8LV3knE6nEQ6HTRZfOp3G6Ogo3va2t2FgYABnz57FuXPn8I1vfMNUyac3dfLkSUSj0bYEmUqlgrm5OdTr27taM7U/GAyawscbGxtotVoYGhrCwsICzp07h3vuuQcTExO4/fbbsbq6isXFRZw+fRqHDh0ytSe7u7sxMTGBmZkZvPjii3jooYewsbGBc+fO4cEHH8Sjjz6KZ599FseOHcP4+Djm5+cN/cjF4MDORpFaOFmXPnBDT1a3YOxW1y12Sppg4obbvV3rkcYaM2w1tqZJNQRQHgvgJoPQkXZxgOtNLprWaydDKHVIYSo0PTBeg8CkZWkUFAlAdhBZgZBtUHqFtAgX6fIcYIfmBLaTA0ZHR7Fv3z4Ui0Vsbm6iVCqhUqkglUphYWHBeCSZTAarq6vYv38/6vU60uk0/H4/enp6zCaKbrfbZI95vV6z4Jip3KyMzjT7Wq2Gra0thEIh7Nu3z+wS3N/f32YQvPrqq6ZNLPC7d+9es90HYy69vb2mlqECMwGu2WwiGo1iaGgIe/fuRalUgtfrxd69e7F37140Gg2srKygWq0ik8lgbW0NU1NTKJVKuH79uonHhUIhJJNJlEolXL582RQCZmKEVkXnWrS+vj5sbm6iXq9jdnYWxWLRbGSpsRVW72i1WqY+4ObmJh544AFT55GlrVj6isqcXh7fB5cGFAoFk2WaSCTMcoZoNIrx8XHUajXcuHEDy8vLaDQa6O7uRq1Ww7Vr15BIJNDT04NkMolMJoOLFy+ir6/PpNNzZ+tr164hnU4jkUhgcnISly5dwtraGrq6unD+/HkcPXoUExMTmJ+fN3FMXR6ilB7Hvp1goeOYY53jG2jf20vnKq9H0fvSq9MUeTuZSe8B7BirjrSLA1xvctE4EQFIvSZgh6bQdSe3SullDIQT6tvdW4PKdiahTn5ar2yPpgTzmN7eXrMlSaFQwMbGhrlePp83yQdcbBoIBFAqlYy3EY1G2wCzWCyagD/pKk2w6O/vN94pi+K63W709fXhgQcewOc+9zn4fD5MTExgdnYW9XodMzMzyOVyeOihhzA5OYlnnnkGq6urpso6MxNTqRRu3LhhKDrWKeQ+Vy6XC8lkEr29vejp6UGj0cAP//APY2RkxKzNWl1dxSuvvIKtrS34/X5MTExgbW0N586dQ6PRMAur+/v7kUwmcf78eczOziISiWBkZMQA1tzcHNxuN2ZmZsxaMf40Gg2T6k/goReYTCaxsbFhEl22trYQi8UMlbuxsYEbN26YavRKj9HgIYCtrq621WnUKiKNxvbuzH6/H1NTU4hGo4hEIlhcXDRr1Z555hl0dXUhFouZfcAuXLiA0dFRHDp0yFT+YIyTKfwjIyPw+/1mIfuNGzewsbGBw4cP4/Tp02YZhwIWxa7oolmAuiSEWYeaHEVRg1CpdxoVHK+dMgbVKOR3Si063tatxQGuN7lourPGr+ysJE2yYOyLGYe02rhdO+vWtVotkzLNpAoqfs0K5P2okHg9FpdVK5GpzuqNkX7Zt28fUqkUTp8+baqu792716ytOnLkCI4fP25owkqlgqtXr5osvI2NDSwuLhrlEI/Hsbi4aMCIz14oFAAAU1NT2LNnD/7iL/7CnMcafhMTE/jABz6AL3zhC5iamsL+/ftRKpWwsrKC1dVVnDt3DkNDQ3j44YfxW7/1W6YEEb21ZDJpFCgTRUhhhkIhlEolLC8v49q1a3jhhRcQi8Xwrne9C/F4HHv37sXg4CDy+TzOnTsHj8eD/fv3Y319Ha+99hq+/vWvY9++fQgEAhgZGUE0GkUsFjNg2t/fjy9/+cs4ffo0zpw5Yyp1MLuSG2F2dXUhl8uZkkrZbBYejweTk5PGS2acrVKp4N5778WDDz5oPLbr169jYWEBiUQCP/RDP4R0Oo0XX3wRIyMjpvAvgUsXJeuCbRpR5XLZKOVkMomuri40GtvbxkQiEZw7dw7Xrl3Dxz72MVPiiQkXP/uzP4v+/n4AwPHjx7G8vGx2tJ6YmMDg4KBJXunp6cHTTz+N9773vbhx4waeeuqpNmBgViKTfRgHVRoRgCkuDaCNZue80KUMGv/VLEHOCwUlnaucG6VSycwje0sYRzqLA1xvctGMI40naZyKohME2MmMonfFiadJHHbFC2AnkQPYWQip17VpQ2ZpaTyAEzQYDKJarSISiaCvrw/BYNBsW8JddhlAHx0dNdXBuUvv8vKy2QOLVREI5PS4JiYmTLs1YQXYBv5EIoHV1VU0Gg3jAVUqFfT09ODEiRMmLjIwMGBo10wmYyq0Hz16FCsrK2YxciAQQCKRMIVjr1271pY0Q6VFr4Yg8bWvfQ3ZbBbBYBCPPPII7r77bpRKJWQyGbhcLrOAeGRkBEtLS8jn86jXt7d/cbvd+OY3v4np6Wn09PTgK1/5ChYWFrBv3z7jLWWzWdTrdeNlM2W7XC7D5/OZTSQnJiZMXGdxcRGbm5s4ceIE7r77boyOjpp1XSsrK4jFYpiamkJ/fz/W1tYQDAaxd+9e4/mwjJQyAsy41EK2HDNcP+f1ejE6Ogq3e3sfub6+PszNzeHq1atIpVLo7+/H7Ows8vk8pqenzZKE7u5uDAwMIJ1OY2NjA11dXUgkErhx4wbW1tYMiEWjUezbtw+vvPKKqf2oWYYar6Kxptmz6hXpORz/ndgOzk3ODS64tpencM6QOlTD0efzmQX5jtxaHOB6k4uChVIHBJxKpdLG0dPjAXYUuWYrkTqx6QgqE04ugpzSQ52AUY/XrEddC1Or1ZBIJMymkaSUuru7TSkfr9drss3i8Th6enowPz+P1dVVA2yhUMgsWHW5XOjr68PY2Bj6+/vNwmEAJiGg1WqhUCiYihoLCws4fPgwUqmUyUzkol3utDwyMgIAOH/+PPL5PEZGRvDoo4+aChdMT2dcZ3h4GIuLi6Z6BpUQsLMLdDAYhNfrxcLCgvFy9u/fj/HxcRw7dgwXLlzAzMyMickNDQ3h0qVLZjFud3c3AoEALl++jAsXLhglx8ojXMTNTSW50Jd9wdiQ3+9HLBbDwMCAqViyubmJRCKBEydOYHh4GI1Gw6zNWllZQV9fHyYnJ802L1wozVp/fE5miTLTMhAImHqGjGVpNQmXy4Wenh60WtsV5Ov1OiYmJvD1r38db3vb24yX6Xa7ce7cOcTjcZN1mUwmEYvFsLa2Zj7zer3I5XIYHx83Mc2hoSGkUinMzMy01Y5k/yhjQWajk7ej67L0/fJzu5QT54p6aXbquw2CnUDUoQpvLQ5w7QLhxNCFiVRQWs2Ca6k0xsWJxkmrAMXvdTtzHksvi94NvTT1KGiFMqhMURAtl8smIWLv3r1tdNL+/fsxNTVlFHoul0O5XMbExASy2Sy+9KUvGaVDBd1sbm/KODAwYGg0TnKuV+ru7jYeEeNNhUIBw8PDuP/+++F2u81i20ajgdHRURQKBVy+fBmJRALHjh1Ds9nEqVOnsL6+jh/6oR8yFGC1WsXS0hIuXbqEUChklPri4iI2NjYAwNRFZD9yg8RQKITZ2Vn87u/+Lr761a9ifHwcpVLJUKOskMIklEwmg3A4bNZ7sZq61+tFoVAw66IAmHJR9KhzuRwAmHR8r9eLt771rRgcHMQdd9yBSCSCVqtlYkWVSgWzs7NYW1vDs88+a4yAiYkJrK6u4vnnn0csFoPP58Ps7Czcbjfi8Xgbnby8vGy2nYnFYhgeHobH076HVSQSQblcxtraGrLZLFKpFPr6+nD58mWMjY1hcHAQL774IiKRCO69917Mzs7i6tWrplr/ww8/jJGREWQyGaTTaeRyOQwNDeHee+/FpUuXTKxyfX0dBw8exFve8hZ885vfNEsblMbmWGX8j3OASTYqSgEqLQjgpqLFnFt8FwRGXSdGz45zFoCJ2yrl6HhencUBrje5aDKCDTZqpek6Ec38owek3pVOOptG5G+tqK0WoVqSna6n/L16dlRi3EK+1WqZFOy1tTWzwJcxl62tLSwuLrZlhDUaDUQiEbOmhx4kAJOcwWQM1uVjernL5cLevXuxvr6Oy5cvY2NjA/Pz86jX6xgcHDTXe+WVVxCNRnHfffehWq2aY0kR0gulxd7X14epqSlDXbKtNt1Ko4BUGlPvuSaL65W4QHZsbMxUtqAHw2vy3kxW0XVmwM76O3oJzB7s7e3FoUOHDGXLdPtWq2WSGm7cuGFAtlgsYm5uDul02rxrJqDk83l0d3e37UTQ29trgLhSqaBYLGJiYgLxeByrq6vGY2X8L51OIxQKYWJiwgDaxMQECoUCXn75ZQwNDZllD4w7Pvzww0gmkxgdHcX8/DzK5XJbjO/q1asIBoNmM86xsTEDGkxxZ3uZQKH1AnXeqXD861IPnQ+6tETnD+lDTbLi/OD7sROlNNnDkc7iANebXJSG020P+Dm9GipHnTQKMLoIWIvxKghyTZAWzOW9dOKp5alA2SnjkYpi//792NzcxPnz57G2tmb2sjp9+jTm5ubw2GOP4eGHH0ZPTw9u3LiBV155BVeuXDHU0/DwsFFSTBNnLICK1uVymY0emQa/vr6OdDqNSCSCM2fO4NKlS+ju7kaz2TRZhvl8Hq+99prJCHzuuefwr//1v8aDDz6I+++/H3/2Z3+GSqWCrq4uvPWtbzVVQ2KxmNl6/uLFiwiHw6ZEFZViq9Vq21mXbYvFYiY7z+12t1W/n52dxb333otgMIgXXnjBvBcFKa2KwUQIrVbCd8QMvlarhcnJSTz44INt1fanpqbg8/nwt3/7tzh79qxJwFlaWjLrv1iCih4hU/YJuIxTJZNJkzFJ6vTpp5+G1+tFKpUytHMkEkFPTw+Wl5exsrKCoaEhjI+Pmx2nh4eHcfnyZQwMDGB0dBSXL1/G/Pw8XnrpJTz33HOmBuWTTz6JVquFnp4eU4j5xo0b6O3txRe+8AVThSWZTCKbzRrQsJeRqOFGY0PHvu5swPcK7GQlcr5oLFjXbDGjUj0wzh+m62v8S38c6SwOcO0CIRWoSRHqHennnGjKt/NcWn9KWQA3e3X8jIpS669pMJkxNqUkCVqkDiORCHK5HEKhEHK5nAEtegtMerj77rsxODiIVquFhYUFXL16Ffl83ihftqOvrw+xWKyttl25XDaLWvP5PKrVKgqFAmZmZgwYZbNZDA0N4ZFHHkGzuV2rb3l52YAHYxyXL19GLpfDU089hUajgbGxMRw5cgRnz57F5cuXMTExgdHRUVP2ibsmh0Ihs+Yok8kgEAgYOpUKi++CBoZa+ASmVqtlYk8EYwKeel1cT0Uvk7HEZrNpjAXbEz579ixuu+02HDt2zCzuLpVKuHTpEl566SWzt9ny8jIAmPVxBCbSpVyHx9iUetfAdvWRy5cvo1QqmcXb9XrdACC3hslkMuZdDA4OGrCjd91qtQwdS2/0mWeeQU9PD/bs2YNms9m2ESmXB3g8HqysrGBhYQG9vb1mk0rGQe1sWYIG34l6O2wLAV3ZDM4rfq8GHtC+Bksr1GhilYKhHRNzYly3Fge43uSiwWKlhHQlvwozljRDCmiPjxH4NGWdvL7WM6SCdbvdhk7RCchyOVpGSNvN8wim6XTaVJRgkd1qtYp4PI59+/YhGAwik8ngxo0bmJmZMc9NxcdkDr0HYwvcRoN7eq2vr2NjYwPNZhMHDx7EyMiI2V6DVeb5DPQ4vV6vKWB75coV+P1+bG1tYWxsDLfddhsAmKw+YKcOZCqVwsGDB/H8888bBcdsMhoJPJaAo4qP/abLGObn5zEyMoJIJIJisWjiMzQmFPg0FkIDhcqxVCqZRcL0fgYHB43H9vLLL+Ppp59Gs9lsq8jPLD717NjXVNLpdNpkSQ4MDJjxEo1GMTo6ildffdUYSL29vYaqzWQy6OvrQzKZNOWzuGCZ47PVaiGbzSKRSGDv3r1m+cTly5fx9a9/HbFYDKFQCCsrK1hbWzObbNIw83q9uHr1Kg4fPoxYLGYMJMbaOJ8UNPgZj9OKMFp7UL0re72XneBB78teaKyUMu9tz3FHbi0OcL3JhZlxtMZ0kGuGlm35sawN6UVVbLr+hIBEKgTY8dK0UCsnIK1BtV6psDhhmZDBJAHuZry2toZisYhoNGp2v00mk3jwwQcxOjqKpaUlnD17Fq+99pqxsJld1tfXh+HhYVSrVaTTaWQyGZMt53ZvV9Ggt8Wt4ffs2YPR0VEMDw+jXq/jypUryOVyBgj7+vrM9hqkcOLxuAHiixcvYnp6GocPH8bExASOHz+O8+fP48qVK5ifnzep2JOTkygUCvjLv/xLU52CqegEHFK4pD5JGer+Ypr9mU6nEQwG0dPTg83NTXg8HkQiEXMuq7HbdfZIGfP9uVwurK6uAgD27duHP/mTP8Frr72GWCxmrsN1ZXNzc8hkMojFYuY5CoWCySQkeHEJw9LSkqncsbCwgJ6eHjO+/H4/Dh48iEwmg2KxiBMnTiCRSJjCvNPT07jttttMcgljkl7v9qacd955Jz7/+c/jB37gBzA0NIQHHngAU1NT+MM//EM8//zzqNVqmJqaQjqdxunTp7Fnzx7cd999+NKXvoS5uTn09vbi5Zdfxu2334477rjDxO5sWlDpPS7f4FwgCHENH98n3wEAQ1Oz8ogCHuebJm7wPStAut1uc1+v19u2v5cjncUBrje56FoQtcSUytOYkp2MoWCnk4kTVpM8bEuP1+Jv/VzjbTxG16iw2CxT4Xnver2OVCplPJ1kMonbbrsNrVYLS0tLmJ6eRrFYRDAYRLlcNnUGS6VSW0yKioMbVa6srMDr9ZpSR4ODg9i3bx8qlQquXLliaDTudQXAKBhWgWD76IWyfBaTDcbGxtBoNEz6O6uGs3iv7tmlni6NAwI6F7dqVhrfg3pLej7BlsqWCo9t5Puh96zHkNLN5/NIpVJYW1sznu7Ro0fh9XoNRcrYHZ+Fipd9pN4+7xcIBExZKY/HY2g7jjGu9wJgNr9kVXtSnKyDyHJeg4OD+PKXv2zKcvF4rgucm5vD1NQUwuEwFhYWsL6+jqmpKRM7ZLX9paUlTE1NIZlMIp1Ot1F6OkeY8KIeMI8j5Wcn3XC+2DsWE5R03mjCEulcft8pJb5TWr4jO+IA15tcNJGCk0bpIO4oy+w6TgZ+T16elBUnKsv+MDCsCtGOpagSBNrruAWDQdMmKmcqrVAohEAgYDYh5CaGPp8Pc3NzCAQCOH78OA4fPozp6Wl84xvfwAsvvIBcLoetrS1MTExgz549qNfrWFpaQrFYNNuzl0olXLt2DZubm1heXkaxWEQ8Hsc999xjKqHncjlsbm7C7d7eYj4ajZp2UjFwUTL7l4pfqcRqtYrZ2VmzrolxKNYu/J3f+R0sLCyYdHfuRUV6iXFAWuoaM+S70kK1jF253W6TSs/MQK2CookwqmyZicl3yoQbJihMTk5ibGwMQ0NDyGazWF5eNt4t43aaNq7LK5rNpokhknIrFAqGGSBVSDCgEXXu3DlD7zEbk5X+ARiPrlwum92q9+3bhy996Uu4++67sbS0hEqlgpMnT5pEmrm5OcRiMUMfxuNxHDlyxCSeJBIJvPjii/jIRz6C48ePY21tDQDMjtD0oDS7j2nxtpfEyvAab1bGgz8svMx3QO9X12YpoHF5CVkPLlzXRdyO3CzORpJvYtH0Zg54TTenwqLVzYmmlra9fxAVJn80u4nnKn+vtCInrio1repBb0sXorL2HDPUWK1hbm4OyWTSpEsvLCzg4sWLpoI6F/+yCkQikUBvby9isZjxmnK5HJaWlpDL5dDb24t9+/aZtVbr6+soFAoIBAIYHBxEV1eX8fI0DqHZl6TC6EVQSbGPSQv19vaiXq+bBIWtrS2TXBCNRk2sQ+NBGlOkJ0owYFu4uSHv02w227Ik+X5IRykI89r0zJTS1UQeWvuNRsNk/7VaLbNFCbNUeT8mofBZdOkFgUsVMT8nTcmNOMvlsqF3e3p6EAgEcO3aNbz66qu4dOmS6Qtdz3fvvfei0WiYxBDutDw6OgqXy4Xr168bL3Frawtra2vo6+vD4OAggG3alDsk9/f3m/gi55SOb757m53Q2JZ6ahpjtGsZ0kjU2K/uAcZ5x8+1T/XdaljAkXZ5Qz3zqU99Cvfccw9isRj6+/vxvve9D5cuXWo7plwu42Mf+5ixcN///vebLCXK7OwsnnjiCVNg89/9u3/XcZuA73dRoOLfnCSqLHRC8X/+Jr2kChpoL+uk9AiwA3w8jsfSKtS4AIGAVBEVF+8ZjUYRj8fNFvH1eh3Xr1/H+vo69u7da6qcX7p0CVeuXDHt4LouYHviDw0Noaury4DFwsICZmdnjeIdHByE3+/H2tqaoaNYcikUCrX1lypht9ttrGTNxmN1CG7AyO8Za4pEIkin02Z/LyohJsZQMWpCg8YO+U6VWlSlGQ6HAcDQprw3PSLGR9j/vA5pK9KINCaYOdnf348jR45gZGTEtCscDhsPnB6aDVxKS9Iz0KLKXq8XyWQSqVTKvMNkMomBgQH09/ebKvilUsmMqeXlZUPnsdoFMypXV1cxMjJiYqE0BrgJZzweN4uT2fZCoWAWpzMZgnFAZqJqSjo9S/7w+Ww6VBNpFGA0MYrndaIWdT7zOkpDan1Em6Z0pLO8IarwmWeewcc+9jHcc889qNfr+Nmf/Vm8853vxPnz5xGJRAAA/+bf/Bt84QtfwJ/+6Z+iq6sLH//4x/FP/sk/wbPPPgtg23J/4oknkEql8Nxzz2FpaQk//uM/Dp/Ph//yX/7LP/4T7nLRzCcG52u1GorFoqFjAJi1JsCOp6SLILn+RvlzKim19DQtl8dSubM9LMzbbDbNvkMsqVMul02KdrPZRDgcRnd3N65evWqK37Iq+X333YdIJILXXnsN3/rWt+D1ejE8PIzNzU0EAgFDuQWDQfP33/7t3yKTyZhSRZOTk4jFYpidncXS0hLC4bBZYAugzZMEYKgqKiYqdT5rpVJpo+5I3bCvp6enAQCPP/44Tp06hb/+679u82a2trbaqiPwPBod7ENSiWow6GLrQCBgEmwIclqAVQHL7Xa3xcjUEyDQBoNB9PX14dFHH8X+/ftx4cIFrKysmIobun6P/cX+Ic2r26dw3RYXIbtcLiQSCYTDYVO1g2CiCUKrq6soFoum7iDrOHIxMpcXAMDevXtx//3347nnnsPb3/52DAwMYH19HfF4HPfddx/Onj1rqFYW4c1kMmZPNG7zUq1WMT4+jr179+LMmTMGkJjYwhghWQJNSWeiBt8TjQP1oDRexnnE+Uf6UbNvNTbNd66ZuwRcJx3+1vKGgOvJJ59s+/+3f/u30d/fj5deegkPPvggNjc38X/+z//BZz/7Wbz97W8HAHzmM5/BoUOH8M1vfhP33Xcf/uZv/gbnz5/HV77yFQwMDOD222/Hr/zKr+Df//t/j//0n/6TUZCObAsVLukd9a6ocKjIgB1lxYmkqb883qaQOFls8OLfnLycmEoN8jitmagLOwkC3MKEWWnFYtFsR3HhwgX4fD6T6RYMBo1SA2AKxVarVWxubmJrawsAcPDgQfT19ZkKFwBMTTueV6vVzHooO9it1rbSsgDa0tj5TB6Px+wVFovFsH//fly6dAkLCwuGwmSsUS1w9WwJcPY6HY13qdJTL1GP7ZRQQyND41HJZNKAfl9fHwYGBlAul7G6umq2MSHQkS7TmKrt0bndblOeqqenx+zeTPqayS5sbz6fBwBT2mljYwPFYtEYUaRQi8WiqQGpnlBPTw8WFhZMks/MzAxarRbi8TgGBweNh00DjmvouOM1AYE1Drk8g3NG6VVNzlDgIN1Lj4vvj99pfJL9r5md/M0+oRHCuaPjTWlJJznj1vIPIlE3NzcBbFvQAPDSSy+hVqvh0UcfNcccPHgQY2NjeP755wEAzz//PI4ePYqBgQFzzGOPPYZcLodz5851vE+lUjGFRPnz/SI2LceK28DOdgoaMNbzOBmpFBkIVvDjZNQYD+/HSUyahgqcE1zXdlHBcsLSkwmFQmZRbiQSMZ7hwMAASqUS5ufnMT09bXbJ5eJkApdmybHcUKPRwMDAAPbu3Yvu7m6jLGOxmEkM0LgVf/M56SHaFbrZf7TSNdbn8/kMIHL89fb24sCBAyYtPpVKIZFImD5Q2qhThqfGuPi9xsJUmRGIlLZSRWpXzaBi7evrM1ucDA4Omsr49Bp0zGgmoypUHSeMh/X19bVlGqo3yXbSm+GWNnfccQfuvvtuTExMwO/3Y3V11dQczOfzJllDKdV4PI7NzU3Mzc0hEomYWpGVSgUHDhwwY2ZlZcVkJ6qnyj71+/2IRCLmfWtfEnR0WQFFAYvjQOl6NeYoui6M74oGhlLEWkWD91VvzIlx3Vr+3lmFzWYTP/3TP423vOUtOHLkCACYnWq5kJDCbQh4jIIWv+d3neRTn/oUfumXfunv29RdL7TCaPVzgSiAtiw13TRPlQmtZo1X2IqO1+dkIhjROqQy5fU1qUMzGkk5EbiOHj2Krq4uFAoF9PT0YGZmBplMBv/yX/5LpNNpvPrqqwaAV1ZWEAwGkUwm29agsZAuFdyePXvw1re+FaFQyOyGOzAwYGofkjJjajX7qdFoGOXVbDZNZpxm+fE3y2ixn6nYmI7N0kSPPPKIUVoHDhzA3NwcLl26ZDaDZIag0khKJxEMCSZ8H4wF0dgAYGhZxsBYiJf3UaUHbBfenZycNFThyZMnMTg4iNnZWRP349IC3YMtHA63ZaPSgyqVSiaO2Wq1jNccjUaRSCRM39HT1c0mA4EA+vr6cOjQIRw4cAAXL17Ek08+iampKVSrVbz66qvG0ybF+Nprr+HAgQN44okn8PnPfx7ZbBYHDx7ESy+9hBdeeAGTk5MIBoOIx+N47rnnjAeYz+dN6a1Wq4X5+Xn09fVhaGjIpN0rXc4+0xiV7V0xI5T9T+9T2Qh6ZuwrvkvNYOU8AXb22rOpYK244khn+XtD+sc+9jGcPXsWf/RHf/SP2Z6O8slPfhKbm5vmZ25u7v/3e77ZhIpJ41GasUbLmMF7gpOmWKs1q5NCLUJV4po1popRaUgNYGtAmXG4wcFBs2nf4uIiEokE/H6/qVBRKpUQCoWwtbWFZrOJ4eFhNJtNswCZ185kMpiZmUEwGMTg4CDi8TiWl5exvr4OYLu0lMZntI/4v3pvui6NC4MJlGpNs68Y72IsjynXyWQS4+Pj6O/vx9jYGPbs2YNUKtW2xQiVkypBesBqTCg9RJoSaKd/+UMPgqBIYf9rLcWpqSkcP37ceDqbm5smdsf+CgQCbckJmjQCwMSANNVewVgNG/Yfs0u3trYwOzuLxcVFQxHG43EAMFUzuPBW09DpjR04cABTU1M4deqUyVJl2SkmljA9ns+hVGoulzOVV/iO6RUr08D5odQnDShdb8U+09/05NVL0v61f+ht6zXVK6cn5khn+Xv1zMc//nH81V/9FZ5++mmzfxEAs89RNpttO355eRmpVMocY2cZ8n8eY0sgEEA8Hm/7+X4RKlxdhOpyuYwC0TiUgolONi4IpWelFqVSglRAWgKJYKRWJbCTlUgvQbP0qKypLAicLpcL999/v1nntbi4CJ/Ph9HRUQAwOxPTYiWdVy6X8eyzz+LSpUsYHx9HX18f1tbWcPnyZdRqNYTD4TZlZWdEejyeNvqRlCuBg5ZzpVIxlrqmKrMd7E+3240zZ87gwoULKBQK2Lt3L0ZHRzE6Oorjx4/j3nvvRSqVQjAYbKsuorE09rVSlpqKz6xGYGeBMlPLuXaOCTtK2bnd27UdJycncdddd5nKEffccw+mpqYMRVepVMz1AoEAIpEIYrGYKZrLyh9U6h6Px+zllUqlzG96OQoAjFGxPbVaDQsLC5ibm8PW1pbJLgWA69evo1Kp4OjRowgGg8hms2g0GmY/tStXrqBcLuOxxx7D8PAwZmdnDf05Pz9vvOehoSF861vfMpQ0q1lkMhlsbGyYlHiXa3uRM6lSJuYoC6H0oGZa8j3QgGG/6BIE21jiewV2DBA1XpTWpqfqpMN/e3lDPdNqtfDxj38cf/7nf46nnnoKe/bsafv+rrvugs/nw1e/+lXzGffIOXnyJACYBYQrKyvmmC9/+cuIx+M4fPjwP+RZvifFTnNXa5YTRtNsgZ1SP1QiSoMplcRr8lxOSo2ZaYYVsDP57Imlnp9OznK5bBbzknLK5XKYnZ01VB0tXGAHAHm83+9HsVhEPp83OyM3Gg1TRYPHaPs04cJeTqAUqS7StVPTNTVZY2W8TzabNRtd0rtsNBoIBoMYHh7Gnj17MDg4aCg07TP+rdXt9V0oWJCyo1LkceVyGZVKxaTy8/hGY3t/sampKRw4cACJRMKANX8qlYopTqyWP8cL70HQZnuDwaBJQiGA6no3TTYAYOKCTEWnp0jaDdiJX0ejUfT29iKbzZoFzUwCYVWUqakpzMzMoFqtIplMmrFFmjsYDOL69evY2toye37xWZkwoYaNMhLq/RB8mE3JsaTxL13Txnmq1Ds/4xij0aixYHp5nQwuvhdHOssbAq6Pfexj+P3f/3189rOfRSwWQzqdRjqdNnxuV1cXPvrRj+ITn/gEnn76abz00kv4iZ/4CZw8eRL33XcfAOCd73wnDh8+jB/7sR/DK6+8gi996Uv4uZ/7OXzsYx9rK73jSLsoJ29PGLXi1TMigJAKs0FLFSGwU6CXyouTxw5E81j12vSatIIbjYbJBlSpVqu4cuWKmbSsxKApxwSOWq1mFpGOjIygq6vLePVUnNo/dqYdr1epVExaMpUMwZ/eqSoeKmx7PQ2fu1KpYGNjAysrK6bmHz2ZRCKBgwcPYnJyEoODgyYFX6lYfT+8pm7SqQkbPNZOydblDjw/mUzi8OHDOHTokIlvsYoI19rRstfMOZ5PYOG7VGBSQLUVrY45vnsCV1dXl3kujmFW2WCmJst/5XI5ZDIZ4xFyGUelUkFvby9WVlZMdQ1gJzWfMdzZ2VlsbGxga2vLZBjSwFMakmBkL+zm33wuZQt03nHMaeUMm+bTGJp9PO/Dd0nvi8epsejIzfKGkjN+4zd+AwDw0EMPtX3+mc98Bv/8n/9zAMD/+B//A263G+9///tRqVTw2GOP4X/9r/9ljvV4PPirv/or/NRP/RROnjyJSCSCD3/4w/jlX/7lf9iTfA+Ky+UyxTdJK3ESMH6iabcal9FUctJeVIRUWJzEpPVIm2lsi4qVn7EenWab6XHq1TGFWds6NjaG8fFxLC8v4/Dhw2ZTwY2NDdx9991tW7JXq1XMzMzg5ZdfRk9PD44dO4ZGo4GlpSVUq1VTwYJ0odYKBGAsbAInvSlavlQuGk/Sxcj2c2m2XTabNanZo6Oj6OnpwfXr15HP59Hb22vq401NTeHixYtYXV3F/Px8W2Df5/OZGF8sFkMgEDDlqvjOdOGzbpTJ/qeHGwqFMDY2hsnJSbzrXe9COBw2pbsI0IVCwQAKvUOlBXmvRCJhwIDPz0QXji/G1hS0GCPTtWle7/ZmlUyYIODSiODu1vl8HqOjo5iZmcH169cRDAZNeS9eM5lMIpPJ4OzZs+jp6TH36e/vR1dXF5aWlrC+vo6ZmRnTxkQiYdb9DQ4OmixEfaccAwQU9q0agjTQ+J3uVKxLGAhWpNw1U1XBjbUR+S7IoqhX7gDXreUNAdffpSODwSA+/elP49Of/vQtjxkfH8df//Vfv5Fbf18K6T5dwEkPiIFg3YmVwsmm3hiw45HpcaqcOPF04hIE1CJU6/T/Y+9PgyO9zvNg+OoFve/daACNZYAZzL6RlIYiKYnaQ0v6ZDmSHb+VRS7HP1KOnTe2K66U641j2ak4rvdHUqmULeeHK5VUIsdbFNmWZJKmNi5DckjODGcFBxjsSwPoRu8LgO7+fkDXwdVnMHLk98v7gXKfKtQMGk8/z3nOci/Xfd33YRBbMXuFCxOJhCmw6vV6EY1G4fF4EI/HjRBhUmkymYTDsVe1IhaLmfO7SqUShoaGEAwGkc1mjXemsQebtcf3tRvhMipSZflxPDm2yjJUOAmAYf3lcjk4HA4Eg0HjYebzeXQ6ewcmUuBPT08jm812CTA+kx5mMBg0MBnja3y+lp2yYSTmwJ08eRLHjx9HPB43ypiQID0hNq4Xjh8Tx8nG9Hg8BmZzOp3Gw1EvT8dDvRH1NnRtUonyfXgtAFO6aWhoCBsbG1hfX0epVEIsFjNwm9/vRyAQMHEw3jedTiOdTqPRaGBtbQ2bm5tIpVJm7+gBqZpYznklw1Irviu0q8bNQWkCOp68L2OXfG9byeu64jjwnfj/HlT48NYrsnvImwpY9aq4UXjUO8kbVCq2V8EfhS5o9dlJp0rAUOXHzaqbjbCg9pfCYmJiAul0GtPT013xKWBPiTGZ9+bNmzh58iTq9TpKpRISiYQp6VMulxGJREyx3bW1NbjdbnO4JPtL4cbqIrSAd3Z2TFkovgdjYLTkKWC0Aoi+PyFN28NVSIzxn2q1ikqlYsgVpIqHw2HMz89jY2PDzAmFG4Wi2+1GMBhEvV4378TTcxkv5HxQ4fKwzcceewyf+tSnzGGN7fZehRMW6SWzk/csFArY3d1FKpXqKuXEuWSZKUKF9AzUOyUSoAdx0pDhugLQte42NzeNYKbX1Ol0cPfuXYTDYUSjUfj9fty/fx9Hjx7tqlBx5MgRfOxjH8Pt27cxMzNjoOS1tTU88sgj6O/vN0fRaKFfpcb39fWhUqmYdaPejxbCpWfLObKVPr1ZKjOF04F9o4lhFCWvMD1AIUyOF9culR+Ztb3W3XqK65A3TUBV2Erp3CxTpApFFZxCGDaOr3EJTYi0vWu1pvk776kKTb9LweB2752xFA6HTbC7WCyiVquhXC6jWq3C5/MZKIkKjkeU0OpmkqnP5zOxG4VitE6fw+EwcRyNXSn0pp4Mm/ZfoR2ltLN5PB4EAgFzfSQSMYKdyoDXJZNJ9Pf3m4Mu1bPlPfk9xvd4erPOj3qFnU7HHBTJgx+pHPj+CksqU5LljVKplCF3ADDeF7/Dqu0cV/ZTiQccM84HDSH+y3OmqEwJ39peLs8+Y7krpii0221sbW0hFouZU7I3NzdNtfdcLod6vW68LCopVkxpNBoolUpGyap3TkhbvRz1chVetr1vXQt8P1VeGqfi83jdQd6p/h/4X0O4/qa2Ht/yEDfi3rTsSJ6gFdput7uIFPyOvfg19qQsJgBdCpGbTjegBqe5+bjh2S+bUcV4HEkAhLIIN/F8rZ2dHWxtbQHYr7VI2AyAKe0UCoWwvb2N5eVlUzNPacxKEuA9Wq39GnFUBkozp7C2q2jQ2lYjwIZYNT64vb2NbDaLcrmMaDRqPD6OHdMFYrEYjhw5gkQiYcaSz6JnyKogTF1gnT8lk9DboWJyOp2G/FCpVJDL5UwZJE2Z4DvSO2q32yahmO+r/1Lpa+xKoUv+0IPjkStcL1pJo9VqmYRpZTSqAujr60Mul8POzg4ikUgXaaHVaqFSqWBjYwMulwsDAwMYHh5GuVyGy+Uy7EKOKQ9iDIVCplRaLpfD9va28dSVZKLrWJmRNoGG96ey47pV+E9hdNtosPeYPsM2CG1SUK91t57HdcgbhSk3kK1MdFMpY8lu+jfF5RXesa1GxpsIQVLIkCTA/ilkQoubgrRYLCIYDGJoaMicrPvYY4/h9ddfRy6Xw9zcnDmGgkSF/v7+ruKswWAQlUoF9Xod4XDY5HZRiAMwsSR+TgHmdDqRSCTMO2suFVl8GhcjOUKD9XaszOVyYWhoCNVqFZubm/j93/99nDhxAp///OfhdrtRLpexurpqjjjhKc48CbpQKHQd1UGFwVJSwWAQmUwGnU6nK7ZEq59KuVqtYmRkBCMjIyYmyHmgsunr6zPPZ0yR1ex5/AuhSCWBUDHWajUTvyMEzDicsvSoiOiF0ktlRRAqY44vFTTX2vDwMJaXl1EsFhGPxzE6Omo88FgsZmDRjY0N+Hw+HDt2DPfu3QOwl6g8NzeHlZUVZDIZrK6uot3eS2av1WrY2NhAoVBAo9HAyMgI5ufnzThy/eseUqSCHirXuCo2KhY7b5JensYquWe1QDXHUAkbGsfutYe3nuI65I3KSaEKpdxSUfAaJRsA3YFhpWIrnGfDPhqAVoiIz1fvjn0kC0/jYrSuKTgJZXHD0isgxZ33ZXVwCm0qIHpNFDDsg3qCmtemx3qo4rKbwjRs6slpTIwB/FAoBK/Xa7wbUq+1dBYhMs23YgL96upqFwRHz6/ZbBraOk8WZj9ouSulm4qJ+WKcM3o9zLlSxp/CiuohqMDmWJJtyHHi/LVara6kdeDB41qooA6KRbpcLpNIzdhkf38/VldXMTY2hlQqhXw+j3Q6jeHhYbN2WWHF5XLh2LFjpsDy9PQ0dnd38eijjwKAIQDt7u5ic3PTFGem4cP1xvFXY44eoHo9mu/X6XRMcjk9L44lDSOuExuNoHLXvaKQoO63nsf18NaDCg95o1IB9gWLwlncxOo1qOJSCMPG9nktgC7vRQW4endAd6IyLVbCj7xeyR8UNKx/R6sZQBf7jo3sumAwaCBDFl9Vth/fTdmVjFXRu1RyARU9q0UoxKpCiQJIz+Ci4qJ3yWv6+vpMCSt+l/E3hTFpkft8PlOQl54IlaZWcaDQ1xJVNFz0XegdxeNxJJNJFItFTE9PY35+HltbW2bcNY+sr6+vqwK7Pd+Ep0kcoHDmMzUBXRUT76f9s8eVP5oEzhYMBjEwMIB8Pm9qIG5ubmJtba3Lm2fM0uVyGRLP0NBQF9GIipoKPRgMmpw7Vlmh8qRXSuNGUQOFOzlP9hrXdc/31niyKiaOoxp8HF+iC/xcDYpee7D1PK5D3NTiI4xHQauBY1rEzGOy6coU5Ao12tAInwF0W86a4c97KoTGzciNRzYU+zg/P29KAtVqNdy5cwczMzOIRqOo1+uG5g7seTGjo6NGaKmg40GUTEal50KFkkql0Ol0DPXe6dyjcCvbjcqIY9JoNAyMRaVE5aDFiPl9Xq8EByqHcrmMbDaL0dFRjI+PY3Z2Fp1OB/l8HktLS4hGo3jyySdNLOeb3/wmotFol3CkwmRNwGQyacgW9N7YNG4SjUbh8/nwta99DTdv3kQ0GjXVM86ePYtEImHiY5wfNWwAmPcibMj51+oRSjjRkwpcLhdisZi5nueusZqICmoqRhJzaEwFg0GjgKempoy3ScIG+0UPdHh4GF6vFysrKzh37hwajQay2Symp6cN5Pjd737XrEOv14sbN27gzJkzBubVOBWViKILGv+1CSrMBeNc0JukAqXxUi6XjaJUsop6X9zX9JT59157eOsprkPelLlns46A/TiVQoj84ebjdUrCUHIGBbYKbl6jRAWNDwH7ws7O96KgorJSRVsoFLruFw6HzbWkjc/OzmJmZqYrWZYeHkkFjKVQKJHA8dlrn32AGcm+0Rp/8aMvdkGsfAeNF+r3SWph4jYVG1mMZOLl83mMj4+jv78fwJ7gzmazuHfvHmKxGC5dugS/349oNIpQKGQEFYUmISoqRXpp4XAY5XK5K0GVc8FzrKjYSbdmbhw9IbI0lcKupaL4oyQCQl9cY7YHol4BPW9NclaEQNcslSE9qXa7jUKhALd77yDR3d1dFAoF493T46Yyc7lc5rBQhfoajYbxLqenp5HJZPDMM8/ghRdeMDHEoaEhjI2NmdJRfA++L2ObSpCg4qKHqZ6qzgXfjbEx9o3K3jYcuV9Vceq+7rWHt57iOsSNi5tNN5HGMSjQufA1XqMwIYWPsqMImVBJUegovZ7/2sV3lXXFZ3k8HnOdz+dDNps1BIlarYZ4PG6q+0ejUaTTaXi9XmQyGWQyGXg8Hjz77LPY2NhAKBRCIBDA+vq62eBU4KwM4XQ68akrn0J8eq+Yb9lTNoJMISkKmFarhaeef8qM6fNPPd8V3wC6SxtpLAfYP6WY9yUkVS6XcefOHZw+fRrnzp2D2+3G3NwcCoUC/H4/KpUKVldX0d/fb8ogMXbH+zJnCwC2trawu7uLTCZj5owBfCruTmePDr+5uYlWa++MsnK5bPLWmEawuLiI27dvo9FoYHBwEJlMBru7u1hdXTWGBBWwstzo1ZHVx8rrzGFi33d2drC5uYlqtYpqtWqOOmExbIWbGfukEmB+GU9GHhoawtmzZ9FoNLC8vIx6vY533nkH9XrdnBywvr4Op9OJEydOIJPJYH193ShuKq5EImEKgAcCARw/fhz3799HPB7HI488gm984xsIhULGQ6f3Q7q+DcUTeqbnynni71wPJKHwPvQUuWc0DknjR9EQ7kfdd732YOsprkPeuNk1kKuZ99wQ/Pyg7ypcqN6U/igsoh4ZsE//VlYbmYh6/pXWJGT8q1AodJ1ZpMe1kyLPsj5UnP39/fB4PCgUCigUCgZKYlFeClXgwYKkJGQA+0qbXox6NnzvT7zyCXz7Q9/uMgrUYKACJ6Vcq3RQIAWDQezs7B1iyILCfX19KJVKJkfN5/MZ5UTloJXGqZDVm+l0OigWi10V09V4oBIlNDc+Po5KpQKfz4fR0VGcPHkS5XIZc3Nz5pRpwqLxeBzlchnFYrErjkb4jEKUnoOWoWKlCV2TmjtFBqPG/jR3To0dzj2PO+E4sOhuPp9HPp+H0+k01VVarZZhUPLUaR2/WCyG7e1trK2tGXo9a0tSATsc++kEuo7oIWlsStEJ/q5EDcLk9MQ4Xlx79Pi1ZBthRd2z3AO6LzVfs9f2W09xHfJGC8ymumuiJX9sZpR+flDAWCn2qqz0WSrEVQnq5lRrWpmNu7u7plI3LetQKIRQKGS+R6IAC6v6/X4kEgkkEgm89dZbZnP39fUZK5Z9+cxbn9l7X8/+0SsUqtzw6nHyd46RvpPCl1rBgOOhsQ5lnRGmJUOuWCyiWq2aNIJ8Po9UKmUo4vTmWDnBFlRUBlToOzt7p0XzmeVy2RSg5ZjwnLpjx46ZiiSkya+urppyU6zbR5o+D9W0GagcD3pgdhyUApjeCrB/4jXJNTqmSuqgB0vPiHM7PDxs4EN+TkVdKpVMovro6Ci2t7dN7hawTywKh8Nd5I9ms2mqzdfrdXi9XhQKBbhcLoyPj2NhYcG8L9eMGm/abNhQIfiD8sH0GsaA6X3xeWoQ0Jiz926vHdx6iusQN40heL1eAy0RBqPHQ6GtMQO1EhU75wZSJpN6Y+qZKAkD2E/G5XPUO2F/VGG0222sra1heXkZp0+fRigU6qJpUxhToDWbTeTzeTgcDqPcNK4SCoXwsxs/C/e2G56CB33ePQ+CsS56IrYVraWytFQPLezd3d2uOArvxesoUHg954NWO7BXNcPn82FjYwPLy8s4f/48yuUybty4gU6nY07g9fl8qNVqSCaT2NjYMP1jGSDmWFHp/+N//I/R6XTw4osvmhjd6uoqHA6HKZK7sLCAZ599Fj/90z+NU6dOYWxsDKFQCNVqFf/tv/03LC0tmXjZ9PQ0hoaGzEGToVCoa83Ro2LyeLlcNhAwBW0kEnmA7ahwpk0qoqIC9uJ+XK88b8zhcJhz21gDkveJRCKm6v7KygouXryIeDyOlZUVzM3NIRaLmTqFTqfTJHHTG/N6vfiRH/kRjI+Po9Fo4O2330Y6ncbHP/5xfOtb38I777zTddwJvWC/398FwasHpB6jGoJ6ijS9fCVxkMxjQ6cAulikVJ6q/Hutu/UU1yFvynJi08CxekNahNW2CnkPxjIoiHWzaFIxsJ/fpB6bQh3qAWoQWhlwpL+fPHnSnK0F7CnQQCBgFEMymYTP58P6+jrm5uZQKpXQarVMHKvT2UvG9fv85nmshEElojCgxvk4Pvp/9dw+8t2PoNls4k8f/dOusbcFCMeCys6GEwn/1Ot1JBIJHDt2DOVyGfV6Hel02tTCK5VKKJVKcDj2ErxZz46sPrIRz58/j+HhYeRyOZMPp0QVrXW4sbGBd955B+l0GgMDA0gmk13khp2dHdTrdTgce0nA9ICi0aih5qtXSaYqvXqyKukNMrbHpGSuF64PQqtUaloP0hbe/C4NFfVcOMfMb+PaCgQCD5RxUsiSTMdEIoFHHnkEw8PDyGazePnll00aQzgc7tovun4557rXFKLXfankHzWKuL5sMpUSQWzYnvfg2NAw6rXu1lNch7iRzcYyQvzMhu9oYbJuHhe8xnrUEtbPFZLQQqzKqqOyA/YEEunrWkeRQpvXcLNubW3hxo0bePTRR7G7u4tisWho5ZlMxli4x48fh8vlwtLSElZWVky1BjIX/97039uzdP37AWxlHNIK/uK/7MDhUEXtQKfjxhd/o/s4eip6YJ91+KNXfxR/9tifoVqtmngQCRH0iugl0ENjvI3jRoZhKBRCOp3GiRMnDGOy3d6jtl+9ehU+nw8nT57Ea6+9hkgkgkAgYLzQUqlkKkf823/7b1EsFtFut3Hy5ElTiYOeRSAQQC6XM3UQ19fXMT8/j0cffRQnT55Ef38/FhcXkc/njadLxeXxeEz8p1QqmfmmQcMEcI2fUlEFAgGjuBh/4xjQQ1GPVyFfKgCNJWlpMz3yxOfzob+/H2traygWi5ibm8PY2BhisRgKhQI2NjYwPDxs5pOnayeTSUOvB2BSDKanpxGJRPCZz3wGly5dwvz8vIEPAXTl0inZSJmBSmjSfcA1wrWnFfe5H0jq4NpRo0ehQTUCeu3B1lNch7jRClOrTK1i/q7sLl38B3lViuXbMTF+TotTcXs+0xY4qvgU71cFyqoFvEZhN1UkjUYDGxsbpiK8votCk8ryA/YFx6//GtBp7fdJ85V+44sdtNsO/Msvdlv52n/tN59hkxBsL/dhXqfGXQiT8bTe7e1tjIyMoK+vD5lMxlS3oBJhzI9eGwBDx6fyoUJdW1uD3+/H6Ogo+vv7TaLt9evXjaKNRqPGgyX8pZXg1fJXkg3XDUkaSgNX8gK9Hq6her3eJcjpIdJQUIYnjQaNs/EzPWaFuXL379+Hx+PB4OCgUVL0/pmvxnGm93rv3j2sr6+bk5RJiMlkMhgeHjZjw3fTuCONPvab60W9MY1XaYyQBo1tNCqUbXv19v7ptYNbT3Ed4qbxI40jaAwBQBedXRWL3gN48BRlpYwrGUHPqbI3l21Jq3JRAggbY1elUgl+v9/EuagMlQ7M49YJnRE2oQBT2FIFSqfTwa/+X7vo7HQHtlX5AFQse/3S8dMx0nwlCt1arWbelV4DYT97HlSpMlbndDqNxU/Fw6NegsGgga0SiQS2t7dNPUdWlCcBY21trSuG0mg0MDs7i4GBAUxMTCCRSMDv96NYLCKbzaLT6WBiYgIDAwPmsEYy8NS7sq19GkBqkNCz5FzZUKlC2WRJMu9Nhb3el3UL6dko5EaF5XDsHclC5bu8vGzgQ542QCXl8XhQrVZRLBYNGabdbuOtt96Cw+FAuVw23lmlUkEsFsPw8DDu3r1r5pv7QBUr+0xvm9fasS6uMf6rpaVsY0lp7zYCospL49O9tt96iusQN930DOxqHAvY90SA/XpqyuZinIMbgv+qgFWLkBtRky35PIUfdTNzEwPdZy8BwODgICYmJkzxXEJQhUKhi1RRLBaxtLSEhYWFLtbj/zH1f8Dv93dRjW1P74v/soN288HSQiqE6EU5nftwq3qsFCbMpSLdmsm97BOVL6uBcMwpJBX6osfB+3q9XgQCAXzoQx/C4OAgnE4nhoaGjAIn25DMSgCm/BG/S2FKZt3GxoZ5NzI0CUfeuXPH9PXo0aO4deuWIVywNBVJHhqLYWV4jg37r8QEVVxs9NjUcOLYU7nRCKDXB8AIeFbyDwaDcLlcxqMC9nL+AODatWu4fv06crkcnnnmGfj9fpMywVqR1WoVsVjMVIe/d+8e+vv7TYURAHj99ddx4cIFTE5O4rnnnjPKkyQPG1ZWb0v3khp0tieqR9LomuOzOIa8nt4gjdQeVPjw1lNch7ypILA3gG4cYD+orIJYsXluOIVX9G9qddNzUwiFikGTKZUEQS+H/fR4PBgdHcWZM2fM8eqasMkcHlrDm5ubqFQq5piOz177LFzu7qPgVWH/y3/xPU/he6kutmVPIa9Fdnkd38e2qvmuhPTsWoyqjOw4hHoUmlvmdDqNp7m9vY1YLIbTp0/D7XYjHo+buaN3ybG36dH0lhyOvbw2MhmbzSaq1aoReBzLbDaLbDZrKnmEQiFTMotxvHA43EUq0PflGPHd+GyFTXXs6I2qItJxtr1/NSh4FIlCwiRkMKGaBlK5XMbi4iJKpZJJWmc8OJVKwefzIZ1OG4UMwBgDZDWur69jY2PDVGBhLpyiHNxn6lHqfBCKPmhv8keVH8dRFRPHTveRpmH02sGtp7gOcVMrTj0OYN9r4MJXoaBMJ70PN6DGFoB9T00hMgoWvT/vxWbnganHw/5MTk7i1KlT6O/vN9Yx4R0e9AfsHd2+vr6OarWKTCZjNjL7rArC6XTiN77oQKfdXfzUVhgKEfJ+nU63FateEoAHyAOMz6ggV8WlOW2EqwhtMteLcCGPamHsyePxGG+SgpfQ5OrqKmq1milxpDT+QCCAyclJU0CXZ4xpn6k4lpeXDQNTE2Cr1Socjv1TmNXA0XVEqIpkDvUyNU2ASoUECT3Pi2uM76yGAI0EPlc9/Fqthmq1aogwfEartXe+1traGuLxuPGUqtUqxsbGulimbG63G+l0GisrK2g0Gtje3sbc3BwmJiYQi8VM3UT29aDEfq1tyDVgMyNpJGkyPg1JW5npvrLjiFx3vXZw6ymuQ9xUEKsXpdAEa9qp4FHFQUhQg94qhG1lRjhMN/5B0CSFG+u9EebQsjsAcOLECQMR0uPqdPao7fF4HI1GA81mE3Nzc7h16xbK5TJCoRB+9OqPYre1a4rfqtD89V8D3J2OYWY5HI4HknmB/TgWSQYcA83PseM7HDdWmKA3yLEiVMizrQjZ1et1xONxDA0NIZVKYWtry+Qw2UdkBAIBc6BkrVbD5uYmVldX8cYbb2BlZQVbW1tYXV0178M55Lv19fVhZGQEiUQC733vezEwMICRkRFcvHgRHo/H0PHffPNNLC4uYn19HaFQyMCP9HTVU6fHQViQCoRrTwsRl8tl4zWrsUJhq/l86pmRQk8jheuG99e4IceV65BKnM90u9147bXXUKlU8Nhjj6HVaqFcLmNoaAgDAwOYn59HsViEy+VCJBLB4uIiMpkMbty4gXw+j9HRUaysrKDZbOLSpUsAgGw2a5SRIhJKXrGVmcZ5uQfsdBJFSNRTV5jQ5do/q4vz0GsPbz3FdYgbFzrQvZC54dWTsiEHrXqw7208yBhUjJ7P1A3H3zUeZm9k7a+SRAhpsXJBOBw2VGqFcYA9j4uxJFq72mjJ/tqvttGx4g+qdNUCVmVv309JJ/Z42zUfKVwJK9GjUi8XgClo2263TfVx9WpYAYNzWavVcP/+fSwuLmJmZga3b982jDi1vm1yzc7OjqG4t1otpNNpHDt2DCMjI0in0zh37pzxfL7zne+gUqmgWq2aOBj/Ro+N76tkFFZ5YExIj7I5KG9LjwXRsQNg7sMYXKezf8gn509ZiUwp4BzRQGDMkV5ltVrF0tISHn30UeM1klVI5ep2uzE+Po7r16/j2rVr2NraQjgcNpVEqtUqjhw5gsnJSSwtLRkDx45fcc4U/tX13+l0jIGinpl+T9fLQbFohVR77fu3nuI65E0hBmUVMiZCgWHHXFQRUTDR6qVC4/UauyCFV5WT7fGpMlOrHdhPDK5UKjh37hxSqRRWVlZQqVRMUdFMJmOYdGTcrayswOFwYGBgAD9+68fR7rRNFQklA+hR9kB3rUJV4GrlUtj9+r9yooNuBWUrNgpeJrK2Wi0kEgmjbFU405tiLIZjSzo4K8EzubpcLmNlZQXz8/N48803sbCwgHv37nWdd8Vq+Upy4XwRYqRydDgcWFhYwOzsLN544w1cvXoVR44cwY/92I/h2LFjGBoaQiQSwfz8PJaXl5HP581x9/TUSWBgvUXGmghrkihBuE5PBKDXynHgO6iS63zPM67X69jZ2cHY2FjXeWVkE5ZKJSSTSfNd9pXC3+fzGa+akGy9Xsfy8jKazaYhY5TLZZTLZTgcDsMs9Hg8OHbsGIrFIjKZDCYnJ3Hnzh1sbGyYfMHTp0/jzTffNAqVtRM5Fzb0rgqG68wugaWMYI6X0v7tPDYq796xJn916ymuQ9w0yKtxGGDfCmcQWSFCraOncITCOupZaXyLyk0FJzF9fb6dG6b3I2uR1byXlpZMJQZSyZlICwDr6+soFosA9ggE7cp+9QWFJPV5D2u2B8hx1D7qQYlAd/FULV1ERe73+01dP46xeqVMmKVyU4ud3le9Xsfdu3dx79493LlzB3fu3EGhUDCC32aGqnFAxcX8IyWraDzvzp07WFxcRDKZxPj4OGKxGAYGBoxCWl9fN1AcY1Z+v7+rirvT6TReMvuuRYAZP7LHWtlwdgUJHvlCBcNYValUMteqh0WSiMbX6GGpF6qJv1Toq6ur2N3dRTQaNbEvGkWsJ+lyuTA4OIhSqWTSBHw+HzKZDO7evWvm+iAjSPejQrf0kjkmuvf4f4UNaWzqGCpZQ9dDrz3YeorrXdA0pwro9sKYE0Uhx8/UouN3uIloIXPzcFNxo9m/E65RCE4DzvYGb7fb8Pv9GB8fx9bWFubn53H8+HEjpFih2+v1GqHKuIrf70e71EYH3f3YJ5TsCxE2VcwqGNQiVmIFrXoqfV5DcgHHnJ4FvRIlKxAyowLsdPaOEWF8b2VlxVC6gT1B9tprrxloMJ/PA4BJCQAerCsJ4AFFwB9NBqZCLRQKqFQqePXVVzE/P4+RkREkk0n4/X4EAgHjpdMzYP/ISKRwZ50+eliaX6V91TXFdeNyuQzbTokyrVYLW1tbyOVyph8K53Hc6FlqjJZ9bjQa5l07nf26k5VKxXi4VPgko5AIFAgE0Gw2EQ6HDZOy0+kgm82atXfkyBGDDjDepgqL7801yca9pBU2bKSCTQ0ejSEzTqvGVq89vPUU1yFuDofDCHe10CgkCFdobEc9FBXiKlg0zsV76nEZek4UBQ9L1WhhX5sZyAC+z+fDJz/5STz++OP4gz/4AxOH6HQ6WFtbM8mfbrcbpVIJ8/PziMfj6O/vRyAQQHt1H4ZkFXSWOAK64UkKR313ChZlJP7arwO73xOyKnQ5zppvRGVASIrvzuspdCuVisn7osXucrmwsrKCr371q6hUKqYfrVYLKysrBgZieS4qNiVucF7a7TbS6TTGx8eRSqWQzWYxNzdnPCc1VJzOvTOogsGgOY35ypUrOHr0KNLpNJxOJ5LJpKnWr0qX54Xt7u4V+mXenc/nMwdesk6gxi+V7cnx1IocVEJerxexWAy5XA5zc3MAgHw+j9XVVTP+586dM+us3W4jHA4bpZjP51EoFExNRT6bxYDffPNNeL1evOc970EkEkGlUumi2mv+26c+9SmkUimDLLTbbdy6dQsA8Mgjj6DVauHatWtYX183xgu9fa0kwn643W4T89PcNo4HPXCt38m9Y8fINMleWYm99mDrKa5D3hTG0lwYLniFIOyYlApkhRodDoeJZfAeNvxBy5HXK2vxIIIHSQi7u7t4/PHHcebMGezu7h1W6PP5DFTYarUQj8eRyWTgcDiM8E+lUojFYvj8zc8DDjzwfD5blYfCnmoB2+3/+tVdqB+jFrOOmY6d3l89Ch1nVe6sKl+v17G6uoqlpSWj1KikgP3qGupdad/5rvSswuEwTpw4gWPHjmF5eRntdhv5fN7U8lOvlGQLKppWa++Axp2dHVMlolqtYn5+3lStIC2ez+t0OlhaWkIwGDRkChokCrWqkcB/GRPk2qISczj2igl7PB7jZRWLxa546ebmJjweDwYGBrq8PT15WgW/wqkbGxtYXV1Fo9FAJBIxydLAnjeUSqXMIaY8OZkK1el0YmxsDFtbW9jZ2cHg4CASiYSBrhVOVuNQ50xJFuqd8nNdZzrPuo/tPar36rUHW09xHeJG4UY40GYPAujazNwYCtHY97NjWoQ3CIMp9Vrvsb29/UCtOgDmbKhOZ6+i+dmzZ/HJT34S6+vr+OpXv4pYLIbNzU3T74GBAVy4cAEDAwPY2NhAPp9HJBLBkSNH8LGXPoZyq9wFj1GIkQq9ve02Qla9DQozZbdpIJzNhq9UyTudTnzy9U/i2SeeNd/TY2OA7gLCCoelUins7u7i+vXr+O53v4tKpWIOPmQMh9XZHQ6HgatYvUJJJlp1Qyn48XjcxK2o1DSuQsWxurpqqNWsZ7i2toajR4/iyJEjSKfTmJubw9LSEvL5vKnwQEG6trZmTinm0SeJRAKhUMj0RRW7LZAJF/L5JFS4XC6TTMwqGXxuLpdDtVo11fRJz+d7EfpjgnS9XjflssrlMpaWllAoFHD+/Hl4PB6sra2ZOpHVatUUIq7Vapibm8Nf/uVfGsbhRz7yEYRCISwtLWF4eBhnz57F/Py8Id7QG1KEg94XkQ2uPTt+TCXO+VUjyYYFNV7MddJrB7ee4jrkjYJA2W9q8XOTqDI7aNGr98XvsKknB6BLkCv8oTEh2+Lc2dlBMpnExYsXUS6X8dprr5kj1vlcVX6VSsUIvlgsZhhgNgFFc672oKN9CIpxCltw2u+vsTpCRvY765jQK9K4hhoFVGZUSKFQCAMDA6jX61hcXDQey9DQEEKhkDlckgIvHA5jZGTECGNa8BzHnZ0dQ5DodDomiZhkDioRHTPCas1m0+SdkYHJcSRJZmhoCGNjY+h0OigUCl3HgwAwMFVfXx9qtZqBHqm0jhw5Yrwxjq8SDzieHDv1HOjB6BhzfQNAuVw246tUclUGNGxIiGCci3lb4XAYq6urxoDJZrOmwO7q6ipmZmbw2muvwel0YnV1FY8//jiCwaA5syyRSHQpEW3sF9M59L1tohLXp84B1xAJL1RkiqzYxkCvPdh6iuuQN5uIwM808EvlwuRPtQRVcTC+AzyYx6SfA3hgQxKqpJChUHA49vKKfD4fRkZGkMlkMDU1hbm5OQwNDaFUKuHChQsmHkEIqFqtmv6yDp0qU93MwME1Cu1/VWmx37/260BH7qEwkxoE7U4bTnSf9GwLDypMzWdyOp1IpVJIpVLI5XJYWlpCpVLB2NjYXryu3TaKIBKJIBgMIp1OY3R01NDrOd7Afr5UMpk0bMRisWigLSqeSCRi5prrQeN3m5ubJi5ExVIoFHD//n0kk0kEAgFD3CiVSobVR0iMsUXGwUiHr1arRjnEYjFD5qAC5jrjWNNgUg9fYUXOC4U8YT6df/XuNH6pOXe1Ws0YSvTiuO63trZQKBQQj8eRzWaxtbWFTqdjqs3n83kT53M6nUYp2blbqky1vJrtSeke1X1qoyUcazWaOF4HKc1e2289xXWIm25Qtd5sppNCe1RYxPG12Ti9xllUKdHyty1KhSf5/Wg0ikgkYqo55PN5vPzyyyau5ff7MTw8DJ/PZzwGvpPH40E8Hsf29jampqZwunra9PMgAokKOy2BpV6gxiC++BsOtNp7Vcpp2ZM1SAELALut77G7nA6jVFlzj+NFA6FSqZhyRowznThxAh6PB1//+tcxPz9vPJfFxUVsbW0hGAwimUzi/PnzprhtIBCAy+XqqvihJ+gyVkXP1OXaOweNwpgEC74XlYPD4cDJkydx7NgxlEolTE1NoV6vo9XaO25ka2sLN2/eRH9/v1G6zJvieHJ8CVGzpiHhy1wuh0qlguXlZQN3Hjt2rOsIF74D87B4tA3rLfKdCAkz145V9BUK3WeUwswdx9jh2KvA32g0cOvWLUxPT8Pn8xliidvtNsp1d3cX9+/fR6lUMs+v1+uYnZ1FJBJBNBrF1taWKd/FPmlOo3qVNAoIS2vcmNcQRif5iUqM1W5slKPHKvxfaz3F9S5otjWtMKH9Ywd9aSXSw9CNSGUF7LOaFC7TzcPfqXBokWcyGcTjcdRqNROrYIyGFQxWV1cxNDTUdQSFbmSHw4FPXfkUGruNrndWJb3/82BVBv6rJBLtO+/D97fhK5dzv5wSlSaNBY6NKk8qMZIynE6nKdPUbu8lTheLReRyObTbbfT396O/vx/JZNJU0dB5sS11AMZwoPWvXqSOjVYQYevr64PX60UymcTQ0BByuRyKxWKX510ulxEMBhGPx1Gv11Eul7s8UY1jcuw0tshnkjzRbreRSCSQTqfN6cta4WJlZaWLCm/DsOp9aXFjXqNjwznQMlhUqPl8HvF43CgFj8eD/v5+o4ArlQoAmLPPWFrK6XTixIkTWFxcNAzWgyBnRQH4+0FKRteuxkjVMND5U9j/IAi817pbT3Ed4mYLMwbi7TIyNqxgwzAUNvp9hXFsZQegCwahJ8Z8GB4P4ff7TRxna2sLDsde7T1auru7u6YWITepwiqMU7VaLbTaDxYFZv9tKFDhsYNgQgD41V9ro+3oZj3agoi/a0LvH535I3g6+/R3VS4Ko/K5rOBA9h7p87lczrzfwMAAEomE8eIYO1RDg/fl3JAwQTiRClXnVkkpNguT88f6hCQZMIG52Wyir68Pw8PDAICNjQ0DF3JtKRxMWI40cntu1tfXTR6ZepOVSgW5XM5UuFAmpY7nQUQZLa5L6E8NNCo5fs44VzQa7aobmE6nDUORZCQaUsvLy6baBg/35AndfIZtKOnnasjYis02LPieHDOFDHXcde332sGtp7gOcVPoj3EAbuBms2muo2LREjL25mD8QC1V3WhUUKoM2u22ga94qGEkEjGxGrK8gL2KF8FgEIlEAvF4HJ3OXqmlEydO4OLFi13xCMZn1tbWzHXjrfG9/rr2SyrZQrTT6eBffrEDh4Oe4t4G//VfA379XznR1+eCx7P3Ttu72w8ICU34VO9S4xGEhyiM+HwqWk3K9fl8iMViWFhYwPLyMgYGBgDs1V2sVqsIBAI4duwYjh49aqorUODV63WTY8S+2ZUUyM6zoVLG1hhXAtBFV6fga7VaiEQiCIfDiEQiRrGUSiUDV05OTiIajWJxcdHAj/V6vYuVqeQRGkA6Lnz+7u4ulpaWsLa2ZuC8druNer1uYDT1fAkHk+TBBGOOAckmuv7Vs+ZYkJm5vb2N+fl5JBIJxGIxNJtNcyhnf38/5ufnTWL48ePH4fV60d/fj29/+9uYmpqCx+NBoVDA5uam2Qc2SUfnh94R9xd/V4OC1ysSoMpQ55xGlLIXe+3g1lNch7gpgYC/27Cgxq1UENtQg1qIKrgPgoTUqvd6vWg2m5iYmDCWbDqdNsqHiauM3dBiZaLq5OQk4vG4oWizUkSj0cDi4qIpPQTH9zzLzoPng3Vt9HbLsC0oDL74Gw443A/G46gMbCFA5c+/q7LnuzebzS7FwEZ4yeFwmJp7+XwetVrNJIvXajU4HA7EYjEMDg4iEAiYZwH7sUYtrWVDvQpdqvLl++h9qFiUfKMeQl9fHxKJBJLJJBqNBmq1mqnGTuNIjxxRT1xhVq1HaHsLKrB1DSqhQmFojj8hU74nDQQlMajiVhamGha8NpvNolgsYnBw0IwnUwk2NjZMP2lgeb1eXL582RBg2OwKGHzOQXuJRg7ngntI152uP8YP1cO0FaL9nV7rbj3FdYibwgtAd0kgraWmlq8N+3GTKW7OGAu/ozR5hZz6+voQCARw6dIlfPSjHzWfa6kdnjUFwFQeZ2wrGAyaKgVM6IzH47h+/TquXr2K+/fvY3R0FJOTk+hz96Gx28BuaxcddOBy7lv8HewLwD73fq4MvUQtM6SKGdin+iskyuvsI+pZP3F7e9t4JUws5tjy3vF43FSVaDQa8Pl86HQ6RokdO3YMk5OTGBsbMwVilQXI/ys7jZXTHQ6HiROSxacxR+Z28f30+2rp8x3pOZ8/fx6hUAh37twxa2NtbQ3T09MAYJQCCShs6i0znsQ557vY60ZJLfSMyIzk+7DoMksuEcak96SKziYWdTodU8xY42RTU1Pwer04e/asGetgMGiSqOkZulwu9Pf3Y2xsDDdu3MDNmze7ciW5HjqdjvkOla/OoU3cYLoEx1I9Rt17Cpvzb5xL9c577eD28HIDvfb/96ZwlVq4/J0bSS1ytdxV8WnirQpr29q3ocTjx4/jve99L9LpNGKxGCKRiKnKPT8/31VFnX1lBQcKbAa/CQ/Nzs5ifn7eUOJ3dnawvbONVruFTvt7fXdKUNyxH2PgfbTvQLeFr0qZf3tYjEu9GwoWp9NpIEHeS4PoVOgkWrAILz01r9eLwcFBxGIxw35jvzU+p+WRdO6A/XPPOF86n6w1ace1VHiq4KPBEwgEkE6njbFBaFANIsJ2mq/GPvAdNK1Bx8T2HvVASxoZWsxZ+61rmOQfNbY4bqxZSOIGn8n7NRoNw3rkutecMcKP9Cyj0ShOnjyJoaEhYzDwSBdVkvqv7k+9Rr1RwsqaJqDN9vT1KBTeu9ce3noe1yFuGqS14xc2fKhBfmUL2p6HCnb7vmSO0Zpst9s4f/48Tp48aSzRer2OmzdvYmtrC8B+aRtuTkJOpG7zeAgy8NrtNnK5nIHiTK7Qzi467b2YQp+7WwjyPVTx6N/1c4V7bMjR/kyFvX0dGXS0glVxtdttQ7emF6FehXpkQLdxwD7osTRKgFABrjAV31k9HY6LQsUU4gd97nQ6Tbyr2WyiWq12HfoJ7HnTwWAQpVKpS1DbgpSeCD1dQ7IRKLNWq5kxJFGCQl4NKTWulNpPZqfNfmXdP507rTBTLBaRz+eNV+d2uw37k0fQUFH4fD4cP34c+Xwe77zzTlc8jXOnXrvC6Do3urY4P5wD7jElaqinpYpNIVMbpu61/dZTXIe40ftRuFBjH1Q4tPLIhDoofqWwhm4ibhQKZNLdG40GJicn8alPfQrRaBSvvvoqZmZm8NZbb2FjYwOpVAo+nw8bGxuoVqvw+XyIRqNIpVJIJBKGHu9wOFAoFFCv1031dMY2BgYGkEwmEYvF8Ob/50185q3PmLgZBQsZh3xH3cwa37HjBBQw/Fc9NgpQPXGXgpOlpTheJMEoRAsAsVgMwWAQjUYDW1tbXbEir9eLVCpljgAhXVwhWb4fr1GPhvCj/Z4UdABMJXGNLVEZUFgTciLsyD6Mjo6aUk9bW1uGTdhoNBCLxXDs2DGsrKxgc3PTKA1VykwYD4fDBt6jEcL8wa2tLczNzZnP+U5UdDqmOl8818zhcBhmpeZ9KSmF48GTC6hYNjc3cfXqVVy8eNEUuWX8tVqtmkMk0+k0AoEAjh8/jmQyiampKXM+mp1gzGdyXpSJqtA8G/PPyOZkU6+Ya4nzztgwx1RTNnqtu/UU1yFuVDxKA6ZCUkiBPxoH4e8qtNlUCQL7Vp4GwXlir8OxVwj38uXLuHnzJhYXFzE6OmpqykUiEfNdKgWFeKgAqGDVi2LcgMmf3OwUpLSSO9udBza/HQA/CFqxIVD1NiksbPhUrWKFQDlmjC1RuJZKJeRyOTOWXq/XCHSFejWuxZwitbY7nU7XcSBsPGeK8KUNdXI+1WvWf22vk/CYy+VCuVw2nhXHgUy8VCqF7e1t5PP5BxQMlWGz2UQoFEIoFDIHg4bDYRPX4fEoVKCEJB/WL/Wq1YO2IV6dSwp6fQcAWF5extjYmCnmTEXOPm1tbWFtbQ2hUAherxc+nw9nz54153epMuJa0z3FfaOeIP/lnFLhs2mM86B1yqZIQq8d3HqK65A34vJAdxIwN4BuDBu6YLMFMhUIN6EKeH7GGMPbb7+NUqmEb3/729jZ2UF/f7+ppM26dbSCWYSVMS1aq/oslg2igmKcpFaroVqtotls7sGLLqepqq6bnYqY92fflWHGd1aBR8FmB+BVgP7Pi/8Trt39k33tGAaVHYVVvV43J/Uy6dfpdCIajRr4kP0igUGFof2ZelzA/qGb6mXa8TquByoIhRJtOJRj4/f7TfkoLQ3mdDoN4SESiaDdbptKEuxTq9Uyyo4eFueXhgDnkeQLGl8ai9Kx57vb40Cjh/Oq8SDuC3onTBHgmtvc3MTa2hrGx8e7CDxkElarVeTzeayvryMSicDlcmFsbAy7u7sIhUKYm5vruq9NUFHEgutTDTOb3akxTh1Lza1UY0mVYq892HqK65A33RBqlXKzaJBX82tUMLPpd2x4ivEEYN8Tmp6expUrV9BoNJBOp+F2u5HP5w1Dy+/3Y3R0FMlkEslkEul0Gl6vF3NzcwbGYpXvUCiEVquF+fl5cw6T07lHJb979y7W1tbwHJ7D/1n4Px8o3qrv0NxuAh0YeEotc4XgHA6HiR/RA+A48lwnvu83Hv/GnqDt9Jl+FotFU36o0WggEAggEAgA2H82rXatr8fqEUwjUG+F19CbtJULCRtahovUettL4Xzze3qNwoYU7CrwqQxZwaRUKmF9fd3AhQsLC0gkEvD7/UgkEtjY2DDKh8QUzn0wGAQALC0tYXZ2FrVazZx27PV6zZgx1sn1qcKf6xqAGUtWDHG59uoi0lOl0dPp7B8cSW9VjZzNzU3cunULoVAIFy9ehN/vN5VECoUCFhcXUSgUTOV4l8uFQCBgYrqvv/46pqensbW1ZcozaZ+1sj3fSeF5kl7oZdG4otGpnttB3ifXtl22rdf2Wk9xHfKmNGBacbpJdLHbHg6wT+m1IUf7MzaF8Vhtm4fzkbBAr+Lo0aM4efKkYdWFw2EAMEdW6GnCFCyVSsXkc3m9XnMaL/vi8Xrgcrq6TkCGQ85gaj+okLXZsCm/p9CZjiMtez2+xOncO8BSC+oq04xtZ2fH1AGkt8M6ecrss40FVVQcTxu21LgV51aJNhrfpDBU0o3CckrUsZUHT0dWT5QV5uPxOBKJBKrVKnZ3d80xIkNDQ2aMSHhYW1tDtVo1KQVMi6Bnx74wNncQDKbxv4O8GpsBqvOh40mBXygUsLKyYtZbJBJBIBBAPB7H2tqaqcHI40scDoeJXQYCAQwPD+Pll182parUODjIm9d9qGtQ96iePM5+2mviYYSYXttvPcV1yJt6EWpREuKh0GIwVwkYFFoKZXDDcENpOR0KPsaatre34fV6Ua/Xzed9fX147LHH8Mgjj+DcuXM4cuSIEXrAfumgVCqFQCBg2F2sSpDNZs0GpoDf3t42icn/Nf1f8Q/u/4MugeR0OLHb6YZL1WK1hTZ/SMXf2dnBbmsXnr7904xV+ROu0eoVjC15PB5TdDcQCJgSTOVy2ZwhRc/N7/cjlUohHA6jWq2a3C3meOnR7AoPqUXO9/H7/V2Ky4YYOW+MHVEI0pO0YUhSzAF0QbQ+nw8DAwMIhUJGeO/u7p06vLOzg0wmg76+PiwvLxvyTSwWQzabxRtvvAG/349wOGzmkkV3OfY8KZrFZjm+u7u7Jt60u7tXfZ7lsmziEU80VjJOq7VXNJhrRCnvDofDrNs7d+7g7t27OH36tKmjyOov6XQak5OTaLfbWFlZwfT0tNlrjzzyCD72sY/h4x//OL70pS/h1q1bXaxb7jMb7lQFpoqUc66eMvcp50nfzSYi9Vp36ymud0lTb8qGDu3AtAo6WnOqAPVz/Z2bh7/bG4pB9kuXLuGRRx7B0NBQVyHUcrlszo4izZrCjPETFjmll8Nn8bnNZtMkICvkqbEC/l+hGQpFrTEH7HsnFNTqdezu7uLZJ56F172fa0UGIAP6fA8qVgpQQogag6EyVgo3390e94PiVgfF52wvi32gstOYEcfGzgnSZ7OvVIr0nMLhcJenRmZgKpUCAHMsDU9WZkqDw7FXmSKdTmNzc9PkWGnlevV87X5zbfHdqYzZf6fT2ZU6oAaNGhycd37GZ9dqNSwuLpo8xFarhWg0ijNnzph6m9ls1pTpqlQq2N7exvXr17G7u4sTJ07gR37kRxAMBnHlyhV4vV7DYjzIEFQoUD/ju7Ep2sEYHBmIvEevPbz1FNchb4p3A90KhpuH1p/S4Pld/T+vUWGnMJbNniKEwiB+s9lEOp3GI488gvHxcQBAPp9Hp7OX38WAeCKRMMnGOzs7hgJPFhsFU7PZNFaylhhivyjs+Lu+k8Z8VEBQgLU734NSv1cfqtPuoLW7fwAl78VDG1WZAfsVKUi68Pl8Xd4ex0OD9jzmXmE9jUHxGVSI9DbtOVLvUd9ZLXuFrLguqCh5AKUaBDYpQu/j8XgQi8UMU5CeGY0RxnNarZZJVXC73ejv7+9aK1Ru9Oj4DF1zaiypZ8E1wO/YbEyFDbXvNuzG+yuxYW5uDqOjo4hEIqaiS39/v6nasby8bEgoXLM8EqbT6eDMmTPo6+vDq6++ajxCVVhqeNhr035njisNG93Luif1+732YOsprkPcDvKaVBDpxlCPi9aceiPcGBoD43V6Pz6DgW+y4xwOB44cOYK/+3f/riksSxiQLDoqWNYiLJfLqFarSCaTyOVyWFhYQDabhdPpRLFYNKcHE/piDtR/Gv1P+IeL/7CrJJOtsA/yHnZ2d9DutOF2uuF0OPcOh3Q64fLuW7/NZhM7uztwu9z4i/f9BXzwmTFyuVwIhULY2dkxMT0A5sBEWvPb29tYX183JwdzfPku7DcAEyNjmgAAA4lpWSN6Ewofsl8q3DlX+gz+jYpVhT6fYcPGWszW5dqrlg7snUA8ODhocvnK5bLxMnmvTqeDoaEhPPPMM1hfX8c777yDubk5029lz9Fb0rXc6exT/9UTpnIjm9Iu+8R31zVgxy+pEDguLpcL165dMwWRl5eXMTs7i9OnT6NcLpvqFqdOncIHPvABeL1ehEIhLC4u4tq1a7h8+TL6+vpw4cIF/ORP/iS+8pWvmHdQtq/GSznudl81KZxeKdewxjWZC9cjZjy89RTXIW8URAqx0KpTmEUFllpqurn5OwURlZgG9/lMoJv95XK5cP78eZw+fRorKyuoVComlkDPZGBgwJwuqwrS6/WiUqkYGj2Fv1Y2UEjF4XDgD079Ab4w+4UHFNZBFi3hrdZuC06HE+6+veobdgoAAGy3t/Ffj/5XeDwepJwpOJ3OrpQCxmJoyQP7RXkpvFnL0Ol0IhaLoV6vG6+3Xq8bJW4zIjn+FOaMT6ngtef1oMbr7BgZvU2FJ5UMoYpL2aicR5/PZ+JGfGcKfypuh8NhmKITExOmIv7U1JQxlPg+VNRU3nxnoPu8Nyp2XqOQIJUC14fGwHScuM4VSmUrlUrIZrPmzLHV1VXTt3A4jCeeeAKJRMIc/AkAY2NjyOVyWFlZwY0bN5DJZPCe97wHb7/9Nt5+++0uRat5irZ3pev0IHhUv6fKq+dtff/WU1yHuHHzq2BXa5zKSj0yVVAUIrzezi3iNQp1KMwFwJTq+Ymf+An82I/9GLxeL1544QVkMhn8yI/8CF544QW89NJL+OQnP4loNGqqUXQ6HVMFwe1248aNG3jnnXeMZ9VqteD3+xEKheByubC1tdVlcW9vb+MPTv0BOp0Ofvz2jx8In9iemNvthsPpgNvl7sq30soVf/bYn8FZcRo4i4w6QoiMqfD7HA9a2IzzOJ17idOsGKIn+G5vb5tyUCqIKaDa7bZJsqbnoUw0O0DPOdP5UciMSotVPjQ5nYQTwm2MabESBgDjNZNEs7y8bJiETqfT0NEZC+N47OzsIJ1O49SpU7h69So2NzdRKpVQr9dNxQw7Jsd4I5/PtauFZRXupnfG35lnRuWrnozCvZzPQCCARqOB1dVVLC0tYWBgAAsLC1hfX4fP58ORI0dw8uRJ3L9/H7/1W7+FWq2G8fFxfOYznzH5agsLC3j77bfxzDPP4Ny5c8hms1hbWzPvROo+DSBVolzT3MN8R373INjb3ue99mDrRQAPedMNr43Wq3odSqygJ6W/K1yj1rZ6BnaMjDDe6dOn0d/fj42NDXMMu9vtNmWgCMPVajXjUVHI7OzsYHNz08RGKJB9Ph8AdFnj/B6/CwB/fOaPu/p8UOzA4XDA5X6Q8g7sVZdvtVt7h0R+D6ajp6WQW7vdNonQ9DLVEABgvET1QOiRkOKvMSLb69MfrVPI+bMrrat3zb/p/GjfqCQOahxfjT2xhh9/wuEwksmkSSRX70yhK1YGWV1dxfLyMorFIuLxOFKplKmkovCX7QUxt0zH18yVGCN8d64PvrMaADrfiiBQGTI9od3eP80gFosZr83n8yGXy+H69etYXFw0cdeVlRUsLy8bZijrbnKcXS6Xoc1rMWY7LqteriaT8xr1vHXd6v7ttQdbz+M65E1hEhXaNhFD20ExLd0g3PS2JQwcoAy+B48NDQ0ZWnSlUkGtVkMul8PVq1exuLhoyArlchnJZNIEuYnXs1o3AEOrZ3KqYvntdrurqjbfhyQL+50dDgfgEMKBw9llwQLAH53+I7RaLXjbXmOF87k8m0o9IT2cUOOHVDTqRSmLjBChfXSFQkIKo2rtQoXY+J6qfPk3+93UEyPcpuxRG4piU4WiyiMajWJkZASFQgGlUgmVSsUQUzhv7Mvm5qZhisZiMeM9Mr6jcJ7WhdTka747vUV9R/XsFIbT+ox6D44TY5Ws4K9zGw6HzaGSNJ5WV1dx69YtOBwOjI6OYmJiwrAMnc69s7sSiQTK5bJJkKYiarf3DsrUNalKSJUs54hr2qztTvdxQvZe77UHW09xHeKmcR+gO1/pIBYShZBCVOqdqJelnoQqRhUWGldIJpMoFou4c+cO6vU6arUaXnvtNRSLRcRiMXP8ebFYNEels9rE2toaNjY20Ol0EAwG0Ww24XQ6jWDRRF/1XljyqdFo4E/O/okRTn/nzt95gLnHPC/N5XE4HPjTR/8U0U7UfJf5TKyAzn5rbk1f314FDXqEVCoKZ+m4qneigtvhcHRBkVQohOAIA7JvzE2ikUHFyKYKkL9TqFOZkKmoUJRWeVBGJeeaEBcF+ZEjR5DJZEwdRpJm2E89zZgEB3o28XgcY2Nj2N7extLSEiqVCqrVqukHD7PUeCaFOceG/aISInRMI4HXcP71O4TjOLaaOF+pVEwJKJZ0GhgYwP3793H37l2cO3cOTz/9NAYHB7GysmLINqdOnUI6ncbMzAyy2axJCWBMkTl3GpdTxcW50XFj3qQyITkH7Lu9/3ttv/UU1yFuavFTMfEzjU9QSKlVyuv0/wpZadIwBbOyoBRaisfjXRvM4XCYOn08c4uWLTcbrUun04lCoWAELE8JZt/ZBxWurKWnBBIVRn989o/h8/nwt9/+2wD2NvufPfZnXV6L8Sic7q7xVIFOi5mlnTqdjkky9nq9RplRiVMAMm5E4a9xRH0WPRSNfyjkpx4XBZ0NNQEwnpvCl3YsU39Uiel92NRDUeGogpfzwOLH6vVoEWX1Hil0CcUBMAnnpVLJGFOMBTLOx/nXeB6bjiv/rnEgYN9YUU+FSl29H9ZP1DXo9/sNw/X06dPIZDKIx+NduXgDAwPweDwGJt/d3TVeNffiQdC7elw69rY3ZcOHuoZ67eDWU1yHvKklCaBL8HJhU2AA+zAhhRgVGrBvmdoxAmBfqHfBc9+zell3z+v1Guo7YUHmDKmQVkuz2Wxia2vLCEKfz4dKpWLgIxJG+C+fp5U8NJanyuJ/nP8fhnjQ5+rrEngHwUdas49MNgpGrS2nMKV6JnYcRZlrdrzJ/pttYBwk0JQoY0OLSmRQVhqbCmgt86X31Jgn+6jQJBv77nLtlfsCYBS79o/jsLu728WkpGKOx+NGWTUaDXNkjMb4FB2wqeIq3LketWyZKmkbRud6p4JjDJYeXLPZNHHKfD4Ph8OBiYkJDA4OIhAImDXB+zWbTczOzqJQKKDT6ZgKLHZfVWFxHG0Gocbh9B1tQ7XXHt56iusQN4XwAHQF1gndULDTIqcSUYVnC0Sl7wLdte9oqQL7AsDlcmF6ehqTk5O4ePEibty4AZfLhXq9bqonEP5hiSNa6dlsFsvLy/D7/YjH413PJ2SnNGen02niS1Qm/JwxFBU+PLOJFrCeDKwCgBAk+6rnLXk8HkNpJ71f43G2J8BisxxDHW+dt93dXZOkTEXOedKqCZw/enrq5am3pTl36mVQWShZgZBho9Ewc6I1GZXEYRssSlhRuFZZf6rYFRFwu91GmLtcLsRiMcRiMQwODmJjYwPXrl0z/eT1XA/qrfNzheTYNDWBY8XG+WKOHUtQqUfm8XgwODiIo0ePwu12Y319HfF4HO95z3sQjUaRz+dRKpXMHH/zm9/E/fv38eKLLxoDzuncY6byQFRVRlROHAtlFnKMNVbK92ZNR6Xa99rBrae4DnGz4T31gjQwrdabxrkUDlNrW5UYmwprChYqg2azibm5OUQiEcTjcQQCAbM5/X6/sUhrtZphFVIYMh6mNHKW2qESU2iR/acCVe/AFrAaD6AA4Ptx/Njo8VCB6LXq5VEJUegpzVoJB4RGtV+a9G1b2Dakp/PK99V30xiHes5qpavnZnto+jx+V5WVXm/Hh1Thq5LR7wL7+Us201GhZr4XD59MJBLGa6GA5nNViXHclM7P7/C9+T2dYz7bruhuMxvD4bDxCFutljlYkqWuyEjM5XK4cuUK1tbWTIV77bOuLYV5dY74meYL2orf6XR2sRN1Hffag62nuA55U6u+VquZTcJFrhvZZjMp5q/KTWEhCmgVYrwP40rNZhNvvvkmAODJJ5/E2bNnUSwWAewJgGAwaGJeS0tLGB4eRjqdxvb2NjY2NlAqlQDAHNHB4L/L5TLHu7OiOFmIKkgpeBhzU8iNngYhPr4j+06WH5WiCmElRlBp0VsE9j02ki9Yx46wJ+eHY0ov2GZPMqZCD8HhcBhPVT01tbLtONTu7q55F/Uo+Xf+rsxRjYdpzJHzzlgn1wePVNH7s586TjSGCoWCGWcyD3lvG35lfOnYsWPI5XLI5/OmeC49GIfDYWKmjUbDsCR5soDOL40aGlh2cq8ql62tLdNnriPODU99plG2tbUFt9uNWq2Ge/fu4fLly7h9+7bx2LkuyYJUGJD9IeqheXNOp9NApZwbRTlYKYT967Xv33qK65A3bj4KIFVMGs9QbwnYF0xqsXNj2XUB+RwKQDtZkifhbm5uolarIZVKwefzoVqtGvafFjylsm21WigUCuboEirIWq2GSqVi2Fg+n8/k9tjQkx3LsAP3aulTiTUaDTQaDQSDwQNzm9T7sD0YZVWq96CwLO+psSP1sHQ++N5qSe/u7qJerz8AgakHqEF/AOaATVZiZ3+131SaNn3cjneph6RwpK4btfjtfmm8kQqC3qkaG+wXz/1qt9sIBAJmvAjxKnuTCo+5gryW60OvU48O2D9OR8kRXNdMeKZyVUOCZ49RuUajUUxNTeHGjRtYXFw096SyUtajHWs8KEbFv6snqd6z7fn2oMK/uvUU1yFuGp+iMKJQAPY3AhuvtbPzbdjiYfEuVYrqBTQaDZRKJaOE9MiNcDiMUCgEYD8GFwwGEQwGUalUkM/nu2jADocDhUIBwF4NQNLO1ctR5cv+25AYf7djeTwji0Jeqy6oAtQ4in5GYULPijColi0iiYT9UPKIEgwY51LSivaRglKrZ/CHeXH1et2c1lssFhGJRIyXq7ErZRnqIZma5qBlqGyFyfXBMdC4jI4/gC6vjt/XsVCmId+P1/n9/q7CxsFg0HhZHI9OZ4/dybFnugIP+eRc2EYMUyvUI1cInOPAdU+vLpVKYWdnB/l83lRDWV1dNcex0HuiAcbnqaerRgTnWteSKnxdK4qOcC3rPXrt4NZTXIe8qfeiVhzjT4qb294HBbMGiW2LmYJCvYFWa68cU39/P9rtvQrh9XrdVNHu7+9HpVJBqVTC4OAgkskk8vk81tbWAMB8tr6+jvX1dUOgIIFDYxqspq7EE/tdABhhrNXXVUBRcGvebh6sAQAAtaFJREFUEONvdvwI2LeCOY4UeKThM/i/s7NjIB56FuyPjjvJEIyVkQjBU5CVNedy7VfOD4fD8Pv9Ruiy//fu3TM5UvQOeGiljgP7HI/Hcfz48S4jgJCbvo/G1pSWr2tL19pBSk3jj+r9KUSrkKY+jyWxHA4HBgcHDYxWKpW65iwej2N0dNR4g8lkEolEAvl8HhsbG8hms5ifnzcKTMkd6i2T7MK1znGv1WooFArm1OMrV67g61//Oi5dumSg4AsXLhi41Ol04rnnnuvyAm0IlQam7iuF6pXQY3t/NGoYn+617996iuuQN8XO1arW2Aiv082kVi+w722pkrLzX/Se4XAY4+PjCAaDmJqawtbWlimFtLOzY2rZhUIhRCIR1Ot1oxyVGUdvi5uVOL7Dscfuo0ehQpTX67sp2USVEJU06x9ynPTdNI7H71FQEMazSRC0slWIK8xKhUK4C9iPMSnpwoYk1btVz8Xp3KuYv7GxgVwuh6Wlpa6SVLbH02g00OnsFfV1u90ol8sIhUJIpVJIp9MPvAvXjv3+tqGg/7ehX/sajod66+1228QTmfNGL1DHmEqFsSdljHKsfD4fQqEQJiYmjCdEkk8+n8eVK1ewsLCAmZmZrqom9t6gMqUSovIkfMhctYWFBYyPjyORSCAUChl2YTweN8YY42V8B0U5+B46zgqZKkJC5aTjwettj7jXHmw9xXWImwo5oLtau+Lt3JhsWuGBf6eQVfiRgpmbRPNqEokE3vve9+Kxxx7DCy+8gCtXrmBgYADxeBwbGxtYX1+H2+3GxMQEQqGQqQofiUTg9XpRrVaxsbFhrHx6SBRYrIZQrVaNhU3B02g0HjjbipY1BTVJD1R4Pp8POzs7RrFRENL6peA6CGbiOBKio1Kgl0BLnd6OjjUAcxQK6ysq24x18hR6ZVxPhZPL5UKlUsHi4qI5RVqVhUJhJGqocmq325ibm0OxWMTQ0FAXPKe5aRon0uerAqIh0G63DaFGCSaqzKgYGcdiPwF00eer1apJZmfS7+7uroE8FS6jkVOv1+H3+/HYY491xaC4xj74wQ9iZmYGv/u7v4u5uTm0223DVuU7UpE2m03TBxpV2WwWKysruHTpEo4cOYKXXnoJU1NTeOKJJ5BKpUzlj1OnTsHtdqNSqSAQCBilrcWYqcQ4JvRwOXccD4Vq+Z7quamR1IMLH956iuuQN4UJaU0q3d1e4BRI9CT0TCvgQcta40bqjfHvfr8fQ0NDuHjxIsbHxxEIBHDnzp2uTdzX14dqtYpGo2GgNpZS4t+Bfdac3+83wpQ15TSWRcaXbnJ6QJpLddD78xwxKhw71qMkFVUK/FGyAt9Fq2UoZMamfeQcKISptG/tJ+/PPlGhaxUKPssmmOgzFJpkNQoWzqUyVaGqFr3GDjnn+pnGDzX+qAiAGhdcd7rm1OPq6+szc8RjbshIVO+Tv9frdbOuCFtzvlOpFPx+P55++ml4vV5MTU2Z52mclEqG5I1gMGgIIAsLC/jgBz+IwcFBBINBbG1tYXp6Gn19fYjH44jFYsYbY6xNy5Pp2iPk/TCCiyplnV9VXpxrOzTQa93tB6oO/6UvfQkXLlxAJBJBJBLBk08+iW984xvm741GAz/3cz9nKkx//vOfRzab7brHwsICPv3pTyMQCCCdTuOXf/mXe5ju92l2jox+TqVGqOsgiEG/q5tZYxsqePj3arWKUqmEWq2GeDyORx99FJlMBrVazVTCoIAjVZ/Ba6fTaQ4htKE0wn1utxuhUAjJZNKcpMvEYNK+KZQ9Ho+JAymJwVY+TDYNBALw+/1dycOMI6iitn84TlSeCguSoKHkDGUgqmBSWI7jqTlh9GB4pIt6BqwuQi9KlZ82VaQcW6X3KzwF4AEhasewVKlT8NvpFDZxhgrWXnP08NkvHXuOKz1OKju+H+Fkvh+LOTMuRnr76uqqqX7xwQ9+EB/84AcxPj7edbQI14QqCABGcZXLZSwtLZlY49DQENxuN9bW1tBoNDA0NITx8XEsLi7i6tWrZo/wqB+OryIXCpETvdCUDl1nCh0+bO312sHtB/K4RkZG8Fu/9Vs4fvw4Op0O/vN//s/47Gc/i6tXr+Ls2bP4xV/8RXzta1/DH/3RHyEajeLnf/7n8bnPfQ4vv/wygD2r99Of/jQGBwfxyiuvYHV1FV/4whfQ19eH3/zN3/zf8oLv5qZkCSoepdLq/4H9ADk3Le+hVqftbQDdsJHTuZeTs7y8jDfffBPnz59HIBBAoVDA6uoqNjc3cerUKfj9fmxsbMDj8SAcDhsIhlXCK5WKyfMBYGjPtJx5fITT6cTIyAi8Xi+Wl5fRbDYRj8fN0SAsC+VwOEylDFU0mnulUCDjVxR2fDdV4Pw/x4xj7XK5TIFVACagT4+P486/U6hSmLvdbkNEYaUF5iOpoNN4DuG/WCxmvAEqL72eQp/KRKsxsDixwsjBYNDMs8alqJy0DBivUXo82X/KkuQ7qvdBNIBzy3GlEPd6vYZRSIUbiUTMc7ku9Lwt5ja98847iEQiGBoaQqFQMPdmdYyhoSF8/OMfRyqVwu/+7u+iUCh01ZrUZGT+jTDl3Nwc5ubmsLq6ikwmg0QiAQDI5XKoVCq4e/cunn/++S5yEfeKJs7T2+K64DhTyamBo7EsGg6agtLztv7q9gMprs985jNdv//rf/2v8aUvfQmvvvoqRkZG8Hu/93v48pe/jI9+9KMAgP/0n/4TTp8+jVdffRVPPPEEnnvuOdy+fRt/+Zd/iYGBATzyyCP4V//qX+Gf//N/ji9+8Ytdgc1e22uan6UKSTFxbhRueLW8NR6hAovXUziqIuMzeDx9PB43/WCFASqmkZERAHtC0uv1IhaLodPZO0SSyasU2qRuU7A1m02USiXs7u4ik8lgZ2cH6+vrxpLWd6VwpULjMwkrdjr7uTrKUFQ4yw5+q2JQBUEFR+FBhaNHyWvs0TYE7N/tvug8qICiF8q4Et9RY0XqnajnCMB4m6p4lIpvQ8OquLWp8XNQDpztoXKdKRSpxAyOoe1JejyeLlagVk3heDUaDRSLRVSrVUNW4bgAMEoe2KvKEY/HjYLhO6qRUK/XzVoKh8Nm/eVyObz11lu4ePEi4vE4lpaWMD8/b44/4dyrh0pjiePCZylMSONMiTu2waRQrq67nsf18PbXPkiy1Wrhv//3/45qtYonn3wSb775JnZ2dvDxj3/cXHPq1CmMjY3h8uXLAIDLly/j/Pnz5rhvAHjmmWdQKpVw69athz6LAk5//qa0g5hfuinsa5WQQU+DG4WQk1r6ulmUIcXio9PT01hbW0OrtVdLL51Om4Kjs7OzXZBjX18fwuEw2u29Q/tYIsfp3DvChHlV6gVSMPn9fmPxUomwXyqwSAQgnMIxIKuRngAAA/FpVQX+q9AdG/ulLDwlNyjhQZsKGh1Hvjv7pLCfJltzXt3uvbPCYrGYUfL0KAmVqoGiTUkSCllyfhU6VCabzv9BVj5p/spuVIPChhb5Gdcf4UF6zqp0VYhzLhXa4zwyYZ2eJPtBOJinLvv9fgwMDMDv93clRisqQdjS6XQiHo/D4/EgHo+jr68PV69exQsvvIDLly/j5Zdfxttvv21gQ/XSOV5qVGrupMal7XVirxX+zvXO7x8ED/fafvuByRk3btzAk08+iUajgVAohK985Ss4c+YMrl27ZqAObQMDAya/Z21trUtp8e/828Pav/k3/wa//uu//oN29YeiceOT1aWbRs934qaxN4cNaXEzU9hoHEiD2hRCv//7v49oNIrBwUEAe5bu+vo6stks+vr68Au/8AuIxWKo1WqG2s4Tj5loHAqFEAwG4fV6TdHXTqeDgYEBJBIJ1Ot1LCwsGDhodnbWVJCn8KLyALpZWqTbU0kyDqGJqmSuuVwucw81AmwGnla60HHj93SMKbAJsXLsVKmqAAVgGHvafwpBCtLBwUFsbW0ZI4IBezsXi4pC4UtbGamybLX2z/yiYqRxoIKXCoWKX5mSSvzhZ2ogqOdKD5nzx/GylRoNMS3/5HA4zNxxzUejUTNmpNOzFFp/fz8+9alPIRaL4Wtf+xo6nQ6i0SgKhUIXhEdY9ejRo8bbv3jxIgBgdXUVV69e7SIMKWGCe0WNFLJxOXacCypw9bzUkCDsSuOFsCKNxx5c+PD2AyuukydP4tq1aygWi/jjP/5j/NRP/RS+853v/O/om2m/8iu/gl/6pV8yv5dKJYyOjv5vfeZhaSQAMIaisS7dIEA3hVZjXAoN6mYC0AWp2NY477u5uYlyudwFRVII0LrVqtyE6yjYuCm5IRkP4HHxPp/PnNlF74LkED0byxaWCsmw78Vi0UCUjM/oOCihguOp8T0qSo4Rk4X1dzsYz2frZ+qZ6Ofs+0ExSoXoYrGYORJGY1NsmgRLKIzpARwj9fR0/tWqB7qPkWf/lDTC97EVpvb/IKiZc8+m3pkiAFQG6tXwejUkOp2OiRfq2lIiQyaTwfj4uHmGwqZsdn1GrkWuG6Zq6DO5ZvlM3TdaDJpNYUUdH/6rc6demhqRPcX18PYDKy6Px4PJyUkAwHve8x5cuXIF//7f/3v85E/+JLa3t1EoFLq8rmw2a6z1wcFBvP766133I+uQ1xzUSO39m9i4iBlEV3jGFhjqedkCVQWVbgoKYhVMGiOiMAFgLGIAKBaLCAQCqFQqcDgcXUJThSTPNiJ9XnN2dHM7nU4TmI/H4/D5fFhfXzeQI61q7YuWc1IGmtvtNoF/3l8tWHo7jI9pTUCbqKAeKyHPTqfTlVjN96nX610QptKfVdFwHG0KuB55Pzg42JW3xXFjnEiFr8OxV5yWBx7yh+/HdaCxH/ZNizWrF8F1wjnic5SpeBCTVeFR3kfjPAC6ctDo7Snpgfeml1culzE/Pw+fz4fjx4+bdArOqxojoVAIIyMj8Pv9Jv5F75J9Y2WVjY0NUwFGDR6FAe31oqxSvi/7rmuaXrx6Z3Z/VUFzLAl3c23YSrfX9tpfO8bFRjjhPe95D/r6+vDCCy+Yv01NTWFhYQFPPvkkgL3K4jdu3MD6+rq55vnnn0ckEsGZM2f+n3blh7Kp9U7oy7a2bctMBYAKI9uqVe9AmwovoLtmoAaZFY7TzxiXCQQCiEajJnlUqwXoOzGpmDR5CnbCi+12G6VSCZVKpet5LKlUr9dRKBRQrVbNqb08g4n9VeWh46WKXt+dtOyDkpHJkKN3xrHh3OiPKibtC8dV41C8l8Oxx6gLBAIIBoMIhUKmQj2VjtfrNWPM6zT2R2OP/VJI8SBigK4DndeD1pWuOTU8+B76Xsq05HUUzJxHevB6pIx+b2dnx5CB9B7sCz/TWB6/a8co6fXzaB4aBRqv0nWvhBpdM3a8WL1SXUcKu6qyUi9f513jjva+7LX99gN5XL/yK7+CT37ykxgbG0O5XMaXv/xlfPvb38azzz6LaDSKn/mZn8Ev/dIvIZFIIBKJ4J/8k3+CJ598Ek888QQA4G/9rb+FM2fO4B/8g3+A//v//r+xtraGf/Ev/gV+7ud+7m+sR/X9GmELFYA2O0yhB7VqNebF31XIqCCz4za8ntdQeFDI2NdQWAWDQZRKJbjdbkSjUcRiMaPMWNCUcSB+B9gLmFMRUEC4XC4EAgHj/TEwT1hIBYLGilKpFILBoKFqA/vldXg9x0CVuo4lrXd+j4QHhRsZG1IhrjAuv6vxLYUYdY71/0ogoYLkmKvHqdVA6HFRIagwtT09hfu0qcBWD1TnQ9ca70uFZXv6tmGka07HmO9ND5RntqmXQq+YJccUsubY6PzxvlTkVE6aH8XYmp5SwBii7iPth20w2mOo78xr7Xws/Tv3gD5L49Q9qPDh7QdSXOvr6/jCF76A1dVVRKNRXLhwAc8++yw+8YlPAAD+3b/7d3A6nfj85z+PZrOJZ555Br/zO79jvu9yufDnf/7n+Nmf/Vk8+eSTCAaD+Kmf+in8xm/8xv9v3+qHpGlsi3UBFU9n7g9hGaVN63e5ERVeodWquTncpDb7jBax/TcKGMYdxsfH8dJLL6HZbGJsbAxra2tYWFgwZ27R6+I9SQggLRrYzyMDYALfPp8P/f39xsPR1mw2UalUTD5ZMpk036WFzeK0jFdQgKkysuOGWu2D0BKNCIVMVYkpjV3niTESYF8QMlFWhR0LzKoHwtSDdrttCDoM4nPOXC6XqetHwafxEt6PzES+J2FdTVFQRcS1oTEvGi+qNNS75DpRRaZEF84N4UFlE/JefCct5NvpdIzXrcnLnU4H5XIZwB7pZXNzEzdv3sTW1hbS6TQCgQDy+byBTaPRqDFKcrmcGc98Pv8AREzvjCWjbIXM8eE4cy3wfWnwcZ441qrIVElpXLGntL5/+4EU1+/93u9937/7fD789m//Nn77t3/7odccOXIEX//613+Qx/6NborPa3IiNxcVwUEQBDcDsO+B2ZtCq6Pzem5CClndyPy7ei88VBHYz1Ei1Meq5lRCVBasHReJRLry93Rzq2LkMxRSIVxIpaLQGN8NgFFctKY15mJ7H/yuHmeh8B4tc5I7qJRUEdkMNvUK+CxVGirgNf7h8XiQSqWM96heBeEveloKXdretBJFlFhBoazelN1sr169A4U51QDQv/NHvUb2T+OJqujtlA3+8AwzwsD6Xrx2eXkZs7OzD0DEXJOt1t4ZcZFIxOQLulwulEols2eojGwPSD1eG23g/9l/jRnb48jvc1zs6w5aj73W3Xq1Cg9546ah1Qd04+IK2ajFq0qKP5rZD3RbyrqJuHmB7hgZP1dlWKvVMDw8bO5NdlY0GkUymUQulzPWPz0jHkRJocH+Mi5DIe33+01sh8/W/CeF8wKBgKm0AOwpHkKNpOqzH/TweAIvg/18hnqs7BfHUyFTVuxgPT1a9ZqrxHFXj1cJMwojauko/j8WiyEcDpuK5u1227wLFbp61eqNqxeg7DxVrraXwXdUuM3pdJqSV8A+TKlCVT0JNT70GerFaT90vFQZut3756VRKVarVXMUDL3ecDgMh8OBarWKV155Bffv34fX6zUxSqfTiVAohHQ6jYWFBTz//PM4e/Ysbty4gYmJCdRqNSwvL6Ovb+9EZBpFGttVhc9xUQSD86rzbntNDsc+u5bxXVXg6in32vdvPcV1yBs3ETcPmw3H2Auem4jWI4AuocC/aXzmoGfzXxvSoBJpNpsG+vL5fEgmk6hWq0gmkwgGg+bvVJKEcPx+vymrpIFxVbBa4Z1lezSfiQoBgFEYFNYa57FZWhrzUdhP43201tknFSyqgOzkaIUf6RHYjDwbpgT2jQgKejumSEWjfVGloP20IULOowpS9SaUtKNjqGtJleLDYl0av+L9NO2Av6ti5LvZa9f28vmuHG+uHa6LTqeDYrFoahgGg0HjdTmde2xQnmJQLpdRqVSQy+VMTirPA9P3U+XDdcH31FiyzRzUmKkaFBwHjYvqfuTvCqv22sGtp7gOeaOVBqBr03CBE87iRrEVmuYfaQzHhjpsiMIOkCukoZ/Rom02m3C5XMhkMiiVSkilUohEIl2BfgCm+CjjFqpYbSGn1jj/rzETQoUU4spk03gYYTVlMCrzjpR9jb8BD8JBFLDq4ahRoYJJ31khMPUm1LtV5cZ3phemwk69GJvtqXOp8wjsKxntD9eH1l8k7KpeEv9mEwn0PVXB8lnab632r14h50ebjhe/z/6ooaDeYr1eN2eZqVLkGJGByeN4lpeXEQwGMTY2hmq1aspG8X4K++l4qfd/kEGgUDavP0i563wrzMr1/TDottf2Wk9xHfKmyaTcwLQ01TqjF6RWI70ioNs61k3JjULhz8A/FQrvr9avel0rKysAgEgkgrt37+Lo0aO4ffs2jh07hnQ6bWrvhcPhrmA+T6ANhULIZDLw+/3Y3d1FrVYzXoJd0d3hcHRV3WZFeqfTaeAi0p7pmTkcDnM8fL1eRy6XMzlomUymi3nGY+IBdCmTSCTSFdMDYGA7FeaqRBT+0TPJeG0gEDDPVbahwkVUYKpYdC4dDoepwkH6Op/DwsS2t64wKL8HoCs+yHHsdDpdxBB+n2tD87Hq9bpZp4Q1o9GoWSfq/amwppdKVijXrgpzfSZLP/Fzwqpzc3N46623DKllY2Oji03IOoavv/46QqEQKpUKnnrqKUxOTmJmZgYLCwtmnfNfGy6nIuXc8P8cG8KMakCq56prxP6c40KIUg3EXnuw9RTXIW/qfaiAVA9Jr7GD3rZlrILDxu7tWnwHPYc/FKQbGxuo1WoYHBzE/Pw8Go0GstksisUiIpEIkskk8vm8SaYFYKpz0/txufaqsZfL5S5Iys6DArrr49meDf9mU6QVUiPTkIKX3qJ6Hny2ejtK5rA9V46TUuBtAa3xI461eoga/wG6c4j4Ha3qQWWnSbFUXEqL1xqDOkbsJ4W/QqlqYGhsU8dEmXK6BlVo699tsgSArpigpjvweQp9csypWLne9dDSjY0NDA8PIxqNdrEGfT4f4vE4QqEQGo0G0um0gbN9Ph9yuZyp+GIbamqk6bqjQajw4UFEDvUweU9VbrpG7PHseV0Pbz3FdcibWuFAN4yiVpkqIRtb59+5GWhNawDfhmcUouP32Q9WY3C5XMjn86jVakilUpiamjLKLJfLIRgMIpFIGDiTgpUKQy3xRCJhLGp+ZsfnFJrh/aiA7L9RIPO7/D9JHEzaBfaKuCoMp5Y86fDqLXBcbKjIFqqqcDXuRAWl8KaOh8KRhMZ0/lXJMoaoBAGF/dRjtyFHVfAUnjY0zL+zz8putD0LhVR13SqUre+o5ah0jakxomNOgguVG+e9Wq1idXUVuVwOx44dM+dyXb9+HeVyGT6fD5lMBqFQCK1WC+FwGNls1hwSmcvlUC6XH0AxdP2rx32QQrHhQvaRNHp+z76Pwo5EU9Rg6LWDW09xHfKmEJ4G/O3gvioyFTpANzbPpqQGbiy12ClIdbPpZqIgnp2dxczMDE6fPo0rV65genoaXq8Xt2/fxujoKMbGxnD37l0Ui0XzDuVyuau6RbFYxPDwMM6dO4dcLocXX3wRTqcT/f39RskRbiMxgxBhIBAw9QyVhKExA8JmABCNRhGPxw10Wa1WsbW1Zej0ZCaS9bi9vW3Yh1r9gblECq9xnLVQKueG3yPDj8QOvh+V60EeGOeOVcrVUieRRdeD0v55H8YgbW+UpxHzEFDONRWjVpugwuFz1evS8lT0Djke6mlwTfNZ9GRIVefZZvSEFWJtt9uIxWLG4KBx88orr+D27dvY2trC3bt34fP58Pjjj6NUKuHOnTt4z3veg0ceecQciupwODA5OYmTJ0/C4/Hg5s2bWF9fN89gH9UY5L6wEQeHw2EKDCv0znmj0cb9pcYNP+NYacmpntL6/q3HuzzkzQ6OK4EC6KYeK0TF79rCg1agxkQoIDUnjJtVN7M+h/ff2trC2toa4vE4RkdHUS6XEY/Hkc1msbW1hVgshkgkYmAhAKZ+XDQahdvtNl5WIpFAJpMxSjMYDCIWiyEQCDyQS0VBYtPPdVzUK+A7kGLP3J1yuWzurXAQx1WfoSw828Lm+CizkIJYDYCHzSPQnb/ExrlTz009SO2HXsf3JQFF51SNH/ZX51kVl76jri0+D9ivK6hsTz6Hz3jYuPFzHRcbjlW4mzR4eibVatUcPeL1epHP5zE7O4vt7W2zdo4fPw6Hw4F79+4hmUwim83iyJEjJqGfVfh1HrWfCqXqOlNv0Z4LjUvyOo2Z6Vyrx8x1TSOs1w5uPY/rkDdazmqB2vg3BYD9N7VW9e8a11AGFtBN6tBYGO8HdCdFb2xs4OWXX8aP/uiP4hOf+ATW1tbw6KOP4pvf/CauXLmCJ554AjMzM9jY2DCCe2trC81mEwMDA6hUKtje3kY2m8WJEyeQSCRw9uxZAHsnbjcaDWxubqJUKpkqGrRkw+EwnE6nydVS5ehyuQwkypynQCCAVCplIMlyuQyHw4FwOGzeneOhQpb1EinQge7K68pgVBIMn30QC1Ete1VCen96WfRUdX5ZQ1E9Nj0CRNmkfB+FCbkOlKFHxcP1ofEpXsN1SGWys7NjKOl8DvuvCke9Dcb3lM3Ka7T/VLpU/m632+RwMS5WKpWwvb3dRXdfWFjA7du3US6XMTg4iHPnzmF6ehrf/va3ceLECaytreHo0aOGTbi0tNSl9JUkwffmu3AMFQZUJU2vXNNAOHeMR6py5hhy/dl7utcObj3FdcibegwqBNWCVYjPtmybzWYXTq+WvkI2dnCYXg8Vn24uhVEcDgfW1tZQKpWQTCaRyWSMotjc3EQoFEIsFntAQJZKJUNDZ/kf3jcYDMLv98Pn86FarZrKGzZ5wO/3m/7yGhW2WjKIMCDjNCzPROhOx1jjYwAeKKmlc6Ier3osGtdQb4afAd3FbG3oV73bg37UQzjIwLDjXqog1NOhIOV1/I4mGav3w3t9Pw9Kzw/TZ3Bc1ePjs/V9dK0q7MaSVQDMHFarVezu7hVEpoID9o7icTgcGBgYgMPhwPT0NPr6+rC5uYl4PG6YuUwe132h8wjAwJc25E7DQL0rGgz2fHAsuWdYBd6+F8dCkY1ee7D1FNe7oKmVphuaViCFqQbwFToEuo9fsAWsQiT0YGzGHq9jnESJEfl8HrlcDoODgzhz5gzu378Pn8+HUqlkDhe1g9J8hlrltFZJiW+1WqYqOGMBFFBUOlSsVNDKQNve3jZeGune+XzeCDoKT44bx049Do1bAN25WEo20e/rmKkwUthP54XehyY86/M4Tup56Zzod9Sz5nN1bjnvVGz2GtC1xu/b60hhM64BhRf1WeynogD6fnbTd9N+eb1eRKPRrhSCfD6Pra0t1Ot1lMtlVKtV049ms4n+/n6Mj4+jWq1ic3PTpFwMDg6ad6hUKtjd3TVVM2xSk+45/l/JS2o8cJ5s5INjbMPuByEeCiv2FNfDW09xHfLGDcAArpY5omCk4FVMXQUSBQVjDQpT2TExfqbJuBpkVriR8M3Ozg5ee+01HDt2DI8//jj+7M/+DPF4HMvLy2i32zh27BiGhoawubmJTme/wCyPlqjX6yiVSgiFQsYa5vuVSiUTg+BGp6ChANEThUniIGkhFAohHA5jZ2cH1WrVFFN1u90GdrThPSp5LcnD/jC+QuFIKI8wkQo4mwnJMWVCNEkeGpznfBYKhS64qtXay33jXPP7vD89EN6b91Srn2Onyl3JGsA+NK3QmMJoDocDgUAArVbLwJUKe6kHCuwr+kajYfqvxX41lqb3AfbraNL4icfjZiwajQauXr2KVquFiYkJ7O7uYnNz05BM3G43HnnkERw9ehTXrl3Dzs6OMaCofNfX183fNAbMd7IZhdyH6omyn53OPsFEIU/2Re+p3j3XlxqWnAP1gHutu/UU1yFvZG8pLKPQklp36i3oZlGheRAcYwfAgX2lBnQfg2J7fBTQ8/PzWFtbM6fPMiGVQfJYLIZ8Pt/1DCpTh8NhTliOxWIYGRkxkGEoFEIgEEC9XjdWMgP+yqizBWGn0zGUd+aM0QOjcNWmSprjzntRoGiuk46Peg8KhdmkA/WYKMCoxPl3zgs9S8ZzOO/KSjvI22ICtv5dv8v+8kfhR1UavE7vocqIY6QwoK4pGypTSJLxQe0TlQOv5Q/HThU8lfzS0pIpM9ZoNBAOh83hkUyx4GGnVJ6Ejn0+nzm9gO9ir2vdXzpO3Csaq9J30LqQuu807ml/z56vnrf1/VtPcR3yRtycwWp7U1GBqeelApheAL0ECk3+aKyGgkKhMioa/p0ECHo2/P/U1BSuXLkCv9+PS5cu4datW0in08jn8xgeHsbZs2eRzWaRy+XMplxdXTXnTS0tLWFhYQFHjx7F+Pg4stksvF4vJiYmTHJyuVw2ycy06vv6+kwhXkJCjJlR6fE4DGDfOmajoGDsKxwOw+12o1gsGgWptHYKW4/HA7/fb05E5qGWvE6VFAU150aVRKPR6FJMes4W+8R4Hcef3pbGkFQIqvJhf+x3teN1pNrzevUcKWzZSOAAHjwwURUP1xefp0YDlTPfWYkL29vbZiwdDgdCoZCpfEEDJZvN4q233kK73cbFixfh8XgwODgIp9OJu3fvYmJiAufOnTNr4MKFCwiFQpibm8P4+Dh8Ph8WFxcxMzNj9oSyQTWfj+tfjUW9lu9JQoat8HUd6LsD+8qfCl/v9zA4tdd6iuvQNzsGoV6QWnIUMhr70jiMLazVygP2CQh2vMNmqanFyO/TY1pbW0OhUMDo6CiWlpawvb2NtbU1pFIppNNpJBIJ5HK5rqoDjDHk83ksLS0hn88jEAiYvvv9fiSTSRMDUqUF7AlZEi+cTqcpoGpb76qolTBgx1/Y9G92GR4VdAq7KbSkyojwnHoVjNOoUtD55HUshaQwI70VfSeFNBnvI7TJflBYsvG9tc8aBwPQ5eWowlXPm+OlRpQqRcKumrrAPum61iRvPW6Fpz1zjiuVCkqlEprNJprNJorFIgYGBoxiCIfDGBkZQTweN55WJBJBMBjE8PAw4vE4KpUKNjY2UKlUusaBTdENZRuqJ6hzbq8xW+noeOjfFO7lulJqfK8d3HqK65A3CiVSu1VQKBTBz1QQMyamAWMV6CpMFZaxYUfbeubvVCadTsfUAaxUKkgmk4YxuLa2htHRUfT395tjJRgb4/23t7eRz+cxPT2N5eVlHDlyxEBkhL1qtdoDOUn0cgKBgBFYegglPSFCq4RcD2Lb8XeFrhQe4j0UbtN/KXApmJVwQataLXb1euzySaq41LPhPVW40QNRj0jzxvjOOzs7hnzAs8b0nemZa6zFXie6Hg+Cp3mdnmOmsUP9Hu/FNazJ46oYySbU9IxSqYRcLmfWPKnwvGcsFsPg4CAAIJ/Po1wum/elQiwWiygUCkbJK4Sr4895ZbzThg9VYdnQOseSY6sGC9ewGjsKrfba9289xXXImwoUDdTydz1xVYWpllWi0LM9rd3dXSMUFHKiUmHcRT2Lg2JrFDYkUpw/fx5jY2O4ffs21tfXMTMzg8ceewynT5/G5uYm3n77bQB7kBMPnMzn83jjjTdw5MgRnDlzBvF4HM1m0xyWWCwWTcIovSAyBOv1OuLxuKl+oUJvZ2fHVP7WMk8cS8JtLpfLkA74o8xHhVBt8gb/rrR65n6pJ2N7ZpwrNQb4bLIeA4GAUZj0TlVosmoD+0mPlMqW9R+BfYq7rgG+Iz0LrXPY6exV1FDDhWuP31XlxL/Z5AU1QNQQUAOC/2d/+Ayv14v+/n6Ew2GEQiFsb2/j/v37uHnzpvFGS6USgsEgPB4PkskkTp8+DYfDgW9+85uYmZnBxMQENjc3cevWLZw+fRoejwczMzOYm5tDtVo1+4TzdhCTk5AxjQFbCbPZCl6JLar8eC3XnhpKjN/2FNjDW09xHfJGBUOBY0M5KjB0oVM46OY5iD14ULxHLUi1Pm24q9PpwO/3o91um0P7tra2zGGRrBS+ubkJp9OJeDyOoaEhXLt2rSvWwz4VCgWsrq4aD7NQKBhBysK8FKS07BnzYWkihTmB/fgO82YYwwK686mUnkyhzPdUdiChOoVVlWTA+6pw4rhpmoF9uKMaHvQkCZlRsDcajS6qOb05zheNFd5LK1hoJQaFomzFQ8NFYUD1Qm3yhe0l2FCsjRDwGvXyNTdRxxrYr3TCOa5Wq8jlctja2jL9n52dRa1WQzQaNUbP/fv3DSztdruRz+fR6XSQTCbhdu8da7KxsWFiU7q2bYXEvaK/8zP2244XH7RH1TtTA0bv9VdBjr2213qK65A327PhpiAD7SDLT2M5urFoRZPCTs+F/6oyU+XFe9mKjM8H9oRhuVw2Jx4nEgn4fD60Wi2sr68boXHkyBF4vV5TtUIp37VaDSsrK2i390r7EN5yu93GU6rX61214UiSUGVkB9F9Pp8R0GyqKFTBK+GBY8nPARjPwYZUdYzs61SZaIyLECHnRq11Pq9erxvLnAYMm3qLHo/HxLNIeuDftKKDjoEKWqX8K9SsY6kGkMandDzYP2XVcY5VQKsnq3C0jqvH40EoFOqKjW1tbWFjYwOlUslcTyXWbu+VEXM6nZidnUUqlcLExASWl5fR6XTQ399vKPXz8/PmRG4Sn1iuShWKeogKj+tYsc8Ki3KN8d1s5WevLTV0esrqr249xXXIG+ELoLsCvFLkFa5SyIl5JfweLX7m+ZAFBXSTM7h5CVsc5O0pO4rP3NjYwNzcHHZ3dzE0NISTJ09iYWEBOzs7mJmZwYkTJ3DmzBlMTk5ienraFMpttVqmoO2tW7dw9+5dnD59GqFQyJR64hgAMBUTGK8hs49KWKsrtNttw0bjybsaH9PYicKl6qGyKgebUs41xqUQJYWbQkVU5BTmtsDiONNjtWE9vSfnMRaLdRFBCNs6nc4ugc9n8vt8JqExjgkNGjbmyDEHi/dXg0k9OvW2WM5LmZL6LCpcMl65rtgymQzS6bQZ73a7jcuXL+PatWtYXV1FJBIxdHcAhsRx+fJlPProo0gmkyiVSlhYWMDQ0BCOHTuGUCiElZUVTE9Pd40HWbJ2nI7J7jQaFNpThaSGC3+UScp3J9SoDF/b0zsIDem17tZTXO+CpsF2YB8bp9JSoQF0C1M2bipumoPiHSqcKXz4bIUvgH0WGeMMVIyFQgHFYhHxeByZTAbVahXxeBwzMzMYHByEw+FAPB5HMBg0Ne60InilUsHdu3eRTqcRi8VQKBRQr9cRDAYNdEZhyv+Tkq+5V+oJEU7U4LnH4+nyVvg3vi+v03GxoR19Bsf7IChNx8z2Kkj7pjCnAcJ6ftq3er3eVe2CXhZp9apwCaMyKVs9GoX+aLCokFTP2l4jqmxtb189VR4mCeyfXKBIAMee91GlxzGIRqNGaXk8HtTrdczPz5tKKuwH18Dg4CC2trawurqKj3zkI6jX65iamkIkEsHExITJ91pfXzd5g9pn3TNKorCNCyIWNBBU8ejc6r86/wpfa9OxVHSl1x5sPcV1yJsKB024pcejx0tQSFLgUKlo/hGtPM1N0g3m9XqN5a1CTj+jsKQC1Cobd+7cwSuvvIIPfOADmJiYQCQSQavVwt27dzE0NGTIF+VyGdls1vS92WyiXq/D6XTiS1/6EmZnZ/HTP/3TGBgYQDabRbPZNEQOKiKtAqEQZyAQ6CoBxfFSYUxhZ1ci4Zjwd1rK9Fg0h0rjaGpIKNmCJA2NRbFqh8b5Wq1WV+4SY1xagUGVKL3dUqlkPmO1ffXyGo2GEZA8ikUhOmXwaeFgKjPCjsB+nIpeK7DP0iN0Te+VEC+rkzBfjetGWZ5KOW+324hEIhgcHMTAwICB8XZ3dzE1NYUbN26YorqVSgX5fB6ZTAaPP/44jh49iq985St4//vfj0qlgtdeew2FQgE/8RM/gWQyiZ2dHTz33HO4evVq197g+PL/qjw1xsxxIDuTXi3Xj7IpOV+cD64hNQS4f/k8epxcD7328NY71uSQN7V2ubkVS7cTIRVvV2sQONjiPyhWpbCgQiJs2g871tFqtXDv3j1zdHoikTAbeG5uDs1mE0NDQ8hkMkYoK8QZCoUwOzuLl156ySQhp9Npw+LT2oNUwMruozfF2oRKR6eHU6vVTGUPClNWOady4/cU/lEPiuWedJx1rljwVSsnUKjxGWpIuN1uk9DMvrdaLdTrdRSLRUPrZokpPr9YLJoyR7YXrfE6nSN6Y5qjRa+dY2p7ImyaY6XECiWo8HMe2qlrVhWhjivHJRQKIZ1OI5PJdDEkNzY2cP/+fRSLReNF83gev9+PdDoNp9OJVCqFyclJ3LlzB7VazXjuLtfeMTb379/H1taWeQ99b13XXOcHIR32XKvi0X3G/+v9Oea8j8KuXBMKK/bawa2nuA55U8wc6A7oarBeYxSqkNSLOAiyULiECoTXs1GwKjwGdJMICN85nU6srq5iZWUFlUoFwWDQBMZnZ2exsrKCRCKB4eHhrviSkg4CgQDu3r2LGzduoNlsmsMOSRHXI99VYLhce0ddqAfIGnkUmM1mE9VqtauShl33j7ENemN2/T9gn7atwl29YwrpZrP5AHRL+E5z8Fwul1FcgUDAVMfnXJO1yT6pp6iejSorm5DCudR8M42R6rvb39N551joGtF70dPUnDu9hxJjVMi7XC4kEgkMDg6auoIAUKlUsLCwgHv37hnvUaHHdDoNh8OBubk5PProowCAjY0NJJNJnD171iitpaUlZLPZrioeakxoHFAVlCpoezxsw4TXq/HH6zW+p2Qo3Zf6e689vPWgwndBs5WJCgh6IbSUuVm0UCrvod4ENwdjKPxclZdak3YciM/XOABhk/n5ebz99ttIpVI4ffo0rl+/jk984hN4/fXX8dWvfhX/7J/9M5w4cQLHjx/HzZs3jWIE9nJyWAX8d37nd7C0tIQPfehDGBwcxPLyMprNJnw+n4n/EHKr1WoGbiRxw+/3GyIH31XHpVwuw+/3IxKJGKGlsCHH22aFKZUZ2D97iQKQZaiotGgUEAYiW1JhWiocKoRQKNQVx6Owo9LgHGoeX7VaNdR+3pNjBcB4GFTuDseDVcjVa2q32+aQTzWg7OrvquQYt9TakRTifD9CjgoRhsNh9Pf349SpUyaZmHDe66+/ju985zu4c+eOgRer1SpisRhSqRSOHj2KGzduIJvN4h/+w3+Iy5cv4+LFizh//jySySSmpqbw4osv4tatW4bsQwiV/bUJEg6HowsSZJ+VfKNpAwolKjSvMTIloLD0mH6Px/QoaarXDm49j+td0FRxqXUGdMMt6hFpHIwChNcrRdeOdelBinxOp7OfbKregypSPQuJsYdarYZMJoPh4WG0Wi0cP37c1AHs6+vDsWPHEI/HjSKm0KZQyWazePPNN3H9+nU4HA5Da9eYFunugUDAHC4ZiUTM6bd6CCQFJ4v+Mi+MUCYVm9aU03dXT0Y9BZu8wfFRr8SG7RSipSfYaDQe8KoAGOWlPwpzUXFrvUHeX2FB7Ztt2atho7Euep46hjbxQj1nXR/qgfAZOiYK4fL0ax4OynuzDubS0hIajQZ8Pp9Zb+FwGBMTE/D7/cjlcshkMtjY2EA2m8XIyAii0ShcLhdmZmYwPT1tqm3Qq1QDzvYM+RnXJcdPyRX6TppuoLA972fDrlxP+q+9r3rt4a3ncR3yRmuOG5xsLCoWWm60xikcldLOTUUrUY9mcDqdhhRAAcQNzU0J4IF4D6+nJ6YeRKPRwPz8PFZWVvDoo4/iYx/7GF566SU8/vjj+MAHPoDXXnsN58+fx6VLlxAIBPD666/j/v37pq87OzuGYPHqq69ifX0dTz31FOLxuKkwTyXD8eDpv5cuXTICo1wuY2dnB5lMxuR+aZ1DKjWOBRUHxw+A8X4UslMvyjYm1Esl9EMIl0JbLXB7TAkx8jolQnBs6LHxetbsY9yP/SZZQBlwNsTHGJR65+qBaJ/1BG5eR8XFcdOkal3DHGdVVoFAAPF4HKlUCmfPnjUpERy/QqGAu3fv4o033kAulzM1LKvVKhwOByYnJzExMWEKOj/55JP47ne/i3Q6jRMnTqDdbuPOnTv4+te/js3NTTNHupcUIrbjShwb9cSB/YR1/T8VDmNWJJTYxp56afpcrjn+345L9lp36ymuQ94UarDPDSK1XRlairFrkJf/p7WqEBWALkWmkIlS8fXZGqfQflIAVioVFItFtNt7eVTMnVlcXEQsFkOtVsPo6CgmJydRLBYxOzvbFWejN+V0Og1BIZPJmHFgbIqWM70QhR3Zz3A4bIQ7K290Ons17aiw6vU66vW6sbBZK5FxGnpAmvjNcQP2hbMqII6bHexnoxBXYa8EEI2VKflEhRrfn+9N5anPpoK0613ahB/b+td+a+xUhasSLQhj0pDSNcZ+U+H29fWZE7P7+/tNbUuFdVdXVzE9PW2OJSFbkd9PJBLY3t5GtVrFE088YUpCTUxMwOv1YmVlBVNTUygUCsZ74x7RMVBvR6FAZRXqHuK78PtaD5TjxjmyCVIaU7a9K91Xer9ee7D1FNchb5qQqfRvhV+42biBNDCs8QTeS6nZ6iHwfsD+JlbmG5sGxhXGpBDudPZq3G1tbSEQCCASiWB7exs3b97E7u4u3ve+9xmFmslkUKvV8N3vftcIQd43mUzC4dg71mJ5edmUlyLVnSfaso+alM1+srIG415UAmw7OzvI5XJGmScSCYTD4a7jSqrVaheMp14Sx9cWRCSScGzoAXG8OCccMzYqB1Ue/NGyVjZJhPfXe6gCpHdszzH/rzE+W9jaHoANB1Ix8ZBNxvZsSI2K3+fzIRqNYnR0FAMDAwiHw3A4HIaAQiU+OzuL6elpNBoN8yw9IDQUCmFjYwPDw8MYGRlBu71XceXIkSMm5+v27dtdipeGh93UC7aJSbbC1utVOXNN8F25bxQW5nfUANS/6X7i/Pfag62nuA55a7fbxuoHuo++sL2fg2IsFOT8P7+nXo0G81Uga54PgC5rlJa1egOExXw+H6rVKu7cuYOdnR1Eo1GMj4/D6/XixIkTqFarmJ+fx4kTJ3DkyBFMTk5ibGwM8/Pz5vDEdruN06dPIxgMolQq4U/+5E9w/vx5fOITnzBeEovmEurUHCuOnea5ORz7JxjznUulkqlhyEoMJG4wbqRVIzgOvAfHg4pTYTL1UpU2TuGo56uxcQ4ZW7KJD1pTkRR+Ki17/hWKYkKzeh32M/l/9bJZsYSfaf91Hfr9fqOY1eOgAqaBMTExgbGxMaTTaaRSKcPuq9frqNVqZp0uLS3hueeew+LiYpcXzXgf18v6+jr+3t/7eygUCrh27RqefvppnDx5Et/+9rfx7LPPmvioMkKBfdYg58T2iHQdqZHG99b55BjwGRoH1THV/EDuLUVEbASj1x7eeorrkDfdUOoVUeFQoNiMQ1VQmivCKhP8G+MevK8+Q6113hvAA5tN4Sle4/f7sbKygs3NTSQSCSQSCezs7GBlZQUbGxtYW1tDKBRCMpmEz+fD8PAwVldXTRwpGo2aOnVutxvz8/MIBAL40Ic+ZJQLFSjLObH/WlCW0CBjNRTwfAfm+NCaX1lZQbVaNQVY3W63qdBOwaRjTEXA35XsYsNKmtdl99MmwKjhoEpC70Wlxbw2zpvmJqkXqxa//ZntRQH7CloNEwpt9e6onAmn0pBQwR0KheDxeHD8+HH09/ebNAmus3q9bt51a2sLS0tLyOVyaLfbDyR9M1VgZWUFx48fR7vdxvLyMkqlEoaGhtDpdHDv3j0sLi4aw0U9Yx0D9ZoPQin4dyZCA91Kj7/ze3pf3Xf8u3r7ysrlmuGcKHLQaw+2HqvwkDd7w3FD2TDMQRtEY142CUDvDewLWoU7bM9M76lKyw5qU3jTs2o0GoZZODc3h+PHj+PkyZOYnp7G1tYWms0mjh07hoGBAQPreDweRKNRc7rx7u4u1tbWsLa2ZjZ1tVp9gG5Ny16ZerVarSs2RQVCrycWi6Gvrw/VahVzc3NYWlpCoVAw36MioLKh0Ca0pWxD20rn2HKegO6zvujF0hDhdVQaVLgcF82xYv95jR0j4zUqTOl9qbGiSlEFp3oASgsni5P9UiIJY276Dj6fD/39/RgdHcXg4CCi0ahRdMqmbLfbKJfLWFxcxNTUFGq1Wlf6AucsHA4D2KPQP/LII6hUKshms4bw0Wg0MDc3Z2Jb9Lw1PUHXCpvuDzs+x3flZ8oS5d7Re3KseJ0qI/XEdU/rXOgc9tqDredxHfKmcJwmQdpVrAmxcQMprAXAWM4HWZaaRMmNyI1LgakWoG4stWbVMm82m3A4HPgf/+N/4JOf/CSefvppDAwM4Bvf+Ab8fj8+9rGP4fr163jxxRfx9NNP49KlSwiHw3juuecwOzuLUqmERCKBer1uILitrS38l//yX/CJT3zCsMZyuZw5pJKkEJItCoUC+vr6EAwGTXyLpyNToLGvTEgmpBYOh42Qp7JTT1ZJCWpc6PzQ+yGF2+l0mjgVc6nU43I698pVUaATqlMvjdf6/X4AMHG3TqdjcqeYz+Zy7VWvAND1PK4jj8djmIIaZ9PakXxPKjslKGjf6WVx7Kh06bGOjY0hEokYhqbG8uhtdTodfOtb38KVK1ewtLT0QJyur68PoVAIPp8PpVIJn/3sZ5FMJvHss88il8vhyJEjaLfbWFhY6IqNcXzUo2G/bQhP48BafonXMm6q+4B7SfMg1YhkU4NDFZRNeuL3esrr4a3ncR3ypgFebgj93Y5rAPsbSq094EEogwpBn6OsQn6f/7c9O/UQVJnx3g6HA1NTU7h9+zbcbjdGRkbw6KOP4jvf+Q5mZmYwOjqK9fV1zM7OotPpYGhoCOfPn0e5XEaz2TT/tlotY2XPzc3h7t275qyudrttDopU74/CPRAImFOR6akqgaJer5vj28PhMBKJhPHylFXG8VE6vcKHnBO7xJR6eArVaRKvwoS2F6bzpflCNkWb3hS/w/7Q02B5JC1tpeuF46drhH2zPQVWH1GvXD139QLdbjdCoZAprMxnKAMS2ItdVSoV3Lt3DysrK0Zxq+eopxrQ66vVatjc3EQwGMTY2BicTidyuZwpg6Wwug3T2eiD5ggq+qAwKfcEv8MxshWR3tc2OjRFQRW8KmpVir32YOt5XO+Cxk2kVGWbXQjsQw6M/XAD2VAjN5HCYBRO3Cx2kq19P7t4LJ/hcrm6YhzFYhHPPvssPvKRj+D48eN46qmn8NZbb+ErX/kKTp48iWPHjuHtt99Gf38/MpkMLly4gNu3b6NQKGB+fh7tdhuFQgF+vx/9/f3I5/N4+eWX0Wg08DM/8zNGkM7MzJg8JofDYVhnu7u7qFarRlgnk0m0221Tr5AeJd9pfHwcW1tbWFhY6BIkCntp8F2/D+yf7aUn/iqxgeOl1jz7TCXdbu8VmnW73SiXywD2jIRKpWIgT/uoG3py9Jb0+xS0qnQpTNW4sZUl32lnZ8ecn2Z741RcnO++vj6T+BuNRhGNRhGPx7tKOPHetVrNjOPMzAyuXLmCGzduANiLkXK8KMRDoRDcbjcikQjOnz+PYDCIu3fvYnBwEJcuXcLY2Biy2SzeeOMNExujAuS6VyOMxoAyKbn2NSeSjZ4pYWg14Pg3Kh162YyNuVwuc4wP9zTXi6341cDpKa+DW09xHfJmQw52MF2bLviD/q6Woiqag4L1tBQpnNXyVeWniZh2jI3X5fN5XLt2DcFgEENDQ7h06RL8fj8ajQbGx8cRDAbx9ttvw+l0IhqN4vjx4yiVSgiFQtjc3DSCgverVquYmprC/Py8+T7jXbSuaUFrTUAlS1Dp8qwvQm4UvIwBqUdhl4Syx169Ho2tKCuO96IA1QoYds08Wuf0YqgMfT6fgUaXl5dN3Evjg6wEr5CeKp2D5lwFt8JaAMz404Mi9EqvnxU9wuEwRkdHTS4cvS9FB9QLJbR5584d3L5926wpriF6tJyXRqOBYDCIRCKBWq2G+fl5TE5OIh6Po6+vD1tbW8hms6byv5I61GvkmrVhYzvGpXFgGxJW4grHnvewY8K6lzRGrTCwjWj02sNbT3G9C5oqCuBgVhivA7rZXMoq43dpXdobmJtOCQ82/s7fFT5Si12hFXp/brcbly9fRjgchtfrxcTEBPr6+vCnf/qnOHXqFM6dO4c//MM/xM2bN3H69GlDlY5EIvD5fCiXy9jc3DTVIRqNhrGsXS4XJicnjYXOxrgfPRAqIgpgWvMOh8PEi/TYFlv5U2CpBa+CmLCPQoDqASshg2Ou8B+FOMeRSgGA8VhYDikWi2FsbMyQGtbX180cuFwuw+BTkoT2VedarX0qFBJOFHrU9+H3VehGo1HEYjEkEgmk02nzTvo9GhPaLzI4b9++jbW1tS4GIaHYZrOJcDhsii2n02lEIhHMzs5ieXkZH/zgB838b2xsIJ/Pm2dT8XEdAN05h+1221Dwda8dpKwOyu/iXKqnpPuAyk3XgO5RJe4oW1fhxl57sPUU1yFvGkCmYFOShgoVhX4UtqBXQQhPWWisFsHrgG6Goa0MeGowhZENl/BexO7pDbz99ttYW1vDwsICvvCFLyCdTuPmzZt4/vnncfz4cTzzzDO4cuUKvvWtb+GZZ56Bz+czNQdDoRC+8pWvmCKytKb/9E//FDdu3MAHPvABfO5zn4PTuXcKM4kJGiuiotIisHpSMqEeHu0eCATMWVd8Fwb61RjQeWBBWwp/KjRbUXCMWPmjXq+bGFcwGDSljRwOB86ePYtMJmPqLvp8PgNjdTodRKNRLC0toVgsmndi7CebzaJWqxkFoEeM8Pt6LhWVis45lRiVu3oFQ0NDCIVCiEQiGBgYMP2m12hf3263USqVjIGQzWZx584dXL9+HdPT013eHZ/ZbDbR39+PRCIBp9OJv/23/zZGR0dRLpdx8+ZNPPbYYxgfH4fb7cbGxgZeeeUVLC8vm2NruDaVgOHxeEzOmBoLthLXOVcDjWPI9yJ8rNVPqNQJddq1DjnuGmumUaQKstcObj3F9S5ohL8Y3+AmYVOWFLBP66UlqMwoZS7xc4XQbFzdhgspjDUmYMOX6nWx/1QEd+/eNYzBJ598EltbW7hz5w7OnDmD8+fP49q1a3jnnXcwMjICYE/oJJNJhEIhVKtVwzKkV7KwsIArV67gAx/4AIaHh+H3+1Eul7tYluyz5rzRs9rd3TVMQwp3l8uFwcFBuN1ulEolo9QY39D3/37EBp07O0jfbrcNjElDIR6PIxqNmsodfX195jBOJQuQNehwOJBOp+Hz+VCv1w37lO+ZSqWQy+WMwcLCuFQqSqbhvNGoIcmEnh8JK4QDg8EgBgcHjUKlUtT1oAKY96G3tbOzg3v37uHtt9/G/Py8+R4NHRpbTqcTkUgETqcT6XTaKKm5uTmT2E5PLp/PI5vNPgANclwULeBY6rpWWNB+F9sDp8Lh5xoPo7JTT03HWfcir+W97HXVawc3R+ddGP3j0Rd/ExotOqfTiVqt1iUgbMtNf9TzsZUVoRiNY9mQHzeSFv7kvahA7WuULqzeGgPU3OCf+9zncOnSJTz66KPY3NzE9evX8fzzz+M973kPxsbG8Nxzz6FYLOIjH/mIgb14VMq9e/eMoGJx1+3tbXz4wx/Ge9/7Xjz99NNGYBQKBTNWNqGCsB/f1+v1Gio6FR/7TmICAFNFQwUT70soizE5vj8FsMJ/hDH7+/tx5MgRDA0NIRgMwu/3IxgMmqM9NH+IihuAWRMKNVWrVZRKJVQqFXOuV7FYxObmJtbW1rC+vt4Fn1LJ8TkqzLVwbyAQQCaTgd/vN4c2agIxsA+PMR6n6wTYL3js8XhQqVRw584d/OEf/iG2trbM+Hc6HcPsDAaD5kyvbDYLv9+Pj370o4hEIrh27RquX7+OD33oQzh+/DjC4TBWV1fxrW99C9/97nfN/NLIoMfENatxRhuxUMhPyTmqVKhYDxKdfDbXhBqGCq2qt87nc59pjPhdKJ5/4FYsFhGJRH6g7/Q8rndBY6kfoDveRctR82l4jcYhgO6KCN+v2cFhhXlsAaABcN2IqiQVcuTnb7/9NrxeL86fP49oNIrJyUl861vfwvXr1xEIBIznVa1W4fP54Ha70d/fj+PHj+PevXtdMSjGRO7du4dms4lMJoOxsTEkEgm0WnulmzgWVLQUCoTQmIAMAMvLy8jn82i32waWi8fjaLfbBv5zuVzGw6GC03gihdzDSAEATFFgHvsSi8XM+2gxXD6PikkZo7ZBwvdk5Xyn04lEIgGfz4dgMAiXy4VKpYJCodDVN/ZZn+n1eg2NPRaLYWJiwvSLY6mloWwavkJpGtepVqtYWlrCrVu3UKlUzPxR8Y+MjJh4FVmHu7u7GBwcRDqdxr179zA1NYW+vj7E43GjCJeXl7GwsGBgVI4JDTSNG7H/Cg2qt0zv21ZwOo+a3sC9qUaiQpMcD17DfUljkGvF3td/E5TWX7f1FNe7oHHjKStMs/MVGlR4QvF5Ngp820MD8IBlqfCJwhdKQlDrlPfS/KKDYMzl5WV4vV58/OMfx8DAANLpNM6dO4fbt2/j6tWr+PCHP4xHHnkEd+7cMWch+Xw+U3WhXC7D5XKhWq0aQZ/P51GtVvHiiy/ife97H86dO4dkMom+vj5sbm4+AKPyHewKEloJnMKGnpgqBlZo4MGVALqMBPVeGFNjMVl+5nK5cOTIEcRisa4xBPZjS0wqVmXA2JRCeBpvUWOBCoGCuF6vI5fLGWIHFa9dzsjv9yMcDiOVSiEUCiGTycDhcJi8N9tjUKGvjEjek32anZ01jFCtJk9FxKoa1WrVVEnhoaNerxe3bt3C9va2YRKyivz8/HxXpQxlobKvqkxs8oP2X6+nwcb5UcRC17gyBoE9D5ZIBOfsoNixKn0WZraVZa892HpQ4bugUbjSyuUGpFJSKIIbQg8OBB48zI6bg94L4wtUety0/D8FAZ9jU7xttpSSN7gZ9XyjVquFj370o3j66adx4cIFtFotzMzM4OWXX4bT6cTp06cxOzuL1dVVBAIBnDt3Dl6vF8vLy7h69SoWFhZMXoyeqsu4z8mTJ/F3/s7fMYcTlkol5HI55PN5uFwuw1jkgZXAnrCh4CcRhTk9hPoqlQr6+voQiUTMmLFaB5NeKcQIgcXjcSP8CfEBMPEq/mjVCXqKSnphgWDGxzweDxKJhBlP/st+83cqaCoUkmYqlYp5TigUMvlG6p3YdH1dI/oeWmyZ65RJygBQr9exsrKCZ599Fuvr6+YwUXqDJ0+eNAd8BoNBbG9v40/+5E8wNDSEZ555Bk6nE++88w4WFxfx2GOPYXR0FLFYDPV6HV/+8pcxMzODfD5vFGa9Xjd910rtVA5KzNCCuOqdU6FoGSe+ryoWGjtkJ9pxTj6be1BjYSQOqQGpHuPfhNaDCn9Im0IyQLcXY1Oy+ZkSCGzIBngw1qWbUWEePpvEBPW+7M3Mpn2yf9QCvn37Nvx+P0KhEE6dOoVMJoOzZ8/iW9/6ForFIs6ePWuK9ebzeQwODiKVSuHYsWPY3t7G8vKyeRc+1+XaK9J6+/ZtfPOb38SZM2fwoQ99yCSv8iBKHnxJliTfgUJNISZN1KaHwKNVHI69ZGfmFnEMSfTwer2Gyk04kIqH/1LRADDkBIXy+DeF1UiSYCV+EkjoFXE81KhQ1pvT6TRHvlCw2wJU41QU3gqDaXxU4TiSRzSxlxVP1tbWTHySOWEDAwMYGhpCLBbD4OAgfD4f8vk8gsEgxsfHjZd+9+5dXLp0yRgjrVYL6+vrhlWp1Udsz5/rjgpc94rChLoHFH2w4XNd48A+EYXX8x3Vs9J9ZyMaNDB0Pffaw1tPcR3yxk1DgccNo8wwPWCSnpDCNRqnUqhK4xEKbdGr4gbihlevBtjP/2I/dUPye/odKi8qhWKxiLt37yIcDuPEiROIxWI4evQo7ty5g7m5OWxvb2NwcBChUAg3b96Ex+NBKpVCf38/qtWqgQA1EVYrSLz55ptYXl5GMpnE6OgofD4fUqmU8dToJbCeHwW4Nh0fVs6gdwPsl31yOp2mviEVCz0kerYkCijJguOo8UnOD8dLPVbeLxwOIxwOo9PZr1FIhUuYUeFRnRuFrhhDVGVpz7XCwBobonfGfnNd8vwyKtpCoYCbN29idnbWwGeMLY6MjKC/v99Ak5FIBLVaDXNzcxgaGsLRo0dRKBQwMzMDp9NplJbb7cb6+jru37+PfD5vSlrZzVbGWrHiIChOvSz920EGIBUOx5PXcXx4PZ/F8WRs2IZ/1ajQMe21B1sPKjzkjXCCChsNEAPdgWVuTMYu1NPhNVRuqkhUQOqG0dp4D4tpqZdGoUcGGYWhWqgaX6Bn8o/+0T/ChQsXEI1Gcfv2bayvr+PZZ59FNBrF+9//fuRyOdy7dw8XLlwwMafLly9jfX0d+Xze5GfRY/L5fEaI+nw+ZDIZTExM4KMf/ShSqRSi0Si2t7dRKpW6BIsSPki+0IoZrAbBcdN4or5XLBaD2+02eVqMM2lBXCWLHBRfJFTIc8cGBwexu7uLUqmEYrFo7knvhvUACUGyWC/P9mIOms1mY8yMnghTAkiJt1MKGo2GUc783D6Sxel0YmFhAfPz85iamjIltLj2QqEQ3ve+9yEYDKJcLmN9fR2nT59Gq9XCK6+8gnq9josXLyKRSODOnTvweDw4evQoTp06BZ/Ph0ajgS9/+cuYmpoykCS9Vx0/rgc9pViNLfUu1UNSlqy9bqnc+X8qdKYocB+okcB7MGbLXEPdH9pn3d8/7K0HFf4QNlVYKlgUY1dqOzeJxrps9phdyUEtawBmQ+nzFRK0bR2Fig6yUoHu2JfGG4A9T+fKlSvwer04c+YMQqEQdnZ2cPToUdy/fx9vvPEGnn76aQDAwsICTp06hWAwiMnJSZP0urm52fXeVAoulwu5XA7FYhHLy8vodDo4evQojh8/jsnJSXi9XqyurhpL2LaqNdan8J2SJqjcle5OKFLLOGkisx5XQsVIK5/Cy+12IxaLmZwuzh0LywYCAaOA1eAIBoMmKbZerxsiBivg6zhxnki2seNXVHbsH3O72D96HazwTqVULpdx/fp1zM7OIpvNGmEM7EGesVjMnEx99epV+P1+bG5uYnV1FeVyGdFoFOvr62YeeCxKNBpFp9PB4uKiOUWAY6MeINekxpX4jqzGwfXNf23PSJWXKjx9DvcY9yPXiQ2N2/Cleq3cH4xfcx567eGt53Ed8uZwOEx1c0JbSkNXq1FJE/wb2Wdaj42bRHF29ZxI2NB4Afuys7NjEnc19mYvI8X6FYK04ycULn19fRgcHMRTTz2Fz3/+8/B6vVhaWsLKygreeusthMNhnDx5Erdv3zanFk9OTqLT2TuE8Dvf+Y5JPmVQvlarodPpGGtue3vbECj6+/vxsz/7s7h48SJCoZA5W2trawutVgvBYBDAXhUHQouMyyg8SAKGXQ5IlRrHS70z5pBxzO36gKlUCvF4HOFw2BS5BfbyyBYXF7G1tYWBgQEcO3bMzDvfk4YOPSUqnEqlYjxAEkI4VkzW3tnZMd6Aw+Ew3owqL871QfEkn8+H9fV1vPHGG3jppZe6DCOv14uTJ0+aw0PfeOMNVKtVXLhwAe+88w6GhoZQKpXM8SRMP/B6vfjIRz6CyclJVCoVTE1N4Rvf+AZee+01U32EykGTzG2Inb8DMNCtQqpc40A3xEjoXU8UV0WpSeS8J/eQfUK49kmVHT19zbE7CPr8YWx/HY+rVxDrkDc7TsXPgP3cIbUE2TTepfi8XXHDVijqJSjUoXg+n02vwQ7W83N9DoAuZcd7qCJdX1/HjRs3sLGxAY/Hg/7+fgwODuLEiROYm5vDnTt3cPr0aYyOjqLdbuP27dsoFovwer3o7+9HIBAwfVXFQJIEE2hdLhc2Njbwwgsv4KWXXkK1WoXL5YLf7ze5SlROLLPE6hAcTwoc/Z2wJ6FGvpt+j3NCK52xGcJPoVAI/f39GBgYMPlM1WoVtVrNwH70oqjwldrPNUEPi/EmJRtwTgivaUUWCl5dV+rJ833U6/d4PCZRfGdnB9PT05ibmzPrgUnJqVQKw8PDCAaD2NnZQa1Ww/Hjx01B4Hq9jiNHjmB4eBihUAj1eh3r6+s4efIk+vv70Wq1cP/+fVy/fh0zMzNd6ALXK+dE9wGvAdA1PwehDRwH7gs16lQZ6jiqQtLcSo1vsS98ll102d7T/ys5l3+TWw8qfBc0WnvAfnFPu5grBQQ3AS1kteh046jVqJAG41MUcnZuiV6vXplCQfb9FPNXKIfCjx7Dzs4O5ubmcO3aNXi9XmQyGSOEWZNvYmIC/f39SKVSuHr1KlZWVpBOpzE0NITd3V3Mzs6i0WiYqg8kSFDpMqm40Wjgxo0b2NragsfjwdjYGEZHR5FOpw1FnP2kYFVrWcfPJqVoPp1CeOqxUZhRwfLvrM9IA4Lekn6fY6xjbrMHGdPid1UgqlHCCh+cY8KOfI5Carw/Bb/S6zlPa2trmJqawsbGRteaGRwcxNDQEACgUCjg3r17hoK/ubkJn8+HSqWC8fFxhMNhk+AdDAZx9uxZxGIxVCoVXLt2Dbdv30Y+n++q4G9DvLoObQiRc6TQoP7Nhr4VKqRy5D1YFYYeEvei7gsbarRRDK5/hQ7tWHOvdbceVPguaIwlaOxByQhc+CoQKbBsrF+xdDvgzKY4PTeSwpAkXeiPWqWaN0OByfvQIlYYhIKT1/l8Ppw8eRL/9J/+UwwMDBhLO5vN4i/+4i/gdDpx7tw5TE5Oolgs4p133kGj0cDRo0eRTCZNXGx+fh59fX2G7UdPjOPEuAwARCIRnDhxAj/5kz+JkZERBINBc5glY3Fut9sw+XgfCnh7HGlYqEeqJ+dqSSDCbP39/QYWZkFhVrwgBEo25uLiIlKpFBKJhPGoON+EwdTz5ByStMFnU0kTPux0OsYrJXylycn0RJvNJtbW1lCpVEwNylwuh42NDWxubpq1xvy1/v5+lEolzMzMGOWYSCQQCoUQDodNnUmebryysoLBwUGcO3cOTz31FGq1Gq5du4b/8B/+A3K5nFnHelozlYcaZ0pEUaVFZIBeEj1ehd1pIPIzheo5j6r4gG5lqdCvfZ16XgoZE45/F4rlv3brkTN+SJvCTtxE9FaoXOxgrx6noHCIDdUpLVhxevUw1KugMAS6lR29mofdXwvj0iO0YRqF+e7fv4+33noLZ8+excjICAYHB+H1enHq1CksLy/jnXfeMVXTjx8/jitXriCbzWJwcBCxWAxHjhwxleLL5bI5CVmtX7Lntra2sLy8bAgP586dw4c//GEEAgH4/X5sbGx0xXoUJrM9WL0/haZW4+DvJGuogI1EIgY+VLhKBbLX60UkEkF/fz8cDofxLpk7pZCwFgZWco3ClZrbxTlQD1NLe1HxlctlFItFLC0toVwuI5/PY3Z21hzOyfdkwWCn04np6WkzdnpmWDwex9GjR5FOp1GpVHD//n3UajXs7OxgYmIC6XQaAJDP502+Ft+D8duDku0VVlfFRqXCe+g1VMz6ue3JKaqg40nPSde+jinH076HXnfQ3uu1g1vP43oXNG42ekkacLZzaTidTLS0418KfwD7G5DXKGTB4LIdK6O3od/jxmd/+VxChPRMCF/ZsCKhMd6PAnV8fBxPPPEEPvvZz8LtdmNxcRG5XA4rKyu4desWjh07hpMnT2JzcxO5XA7Ly8vmKI8zZ86g3W7jO9/5DgqFgiGWUGHUajUjnOk5Mub02GOP4ZFHHsF73/tenD17Fu32XiLy+vq68Tr4L++nZAgy7NToIKRESrnS7GOxGDKZDNrtvZOBS6US6vU6VldXzbEn9F7i8bi5x+bmJvL5PPL5vCGetFotBAIBxGIxJJNJM76kr3MNqPIulUrGs+S8dDodlMtlVCoVLC4uGu9qcXHRHE9CpUEqOD31VCoFn8+Hzc1NuN1uHD16FK1WC6urqybm98EPfhCxWAydTge3bt0y8xYOhzE2NoannnoKsVgMU1NTeP755/Hyyy8jl8sB2M9j5P8ZY9S4rKZ5AN0wO8dJ9wDXoM4b50vXsk3oeFiuGNebrnN+TyFc3df8fqfT6ZqPH+bW87h+iJtuMlrSXOx2dr5uAioiZVbpJtJNowFmvV6bBqwVSlFhbUONhD+U4ME4isJYKlS4cefn5+FyuXD8+HGMjY0ZEobf78fdu3extLRkKOP9/f3wer3Y2NjA4uIiEokEUqkUdnd3cf/+fSwuLiKfz3cRSJiD5HQ6TY5WoVDArVu3sLm5iZWVFQBAJpNBNBrF0NAQ6vV611ldrP6unhgVmnouGiOj0vJ4PIhEIobWns/nUSwWsbq6is3NTdy9e9f0b3h4GMCeAA0EAtje3sbS0pIpDMwq9qzWUalUUKlUjHBkXUPOBxVPX18fSqWSgRFZ3LbT6aBYLKJcLmNtbc3UZSwUCibBmJ4Y5x7YNzzK5TKcTidGRkZMX+j5Dg8PI51Oo16vY21tDeVyGa1WC6FQCIlEAplMxrAxr1+/buKZPGUA2I/tcl1ScWrMij+KGNjsViryg/K2NG6s82dDfHq9y+UyUD7vdZCiU3icCpHf73lb37/1FNe7qCm0Zm9eDfJygyl0ZeP+mtRsQxr0vHTTqlWq3hvQzeqyc8r4u9Ko7bib9lHjPhQKCwsL+Na3voXz58/j6aefNtXch4eHsbS0hOnpaZw7dw6hUAjpdBrxeByVSgULCwvw+Xw4fvw44vE4UqkUXn31VRM/Uq+Syj8YDCKdTiOXyxmBCgBnzpzByZMn8dhjjyEajRp4jqw/AKbOIStsaHwF2D/KhO/X6XSQSCSQSCTgcrmwuLiImZkZZLNZ3Lt3D+vr64Y9R0UQCASQSCTg9XpRLpdx9+5dZLNZk5TscDiQTCaNgsnn88aYYEV60q7JTHS73UaxUCnTyyCDkR4rP6dHTA+VHiXnmjljgUAAOzs7KBQKphr+6OgoRkdH0Ww2DQzLeRgcHMTRo0cxNDSEZrOJbDaLV155BbOzsw8ktOv6sWE4rjuuJ90rB0HodpKyEk/4HBpftodk7wv17Pg9rm1eZ8fi1EBU5KTXDm49qPBd0LgBgP2grpImCPewfh4tvk6nY/JJdPOq0CY0opYjNxfjLaroeA9+VxNxbUWklGIbx3e5XCZJ18b0KfzUY2m32/B6vfj7f//v4+LFixgdHTVxj6tXr5p8IK/Xi8uXL+PGjRtIpVJIJpPweDyG1ba5uWmOwFhbWzN9YD9YdcPv96Pd3ssl4lHwiUQCP/7jP44zZ84gnU53KQHmSZH4wr9TSdkQLYvkxmIxA0F+9atfxb1798w5YhR6bO12G8PDwzh27BjGxsawtLSEN954w8wRPS7Gv5g8TA+d8B3XQKu1d3QIPYidnR00m00TO9LrGD8jPMqxIYwcCoXMmgyHw0bBcR7Hx8dNLcp2u4319XVcu3atyxscHx/Hhz70IcOq/J//83/i5ZdfxosvvmiUFteDMiE5pnwPViyxDTauP0KC9ITVSKJy43zxfjoPfJ4aWny2/ZkyK+19CHTHqqksbYPyh731oMIf4qZQhR24VcHIxs1HJUFlwKbft4kANhVXrUuF8xSqUYhGPQ2Nm6nQ0WbDhgrXUPC53XtHm7/11ltwu93GM6L1+sILL+D+/fsIBAJYXFzEU089henpaVNFgl7J4OAgBgcHAexVt6DFT/gNgGGqMTE3EomgXC5ja2sLL7zwAu7du4dz584hlUoZZh8FMCFAPZGYPwoDUcEtLy8jm81iZmYGV69excbGhqnjt7u7a8o6kW6+vr6OarWKlZWVB6js/LdarZrxpFJ1uVxGsfLEZ5JleN4bjQqtxKHrgWuQz3U4HCbHje9IViThWMK6Z8+excDAABwOB7LZLO7evWsUn8vlwtmzZ81RJcyze/XVV3Hz5s2uxF97najysaE5O5dK38P2mFQZsf/qDWl8Ste55lwR8eB9dG8A++XT+F1dD3beXK99/9ZTXO+CdhCZQjeUbipexw2utHi1TvV6KgjStSnoKAiBfehFnwl0xxb4ubKjNAanbC4VtCokNP6gECiD3NPT03A4HIhEIhgdHTUxrEwmg42NDeMZHTlyBAsLCxgYGMDRo0exsLBglJfL5UI0GsXp06cRDoeN5c86d06n04yB3+83ZaWazSZWV1eRz+exvr5uYjGnT59GLBYzDDp6KHYcUOONPAuL8CDp/hT+jGERriJk1Wg0kMvlUCqVTFI050cp2ACM96hQFwAD43k8HpMnpiddkxrvcDi64nZcN4QYI5GIqRrCGB+wb9CkUikEAgGkUilzgvL9+/dx9+5d5PN5JJNJOJ1OBAIBk5/X6XSQzWZx48YN3LhxwxxDo8xZVaj2euGat/eMXmN7PUp5V8XDa2zWpf6N0LCmdHDONRbMOdI9yH3AGCGVbU+B/dWtBxW+C5pi5nbw2PZkFErkZ3bciX+z41A2gUCVIgP59HAo0OxkW2ULatxAY3NKwND30f4B6Oo3sH8eWafTwdjYGH71V38Vk5OTAICZmRncuXMH169fh9/vBwBMTEzgxIkTCAQCRnBTaObzeRw7dgzhcBivv/46FhcXkc1mTUyLuUwaz3C73ca7Ipmh2WxicHAQ/f39OHv2rPHwWF/Q6XSa2BKwJ+y2t7exvr6OcrmM119/HZubmwbSo7LhWWF853a7jWg0amDj+fl5k9sVCoWMgtrZ2TFQH4kjhCv5QzalGha8nl4jFSsZgLomKGQJh7bbbXM8TSQSwfb2NiKRCD7wgQ9gd3ev0PHU1JTxFjOZDEZGRjA+Pg6v12sYlZ1OB3/+53+OV155Bbdu3TIQqJaWopLk+rI9QI6xXSGGioTr3UYoFNrWz6icgO7TjLk29J7qceme4nU8y417mrFBNTr0nj1W4cNbz+N6FzSF8myFw42likE3hZIeFGJUyOqgGBbQ7WVxw3EzsZoH+wE8WFSXMI4NYfIZGoOwCR9sCtdsb2+bY0VyuZw5EmVgYAADAwPo6+vD1tYWNjY2UCwWkc1m0dfXh6GhIaNQTp8+jVKphNnZWSwvL5sj4UnseOWVV7qEuY4T/yWlnsq8UCgYkgKTaNPptFFewWCwy9va3t7G2tqaKSrL/CYe1+F0Ok1yNGOIOzs7iEQiBs6s1+smFsaYHL08ej4U+napLfVyFW4kvEe2IPvabreNQmVlc64hQrlHjx41/Uqn0zhy5IgpBrywsICpqSk4HA68//3vRzKZNLloZFQ2m03Mzc3h+eefx8zMTFeCN9eoKivbe9H1cpCHps2GBXXd2YaUxmw1nquGmhp/+sM1o8aXVrPh83TvcS/acHqvdbeex/UuaNyE3MgAjDWuHg0XPDeOwoSqIBS+U+XGTUoLWxUSvRha22oF6+bU4Dfw8CA0+8vraHkqE0wD5HyW0u8DgQAmJyfxvve9Dz/2Yz+GTCaDcrmMbDaLlZUV3L17F6urq1hYWIDb7UZ/fz8uXLhg4igrKysoFApYXV1Fo9EwR5HMzc3h8uXLxgrXgrpULBrI53jp6clU9vS4dEx3d3dRKBRMjAjYE5QK/SlER5LF0NCQYSuSss71QaiTY0thysrwWlZIiROEBNVIqdVqpp+BQMCkGjDO2Gw2EY1GMTg42JWg7HA4TNmsSqWCZ599Fi6XCyMjIzhz5oyBVpXdWK1Wsba2hj/8wz/EvXv3sLq6+kA5s4cpLgp/KjkSZTgXwH51ezaNRWreHe/NZyo0yD2jUKjCeXqUj4pTQohsNqrAuWUjK1OT9P8mtP/Xi+z+1m/9FhwOB37hF37BfNZoNPBzP/dzSCaTCIVC+PznP2+ORmdbWFjApz/9aQQCAaTTafzyL/9yF3Gg17qbwm+a/GgTKDRHSq1RblZgPxaicRe1+LiZqDB4b5bXoSCgUNUYg1qoSqVXuEQ9x4MsUoWGeK16QPy/w+FAuVzG22+/jWeffRY3b95ENptFMBjE0NAQTp48iQ984AP48Ic/jImJCXOS8iuvvII333wTKysrCIfDGBkZwWOPPYaJiQlTBZ7nPvX393dBriRccAwoVCloWB6JXkKlUkGxWEQ+n8fW1haKxaLJi1KlR4ODB0wqIUXz2+r1ukkC5hwx5sRK+Bo30RQErZTBddDpdLrOCeN5Vlp4Nx6PI5lMGm/Q5XJheHgYR48e7aq6H41Gcfz4cUSjUdy7dw9vvPGGOabmve99L06cOIHBwcGudfjOO+/gtddewze+8Q1cvXoV6+vrpgiuMjIV5ubYa4xX0QTbI7LjsfReFRbkPTgf/KFC0mbHlW3PTA0Dzc9SUoj2SUuD6R5+F/oT/6+2vzZUeOXKFfzH//gfceHCha7Pf/EXfxFf+9rX8Ed/9EeIRqP4+Z//eXzuc5/Dyy+/DGBvwX7605/G4OAgXnnlFayuruILX/gC+vr68Ju/+Zv/z97mh7TREuQGAbprnSlMyOuAboVHuEcVH6+hN0drnZ4Nv2tbkxpAVuuUm1G9Of79IEq4srH4HH6PCkwD3vaGJrX7/v37+Iu/+AsUCgW8//3vh9/vN9BgPB6H1+s153FdvnwZd+7cwdraGk6dOmVIHul0GuFwGO+88w78fj9OnTqFSqWC1dVV3L592wgyJt6SSafwqI61WtKa+8R3pILjOPA7Gq+kx0Tig+YeaUoB88iCwaD5DgU3x1ChK/VCVPGRBEJlzcr40WgUsVgMtVoN/9/2zjzGr7M6/8/sM/Z4ZryP7diOAyTODgngDIhWBStpmtKWplKEohZR1AowFZQIAd2AFjWolboXqqpt+AsiqAqtgARCAmFzyGrsLDZx4q2JZyZeZrVnf39/+Pfc+dwzd8YxBZuv/R5pNDPf773vfdfznPOc8763sbGxeCv1kSNHNDU1pa6uLl188cVqaGjQwMCAdu7cqYaGBr3xjW/U+vXrtXLlSjU3N+vkyZN68cUXi0zGxx9/XC+88IIOHz5cZEK6vxhfjJl3NoLcXxYCGj3+GKNyu5kQEe83GBo0CXJkJ+gZcf5GsHRdXCZjcp4X0eDMMr/8RFThyMiIrrvuOn3605/WJz/5Sb361a/W3/3d32lwcFArV67U5z73Of3Wb/2WJGn37t26/PLLtX37dt1www2655579Ku/+qt68cUXtXr1aknSv/zLv+jDH/5w8TqL08mFRhVyL5YXESe9LVEuOsbF+OZbx0Acv4jBYYKdNEvhtbW1FYvWilFS8RoQWpwWB8kJnJJKngCfYSViMKZ3J5VPASc16r6RpEsvvVQXXXSRNm7cqCuvvFLLli3TypUrC8X94osvFrGlXbt2aXx8XJdddpk2bdpUvJdrcnJSP/7xj4tTJ6RTsZsjR45o586dpb1zVvY8wd3j4f4fGxuTdCrhw16Lx2BsbKz4bGxsrBgfJ8GklIq4Fs/p81i5D2KGnYUvt3TmoF//4tR3l2UPw2PQ2tqq173udQUl2N/fr4GBAS1atKjYm7V06VJNT0/rmWee0YEDBzQwMKBf+IVfKG0ifumll/Td735XfX19OnTokE6cOFF4dwSoCDakqjkH4iZoMgDcl+W539bWVmTusX/IXHAuMa3eY+hkCc7BKsMlls8x4drgeovrhizDhSBnLTlj27ZtuuWWW7R161Z98pOfLD5/7LHHNDk5qa1btxafbd68WRs2bCiAa/v27br66qsL0JKkm266Se95z3v01FNP6TWvec2c55lXtwwNDf0k1a5ZqfI8GP+QNGfxROqQiyN6RNLsomL5/j4mftBqpCcU42ZVPH1VgkgMjNuSZp2ovEh/WeE7UWT37t06cOCAdu3apWeeeUYrVqzQ5Zdfrvb2dnV1damzs1MbNmwokjn27dunZ555Rv39/eru7i4A7LLLLlNfX59eeukltbS0aPXq1Vq/fr3q6+vV19en48ePF8A6PX3q2ChbzvaQWF96Bw0Ns+cGOpvQIOjvOX6OOZ08ebKURBGpYxsELisqUW609jj5Myv8sbExLV68WF1dXVq3bp0uuugitba2FkdKzcycOtXdiSKjo6M6fvy4du/erZGREa1cuVIXX3yxVqxYoenpab344ovas2ePHnnkkSJTMcY9PY9Jn3L8SScbXCO7YJAg88D55s/pxXEtxExECuOvEbB4OADL43wmOJGd4DohExENuyxz5YyB6+6779bjjz+uRx55ZM53vb29xWkAlNWrV6u3t7e4hqDl7/1dldx55536xCc+caZVPW+ECQmkfaxspFkl5MURLXFpFpx4NBStTnpbVHD+3gvKFF20km2teiHSWrUFGelAK18+m9dUfRZjC26r6zY1NaW+vj4dPXpUra2t2rt3r5YuXap169bpDW94QxF/3bx5s7q6ujQ6OlpcPz09rXXr1hWnzK9bt067du3S6Oiompub9YpXvEJr167V3r17i/TuaEg0NJx6caLBxX1tI4NHB3k8/D1jL24vPcwI4AREjwcPcKWyZHyRIOox8M/atWsLj0k6dTL7kSNH1NTUpFWrVhWxv/7+/uJtzBMTE1q/fr0uv/zyIk3++eef186dO7Vz584iw9Og6tMtHMciTee20KChMRbnXtX1nIP0wAgmHBeCURWl7c84Poyh0dirouJZnsuM9HxkOzJ4zS9nBFyHDh3S+9//ft13331F1s7ZkI9+9KP64Ac/WPw/NDSk9evXn7Xnn2vhWWfSrAcSj1zi9ZLm0C0WL/q6urpiHw6pFSszL9JIRfl/l8UEBv7vMpg6zGeZemHbpPKZjCzb9JnF1ruvY/l8ud++ffu0f/9+PfHEE9q9e7c2bdqkTZs26dprr9VVV12lSy65RC+99JIOHjyohx56SD/60Y+0ZMkSrVixQuvXr9ell15aKMJjx47p6NGjuuKKK3TVVVepsbFRR48e1aFDh3Tw4MHi2CSCR319ffECS8avrOROnjxZZAnSg+KY+rT/aKnHPUVMf7fBE2M48X1pk5OTWrx4sa6++mq98pWv1PLly4uzC48fP6729nZdddVVqqs7lRDz6KOP6sSJEzp27Ji6u7u1fv16vfnNby7OXRwaGtKBAwd09913q6+vT5OTk8UJGz5Sqq6ursho9HzmHqY4X+hVMrHInxGIeZxTfX19ceo855THgF6Tn8E0f/epr/O88rYQ//Y64fq0JxtZD46d16DXg9dqBq2F5YyA67HHHlN/f7+uu+664rPp6Wl95zvf0T/90z/p61//uiYmJjQwMFDyuvyeJEnq7u7Www8/XCrXWYe+JorfZHshS1Ti0qxSjEFdLxDutaJFSusyWroEHEmFlcx0agbIeS9ja1ysXqCuh1S2Vrmg+RnpSAuf4bZQaRiIpdk3BjOx4dChQ8W7pOrq6ooTG5wib3pr7969GhkZUW9vr6688kp1d3cX8bL+/n7t2rVLU1NTam1t1erVq4sEhuPHj+vo0aMaGBgogNbJBqbv3DZ6UExjd7ucTs2YFueDpCIexjR8K0xSar4nKksfy3T11Vdr06ZNWr58uQ4fPqypqanifVopJQ0NDRUA3d/fr5RS6Zgm718bGRnR448/XtCvNiKswGOsid4LvVC20UIwo/cUjbp4H59lw8wS5z8NPcYQPZ8NLtGLjfReTCDhvI/CZ0dDI0u1nFFyxvDwsA4cOFD67J3vfKc2b96sD3/4w0UG0ec//3ndeuutkqQ9e/Zo8+bNc5IzDh8+XLwk7l//9V/1oQ99SP39/S8LoC605AwrNysbpglHis7XM95Bz0maXSAEGalMyVEx2sL0ArSXR9BhKrKf6Trx/VsULmLGZAyUrJfLZeYdE1CYNh3BQCqDmDS7gXr58uW64YYbitdsrFq1So2NjXrxxRc1NDSkI0eO6Mknnywy6NasWaOLL75YV155ZWHN7969u/RmZYPn6OioRkZGtG/fvuJEeoOQvQ5JBWVmy9/tMJ1mhb5kyZJi7An09oB9/JLHmHSZ42gNDaeOu+rs7FRbW5vWrl1bJJf4aKvm5ma1tbVpfHxcjzzySLFnsKOjo4gZeuNwSqdicKZODx06pB07dmhiYkLLli1TXd2pjeNOdCFVSQ+SiUK+zuPKmKiNEG6cp7fkOc6jsNhXBPNoTJFCtfh6GhH+jLS41wO9tPr62WPEfH1kJmhs2AuM9Trf5WeenLFkyRJdddVVpc8WL16s5cuXF5+/613v0gc/+MEigPsHf/AH6unp0Q033CBJuvHGG3XFFVfot3/7t/VXf/VX6u3t1Z/8yZ9o27ZtF7xXtZBwEkfar2qiMzOpKuPM90ULkOBl5SKpRHlYmM0VvakYp4keVpWFG70vUi8xVlC1qCN9yee6L+yNeDNtX1+fHn/8cfX39+uSSy4pkjgc59q4caM6Ojq0f/9+HT9+XIcOHdLAwIBSOnXkkU81d8ai397b0dGhtrY2rVixQu3t7RocHFR/f38BPMeOHSv6zP1sz6yxsbF4szGBiIk4pBvZfzH12xuI/VZjgzUNhZmZGa1cuVJtbW2anJzU3r17NTExURx/tXz5cm3YsEHd3d3q6OhQR0eHGhpOvY3g6NGj6uvr0yOPPKIjR47o+PHjJWXNI6jimHkDPb1qztGYZCGpRBUTLGI8l/PZc9D/VwEUn+/5E+eevyPdx3nqOs0HOKRAXSeDt9saY2RZquWnfuTT3/7t36q+vl633nqrxsfHddNNN+nTn/508X1DQ4O+8pWv6D3veY96enq0ePFiveMd79Cf//mf/7Srct4IaT0GiaXZtw9HAIrWpS36SEfNt4Dj39xzZGG8SiqfCs+9WX4GPQA+3x6W22Mx+EiaE0BnzCJ+HuseT+1w3V3PQ4cOaXR0VMeOHVNdXZ02bNigjRs3avHixero6FBTU5NWrFihkZERrV+/XocOHdJTTz2lPXv2FHu+7IlMTEzopZde0gsvvFCchNDW1qbm5ma1t7cXdejv79fExIROnjxZvOE4Zng6+9B0o/vaxy7Z47A31d7eXlC7LseH/3oDs/u0rq5OS5YsKWLF4+Pj6u3tVV9fXxETctuWLFlSHM/U1NSk0dHR4iWf+/fv16FDh/Tss88Wx0d5zxvjdkw3j159BBwChOtK1iACj78n+NDoqTqDMzIGNABiPUjNcx2RQmSfcx5XzVfOUc9/3kcKP0u15COfakA8sTnhvSAj5x8ztHwvabjm5uaCnmG8oSq7z1QNqRfuJ4vB9GgxE9QiSDJpgwqiKkjvuvHQWXuBTFV2uXwm20hLmangTHhYvHhxsSn5Va96lS6//PLi7chOkvCepZdeeqmgxrq6uooXVnZ0dBSg4aOV6JEYiLjVw9Ta5ORkkW6/ePFizczMaHBwsMja9XmNBjvX26dgWHgocF1dnVatWqWWlhZddNFFxd6snTt36rnnntPY2JjWrVunNWvWaP369QUYeA/h4OCgTp48qeHhYe3atUtHjhwp4oCSircrO6VeUvHbYxE9o6r5RsOM2bSM83HsSdPFDEqXSyqdB1U7A5OUI40x1oUMBV8uGecaWQnSopH29Dwl00DacyHP7XyTfMjueSzRk6ja7W86jMLF48CyrT+Dl2kjnj9IT4aUYVxofq5fqe7vaKVKsx4brWymM3OB03omoBCg4jN8rxVj9CytCKte88LkhomJieJopkWLFunAgQM6duxYkcCxbt06tba2auPGjeru7tZFF12kZcuWqa+vr3g55ZEjR0qH/65du1bLly9Xd3e3jh8/rrGxsYJC85FRw8PDBYhNTU0VXhrfUvyKV7yiaJ/HzODQ0tJSvGbEQN3R0aE1a9YUGXKrVq0qYkn2MJ944glNT0/rrW99q9asWVMA88zMqbcbDwwMaHR0VPv37y+Ad//+/RodHdXw8HDh7Xk8/IoU9zG9bHrWnF9OYrBEQOIcj/OSJ7rYuKOh5jlB0IveGY0b3+tYGp/t+2mkxXnINUBGg2wJ62gAZrKOjxDLMr9kj6sGxEqKE9wnLthi5GKRZr2nSM/Q4mMAnPERKxfvt7FCjwvMWVYNDadOY7DSdXICs8AYA6MCiW3kHidb1q63lQSBiaBFypQKMypJl+dyfPoFFQ8TIEx1NTc3a+XKlVq1apVuuOEGrVy5Ul1dXcUJEcPDwxobG9PIyIieffZZHT16VIODgxobG9P09LS6urqKLD4nWtiDcjDfryhxooQ3BLe3txceGcdjfHy8aJvPWly+fHmR6NHX16fR0VFNTk7q+eefV39/v4aGhgpl+0u/9EvavHmzNm7cqN7eXh04cEA/+MEPdPToUQ0PDxcn37sNVBf0dKhsfbQYlbqk0lh6jhJg6FWxfM5txkT9HHrsVSwA14CNM574ws3cjKN6HsXzHQ0+BFALvTm3uSo5pAqE+Te3nJzvkj2u81isxAlOUjkewCwnLwAunCqKg5YnF2yMKZCHjxs6U5o9/DS+BynuPSKNElO8XQ/ezywrt4eH89ITraJ6/AyCrdsWgVGa3ZfDA2l9DNTk5GRx9NOJEye0fPlyrVy5Uq9+9avV2dmppUuXatmyZcX7ygYHBzUyMqL+/v7isF0reMe/3Hf0TL1fyK9k6erq0vDwsEZHR4sT5Alg0ikvemJiolCYk5OTOnbsmJ566qlCWR8/flwpJa1bt654s/N1112n1atXa9++fdq+fXtx4ghPKJ+eni6OeSKl59ebcDwIHNx/WBW34RzidoC49zB6RZ7jMV7peeDrOc/tVVcl+MwXT6Ixx/XCenku8xrOS4Kz7zfwue88N3l6SA36E2dVMnDViERLV5qbkRctO1ulpjy8IOLCIK8en+fPuPh8PWNs3PRphbGQRcrEkWjhsi2+x23wK0Li/phImbLMaLmShmIwnFQR6R+DiD2LsbEx7du3Ty+++KJaW1vV19en9evX6w1veIOWLVtWUIk+TPbYsWOFJzY0NKTh4WFNTEyora2tRJn6FPkTJ04UCswnpjvut3jxYi1evLiIXfkdZYsWLdKJEyc0NDSkqamp4m++8mP58uVaunRpEbNra2vTqlWrlFLSN7/5TX3rW9/S8ePHNTo6WlCr3Nwcx2w+wyMmGkRjy2Nihc3P4qHR9Myt8LkXLVJrBD5SevT4ST9yPlN4fJfL53w2CBJMfT1pbyaJxLlIGjFen2VhyVRhDQgXrlQ+AodCwPJGSytc0oH8n4omlmEqyynckdKomjq0JFlve3sEuEjNkILxfVaaMTONiRwGNisP9hFPQKAHFi19l2/g8rFWVHDOtGN/GchaW1u1bt06dXV1qaurS6973eu0fv16LVmypEiGMf1nMJiamioy9EhlmZpziv3IyIhmZk6llg8NDenEiRNFqnp7e3uRENHR0aGlS5cWtOeSJUuKmFxra2uRdbhkyRLV1Z1KDHn44Yf1+OOP6+tf/7ra2tqKPiQt5jicVI4jkTp23d3fkkpjzLnMeBMNm/g/DTMCpz177+uL1HMVm8Dx5rxx/WIGq2OFnFORpo4eGUHcc47tJ9B53ZGhiMbXhSKZKjxPhZ6SNBfArOx5BmGk+rjIaDnS0/G90tzkD1/j+IC/i+nJkT7hAqfXV+UF8bQBlkUailmNptVII5GqooJgvSIAUzHFjaAGGCvqeEJ4Q0NDkXnndPKmpiYdOXKkyN7r7u5WS0tL8VZke1DemOvklu7u7sKDOHnypJqbm9XZ2Vnsg/IesenpaQ0PDyulVGziHx4eLtL2W1pailijNxo7K3JyclIjIyM6evSoDh8+rG984xt6/vnni2QMby53H8SzKOkVMMmnKmnB8zFmE9Ijd9+TBSC9G4WejecjKeIYPyJNXLWmaHzFeFZsT6Qp/du0L4/5sudHxoLA7HZzkzznVKxblrJk4KpB8WKsAo24EKWydcnPpdmkCFq3Vly+lvSilYZUtmwd/3D9SL9ZiXERs1yWxfu5oOM1FioVBt8JXIyH8HmMN8QkDp8WYUXCuA2B0N4Tn3Py5Ek9/fTT+t///d8iqaKtrU1r1qwpki/sFfs9VO3t7briiiu0aNGioq5LlizRkiVLilfK+JR4j/3U1JSWLVtWbFienp7WkiVLirck+6WMHoeBgQENDQ3pmWee0fPPP6/9+/dr586dRWai2+BMRkml+BsNCxpPkuYYTQQu9yvviTRyVVKEv58vU9Z1IrhybtPTjoZVBE+ClD05gqIBLRqB0UB0vdlvnPec+1XzlH2SZX7JVGENiC0wKyzTbhYvKp9Y4MUcqRIDjNOW6+vrS3uCpLlxBElzQKsqHmD6MSonejNWJKwnqScqGNOLMf4W4x1UAI7l0NplXW0d23NiwgmVhmlCpmhbefJlnC6b79hiuxkTc935va/x/+3t7YXH09LSohUrVuiyyy5TZ2enFi9erLVr1xZU5NKlS4vr7PGNjY0VSSDNzc1qbGzUvn379Nxzz+mFF17Q7t27NTw8rOPHj5e81vloX/cjqVWPbTQESMnGuUSgjTEsglWc86RyY19xvAiaZAfiPdx87fGXyqdxRG/OdSHNXdUXpLPZHlKIrKf3D/J9aCz3QkqJz1TheSpcrFI5mOsFTKrPIBA3NEalb/E1pMl8XZWVyAUsqVIRkVYinUfr02fkcUH7O0klyrCK9mNCRTwdgVa6+yLu46JCpLgMf076iJ4dxW3zc/32BCpvjqH70kBqT8dU5MjIiAYHBzU0NKT29nYtWrRImzdv1po1a7Ry5UrNzMyUgL2hoUHHjx/XwYMHtWvXriLDcM+ePerv79fIyIgGBgZKiROOgdJwoWJ1X0SDxaDn+0mdkQ6jxx3nq5/Fe2jo+PpoKBEY6LH4Os9h19P3uCxmOjJ5xOXFcjn/Odc916oMOc9HGmM2EqpoTXptVeVlmSvZ46oR4QZeWpP+TJo9ENeWrQHByoiWMJVTTMe1UClY6LnZcpXKryKJi52LlgBIr8Nl2CP0s/y5VKYY6+pmEzzclhg8J0XK9vo6e1Y+uYLA6XKc6OCsxnhdHBMDNQP+4+PjpfR6Ur0E7KampsJTsrfGd3TZG/Ter+bm5hL4+2R6e4sEKb5F230aFWv0kN3GuM2iykuN/RwNIRpVFhpWLouHIMf57X5zvX1KiIHUfU4jhwDvz6o8I3qDfmaVoRJpdwKlx2lqavZ1QzGG5UQdU5EERNbvQpLscZ2nEq27+ZIPuBC8iLjQ7XFwQzNpECsAv52X1ml8YSHr5s8iR29FTqCMmVMxtuCymOEXPRX/pnXvuvDZLJvKxdcw6cLf0YOVZl93T2AioJKiIo3E8YoKieBhD8sekN/l5Tq7Xw1Go6Ojpfq5HIOk+4SUqetvWsrPimBP+op9WjW2pFnj0VusEwHD4xvfGuy2ROow9qP7ISb5RBqZ48Vx4dyLaezRIyQVSrYiGmjso5iIEWPKTsqJmYVsJ9dJlvklA1eNCK1VehpSOdBMb4c/XNz83/dHC7vK2mXZVL5VNFiMORAwSPe57ra0DbCk0UgxRsrGCsUg7ZRs1pVKQpqljvgSQCpnA6clekZUnPyx0CMmcESQpOJym501SG+AnmnVuLm+jjFxj5GfzVPYY3tcFvvV9XS9oldGKjHSdfYqvLk2eiV8JsvkM0j/0pCJ4MA+jfPen9EQ4ByPbXXf8LzHuG44Tzg+7FveS+DzddwyENes11MGroUlA1cNCGNT9Cic8iyppEhsMXohkTaL8SBSSo5X+B1Q0UvyT9xr5WdZSVmZmDZjDMX3mMKhkrVyaWtrKymC6enp4uw419v3WhFEYKPCcd9Q2UkqeSUEEgJN9DJj7IcKmzRbNCDs7dKTo+Xv+BZBgkYGqVYrQdfL9TA1bMAwTRk9j0gRcjypVOvqZpMYohfEPreyb25uLrw6Gxv0BCPQ+Dcpv6q4Leej2+AxiIqfdeZ8dN8QGAiiBveqhJ1o6JEZIJDzFAyuGT/n5MmTpfkyOTlZMkIJylkWlgxcNSBeQNysaKF34ckfPR9akpEGiUDov+l1UElabM07fkCLntSKrUxJJTCk4nQ8TlJBl/l+KmHuB4peFJ/p7+ipxeC9QZV0GutlBU5PiZ4PLXoq1JhwQJCJNBqVouk9gj49YQN/3GcUlRyt/KjULW4r6z9fnzJmxGdFYPb8cJ055vQeqoCZit5lM/ZJb9715Ju9I6VYxTr4HmbrxefQWGL/GORI/XG+MVEnep98vuc+wZF9yz7JsrBk4KoBsYdE7pzpzPGtqwwqUyn7+J9oSTIgLs1akvTWIn1kiRSivQPX2YcB08Kldc9yDCaSiqQDqXyiAK1wBt2rFjzpGSZmSCreFkwvwH9zc2m0yqlgLQZXn7weaTg+1wqLR1YZHMbGxoq+todpMeDSm6CXwX6oen0GvRpSZs4qpKfsOjD1n+WxP/gM15PUp/vHAOAtA8xCdB87vhbjswQNt5HxV4KEy4n0N+eb68ex5jyuimnx2fSsPdfpNc0HPDa+CIbcQuJrMnCdXjJw1YDQcrMV7EVthUwqhAot0l6R0iN1Nt+1XJBc0LGO0XL1opbKr3yIXgtBjeBFSz2CCL0IUqCM7VhBxHhVfPsvyyM40pOqUtxsAw+JjWNGLyzSvlVjJqnwOq0UOZ7+PKXyZmFSfqQWqcQ5f6KxEWk4zouYsennxFgmqVa2z22gcTQfOHicYnv8OfvRdbBRwbGIcUR6PzFmSJDjtomUUrFh3Nmnvo7zivWP3qQ/5zri5myPKd+vlmVhycBVA0IaxPScVFbmtGAZ3DUNZ0VARcnyaU1WUVDSXLAwMFgIdPYOvMGZC5IKiXWIFrzbQsVHpck2RlqQwEsFZeXhNlYpY4IIwYvX0xu1x0VwIPjRA2a92I/Rs6DX6/sj2FAR0+hgHWL5pAJJX5EKpBcaacfo3UQKMaaruw2RDvOJHhwL3x/ng70vgiMNHNaBe6VYVpzD3N4QjTH2GcevyqOPBlvVWmD7PJ42nmw0MIkmy+ml/vSXZDnX4gVjwBofHy9Slrlptb6+vsT9S+X9MFzgTrvmaz2oSOjB+B7GkKwE6VFRyXnROvbla2h1UhEyiWJyclLj4+MFBcrnuy1UYvEgXX5PEGLMigDG+pIm8x4uKuYYr+K9VRShP3cqtJ9tqtJKkSniHqeYdEIDgJ6Sx5n0moEqUqmkT52BKalIqmB/OAHGbYpUKQHPda0CEI6H/3bCBQHe7aDH5DGQVDJOLDMzsyecRLqT3jcpXCYTcf4zs5P77tif7AvOY4rnUMy2jTQgaV6fRxk9uSzVkj2uGhBPcFNqVjzzWfVxhz7TikkHSXPTfS30NOy1UWG6XrT66b3Qu7CFyesJrvQM+B2tbNNb8SBTgjEVSASsqHwIPPQiIt3Ja/iyS2685vPY7+wbek1WqNGjM9CwjrF8AjYVIucKAcvKmEAe6Ur2HYGOzyTIMl2cSTXMznRMlRLbRG/R9xKYPdZMWqFSd3+3tLQUY0Z6030ZY2SeVwT6qsQi9sl8sTTO02iMcb3S8HD97PnRC+YczDK/ZI+rBoSWXpXFyb9p+VIhUmGwPFJF0tzTtwkG/J8KlIohJnJEZcNFGi1MKtUIBH4G+6FK8UZlk9LsKR8GUD6bSjx6adEL9cskqaSitT0fpUbKz4knzGLjnqcIHqxf1fMIuhHQGKujBxCTEfxdNCCil2dlz/7mOPI7jofrSgCh0RDpXAqNCBpsBHkqfAI/DZgq4y0aA7yf33PORtqa4B5jlrHufrbH3PWwd5e9rZcn2eOqAWH8govf9IYVVDzSiQvHi5EcumNDVCbO/PLimpmZKTK9qMxodVp8jeMXKaXSAbBRMZFS4UKO9JO9NSvN6K1UWbux7aaMSL/5dRR8Vxn7j8Dv+rnfCfisNz02lkHwNVD4XpfLDcSkV2mlu36+1hSf+5H9QWvec4Vp/tFjZx+SeiQIGMANtPSOfF9KqXS6Pum66Km6jsw89fzgmNnz57zgumBGresYQYsUsceVa8xjNj09XZwew/Fz29gfDQ0NxSHKbqOZAXqQUbiGoofHdPks1ZKBq0aEi4BWXYwhRE+IFqXLIS3I77x4p6dnT4/3Nf7bCpCLnEolUo9Vz6HSoIc4X5YWvavowbkveHgun2WwJiCQOmS2nOtpYKDlTGXFOtEadxkxrkGgcpv5yhT3K4WKlm3y/x6nKi+RzyRAMSMvAg/7lXNHKp8F6M+qQJ51ien6kZ6Myjl6vEy+cJ2YJMH2xmQfj3P0UEkDsj2e06yHDylmnTg2nOs0UNiemN1Ko4J7CHkPf2eZXzJw1YBYSTFYzHR4Kl0uZKYUpzS7L4dB67a2tuIZTPKIVji9s6gcfb/rRtDhAbbk+rnQfSiplYEVhr0KX8/zEq18KVTC/l9S4fW5D1xfP6elpaV4Lj05i58dAZN/U4n5OwM6Tydxf9KLoAK3IdDa2lqiJlknZjFGT5G0X6QO2W+m9eh1+V56SPRemQgSlbDLJf1FpR8pbKkcF4up7PQKWRe3l7FOGgI8czNSiIx7ReDx+Lp+NIRsaPEMR48VvXq+ZLSKfie4R+CkMZe9rdNLBq4aEHpRVRaiNPewW1Ns0bOJyj56MVZScfGQjiINxjr4b3/X3NxcvHuLcRta/+T8o2KzVMUzqDzdRoIoyyKoNjU1zXl/E18OybpECpLKmoqRdFIcpypwdR04XpGeZGyPxkAVXUwPIHrm9Dr4DCbsxDiM5wXpZ39Ho8TPiFsOCAxV7SLgWRjb873RCOJYs+8NtBTOBfZD9Jz5BgWvqwhq7jumtxOAWCbnQVwb9Ph4L8uN92SplgxcNSBUPlxwXHj0RLwYInceLc+pqaki5uDU4Oh5zKd8YnCbYGMF09TUpPHx8RKYxsA3AZP0kj+L/UAKjqBNZRED3ox30FKn8p9v/5AVu/+uilkw1hLpXLeZ1BgVMD1k9o3Hxe2IXoD7y8+lYqfhQa+JIOgxs/dN5U2vM8ac6AG57vSASItRScfxrPISIz3L+6u8bv52G9g/bn+cm9FTJZDFec62R8PF4utJUdpIopHFPo7UKeuc5fSSgasGhJaxVAYnAw2zwqyg+S4gHsFDhcQT0iUV+1d8phu9GR64SjpJqk4L96Gi/lwqZy3yXgbmTUsR7LjpmhSSP6uixSyRxuPG1biPLdJSfA69EQsVGeOH9EaoLE1t+YBfl2sQ4fWmDN1Geq6+zmVyrLwHjUDt/iOImy7lVoV4vBhBzmnpptXYVgMPr686F5AGB/ffMfGlvr5eLS0txV4vbmTmMVQcA8/byAb4f1PRFibpkAb254sWLdLMzEzpgN8IjpzrZhY4b0wlRoPMx3mx/+hh0qjKUi0ZuGpAaOVSUTImEakLLiwrOp4eToUizcYKogfnxeTMQn5GD4pKwfWghxG9I9JB9LZcl+gdML5ioeXKvnF9YvYh6xoVChWOFYfLJJj4WX6+28d+cTvZ/y4zAitjOjHVXlJxvqTLjMqf/cs+tSfkcWNf03NkfaMXyHFlxiq9U3v9nI+M2XDcCeCcexwz/08qlXXntgLWVSpncsaYoq+NxofnlstggpKF2a/xORznOJ84p+rqZrdBuC70suPcy7KwZOCqEbGytbKIqcbxhAwqflqEtNalUwvI6e9SeUOuVKbdvBhteZM6YkKFpJK1GQ8h5WGnrk+kl3yqh6+hB0hlaMVsmsmKk95DPL3bfeWymI5OpWUL34H3GGDn3/P1GxWkNzAz9Z+bZ10Xern2kNgux2IaGxuLMw2rANjXxQQdKnZSW1T68TUgbgO9YCroeJYgU8qj58U57TlIDzKCYIzx+V7GeWmM+eQL1nlsbEx1dXVFog6Thriu3G7G9nyYM9PhCYh+RgQcGlYEfma2msWYL0aWpVoycNWQeGHGfT7Ruo/CBUFvyvdwzw6tcSukuEeGFCE9QalsAft/g1tUvtEjdHusTKt+6DEZsGKmZGyzVAZS1rVKmbtdvma+uFVsI5/rz+Mp776GHgjbRi+PEj0kzgd+FhUf41GeM/SmSD3yGZ4nBAr/pnfC+cLxd3ZfFX3LuWOwcB95TE1/s7+i18YYZIwVRmBx2dFrjUYIaWuOP/sgerxxXDle0ZChoRO9T9OwWU4vGbhqQOLC9WfR8q2iKmKSBlPirbStOHiUD6k2qbz4GY+KStsxCT/HVirP/aNXQeXp51Dx1NXVlaxVaVY52nIlFWgPhaDofmCfuBzG2qKioZLx9THpIQIVy7UilGZf0kmFK5UPSrbSdh/4+0grWdy38yVDEMDo8VLBWtwPHB/SVvS0YlKDPQfHq6TZmCjnLz2z6FXYO/Rvzz+OS9yOQNBy+7k/jYaGnxE36fvzKm/J1zExw54evXRud7Bwuwr7j2uU/UJDrgoUs5QlA1eNCJWJNGv9ObBsYPBCNpXE9xaRForg5tR1KnkCAalBxsmqMsG4n4VHLLGMqoVKZUnqiFapr6PVbyUyNTWllpaWUh/E2BLr4/vtdfrvmKAQDQO3pbGxseg3HtnjPvD48GWbVMr0IKJS5gZwC4HUZXjcU0qlzD5SfdHTcHJInF9S+fUhHKcYcyQFW1dXV9qH53sjfei2xbbTgzW1GMfc/WZqje2zTE9PFzQ250r0hGj0sV1+fkqpSJ5xAgn7hGuCiSpsn9ee345QlRHa0DD7jjz3ZzQUs1RLBq4aEFrpVVSgVA5iS2VvgpY2y2C5jBGQhqQ3ZW+ARyRRKURK0QBD5UL6MXoAMUGD2YIEObcr0i/SLP1UpSxi291PjDGwDhYrL1K0URFWZbrxftfb3mqVVxDpQypIepX05NwuKl/2Z6QN3f8ENc4RgkqMLbH/6eEYxPk9DYoqqq5qTKOH7LoYtNwGXkvPxuNAQ4DfuQ7+fL4YaPSIOIfiXGLZ9NzcX56H9Lar5gq/zzGu00sGrhoQT+y4/8TfRaDh4owLLS4SehzS7Hl55NpJE8Uz5SIN58XORcq4kO9xuREwqBAIplI50cFgQqqS1BYVJ++N9eAepljfWFcChsti37Dc2OeMNTn2FT0PggdjcayH/3dZBF1a7dHIiX1uBU8P3GWTwqInLc2+6JOeGOcgE3HIDvC5EaCZieixMyhGr5lAEmONFhsZVXRknEeeNyzT13LM2Df+ngaby+FapefN7zjecc6wXlnmlwxcNSB1dXVF3IiLhPudrDhMS0nlN8HGmA1pL8YJrFi5kPw80lEMYNMLITXp/WDRU4h7bXgdaTAudidQOEMtWr3uF8ZVrHSoeJlR6M9M99BjdB85c49eKZWtLfcIAtG4oKdK2sx1jcDEPvXYxCQSxxGtqJ1h6HkyNjZWAgsqZd7D5xMI3Lf0oGhgVLXf4xATHPw7prJH78+fud8YP4pGB/uMMSrTdFwf8XrPpTgGBHuOF+/3vODc5NziM1i212Y08txWtyMD1+klA1cNCD2MONEpVRa2FwdpxGglk7KiByLNja3R8o20B61sAiCVL6110jS0nl0m35LLLDMC8Xx7XqICoeVsRUxw9POpvGgVW2HzRAu3oaWlpQAK9k0cB8YwaFS4TgQEtpGej8tkPf235wipWnpPVbGhqLC5Z43K1gk8zCSsOijWbeF8pKca52+ktwmwlujJxz7guLmeBGfGFyMlWdW/9Pg4l1wW10D0ZDkvaYBEb5Gf+d4qgM1SLRm4akA8mb2L38qpamNspH5IPVExWglYmTFpgIvHi4yHkDJTikoqWsKTk5MF+Ph6af50flKRrguVYlUCAZM4qEyjdxNTqHlCPMHEB+7Ss/R3MRbk546NjRVZmUwUcVsJTu6rGHP0uDBuSGVIS50g63nhe5zUEcuIqfBMCOD1njPuq5jVSA+OwE9QpEJnHIn1r0qAsWFjL9B1JNAaPMkYcI3QY+RcdL09L5qamoqx9gkv0UMk4HOucnxZf+4dYx+yTK4VzqXonWVZWDJw1YCQluHE5mSPoEPFEWmO6GlImqNM+GzSYhYrAmbpMX7hzwgWLs8AJc1mnJFOsxBM4zVWdNzDQ8UbaUYqNStjb/CluGx6Fu5jArD71cqH8ZmZmdljiiI1WuUJcmzifjdSgUxW4fgYwKuoRxoxUUGSCqzyDNxnBuTo4dBrZPsIHjHrjp4g+8DPd1q9x4bPY/0Z44veW/RiecwVjQ8CCJM7OMdJXcYkC863OAcJXr7f3jrXL41PHwTAMctSLRm4akAinUMrU5r7huS4iKKy8r1W0NHqdcoxLd6oTCnRS4uKn16N6+brqAQIBATiqKwYR3KbeDAwqRfW3YDNOkWgZnzL9aK3EkHI10UAdH8wvuQ+JaDFxATpFGCbduS4xH6ois8woSCeUEKjhpvOqSyjxR/7VJqlOSkRUK3wWQ/WkXVYyKgh5erxcH2joWKQiIYW+49zwzFB96mFIBv7IvYLn8E56HnD9cP+ne/tDmRGsswvdakGe2hoaEidnZ3nuhpnVUzTeFLbEicNSEXFk6m9UOihONBP5UEvgR5OXMhVlIjrRa8wWpbe08SMQFJNVGBuF+Mo3KzrehkQYlwkxjKoSNgu02G0/BmrmJmZKfYGmUJ0//oapt3TSIj0HJUc2+H2Ow7je1i2PR8qU9aZbaNSpaHg59Fw4PixPuyDqamp4vgmj6H7jePCjFQCC8eYRo7LZCwp1iXSnpyHfJeZvX+X7bJ4PiCv4UHS7JuquePPvbcrzlN6bV5fzL71PW1tbZqamprzXjnXjQbWhSSDg4Pq6Og4o3uyx1UjEhUdPZ8qj8rfebHxBOwISFykpMa838o0RhXVRWXEz6PVGJUhFz8VOuNWBFH3AS1uA3BDQ0MRp4ieha+NnhK9mRgXYdvZX66DwYKfReue4xLjVlVUUDRAbGiQ2opbFCQVBgjby76VypStATWCduzz+cYilmvjowpgLH5+3J7ATEy+B4sAzLHk+NmLoRFkoJJUzFvWm3OMZdGTit4/jQSOXxUt67Hm2uQ2AR5txXVKw9H1zrKwZOCqAfGC9MGgktTW1lYoZFr8/m1Le2JioghE+6BRBthJE/EV9ymlIl3Y5VgIbowfRa9Fmnu4LJUYX7XCBR0tz6ampjlvnzXtJqmU1mwlxgSCGB/0M0nXkEbyc0nvuY4xwcJ94TYyfTvScAYK9iMBxc9xggI9yZhMYQ+N/UYQYP35LJdlICQAcL4xriSpdCit6T+2y33BzFeWTW/RIMBEibjNI8bFokfo+el+oPHgcfCYEXwJFOw3e2Gu//j4+Jz0fx70TIrRz4+MQwS+1tZWTU1NFeVwzH3CRmQOslRLBq4akGhxRk+GvDoXpRdz9Lakcup6TEiQykcXeaFGhcxFHyk2P5P3mNJynWMMpirATW/ICil6IgRhApXBxBIVoP8nwBC0CHLuT/cVzx4kxUVvjIkjpMhYJ1rw9Aak2WQK7nWSNIdm5biz3vS8IoXG53N82Na6urrCYKAC50kgBPw4lgS+SHFGj8d70twWghZjYlT4kZKM1CgP6yU7EY2YuG7cfhoyrEdcf7GenGMePxtABCfew3WY5fSSgatGhLSVFygtdn/HxWgw4R4cqZzcQa8r0mgELC5KWsS2xEkBEqT8vLjfiwAcaZcY/CcFxpiA6x5T/WM8kIopxi98vctjAob7PWYYus7Ro+N3VcJy2WdxTKh86fFFBc02xLgVvRs/y/d4XpDWYizR5TJ1PtLKsa1+fqSvaaTQm/Y98VmeWxbGMGloRGPHz/HGY48P6xa9PBp1frbrTAChZ8Q+5qke/tx14TwjM8AN9PScuY6y13V6ycBVI2IPgoFmLgAqFl8bY0/k26XZOAAVSqT+6FXQyyG1w98ppeIAV77DSirTMvZaXA/v97LSIX3E/TdUBvTg+BxmBhLICDbS7IG7MWnD4uc4+4yGAmMR3HJAJWmPhfub+B3jHtF7cp/SOjdIMuszAhjLlmaPvvJnvJdeCyk0K3iClFPBDWLuM256dn/F003Yds5neqjci+YxIa1MI8XlOn5LGpveFRNbTOnxfvaTE1AkaWxsrAA29mmMDdJb5bU83JqGWPS4XSY/y/GtlyfVpmGWnzuJCpXeUbQIvUi56CKFwWA6vRG+Jt1K04s1UiHRAzCgOf4RlZCkOfX0QqfC5XOp8CK4kEazIma7Yv/REyEt6Gf5OvYt748enJ/DNHcLFS89S8cbORbRo2GdqjImST9Fj5vzI46T/2aWIwGeRgBBrApw6VW6HIM5x4NAHulEGiQcu/r6+gKU3HaCBmNZsc0x5kiqj3OHjEB9/ezrZGiQxX6j8UMPl4YRY4ekf2kc0bu2h9nU1KTm5ubS+sgyv2SPq4aE+5C8kKJyjIqSSo/feTHF2Bfps7j/hrShF7DP8eOCjN4Yy6+KV9ASJQBGyi3GM6q8Pf5QWVFZWKFWHTcVvRzSUrS6fW1VnMn96z6nMmI8jfWp6n+Ou4VGBNvnzE96T7HP6AX43rgtwvdESjAaO/ZsIiUWaUv/jtsxYvt5PZ9HT8Z1Yx1ZV1KOpFDt+bssttNjFEGF5VYZAjEJiEYN6xHnJY0ePju2P8vCkvdx1Yhw/xOpGi5eUkfSbDKBP6dV2dTUVFBHVIwNDQ1zKBguSD/baej27PiCyrh4eVJF9P78OY/yYZaW2+Hr4/FUMbOQJ8bTopbmemwR2AlE/p8p6JFujGDF7DYrdrbZZUSAdb9LszSnqaoYi/J4kKZk8ofbGRU9lWaMtfn5pGp5Lb2dCACeE4yfcg4Q5Jm04s9M1bmOVPB+Lp8f6be6ulPZejGOyvlnmnO++rBdHjOuo+jN0QtO/5+y5FyJa5Lj4mcxXZ51amg4tbXjQpK8j+s8FnokkRqiBenNoebzuTiZ3uv7o1UZ42JVHh2fx78jpUVl4e+9yJmZRq+BYBA9MX/Ov2klNzQ0FPEWgjHT8eNZfgS1SH+5bwm+3s9mJUVANpgTwF0GlRnH033Btlf1IcuRZjML2Q4rXbafqfEui3QwlTTni70Kgj29EbfXIML4EfswPtNCupJ9HA0bgjATZVy/uC+KnlKVARO9Id7Da9wf7H/Wn2vC/8fkp9hffBYNSX/uDdlZTi8ZuGpESBPGEyS8aOJeKytVKjsrSFKF9qBMJZF3J21IiooK25lclki7GFBctttDBcVz2vx8l2Evy2Uzc8t9QPqPSo9A5/pTqbNPXVcqlyhOPGBChhUTAYCnIzBZxIo01p0gRGs+gjfB0ONCI4D7sThuFtbZvzkXWltbi+OmxsfHS3Sa20Ivl+XSI6yvry8OsZ2ZmSm9lyq+841z2MaX6xapx0jJ1dfXlzafu640luL2gTiXY1ahr41eE71tespuX0tLS+Hd8RSPaHByvfLMS+7TzLKwZOCqIWF8hIvU4sVsxcjT2akcuBeqSjlTaZOioWVMiXG05ubmkkdCas3X0LOygonKoCoFmQF/Kyx/74w5/29FYQ/I9SeA+G8/M56WTiBh3d03vt5t4NjQWvfnkSqiYREVJWk4gnCkHql0afVbgboPquIybps339IDr/KgY/t9HcHWbWSmIMHZ41FFL9LDY9IIAYs0X9U8Ibiwvq6zf9Pr82ecJ/R+qmhGUthuc5wX9PZoFHI+0IDI8vIkA1eNCJU9FZUnPhcSrcuYGh4Xo8uOtCHjTHw5pYWLj3SQlUj0CKMyYDyJHgDfmRSBjPVmf0QqjjEYgvN8gE9wppfK57sv6fnQw6BHwvEi6DA920KPhjEjAmK8h96Gy6AXYgOHQMfMR447x9CeF71bUphsbxxjb4GgEUIQ47hEWo30HJ/Bk01Y59jX0WOL1xGM2G5+xnXB+rBN0XhwHXiWpTT7IksacWQ9mDASDc8qgyHLXMnAVSPChW/rOMZMbLVFishgEF9NQa6fe6ZIa9AKlVRKVohWLfc2xcVNpUIFHa1ze060vknVuL1WGAYEAmgEMPePYyJWGNzD4/ryzDyCgetNGjUaAaSdfK3bwTRx15+AHvvGfRgzIFknKnRf7zlgBcmx4IsuJamlpaX0yhImT0TvmPWPgMG6sN9iUgmVdMw85Vj7eXFvFw93jkkP/u1+Z6zXR4aZKncZnsuRyYjzmnSfr+e8sKfv9+WZ7nTb3Mf0yl2WQY3GU5bTSwauGhLy7JFKMs9eRXFwgyuBLipXlk+godKyMoheDK3/6OnQqnU5VYBDD4ogG+kxg2s8XJVKk8rMYEPK0+X4GlJ4VdQgFT771P9bmBnJ72LSRvSAZ2ZmSm989rN42K6vY6YoPU9a/BG02B4L6Sl6dEy6YD2c3BLLttESvXaWSzCMxpbrRQOJhoTryes9/tJsRinnjDNnfS2fSSqSRh6NCtfd8z32cWQrOPcYS3Y949saOO+4LjkOWeaXDFw1Ilz0pC6cuNDS0lLKIJRmkyKc8k4eXpo9kUI6tWBM93ghc9FKs5alg+4xo8t/2+K0R+R6ukyn+9K6pwdIBWKQY/qz2840Z2n2bLpI5zEGFb2b6MVFyzrWw/3D7D1m3/lwXI6X20/qzfRaBOMYY5vvKKAYB/O1VpBOhmAch6/BMSD4eyZP8KQK7nWL3h+9pJiKHhNSLBGQImXnPmf2oPtscnJSixYtknTqdAvOd15n4ZxxvePrRuJ+Qn5HBsN155hyntHbM4ixTzjvOS4E4zjGWeaXDFw1ItELojKidUuLnUoneja0cH0PrXNa0KbZyP2T66el7LpR+UXQIB0Uv5fKZ8u5XVRkbhOvicf5uK9ibI3lM/if0mwsj14jwcz0JOktxn5YNxoQvDZa2GyH+8MAzPGKHh+9UZ63Z6OB7TCweD6Ytorzy+Uy0YPZnfwd6S2Pq1Tem1QVh+LzKLFP3Ofs5yqq0tdXHXPGecc+jAYc54MB2+0nOHmuRcBhn7gvmIEZPXB6emQbDNBZFpbsl9aIEEScfk5l4YXGwDqtZ0uknahM4vFJXExUdEyfNi1VBXJ+7QapmEj/NTc3F0fd+HmOFVDBM/EjejO+189pbm4uWfSkZCI9ZkXv+6nE6PlEipXi8u1luq60xGNKN/uRVj6PcnIdq5RtpEXp3bjdBqHoKZDqi15LBO2qOegYqz+LtLGFwMY4Er0RGhaeD54/jhOx/0kTs//ZRtaHXozXA7NiaWyw3zhOHMdI7/l/z2F/zvXieeV1VUUxx/pkWViyx1Uj4gkdD0/lO7a4wEnN0TvjXq2qOJSpL77pV5rdv+T9XvMdeSOVYx9UqC7Th9bSO/JvbkKlwrGCb2lpKagwX19fX1+8z8hKkaeMsN7sH7ebtJr7gLEIAl081YPeq6+R5h5fFMti33icxsfHC8VMStEKPt7r/rQB4XHhCR5sNz1d9zkTB9wHVJ6k3wzwpi9dr0gf00PlPKjyfOnFNTSUXwgasxilUxQh57XLmZmZKdG0/oyep9eP+8if21OjV+Sxdt9OT08X85YGGA00euJVXjXZBnrU9uK5nSPLwpKBq0aEViat3Ziqbaop7jOhxyCVaRE+w0rDiy8qCH4vzQ0w02KlsiawMgZHJRRPIPe1BLgqyoV1oZdAipTBfdJYVESREmIbqpId+D2VrQHB1xtEqtLJreSt3EizWSlyozS9M1/jZ7oN9Exjewh0nBPOvPP8qqubPZki0rT09FxXxkrjtTYwCIqktG0E+QWaBHX2F71MxkQZn+PGX86lOC/i3Ha/REbA18e5FOclx5bjGtcmhRQrxz/L6SVThTUktmi58LyorYicwRQVi++NFKA0dx9XzOjjd9FyZln0PkjdePH6/yoA5EsfCYYsgzSYpYp2Y0q+/44nlzOg73LoJcQEC7aXv0kDSrNxoUiFuZwIfAzmc/z8PceRp+iz3xmzo5gao1Kkpxk9xwgUVZ4DaTaOI9vh7zh+rCupRn5PGo0xNXpGbheNIMYOafSQyjbwx7dGu18MnMwIjFQxszW5tjg2sf/prfu4MJ7S4nkXKf0sC0v2uGpIorfgRWGL3F4LlYvpE1NCpLtcDoPQ09PTamtrK74ziPEQXVJ6VfGNqLSoCHk6AzfZek+R991UPdOKgArF5XFDJ+kwekFWNgzgu+32bAi8kcpk22Lig5UnwZLP8zhFQyB6oaSw+Nv9wbr4Hp7FGE81YfYjPZWJiYkS1Wivhf0VvYHokfp6zk/Xi/umSNs689HxQGn26CjHNg1Srgsp7ebm5tJYk0ZsamrS2NhY6SBqe3But+tCT5JZi2Q2Uprd9sDP6FFFGtmf0/Okt864sueBU/djYkmW+SUDVw0JFR8XNi1PZvNZKXvjafR8LAQXaZauIDVjBWjFRYUWPQu+j8hlcOFz8y4Bk1QMqZlIsZCeqfKACFxshyVSQNHK5/OoYNh2x6Mi3ecYoesZgYTeFttPpUbP1X1gq9z3OXGBB/Sy39weK1ADPIGvivqjd0uQYj+wv2i8RA+NlCGVPMfa88QUcBw7XkMDhM9xH9KzIuVKapRzmu1k9iDHyvWxJ+ytJXwmDRnXmc+IdGocA26nyPLy5Iyowo9//OOlhVVXV6fNmzcX34+NjWnbtm1avny52tvbdeutt6qvr69UxsGDB3XLLbdo0aJFWrVqlT70oQ/NWdxZ5go9lLq6usI6ZfIEwcrKtb6+Xm1tbcUCohKPdJ0t3fHx8ZJiJiC6rMbGRi1atEgtLS2SyvvLImBYefp7HgxLisnzwErMwXFbo1Z4fiULwSL2lYGN2Za2qq14WltbC6VJhVYFINKsgpyamipoH2YF1tXVldLl3S8si/RVBFtmTrLfbIhQgXssXR97Fm6nlbj7mZ6G+4XeQFTYNEw8lu5rjxnH1zRbNGhY7tTUVKnPPcYxAcQesDfUz8zMFIARkz9mZmaKZBEyBAQmn14f+3RycrIUQ+Q6c5ul2QOgaSDwtBXPDWblem67P/hWAvYhT7VpbGwsvNAsC8sZe1xXXnmlvvnNb84WAK76D//wD/XVr35VX/ziF9XZ2an3ve99+s3f/E19//vfl3RqYt1yyy3q7u7WD37wAx0+fFi/8zu/o6amJv3lX/7lT6E556/QY7LS8gJmDMIK0gvI4CWVM+CiZR6VI+koKwkrW3oUkkpUG6+nBUklR7rMSsReGJ/tZ0TPhhtLo7fgZ0UKlBYxvRh6NW4vy6kCNFrupKyixc7+o5dIw8FAz/vosbgepHZJa7kM03IpzW5sdtnsCyvmqmfSc2LdOf/8uT/zvPH3bE/07AxYcfyc5cdjkghOjH35u8gAMNZID8jPjl4ex9Lg5jdTGwhdng0tG4mm3emxck7wM4N6NHAM3PPRslkWljMGrsbGRnV3d8/5fHBwUP/+7/+uz33uc3rzm98sSbrrrrt0+eWX66GHHtINN9ygb3zjG3r66af1zW9+U6tXr9arX/1q/cVf/IU+/OEP6+Mf/3i2NhYQKnUqa1uH9kCk8ubOeNyTgcllRsVUZWV7kceUYS/4qDBIifDamKhAZcR6EIB9b4y1uJ30OukJUDmx3BgHc9nuI2/ejSxABB8rShoDBtkIpLEc18cKl23x3/6fY2XPkvSU2x49w3itlSXB3vOD40Gwch9J5TMFI7iznZxfLMPXmHYjEPq+aIgROPzc2K+cV7yfBhi9pEhzzkcns+95jic9JI6l5x7bzXIjNcmxIahmeXlyxlmFzz77rNauXatLLrlEt99+uw4ePChJeuyxxzQ5OamtW7cW127evFkbNmzQ9u3bJUnbt2/X1VdfrdWrVxfX3HTTTRoaGtJTTz017zPHx8c1NDRU+rkQxcqK6c9UQASfiYmJgj6SZhUIlbsXJxUCFQoVlxWHrU/TL9PT00Vw3Qqf794ipRJpSj6LlicztGyR+xorEyslUzj+8fVRKTGDK6U0J4nFis9JC1Q20mzqPgGBiodKzL/p1bke9fWz2WW+14ores8eV7eLlKjr5+/tmTQ2NurkyZMFzWrPzGPh/+lFMIuRtC1Pj3Af0QvlIcUun8+ZmpoqJVxwrD1HOeam1GhIcBw8jqYTPW+Z2OJ6so84twhg7lPfNz4+rrGxsaJ/SCH7Z3JyspTwwXEmuHr+mcZ1W31/SqcSipglzISrLAvLGQHXli1b9NnPflb33nuvPvOZz2jfvn1605vepOHhYfX29qq5uVldXV2le1avXq3e3l5JUm9vbwm0/L2/m0/uvPNOdXZ2Fj/r168/k2qfNxK9IlpzFi8aae5r4qMXQyXJBcqyqHypnKPHEb04ehTRm4h1jvSIFRvpsUjt8McKKdJ4VZ5AVGox/sY6RTqQ/VcF/hwnSkz+YExHmqWieA3HmArN/9MDjJ4t5wCBNF7Dz093fbwuehfxh0AVPWfOB4IZASbOH5dBUPT9BHfOeX4Wx66q3v6M1/M638c5w/LZT1Vrjv0V+znLmckZUYU333xz8fc111yjLVu2aOPGjfrCF75QpFD/LOSjH/2oPvjBDxb/Dw0NXbDgFRWvVE5D9v9UkKTeWA4XEBc1y4nZWLT0WRdmfMU4jnn+qJQWUqL0MGIcSpp7IC7vj/EMf2aqJ1I8sV8jsFYBOusUreRoLFhinIoGhj8nVSdpDg0by6LxEfuD4+xxoeFg+pD1jgo7KmM/y4ARn1NlTLG9TJ7wNbH/YhlsU2QAWD6/n28uVj3T5ZMpiGPMPmdfuNxYz0iDR6+TVHac21lOL/+nDchdXV269NJLtXfvXnV3d2tiYkIDAwOla/r6+oqYWHd395wsQ/9fFTeztLS0qKOjo/RzocpPOsF5X5UyqlK0UvVhqLGcCIq+z79NvVCJRAue981nCVd9Pl99+Fmsy0LPjptgWW4Eyeg1LGQcELRddvQcoyUer2G59DQNBjFOs9D4VH1XpYDpAc4HyAsZRFL5dBNp7rFSVR4d+43308Bw+6MsNKd8b3xWBBXWu2p8q8pcaE7yuQtJBrCXJ/8n4BoZGdFzzz2nNWvW6Prrr1dTU5Puv//+4vs9e/bo4MGD6unpkST19PRo165d6u/vL66577771NHRoSuuuOL/UpULSiLYWBjDitfG66PSnO/zqAyryn25n5+unCpKJSobWrKneyYVPAHD372c+3lN9BKrQHg+EI/3s1xb5FXKkBSmFWxU4vF3Vf9UGSoRxONPBJ/YpuilxjlURaHOV0fWrar8qnbON6dO913V91VzPl5DephjU2WEkPqs6nvSotE4yPIyJJ2B3HHHHenb3/522rdvX/r+97+ftm7dmlasWJH6+/tTSim9+93vThs2bEgPPPBAevTRR1NPT0/q6ekp7p+amkpXXXVVuvHGG9OOHTvSvffem1auXJk++tGPnkk10uDgYJKUf/JP/sk/+afGfwYHB89I/6d0yhp42XLbbbelNWvWpObm5rRu3bp02223pb179xbfnzx5Mr33ve9NS5cuTYsWLUpve9vb0uHDh0tl7N+/P918882pra0trVixIt1xxx1pcnLyjCqdgSv/5J/8k3/Oj5+fBLjqUqo933RoaEidnZ3nuhpZsmTJkuX/KIODg2ect1CTp8PXINZmyZIlS5YK+Un0eU0C19GjR891FbJkyZIly09BhoeHz/iemjwdftmyZZJOHdibKcNq8V63Q4cOXdDbB+aT3D8LS+6fhSX3z8LycvonpaTh4WGtXbv2jMuvSeByim1nZ2eeNKeRC33f2+kk98/CkvtnYcn9s7Ccrn9+UsejJqnCLFmyZMly4UoGrixZsmTJUlNSk8DV0tKij33sY8VLDLPMldxHC0vun4Ul98/CkvtnYflZ909N7uPKkiVLliwXrtSkx5UlS5YsWS5cycCVJUuWLFlqSjJwZcmSJUuWmpIMXFmyZMmSpaakJoHrn//5n3XxxRertbVVW7Zs0cMPP3yuq3RW5Dvf+Y7e+ta3au3ataqrq9OXv/zl0vcpJf3Zn/2Z1qxZo7a2Nm3dulXPPvts6Zpjx47p9ttvV0dHh7q6uvSud71LIyMjZ7EVPzu588479brXvU5LlizRqlWr9Bu/8Rvas2dP6ZqxsTFt27ZNy5cvV3t7u2699dY5Lzc9ePCgbrnlFi1atEirVq3Shz70odLbfmtVPvOZz+iaa64pNoX29PTonnvuKb6/kPumSj71qU+prq5OH/jAB4rPLuQ++vjHPz7nnW2bN28uvj+rfXPG58mfY7n77rtTc3Nz+o//+I/01FNPpd/7vd9LXV1dqa+v71xX7WcuX/va19If//Efp//6r/9KktKXvvSl0vef+tSnUmdnZ/ryl7+cfvSjH6Vf+7VfS5s2bUonT54srvnlX/7ldO2116aHHnooffe7302vfOUr09vf/vaz3JKfjdx0003prrvuSk8++WTasWNH+pVf+ZW0YcOGNDIyUlzz7ne/O61fvz7df//96dFHH0033HBDesMb3lB873fGbd26NT3xxBPpa1/7WlqxYsUZvzPu51H+53/+J331q19NP/7xj9OePXvSH/3RH6Wmpqb05JNPppQu7L6J8vDDD6eLL744XXPNNen9739/8fmF3Ecf+9jH0pVXXpkOHz5c/Lz00kvF92ezb2oOuF7/+tenbdu2Ff9PT0+ntWvXpjvvvPMc1ursSwSumZmZ1N3dnf76r/+6+GxgYCC1tLSkz3/+8ymllJ5++ukkKT3yyCPFNffcc0+qq6tLL7zwwlmr+9mS/v7+JCk9+OCDKaVT/dHU1JS++MUvFtc888wzSVLavn17SumUcVBfX596e3uLaz7zmc+kjo6OND4+fnYbcBZk6dKl6d/+7d9y30CGh4fTq171qnTfffelX/zFXyyA60Lvo4997GPp2muvrfzubPdNTVGFExMTeuyxx7R169bis/r6em3dulXbt28/hzU797Jv3z719vaW+qazs1Nbtmwp+mb79u3q6urSa1/72uKarVu3qr6+Xj/84Q/Pep1/1jI4OChp9lDmxx57TJOTk6U+2rx5szZs2FDqo6uvvlqrV68urrnppps0NDSkp5566izW/mcr09PTuvvuuzU6Oqqenp7cN5Bt27bplltuKfWFlOePJD377LNau3atLrnkEt1+++06ePCgpLPfNzV1yO6RI0c0PT1dargkrV69Wrt37z5Htfr5kN7eXkmq7Bt/19vbq1WrVpW+b2xs1LJly4przheZmZnRBz7wAb3xjW/UVVddJelU+5ubm9XV1VW6NvZRVR/6u1qXXbt2qaenR2NjY2pvb9eXvvQlXXHFFdqxY8cF3zeSdPfdd+vxxx/XI488Mue7C33+bNmyRZ/97Gd12WWX6fDhw/rEJz6hN73pTXryySfPet/UFHBlyfJyZdu2bXryySf1ve9971xX5edKLrvsMu3YsUODg4P6z//8T73jHe/Qgw8+eK6r9XMhhw4d0vvf/37dd999am1tPdfV+bmTm2++ufj7mmuu0ZYtW7Rx40Z94QtfUFtb21mtS01RhStWrFBDQ8OcTJW+vj51d3efo1r9fIjbv1DfdHd3q7+/v/T91NSUjh07dl713/ve9z595Stf0be+9S1ddNFFxefd3d2amJjQwMBA6frYR1V96O9qXZqbm/XKV75S119/ve68805de+21+vu///vcNzpFd/X39+u6665TY2OjGhsb9eCDD+of/uEf1NjYqNWrV1/wfUTp6urSpZdeqr179571+VNTwNXc3Kzrr79e999/f/HZzMyM7r//fvX09JzDmp172bRpk7q7u0t9MzQ0pB/+8IdF3/T09GhgYECPPfZYcc0DDzygmZkZbdmy5azX+actKSW9733v05e+9CU98MAD2rRpU+n766+/Xk1NTaU+2rNnjw4ePFjqo127dpUA/r777lNHR4euuOKKs9OQsygzMzMaHx/PfSPpLW95i3bt2qUdO3YUP6997Wt1++23F39f6H1EGRkZ0XPPPac1a9ac/flzxqkl51juvvvu1NLSkj772c+mp59+Ov3+7/9+6urqKmWqnK8yPDycnnjiifTEE08kSelv/uZv0hNPPJEOHDiQUjqVDt/V1ZX++7//O+3cuTP9+q//emU6/Gte85r0wx/+MH3ve99Lr3rVq86bdPj3vOc9qbOzM337298upeyeOHGiuObd73532rBhQ3rggQfSo48+mnp6elJPT0/xvVN2b7zxxrRjx4507733ppUrV54X6cwf+chH0oMPPpj27duXdu7cmT7ykY+kurq69I1vfCOldGH3zXzCrMKULuw+uuOOO9K3v/3ttG/fvvT9738/bd26Na1YsSL19/enlM5u39QccKWU0j/+4z+mDRs2pObm5vT6178+PfTQQ+e6SmdFvvWtbyVJc37e8Y53pJROpcT/6Z/+aVq9enVqaWlJb3nLW9KePXtKZRw9ejS9/e1vT+3t7amjoyO9853vTMPDw+egNT99qeobSemuu+4qrjl58mR673vfm5YuXZoWLVqU3va2t6XDhw+Xytm/f3+6+eabU1tbW1qxYkW644470uTk5FluzU9ffvd3fzdt3LgxNTc3p5UrV6a3vOUtBWildGH3zXwSgetC7qPbbrstrVmzJjU3N6d169al2267Le3du7f4/mz2TX6tSZYsWbJkqSmpqRhXlixZsmTJkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS01JBq4sWbJkyVJTkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS01JBq4sWbJkyVJTkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS03J/wNAyDA+WtEpmwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYzc530fjr9mZnfuc+/74HJ5k6JE0hIlW5Id2bKdOHYcw3GapI4bNGhgB00MtImLNG2a9msgKJI0jZO0QJA0RYwatePEVxQflCzLpkVJFCkeS3LJ5XLve+e+do7fH/t7Pfuah0PZclxbG3/ewGJ3Zz7Hc76P1/t4XPV6vQ6HHHLIIYcc2iXk/mE3wCGHHHLIIYdeCzmCyyGHHHLIoV1FjuByyCGHHHJoV5EjuBxyyCGHHNpV5AguhxxyyCGHdhU5gsshhxxyyKFdRY7gcsghhxxyaFeRI7gccsghhxzaVeQILocccsghh3YVOYLLIYcccsihXUU/NMH1iU98AiMjI/D7/XjwwQdx7ty5H1ZTHHLIIYcc2kX0QxFcn/rUp/DRj34U/+E//AecP38e9913H5588kmsrKz8MJrjkEMOOeTQLiLXD6PI7oMPPohTp07hj//4jwEAtVoNg4OD+NVf/VX85m/+5g+6OQ455JBDDu0iavlBv7BcLuOll17Cxz72MfOZ2+3GE088gbNnzza9p1QqoVQqmf9rtRo2NjbQ3t4Ol8v1/7zNDjnkkEMOfX+pXq8jk8mgr68PbvdrA/9+4IJrbW0N1WoV3d3dDZ93d3fj2rVrTe/5+Mc/jt/5nd/5QTTPIYcccsihHyDNzs5iYGDgNd2zK6IKP/axjyGVSpmfmZmZH3aTHHLIIYcc+j5QJBJ5zff8wC2ujo4OeDweLC8vN3y+vLyMnp6epvf4fD74fL4fRPMccsghhxz6AdL34u75gVtcXq8XJ06cwNe+9jXzWa1Ww9e+9jWcPn36B90chxz6R5PL5TI/9mf23692/ff6ru/2vtfyuUMOvZ7pB25xAcBHP/pRfPCDH8TJkyfxhje8AX/4h3+IXC6HD33oQz+M5jj0jyAyvlcLTm12jTLMer1unLP1ev0uZsrP+HmtVjP38PNarXbXPfo+j8fT8Cx+z2u+F0Ggz2db6vU6arVaU6HEtrLtbDP7zn7pda/2fntstC/s273G1f77Xu/S99jzQGo2P/rMer0Oj8dz13jrs3mP/Yxm77Gfoe+xv7fphxBE7dD/A/qhCK6f+ZmfwerqKn77t38bS0tLOH78OJ566qm7AjYcak7cnMoQgVff7PY9ryZE+L/b7Ua1WjUMUBmDMmC+m8T79NkqYJoxPxU+/JvM3W6fjoHd/mb9eLX7bKHXbJz0M5sB28+322M/r1mfvxuBbo8Pf6rVKlwulxkrFYr3EszN2q7rhHNtKwO2sNH3apvs52vEmApVfV6z9eXxeMyz+dsW+FwnfGczQX0vhcLuW7M1ov83E+I6tt9pHTn0/aMfSh7XP5bS6TRisdgPuxk/cFIGoEyN/9sb39ZGgcZNqVaC3t/S0oJqtdrAFFpaWhqYIRk4BZQyDLfbDY/HA7fbjUqlAmB7UyvjtYUb38PftnBoxijI0JQhKdPVNtnWh16r77SfzetqtRpaWlrQ0tKCra0tc021Wm1gpipQ9F0ejwculwuVSqXp+zweDyqVSsP9HGN9l/ZT+8Nx4Oe2Ned2u9HS0oJ6vY5KpWKu5Xv4bPZTmbAtDG0lhOuh2VriGtva2jJts4UIr63VaqbPzebUHjedR67XZoLVbg/7bisOKhz1O1uZ0z6qwCXp2Oga4PU6fvazdZ/8qFAqlUI0Gn1N9+yKqEKHtslm5rZWzc94rb1xbMZPUs1XmY8+h8xE3+XxeAzDsrVx/lQqlQZGpBaLbY0BaGDO9oZvaWm5q0229dTsR/sF4C6BZmv/ylTIbLV9yui0DYQjVYjxd7VaNcKMbVCGpW1UgaC/VVFRptfMAtTxI3NV69m2bFTAaX/4nb6/paXlrnm0BR1/7HbquDRra7M22RaQrYyx3faPzoU9H83GT9eALVT0GVyLbCPHwl7DttWlQpvt4v55rXlMP+r0Q4EKHXrtpIxONxiws8moUQONQo4MnwxUr6WWD+xsIoV+lAFQE6cw0k2rTIaaY6VSMd8ro9NrtR98vjJ4Pu9ePiG2Wy0I24rRe3gt36djYFt+vK61tbVBqOi7lfnZsB77bTMyjqXP50O5XDbto/Vm38N2KnzaTEjey1emfeG88B7b96fXViqVBiuTY0erUd+pVqbOLedOLTp+z3GlBdhMoHEstF9q3bW0tJj1yOezbV6vFx6Pp8FC5vdbW1sNgt1WvHi9bTnqcziPtFrt91Ow2fuzGQSrAvtHzeL6XsgRXLuIlCF6vd4GmIybi4Lp1awSG7YjKVOlhq7arm1x2Rp3rVZDa2trg6atcJetVWu/FEIjMyQjt99lC1p9ZjMIiMzNFvxkeOybx+NBa2srarWaESi2wCKDthUH/mY/FPKy4SnbUiDjawYh8vtqtdqggNgBKveyaimYVdjdy7qg0kBrwrYS9dk6z8pwKeTsNtlwKt9rz5Uyeq/Xa9prj7muCXuN23CeWrDNlKZmVhbHmhAk15EqfyrwbOuYbbbXvT2/tjLWTHg7dDc59ukuIvXbAM0hE25UhVqARoarmi83ow132O9QIWhvWF7Hz3WzK/RkCwBlbs2shdbWVgCN8JxCk9So+WxlWmo5Ktxn+zFUO1YYRwVCpVK5yx9nj5FadGRaHAdCbh6Px4y3PY+qcNwLClOFo7W1Fa2treYd91JUVNvX9ytTV8uV3+scsS06xjqmCiHSitK5tS301tZWo3jZfb0XhKfrWBU1KiQq+DkmlUrFzJ1t6dhjq8JOhTH7o+/X/aBzrj5G+9pmCiMFvW3pOfSdybG4dhGpJUOtVhmjCgBq6mQQyhh1k6pGzeeopq3aIxmPMgD9WxmJDRHxh/erBcDNW6vVTKI5vy+VSvB6vQ3CgwyzXC43CEyOEUk1ffZX36/MVIWetl0FGaFPWqR8nu2Xs5k9+1cul80YMFjBnjP2k2Njw5hst46FbdXY40QFwFYmVDCoZazQG5+pfaZQsBULjhnJ5/MZmI7vJ7TG9abCS5Unl2snoIPjTCvZFhB2wAPXVLP1zn1DPxUVLT6HzyScqvPJvqjQ5njQqqcA5VjY77AtfF2buo4denVyBNcuIYVSSPYGUkakG9zWWnVz2laPbX0oM1ANXZmzCjP+z3eUSiXju1INXduqjEiZszKPZn4iYCcgAkADA7L7bPvYyGgUwrKfo+NuWwFqGQB3R03qu/g8O3Rdn0tqptFz3BTa1Mg/tcZsoWT7t2zIUK0UhWVta6uZX8aey2q1auZMQ9l1LFWBUihQBQ/XkN1GtSQVsrOtVM6vWuo2cTw5jgonNht/jq1GL9rzwnbyedVq1UCqtsWla8i2XB36zuQIrl1CZAC2FmczT+LzutGaMUxepxvOfh+tBIU+eD0AY00Ad0NZ3JiEs7T96si2+6IaOBk+tXtlhGoFkQlSo7b7ZFuJai2p85/BHDbj5Hv5Q4anTEvHgkJA+6zt5njxR1MGOJ+2f5EKBcmGAAGYvrNtNlzn8Xjg9XpRLpfR2toKt9ttrBoNjGlpaWlgwhwHZdbAtlLCv224jc+xLXfbUlGL006tUEZupwsoLM11rtYjfZQK92mwkI6LBnhwfaow0+AQPpNjp2Rb2wBMO9SS1znk/HHsHYvruyNHxO8Ssjer+jpsyEetFqAx5JYCgxYZn20zZoVneI3CGiQbhlRokRvT5/M1WCFktM2sL6Axb4f/E9IDGq1P9W0oqWWiUWjKkLV/ABr6oe9Uv5rtO9T5UcHNv1VQ2dfzR4WPtp33cixtbZ8MW6P8mgl/OyqPnyupdWJDnc0sBh0PCmxbEKlyoOvPFkgaDKQCRdcDn2OvB9sKoyKi/bTXqEab1mo1bG1tNSgbHEdds3yv7h8VxJo2oO9pNib2uL+aZehQc3Isrl1GKhiUoaqm20z7V03SJttCAJrDQ3w/v7e1Q4V8lPnbcI76CshUlJkoE1BLQxm2zaDVKtK+qMClsLIFuw2d2n3hc2x4itdxHug/sefEZqrAToi9Mi1l4HYbm0GTvKdSqaBcLjf0k23jmOoYKXzJdqnwU0vDVi4UalSo2lZe2H71Ten8kdSvpbAdv1Phzc/4Pgoz29Lhe1V4qcCy164Nseo613VnrydbEVOhzvFRy9K2oJVsRMShVydHcO0i0g3JzaABCur30JwRbjQ7mEGZqzJibiDdTFo5g9epULEhJv4UCgUjSPmdBiuoRUI4kH3ltRRuKpDI4IG786aUgZRKpQbGSKFpMzFbg9eQbj6f42oHiygTtZmTCgZ+1tLSYgI12BYVTDofFHbKXDUwR8fV5XIZCFAFkApXPudeFh7brPc2Y+jsjwoUhT6bCRMbqqalo4Kh2Rzwej5b4UCXy2VgYq5v7XNLSwuKxWKDJc19xHlrpgQpsW98nypmaokGAgGzLlW4MohFlRJ+r3upmTLoUHNyoMJdRDZTa6bB8rtSqWTgQDtykPcCO1CKDZkx8dTW+G2rSn1oCsvZWqhCIsqMlIHyc76bDF9Dvmld0DehcJ9qxTo2ykCbMXUVXsrgbEGk42ULcDIpChIlhbk4JjoP+ny2Q8PKFUq0+2JDkrRuVLFQP6SOO8eHwo7PVYuH71WI1Lb+1BqzIxp1rrleNERdBXQzXw8FHv/3+XwNQkeVA7UEuXY1+dhWArS/djsV9rPnspnix7bav1V5tC1hhbmbKRQO3Zsci2uXEJkdN1mzfBxCQLrZdQPaTBtoDBu2BaINt9kCTjc9GSafqRokmUYzKItEwaa+Gz7L6/U2wIvsi7aB7VT4Tyt9kPg5x1THis/lb/5NRsr32MnJZDYa1q/94nvVStGgFBUkJJ0D+jFLpVKDT4WWmw2FahtUGOiYqWCwGbla8LSM2FdlsPaaUYtOLUQdD5tRa3tsf6AKB16nof0cC7VAeR9J16etcOm61DVnW2faflV0tB1cZ6pIKTTMd+u6JsxrK0IOfWdyBNcuIYWD7OoETPwkc7dx92bWBK9Tpk2GTCiM16jmr1aTaty6ke2QZ93UwI7VooJQGeLW1laD70sZMxmwQo5K2iYbJtToMWVIyjC1XWyHCnCbKeqYav4V0GhF2P4LtfKUODacS46d9lf7ofAc28D8KVvgqr9T11SpVGoYOwolOwdLmb9tXamVRHisWCw29FutO7aPY1QsFk1SNdcK26H9UGuvWRg6o1jZX4W42R72rdnc2HAtr9GoQ92Tdtg9x4zKhkKRtgWvCpWOrUPfmRzBtUtIhYNqi82wcvWpALhr09iWhG058X/CXmTiqu3zuUDz4r2q4dvCh5uZgkoFCN+rwtaGGbW9qvWTuatgZLv4HL3PToZlPzWAg9/xftuJrwqFCnsljexTH8u9vr/X2Oq86xzxPl5Ly0yhMxvatAWRWhIK/aoFz7bZCpIduGDPl6Zd8HPbP6jfATspEM2CYez5vVcQhI6JQq2qjOg61fs4BjqvXJM2nKcCx7ZkNepXoyYVhtf5dui7I0dw7RJSqEE3ujJlksJDNlOwma69Yfg/k0MV2lBIhe2xmYYNPdkwEze95ncpHKa5Nuo3YtvUuV0sFk0b2Bc7so+kOUBsRzNN2ev1GouAY6eQj+3nYdvK5fJdkWzKWJU5EuLjXHFMFFajpWr3xxZgykTZBvXlKFRrM04bWuX3nAs+j+3WmoeqRGghY64TzikVgnK53NAmVVpoGdv+tGq1Cr/f31C6iW2gUmVbfvpuWkpqdXKcdU/ZkKENEXLuNOiCpLCvwr+8luvZ5/OhUqmY+bQVJhsudejVyRFcu4TIJNWqUsZJgaQbTrXOZnAXISa15ngNGbNuMI0A4zX0ORQKhYZ2KXOw/1b/hx2dBqAheqsZNGlbC9ov2xrUPqmA0D4qdGrDVGopquXC9pKR0zpRQcdr1XJTZUP7on4htaDVaqLVy2fps/U5SjbUqcoK267tUzhO26SWJsfD5/M1WDnN1p1dnUWDV+w1p2uP7dP26BqyS07Zz7MtHFWybCtMhbeiCmrl8ftm+0j3ij23NilcDuwohFoVxaHvTE5U4S4iFQi2BqnMXDeqDY8pA9INrxuW96nQULhE/TPNNjU/a+Zns9vLv20LQRmV3qPv0neqNWYzGH6mUWjqKyGRqaqPjW3id3YQiQ0j8T5be1brUt+rfjJlXLQubBiP7+Lf9BXp3KgVouHyHAO1IHSs+AyNnOR9HBMVjDqfdoQfBU61Wm2wGtX61DnQtaJ910R5tfrtdct2cNzvZbnYsKD2k8/RcdFxowXZbMzsdWrvVY6fXq9zy3c4wuu7I8fi2iVUr9eNxq3WgOZmAY2whvosgJ2oNz2LyBZ0zSyMer2OYDAIYNt/QstBmbFd8w3YCbiwrQhajmR26o+zGbxqqKrJK2SpVh4ZXrVaNXCRwlrqs7F9FXawAa9TjV+Fsgozjq8KL7WGATTMn7afEJtaVQy20GK8ttLCcae2rv3V9aACVuvzcZyUQetn7D9hU51XBtFo0IteYytKCrNpZZZmFirvZ5CQClO1bDXPi3PCedD/+b5KpQKfz2fuVZ+lJp/bwlGtTHsN6NzYgRu2sqV7SstQ6fcOfXfkCK5dRjasoYIA2NEW1Z8ENG5G2+lth4cDdzMB2wpS7ZTX21aDMkN9rq1x8znNQombacT6HmUqqiWznR6Pxwh3WxNXJs1nKcNWuNKG4Wwhr4qFzbz1Hr5HGTX/V4VAYS3trzJXnQubsapAUEGv64U/TODVcdG5soN4dE1RANnjquOpfbeFlD2POsbqJ2xWVV4VK7ZHn6/PUkubxP4QclTLEMBdNQ41/0ytdh0HfY+9Hm1lRdvF9qsgduje5AiuXULqEFdLQJmkQm0qBHg/o81UG+QxIty0NlxBBqCQDYurKmNkG+gf4nPo+7IZn1oBNoNRq0uZnNvtbnBya3UQZV7aZjIJtVJVKKlw5302g7HDmMnMbFiHz6KFokwO2GG+Kog1wELD9+k/UohOBYIKf10HGq1n+150TJuNE/vm9/sbBJtadgqd8v0aoGBDg3wP15ke7UJBo2OpsKcKLhW+Ol/8zhbuWvKMfVBoW31tdlCKKly6JlRBtK1frY6ha5qpKlpphWOmAl/XgvbRoebkCK5dRMpIgR2tXyOnNJScZDMDZZqEDWu1Grxeb4MA5LOplSqcqIxf20AiA+BmVN9PM4tEtXug0Yenz72XxqrMh++/l0DTNvDddmCFPoNMUPtlQ0G2VahOd2WszSA0ZV78u5mlaUOb9vgqk6VQYBt4P8dKoSm+Q4WNHRRDoaqC3E7s1r9t69t+D0mtYNta5XcKuaq/jverUOWzNJBF3817ddxJCqXT8tX1ofBxM9RB4ddmqRa0bKl4qRBUpcSh70yO4NpFZPuPmlk9NvSiVgUZHf0nzSwLt9ttqjGoVthsw6oPS60bTTYm6Ya0NUplKips+A5ghxnapXJUM1a4hpq/klpOCifR76J91T7a8JDCX/fSkG1rjv22Gb8+z/aRcTztsdF+q59FQ/5VCKrCoZa4+rTYVwoBW0lRoWFbz/oMFfp237Ut+hy1yPU7e63rWNFXx3ex7Sq8bEurmaJB6JRt1L6o8FVrXf1VzeZcFTJVHOwDPe9lsTv0nckRXLuEFNZQBqW+KDI2wjFkVLaVYDMebiD6gu71br5frR06uknaLmqvKoyUSSmEYltEGnjB93031otdvFZ9Z3ZulO3z4rUUYNoO4O5j5ZVZ8nuOlxZ85WcK2+lYEKKymT6f3wye4jMUetM28N0MUqEFwPnT8VV/IvuoTNb2P2qwhvowbaXD7/ebebtXv1l7Ui1A9kXH2fYjKaTKihi2EsUxtctr6ZzomBACb21tRblcbvAF6rMV+tS1qOOp58Kx/fl83oyV+vzYRzvYxKF7kyO4dgnpZuX/wI6jmgmtJMXaVSjY8IhCXsqE+Ldqq3bOlz5PryPDcLvdd0F3ZKR2uRt+r8/W7/UzFV5qIdmQmn5Oq8luL0kj0GzrVS0LfQ//tmFDtXj4m1auXkfrplkVdO2bjkMz60MZMj/XsVJrR8fN9mfyWlVwFJamldhsTOx1RVLGrgEiqtSwD7qe9N0a7anP02fp+qSA07EiNQt6oeKg465IBgURhde9+qf/sz+6b1V543rQe/idQ9+ZHMG1C6gZY28Wkq6bTTeTPkcZpGqKyuxshs2/CauosLAZhe2jUV+EMi+7bTYkpZ+pANJ3ap/UKlEYkJZWuVxuSB1QP4daPDbjJyncqoLe1uK1XapVqxWgglgtYoVANYhD553P0zbY42e/x7YUbatRrT21VAA0WJS2Vci5YY4TgIY1yT7Q6lHLzl5fOpe25abrU2FUe96brXmdE9tK53NUkajXt6NDvV5vwzjrHAN3+9D4fNs6BHZgTe2Tfa/d12bIh0M75AiuXUD1et0ct64M0/Yt6efN4Dl+p/4hLT/EZ2v9OxsG5GbXxNZmlpL6mpRR2VaTCl1gp/SS1qoDGoMyKECV8fLdGuDBUHj13aiTne3Q8k4aLadWh76LWrr+rwzXtohsYaWWaTMrxPZ1NAt24BhoXhYhPbZfIxbVWmqm4fMZzMuy+8IfDTrgO3QstY16OCW/1wLRFGaEyez1aQt7XXu6Fuz36bipBWkLbV7DdaJ7RYU888n4fM6t+q74DA2E4Riyf7reuX6bJbA7Qus7kyO4dgkprNOMUehGU6bI74C7tVLb+a7PVh8GGZRq97rpSNzMZCzKwKltK3Oxw7Bta1HhG/6vkVnKCNkuZTpksPahkGRWDKnXqEwqA7avjaQWmy0A1IpTX5ktDHWs1cLTBGUKIYWb1Crib62Qr89TX5Ayc64j26ekZ7fZx9Joe0iq/NyL4SrsZkPDOla2RaR/a/t1Pege0LWt1qG2Q390faswseeN16qf1rY01XLVcbcjCjl/tk9Qx8SGRh26NzmCaxcQN7pG1CkcoYEbhL10Y+ihjLqhNcqNGmMzpqwHNhJKUcaubbQZmTqrgZ2NTFKmRYapwSVk+mqJ2ZAX36fWlt6j7+Hf/KFQoxCjxaOVIMjU3e7tPDK2kePLNAJl7ipM7MhDVQDYnlqt1nCSL+/X8bUrweuxHrxGrVG1NtgOnQMb5mQwBU+t1nnV52m7NReP881cu1AohEqlYo5N0aAiFQDaP20n36FWuQ0vsl2qxOga1nFpJggBmHWv71NB5fP5zFrRPcU1UavVDCLCftrRuhoUwzngj329Q9+ZHMG1C0jhFmCHyQNoyMPiJrK1XzJjMjRljKrl6vO5wamha3CDapxsnwoRkm5+W0O236kbWoWZMldufPWX8PlkairE1JpR6EsZpt0WCh8VjDpWzfwztiZu98MOvuA9tqWi48vnEZLUcbbn6F7zx3FQxYff2321fWt8nzJxDU7Q37rW1HplH2jV6nir8GvWL/282XrUtaUKEvule0EtIf6vgReqOOg9ugZ1/droBsdBoUHdN4QSdV3y2RRazeBRh+5NjnjfBaQbD2gMSa/VdipLc6Oo9qY5Kra2qpuLVoUyQ7WeVLtXC081cmU+JL5XGawNM5HxsO0M37ahUFtbty1BHS8bAmW7lAHq9RxLFTCqBKhgspOt+ZlClbYw0XZzDGzt2ta6VUnQyiW2ANWqDGTKzRQJXm9bDbzerntpt1PHpl6vN8yTRv7x70Kh0KBo6PyxHxrYwbYpMqD+Na4P9XuyHbpedb5VqVKFRPuhQs0WlM2SmxVN0LWmY2aPo84Hf+w1YUPBDt2bHItrFxBhIYX1VDO0NU8tLWT7WPi/ap1AY/FbzWHRE11JyqCVkesmVGGrTJ+wHDcuAzCokW9tbZnPaG0oXKd91f7bFiCfpZYZsHPOlZ2fpRF9ammxHRwjtQBtIaXMlmOgATXaRlU2yHjVEuZzeSYWg2hsK0ShYfUdsj06N7bfi9erD4rzxO81+EefqdCzjp9aNADuEjJ8hwaWADBwnDJ89p3Ps2FnrjG+l3lYbLfX60VLSwtKpZI5IZx7h+PGz7jmuD8UctS+qxKmljDHtVnqgQ19U7hzjnkqNOFGVVIcak6O4NoFZMMSwN0QDTesre0rE+Lm0ZpsamHZWrMyZhvC4+9m2qFCUWrd6EZnMIINt9hWmd1vG2qz26hwjVZB5z12QWJlpvaYkYnYlpuOjzJrFQA29GWPUzM40lYmdDzt57IdKnBs61RTF9RqsgW0KgG81v6sWbCHDQHac6SRpxoAon3XCMN7RZDq3Go/dMw4b7alrutfIxrZHrUQ+U4bFte1q2OtY6FrmP+rgtcMWtUx4XeOtfXdkSO4dgHZG5lkL3KFiIBGAaJh1tywChUBO4yGmqtWSNAcJ2Vi9vc2JKJQj/aB1/Nzatz8n0yGws8+IZn9I2NS4agQlPpxtra2zKnJNiNSWJACgX0pFotNoTeOm7bNnhe1ShSO4lz5fD6j3VNQKmNXCJXj4nK5TMFk7QNhOc6jWrmq7ZM4JgrZ8nPtr1rMwE4OIYMVVPixLepz0ndrhJ5Cbern0dOLKUjU6rUtOw2mUWWJlg6tLl0vdq1A3q8RsSpY7bHkvbTsFAVg33X9ay6XncRtR9o61tZ3JsfHtYtIrQ+biarGp5FtGsBAItNRC0u1P2U8Gm6t72kGkek7bF8FN3Wz6DoVZqrt2hYB3wuggenpO9US43Hx2n8VenZ/bChLYVDtq2rSfB/hHpvp6306Phosw7G2rSDbWlPmSFKo0J4jW5Gw50GtHx07XV9qcVAZUGFl+7903tUvpZ8psU96hhbvIePXtqsAsa0wriVd/7qubYFjC1BtkwZv8DudF4UpVVF4tbXMXDBFPdhnnQeHvjM5FtcuIGrE1DxdrsaSMQAaGIlaQ7rRbOYPNJYLAmDCwoG7i4Aqjq/WnGqh3MzNco5sa1GZFN+nmx5oFDS2b0+fq8yM43AvBsLvlTnxHTZzIsNWpmcrDWpFKXxoM1htq1ppCk+pYLahVB1vtkPnjm3h+0m2hcq22kECNlRrQ5f8rflIzeZW54rzaEcV6rU6Lpw/Dem3q/Mr0Xoi8Vq1cOx1x7FRFEAtPxXC9trWNUN4U+dc79PxZttVqbCFncK0dj8daiRHcO0C4uLXA+/IPLxer9FouXkUTlENVGEhWwO1ndEqRPg8MiOF0ahtatSh5iNxE/MzMgcNMlEhwvZQs6cgLJVK5h22v8Xl2imMyvHY2tqCz+czfhi21xbUABr6p4xLx0GhL2CnPFCtVjP9tLVm9Q3xeRxzBqFQCVHtXgu06r0qDDhPhAx17Di3Xq+3Aeoj2QE8ypxtRYDPowXLOVcYUIUlBbr6lqrVqgmK0TlUq1YtIBUUzAlTdIDjyuoqei/QWLFD1x6fbVvMFKrNzvACdgStnZjO5xBKJtnWIMfXHh9tkyqajtX1nckRXLuE1IpQLVHhPTIJ1fj0jCEyW9203HC60e3P1MKyNXpuyGbXq8baLGgBuDt0nRte32VbjyoQVCO3GbBG7tnv1XFQxqKCSvPF+A76/zjedji+WmvKlJrBTVoGSBmfLWxUEdHPbQ2fxPapf0/niJ/ZkKS9znRe1MpUS7KZZaFrU0mhYa5JXd86L1SatN3NxpF95Gc2zKgWrCo7ij7Y+0b3AZUiCjj21Q58USuR7eJ77ZQQbYM9vrrXHLo3OT6uXUDKlEgavq3QhY3JKzERUpmDwhUkbhxuOn6mQlIZnP7Q+tNgDZsJ6TvIJOz6c7xWmYAycvVfqWBU3536cmyrwxYMCtXouNsBJsAOPKX9Uwakf2s/lbGrX0S/V6bF9nOsddwUhqM1yHHUeoN6nf5uFjWq49VsjvhePkP7qvfwb02hYD90fXINq/LSDHa0IW5acmrV2Em+KqhsS0uDVHROdD703Xb/uS5U2bMVBz5T1x7XNsl+5732rUN3k2Nx7RJSCEkZADc9gAaISbVtrUNnM9B6fSePiAyNx8YrowZ2Nq1GYKnw4Ebk94SH7AP/uIntpFot9KrwIfuuTMK2eoDG0j3aHo2eVKiUfWE/FCYF7oaMaOlxbFnKyLa6VOCp1cvPFNpl323Lj6WlOKeEPimkqaSUSiVzjx2Ob1tDhA6LxSICgYCBuThGbJc9fhwLW1jQYlLlR9cZx80+b4zzpWPEQraqCLD9LKmlEaV8d71ev8sK5rN1jfHdWh2DpGvChoo1OpFCTxUKW7DavmcdR0UgbGuN7+G+sg9BdaiRHMG1C4jCSJmIWguqoSkUBOxET3ET68ZWoaGaPEkZoj5TNWXVlikkVSOlMLQtQVuzVuiHEXpqOZC073Ykn90nvl+tDxueUUhL85Ka5SfZUBUFhVq9KsSpDGj/bGvCtnQ53gor2dfxudoPzpf2S/1OtiVIgcV71U/EvtiWgwp2bYPOqS34m42hws22kGd6gC1YVCip8mYrVxqcwTHR9tuWqrZV/Wh8j/bf7oO2wUYy7H2hUCKVM/vkBV3LDr06OYJrF5C9qO3/mzFuxeHVItByRbqBaOWoRqo+AhVImoNFTRxoZOxakZ33sC829AfsWDdaYgdoPJWZjALYgdtU8NRqtYYKCCqwbee+bQHwOrVk2EZl6GQ8tO7YH83bYVs0AIGWks6d2+1GMBg0wQk6lsw3oyVUq9UaLAtayRrZphVRFB7j3PLoDr7fhu9UIHBOFEpUPxCwXe2CVhqtIRWw9vjwXDSFKlXgqNBUXw+VAxs25fyqpcj226iDClu1jFX5sKuQqHXLdWILaFXKdLw4l/Z4ckzYXr6H1lYzYe/Q3eQIrl1AtHi01I1GotmwmlpPKhxsDVA3nmrTyqQ0mo5MXK0M4O78MjIXhSr1/CpeZ7dZGYxGcKlgVM3/Xs599pPvb8YobStGGYYyGx0329fCvzludhULLdNlj5UKNFVGFBK126VMU8fGtr7VQld/ox21yDHi2uL/2k4V9MqgdeyAHbhN+8W1y2foOPAdajnaPjntD9+hgkctH53XZknqNtTXzIrX+ftOASwqpO1Qf7XstM+1Wq0B4rSfp+ugmcXv0A45gmuXEDeeWj1AY5091fa5qTSE3Wa4GnKumL0KFz5LGYEyM35mR6/Z2rt+rhCjQk/slzJmhavc7p2qHgrtsK18j8I/CkfxOdonZWC2Jqx9U4GgQkw1dU241nJHKkhsy0+FSDOmqu1vxri1rbROdf71OnscdMxUcVEhr2NMa7RQKDQwef2xITzbUlUhY1vkOq+2ZcXrte6mzrv2z7a47Xmw1569LtR322wc6/V6Q91IhUy1LSr07DWl+0DHQhUmh+5NjuDaBcSNogxJmZFCSLYWTiJsxet5L5kFGSSLuapFVS6XG2AhwlQAGiw/1XSVAdkCRv0CwE7NPQoTCmL2WS0UYIfR0qFvh31T0LA9tDIUVrMtJPWxaNCDx7NTOor94njye7ad41KvN57dRLhOBTwtHI3U1D5yHvWMJ1tzZ7/ValN/i0JTmqPEMVcLT/OstJ4j+8MxBNDwvQ0n89kapch71B+lViLnRaEyFX723CrRh6l7QuFHfQ8hOduqUetVlQnbeuf42nCe5lfyXSzwq1U7bOuNc8D583q9TlDGd0mO4NoFpIyNAsH2G6mFxQ0MNJ6ppNaLChQyVlsTtSEsfa6t6Sp8qL/JaLR0EpmGrZGq5qoMQ61Bvo/vVCaiGrRCeMrM1XJUhqiCn89Sq66ZhmxbnnZ/1FoiY9Z+NrPGFPq158i2VGyrRJ/Fz6hoUMDquNtwmSor9ppRYUjSNjSz6FWQ2O+0w/V1zHROeL/6JfXZ/N4eI/XTsv9Kaj3xuVwTCstzbFQY6xrXsWNbFCqkUqjwovrPbGGuBQUcujc5gmuXkL2RgbuFlGqJ3GR0yNPCaAaRUbPP5/MAYCoNsIAoNxmvVShJqyjYVoH6WDSk2Ya7yCzU56P+FIZxc0PbzE0tDdvfx2cos1enPjVdXqcBDGQwKoD0Oewrz6XivToX+hybEfNvFfL8W4MyNPVAx5b9ppVkM1QybWWkWkmE4855UUbcDEpUOFStVPbDXn+6ThWKY5sJs9KaU9hVrS274ksz5YRE66dYLDZY23yPWsG6JtWqt9eVWkkqvDjPbAuJCgjXgw0Hch5siFGPtXHo1ckRXLuAVNNWDZ6fK6NWy0Y3DJ9jQ4N8luaq6OYlk1GoRHN+9Hn8Tt9JUp+HWkDcyFqeic8ls23GUO/lq9B3ADuwFp9jByHYPja7P+yLMigbslUhavvMeA3br4LFZvaaIK6avT5D+0iBoGPJ6yiU1Fq1y3PZa0qFir1utP1k8OqHVKas0CXQGLxgKyz2WKglq8/nGtL26nM0v0rn0uVyNSQn8zn2OtKx4nrXZ+l+oTDVceVzdf65/nTtEr3QdaVKB9/v0KuTI7h2Aam2bW9kW2NW4aOkUI0yGptB2jChbW1oUViShnmrpqzQpi0o+S4+U49dARrhF7XSNGxan6Fwjw3XKLNTwazjqWNqa9EqXPR/Wpwu17bfUBlxs6g2ki0o+V61hvXYEpvR8X59X7lcRjAYRL1eb7AaVUg1m3+dY227QqO2gNKABTtyU+eGglUVFH2Ptsluowp7ba/61+w5Vv8T54e/KZBt/5qOpy2AOcbalmZQus6fjqnClnyfrg2Fo5mz6Aiv744cwbULSDeMDVNws1BDtGHEZtAeN7gGGKilQeIm5D0MlrA1aPUlqfCqVqsNFo5aiso42VYyf/pjbB+ewom2ps7PCf+oJqxCkLlEbDvbqsKhmYWlQletHztNgYzI6/Wa59KS1CrnhDyDwWADDNosp0iVAWX6hNDYHg2q4X0qZOyxq9d3zuPi9ypAVAFSxUg/UytPoTx7PVGZsK/nHPOEYq3+wjFVRUFPz+Y8MpiG93B9NlP2uC44/uyXJuer0tUs9aOZn4/rgPfyuq2tLQO9qwKnVj/nlfCmzplDzckRXLuAyAzUYc+NpOHUNrSiDEI/U2Zia53KCG0tVL9XJqdCU9uhTNB2oDdrI8n23RFGU01UGbgydoU1lelQ+FLIsKq4WiHqv7CZnr7Pthh0jlTztseBpM5+XqOV0nXc7HFXJso+ajttxsrvtA3NhLMdgNCMQWv0ns6fbcXymSqs1Cqy+6brS/turw/7veqDbCYQVdlQ+JH/26XA1LJWiNW2TpuNo72m1ZIiMTpVlRiNouQ86PpyqDk5gmsXEK0ihU2oram2z2sBNDAghXe4MdUCUtjM9mdwY9rCjs+m38TW1km6ubU9zeAjQlu2ham+JxWC2h/2WRmYCiNlUgwoUWe4bcVpJQbts16jVo3CnHbot23F0qKiBaGwn1oaylSbkcvlussyU0HNZygjVYav60bXi86zbeUpc20GlfFvVbR0/Px+v1m3Oi5qjeh7gJ2AC9va5TzakZI6jtw3qpzYQtIWOjpu+rf2T32R2jZbiNowrG1J6njx/Zp+4VBzcgTXLiDCZ5qXwhIxmjsE4C7tkRtPfRFqFXGTqEZsbyS7VBEZmvoUbJ+OHqfidruNkNDnEq4EdkpEKTTH97a0tBgYsRkTV78HhYZttZDBsMSVRnZp4AmAuyp9sD2EmGxIjDAX0OhL5Lj7/f67xkqDW2zNn+OgFo7tt7PTCVQ4qK9En6PPUuvDtrB5nzJ9O0CBY6VjDTRazlyruib1PTpfihzwOfZ7NZxc16sNoasioRbz1taWSRzWQBjmNTZ7NiNGuUdoqdnCWyM+lWzlkXvWhqZ1bDU61aHm5AiuXUDKOFUzJCymEJUyHJvJ2MJIN6gyAZINo7EttgNcrQIyTBsKsgWfMmPV4m1NXuEmvl/DxvW9dvt07DQ5mp/rb7vf+rvZ+3RsNQqSY8trVLtXK1bTCNTqsQMO+G6Okc6lbVWroFCGqDAe71NITNtg95+Cnu1v1i/tk1qrvFbXKQWH7euh4qKWLEkj8pqtMYXZNGFbBbbdR869rjWF6ZoJZI4Dha1ah/Ya5jN0zeu6bGbF6/scenVyBNcuIG5ArXhhWz/c8DbzILNUx7FuFhuS4/t4PQWThv9qTow+i+T1eg2EVSgUGqwAtomMjlaMPlPboxYIN75q8Go9UqgRPrKZqwo9FcgKaamwsMPMFRZUQWYLKtufR6bV0tICv99v+uzxeBAOh80zdHwKhUJDJQZ+rzlbWtiW68Dr9ZrK7+yP7RfUqENVKoAdhs/5YFUW3s/nqQAnqVWoZZM0XJzzA2znWhUKhYbnsA9q4fA+XRO6DmjV89nlcvmuvDfdN80UAR0D7aPmL/KoGc6lrbCoILYtL5ItLDm/fD8De7S4tEN3kyO4dgnZG0xhF36veLvtO7JxfNsa4jPIFG0tsNlGtOFIMm5tp0Jneo8+o9lvfRYFr80syVi0b/oehX3stlFgqdC3maxalnqd3TYVyvZv/t3a2opQKIRyuYxyuYz29na0tbVheHgYPp8PpVIJq6uryGazyOfzyOVyRglhmzVaEdiB2dRq1Tw6VQSUUXLMdHw4nhwX/s9x0SRtVRTU8mtmvXKtUgBoKLjttwV2FC17ndjRj/oeFWQ2bGoLCIWmVVEgBGjDzLreVLnTtqlypN+psOUzmuWbqfVJhc6uVONQIzmCaxeQ+kts34JaDLY2p0xP4R0yfI2iU0Zkb35bYNiRTzYTI+xDht6Mkahg5P1sszIvFSgK1wCNwRh2H5SUKSisabdHrVgdc20vn98MumIbbUvD5XLB7/ebo0q6u7vxyCOPoKOjAz09PSZgYX19HYuLi1heXkYul0MymTSQovZB+6i+RQr4ZgyU7bCtVHvMOSZ2IIy+Xy19G9LT9ap/axSdWq66xrguVdnRtrKdnBe1zBUyZM0/W3jretO1oWOl/bOtboUxtW36nbbbtlRtK9+eP1swO3RvctV3oVhPp9OIxWI/7Gb8wIibR53CuiG5yRhQADSehsxrbSczhYzCi2QOwN1JnPxMBReZrp4fBezk+NAZbTOyZtosrT0GnmgbbEtHx4XXsDQU4UllaGyz+ksoCBVWYv+VuWitu0KhcBdD4liqgFYtPhwOo1Ao4B3veAfuu+8+RCIRA2fF43FEIhFEo1EUCgUsLi4im82iWCxiY2MDX/jCF7CwsGC0cMKH6kfimBNeUkGlcCLHU4WAQqi2v5GWkvoGbcbOdcOCx5oaYSfFK3O31xfbrda5+lV5n9/vN8/WNaWCTJUornEVGjouGpxiw4i83s7lUkGr+0WtdfuUAdvfpZCijQrY1uY/dUqlUohGo6/pHifTbReQbjagUTukILId7Src7MgxbjgyDmVadoSdQoWq7eqzbLjRrrpdq9Uawp9tK0m1ZbbB9r/Q8qBfTIWWCjVliqrlqpbNtpP0Pv1cISg7YECtMt7PCiAa0t/a2opMJoNYLIaTJ0+ira0NlUoFuVwO5XIZxWLR3KPWXEdHB/bu3YtHH30UQ0NDDQEOmn+mc2TDWOqr0/B4nTcdOyZA61zzuXratFod97Lwdf7tudH7dWybBaTo/Ojzlelru7g27ChajUhUKFPD4/k8Feh2nqT6//h8CiU7eEZJFUxVJKgkqXJgQ7sO3U2OxbULSKt7A43VHNT6USsBaPQBqLBgCHy5XDZRWMCOlaQQDEN3Fau3hQ6tQWVONpNrdlSG+qe4me1AB2CH0VHI8vlkNGrtKNPRfCplsPaS59gqU+PY6liqBWtDcmRqvHZrawvBYBCBQAAjIyN417veBZ/Ph9u3b6Ner2Pfvn1oaWlBPp+H2+1GKBSC3+83ofqlUgmFQgGdnZ3IZDI4f/48/v7v/x5utxu5XM70mcENqv1TyDHJmpaPKkD8X8daoVj+2EVvbcharSZb0PDZ/F7nQ616vUYVJ15rrwWuA71GrTbbB6fWlv7P+2gt6ppqpuiowsf1r8WJVbiyrfq3XTlF22lbZLuQLX/P5Fhc/4TJhjpoeXAz2Vqv/Vs1W7VkgMaILjIzjZxTOEytOQ3v5jM0L8qG9oBGC85mUGTaNvOo1Wp3lc3he23rrRksZlsOaoXY1h3bRcuDVhPzeZrBhDo+nBOfz4dQKIRcLofTp09jaGgIs7OzKBQKDTluW1tbyGQyWF5exvz8PFZXV5HP5007q9Uqurq6cODAAZRKJXi9XgQCAaOAUPHgmtB51zkDdmo+kunTD8T7lfmTOA46NiQVOMqEdS2pH1VhNQpEXcsaiajrR/1BzYSa7gN7napyoWtH28/1oO/Wdatj1Ex5s59JRdOOStU+MPJW16HuSYdenZxR2gVkWxJalV01QWXQaumQuZDoJ9EjS1TgqNBS+Eo3lwo0ZVhsr+030O/4uf62fV/ssx0daTvH7eAE3gM0JrqqUNPnqfC2IS0bVrIZqf0cZTx+v9/4Vw4ePIhAIIB0Og2Xy2V8XDxGplbbLqpbKpWQz+eRyWRMFGI6nTbCy+/3o1qtwu/3N1iVOlf2PNDyUiar4w40Wj+2P4uMmFGFnAMdW2DHv9NsXHWOVcg1G3eFD3mtfT3bqn1hP/kdlSB7PatlrAqYDX3a806hS1iXpMJS94KuXZK2lwJXP3Mgwu+eXrPgevbZZ/Gud70LfX19cLlc+Nu//duG7+v1On77t38bvb29CAQCeOKJJzA5OdlwzcbGBn7u534O0WgU8Xgcv/RLv4RsNvuP6sg/ZVJGzc3FDWT7WmhVUJujwPP5fA0Whw2/kQHqZmewQzN/DmEkZeYa+GBrys0EFLVSBm/wfzJLtXDIiEiEOgmN8f36DLaNTLdcLjdAa7R4OA78nLCWMmBCbspUyXRsy83tdiMYDKJYLKKnpwcjIyNYW1tDuVyG3+9HV1cXKpUKkskkpqenMTU1heXlZXi9XgSDQYRCIdPH2dlZLC4uIhwO421vexvy+bx5r33mFMeDTLZYLJqcLs4/IVrOM5ks7yVz5hrgGiKsrOvF9lvp+lMhxPnkHG9tbZn8MF5DeNPr9Tb4o3TNNDtHjH1XoWsHpKgwVUGuVhjnkWuAa099Zdp3jgnHkuuoUqmgVCqhpaXFnKbN05BrtZ1C1UyL0KAgVUYcy+vV6TWPTi6Xw3333YdPfOITTb//vd/7PfzRH/0R/uzP/gzPP/88QqEQnnzySRSLRXPNz/3cz+HKlSv4yle+gi984Qt49tln8cu//Mvfey/+iZNaCWpBKeSl+VdkXGRS6vzX3woVqXBUpqFh0bxGfSV6jwo4Faq2Jm9bV7ZWbkM1ZJBkKPzhNbbvhG1sFpRCpqqMiOOmzFotUdWobciHjJfv4Hy1tLSgWCyis7MTW1tbWFxcRKFQMIy8VCpheXkZU1NTmJ2dxZ07dzA/P49sNmvKY9ESS6VS2Nrawp49e9Dd3Y1sNmuSYTXoxQ6KIamfq5kPxg6G4HealqDRos0gQV6jypX+cCw1uIbrWa0ie/2pBa5+NNt3yT5TWOic2vdo+/Sdurd0vPhs7plqdbtCh9/vN1G1atWqFcffFN4AGuaX79D19aPk3/pe6TXncb3jHe/AO97xjqbf1et1/OEf/iF+67d+C+9+97sBAH/1V3+F7u5u/O3f/i0+8IEPYGJiAk899RReeOEFnDx5EgDw3//7f8c73/lO/Nf/+l/R19f3j+jOP01SXJ2LXM+vosWglpTCLApb2E51ksKRqi3rZ7yO39kC1I56s2EdW8hpRJbCRbxeBTafxXcAd+dWacV3HRftK7/Tah0UfDputuBUBqcMV4WbWm2EYxlcsba2ZiqfUJDNzMwgn88bhlgul9HW1oauri50dnaa/mxubmJ5eRldXV3Ys2cPZmdn0d7eDgAGbuT46ZjbY0nNn9aOjpMKYmWg/F8tEwYWKEzLfns8HpMaoYLcPgKFY6jvUUXIXv86z/q5jrUtRG0/qVpktoCoVCpGGVBl614QpQ372eOgqSXsk0bDKnTbbI85wuvV6fuagHz79m0sLS3hiSeeMJ/FYjE8+OCDOHv2LD7wgQ/g7NmziMfjRmgBwBNPPAG3243nn38eP/VTP3XXc4n/k9Lp9Pez2buCbG2Mm5alZ5odHsgNzI2i8BY1PN1U3GxaANQ+Wp3aJGEjYMenwPcrTAeggenxuQAafBJ6r2q4/LylpcXAK7aF1AzKrFa3T1W2oSzVrnmdjo09Hgp3qdCnoNQgA4Ws0uk0BgcHMTY2hvX1dbjdbuOnunXrFr7yla8gHA7jxIkTSKfTWF1dRbFYxOLiIhYXF1Gr1bB3715Uq1XcvHkT09PT+NCHPoT3v//96O/vx1NPPYVEItEw9rYlq2PazFepbVa41C7SqxavPTd8r9vtNgJRoxX5vUK+Cr/y3XaUoCo4/J/tUoVN13ipVDLzxchZtbT5fqIU7AN9hkSF1G+oUZY6pvY+I3pBqE8VL5Lme/HdbCfXpJ3T5VBz+r4CqUtLSwCA7u7uhs+7u7vNd0tLS+jq6mr4vqWlBW1tbeYamz7+8Y8jFouZn8HBwe9ns3cFUcgQMyfZFo9ulGZwnu18V1hRNXbVvvkeEhmM+qXYRjJz1ZL5W5ka0HhMhUJwuuFtSEg/17ZRY1ftV/1SKhwVElKFQLVgFWK2dUJLlGNrR/NRc+/u7kZ7e7tRuhjyu7y8bGDEo0ePYmxsDN3d3di7dy/Gx8cRiUQwMzODtbU1E0HItnZ2duLYsWPI5XIm8Zd9p/+G/k2FdymkNIzfhgfZfo4j/Yz2vOva43NUsNnWq1pmtiLFNWE/V9eLPlvfZ8+rrhNb6VGL3Y4uVKVL26+IgM6vDWuqdWvvH+2nHdmr7yKpouDQvWlXlHz62Mc+ho9+9KPmf2qzPyqkjmWGU5OoZeqm5uax83f4PTe8QikKsVGYKd6vsKBCe8T8Ga7O/9V6UsZDi44atB53YsMleuQKq2moFm1vepLW1QN2QvQBNAg4dbxzDBlEwHu0PRwrMt9mR7HEYjF4vV6MjIzgJ3/yJzE+Po6nn34ac3NzCIfDyOVyuHnzJkZGRvDYY49hbGwMtVoNyWQS9Xodvb29GB4extmzZ3H16lWMj49jdHQUPp8Pq6ur2Nrags/nw7ve9S78wz/8A9ra2lAsFpHL5RqsCs6xKgqar8T2a1UQW9BrwrvH4zFBI8Vi0VgNajlwzCn0arWdxHNNs7iXANS1p1aJWruq1DQTEpxXzn2tVjOWFNula5BCUte7tlcVO75Hg0S4FgnFMgePz1Kfql2hhcKTig4DNxz6zvR9FVw9PT0AtjXK3t5e8/ny8jKOHz9urllZWWm4r1KpYGNjw9xvk8/ng8/n+342dVeRhnhzI9HSUeaimqXCL7b1olaSMjcNiwZ2hJxqiOoPAtDAALi59SA8MiCF3jT4gURhrMJTBaVaZOoXUT8d+6BMRvuhPhDeq5aBMloKP15P5qcCWAVyvb5djqi1tRWbm5t497vfjf7+frS2tiKZTJqwdhbRHR0dRSwWQyqVQjabhcvlwuzsLPx+P9ra2tDZ2Yn19XWk02kEg0G43W6srq4ik8nA6/Wip6cHHR0d8Pv9iMfjDVAahbwKeGWwuhaAnfyuUCgEn89nwt+pjFQqFayurqJQKCASiSAcDhsLz47oU7jRjsC0rR5VVij4NNVD285naBCEbXWp4sP+2dYWFSV7Haig1utVICoUreiBnbStSIaSftYM2dDPHIvr1en7KrhGR0fR09ODr33ta0ZQpdNpPP/88/iVX/kVAMDp06eRTCbx0ksv4cSJEwCAM2fOoFar4cEHH/x+NuefHOlGsCEe/k/LTC0Thc+ARv+WMu1mAkyZEje6Wmt2HpUyRDskGdhJJgZ2/B18B+9XZqeOcoWa1A/HtrMvCs/o+HA8+H4NPODYUMjaEA/vZ1i5MhcKu0AgYHwoQ0NDcLlcWFtbM5aSavRMF1lcXEQul0M4HMby8jJaWloQiUTQ39+Pzc1NrK+vGyHKPpfLZYTDYYyOjmJxcRHxeNzMIfvFvjGSURk654XzHAgE0N/fj87OTkSjURMt5/P5TN/m5uYwOzuLlZUVJJNJAEA4HDZjqUEHHB+NPuUYKnTNAzYJt+pcKlTIz+0gBq73ZoLL9o9xX9zLSufaUpiQa5t91KATe/9wnWh9Rh1jhQhtP6QdwGELPIfuptcsuLLZLG7evGn+v337Ni5cuIC2tjYMDQ3h137t1/Cf//N/NhDHv//3/x59fX14z3veAwA4ePAg3v72t+Nf/st/iT/7sz/D1tYWPvKRj+ADH/iAE1F4DyKzU1+KbmTCPXqyL6/hZlX83k6OpIau0J06i7npCQ3ZlpBaL8COxsh3qcVD5qDWFoAGQcQ+kwFQ++d1ZDJ6PQNUFCJkFBcL6fL9NqSkAQqa88WxIUMkg1LrQN+Vy+UQjUbxUz/1UwgGg5ifn0cul8Pc3Byi0Sj6+/sRCoXgdrtx6NAhAMDFixcNtNjV1YXp6WlEo1G8853vBABMTEygXq8jHo9jeHjYJCGvra3hgQcewO///u9jeHgYwWAQ+XweLpcLwWCwIe2Bgor+smQyaSrTP/LII4hEIuju7kY8HjdHrJAJl0oltLa24sknn0S1WkU+n8fk5CRWVlZw5swZrKysGIiVFo2eseXxeEwpK44lx1GLPnM9qMDiOOs82L5HoNEyUj+npjZQ2WKemK4j+zRiDR7RtUL4UxUDvotnaOkeUGsO2IFTNYiFa1Pfx/c7Auze9JoF14svvog3v/nN5n/6nj74wQ/iL//yL/Fv/+2/RS6Xwy//8i8jmUzijW98I5566imT7wAAf/3Xf42PfOQj+LEf+zG43W789E//NP7oj/7o+9Cdf5qkmpp+dq/vKeSARniC/1OgceOQmkWnkZmTEaqmqVaJ7euxtWDCTvyc0KE6uvm3+qb4mxucAoxBBAAaGBY3PRnW1tYWBgYGTBX2RCIBn89nBFihUMDq6qqpDZhMJhvyjWq1GvL5vGk/E3rJAPl+n8+HVCqFhx56CKOjo/B6vQiFQmhpaUEwGDTWSzqdNnAgE4TJVPv7+5FKpVAsFjEwMIBCoYDr168jmUwiGo3C5/MZ4bOysoLW1lYMDw9jdXXVhN1zDSg8x598Po9yuYyjR48adGRkZMRUsOda4VwDaLD23G43/H4/9u3bh97eXiSTSVy+fBkLCwsoFosmfJ/WF4WeMnFdh/o3FSIVZnZuk1oqCoXye42GpFCxr6EiRlLrSS0uG7bTNqjQ5PfNhJ+ud13XRBAUjbD9yQ69OjlFdncBaWSUapQayk0N1oYFSWp10ZpgRJomItu+Gz5LLT5m/FPYUKsm0yMTUriSMJoyRWqxtjVUKBQaoDs7b0gTkNk25mWxP5FIBA8//DD279+P48ePIxKJIBgMIhwOG6aaTqfN8SG0CDY3N1EoFHDz5k0sLy9jbW0N6+vrCAaDALaPNdHkbWWQ+/btw+OPP469e/ciEokgEomgWq1iYmICKysr+OxnP4tKpYL7778fH/3oR1EsFvEnf/InKJfLGB4extDQEJ5//nlUq1X8wR/8ATKZDH7zN38Td+7cQTQaxc/+7M9iYGAA9Xodt27dArB9htczzzyDyclJ9PT0IJfLoVQqGcvH5/MhEomgra0Nx44dQyKRMJGLnLNyuWysrFKpdFflCY45/w8Gg6bW3vr6OmZnZ/GZz3wGy8vLRkCTUZdKJeOjsw9vpE+wXq+byjkadKPogi2MVLARKeDeqP//Ax4oCFTwAGjI99OgEhU2zaBFXYcqRLn3VAA3e47uJVWyVOnUgCEblfinSt9Lkd1dEVX4o07qZ1EHsP2jfh0yct3Mmk+lAkoLteoGVyFpP4MMg5YdP1d/igZc0Fdi+yhUE+Z72D67koFCRcoIABhLJJfLoaurC3v37sUTTzyBwcFB9PT0mOdqtXt14POdiUQC0WgUHo8HfX19yGazmJiYwPLyMlKpFOr1OsLhsFGcCoUCNjY2UKvVkEgkEA6H0dKyU/UdALq6urC5uYlSqYRoNIqenh4Tts5gjmw2a4QJoTYy1Uwmg3w+j5WVFbS3t6O1tRXRaNT0/eDBg9jY2ECxWDTwntfrRXt7O7q6utDe3o7e3l6MjY3B7/cjGAw2jAew7QIoFAomQpGh84Qf+/v7EYvFjALCsYtGoxgfH8eJEydw5coVzM7OorOzEx6PB7lcDpubm8YaY3AFGTnfp2utmXAinMf8LPXRaVtUEPB+23rSoB+gEbmw/WO837Yk9Zn8ngFJ9tq20QSFRIlEaB6afufQvckRXLuAbHhOP7ej7IDGwqW238mOKNTruYF042iFDmUEuslrte3SRM1gGoZc0ypSmMWGb1QwEaLiplenvkJJvJfnXu3fvx/79+/HoUOHsHfvXoTDYWPpkflpiL3WK6S1xjOyWOG9vb0duVwO6XQaZ8+exdzcHEKhkLEkGOauFb+z2SxqtZrxGa2srMDv96Ovrw+9vb3Y2tpCKBRCd3c3kskk/H4/wuGwsYIIi4bDYXg8HpRKJUxNTaG/vx9dXV0GugyHwxgeHkatVsOLL76IUCiEw4cPo62tDfF4HNFoFMFgEPF43Ahw1h2kL6xYLCKZTJozwhhByB/6ZXp6etDe3o5YLGZgT1pfhw8fNu4ArYDv9XpRLBYbgmx0bvm5Rp9yTdgRrQqxqf9U1zH3g/rTuE65LokeUCGi5W/7lAgB6/7hs3Qv2kKUSpcqW7onaCGq8qWCUfeIQ83JEVy7gMgANNRbBYxubsXgqdGRuWt0VzNLitqfJkrymXqQoDIMwnoqFAn/0OprbW1FqVQymnYoFDKblFCgLRDz+XyD74IFf1l1Xa2RUqmESCSChx56CE8++STa2tpMBfbJyUncuHED6XQayWQShULB3N/e3o5QKIRYLGbgSmAbrikWi8jn88aKIfP/yZ/8SWxtbWFtbQ0bGxuYnZ3FwsIC6vU6Hn30UQDb1ks2m4Xf74fL5cIzzzyDr371qyaBfnl5GRcvXsSb3vQmPProo8YqolBmm5LJJIaGhkwx3osXL5poxOnpaZRKJezbtw/j4+M4cOAA3v/+9xsLiuNKLb61tRX9/f0NCcvpdBrnz5/H0tISZmdnzRrw+/0miIQWwvLyMlZXVxEKhbB37160tbUhFouhUCggk8kgFArh2LFjGBwcxJe//GWsrKwY+I7rolgswu/3G8HFqELCYoSgKQAJewKN0bIUSmqRc/1opRc7D033hAovFTj6LK4JwsNqWQE71hrztlSgktRfrMWHea0Wj7ZD4h26NzmCaxcQmbk6jgmhKA6uGiWwk8Oi/iENiOD/FIYUIOrP0qg5Chq2hW1TLdG2oKj9MiCE7yUz43WaX8N3KyPhUffc9NVq1eRGBYNBPP744zh69Cj6+/uNf2NlZQV37tzB9evXkclksLm52VAurKOjA93d3RgdHTX+FuYp7d+/H/l8Hqurq5idnTX+sHg8jmAwiH379qFer+P48ePY3NyEy+XC8PAwwuEwADRUU+dRJe3t7XC7t/Ox2tvbUSgUEAgEEI1GzbEnxWIR0WjUlH9aXl5GJBJBT08PFhYWkE6nzbOz2axJPKZVRv8W54c+ROZo0RpMp9NYW1vDnTt3TBFfMlOuo0Ag0GCVEs5if7u6uhAOh41vENgu8XbkyBHcunULMzMzJiiEY5HL5Ywg4frRda0BClz3vIZWtvqUuIa5rpgcrbAdn0XrvxlyQMGk/ilVCG2kwF7HCtVrRC4/o5BSmJNrnW1gdK8DFX5ncgTXLiAKAxUQFASaQwLcfUCjDWnQn2PnbPGearWKQCBgvtPNymfSAV+pVAy0pb4vZX4aCKLMSjVx/qgQpkbOzxk8ocmrZGBDQ0N48MEHMTAwYIR1JpPB9evXcefOHSwuLhrfTS6Xa/BrMOqPbUgkEojFYiY8fXBwEB0dHSZoQwMFfD4fOjs7cfjw4YYoSY4HgxToV+rr60M0GkU2m0WxWDTwqsKLtAiSySRu3bqFW7duIRKJANjxpxWLRQwPDyMUCqFWqyGdTpvoRy3XFAgE0NXVZeYkmUyiWCxieXkZ6XQaGxsbWF5eRqFQaLCoi8Wisb5pudK/B8CMoeZ+lUolZDIZAEB/fz8AYH5+3lTbYBHbVCploGBVZGhBaXoCP1NrSCMAVfDwGSTOMa/VyjCaKsCx4pqzI1spZLn2dZ1z/WgQi63IKVSvqSmquOla0T3n0L3JEVy7gNSPw0VNpsfFz9B21b5tJzMZHYWJvckoCNTZzQ2sFRLIoDWRVzVMChoADYKSEA0TOfl+Xsu2qGCkls/7ufk9Hg/27duHN7zhDTh16pSpusLThF955RVcvHix4fyqaDSKAwcOwO/3m/ZWKtvV1wlVXbx4EW63G2NjYxgYGMCBAwfwlre8xWjGi4uLWF1dxe3bt7G+vo75+XkEAgHjD2NwBp+9vr6OxcVFRKNRJBIJE0pPYUkBwzkNBALwer1YXV3F8vIy3G43NjY2sLS0hGw2i7m5OUxNTeHhhx9GX1+fKc5brVaxvr6Oer2Ovr4+tLe3IxAIGH9KNps19Q8vXbqEjY0NZLNZZDIZuFzbEZGRSAT1eh35fB6xWKwBcs1kMobBZjIZlMtlXL9+Hevr6xgaGsKhQ4eQz+dx5coVbGxsmMCQ+fl5BINBJJNJ4zfUSEZa1nrKNAWBz+dDrVbD5uamYfgMrtGEbv4A2xGPuqa4jnVOtEo7152NZqh/yt4Xmgdm58lpbiChV+4ffSf3JNcisIOGaNsdak6O4NoFpM5g+h00yRjYCcltFhKvmqT6xSgQqekpPKcaox2NRSiHvgQNyrBDmBVGIdHvRt8CmZCtvWoUooYVM/z++PHjOHXqFIaGhrC5uYmtrS2kUincvn0bi4uLaGlpMcmvHs92rb2enh6EQiG0trYil8vd5fdiexcXFw0UF41G0dXVZcLKXS4X0uk0tra2kM1msb6+3uDEp58oEomYwATmSWnkHoUBGRrzuvg9FZDV1VWkUinEYjFUKhUsLi7ihRdeMAEdXAuZTAaFQgFtbW2mbBPntaVl+ziTZDKJubk5E4DB+WBkJPvP6EHOMdBYzxKAscI8Hg9GR0cRjUaxb98+XL58Gel0Gp2dndjY2DAwIqMCac3R78UxYIShwm+cFw1F57rkGlTfrub8cZ03izwkcZ1TSVMfso6d7ifdJ/qjKSKKdLBPNgSp/jCF2vXZDjUnR3DtAopGo2ZD0hJh+DfhDmqMukEVUiEDIvMgVGI7m9UKsy0hfkatVvOZCAnppqTvisxGYTo7kEOhlGw2az7Xyt3U2P1+P44cOYK3vvWtiMfjJvqtXC7j8uXLmJ+fN5F6DIhobW2Fz+czAoTtp/VJoUnYCNjOF7x69SpWV1fR19eHAwcO4NChQw0MlRBZV1cXurq6EAgEEAgE0NPTg1qthunpaVQqFcTjccRiMTOG6vvxer3I5/PGii4Wi0aYVirbFeDb2tpQr9exsLAAv99v2vW+973PCNKbN2/C5/MhGo0iHA6jq6vLrJdMJoOXXnoJs7OzWF1dRbVabcg1o++Pc6UVMDQKk344Wphut9s8Y2BgAB0dHXj44Ydx/vx5nDt3DpFIBJVKxfi2+JxCoQCv12vC+unjZIkqroWWlu2ThBmco4JBD2Rk2+nHo0Ak3GivZ1XgGIzC7yqVigkOUl8wn9cMcreVPLZTrSz6JilgiSao1amRlVybDt1NjuDaBUSIQ5m4whqEF8gUgOZRSbTK+LduMPsedYZrsIXCil6vtyGplM9hSRu1oNRPoFCNara0jChYlcF4vV74fD6Uy2X09vbiDW94g/Gt0C+Xz+exsbFhfFEMObc1ZuYnLS8vI5PJoF6vG1hKK38TAlpeXjZ5WX19fSYijxZOOp02womlk0KhEJLJpIk+DAaDyOVyJpJu//796OjoMAySFTQIHUajUYRCIcPgGG2YSqWwtLSEoaEhzM7OIpvNYm1tDW63G9ls1vhvKLhrtRpSqRSWl5cxMzODzc1NE8ZP2JLwMftuW1Ya3MPxU+tsa2sLc3NzZt1EIhEcPHgQf/u3f4t0Om2ULA2FZ9QmoTKecqB5gc2I1jmtE9tqITSs0ZVqsdt5VLre1Y+lgSJcO7RgNaCJyiPXMtd1s0hBDZ5SBIX+RVuBdOje5AiuXUBkzurMtjFz20lNwQY0RgACjecnkSFRwNihvvo5BYzCk/ZG5L3cvCo0yLz4TAZcEOKksGDdNzKzQCBg2tvT04NTp07h2LFjDZBRvV43Ca88qyoQCBjtWR3q9D0tLCwYCIqC0WZeGoVHX5Df70c+n0culzOW8Pz8PFpbW1EoFBAOh7G5uYnp6WlMTEyYXKh0Oo1sNotQKITR0VHE43Hk83lsbW0ZS4PwZjweRzqdNhGSfr/fwJ+pVArJZBIejwcbGxtYX1/HwYMHcf36dRQKBeMbY4kohu2n02kjpHWeaEGw75pvx0AKJi0zQVoVmGq1itXVVZN3Fg6H0dnZiVOnTuHFF1/E5uYmAoGAWZOqNOXz+QZYkGuFbdCjY/gujchr5rO1hYjuBb1O1zdD8RWaViRDYXAVTIpy6D7gb16nv9kmoDFal2vRTmR26G5yBNcuIIU4uIHo62IdQWDHuQvAJMPm8/m7IhIJpwBo8Ctw4xFa0dI4hBhpGWneEy0vWnwMo7ahRwo+tpXvIrNWJsJ7aLUxp+c3f/M3cfjwYfh8PqTTadPPW7du4dq1a7h27ZqBFNva2kwgARke301lQA/lZF8IlQE7dfS2trYwPT2Nc+fO4eDBgwgEAuaZPp8Pa2tr2LdvH1566SWsr68jm81idnYWW1tbaG9vN8Vph4aG8KY3vQkHDhxAMplEIpEwzGttbQ31+nZBXUbmMUBiaGgIf/d3f2esq4WFBQSDQVy/fh33338/Hn30UWxsbODq1auYmZlBNpvF1tYW9u3bZ6BCzdHj/Kn1YDNhClNdA/V6HYlEwowjaWlpyUQjMr3gPe95Dx588EFMTU3hb/7mbxAMBk3IvsKAbrfbJH1z7VG4ck3YARvq4+LapZDzeDwNxZE1ElUjcfkMrlVNfuZ+U3+XVvegksEx5H6hosb1xT3LMQV2Ima5/1RQ8rkKkzt0NzmCaxeQOpQVFrEdykBjzhdhI25sfZYNxekmJ0NSiMM++pz5Qhp4QUZAYUjIT5Ne2X5lmrYvQfNdCMW0tLRgfHwcY2Nj8Pl8Bg6kz2B1dRVra2smWbRarSIcDsPl2q76wKCHcrl8ly+L40bGodYGx48MaW1tzeRkMfAjmUwiFAqZqMH19XUkk0msrKzA6/Vi//79xsLr6enBwYMHEYlEkEqlEAqFTJuoUBBqDAaDCAaDJmqxWCwikUigtbUVi4uLxmKOxWLGGl1cXDT9KRaLSKVSBtKk0GJfFSZUi962Mmq1mikDRcGq1hAtGyYj04JLJBLw+/2IRqO4fv06rl69ilgsZqJG7XqP9nzwhwoT54Xr2YbWlPmr1aMBD1xXKqB1T+l6ZJv4PM0v5PhoriQFID/nOrStKwolfY72+0elRuE/hhzBtUuImj83MS0Cbgpeo5uTzmCFE8mouNnUd8HvVeMjjEYrRKP6gMZD9DQKi1outXw+R5/BkkO0CNg3MkIyCZfLhSeeeAJPPvkkOjo6sLq6is3NTQwPD6O1tRUzMzP4+te/jtnZWcN8VTNfW1trSHCmlUbhRU1ZK3jYwS60zG7fvg2/349HH30Uvb29mJubw/r6Oo4fP46uri4cOHAAZ86cwQMPPGCCEp5//nlEo1G8733vw4kTJzA4OIhkMmkK2i4tLeHSpUuoVCqmXNPW1pY5c2tlZQUbGxtIpVLo6OgwDJXh84lEwlT48Pv92NjYQDweBwBMT09jcXGxIaScjJHz6PF47ipsTAub64c+MA3w4fyo4FpbW0MqlTL3UQB/6EMfwtzcHP7H//gfCIfDiEajWFlZaVC8bF8r54MBRBpZyO8V5uQa5j7gb1tpU6HpcrkMDEphr8/UvCot7sxnF4vFhvbQ+tI6nuwHlQM9Fkcr4nDtsZwXq4Y4dDc5gmuXEIWWBjnQEqDgUPhEhY86gvVeaqdaioabUjVFPoObmBaQBmyoQ59QDQWoBnBoUIDtA6CPS+ETYFto3HfffRgbGzPCgAygWt0+m2p+fh7pdNo8gxadVn0AdorK8n/2n2TDmxqBSDgqmUwa4chcKfqBRkdHEQ6H0dbWZoIvWBnjgQceQEdHhyloy+TnSCSClpYWFItFY7kxCq+trQ2Li4tIJpPo7u5GKpVCV1cXWlpazLzx8Ef6C9U/R0sLQIOyoYEodtAOieOoz+OY0RKy55C+P56SXCgUkMvl4HK5MDg4iL179+LmzZuIRqNmjap1o9a3+rY4L1qeSeE7nTf1ldl+V13H3APqN1bY1LbUFC69VwCFtldhfX03ADN/6g+mwHT8W9+ZnINfXuekUBw3JAWPbgz94TXcCHY0EzeSbmBqmCoEbXzfhhXVKlGnNn9reR2FqWxLTyEZaq0UOpVKBW1tbRgfH0cikTBh22Ta6XQac3NzyGazd8GWvJ/h1PSnsD380XbxPvZfQ69Z7SKTyRjNnFFxHo/HhMH39vbC6/UiHo8b4dHd3Y09e/agtbUVy8vLyGazaGlpQTwex8DAAAYHB03h22g0agI/enp6jCLw4IMPYmhoyBT0HRoaQrFYNGWq3O7t0HQmMavWTn+iz+drOI+MJZ2AHWbK+xUG47gqw1fmzUCbfD5vUhNqtRoymQxu376NW7duYWtrCw8//DB6e3uxurpqTlm2oTJd7yqEdC1xjSi0q9af/q9RiBqAQdK1xutsRcxeNyS1EnmNrsFmED0tXrUIud4UZXDo3uRYXLuEyLyAxmMbqA1qhKHmV+nm5fESunHJlKlx2xUC+AxaWRp1B+xU19D3kMrlcgMsyXYr5EQGQSGnxXgjkQjGx8fx9re/HWNjY8ZPRXgsk8ng5s2buHLlimHKtFR0XFgxxBbqhP/0aAnmU+l5ThwnVo5fXV3F3NwcOjs7jR+HeVOZTAb9/f0IBAIYHh428/Ge97wHLpcLFy9exNraGn7iJ34CLS3bx5+0t7fj/vvvN+cStbe3G7itv78fmUwGV65cwWOPPYZ3vvOd2NzcxMzMDBKJBJ577jlsbW2Z8k5+v98ESTDZmOO5vr5ujk7hHOv5W3b0HH1f9pxTSFKZoe+Q481ahj6fD8lkEjdu3MDt27dx6NAhvP3tb0d3dzfOnTuHZ555xlSaZzUVzg+w4yPNZrOmTWr1sc1qOeo+aEZ2mLoKG65fnfdarWbWgkJ39A9S4HAs9LlUmihk2X6FJNV/xr1IS1YVMYcayRFcu4DUiqEAIUNRzcz+24ZN+NuGg2q1mhEYzAlTx7YyBQZmMIBCgy0o6DToQiO/lNEw8ZKbXX1iZCSDg4M4fvw49u/fb/KlyBB5VH2hUDA1/jhW7L86ufXZtDB1HBROpFJAZq2Rh2QuyWTSBFEQliSjLpVKWFxcNGPwwAMPoKWlBVevXsX09LSJwmQofGtrK0KhEOLxuKmeXqlUkEwmMTMzg9XVVaTTaUxOTpqcsnQ6bcaQf/v9fpPkrdGQLpcL4XAYy8vLd1nJ/FvrBCoD14g7tUg1CpUKCJO8WYjX7/c3nILMo2G8Xi/Gx8fxzDPPIJfLmQLAVGa47hTW5ryqxU8hq9YR17yuXd1DGpyilhrXiCptaoVrRKwGhagApTDTPWG3w0YsVFgrMqIKoEN3kyO4dgHZi56keLhGRmlEFZkqHdncFPostdzUEa1atW5SfYfNBNQfpJokSTen9o3/KxR14MABHD582JxZlcvlEAwGjeN7a2sLuVyuobisMgtCYBrAsrW11XB8C9/JvtBfRWasNfFYvonWS1tbG6LRKFpbW5FMJo2PZ3NzE5cvXzZJyY8//rgRZLR6WS5p7969CIVC2NraPrWZbSuXy5ibm8MLL7xgnlOr1TA3N4dMJoNYLGbC5zc2NpDP542AtS0mAOaIFfbRtng5J1wLdgSdbaHbwp/rh9GPPMLE4/GYOo3BYBDLy8vw+/1IJBI4deoUzp8/j3K5bM40Y86drk2NDLSjPtVCVCFFC96OfFRYm5amQvD6TN6jY8T1onmN2n8VSDbEqntEoXi9xg4ocag5OYJrFxCZPYWPkjIOYEdrpJbKaDEyGQ2R5/1kTralxHdrzTq1YqiJq+bNd/FZthOb15EJqXZPZhQMBrFnzx68853vxNDQEABgcXHRJOayH/Pz85icnMT8/HzDZrcd6erboh+HVe0BGOhM/RG5XA5ut9skP/PoD8KUk5OT2NzcxP33348jR47g3LlzqFQqJvE4mUyaROHZ2VkAwJNPPolTp05hfn4ed+7cQbFYxODgIMLhMEqlkjn/y+fzYWJiAmfPnkWpVMIv/dIvYXh4GJcvX8alS5dw/vx5+P1+3Llzx0RVnjx5EvF4HNPT0wiFQmZeWW2DjDiXyyGRSJg6iswLUwuNc0IBTiuL88iIQlbEKBQKxrLyer0mIKNYLBqf3QMPPGDen8/nkUgk8K53vQsnTpzAN7/5TVy6dMnUR6TCwXdz7oCdos1cu2rVqzBgrpjuERVG/FyhUIXWFd5TtIORlgrVq9WlcL3dbioKDCyicsXnq1JgK6kONZJjj+4CUiexBmXYjl3bAmLQgAoGjbqzo7Fs6KSZNmiTDTtRE7WhRrs/NlNROCgej2NwcBDxeBz1+nZFDDr81ZrS6hr6XPt9OmYMfde+a34ZGZEyHLU+YrGYqa9XqVSwtraGwcHBBk1ahXYkEkEymUQmk8H8/LwJrFhfX0e1WsW1a9eMxcRow2q1iuvXr2N2dtYcEunz+bCysoJwOIyenh4jLJhkzby1SqViojIDgQD6+/vhcrmQTCZN2DdhLfpugJ1oT7U21F+jpzvbVo4mkxPypdXFslf0YzGSkuukp6cHp0+fhsvlwubmpimAzHlT/6jCymr98EfXOi1KGxrX/cT1S8GhypwdKMH/dW2ocqcWkg01K6rAMVJFSQsCs318p0PNybG4dgFRe7OdydT0gJ0NqJaVVtLQCEKNxuJv9aNp5JPCLCrg1DJTJ7JCLbZzWYUsgLsEar2+XQ/uzW9+Mx544AGEw2Fks1lcvnwZ165dQyKRQHd3NwCYM6RYRJd+LhVOZF4sXktmXq/XjZBQQc5oOwZ6EGriM7e2ttDW1oZQKGQqzc/OzuJ973ufsWA2NzfR2tqKrq4uBINBdHR0mIjEv/u7vzPlmU6fPo10Oo2nnnoKANDb22sY7vLyMp5//nlkMhkcPHgQCwsL+OQnP4np6Wkj0JeWltDV1YWTJ09ifX0dZ86cwc///M+b8P5SqYSWlhY89thjGBkZwec//3kMDg6a4BKuKY4HhY9WbtfP6NskXErLiuPb1taGrq4ueDweLC4uIp/Pm7PAqtUqrly5goWFBezfv9+coLy8vGyCSj7ykY/g0qVL+Id/+IeGPCe2g2uKvli3220UGT3rjdZ8MBi8S6kCGsue6X5Qi5yFpKkAUFDS98h15fHsHNWje4NrRf1XfBfbwPcy+tPe447QenVyLK7XOXEz2BCJfq+/1TJSLVCtJd1ovJfaoUJCJG5S2/pQIaoFdVUDbaY52lg+mRv9PAcOHMDQ0BBaWlqQTqexsLBgzo/SUGv6o7TOoRIFsIYfq9C08+JUOJOZaJkfFbCxWAyhUMhUOWcJquXlZXg824m9rGnIwx9ZgmtzcxN9fX0Ih8NIpVJYX19HoVBoyLNKJBImEXllZQVra2solUq4ceMG1tbWUK1WjX9tYGAAt27dMlUquru7EQqFkM1m0d7ejvHxcRw9ehQbGxvmhGaWWGKqgJ48oH2ngsTrXS6XCSDhPLS2tqK7u9sUQc7n8wBgTpXmeWMbGxu4ffs21tbWzJxQqHd2duL+++9HT0+PEY56soHtZ1NEwYYLATSE8+sab6Z4aUCP7iVdL2q98T2aWKz32fuRa9EOBLnX3iWk6NC9yRFcu4gUtlBcXKOYSApdkTRKSxNObahQYReFJxU+UihFBYfm0djWIPtgQzC0/NxuN9rb29HX14dYLIZSqYR0Oo1cLgcAJnycRV7JdPleaq9kwPpebZsmgarfTwWdwpDqA9LSSzzehe9eXl7G9PS08dHEYjEA2ycGZ7NZ3Lhxw/jJCKklk0ksLi4inU6bKunFYhEDAwPo6upCMpnExsYGfD6fOSRzaWnJaOiZTAbxeNyMUWdnJ+LxOKLRqCn4OzQ0hDe84Q2YnZ1FMpk0h26yij8tVE0qV+HAzzye7Wondih4W1sbvF4vSqWSiVyMRqMmsZoCjgWAFxYWkM1mjdVRKpUQDocxMDCARx99FEePHgUAhEIhI/wIH1LhUCtL16BC1c18q/xt54HZfl7m8nEPKTSpAUAKNwM7fjn9Xn84ruo/Yxv4fM0tdKg5OVDh65yUsWtQBRkJifCKVpJvtvgVMlS4kUxEhZJaYgr76fEqQKPAJIO3NWHer9YLLTWetTQ4OIi3vvWt6O3tRaFQwNzcHLa2tjA8PIzBwUFsbW2ZYzlcLhfa29vNGVCMOKTG2tLSgo6ODhMoQAiNzEoFFbDjyyLToVBUjXt4eBjpdBqrq6v40Ic+hOnpacRiMQN3nTlzBs899xxisRhqtRr6+vrg9/sxMDCAra0tdHR0IBKJIBqN4pvf/CYuX76MxcVFPP3001hZWUFfX5+pLZjJZEy1d87l8PAwksmkCX9fW1tDNpvF8PAwHnnkEVy5cgXhcBjFYhEdHR2o17eDFAYGBvD4449jeXkZzz33HNra2hCPxzE5OWnOBGN/ge1zyBgkE4vFjEAgU2fe1rFjx4xVeOnSJTPmBw8exODgIDweD86dO4epqSkEg0FjcZ4/fx4AsG/fPhMePzY2Brfbjf3792P//v14/PHH8cd//MemVqNWb6fFYyckq1XDaylQudaoyFHp0GK4asERktQ9yHWia96OelQLXaNWqSwSWQDQIBC5p9WPp2H+DjWSY3G9zkmhLaDRauLm4aZQ+M62ivgZhZlWClBrhBtHrSD1melm5G8+jxtS4RTVPtkPfqdQXzQaxfDwMPbt2wePZ7vsE4+V7+npMSWR2F4Wpu3s7MTIyAi2trZMZJseAc9+2AmialVooArHk+dhkWlHIhEMDg5iamoKb3zjG9HR0YH19XXD7IPBIKampoyvrVAoYHNz0+Se0QGfTqdNwILX60UgEECpVMLc3BxKpZK5b35+HtPT05iamjLQGw9epGBmgndLSwv27t2L8+fPG0uGpzUvLCyYaiPHjx/HW9/6ViwsLKBUKqGvrw+BQMAI9HK5jEwmY45f2djYMFVCtHKI3+9HV1cXxsbGEIlEMDMzg76+Phw9etTAvN3d3Uin01hbWzNnotGHmM/nMTU1hbW1NayurmJ+ft6MG882GxgYwOnTp5HP503dSRYbrtfrpvo7ABP4QStJgydojQFoUFh0PXLN8lquSZJaa9wDdiqFDTfaPi2uAf2e77etRScw4zuTY3G9zsm2VDTTnpq4Qh3U1tTH1Ox+WmzcoDb2rzCePketPhWGtlWmPjVCYPo5mQetmo6ODoyOjpqDGjc3N1EoFIzwWFlZwczMjIHAqLlSW//617/eoCXTiW6f1aTRY8qQaH2p36tSqSCbzcLr9aKnp8ckzr7nPe9BvV7H7OwsgsGgSSJeXFxErVYzUZAaScdDLwGYJF0GeAA7p+MyxBzYhvLI0EOhENbX142yQSZM/1pnZyeeeeYZvP3tb0d7ezuCwSD6+/sxOTmJvr4+hEIh9Pf3IxwO4/z581hfX4ff78fw8DDK5TJWVlaMYKJQqFarpio8q1iEQiGMj48jHA4jn8/j+vXrqFQqePDBB40C0N3dDb/fj5dffhn1eh2dnZ24efOmCZpwu7cP52RuHqvYx+NxbG1tYX19HR6PB294wxuwtbWFl19++a61rdaKBjdQAWNYv0ZBUlnSHCwbXudvWk+6drjOmwkZ+17bt8Y1zzZwjXK/NENHdD851EiO4HqdExcuGSw3oCY/ai6IRjMxukyfAcA41Hm/WiP8H9jeOGT8DIfWem565paGR9MHwXeqBahWGZlutVrFj/3Yj+HEiROIxWK4dOmSyS+i3+Tv//7vsbCwgPn5eZw6dQqhUAizs7Po6enBgQMH8MY3vhEXLlwwVppGVTJMnP4cav4atk1N2+v1mvwmtvPQoUOo1+u4dOkSPv7xj+ONb3wjPvnJT+L27dt497vfjUqlYmoWxmIxZDIZMycsA5XNZjEyMmKCF+bn57G5uYmhoSFzLEkgEDAwKKMSvV4vbty4YeDSyclJuFzbuVOESqempnD79m1sbGzg+eefx5vf/GbkcjnE43HcunULGxsbGBkZMZbYv/pX/wqzs7O4dOkSJiYmUCwWjWAm3Aw0Kh/BYNBULEmn05iYmIDX68Xx48cxPj5uctCCwSBCoRBefPFF5HI59PX14ebNm0gmk0YhYqUMVgHJ5/P40pe+hPe///3o7u7G1NQUpqenMTo6in/xL/4F/vf//t84d+6cOa+La5hCSiv7s91U0jTQQY9H0bB2XZt6ercKGLXeVImzFTGtMML9Rv9coVAw76Mw5H5QHy0FsSO07k2O4NoFxA1KjdbODVEHMiEKrfigpNcAjUJKw975v101gBoj26MaqO0fUx+XHuxHpkDhRv9NJBIxx88zKTifz2NpaQnr6+sAto8V6ejowODgIGq17QoWGxsbGB8fR6lUwgsvvGD6wyRPCm+FdRjazLEkc6GlxyCKzs5OY/F1dHSgra3NQHsAzDEjrOrO9wHb+WgayFAoFODz+RCNRjE9PY1sNovp6Wn09fWht7e3gcnSz+Z2u7G6ugoAeOyxxxAKhUyScXd3N4rFohEMLpcLCwsLyOfzCIfDDcEmnLNsNotAIGCiNmu1monYJGOOxWKo17frNmYyGQPNptNpc9ZavV7Ho48+ip6eHqMAEEJcWVnBhQsX0NPTg1KpZCwrrtNYLAa/34/V1VXk83kcOnQIU1NTOHfuHB577DH09vZicXERS0tLSCQSeMtb3oJcLoeJiQkDNbKtVE4YHs/1qT4oTXTXdcz2aPSiIhTADrTNdauQsj6PQlEDNrjWNCLVtvZUmVRrzYksfHVyBNcuIBUmuhnsShr8joEIzQQdsFNjjZuM1hRzWAhPKfOkD4uwH6tPsMo5oSQNJqnXt4+c1yKuqpEyMOCxxx7DwMAA1tbWsLGxgUQigYWFBVy8eBGlUgkLCwuo1+vGcnruuefw5je/GWNjY5idncWXv/xl/ORP/iQef/xxuFwuU309l8uhUqkglUohEAiYahm0FnlGFZkuq5V3dHSgv7/f+JySyST6+/tx+vRpdHZ2olgs4uWXX0Z/fz8OHDhgBMWb3/xmTE9P4+WXX8by8rKpED89PY3u7m50dHRg3759KBaLeOmll1Cvbx9JQnhxaWnJjCUTlCl0YrGYKcIbj8dRLBaxvr6OpaUleDwek7xLAcPIzNXVVUxNTeHYsWMmhL1arZoE5v3795vySBRWc3NzqNfrxhLM5XJYW1tDS0sLRkZGcPr0acRiMdPOfD6PY8eOIRQKYWlpCX/6p3+K/fv3o6urC/l8Ho8++igymQxWVlaMH3BrawuhUAijo6P4yEc+gq6uLvzGb/wGRkZG0NbWhpGREbzyyiv4+te/jne/+9346Ec/iqeffhqf/OQnEYvFkEwmDaJAIaW+OuZ4cTy5F3iuGNCorFWr2ydZ01rn/WodUSFxuVwmT4zjaZdIU4uOCIcNd3Kf2lGH6i9zrK7m5Aiu1znZFoyWnVFHsVpkquXZCckKL+qm1FBdvV/9A9x4Gj6thWvJAGzM3w7Q0ACT/fv348SJEwC2rR0ylfn5eVy6dMkk9hIeC4VCKJVKuHXrFmKxGCqVCoaGhnDmzBm8853vxKFDh+D1ejE3N4dUKgUA6OrqArBToYAMhlYfK7IPDg4iGAwCQEMZo7GxMVMJXoMsxsfHEYlEsLq6inp9++ysZDKJrq4upFIp48ciE0wkEshms5iZmTEafCQSMQyVDI4CtLOzE319fQCAVCqFGzduoLOzE/v27cPS0hJKpRI2NjYafJatra3GMgqFQqjX61hbW0MymUQikYDHs338CoWi5ujxfs4jGTircrBqx8jICDo6OjA/P49KpWIOi1xdXcU3vvEN9Pf3Y//+/SiVSojFYqYgMiML6U+LRqNGiJ04cQLveMc78MILL+Do0aOmLNX6+jouXryIffv24cSJE/irv/orEyXKNUZkANhJagd2YGo7zJ+k0XuqAGpwkfqPuXY12tB+rgb68Hvep1G4vF73Hq1Cfu7QvckRXK9zUvhAN5gKAXtz6WYBGjcwLSaFMihIyMRUCJKYpKraJQUd30OGx/B2DT3nM1mBgcxyaGgIQ0NDxkKKxWKmwOz8/DyGhoYaYD2Xy4VYLIaFhQV0dnaiUqng1KlT+PSnP41vf/vbeOyxx5DNZk0iMPOW6HcLBAIGVqLVQAHR09OD9fV1rK+vm+i5RCKBrq4ueL1e5HI5JJNJA1dRIDKvLJVKYWpqCisrK2hrazMWXygUwtramplDfu71euH3+824BQIBhEIheL1exGIx9Pb2oru7G9lsFjdv3kQsFjMlkyKRCFKpFFZXV43mns/nUa/XkclkTGkpt9uN9fX1hug+JiGzejt9KxRWmrcXiURMcEYkEkE8HkdfXx+i0SiuXr2KSqWCQCCAmZkZnDt3DpOTkzh8+LCxPOjHpDAIBoPmoMxyuYy1tTXMzc0hFovh8ccfx2c/+1m43W4cPXoUvb29yOfzuHz5MrLZLI4ePYq3ve1t+PKXv2ysHUK8qoTpWrOVM653GybkfrKDLfgs3ss1rwqjHkSqFpXt+1WoUa05kh1wxX3l0N3kCK7XOdkQIcvJ8ARdxc81P4Th4vQjcbOpMFJfALV+OuC1EgYAk/BJf4Zi//xNRqk+Nzq7ycQ8Ho+BoPr6+nDfffchFArhwoULqFQq6OzsxKVLlzA9PW3aEIlEzBEetBTJZFOpFP7yL/8SP/MzP4MbN27g4sWLJrfq53/+59HR0YEvf/nLWF9fN1XIW1pajEUUiUSQz+fx/PPPY25uDuFwGH6/H2NjY+ba2dlZI2x4fhYDETY3N035o89//vNGOfD7/QgEArh58yZ8Ph/C4TA++9nP4siRI0Z48KBJ5uD19/ejs7MT5XIZXq8XoVAIk5OTmJubM4JwdnYWpVIJY2NjaGtrw+nTp40AoyXHOQkGg+js7DQh7rQw6/U6IpEI+vr6sLKyYvK10um0KVhMoX3y5EkAwOzsbINv7OrVq1hfX4fP58Pm5iY+/elPY3BwEIcPHzY+M+axeTwetLe3o6urC5VKBe3t7bh16xbOnz+Prq4urK2tYXZ2Fnv27MFP/MRP4Omnn8aXvvQl/MzP/AyOHDmCL33pSzh37hxu3ryJn/3Zn8XJkyfxxS9+EefPnzcWENcqrWQqYQAa9gUVJlrcGmihvi3uD71ffWV6EjP9t0Qn9EeDSdQC02ASYOdcO1rd3JMONSdHcO0CovWiwQ/UKG1rhxuL0InmPtmRUGSYmhPD6uSqgdqRjcFg0EBbiscTmqzVdk4RpuAkBEXIcmtrC0eOHEFPT48RtNTMb9++DY/Hg4GBAZTLZVNWiTCX+q5GR0exsbGBl19+GYcOHcKFCxdw3333YWhoCC+88AI+8IEP4H3vex+mpqawurqK1dVVY0FUKhXcunULwLZg7u/vx+joaANMxoMWGf2WTqcRCoUa6kASPsxkMhgZGUE2m8Xq6ira29sRDocxNzdnKkmsrq4ikUhgeHjY+Hk6OzvNPDOyjQI6m81ibW0NwWAQ2WzWMLapqSmk02mMjo4iEomgVqthc3PTWG1sm/oYaWlxLfGQw3w+j7a2NuN3rNVqRrAODw+btUa48MaNG5iamjKHQF69etXkjdFf2N7ejra2NrOGyZR5SGcoFEIkEsGePXvg9/uxsbGBYDCI++67D+VyGd/61rcwOzuLffv24eDBg7hx4wYymQwKhQKOHDmCcrmM8+fPN4S38x2aMqDwtcKIqvQprK1rnutbAyYU2eC+U2uMQVHccxRCXPPcL1omSsPybWvOoebkCK7XOdEprCG8dkgv/yczBmDq3pFpcdNRCyQEomG5hFaYNMtIKbfbbYRKsVhEW1sbPJ7tI+n5fPqgKFx8Ph+AHV+aCk/CWG9605sQCoWwurpq8oyi0SimpqawZ88eHDhwAF/84heRTqcxNjaGnp4e7Nu3D5VKBZlMBi+88AIWFhZw6NAhLC4u4nOf+xz279+PW7du4fjx47h16xZ+67d+C7/yK7+CsbExnDx50pRfAoD19XVsbm6aMSkUCjh//rwJJff7/Q1Fdvmbtfp6enpMoi2L1/b29pqq6JpKcOfOHbS1tWFoaKghCOKJJ54wvrqNjQ2jTLS2thqrOhwOGz8TYd1cLoeFhQWsr68bSyYej6Orq8vAe6lUyjDP5eVlRCIRhEIhXL582byDuW7JZBK3b9/G3NyciZ7s6+szJa7a2tqM8Lx48SIikQiWl5fx9NNPG18bYdkf//EfN0pVuVxGNps1AT+tra3o6OhAOp3G29/+doyPjxsoc9++fTh69CjGxsbw0EMP4b/8l/+C69ev45/9s3+GY8eO4dlnn8XnPvc5vOUtb8Gb3vQmvPjii/j6179uUg804pVJy4RkaVExSrZZJK5WkdFADO4vjRDVvCstn8Y9RwHFNcB3adEA7m99Ntvl0KuTI7he52QHSOiG0ygl1SipldOnolaZbaE1y+HSTWXfR0hD/QnckGQCrObANmodPFoTfX198Hq9SKVSWFpaajimnRFeiUTCRI4dOHDAlEyiRTA0NGTgreHhYRQKBayvrxuI7fDhwyiXyzhz5gwefvhhcyhlOBw2DJu+pWq1auDVYDCI9vZ2uN1uk3tDWJWBEx6Px5QjoqUZCoXMESbVatVUvAiFQg1QkNfrNYKN1pv6GWOxGNrb27G4uGhC6hlZyarvhLuY5wbsHHXPYAn1ozCEHAAymUxDu6iQsGpFNBpFX18f2traDOzGNbe6umrgtpdfftlYv/T3ES4mwyaptc6qH/v27UNXVxdWV1exvr5uFCgWDh4ZGTGnPrN24+LiIr797W+jo6MDjz32mMn5Up+SQnLcOxrYxFw0hQbVp6V/87euddvnrKWkKLDVV8XnqbDT/WsHLdlh9w7dTU7Jp9c5qVAAdkLZSdyY+h0XvYblUvjwB8Bd2p36vLSMFDcpNVJ9BjemXY3bzmkhA+VBeb29vSiXy1hcXEQymYTH4zFnVvl8PuNrY/BCZ2enKbxLZjkyMoKuri5Uq9vFauPxOEqlknlOsVjEvn37kMlkcPHiRSwtLaGzsxP9/f3myA2Px4N4PI5IJAKfz4d4PI6enh7E43EjmMLhMCKRiKlIQWtSmRirYGSzWdMfMrtwOIy2tjZjOTFPTU8/pkVMod3R0QGPx4Pu7m6MjY2Zo1u0cjrTGAjN8kTo9fV1JJNJk6rA9cC55dlf+XweLpcLgUAA2WwWmUwGbrcbXV1d6O3tNXUK/X4/3G43Njc3sbq6Cr/fj3Q6jfX1dePP4zE0HR0d2NraMkLQ7Xab+7kWmXKh1iEDYgiphUIhPPDAA4hGo5iZmUEul0M4HIbLtX222Isvvojjx4/jgQceaBAqtgIH7FSo4F5S+E+hcE3K5x6gwqhRmCp8eB3HmEgGv9eIQz6DigqVR+7FcrnccGKztsWhRnIsrtc5aeAFNThgR0jZ4cvATgkcOzRdE4V5ui03udvtNhUkNLKKDIcwICFIYMf3phUKdPOyHWS0bHd/fz9OnjxpIt7IuDc3N01iL8OhWSg3HA7D49k+QZfH3kejUYyMjBj/ErAd+l4oFJDNZrG4uIje3l488sgjePnll/GJT3wCo6OjGB8fR3t7O5aWlkygAgBks1kDEba1taFcLiMajSIcDhvLj7lg5XLZnObLeWL/9u3bBwBYWVlBPp8345ZIJMyYHThwAMePH0cqlcKdO3dMpQwWfU2lUsjn8xgdHUWxWEQ2m0VnZyfm5+eRz+cNw2c+UTabRU9PD8rlsgnWcLlcJviEQi2TySCVShl4kAWCb9y4YZKQ9+zZg3g8bqymlpYWTExMmPqKq6ureO6550zE5aFDh/D000+jt7cXY2NjyOVypt4hozip8FCxSKVS6OrqQjQaRSwWw/z8PObm5jAyMoJkMomtrS28+93vRmdnJ/7P//k/JqKREN7NmzdRr9fxC7/wC/jWt75l1o1Gx1JIUmhpErYKFA3SoGBSJUzTOeywd1qrvEcjGYk+UHAqZM/9oyH5REm4Dx2L697kiPTXOanmaMMO/J+blbAFAxlUC9QIJwoj/vAzbhbVMNVBbGuz3KzATpQU38nCrGoF8hkM5wZ2nPbaHmrxXq/X5FWRAoEAotGosXrod+rv70dvb685CoOC2eXaLp903333oa+vD5/+9Kfx4osvYn193fhtGJyikZQs/6TFVoFta4V5RPl83igLTJROp9NYWVkxfXe5XCbxdmFhAbOzs7h58ya2traMkFSNn/6V+fl5U+B2cXERuVyuIQ9II+fUb1mtVk3YPktPsRLI6uqqqaxBWJURc4VCwYwlgzYIG5fLZRN27/F4cOXKFeNTGxoawtLSkhnD+fl5c8jnxsYGJicncfXqVfN8ACavLRqNIhqNoqOjA7VaDaurq6Ze49bWljmjK5/PY3p6GsViEQ8++KAJeHjllVcQCAQwPj5u5suG1O1oPzvASS0xu4CuBnbwfxVcCpvrXCikaOd88Xteoydy616wow4daiRHcO0Csjcg0HjciQoXhQS5Ufm/Yv8qmBQiVDxfYT6FK7nBdGNpG/1+v4EXCTlSC2WIvp78ymK2xWKx4Z5YLNag+TNQIhqNmmRatoM5Wi0tLUbj57EfLS0txsp76aWX8KlPfQoXLlwwFh37wVwv1jIE0BBckM/nUa1WTSAL28tAgEKhgEQiYY4+YX4XrazFxUVMTU0hmUyaBOFYLGbOreL8lkolY63lcjncuXPHBI/U63UTKu/z+ZDP543QYIkmVtanFco1srKygtnZWZNczaK6PPfMrgDBoByG0zOwZnNzE9FoFGNjY/D7/bh27Zq5bmpqCl6v15TvWl5eNgdhMnhoY2MDtVrNKA6dnZ1oaWkxFl0kEjFrZe/evUgkEqYe49DQEEZGRlAsFvHCCy9gZWUF999/v8lx43irz0n9XhqRy+vvlfirAk/J3hN8PvcM4T4Gh3C/6h6022TDmyokHbqbHMH1OicKCwANFSt0kwA71QMYxq3HlnAj08+hCckAjH+EQkfhQB4XwbYo7KGOe9VyVYskk9CaeYw2Uw2TkXhMlG1ra8PBgweN70Q1XRVSTOJlv5l0XKlUkEgkzFEf9XodHR0deO973wu/34/f/d3fxaVLl+DxeDA0NISOjg4kEgljBdRqNaysrOD27duYmJjA5OSkCXfv7u42kYB8J9vG4Il0Oo1CoWBgOs3tikQiyOVyJhHb7/fj5s2buH37tvE/MRquWCxiY2PD9F8tUB4gSb/XxsZGQzIyfUU8uPL69eu4ffu2EVoM8V9dXTVVSwhXuVwuxONxFAoFTExMmDVx+fJlHDt2zJzk/O1vfxttbW0YGBhANBrFnTt30NfXZ6rA53I5HDhwABMTE5iZmcHKyop5HoVkV1cXfD4fFhcXUSqVTM4XazJ+4AMfQCKRwLlz53DmzBksLS2hUCigra0Nn/3sZ/H2t78d73//+82+UCVJBQKtJ5Y245rXM+yovPA6RpGyP3o/1zOFE/cdoWRamc0qZVA5YLAS9yoVSVrfDjUnR3C9zkmhDS5o5kYBjVi7HSFl+5w0cEKjEWm5KY7P+/ijWqcGedBa0/vsYAP1tdHPUSwWDRRIC6dYLGJzcxORSASxWMxYFm1tbdjc3DQbmQIDgBFefDYLvWYyGVMZgyHvLtf2sfMHDhzA4cOH8Td/8zeYmJgwhzvS8iHUasNOAEyeFCPjKAAKhYKBSAk1kflQkAMwlpEKDABYXl42hWjdbrdpE5ki54oKAa0xfscoQo6F+jk5NywPxTksFosoFArGf8lSYlxjLS0tJneqpaUFq6urSKfTpkbhtWvXMDAwgIMHD+LSpUs4d+6csZA3NzcRj8dN+zs6OrCysmLaf/HiRUxNTaFSqSASiRihn0wmzbzS0j1w4ACOHDmCcDhsINRQKITe3l4jPI4cOYKjR4829JnKEomQnlaI0fEAdtAERjhqKSmFatU3rHuIVpUNMep9VAB1LynUyL3pBGfcm5zgjNc5UfjQUuImoFCg5qZ+MMXVlRQyJDG4gxu9Xq8by0AP5qNfgRva3rz6mVZjZx9oQRBqm5mZwbFjx0xZnzt37mBychLpdBonT55EPB7HzMwMstksTpw4gaeffhozMzMYHBw0VTTGxsbgcrlMTUL6OI4dO4YjR47gU5/6FEZHR3H27FnEYjFTdDYYDOLxxx/HV77yFfz5n/85wuEw9u7di3g8jpGREVO2amtry1hADNCYn583AQ9XrlxBf3+/CWzh2NrpCUyg5inDhUIBGxsbmJiYMBGQy8vLGBoaQigUgsu1fXgmIT+OJa00BqPU63VzHhiDXmjl8Zrp6WmTZxYOhxEMBo2/jGdqbWxsIB6PAwDa29sRiURQrVaxvr6O6elpU3Xf7d6udnLhwgXk83l0dnaivb0d0WgUb3vb2+D1epFIJDA3N2cqi5RKJVy+fNlU+3e73RgYGEBrayt+/dd/Hf/6X/9rnD59GseOHcO5c+dw9uxZFItFY1HfuXMHR44cMWvp7NmzJsI0lUqhs7MTzz77LB5//HH84i/+Il566SWz3lQoKfRmW5bcK9xHmrDMklZURhghyb2jSgrfoVG/3KPcP1qMmm3j9Vw7GtTkUHNyRPrrnKiBKQxIa0M1MoVEVNNU7Vudz9ww6igm8Tm6sSlwFOLTcHsN7FDLjRo24RgyhKWlJaTTaSPsqNnXajVTyZ19SCQSCAQCSKfTBrYEYJKgl5eXDexDvxatHFbMmJ2dRSqVMnBSpVLB/v370d/fj8997nO4cOEC0um0CQOPRCJIJBLGlxQOhxGLxbC8vIyFhQUAMMd10C+TSCQafF4K5VLA07eSTqextLSE69ev4+bNm+jv7zd1GkulkjnXinOrAlH9KbTCKpUKYrEYhoaG0NPTY6INl5eXzbgyoAWAqXlIf6SeRM3nbWxsGIFcr9fR19cHt9uNiYkJw+hv3LiBl156Cf39/RgbGzNj5vf7kUqlUKlsHwq6uLiIcDiMVCqFzc1NbG1tYX5+HmfOnMH169cxMDCA7u5urKysYHl5GbVaDZFIxKzb/v5+7Nu3z0Cu0WgUi4uLKJfLuHr1KtLpNIaGhtDZ2WkYvlpJChtyPhRNoHKowTg6Z/yx0QzuMQpl9UFrcIYdTk/BqVaa+qB17zl0NzmC63VOqoUps1IoQeEFoLmDmZuE39uaITcptUjCJNysdhkahV1sP5dGVSmjZRSez+fD3NwcNjY2jK+BeTwMtGB5IVppm5ubZiO3tLSYyDcmr5KxzM7O4saNG5ifnzeh5Ovr67h8+TLu3LljitiWy2UEAgGMjo5iYmICX/rSl3D16lX4fD5EIhETvRiNRuH3+xGLxUyoPY8fIeTH40tOnDiBwcFB4/dSLV8hUwDG0llYWECxWDTnejEQIh6Po7293Sgi6vRX6InVS9SvxnXi9/vN+VkATKUMWgEK1dJ32NbWhkqlYoIwGJo/ODiIeDxuwtB5uvPGxgauX7/ekErBoBoKKPr93O7tXLBMJoN8Pm8Oujx79izC4TAGBwdNGkO5XDYVQYrFImKxmLGKE4mEsdRXVlawtLSEmzdvoqWlBaOjo2aMuCa4DwjdKiKhMJ8qBronOGYcd86JHYGokDLfqXtH95qthHBMNXzeCc64NzmC63VO9XrdVKLQqCS1rgAYRkRrpVkBUcIVPp/PFD8FGmu08Z3qk1LNVP1sdmI079UNrhotsFMnb2ZmBplMBmtra7h58yYWFxfNPa2trejq6jJ1DC9fvmxylhYXF5HP5+Hz+UzuDwMxmJs0Pz+P6elpIyRLpRKuXr2Kz3zmM0gmk8bSYGmrt771rXC73fif//N/YnJy0giCjo4O7N+/H4lEwiQme71epNNp9PT0IJVKYWJiArXadrWKxx9/HEeOHDGCQQsWU9FgHUg9n4nMuVwuI5PJoFwu4+DBgzhy5AiSySQ2NjbgdruRTqeRy+Xgcm2nFDBggGOeTCaxuLiI9fX1hlqDPCaESgkZo9vtNsEbLpfLhKYnk0lzLMzly5dx5coVtLS04MyZMzh06BB+7dd+Db29vWhvbzeWLgMWKJRoOQ8PDyMej6NareLmzZtYXV1FNpttOPLlG9/4Bm7dumXG99KlS/jWt76FQCBgjk/Z2trC+Pg49u7da+ZlYGDAQKB///d/j4mJCTz55JMYHR0165nwMYCmaAP3jgZccI/QcibKwfu1Kr2udQo4PtPlcjUUu9Z9WygUjLAkCkByfFzfmRwf1+ucNKCCm8LG4PmZWlfcIJrPBeyUpFFt0L5H30GyIUXbF6AbmHg/289rqtWqqRTBskssSNvf34+1tTWsr6+bWoeFQsEEOzD0GwCi0ajxpVGAsl8Mox8YGMDLL7+MeDxumI/X68W3vvUtPPHEExgYGEB7e7up8DA0NIRKpYIXXngBJ06cwPj4OFpbWw1Myf5SEBGK3NzcNKHyExMTmJqaussyZd/JxPg3rQ4+l5am3+83gQ3d3d1YWlpqCHDR3C2Fj+v17VB5Wq7VahUnTpww0CEZqx2kw7kPhULmPC8Kt/n5efj9fkxMTGDv3r1497vfjYWFBePb2rNnD4Cdk6ArlYoRXOovYyAKS3oBMAKgUCjg1q1buO+++xCLxTA3N2f8ncFg0KQPUBClUilks1ns27cPm5ubKJVK5uiXo0ePYmBgAHfu3DH5YroHqDjZlhHXLv8mxKv7RPeARgcqZKj71t4vqkRyL3IsiDSw5BXf61BzcgTX65y40dTZDMD4KzRCirk33Ggs3AnsRKUp/EGtn8KPmp8yXaBxE2qYMaEnYMfpzJBgChJaLy6Xy1RpSKVSOHr0KACYAAz6j3K5HI4fP46BgQE8++yzKBQKGB4exu3bt9HV1YWOjg4jjGiJ8HBJv9+PU6dOYXR0FD09Pbh27RoefPBBXL16FTMzMxgdHcXp06dx5swZJBIJvOtd70Imk8GVK1fQ2tqKQ4cO4dKlS7h69Sp+4id+AuPj46YcVDabNceLADCWUTabxY0bN7C0tISvfvWr8Pv96OnpwcrKioFcKXAymQwqlQra2toQCoWwZ88eUzFjeHjYHLPS0dFhave9733vQ39/PyYmJhAOh80hjK2trcjlcsafpD4sZZbRaBRtbW3Gym1tbTVV4oGd0wMGBwexZ88e1Go1zMzMANguQtzT04PV1VUAwMmTJ+HxbB9RcuzYMUxNTWH//v1ob283806hSSHq9/sRDodx7NgxZLNZPPPMM6ZiiVaQ/+IXvwgAOHjwIJaXlzE9PY2zZ8/i1KlT8Pl8pkJ+X18fXnnlFTz77LN473vfi3q9jm984xvo6urC1atX8fjjj+O9730vnn76aUSjUWQymYaoUy1jRguKc0SBYfuIqZhRsHBv0JKmgKSiyO9tZVADp5igzvboNfzOgQrvTY7gep2THVLLz7SmGf1NWlaJVgGLxKrFplq2vkOFnFpswI5QaxYNpe2jwFLNnpuQ/7MSPCPuKpWKqfIAAIODgwgEAlhdXTVWis/nM7BTqVTC5uamgVDpH6C/hpXsAWBpacmcD+V2u3Hy5EmUSiWcOXMGMzMz5ggQCuyBgQEsLi7i/Pnzxo/GArTZbBYdHR1obW1FW1ubge5WVlawurpqIv0o0NmfQCCA9vZ2jIyMIJ/PY21tDQcPHsTx48dN+Hi5XMbS0pI5XuTGjRtwu90YGRnB2NiYCW6hlccEZj0RgD5J5noFAgEzN0w5YH1DQoYsvnvw4EETZcjTlXO5HILBIG7fvm2q9odCIQwODmJoaAjPP/88BgYGEAwGjTBi1KMWAU4mkyYIpLu7G7XadnV79dfOzMzg+vXrGBkZQX9/P9bX1zExMWGCNsjM+/v7ce3aNZPEzIAYBs8UCgWMjY0ZGNJGJXgMSjAYNDA8rVWuAw3keDV/GICGyvQUXkQdKAz5vY1S0Irjdeov033k0N3kCK7XOSm0p9ACNwA/I1xGDF8jpYDGSEENzqDA4YbmhlI4CWg8l0uTJTXfScvg8Nlac41+ARaxzeVyJheJm93tdqO9vR31eh3pdNoEQLBMFIVWMplEvV435Z20LUz+9Pv9uHTpElKplDkDqrW1FYcPH0Y+n8fXv/51HD9+vKGeXyKRgN/vx8svv2xCxwlNcVzpS/T5fNjY2MD6+jqy2azxUbE6O/0eIyMjuP/++zE6OopkMolUKoXx8XEMDg5ifX3dlIEKBALo6ekBACwsLKBS2a7UHgqFMDIygomJCbS0tKCnp8cIbFa/4LEq9XrdnDJMP2YgEEAsFkNPT09DkA4FazQaRWdnJ1wulyl67Ha7EQgEjA9PA0U8nu2zuSj4GLavik88HkcoFDJrjYKnq6sL4XAY6XQaCwsLyGQyBsa8cOECTpw4gXA4jM7OTty+fRuTk5PYu3evUXAIUbLQcjweNz7PcDiM6elpnDhxAv39/bh586YRRhrYYitsFLLcE4QkaUmxT4pucE/xfj5P88Z0/2qQDj+n0mHvbRWSDjUnR3C9zkmDJPjDCDAyaWCnsC41fo1k4oalECGT1wKkKsTUj6Kh7tom3bQul8s4m6nhamgwr+nq6kJrayseeOABtLS04Fvf+hYKhQK6u7sBALFYDH19fQiHw1hbW8PGxgZWVlZw/fp1jI+PI5lM4uLFi3C73YjFYhgbGzNjQSbg9/uNb+zQoUNoa2vD888/j1OnTuFNb3oTkskkWlpa8Na3vhWtra04c+YMfvzHf9ycZsx2HDp0CFeuXMGFCxfwyCOPANiuRzg7O4tQKISuri50d3ebk4cBNBTgjUajBjrr6+tDtVrFl770Jayvr8Pv95vaibOzs5iYmEAqlcKhQ4ewZ88eMy8co/7+fiQSCbz97W/H5OQkJicnTRkozY3r7u5GKBQyPsBarYZHHnkER44cMVXW19bWsLa2hlKpZCpetLS0mECT69evY9++fahWq5iYmMDg4CCOHDliQuPv3LmDO3fuYGVlBdFo1ITL08KsVqsolUqmsoUGCgHbVmAwGDQCjMeWDA8PI5PJ4K/+6q/w0EMPob29HdevX8dXv/pVPP744wZiDgaDGBwcxNLSEq5du2YqyE9NTSESieDmzZsIhUJ44oknzBlhXOMajcpqKsA27M69ZK9ZDX5igV/9nta1Bnwo/Md9wyhPzctUPyWhewB3CT+H7iZHcL3OSaP6AJjKBgAaIAf7HhUuJFuz00oUam1psIXmkfHZ6jjWyCfF8zUwRP1rLClF4UKGQq25u7sbbrfbVJa4fv26SeBlrUCv14toNGosLdWUSS6XC+3t7Sa/aWBgwPiWyKAeeeQR+P1+nD9/HgcPHjTJwdVqFV1dXYZRUzlg8VhClDyYkW3gWU9MkHa5tk8Znp2dxdWrV7GxsWHO2bpw4QKGh4cxPj6OmZkZzMzMoL+/H6FQyJxPBgCrq6sm4o2V7o8dO4aXX34ZKysrWFhYQKlUQj6fRzKZhMvlwsDAAGKxmBEQ7e3t5qwwJmv7fD709fUhkUggn89jdnYWs7OzxlKcnJw07Th//jympqYM7KwHKgI7h4Vy3TAHjHlzgUAA8Xjc9KNQKMDn86GrqwvZbBYLCwuo1WqIxWIm6fnAgQMmYGdyctIcscIITlas37t3L0ZGRrC4uGiUhqmpKQwODqK3t7ch94+CRfO87MALfsY55D5gH3Wt670Kw9tRtXYIPt+llW1sS1D/d+hucgTX65zsBW0LKzuEHWgMTVfLRzehhttqrT0yJMX47Q1LX4GdbKk+C2qg6gx3uVwGwlpbW2vwK7BCQSKRMHlbL774IlKplDm7i4wwkUiYgx7JUGxnOhl/Op1Gf38/2tvbGzTkdDqNaDSKo0eP4uzZs7hy5QpGRkYAbAcseDwec0zI8vIyQqEQCoUCYrFYQxUFBj/wCPtYLHaXs71YLKJYLBrLMpFI4OzZsxgYGMDRo0fR0dFhxkML4K6treH27dvIZDJIJBKo17fPJQsGg4jH4+YkZ45jR0eHSfj1+XyIxWJYW1tDKpVCOBxGNBo1/i/+zwTuqakpAMDY2BiuXbuG69evo1ar4eLFiw2+K4UDE4mEGS871JxzSEujpaUF8Xgc9XrdnEI9Pj6O0dFReDwebGxsGIVgY2MDS0tLBlo9d+4cenp60N7ebsbd7/djamoKS0tLOHLkCG7dumXKUS0sLODo0aPo7e3FzZs3DQJAwabRgypkdN50PxHJUAiP+1J9XOrP4vdU4Ihw6J7WNaL3UAlzBNe9yRFcr3PSDUWNVRc9rwFg4DL1NSl+T0YP7GifKnzUalGfgBbZ1UAGtfS8Xq95D//mPYTwRkdH8dBDDyGVSmFychIATF1CRuOdPHkSS0tL+PznPw+32403vvGNSKfTOH/+PFpaWjAyMoLe3l4Eg0FUq1UjoEqlkrHYeCrwV7/6VUQiETz55JNwu7crPjD3i8feBwIBHD9+HMlkEt/85jdx//33o1wuo6enB9Fo1EQaZrNZeDweo+2zft++ffvQ3t5uShul02mk02ljlZTLZZMgzYCEen079Pz3f//3TS5UtVrF7du3UalUsGfPHiwtLeEb3/gGWltbsbKygnq9jueff94oFnoUC8d5fX3dvDeVSqGtrQ2f+9zncObMGTz00EP4sR/7MZO8S+vu6aefxrVr19Dd3Y3Ozk4UCgU899xz2NzcRCKRwPj4uJl/+kF5/lQgEEC9vl0DkVVQODYsIEyrk+epsSL8+vo6lpeX0dbWhr1792J9fR1zc3NwubbPEJuYmMD4+Djcbjc+/elPY3p6Gu9973sxNjZm6iOeO3cOL730En7xF38Rc3NzuHDhAra2trCwsIBIJIJHHnnE+A/toAifz2cCVAA07BfuKRUstsDifqFi2CznijmEqnyqEOVe098UYipEHbqbHMH1OiduCF3IqjHaeSEUKHZulu3wtasEUFtWi4nvZZ1BtoGbz7YGNVJKLTeePdXb24t4PI5r164hmUwahkYoaWxsDCMjI5idncVLL72EI0eOIBKJIJlMolqtmgK3AO46vK+1tRXxeBytra2Ynp7Giy++iCNHjqC7uxuLi4tYXl7G0tISrly5gq2tLQOV1et1fOYznzHH2NPqymQyJiF2eHjYFMDd2toyldKpIBDyGR4exq1bt0yhWJ0b9XGQWTJIgXN5584dvPLKK2htbTUV0ldXVxt8IpxXChEmxiozrVQqprTS3r17kUql8PTTT5tEYxYfrlQquH37NqrVqoFVZ2dnzUnGDHzI5XKIRqPmvfSh0ZpWmIwHbhIKHhoauivvjoWQb9++jWQyiVgsZtYCLUEeekklYnJyEi+//DLGxsYQjUbR09OD1tZWc2Bmd3e3KSlFhWZ4eBh79uwxxXzViuKYK0zO7zmnqhjZgU1c4xwDtb64n3iSg1pTWlKKfjWNVuTn93IDOLRNjuB6nRNhIG4EzUdR7Y9wm/qTKMTs0Fo6o7nR+Az6jLjRuIE0MrFcLpvqD9zgHo/H+Ku4GbmhaQmNj4/j2LFjiMVimJqaMjlNhUIBqVQK73znO3HkyBG0trbiv/23/4br169jz549WF5exubmJvbv329yqmhVsFisx+NBV1cXtra28Bd/8RcIhUJGW3/22WeN9RCNRvHzP//zCIVCyOfzuHHjBrxeLx544AFTaoeMbWFhAYuLixgaGsKhQ4dMGaR0Oo2WlhaTQL20tIRkMomenh60tbWZ04V5vhWAhgRp/s8qDeoTqVQqePbZZ/Hss8/iPe95Dw4fPoyvfe1rRlmgwFO4lgEhqv1zXmdnZzE0NISuri643W6cPXvW5NItLS1hfn4etVoN4+PjuHXrFubm5rC5uYm2tjYzdx6Px5yXBeyU26Kiw4MnZ2ZmTOJ0V1cX9uzZgzt37mBxcRGbm5vo6+szgjIWiyGRSGBkZAQLCwvY3Nw0RYw7Ozvh9/sxPT2NaDSKI0eO4MKFCwiHw3jxxRfR3t6Ohx56CPv27YPH4zG+t3379mFxcdFUqL906RLuv/9+PPLII/ja175mhAjzDTV6kEKNY0vYmkETam1xjKmUcf1zT1KhINzLorxap5DP0Xdy7wCNUL9DzckRXK9z0vBbWjEul8toaroRbEuMpNoeN5BqmgoB8plqrfG3QiJ2XopaanZEYr1eR39/Pzo6Osx3FIYUPj09PahWt8sCvfzyyxgYGEAmkzGn67a3t8Pn8yEQCCAcDht/FQMneHZWLBZDf38/tra28OUvfxl+vx/Hjh0zJy4Hg0EDcdGaaWlpQSgUQigUMgw5EomYgx+HhobMu6k8sKIDQ7RZOZ6WVTqdNnPFsdAyQZp/pmHmTKZeXFxEPB43Sa8a/EBlRqPXNDWCVijPuGKtxZ6eHqPFLy0tIZvNYnh4GNVqFXfu3DE+M64JBsG0traacHcmlNt+HAbO5PN5+P1+c4JxuVzGzMyMCXYoFApmzoaHh01EI+FP9pP9Gh4exvr6uoFgz58/j+HhYYyOjiISiSCVSmFjYwMDAwPGJxkIBDA5OYmDBw8iGo0CwF3rWUtVaRQu1zPnhaTpGmohqX/V7/cbS5bRlrYvWp+n+5sKKfcQBaxDzckRXK9z0gXNiDr6SzS6kBtTS8goFKibVjeTRoIBOxAiP1e8nVARN7VuYPUNsM2E5Gq1Gnp6ekyAA7AT4UhGPzw8jM3NTbz00ksIBALo7e1FMpk0Fg5rMLIgLICG0OZr165hfX0dDz/8MNLpNF5++WW0t7c3BHEUi0XMzs4ikUiYUHVgO0mZAQ9MTI3H44bxz87Ooq+vz0R0trW1IRAIIJVKmbZkMhnMzs6aEPGWlhaUSqUGhqnwra108HwvRtwtLy+bOWDRXo6XRrMRKtQ51mCbxcVFY5FGIhFTWqpSqSAYDKK1tRVra2smEdntdjecAq0HVyoMxvWj3zH0nD4uKgtMQvb5fCaQo1arobu726yhUCiESCRiLHfCgw8//DDuv/9+3LlzB7dv38bMzAwuX75soOe1tTXMzs6it7fXFAiuVCrm9IFQKGTGXv26Wv6KQoICTH3IXNe0jtlX/Vz3mG0lqeKnUCWv5f5QiJ+V+rmHHLqbHMH1Oidqhgon0d9DomZHxkjmZhM3KrV9dT7ze2rzFF4a2q2bVMvjKLSofja2saWlxZyjdefOHeOf6ujoQC6Xw2OPPYaBgQE888wzeO6553Ds2DEAwMbGBsLhMNrb2w3kwvJDPOV3cXERi4uLJjfp85//PAYHB82R74VCwYTU85yn7u5uEw3IKhvJZNIEUbDqQW9vLxKJBJaWlnDjxg34/X4sLy+jq6sLjzzyCNbX15FKpUw4+dDQEDY3N7G6uoq2traGI0EAGD9ZrVYzgoHvJ1xFCHR5ebkB9lUFghCWQly0uGiJ0SfZ1taGer2OVCqFqakpRKNRkxfW1tZm8ro6OzuNz4x+KGDbl+h2b+fNce75GdceAOzbtw/JZNII61AohMXFRRQKBbS3t+PWrVvGsgoEAlhfXwcAY2F2dHSgq6vLnAi8Z88efOpTn8LGxgY++MEPoqenBx0dHbh9+zaeeuopbGxs4NFHH4Xb7ca3v/1t9Pf3o7e3Fx0dHchms0agHTp0CP39/bhz545Zrz6fr6GCPyvqs3o8fboKwaqVxv1AmJZ7oFQqmZJX9jE/6jujsFTfpCqnVCQdqPDe5Aiu1zlRs1NfFy0tMjL+qEBSzFzDa+1Qbf1Ow3+1/I3i99ykNoSouLxW+2AwAw9I5GnEbFcoFMKRI0dMBQlGrVHzZikfll3K5XLmoMvl5WXMzs4aoROJRHD69GlzCCZ9DZlMxvQzFosZi4mCluOZzWbNfWtrayakvKVl+3RmVvm4ceOGKY1EayYejyMejxthRQZFv6EyOGVkatlyTux0Ao6VRsYBO7lymtagc8H/E4kEOjo6EI1GEQgE0NbWhlgsZvqs9SQ55xooQGGo/lWuHa4FRgwyYo9nlNGqXV5eNlXhy+UywuGw8TvmcjlTHZ99BYC2tjZcu3bNFCNmgnUmk8Hc3Bzuv/9+JBIJXLt2DZubm+jq6kI0GjX+yoWFBRw4cACdnZ24c+eO2TuqjHEcNThCLR32UYNj3G63saoVOtRnkZpFEOo+VcGlFp1T8unVyRFcu4Co2TG0VsPbbSiQzI4wBACjBZLIXMiQuXnUyUwmwo3OZ5OJqcBUjZQbs1arGSbe3t6Ozs5OJJNJ3LlzB/l8HidPnsSLL76IX/iFX8D999+P//W//hdefvllVKtV4/ei34lnatVq2yWDXC4X1tbW8Pzzz8PlcqGvrw9vetOb4PF4kEqlcOnSJZOnxQCQYDCI7u5uHDhwoAGGoTCJxWKmWCzbPj09DZ/Ph8OHDyORSCCbzTYEmITDYYRCIWPVMGeIjIdjXKttH2PBsQNg3k2Yigze7XYbCJTjz7nh+Cr0ReGo1SlotWWzWbMG2trazCnHhEQ3NjZw48YNVCoVo1iwzZxr+tg0MIRKDMeKFiMr3nu9XoRCIVNiyu12mxqQU1NTxqrK5/Nob29HT08P5ufnsba2hnA4bNbaW97yFnz1q1/FrVu3cP/996OnpwcPP/wwrl27hnK5jPn5ebhcLqTTabzyyismqZnw8ZUrV7B3714cO3YMk5OTJh2B46ypIipEOMaqzFGwEYblvlLIUIMsNHiJ79IUk1qtZpQaksKTjsX16uQIrtc52c53tagogIAdmA9oFGKEPwh5kOin0s3J/5kjpMyxWfgv28cNSiIUQquDiaqZTMYkEdOHNDg4aI4EKRQKphqFFrhl7Ts62lldIZ1OY3R01BRVTSaTmJqawtrammEMbAOL72qlA7/fbxQBtYA0rJvwVldXF/r6+hAKhRCPxxEOh02xW8JyHo+n4agVMkASLTtgB/LlfNn5cWSIKuyaHRejfhWNeqNAjkajRlDxGgbJLC8vG8tB505/2B6uP46TWo1cj9lsFplMxoTMcx79fr8RnKFQyBz++cILL2B+fh59fX1mLrimSqUSuru7cfjwYVy/fh179+5FMBjE6OioSZpm7lgoFDK1D3ncTCgUwsrKCjY2NhoqpuTz+YYgFgoUDRhSdEOtHx1vW0Cx7Rwjzi33iwZP2YFOdvqKrkcnQKM5vaaTyj7+8Y/j1KlTiEQi6Orqwnve8x5cv3694ZpisYgPf/jDaG9vRzgcxk//9E9jeXm54ZqZmRlTH66rqwv/5t/8G6c+1z2Ii1mjyAhbkDFyoetmcrlcRrPVyD+FMtQpTEGn1hc3kQo8QnmcL2XSukE1sq2jo8MUpGX5Jp/Ph87OTlPiiPlD4XAYkUikQagAMMeyr66ummNEYrEYBgcHEYvFsLGxgdnZWRO0wjBtnmjMiEH6IRicEA6H4fP5jM+OxH4RNqzX6+jq6jKVK3jKLy0mRqcBMOkCrN9HJUHnTv2GnBMyXc4LITyNZuMz1PJlQAIrnXM9RKNRDA4OmnJXDFdnPlkmkzGChYqJtpfrAoBph+bzKVRIqI/KBmFVv9+PSCSCSCSCRCKBw4cP49SpU9i7dy+mp6fxwgsv4MUXX0Q+n28KVw8NDeGVV14xPKSzsxMjIyPo7OzE5uYmKpXtM8sYJcrxoe9wY2PDlL8CdgQLrRruMSp43BfA3cf6cE7sChgqzHX/6F60r1PEQpVK9l/RFIfuptdkcX3961/Hhz/8YZw6dQqVSgX/7t/9O7ztbW/D1atXTWLor//6r+OLX/wi/u///b+IxWL4yEc+gve+97345je/CWCb8f34j/84enp68K1vfQuLi4v45//8n6O1tRX/3//3/33/e7jLSbF2FVDqK6GQIeMj8wB2HOm6CciQCTORURKOooNatT3V5hWWonapUYUKv3R0dGBkZARra2u4evUqcrkcjh07Bo/Hg4cfftgc7hgOhzE6OmoCOliZoq2tzRTnnZiYwLPPPot4PG6go0KhgKWlJUxNTcHl2i7kq05xat9kJKw3qH4aWqa0yAjpMLeIoeIbGxs4fvw4vF4vYrEYarUaVlZWsLKyYto5MDCAqakpBIPBBkbocm2HWFP54HjpeGrOEEPiGWrPiEMt/moHC9BSpmI5NjaGxx57zAS3cD5u3LiB8+fPY25uzkRLMmmagktPudbQbDJazrme+ca5YwLyxYsX0dXVhdHRURM0wer8x48fRzabxaVLl7C6uopXXnkFg4OD5uywWq1mfFuJRAJ//dd/jZaWFhw6dAgjIyMIhUL4zGc+A5fLhfvvvx+VSsVU+GftRgaBPPjggyZAQ9vLCEcWadYjWdSS4jxqCokKN4UAbSFkJxVrRCYDYdTipbLSLELRoR16TYLrqaeeavj/L//yL9HV1YWXXnoJjz76KFKpFP78z/8cn/zkJ/GWt7wFAPAXf/EXOHjwIL797W/joYcewpe//GVcvXoVX/3qV9Hd3Y3jx4/jd3/3d/Ebv/Eb+I//8T/C6/V+/3r3T4Q0CEKdteqXovCxr+Xm44bkJuTmoqBSiEL9NAon8jm6oaidUxiyXXwW/STpdBqpVAqlUglDQ0NIpVJwu92mWsTg4CDa29vh9XqxtLSEVCqF7u5uY63duXMHt27dwtjYmKlDNzc3h7m5OWxsbJj30CejbaVw0KAGtTRVs1YG43a7Tc5XKpUykYX9/f04fPiwOa2YlkooFDIFbhk5aAcx2O3SIBgbjqUlpRAiAMPsNFiD8xMIBDA6OmrO8eL4uVwutLW1oaOjAxcvXjTHgtDaohXHMaLVasPTnFNgJ7GaxHt4InEmk8Hm5iYikQj6+/tNNfjW1lb09vbiDW94AzweD65evYrV1VVUq1Xs3bvXWIQUPkePHsVXvvIVfOtb38LevXvh8XgQjUZNRGChUDDpEoVCwRwxA6AhEMSGN3XNKtTOtaD+MApqG4HQ+eT9FD4Ko3KONICGQpPWsl1UwKF702uCCm1ipWmeYvrSSy9ha2sLTzzxhLnmwIEDGBoawtmzZwEAZ8+exdGjR03BUQB48sknkU6nceXKlabvKZVKJgGRPz8qpJaNvWEUdqClQHjQDt4gHEI4y67mQEaoZEdeqdatMId+pr4QPpeV3fP5vIF2AGBychJPPfUUVlZWTPHdlpYWZDIZc1AiA1OuX7+OcrmMxx9/HA8++CB6e3sxPz+P1dVVc4hkJBJp8M/Y/h6OGxkMrQrNDaMw0YMg+T2PVblw4YI5FoNVSDye7TOqBgYGTJQkIUlb2VCflMJG/N7j8ZixoHWjygN9cJrsWiwW0d/fj9HRURw7dgzHjx/H0aNHEY/HjQXX2tqKSCSC9vZ242/i3LW2tsLv9yMYDJrzxOhTI2PlmGmEoUYwcvwIzwaDQbjdbmNpJRIJrK6u4uLFi5icnERHRwf27duHgYEBVCoVrK+vY3NzE9lsFvl83hzeydOZL168aIJ0NMdsYWEB+XweAMzZYLlczlSi93q9xpIjabs17J3zoutFD/G04URdbzq/3F8cQ+Y0MvhF71PlQH2dDt2bvufgjFqthl/7tV8z5/0A24mcXq/XRC+Ruru7sbS0ZK5RocXv+V0z+vjHP47f+Z3f+V6buqtJoYnW1lZTioYMjBFfdg00wkjADjMkpq9wGK0j1f415FkDBxSrVyvOjiakACPD6OzsxPLyMiqVigkbr9VqeOWVV9Df348jR45gbW3NhM5Xq1WEw2FTK+/mzZu4desWDh48iO7ubty5cwcXL140fi4eEMl2qz/C9vuo/4vMhVYHx5rFUQkdUTi1trZiZmYGN2/eREdHh6k6QQHJAzLHxsZw3333GYtwdna2wQ+lkBHH3u12mygz9cFQ6CoTJBxbKpUwPj5uIE2eEH3w4EHD7MPhMObm5nD9+nWsra0hFosZy4zV4an507Jgf8k8md/FtVSrbVe5IBzNyEd+TqWhu7sbuVwOm5ubpqqJy+XC9evXMTU1ZSyu3t5eXLx4ES6Xy5wBxoodq6uruO+++/De974Xly5dwrPPPouTJ08iHA7j2LFjWFxcxKVLl3Dr1i1T33FrawvJZBLBYNCUFKOw3tjYAACTx+X3+41/ThUuVS6AbQHHMeDnKlxUqCmsr6iHWvhULpmQryiFjr1Dzel7Flwf/vCHcfnyZTz33HPfz/Y0pY997GP46Ec/av5Pp9MYHBz8f/7e1xOpv4kMWrVxO6KM19Gq0twszSvhBlENkp8z/JebViEpFXQKgfAZ/Iw5Q7SmWeNvc3MT7e3tCAaDRkOmBUBLC9i26ufn5wFsV5Kfnp7G7du3sbi4iO7ubrS1tZmw/q2tLcOAaX1qgAmZP6E2KgD0e5DhEFrUUH+OKYM8FhcX0dXVZbR+Wn0M4c9kMiaRl2WOmOjKiEdlVhxTzoX639huKgk6516v11hHPJW5UCiY0HIy7HA4jGq1io2NDdy6dQvr6+sN4d02FKwQKtdVvb5zkrHNWDXSEIAR0tXqdhmo6elp9Pf3IxqNmvm6c+cOIpGIWZsejwerq6smv4sh+uVyGfF4HHv27MHnPvc54+NiVZTJyUmsr68jn883FBDWkP1YLIbOzs6GyEdVspTYDxsG5HjZwRe6z2zrWudWlUUtM6VQtSqSjvC6N31PgusjH/kIvvCFL+DZZ5/FwMCA+Zy1wpLJZIPVtby8bI4k7+npwblz5xqex4ghXmMTTewfRVKfg4apk4FR2wXQsOB149lQBu/hJmGEmiZm2lAKBaXtG+Az+R0FBDfl8PAwOjo6sLKyglqtZko5LS8vm7JJlUoF/f39BtYik15YWMDk5CTm5+dNodhr164BAEZGRhpyjGgh2v4X+r7I/FmkF9jJpWL7+b8N8+RyOVMRoqurC36/H7du3TLnefGMLlqIExMTuHr1KkqlEgKBAB544AH09vbi5ZdfNvUAVbvmWNGqBnYsbYara0AOfVZMK+jo6IDX6zUnLZfLZdy8eRMTExNYXV1FV1cXenp6UKvVzMnBtVoN8XjcWOIaeEMfE2Fnl8tlSmHx+eoroiDWiD7Ca6zxeOnSJczMzJjxr1arpjBvIBBAT08P1tbWsLm5icuXLyOXy6G3txcAsLi4aArwut1ufOUrX8Fb3vIWw2MGBgZMkMxLL72Enp4eDAwMmHPfgG1UZ+/evebQSvZZDzNVPyQFlO4TtYZ4nUaH6vW0qlQA8Sw4RTLsKF8ABjVw6N70mnxc9XodH/nIR/DZz34WZ86cwejoaMP3J06cQGtrK772ta+Zz65fv46ZmRmcPn0aAHD69GlcunQJKysr5pqvfOUr5uwjhxqJkJs6wYFGC4z5KAozqT9McXReQ+sC2KnKADT6zlQTtYM+yMTIcOnLUn8R72cARyAQQEdHB/L5vGGKZNbhcNgkjrJdm5ubyGQyxnJj+wOBALxeL7LZrKmmQQZApsS2MoybwllzdUgaAm7DRepf4ri3trYilUqZaupMRK7Vts/BYnmjfD6PbDaLYDBojnShAOBhiITl+Gx18FMwEDIkvMRSUYlEAn19feju7jaHZbIiSLVaRTqdxo0bNzA9PW18Qvl8vuFIGFvjp/BRq4I/mpum0XJ2iL6OOS3CSqVixoTtp9VbKBQMhEyf2Pz8vCliXC6XTdWN8fFx5HI53LhxA7lcDuvr6yaRO5FIoFQqGaHHosiEQ6mIcC41IlN9jxwL9kMDZNS/y2dQEVSFEWhUnnT9ce/ZAlBTDhTBcOhuek0W14c//GF88pOfxN/93d8hEokYn1QsFkMgEEAsFsMv/dIv4aMf/Sja2toQjUbxq7/6qzh9+jQeeughAMDb3vY2HDp0CL/wC7+A3/u938PS0hJ+67d+Cx/+8Id/ZK2qVyMuaIWUbKZjRyHpZqR10Uy75+agtQHcjd1zU9ES4bPIxKhVEvqyg0mYL+R2u82RFysrK8hms+Z8KDrxmf9DCzuTyQDYDv4h1EWhzKK5FFBqCVLwKbOlJcc+qaar8JtGYeoYkoFxnFhKKp1Oo7OzEx7PdvLx2toaZmZmTC4XK0l0dnZicnIS9fp22oKeXkzivHCeKSDsoBqWVCIU2N7ejra2NnN6NAMVmIPm9XoxNjbWYOFqKapmSoqtKOmYaSQk/yf8qhCaDTlq2DwhTQaw0HqkhZTL5bCxsWHyzPL5PEKhEEZHRzE1NYWZmRkcOXLErDHCsolEAuvr64jH4+YZVB4UatUoSbW0bOtH148KLB0TJa4jLYCtc6mwvt7DsdS96wiue9NrElx/+qd/CgB4/PHHGz7/i7/4C/ziL/4iAOAP/uAP4Ha78dM//dMolUp48skn8Sd/8ifmWo/Hgy984Qv4lV/5FZw+fRqhUAgf/OAH8Z/+03/6x/XknzDpEQvExllVOp/PG+ahmh+ABm2ZYe9ksAovklQgAY2MlFCKRhFSqHJjkqkzRDyTyZjj471erymk+swzz5gK7fRV0PEdj8cxOjqKVCoFl2u70G00GjXWRiAQMALK7/c3hUTJ6DluPG5Cq4iQuRDSUQbKcaCWTKHJQxUBmIAQt9ttylIxiGRlZQW5XA6JRAJutxt79uzB8ePHEY/HceHCBczOzuLWrVsm3JvCSC1nCvuBgQHDwGh5tbS0GD/Q8PAw+vr60NfXh3A4jN7eXnz961834fjZbBYLCwtYXV1FvV7H8vKyGTsADdq9WiAUPvxOE841cITrjoKB64vXsI5kMBhENBo1a4MBIcVi0QQoeL1e9Pf3G4F248YNuFzblVdofY+OjuLBBx/EV77yFQwODuLw4cP46le/irW1NSwuLuLBBx/EpUuXzGGTeu4ZT82m74vCSPtJJUh9oLq2qOjRt6nWE/eQWnDca5obRoiQflHdO1RKqRw41Jxek+D6bgbS7/fjE5/4BD7xiU/c85rh4WF86Utfei2v/pEmLni1Ckj23+pEVgiQz1FNTuE/3Zw2HKKfA7grAVkjptQX4/F4zDla1IopAOnnYHIwj/OIxWImWILHvLtcLnO+lQ1tAWgIMlCBQ2FNocAxsSO7OHa8T0ktVPoYeW+5XDanO5fLZSwtLZmw583NTaRSKXR0dJg+Mezb7/cjm80aq1OtKL6LASp9fX1GsKrjntUwWDU9Go0iEokY64eJ5/ThpNNpBAIB5PN5E7CggoqWM4Ux55RjSuXHtjLUquV4aR4gLToGW+gcATAClHAvFbNyuYz19XXMzMwYP3oulzNJycPDw9jY2MDg4CA6Ov5/7L1njKTZeR76VOjqyrFzmpx3dmaHu9zEXealdElBhigoGSYNCIZBSIYhGYbMa1kUleEfNvVDlG1CMiwJBCnKkmWKEoOYNw93Z2Yn96SejtXdlXNVV7g/is+p5zvTQ136XhuzZB2g0d0Vvu98J7zheZ/3PWOIRCJYW1tDs9k0MUciOAq1MxZHA0QVDb15ZYqqB8z1oZ6R7hsqG0LVulfpOXPMGE9W4ouO4dDb+t5tWKvwAW/c+ArrKctNKbi0JingFKKxY1vceMpuY6CewpkkCd7P3pwkClCQs1HARaNRHDhwAI1GA8lkEvPz8yZfiAw7JviWy2WTP1QqleD3+/H444+b4ym0sCv77fP5jBC2G6HDQCBgqsXbgpeKiPR4CmF+n/GVQqHgUJqdTgdbW1um7t3DDz9sPKNMJoPJyUmTEDs/P49wOIz19XW4XC6cPHkSx44dQyKRwMrKiiPJV5UAlTHHxuv1GiXn9Xqxb98+JJNJzM7OwuVyoVqtOt5nXIkeuVbJ5zxXq1UDJbOKg0J8bnc/AZswqa5HYOCh23ld9F7b7baJxSnFnutHjRkeO6Oxv8XFRdy6dQsHDx7E+Pg4XC4XlpaWsHfvXrz73e/Gpz71KfzkT/4kksmkIX3UajWEw2Fsb28jFAqZo2SU+s5CvoowcD3zdaZQMO5kx8ZYQxOAQT9oXPC6jL1xPekp4fQ8tQA2jSYaXMN2/zZUXA94owCmYqHyAgYellptyvBSuq/CIrag52sqRAEYSGO3GJpNl96trzytuNlsGqhIEzC1YC/r6AWDQSNcvF4vKpWKyckBnMJS+85Ga9cubkpBqTXp9Lsa57FTD+zqFRTiPNrk+vXrprAsn4EJv4TSCKG53W5EIhHMzMyYGB2fhfCZzkE2mzUxRL7GGBGvS6o9j/SgJ0ihSOFMWj6NFa4PelpcN1rDT70pKlZ6DPax9rvFX21GpB3z4fhoBQ+uJxJZKpWKqQDCQylJ0HnjjTfwjne8wxHrAvo5oWQWFgoFk+umRZDVc9fzsbg27HinTcrgd3UdKWVePVldb3xOjq+9x9SbG7bd21BxPeCNG4DwgSotvk8BTQ8CgEM422QLwBkQVoiPf3PT0kvhBgMGliGFDIWyKjL1iqgwSONmf0nKINzGorudTv8Qylwuh0wmY7wJFRpqtWufdUw09kZBpEeNqFJSb0oJKYTu7EbBUy6Xcf78ebhcLrztbW8zpCSeBqyJrvSKW60WQqGQOSpFWXl6fXoBhE6p6Bi3I2mE3gEJK5VKxVSQ6PV6RullMhkUi0XHeqDS0rQBXXu6Zgi3qtC1x4qwp8JonU7HJCtr7Eznip67kiISiQRqtRo2NzdNcWPGdZvNJqamprC1tWUo/FTIfFZWXykUCkilUo74rBpiOt4K0an3qYxK9pl9VYXN9aj0efZJEROFI+nRKXoybN+7DRXXA9wIxXHTq7IhNEcrWZUQWYJ8TQkYFD7cuIyrEN5RRcfvc0Py/lRE+jo3phIbKKS1HiKPCQkGg5iZmTEFUQ8fPmzozGTira2tmcRkEjSAAexCKCsYDBqFFI1GzZgQ4iORgsKZAXuy79RaplBRwUYoiM9P4UzCx9mzZ7G6uopHH30UMzMzOHDgAIrFovEM0+m0yUEiZBkKhTA5OYl6vW6YbvQw2Jd2u21o9jxIE4DxZhXao2eSy+WQz+dRrVbRarUwPj6Offv2wePxYHFxEdvb2wiHw4ZYoxRsriONBXL+AWeMlIqCyrher5u1wKoXLMHVarVQrVYdULWOOdch1yrneWJiAoVCAel02lDbJyYmTN3IM2fO4OzZs6jVaqZ+JM/1ymQyKJVKmJycxPXr1433xefmvO/mMSnJhFCy3bhXbCKLz+czni49ZWBQLJsKj+OriprX1DjjsO3ehorrAW8KZ9gChE2TV23aLeCsOUjlZm8ghUTU2qcg0+RmvZ4qSAAmkZnHo7OaBWMcKqi8Xq+JQbCUVS6XMx4SIUcKSSpEEiV4ZIbHMzhkkVR6l8tlBBUrMFDgejwexzEaChtxbDhWhLH4rGzhcNj0p16vY3t7G5VKxaSGcL4oyFqtlsmxogWvUKkKdPXA+H2dJ51jep29Xs/kjfH6bne/7NLk5CT8fj+azaZRehSO9A60ajrHgXOlEB+bknLsH95HPWwaDvV63QhsPUpGmbO8P9mKpVIJ9Xod1WrVwJCEk6empoxim5mZQavVMsxJPv8rr7yCWq2GYDBo5lKhYZ1vjTHqs+qYa61B7j+gHycks5fGj7IXFRLWPuhetsd42HZvQ8X1Jmi7xREU0lAWkioXvqc17vhZCgmevKuxMoU31CpVrJ6bmIJWK2fzbwoj9YioDCg8gcEBiYVCAVtbW5iamjLWPCsvUPBRIWp/Fd7S+EUkEnEIaCpBxoUUtlQWmEJE7C+tZ5txph5HLpcznhDp/Qqt0ePi9am8lMXJzyoDTY+0Z+X1RqOBQCBgFBoVH5WGy9XPj1tYWDCena3sAWfxZF0XNgym61CVlt6ba6Jer5trKYxIj4qejMKjuu5USXI+WXOQHkm9XofL5TIVSfbt24dgMIiDBw+a4stMdq7X68hms6ZEl5Yv4zPofqLRxmemolGjjUYPlZPGILXUlK4nexz5Wd6ba9KGaIft3jZUXA9wo0WtSogCUEsT0SNi8J/WNi1xCjNaqxQStLR5pIJahFQ+pJWzaX4LvS1Vhq1Wy8CbjUbDHOTHGAa/S4Hk8/kQCASwtraG5eVl+Hw+vP3tbzdCh0ebEC5jnIcEBcI6PBASAJ788pOOe6jA8Hg8+NY7vwWXy2U8I3qqHEOOgUKuGpegJ0Chz7yzc+fOYWRkBMlk0sT2ms2mySMji4yCkxR4AGbsIpGISQtwu93I5XJoNBoYGRkxCdkejwerq6soFAqm6jnJEgAwNjZmPLxHHnkEgUAAly5dMmxN5s2pJwcMiuXqeLFf6lVrfFDjgHqtbreLarXqYKF6PB5zBhahOPUOOUbqyXB9FQoFuFwuHDt2zFRa6fV6SKVSyOfzWFpagt/vx0//9E/jLW95C/L5PM6ePYuXXnoJ8Xgc6XQa4XAYR44cwcsvv2xITEqYUMII782xYN/0OwoX8gwzetqcCxomABwUeFVOtgemRsOw7d6GiusBb9zY6vkotq7Wv1LklWjBH7WoKVDsDWR/VuMBVKBqrStxw+5ft9tFLpczUB8t3+3tbXg8HkQiEePJUDjziPdqtQq/349oNIpgMGgEQblcNjDS1NQURkdH8cSXnnB4iF2X01vQsWq323jL37wFOzs7+OLjX3QE0PlMOpY2nKceHsdyfHwcnU7HHCefSCQMxKUxEhXI7C+hSJ4qTTYiG705u8rE+vo6gsEgjh496nhOsjN3dnYQiUQQi8Wws7ODWq2G0dFRBINBoyxV6SjBQGM+fE/LZbGZ8e46T3fW73NsqYC0pp/mfBFW1JgRMDhGhYYSK6twLr1eL/bs2YO1tTVks1lTkHd0dBSnTp0CAJNfV6lUMDc3Z0gfNNBonGici8gBn02NR/X2dQ8p1KneGPeIeqG8NsdD46q8zhAqvH8bKq4HvHFj6AbTBGDdCDZBg96EQhUqbIBB5QwSLrrdriEj0FLmxqLwpmC1Y268N4VOr9fD+vo6xsbGTFX47e1tdLtdk5uUSCSwZ88eRKNRVKtVRKNRlMtlrK+vm2dmPUCy6EZHRxEOh/HeF9/b97Iig3qDGjtSFh4Fq1rK73v5fej1evji4/0DUj0ej6muwGfgaxS8CjFSmEajUXg8HmQyGdy9e9fUDyTUmUgkTC4U43GsjMHaetlsFsCAAk4vef/+/fB6vbhw4QIWFxfNAZyE/I4cOYLp6WmMjo4aL3VhYQE+nw/T09MIhUK4c+cO1tfXHcxO/q0wJNeCbfRQcWkSt6Zm8GRnxtny+TyAAXGI3q0Kf64zhXLtOCvn0e/3o1Qqod3u17LUc9s8Hg9mZ2cRiURQq9Xw13/913j00UdRrVYxOzuLmZkZ/Omf/im2trZQLBbxzDPPoFar4Vvf6nvdJJVwPllrk7AsFaRWtlDCE40Pel18TWFffoapHuph8TmVeKSM4GHbvQ0V1wPeKCCURGCzkXQjAAO2VLc7oIIDzhqGCglpQJobUK1R2xJWGMXr7R9RwfiP4v+8v7LPwuEwYrGYuScF8Pz8vDkX6fr168jn8wYeJETjcrkMa5AQFq1fCj5lyPFZeOSJbflyvN774nvxpSe+BABGkCq1mc8ODAgaetAiy0JVKhVDPuBR9VS2Cj/t7OxgeXkZLpcL29vb2NraQqfTQSQSMXR2oF8DdGFhAe12G5cuXUKlUjHHgiQSCdy5cwd37twxNSB5qnEsFkMkEkEkEkGr1TL0cfZf42A0PtTg4XpSejZJNEo5Z6OBQyXGEk5aA5LwqU10AOCIB6mhoQWbyazV5PlSqYRQKIRwOGzWYD6fNzUht7a2DJuTa4DMRCZf814a09L1zqbrXWO9+h7/V29V94xddcP2shTpsL3bYXO2oeJ6EzRuBCoS3RgUiJ1OxxEg1g2gik6hQTtYrNfa7X/F3wEn5MX+2NRhwjmVSsXEPGKxmCMHS3Od6JVR6FPIlUolE8t69uvPotvtotaqOeBS9ar4N+N6SlHWxud67qXn8OUnv2yENj0MFbAUzHxWjVcQvqIyHR8fRy6XcxA+mORaqVTw4osvotvtolKpGFiPyrdSqWDv3r2Goch5n5mZMTAfY39nz57F5OQk5ubmTPV3sufInmSMinOj6RE6dnxGe+1prI9KXZUb1wmfVclATD1gH+jx0qBQoc44qMJrOrbtdtt4LF6v15BhEomEgd5mZmZw9+5ddLtdrK2t4fDhw3jkkUewsbFhnoepFVqAWo0tQnycW/7N79t7SJWtKiCFqRW5YFMUhH3g95QgMmz3tqHiesAblQM9AApmWr+Ex3SDafxKNxCtVY1JaXkZ+/MMOFNwUpiwX8qiUoYYPYtAIGBKI124cAF3797F6OioIRRQkK6srJiD/ihsCYlx85ZKJfyjN/4RgoEgyt6yUXxqKbMPzK9ifGx8fBytnRZ2Wjvm2BQKPzYqMBoGzG/iexxzVvCgwFK4h4V9d3Z2TBkiWvrtdhvhcBilUgnf+MY3cPz4cUxNTeHChQvY3Nw0OWfT09PYs2cP3v/+98Plcpm4zaFDh+B2u7G5uYlyuYypqSns3bsXExMTuHr1Knq9Hp599llTZYRlrpg/FY/HTfV4rYyh4wcMjCRlutEg4Wf4t8fjMfUHS6USKpUKOp0OxsfHHZAsv0Mau5I51MBgIjEFN0skzczMAOify7W0tGQqj7Dw7mOPPQafz4dqtYrHHnsMFy9exBtvvIE7d+7g5MmT+NCHPoStrS28+OKLuHv3Lqanp/HII4/gO9/5DkKhkKO6Bcs2UYlwrm3yBl/XvcTGdci1pDE+heg1HqjGkf4/bLu3oeJ6wJsmJqp1RzjMhg7Z7BgYhTLhDsBZ1kYD4sBgAylkQe+JkAf7ZEM86vGUy2XUajXjWQEw+TiEjqrVKra3t41SAAaHPNLK/6mrP4VOr+OoEkEFQwHCmBOVKhmOI74RjPq+G/yv3ps7w+/+6Ks/ii8+/sV7iC4cA61bp3R3hXJ5XaXBU1HW63UsLy8jm83iZ37mZ9BsNg3rEuizAaemprBv3z5DsPD7/QiFQpiYmIDL5UIsFjNJ2aOjozh8+DDa7TauXbuGY8eOOeZZISwVkDpXXAe6TjRGaa8JZbOSjUojhXNDIa2wGP/W8dSxo0Jg7h0hTRoYkUgElUrFzLHL5TLMTb2nx+PB1NQUzp07B5fLhUwmY9Zaq9VCsVjEnj17sH//fly9etWsIWXSqtLiHrA9TVVWNCy1CLMm7LPPuj50j9q/dfyHbfc2VFwPeKMHwY2irCylaqvQsSFACioKDPWeuBkpuJQOzPsyaVU/p8F0Kk3CPgoT3b59G2tra3jmmWcwOTmJmzdvolAo9L2g78Zf1tbWTBULwoi8Hi10Kgq3y+1QlDZZgvcF+nGR3/oND0IhF1wAOt0uKhU3fuWjI8YgYFOFo82GCaPR6D1xPrWsu92uOfmYCokCOZvN4rXXXkMikcDp06dx+fJlzMzM4NChQxgfHzfFen0+H+7cuYNKpWIIBDzmY3193ZRz8ng8eO2111AoFFCv17F//34kk0nzXLw/ySCFQsGsJxbipcLhSctKiadQ5/eprEiU4RgzHpVIJBAOhw3VnhXYuT5YTUM9Vf7m/JKYwtwoACZNgMWZS6USCoUCotGogwxSLpfRbDYRiUSwb98+M2crKyvmKBmexn706FFcuXIFi4uLRqmEw2Gzx3Q+qYhCoZDDA1WWpK4VfU0JGvb+oQJWD05jbFx3w3ZvGyquB7yR7acLnxtJPQ4NBNtxKMXQNa+JTf/Xo+P5nt6XfytrSuElVZ6M5xQKBYyNjaHZbGJ7e9sIUAohEhJKpZLZ1OxHs9nEP775j9Fz9QAX0Ol20EMP+G6Xe3AyJlVZ/9uPthBqjdwT+/vNj7vxf/9qxygftYLf88J70Ov18NW3fdXxrKwCQlYeFbwKNwpKwk1aGYL9mpycxLVr1/A3f/M3SKfT8Pv9WFhYwIkTJ7B3717s7Oxgc3MT586dQyaTwfb2NjY2NrCysmKo4AActR2pMHjUfblcNiQVZQMqoYeNHhBJMCpIdSx1nBSS5rMzFkWY1i6CrBUkdEx4HRpJGgMjOYNzS4OqWCwik8lgbGzMkIPoFVFZcr15vV5sb28jm82iXC4br3dmZgbT09O4ceOG4ygVPo+mgXDt0EDRdW7Hu5RApe9pTFBjXeoJc72oQTVUXLu3oeJ6wJsysJRgQShGCRLKAARwj9BUQWQrO25W3Tj8rCYYK1wCOAkaFEJksPH6ZLExzrK1tYVut5+g2ul0zDEWjIGwWobH48FPXPwJtNGGy+2CCy70uj10us5Cw73uQDDwtV//tR58kiBrCxpV7ray5VhqnhO9EjZ6qxRUquSUyUmrnJDnwYMHsbW1ha9+9at9gkmtZpJrl5aWsLi4iJWVFbz66qsoFApGyR84cAAf+tCHzKGWpNoztysYDCKZTKJUKmF1dRWdTscQF/x+vznXjPNkM0zVG9A1ozEqvkaIkEpUjaPd2HAknGh8iK/zO+pF65ojI5VeDGs7er1eTE9PGw/J7/cjHA6bnLdoNGoUFws1E1rc3NzEzs4OZmdnMT09jUwmY76nRomiFzrHugb0+RX50NSC+42N7msqcaIeNolo2JxtqLge4EbsfDd2kUIRFNq7VQLgNbgBVTjYwlxjGPTy9LwttYzZB4VB+JpWojh06BDm5+cB9E8N3r9/PzY2NgycF4/HTTyH1bxZyftd334Xmr5m38MC0Af8vvv87u/ep+ekcH/8Y4DH44KrB8NmU4FM4fPxjwH/7mNuQ5WmAiD8ura2ZsaMRAeNr1WrVdN3YBCTo0VNmruSQXq9Hubm5vDBD34Q7XYbyWQS3W4Xy8vL+M53vgOXy4VDhw7h7W9/O378x3/cwJn0RBn/cbv79Rfdbrd5LxQKGe9qY2MDjUYDmUwGkUgE0WgUs7OzuH79usmHokdBY4VjqDCoklV0/Agrcj0pa5BeEj0wO0ZKb4wMTPWuVIE2Gg1Uq1VDdlEvhEWEH3vsMUSjUWSzWXi9Xsc6Yj7ezs6OyWF79NFHMTo6iuXlZayvr2NiYgLveMc78Gd/9mf3JATrnKm3yfHhcykBRZUd95fG99iImOh3gAExhAaBfm7YnG2ouB7wph6RTaBQeEyhG5vJpNg74GST2ddVqIPwhdbT01p7trdGxUfrvNvtmiRQemGEkrrdLlKpFFwuF/L5PDY3N+HxeExl8R955UfQ6DYGkKA8J1x9JeZyueCGGz1XDz1XD7/xMYDigQqVkKoKUBoD3W6fKl6ulNFqttDpduCCC26P23EMBxliGrRnnGl0dNRRxJew0+bmpqmtp1Y6hWAoFDKV7UOhEObm5tDr9Uz8qFQqoVarIZfLoVqtol6vm4Mr/X4/ZmdnjSdFhcayV61WC5VKxZE7xngW6xxyrlnPkcfJKOuQ467emJIWaBRQmXHOQ6GQw3u1EQCuLSWHKBuW64T/12o1Awdy7bDwLmOv5XLZeJ2sikGFR+MtmUzixIkTKJfLWFtbQyQSQSKRMNdljUWuG1U46qkqUqF7TOFzjQPreuRrNpOXqICu1SE54/5tqLge8KZWl1q5mltFYcjNAjg3BL0l3RD3I3HQ6lXoTC1hwMl0BAa5QPweoZt6vY6FhQVMTEwYIaeB+ng8jnq9jkwmg42NDXMAo1qtnW7H0U8Vbp1uxyi23/x1J/RlKy42HQOSHhr1BtqdtnmWbrsPY1LJkqlIAcxrKgTk8XhMZfp2u41CoYByuQy/32/y1FiAlwqFOWv0KqrVKjY2NlCv17G4uIhcLmdOLebnvd7+ScjT09MIh8Pm6PpOp4NkMolAIIDZ2VkT09G4FWsm1mo11Ot1o5A5H7ud+6VQtR59Yr/farVMH7WkFJsSeJTMooaFxn6oTKhIOYbsA0kZJMswXkrDp1wuG2+XHh6VF/Pd8vk8pqenkUgkHOeUKURqG4cKO6tiYqM3ph6qTavnGCoZSt/T+qTDtnsbKq4HvNFa1MRXUndtqjxL1FDAqhCnYOB11AOhUqLAoUWogoUwmI3781oUWCzcSyV04MABhMNhA+fwHqypVywWsbq6ilwuh+npaZNo7GA8uroOBdHr9dDtfVcJ9oCP/1oPrt4g/0w9UPUg2edOp5+QXCqXgJ5AsnCh0+0LSlrfjOlQMRGy27NnD8LhsPEumEQcj8dRq9WwuroKl8tlWHaRSASpVMpQ4JeWlpDNZnHr1i1Uq1XjXbH6hnpFFNZaL/DVV18F0CchJJNJTExM4OTJk4jFYuYU5JGREUxOTgIYpCCEQiEDg7VaLeTzeZOPxVJKVF52TJD/q3Lj+mDsietOIUPOhXp0/NE5A+A4yp5KLBAIODz2UCiE7e1tXLhwASMjI0bxbG9vG8XFahqsMtJqtXD16lV4PB5Ts5Bw8HPPPYcXX3wRGxsbpn/qFe42BownKyGD7+n+0PipKi2NibLxb95f3xs2Zxsqrge82RaYxqq4aXRDaaxJ41iEN/i+lq5RaFEtdBItbI9lN6YTvRNuUArOXq+HfD5vKOJUgCycWy6XUS6XTT+r1Sr+r7P/F+CCia/1ej0T5zJUY1d/bD7+a4BLrF5V1oz5EBqkR8AfF1xwuV3ooYdu57vWsygywmEkOgSDQRPTojJRWj09YtLB1fNoNBpYXV1FPp/HysoKrl69ilKphM3NTVPqigqFhBWyAtXwYKN3RFisVCqhXC4jHA4bsgtjPpx/VqNXAgYbY02E/ai42Ac2jfvQoyXjkmuMcLFdJ1Nz7NRboSLk+qPyoLJif+1alNlsFrlcDlNTU+a+pNXzezSWCA/yPK5isQi/34+1tTWcPHkSx48fx/Lysjn2hH1VsoSSMajQlD3I/UnlpEny3DfKWqTittmtimwMWYW7t6HieoAbvSg2CjWXy2UEEOvCqUXOzynTjhacWnz0joABLVpzqLjpFMu32WZUeFoAmILo4MGD6Ha7uHnzJmKxGMLhMKrVKtxuN+bm5pDP53Ht2jVsbGzgoYceQiQSwbuffzfq3bqB1lg9nXX4ur2+l+V2ufHbv+mF1zVgSWoRWSofn89nSCtkBlKAsK+9rhOaBGA+2+v1MDU1henpacTj8XviPcqyJDNSSS6VSgXZbBbFYhFra2umwoSegwb0FVE0GgUwqPEHwPSB8BM9P+Zr8TkAYHNzExsbG5iamsL8/DxGRkZw7tw5dLtdTE1NYW5uDt1uF9vb2+b6NiuV9yB5gp4nCT70BBlXo7JggV+OR6fTzwOkEqzVaobgQkHOo0loHHD+lJxBj5frNx6PIxgMot1uY3l5GYuLizh9+jSSyaRhYQaDQWN0Ke2ce2VmZgYvvvgiAoGAgauPHz+O9fV1XLhwwZBxNPbL/vGZyXbUWJXC61RoWrCaSpupHvybz6axLzuePWzONlRcD3hTOM629LhRqHTU21LWIa+jm1g9MfteagnzfiqwbTxej4WgIuv1+vX6eNZWJBJxKEvCh4xDpFIp/Mz1n0HX7TxShArUVDRwufHxX+vndHnlWSgMtTSRjoVRTKLUdQzpxfW6380X+65QYpX1SCQCYKBICBuqJ6EnULfbbXMuGUs6ZbNZ82x6DpcKK7XgqZjovfDok16vT+LQOBONDh4Pk0gkEAgEUCgUDIxLz0Q9IRI+VADznDKXy+WoDcjnVfahsu+4brgm9H/NkVLlrsQNjWvpaQdkK5KUwuvxTDKyEunFdzodRw4YEQu/328U4b59+5BOp5HP55HNZhEOh3Hs2DFsbm4inU6beVDUglCo7iHAeU6evqe5c+qlKmFKr8Nrcd0PFdf921BxPeDNJhxoEFtjUW6329BpbcagTV+3sXNVTupV8bMa3LYbFYLxXr4rVJvNJubn59Fut1EsFjE7O4tgMGjKFdFqplD9J7f/CdwBJxyq8aqd9o7xskjIUJq21kukoFH40/7ZDYIxEKTLjXg8jkAgYOJYwCAWaI8Z4z0UVMqC6/V6KBaLKJVK9xBHbK+YcCGb1+tFLBZDKpVCMBhEOp1GoVAwUJPbPWA/ttttU7CXMCMAc/IxvRGXy2XgMioAvsZxITxID1I9O3rXHEcqUnppfB8Y1DlkoyFAZUghzblTJp7NxGTclAYQvd9yuYxqtYrJyUm43W5sbW0ZEgs99Xq9btY16fITExMYGxtDo9FAqVRCNpvF2NgYDh8+bEgttVrNwSLk2lQjUI0ievY0MBW1UMWm60ivyevZjMRhu7cNFdcD3Ah3AQNrXFlKhO8Y76C1SiHKALxarmTJaSxLYxCEQLQPWlZJg8YKLbFf3W6/4vmzzz6Lp556Cs8//zyWlpbwyCOPIBaLGWXKQrsTExN9gdbrEzuqtSpGfaPGOmafPR4PfuNjLnhEMaM3KPIbDAYdCcEul8t8jwpBhcjHPg7sfDdfhpCSG27EojH4/X4cPnzYCGLWoCOjDxh4wITCqDAbjQa2trZQKBRQq9XgcvXp/oTJWFmDCioUCpm6g81m00BqZAm++93vxuHDh5FKpUzZort376JUKhkYlPR3Vq7gkSr5fN7EjorFIm7fvo2FhQWMj4+biiWELOmtKRzI56TiIytRY1ScI3oJXCudTr/ChRJ83G63iREWCgVDniC5R8dRmZyE1hqNBtLptDFQEokEKpUKbt26hXA4jEQigfX1ddMvPW+M3urOzg4mJyfxjne8A4lEAqOjo3j99dexsrKCbreL48ePIxKJ4Atf+AICgYCh+avhqIaPekvcU5obx2aTpvrLd6Cg7Xw63efDdm8bKq4HvNFyUwiOTS1B9ZB0was1x781L0utR/vzvK4GlvV/AA5Lmaccj42N4dFHH8XU1BRWV1eN0qD1G4vFDFGAZYt8G76+Aml3AJ+zLy6Xq093x70FSTW2Z1uqCuVo/9mUWelyu+B2uc2hkRxf21hQNhjJHurZkpgBwDy3kh7Ue/H5fEgmk4ZQ0Ww2TQWHnZ0dpFIpxONxQ6EnQUSfnYogmUyaue10OibFQOnrCnOSAaqwpE2iAAYkEK2gTgNJx1EhMCpUjiEbYWK3u58wXS6X7/FglI2ojFAaYSRVeDweJJNJU8JpcnLSGABcO+w/q42EQiHE43FTXoue3OnTpzE6OoqlpSWMjIxgfHwc0WgU+XzekdRv7zXdI/a+1DmyY6E2TKioCL+vim7Y7m1DxfUAN24YWvKMoWiMSYWIzUzSwD2/QzgRGNRNU6FMmIe/ubkIH/V6PRM011ibEh4++MEP4plnnkE6nUalUkGlUsHW1hbW1taws7ODZ555xpzYC/SLwY5kRvoC3zWIkTDW0ul00O10ANegPBCtbrLM2Bf1OCkwNOcMAP7dx7rYgaX83F5DBqF3RAHJceDrwL01HanMyZKkEKd3y7F1uVxIJpOYm5u7x4MJhUImRkf6+tLSEjY2NkyMK5vNotFoYGpqCrFYzOHFjoz0x/Ds2bMmcZmxOLfbbcpLJRIJU3mDng4VMNcDrX8qYR43wrHls2nOEsdT14p6ISRh8ARrFvUlXMg1qnFAsgsJR1KJulwujI+Pm5w35mstLCwYT5JoxOTkpHn/5MmTeOihh3DlyhWsr68jGAzi6aefxtNPP43t7W0Ui0WEQiE8++yzePXVV7G5uWnWP8dCoWiebK0wPjCo58jn11ig7itN1uc8DtmE/3AbKq4HuHGDcDGrYGHAWeMltpWnCo6vA86K1Tbso16O7Z3wvur9qWILhUKo1WrYv38/Go0GXn75ZXPsOgBz5tTOzg5KpRK2t7eRy+Xw4aUPoxVtmWszdsJg/a/9agfetNdB/lD2m61A7aYe2K//hgs74oX0ej1DflDr2iVKEhgYAmw6pmpRa/kofo994PEc09PThvVHKJbxIMaf+F16aXw9GAxidHQUU1NTjv7qvUKhkIGOeTQ90FeyjHONjo4aZdLtdo33w8+RQacVzJV0QPIKf3hveka8BteODS/TE+J3eO/dyEKccyWgEFLVwznr9TpGRkYMdMrnJNxZLBYNbPziiy9iZWXFjOWRI0cwPT2NXC6Hbrdf1SWRSCCbzZo9xH7QmGIfabDxOTSmpYQmO1amv7mWbJLHsO3ehorrAW//EFxAS043iQ2j2WQMZTjpBrID0OpV0ZNhMq42t9tt4JhwOIzJyUksLS3hxRdfRDweNxUdqLSq1SoKhQLW19f7Aqg9iPt43B5Hfz7+MWCkM4LR756OrF4if4CBYrFZWvbratFSQTE2pIbCbrCjjqtClvT6GO9SkoXOydjYGCYmJjA3N4dEIuFQAupV8J70NjiPPAgSgMmJI/GA33G73dizZ48hHdy4ccNR+Z1pBYQfqfwymYzD46HSVi9Ln9f22nUt0ctkjNFeX1R2JPEw9mdDcbwm546J+PQStYRZs9k0h48yLkkFSa+7VquZCvFXr15FNptFt9vFq6++ing8jlQqZbzqSCSCqakprKysOCj8CutxPfN1PjefkX1TpavrUNEBKneOuRqiw3ZvGyquB7hxAXPBE/bThGRd4Fz8pGKrMCPcqKQNYJBIqxCNfW3th1bxAGDyVMrlMpLJJP7pP/2nyOfz+JM/+RPMzc3hxo0b+MAHPuDIYVlbW8OtW7dw7do1JBIJuF3uwXlb7gFL8GP/rgtXuy+4SHVWa3Y3lpZCiTYVuX/9QXqB0u5VUGoRWPaJP1Tk6oGwkv3Gxga2t7cdNfw6nQ5isRjGxsZMZQuWJGLVfAplCjC3221YlwohkelHi1+VqvadRYpnZmYQDoexsrKCdDpt8rKKxaKJlbHaBwkdrO9HSFmfg8+v1VSoSJmoTshSS0hpugAVbTAYNEQQQqv8niP2KMQIjd1SCZMAUygUcP36dTz77LMIh8PGc2K/uO5v3bqFaDSKjY0NM2+f+cxnUK/X8c53vhPpdBoulwunT5/Gnj17DFTL+CDXA5Uh4Ky9yPnUFA6W1+KatA0Uxoc1ZmrHzYbN2YaK6wFuNtwA3AsxEGPnxuem4OYiU5BChxtCN5i9QXa7l8JFFCy04ikYjhw5ggMHDuDSpUvGIk6lUubU3mazaXKb8vm8+b5uUv6/GwGAAl6hQQ2EK5SjHoA+u8t1L5SocUM+r20Zsw/qbdjWNa15wmi8XjQaxdTUFCKRiEN4Ac7zllSosR8UhsAg9gcMlK3Wr2TTqhfM3er1eiY/qVarGaHLEkrxeBzdbtcwAXUN6ngDMF6gwtVUcDROaAhRcWlie7PZNIcy0tvSOVSmndaK5P35zPqczWYThUIBzWYTwWDQQIa93oDpyGsRLiUJptPpYG1tzZxesLy87CgabROkNMalcDv3GfvPtWPvJ3t9KnnIvo+mRwzboA0V1wPebEtTGz2g++VX0TJX8gbfowBWgadCWYWV/ZoNP3o8HuNRJJNJXLt2DcFgEJVKBSdOnEAwGDQwDjc5++T1etFrOVmMKhz0WbSyPOA8z0iVr0JMCnnqc6jCtNmGNtSquUoUfnoveqaMb2n8ze12Y2JiwrD+9Ls6r9pfZS2SXKFW/G6QsApMrRkYDAYxPj6OZrOJzc1Nk+9Fj9zv95sq6Ts7O0apqUer3ic9LTtBmIqKytSGUzlf/M3nI4lCvU0l+vC7CmHSUGIsjSSOWq2GWq2GaDR6z/WooHncCQATC/N6vcjlcvD7/XjyySexb98+NBoNFAoFA60qrKtjbuds8TVNM9G1RYXPceH1NGFb1+iw7d6GiusBbioM7EA1NzWxfMB5ajGtTUJiTMq0YQhCO26323E0ha2YVLDapaDcbjeefvppPPHEE2i3+5XReVzG4cOHEQwGjaVPOIule7xeL3rdHtzeewWxHSei4GCcQ2MNvK5aw4xbqbL4+MeAj/7bgYeiypsxEQCG0aj9ULacKlVCsIx1ccxI2d67d6+pEm/fk/E1zYWjEuTfFGpKFlEPRvtP6JJzuLOzg1AohH379uHmzZvIZDIolUqmoG4+n8fIyAjm5+cxNzeHkZERQwv3+/3wfze2WKlUHPfhelFiAj+j40BmJr0jwpcATKyTSdOdTr9GIxOjOQb0YnWd8jWtZF+pVLC8vIxoNIpYLIZisWju7ff7MT8/bxKXSRwplUpotVq4du0a/vIv/xKHDh2C1+vF888/jzfeeAO1Ws0R46JyUlidho9WJOEaUJhfGZa28WhfbzckZNgGbai4HvBGCEK9CrV0FbJRz2E3GI2/VWjrb246ClFVAmph+nw+E6+gxxGJROB29xNdWXFBPQyW5OEzeTweo7j4THzPJl2oktAETVWuqtDVyuV3bM+Rv+14EcdWhZB6T/Y8qFeiwXt6h9Fo1PQJcHq1JEeoZ2E3jXGq4tLn1vlm//WzjJmFw2EUCgXH2qpWq9je3kYymTRMPyqRbrdrWHlabor3JBFF0zRoWJARyTQOTS5Wsg8TsunVMfalxBSFU+mlkSREo4xw+ebmplFQul48Hg9isRiCwSBKpZJ5LnpLXq8XX/rSl/DGG2/A5/Ph5s2bKJVKJg4GOI9p0RqDGv/kPCgKouvMRgc491w39h4ett3bUHG9CZoqId1sekQJNx83Kzeb5tOQAWVvDtarA+5VYr1eD6FQCMeOHYPb7Ta5V61WC2traw6oZnNzE9vb24jH48hkMshmsw4BRebh5uYmer0eDh482C//s9VxMP0GCmEgiCkINN5kx8X4ty0gKXA8Hg9+87e9aI/AYdWqMG632/jyk1/GSG9wVH04HDbjrkF6/qYCJVTY6/UwPT2NVCpljhXhnPA+JGPQEtc+AveeqKxQIPtsK3hbiaqw9Hg82L9/v6GTA31jgt4UE8eZG5bNZlGv103ppGg0arygarVqvHoy/DiGoVAI1WoV+XzelLlSL7RarSISiSAWizlipHxm7Tcp+oxZsZEQpONEY4OK55lnnoHH43EcvsmxpgfLosbpdNqQUW7cuGHG2OPxoF6vGwamloCiManPR4VND1TXshKquE5V8WnT76lxNmyDNlRcD3hTj0AFNIWyVsHQ2I0SC+7nWVH48TUVrITZQqEQFhYWsG/fPhPYVqtXISsezOjz+UwfaK1TCHKjMw6xvr6Obqfr8Hrs59c+ar+V2aexIY2v2MpNPZv7jSm9CAoPPYKeyo795Zg1m00jwLvdfj4WYypsam1rDFGD++ox0oNUwWYLMpssYsf21MCh16UUenpIPIhR79tqtVAul00VDyZoMzdMvVKtIs/70Qui8cBnjkaj5vRoZSbaELYNEdqeio0o0IPMZDJmDQNwVAppNBrm1ORGo2GOMWE6A8dNx92+h86dva9sr9yeC42H2fNpr9Ghx3X/NlRcD3gjOYACRYUUBavGsgA4lIbGvXQD6qZUgcE4C1l9R44cwYkTJ0xyMb+jJ97ye3qYYKPRMIf6EVKil8Hj6Q3E2RsoLhXkH/9NN37j151QmAbH/6HgtcbqbOWmwtL2ZnS8COfxM/RYtdSTyzUgTrBvfr8fwWDQxMzYH1WWNCrU0NA4n8bp2Cfe3yY0MBZGS5/rQ5UZK1Zsb2+b56QwpxdDhp/WByTcRyVJw0TjbbwvyR0qkNUrZP1EnlZsx1W5rrrdrsntUygcgGMMuAe0L8Vi0XhvJNQwX61YLCKVSmHPnj147bXXMDk56Yg/qtfK9aHzpoxaXTO2AcSmHrOuY41laU1NRQuG3tb921BxPcCNCoQCUqFAWn4UZvw84CxJo5CSDW2oBcjvUWE1m02cOHECP//zP49gMIi7d++iXq878otofbvdbmQyGWPN5/N5tNttPP74446YAgvnZrNZw+hqNBpo77Qd3h+VX78skZPtxw1NocTn0CrjHCNgAAl+7OP97+98dwy1mj0Ah/fG+AxZfapctLAtoTyFZUnwiMVipuK6HQvjNQgraoFaPgOhKM4P55mCjUrKpuoDznqKnGuXq0/aGBsbw927d81r7XYbpVLJ1OhjYVmPp38qMtcC16LH48Hs7KypftJqtUypKiZE8+BQVrKnx0Qvh5BbOp2G1+s15Z8qlYpjHdMjK5VKZgxZQaRWq6FUKhnUAYDJhVpZWcGdO3cwOztrakCyjuG1a9cwPT2Nn/qpn8L+/fvxwgsvmD643W6TtqHr0VbEHG/ur92Sze04q5ItyEzlmlNvVOfZ6/WaM8SGzdmG5Ycf8KZCU4kJujlUQakw16C2WvM2RZ7CkYKs2+2XvDl27BhSqZSxEkdHR02B3FAoZILd9J7Yr06nX0EjGo2azUgrvVwu4/bt2+YsJdKNtY8af/rYx2GeRxUsN7ztxahXxc8qGYD3oZKxoURChbT09XRfCmEKYsBZmYPXJZNOhZrtHalnaUOgWjRY51JP5tVxUEIE78Xr8Fr0Fljqic9Lz4owL//nvXhEClmqbrcbgUDAkBZIM+dBoWSQKkTNvusxJ4QwmSDMNVmtVs3z8SRn9oXf59xw/m3YjmegsUIIawyOjIwgl8vh5s2b8Pv9eOihh/Dss89ibGzMrLdgMIhYLOaA59XAY/93g/io2HU/7bY/FQ7V+eYc6foYtt3bUHE94I2bkhvUZiWpMGQjNMHX9TfgzOeihceAMgXOnj17zAnGhULBwDUU3IFAAJFIxMGK4nsjIyOIx+Pw+/2GCEDPcWtrC+vr66ayAZ+x2WoaQaSKtdfr4Vd/reOA4lS52RCjrQzY9H2OgUKkbJ89+lnDoCNjrdlsOioasM9sWrKIwkkhJe0D+01Brs+g31VYl3/r9zQOpl44r6NClP2gl0yyARUPGX2kfrvd/bPd6Onoyc5cc7v9ADDeJL1GwqxKkuEzcYw1SZf0dj4Dq72rB23DxUrC4Rxsbm6iXq+b04wJrdbrdXMidSwWw+HDh3HmzBkcP37cxPm4XhW2VKXCe3Lf6N7TcVbmoXpfuqd1z+52nWHbvQ2hwge4Uci53W5HLTfAeZChbmYKEYUddNMDzoRQQocUJB6PB4cOHcITTzyBvXv3Yn19Hevr68hms3C5+gcOzszMmO9UKhWk02mEQiFEIhFTqWNmZgbJZBLZbNZY+hsbG7hx4wZ6vR7i8TgOHTqETqeD8yfO44kvP4Gd1o4RuBTG9FparXsJJRwbtVI1l4uK8Nd+vYcenMnCFKz6OWWC6XlQAIw3Qe9Gzyij4GXQnyw2xqeoXAiBUugBMJ4o78+4DpUT55RkCVvQa4yO1+c1CT8qs9Dn8yGRSDjo5F6vF+VyGWtra3C73SbXCYCZz8nJSZMftr29jW63X83e5eoTU1ZXV1Gr1cz36B2ppwfAEC7U69ODOHu9njkVG4CjdJQmvvOaVORcz6FQCB6PBzdv3sTY2JiJNeZyOUSjUUxMTGB7extf/OIXzTExU1NTmJ6expkzZ1AsFpHP53H+/HlzKCXnmF66Xc1C0wQIBSvDUA3P3Tx8wHkqOaFDRUyGzdmGiusBbwo70ILWoD6FrnoCCiHZCbP8DOCE0Sj0PR6PSeD0eDzIZDIoFArY3Nw0hUhTqZS53/r6OqrVKvbs2WOSVdvtNoLBIEKhEDKZjAm688iPUCiEcDhs4JVAIAAXvguruJ1xAf79a7/ef4aPf2wwNgoN8hl//TdclpfhQgu7M7QUJuWYaLFdFd4KTWn1CgpTzduxGZI6d8DAS9bYIwWd7Q3b7EVNW9jNIud39LlUebpcLlM1Q2OeJAFVq1XjhZEhSGUciUQAwMSpRkdHMTo6inq9bogZrL7Bihh8Dh6jwtghx5rP32g0TGIyY2UKi/J1/rZTGbgnuBYqlQrW19exZ88eU8y30+nXb8zn80ilUkin09jY2EC73UYoFML09DRisRhmZmaQSCRw+fJlk8+lhp2uDztOrMaRfoZzaL+ma5HfVwN1CBfu3oaK6wFvqmToYfBvvr6b96XeADA4L0o3iMKHvJbL1a9iPjIygmw2i9deew3r6+sYHx9HrVZDOBxGMplEt9tFMBjE1atXce3aNbzrXe9CIBBAsVhEIpHA/v37TU4PAGSzWdy9exfb29s4deoUfD4fvvzlL6NcLiMcDmPp1BJ+5vrPmGdR2AQYJOL+m/97kIjb7VJQtTE66sHIiAdd78AiZxCcSsGOH9hw6t+85W/g7/odylxjXewHMDhviR5DPp83gXQqaiZYa86WHV+0FaFChTZrj8+kc2174nyPAk9rO/I+9JSUgELl22g0sLy8jHA4jOnpaQSDQdRqNdy6dQuZTAaxWAyRSAR+vx+VSgU+nw+jo6N4+OGHce3aNaytrQGAg7hDBUiPT8sb0StklQvN19L4JSn7nD/Oq3rQLpcLxWLRzO3q6iquX7+OAwcOoN1uo1wu49ixY8hms4jH4+bQTkLanOtKpYLHH38czzzzDG7duoX/8B/+wz2xUiXzKPFJIUuuQ86h1pUkmcWGnxX9GCqt+7eh4nrAm8Y6uAkAOKw84N5TU23CgsKHtjfAza/eG/O01tbWUKlUDKyk8ZZer2fylxhLKJVKSCaTiMfjhqHIeEG5XEa73TZ5USRn+Hw++P1+80waxFaYRS1V+1nt+BbHRAkceg1g4F15PB787WN/C293kIOkSp/XsuvJsZ+E+IABrKcwH7+vQk6vy2vZ3p9+nsJSla9teLDt5mXrONHjspUohTOTkplrFQwGUa/XzRyS2VetVlGpVBAMBhGPxzE3N2cq0LvdblQqFQP1aUFdHT8+HxmH7D+flUaHQms2vKvrhuuNcblMJuOowBGJRJBKpZDJZJDJZBCPx7Fnzx5Uq1VMTk6iUCggl8the3sb+/fvx9GjRzE9PY2NjQ3HXtJ9o2xOIhe7wYK77T8b8lWPeqi47t+GiusBb6qA+L++pkJQc0DUotXrKIwBOA+r1M8z1rK5uQm/34/19XVzbR5P3+n0DyYMBAJwu/sJo5VKxcRDaGUGg0FkMhlzuJ8KYJ/Ph2g02hc+uLcquyqubq+LXtdJTNFn0LGhYFbPFIDDa9UYFC1g9WBsIWXHHEg8UI9Og/J8fs4V76UCSnP0bMXKPqjnYXujSjLhtXSt6JrhOFC56vMDgxw+GjGEiScmJrBnzx4T2+Pn6/W6oaWzUsjOzo5ReOVy2cT7WHWDY8q+KGTKepocb/aR40SCj03IUcVGD4/rj+suHo+b+FMqlcKtW7fQ6/Vw4MABzM/PO+prVqtVrKysIBaLIZVK4eGHH0apVDIkHRqBtnFlw3xUqAonsq9qBNLo5F7ezegYNmcbKq4HvFGY2ApH4SRuWhIG1DrlhlBPRmNArHSh7EQKGZ7dxNjHqVOn4Ha78cYbb8Dt7ufUZLNZHDt2DMlkEsViEfV6HclkEi6XC7lcDs1mE4lEAnfv3sXGxoYpocMWDofNsSd/uu9PMTIygg/d+dA9irrb7QI99JVXx+mV2DEchdgAOE4KZoKtCr6vvu2rQBuGeKECk/eg4lJyBONCmUzGPDuFZqPRMJZ3MBi8h0TCvqrws9/X40A8Ho85v4tenkLCtrJivzkOfC5l+PV6PQQCAbMWer0+3T8SiZjSTt/4xjcwMTGBd73rXRgfHzcEHApblmXyer0IhUKYmZlBt9vF2tqayYcC+kqO+WEkaujzK+xpK271wNQjJeNR443cMy5XnzhUqVSwurqKaDSKeDxu1ly73TbHzXg8Hty5cwe5XA4nTpzA1NQULl26hFu3buH06dN473vfCwD40pe+ZPqle4pEF+aREda1jS96u2Rt2kYI51wV8VCB7d6GiusBb2qF2fRfQnEUSJojooKR19E4ilrxgNPz0lN8O52Ogf+mp6cxOjqKq1evIhAIIB6PY2dnB8lk0kB97A8hI8JouVzOUR2ewpOwlTK1Pnf8c/jpaz/tGAdjhfaAHnr3bHq1Xvm3Km1VFrxep9PB3z/99+jsOGNCtoC0x4jCSb063of/sxoFFQPvCQwUqnpe94MKFUKyoSaFzjR/yO63QmpkxfEzetijy+UyNf2CwSAikQhWV1eRz+fNicGhUMgYOixrVa1WDQzs9/sRi8XQarWwvr5uiBsK5VFBKaRp0845TlyDHD+Nbe0298qg9Xq9aDabploHr0mPh8q7Xq/j+vXr2NzcRCqVQjKZRLlcRq1Ww/r6Os6cOYPZ2VlzH+0P9xR/1Fi0kQ8aQwplc15tiH/YvncbKq4HvBHCUouSgl5hJf1bPQ8yoVRA8PPAIB5CgUvviqwukhImJycxOTmJXq9nSBrsBzcqj8zgkSCFQsFYoZubmyahlcF2HpuhG55C5S9O/AV+4uJPOGMavb7XBfSVlzYbMiMcRmgTGFj43W4X//2h/96v3N7xGuVJ4gBZbRS2gUDACE2OMeM1gUAAExMTphAtIS/SqhOJBPbt22egSY2BdTodY60TBtNq+grruVwuQ/5Q75hKyOv1mliS0s05NvwOPReuJz4z6xjyWBGeAMBYUbPZxPLyMgAgFovB6+2ftDw1NQUAuH37tlHY0WgU+/btg8fjwfXr17G1tWUIHTxh2F6P9rq1vV6F2agUOKccN/XWGHf1eDy4ffs2UqmUKTXGZ+T32+1+mahkMgmPx4PNzU00Gg1MTExgfn7e1DQk5EnPSZWfesA0zKis1OCwYU4achqjHnpZ/3AbJiC/iZqJ9QjlHYDDKmVTocXvAjAxGC0FpAFivRe/3+v1K2kT5giFQoaZ1ul0DA2e8AdLHZEWT/hRBS6vTwucCkMp4f/9of/uxPtlP+vGZ9uNlWcLbJfLhf/5yP90xB70M+yTHbOyiTG8FgCTjE2SQiKRMEKqXC6jUqmYvCYKLgpQrZJh09vVELHhXvUu2CcV+ro+FE7WOadSpPcUDAZNJXZS1XkuF89PYyWNXq9nknVZMon3JEQ4Pz+PQ4cOYWpqCiMjI4Zl2Wg0HEaArgs+m8KMhDo5J1Squsbt2JIiCpVKBfl83hCBIpEIxsfHHWW5fD6fYVECQCqVwvHjxzE3N4dqtYpareZgpiqjcTdFSkWm88T+2OiJKjA+l3prw3ZvGyquB7zZDDRuBnvTU8jYBA2FyBQ3V6FvW4x8DYADFuJmo7dF9pgew06PipY/4xnKuqMnqB6kbnQ+j8vlwl89/FeDGI4LgAv39NGG1GzYRQkSX3j0C2Y89fvaD3owFOA2dONyuQwxQxUgv+/xeJBIJMyYVSoVI4hVSFF58VqAk6lIhU7PV0scKUNPoSmNeXG98JlsAct78RTkYDBoynkFAgHH0R30vnjwpcvVL9/FgyBZKcXl6jNSi8UiRkZGMDMzg0OHDhmlNTY2Zs4osynfKvTVmNGTCNSrseNdnEM+J8erWq0il8uZ1ItQKIR4PG5KllFxxeNxBAIB+P1+HDhwAAcOHEAikUC5XEapVHJ48hrn3G1vaZyV69DekzYsqMaFxi2H7d42hAof8KYWti5qbmCNcakiAu49AoMwGjcMYUj9rApzehmkJWcyGQM7lstlbG9vIxwOY2pqCltbW9je3kaj0UC5XDZxhYmJCdy5c8cchzI+Pm6ECqnWjAPp5lcl9Nen/9qwHH/62k8DLsDtcnpKfH56NlQ+FCxffvLL/ThHFyY2qEVtlQhB4cx+Uumyj/RC3O5+UdZqtWogJ8JIPPuqVCoZryuRSJg5pNJRqFcZjZwPhaI09sOYlEJ52n+9psY3+ZsQrnoRFKyxWMzhJesRL4RCOc6MBQWDQQOV5nI5Uy/Q7/djfHwce/bswdbWFiqViimqy4oZOvYcY2V/sn4h+8J5YR/oNZHxpxA5lUw6ncbNmzfx+OOPG+87EAiYCvXj4+NYWFjA/Pw8JiYmDHmj1WrhypUruH79+j3xZtvTs2OTo6OjBoXg6+wj/1cDkjDkbknww+ZsQ8X1gDdVWGy6cWwKtQr/3UgYqhS8Xq85qkTJAQBMySKg73WVSiUUCgXEYjGTrMlq8X6/H7VazVRTAGDiSkwu1XvYXiS9RX5GrWj+7xiDHoznZUMutkfqdrvxrXd+C96W13GGE+MTFHC06JljRo/AHjNCXDw7i0qLSpJ94DMFAgFUKhXjodLT0koctrJivzmfdqIq37e9S3ob6jmrQtCcLX6H96UwVW+g0+mYeoN8Rs6pQr+MeyqsWC6XDTt1ZGQEExMTAIDt7W1Uq1XDCGSf9QwvO09KvUbChDQadkML1NAjg7XVaqFQKJjEcM4x5yOVSiEWi5myVux/NpvFrVu3sL297Vhnu8GT9vv2frShP/tzWl5qGOv63m2ouB7wRiHIRkGh1rPCRGrdKaOQ8BM3EK1OXlOFGeE/xjuYr5XL5TA1NeWomE5IKZPJmAMH6Y0A/STVra0tQ3DQ/qnQodeoykgVFzfxZ49+Fj919accQv6Lj3/ReAL2M/r9fkQQMTR1CkAAJi9HlQMFGpuOI1uv1zPP7fP5TKKtlkiiAOb4ulx9sorb7TYpAHx+hZr4eX6XVrgN72rMjv1Upc/5VsNG4UF9NlW8Ho/HKFTWKeR48Dn0+XjdTqd/HhsLLHs8HmxvbxtPKRaLYWRkxJRY0rVLNqLL5TL1Dql02B/ef2dnUM9S0wLUAKCC1rGh90uiBQ0u0viTyaSBDQlJbm1tYWlpCSsrK45TwhWS1bnQtUWFbFP09fsKcbOf/LwaHMN2bxsqrge8qdKyz+MCnHCDnbGvlTB2i3cRluD3CIlRkfAY95WVFWxubmJ6etrUonO5XAgGgxgbG4PX68Xdu3dRKBQwPj5uiBoAsLKygtu3b5vjT1S4+3w+E0/hs2psSQWQWp+fPfpZeDz986L8fj/8Hr/jCHn1Rur1Ojyefp095u+Qos3+aO4NhaUKGW30DL1erxHQzFejF0FShkJevE+tVkOlUjGlk2ymIj/b6/WMUtU+2t6SrVg1/tbpdFAsFg0kx+cNBALmfDSer6b3LZfLxqtm0VoVpIS7yITkuDAhmTDc2NiYUbxkkL797W/H+vo6lpeXkU6nzWnKNJJ0HoF+zlU8HjeEDv4mHMhGJarKlPApocTt7W2T2kFFxbyyyclJpFIpw4y8ePEi3njjDdy5cwe1Ws2MDa+vRhLHWv/nHFGB7bY/2RTK1bSFocd1/zZUXA94UwHKH4XBdDOo1a7KTLFy3RQaN1FLHRgw68LhsImhqMVN4U5qNAPoAEwNPMYxyuWyqbTh9/vNtQmlud1ucxaUWqAKyVB4s49KStHnoTCjgO52uyanikqa36XHxPwyjo9S1mmB8/qMmbF6CM97ImxKhUvhqs9DsgPHk2PL6ytkyO9ROWj8w+PxGMVirxX1wHlYJ2v8EfLjZzkOHGub+KFemvZNlfxu9fboNakBwjkaHR3F7OysOXyyUqkgl8uZmpZMA9A4Fs/lYj91vdqGisbtbJhcq3dof1V5UtldvXoVt2/fRqPRMIYA94DuR1tZ8j3dj/rD/aqK6n5G0lBx3b8NFdcD3igsGZTmJuGiV+iIn9dNTeqyTdzQPBZlm6mAjsfjOH78OPL5vMndYmyG3kEikUAgEDBQH3O9KMTL5bJhH5Icwo1NqEYtY7siORUFY06qWPRsKRWytMxZJggAyuUyOp0OotGoUSCNRsMoB8KKFJBUlsrk4zjbhy8q9EPIjd5SIBDAyMiIifUwLra8vIx6vY54PG6UBp+DMJwqHxbxnZqaMsd1aByTc894U6PRQLFYNAcq8gRghf7I7ORaUhYjn19z3FQp8TBJVsTg2V1a2Jhenc0e9Xg8SKVSOHLkCNxuN0qlEl577TUUCgWsr6+b56hWq0ZRAjDxLV6LxpBCi0qA0PgYPbRisWjqMLLVajXkcjmzV9bX13Hx4kVjWLEeJ/uuMCfnjI17kwaSEntoKPD51BhTRcZrcG8O271tqLge8KYxHzsWosFg21PRYPtuNFxVJPy+Fofl9eLxOMbGxpDNZo2QU/iR1rjCXFpIlYdQjo+PO1hp6pEAzpiNvXnZVGnZ8R0KWfUa9BBLejnqLVCgEarUmIoqWJst5nK5HPlwhNOAgbek46+wJ/tPZcQaenxufoaCeWtrC7lcztTcK5VKqNfrmJiYMMpb2Yb04JrNJiqViin1RI9TvS4lEug408Pgacn0pOkF8XpqWKhi1hgiIWEaPZpjRuo9mX25XA4uV59FyPJl/D7jkVSCVBqMLXGsNY7HtUADRj0ywn+8DqvF7OzsoFAoOO5BL43X1zWhRqQ2ZbwCMMaYriWuaf2uzsOw3b8NFdeboCnLiJuV3gc3gyo4bSqAFUrSwDKtUQoF/mZliOnp6V0D+RQq9Joo1PUQxHw+j1arZZQCqdR63Mj9KoLwXlR4VDgK1/Bz9Ah4PQp+Tegk7ZrXAZyFUCnsVBDqb36efbGhRypsvq5QFxUln4nWOMeG88xn41EpKysrKBaLhlZPRl+1WoXf78f09LQpw6T0d96b5ZvC4bBRtnwmJQcolMw5pSFAQa3MS0J6/KFBwDnkWqTnSwo84TYqc667yclJRKNR+P1+lEolFItFLC0tmZqPPHqE64z9VIhOx0/TDTTWxGdkLIsGVK1WM14Yvf99+/bB7/fj3LlzxkO3mZ82xMumyAX7pkpLU034DNq/oQL73m2ouB7wxoWt0IJ6VMpe04ROCkkqKVUC3CA2A4qlfrghW60WEokEnn76aSPQW62WqZJQLpcNOcPn8yEWiyEcDhsF1+v1HFW16QH5/X4EAgEsLy+j1+sZGjIAh7dGIezz+QyhgE0Fr+Zi0SpndXBVRBRYCoNR4WhulA292fEvZR62220DzVEYdzodU16Iz8DqIqSRJ5NJNJtNbG5uGoFNYVev13H58mVzxDyfgyf+bm5uYnNzEwAQj8cxPj6O2dlZc9CjshmZ8MsKJlw7FJ6EoLW4qwpbCmYtLUWiDRUP1w2Zelxb+sMcQJJXOF4KZQcCATzyyCMA+jDs4uIicrkclpeX0Ww2EY/HTUyK3qfCgzrXnEMaMdVq1cDjhISr1aopS1apVPDaa6/hyJEjOHHiBHK5HCYnJxGLxTA3N4dLly7hxo0baLfbDkWpKQG6HvWEbL5nkzdUUem8DWNb/3AbKq4HvHHh70b3vZ+lpqxBtd4oRKgMVXHxfcZINJmVCqlYLGJlZcXAM6VSCaOjo46q34zpkLDQbDbvYcVFo1GEQiGk02kTw2EFdY0XqeCzYUqFWvgMCoNS2VEw81mp3FutloHCNE7BayitnWOvcQf1Kugx6REcNjmB425DrBS2CqPWajVsbm6iUqk4yBuEBdXLqFQqBjIk4QEYQJKMa7HfNGjYF/VG1aPnM+rYcQ6UxchnozFCr0qJC2632+S7aSxWn4nzynXX6XQQj8fh8/kcpxTQgHO5XEin02as7efSMeLa5nqhZ1qv11EqlbB//34EAgGsra1h7969mJycxOjoKLa2tgDAUTWG92A/uRfs++meU0ibvzWmxbGy9/yw3b8NFdcD3liMFhgk9arQ05gUNwQFzG6MLxVg9nVo8d+5cwc3b95EIBAwsSmND6RSKSwtLSGfzyMcDmNtbc0oQnpsxWLRHPdBgUzYrNvtH/Vx6NAhLC8vI5PJoNvtGq9LY1i8NwUqn1VjXFQy9AZUqbhcA1o039f4B0kGZI1VTbFtXgAAsXZJREFUKhVHVQY2Cmx6awoFJRIJtFotozQajYaJi7AYK49z0dwjKnsyB6kw9dh73pu/qcjYD6BPLuBx9DxTyuPxGA+IClpjYgpXUtEAg5gcoUGmDvBZ1YDQ54xGow5GJeNKXA/0QBhLIkRK5U5Pmcfp1Go1EzddWFgA0I+ZLS0tmeNdxsbGsL29bSBhrg0+m00t9/v9po5kLpdDoVDAzZs38eyzz+Kxxx7DV77yFVy8eBGzs7NmLFqtFpaWlrC0tORgEgJwrCN+Xg0T3XM2GUO9X2XC8jrq6Q/bvW2ouB7wRhhErX1uSApwhbRUAWkMSAkZNoOQ9wEGx84vLS1henoaR44cAdCveLC9vW2EZz6fN8KGFeGZu0RFxfp8NrurWq1ic3PTCH0KQMB5YjCFEZ+Fz6yBcr4PDBS6KjR9nY3/qwerrDqbRcgxYx+UmEGIstFoGO+LpX6oLJWaze/rmLOuI8eWhWAZh6GHoQxChXc1tkRFA8DQ/TWeoqxCm9zCv7nG1PCxqfOENAmdKbtT50fXIIU0x5iHTqoXyTgaAGNAAAN4eWFhwTAZy+Uydnb6pzXT6yV0qd4j+0zDhYZgvV5HNpuF2+3GzMwMpqam4HK5UCwWkUgkjJJfWVkxHqOuO86B7S3xPc63GlmKGujYcOztfTxsu7fvq8juH/7hH+Lhhx9GNBpFNBrFk08+ib/7u78z7zcaDfzCL/yCOULggx/8oMHi2ZaXl/H+978fwWAQExMT+Nf/+l8Ps8S/R6Ni0qRPelPKRuJm4PuKp9/vR+FH3Yw+nw+rq6tYXV01AmtlZQWFQgGNRgOFQgHpdNp8VqnyAIyFTWGu3g89kEwmY7yQsbGxe2jFbKpo6SnQ6leFolauemgUYHoyMZ9blSSvQSWmP7aypOei1HeteG5fl59XxpumODSbTVSrVUOd5mGOClGpt0dIVg9kZH/otVFQa7yKfVflpOOqLD16TXweeoYKh2puGa+rc03lpNU/CD9SiVL58nrlchnVatUQIRSy9Hg8mJubw5EjR/DQQw9h7969mJ6eNutBIWmF73SvKDRJT7VWqyEQCGB+fh7T09OIxWKYmJhAOBxGo9FAOp12eL1qDPJvG5LnWlKlZe9JPj+vq4aZ7slhu7d9Xx7X3Nwcfu/3fg+HDh1Cr9fDf/tv/w0//uM/jnPnzuHEiRP4pV/6JXzhC1/A5z73OcRiMfziL/4ifuInfgIvvPACgP7Evf/978fU1BRefPFFbGxs4EMf+hBGRkbwO7/zO/9bHvDN3lRwqtKhYOGmBQaCEoAD0qHwolejbDIVjPS2PB4PqtUqvv3tbyMUCqHT6SCbzSIajaLX6+HixYtIp9M4fvw4wuGw+Q4ZZB6PB4VCARsbGw5Bz1gIDx9kjMztdjuOxbAhURUKGidhDUB7DCgU/H4/yuWyEXr8Dr0iKgMVOBRyPBjR4/GYChkaW1NPlZ4EvSMqKb5GRWN7t7wOhZw+K48C0bikelxsHo/HHNPB+VFGHVl8HA/OE70eCl6FK3k/KgKNmZKgw9qErPTOueeYUYmqEKZCdLvdhpWoyAA9b81zApyxw0gkgkQigWQyidnZWSwtLSEQCGBpaQnr6+uG4q6wnOaBcWyIHjQaDVNR4/XXX8fMzAxisRiuXbuGGzduYGtry6Hkdf5s6E+VEKFSPh/XpXpp3L8af+X3OX/Dtnv7vhTXj/3Yjzn+/+3f/m384R/+IV5++WXMzc3hj/7oj/DpT38a73rXuwAA//W//lccO3YML7/8Mp544gl8+ctfxpUrV/D3f//3mJycxOnTp/Gbv/mb+JVf+RX8+q//uuNI92HrNwoNQjd8TQO4Kgj5ugoNFYy7YfD6GxjQimu1Gp5//nl4PB5zHH2r1cL29raDsWdT7imECFvpvWh9awUBxk/oKTLmoomkqqi1pJHG33gdelqkTyssyLEgZMV+UaBobImfBwZ5Zja5gJ/ROaKHx3tRWCsJgUaFwoZqeLBuHo/TYLyIgpBQZDAYNMnFnHOOmQpc9bKV4MK+sb8qPPm8XFNKbOl2u8Yr7PV6JsGbHpgdY9LyY6qE1aPWNaTQLtcGn4nrcHx8HABw4sQJYwBtbW2ZYsa8JvtAD5UGRTgcBgATY3vllVcQjUYxMzNjTnymgtf9prFcG26n0uZ3uGb5OY67eqW6x5U5PGz3b//LMa5Op4PPfe5zqFarePLJJ/Haa69hZ2cH73nPe8xnjh49ioWFBbz00kt44okn8NJLL+HkyZOYnJw0n3nf+96Hj3zkI7h8+bKhwtqNAWQ2HmD3w9BsYgQwsEB3w8FVmNpQmsY6lO2kAlsZTz6fD+l0Gh6PB9Fo1NC+eT3CgaxdyO9QWFMBaX0/AEbwKYxCb4DJs/QcqIRspctrUQhqsiufqVQqmVw0/b56TTq2KkR4ffVI2UdgcAQ8x5iClsQJKgJWXaDCteEfjoMqDSq+SCSCeDxucqc4tsBgTzBuY3s4CvupYLShKc4Fn0NLPWlfuC6U4cjxUOHOuVGYlPRwrgVVbLpu2T/1bKkIFGIF+vGpZDKJiYkJHDx40BTp3dracniqCqNqCkO320UsFkOtVjNJ0Hfv3oXX26+7ydOmOZ5UKDrXbDqnCvVxLfA62h/1tnZb40PF9b3b9624Ll68iCeffNJYLH/1V3+F48eP4/z58+YwNm2Tk5NIp9MAgHQ67VBafJ/v3a/97u/+Lj7+8Y9/v139gWgqGG0hp4wpxpvUM7PjPlROmgyrFi+hDa1uQCFcrVaRz+eNQOTx5xpT8Hq9iEQipvYcSw1RiI+M9E/BZQwjFAoZD4klooA+pMMyQgyKM9eJFjcAcyQL0IcAgb5Ao9IjaYBHtNBLU6GoypxHs2tuHAUNiQ68hlr1AEyScbvdRrVaRTQaNblchUIBvV4PiUTCfJ5j53a7zVhWKhWHsPd6vZiYmDDsOlrwHA8+iwpmNQaAQe0/3pPrgIYG86pItOC4afkr3oOxPM2/IkRIhiATr2ngcLwIC0ejUWMoqRGk4004kq/xzDYaUKocvF4v5ufnMTs7i/379+PatWtYX183+YWlUsnsDyp7GsHj4+OG9To9PW0gXaICNnzLcSHcypJh6kET5qanSiNOIW4+JxW57h+l/APOvMZhG7TvW3EdOXIE58+fR7FYxF/8xV/gwx/+ML75zW/+7+ibaR/96Efxy7/8y+b/UqmE+fn5/633fFAalYoqGZuwwGZDh6r0NDCvVrla1wrVULio4qNiAQZB7pGRESP8lNHFe1DAMVDN62k9Qpt5xesCA0YhFZJdG1Ctc2CgwBibosJST4N90/iWeljqZSmkoww+/Z/fU4+SyoEQFqtkcA7s+dIKHNroPfAZdO57vZ5RynaqAD9LZateNT0dhVXVQ1HyCOeJyoTCVvuj60+9Rp1rHkdCQd7tdg1Rh4pP44NUBvRUadhwPXW7XVOYt9PpF2+emprCwsICstmsgQEJKyoSoWtan9t+Jpuxy9gy58PeP3xmRTP4PX1N9xXvtxsiMGz3b9+34vL5fDh48CAA4C1veQvOnj2L3//938dP//RPm8Pa1Ova3NzE1NQUAGBqagqvvvqq43pkHfIzuzWWmPlhbGrV68ZSSIH/KztT8fzdgr2Mb1BQqQVLYWXHZdgHWuYUVExCptegAkGFOb/L63Je9X8VfrFYDPV6HYVCAUtLS/B6vaYaPb17Mu9YnYOHFIZCIUQiEUdch8+tcS4VOlQgVAh8XjUaOF60pnk6L8eX16jX6wa6DIVCjnJFhNm0/BWteTUAeE32zYbnOp0OIpGIGTfmoBE2AwYxHo0D0ov2+XwOqNCO0RB+ZSV8AI6K/irAVZmqclB2qdLh2Tden4qD9w+FQojH43C5XBgfH0csFjPrmfPHkEGn00EwGEQsFsPTTz+NVquFc+fOmbXVaDT657JFIobJx9gcoUJCg7weEQKuWYUyFX5XxEONI11vXB9q1KkxqUaaTeAYtt3b90WH361xgb/lLW/ByMgIvvrVr5r3rl+/juXlZTz55JMAgCeffBIXL140GekA8JWvfAXRaBTHjx///9qVH9imOUOAMxlWGzeCvq7Wqwa47ViIfs62FjWI3Ol0DEZPoWtbpjbmrxY/BaXG1Ajt8dn4DBSSFMxerxfJZBLj4+NIJpMGzmKOD6EentPFRphPKdu2gFDhrWOs9HM9gJAKk5AfPTCFIulpUCnT21AY834eoBobOndanURJC/yOwlp2DJOvUQHSSLETtjnPWhhW14sqcvX87RgNx4SeJhWBHbdVA0zXBeeK463Fimk40OvltWZmZjA9Pe0w8vjD+W80GibxnAYClatNgtIxZFN4UNe8vmZ/TpEONZ54bR3LodL6h9v35XF99KMfxY/+6I9iYWEB5XIZn/70p/GNb3wDX/rSlxCLxfDzP//z+OVf/mUkk0lEo1H8i3/xL/Dkk0/iiSeeAAA899xzOH78OP7JP/kn+Pf//t8jnU7jV3/1V/ELv/ALP7Qe1T/UaLUr/KZWrlq6/K2xEBUiuykuVTJ24F7vSe+p0+mY04wphOkF0IujgOBv3fxUXLTieS2enkuByv4zLhYIBBCPx5FMJnf1IDXPyYbObGKHLdjVmtYxIWRJRaHJu2pIkJnH76rn1ul0HFXWlbBCz1FJKPwuv09PZzdBzDGl96tKXwUtn4X90zw4m1ih17e9C5thqHFWWxFxXOhp6hrhmJMkwedgDJfrXs9J09iu9oPvUzGnUimMj487IFmFQ6m4mJbBPhcKBXMUi64BfkdRB226lpQ0xfFRD12JL7YHrHvVhpKH7d72fSmura0tfOhDH8LGxgZisRgefvhhfOlLX8J73/teAMB//I//EW63Gx/84AfRbDbxvve9D5/85CfN9z0eD/7mb/4GH/nIR/Dkk08iFArhwx/+MH7jN37j/9+n+gFr3AA2ZdyGufhZXfwKNdLyJWQDwFjW/Cw3HQW+3ocxKVqvtFzHxsaMMLh79y4OHjxoSBGVSgW1Ws0IJpIyOp0O1tfX0e32S0gRduv1+uWD3G63iRWFw2EcPHjQKMZAIIBwOGyupwQRwFlOhwqCpAv1dPhZVahK1uB3OUaVSsXkf1Hgj4z0z9piXUF6B5qXxrHVvB493JKKRiukEDZUKFdPqFaGndLTCVNSISg9n7lkREl2qyxCYgXXG8eI80nPUWNoLP7L+VKlx/VIVqQqKz4LhTw9Q2UxEs5j+IFzpCkHjHdxDWixZPaXnnk8Hkc2m8XExASazSZKpRJCoRA2NzcdSoaKRuOYXPf8WyFj9k0VvSogrgMtgWXHUtn02YfkjN3b96W4/uiP/uh7vu/3+/EHf/AH+IM/+IP7fmbPnj3427/92+/ntj/UTWMJ/JuWru1B0Hrj5wHnabrAvZ4Z31fvaDdWIq/l8XhMTAIYVHngpi4UCvdUt2ARXmCA4/v9flSrVWQyGcPIo2JyuwdHa9gWN2E31iRkzEQFolrXvIZCglRgFBrsl8JUWmGBioHXJ2lBx4dCRsdaPR8+M4U+jQ+l6rMfek9tSmTh/7pO2GddE3b5IwpNwprKXrOFrsKAnFNVxry/TXDg2BBOZTqA7ZVy/FXZ6VzyrDKF3/gcCpXze1RgZHHq9WkMAP1DRYPBICqVigMy5dpQL3A3eF5jmkp44dgoZMh1a481n0s9M92fdhhg2JxtWKvwAW9qcVMIcRNxk9mBYgoxhZao7HbD7xUqs61Oemn6PUIq7XYb5XIZkUgE+XwesVgM29vbGBsbQzwex+bmprHuY7GYoYrncjkkk0lMTU2h0WhgbW3NfAfo5yj5fD5Eo1ETZwH6XgvPlQJgyiSx5l273UYikTDKisKWjETW01Poh8Jej6sH4CBAKHSnVrAmi2ocq1armVgYDQoKMwpCEh8UNnS5XOZ15rLR+2BfVEgCAyKB7Qlo/1SxsP+6lpg7R6hRYz00IgCYihksKEyCAw9+BAYCl9XqXa7B+WxUCDQS6HEqtEzPrdvtYnJyEqFQyCRjc174nNpXAEZxkWZPeJLrPxaLodls4rXXXsPs7CwWFxexb98+1Go1ZLNZszZocFBxcf2rR2zH+uhVcm3s5kUpu1HhS1sx6zWHbfc2VFwPeFPPiJ6OBnY19qEWqHoI3ECqrBRTtwPMvIb9mgoJWp4s/cOzu27fvm1OTb579+49cBTzd8bGxnDgwAGsra0hnU47FAThGa2mTkHFww2ZR6OWNjDwDhRSsuM7fD71NDl2vNf9CvQq44yNwodQGI8m4ec03kXlQMVvGx7sn+ba6b05/gqTqYVve2lUXgBM3yhAqcAVYrXnX+N4en19j4qV73PMa7UaSqUSarWayd9SY4rjxu/Q4GJTL5KfZ185Bqpg6O2pglFvMxwOI5fLIZfLIZFIoFwuY2pqCrVaDcVi0bE2NIaoXhCvp3uM60NrVVLp69xr0znX5+Ma3m0uh23QhorrAW+6eNX7UmhClRtjJlqvTkkZNiShcBo/q3kmtlLje7Tkd3Z2TAWCmZkZNBoNBINBLCws4M6dOw5LXxVgKpXCww8/jImJCbzxxhsmAZ0KmgpDFR6tWGUnKtxis734N70WXl/hO9uypXDk/XhvXk+FkAoXQlGqVBnzYsxO0xUY66CgpcWuHg77o4JTFYp62Bq342dVEVIZ2wnWKix5PX1ehTH5OT4vAIeRYAvaer1uKriT2s7rahULlrSyWZ8Kz3FedK4I2bI/LpcLlUoF5XLZ4TXt7OyY6hjZbNaRPDw5OYlKpYJisQgAjpiuDatzvGhMqRHH+VWPUMfXNiIVdtZ5ZXrJ0Nv63m2ouB7w1uv1DGxke1eMYajAogeiMQS1CNW7UEtV4z78UUVmx2roUWxtbWFiYsIorgMHDiCfz+PAgQPI5XI4e/as48jzbrdfiunu3btwuVymskEkEjHlo/RQSQp7JaZo0JzCg3EyHSNN+KVA5vjwWUgwUWq5xjVsggVhPPsMKLIOPZ5+XcdsNmuSjklgUEiWUCLnl+daaVkp24tijIb34/yxjJLWGbQVF6E/jT0BzuojynpjJQw1iDh29GCodBVmpmGhBgK9Z41haoUNEjLIQgTgGC829suGSVW53blzx1HNnet6z5492LNnDy5evGjy18LhMKLRKDY2Nsx6tA01rh/1NPW4Ht6D64P9UiXN8dgtxqeGCGOgVJ5D5XX/NlRcb6LGjaz4OjCwgpV+a0OC3W7XJF8qfVuhGzugrJuT97c9vEwmY2JM1WoVc3NzWFtbw8LCApLJpCMOwY1arVaxtbWF7e1tVKtVjIyMYHp62sEIA2AUFAUb40iqfLU/CmVScdEb4bjYcJMKDlWE+qxKgqDwB5znhCl0B8CMNb1DVYK0rMnwVBKKxjfUGwbgEHxKpdaxUmhTIUD1iPgZNSaUbKJVUWyKO5/XVlDqkfJz6oEpPMj/qfjYJ46L7fnp83Oc+XxKSGq32ygWiwZW5nz5fD4kEglEIhFTIKHdbiMcDsPv95vq8OppcbxUifG69nOogaefVean7Y3qeCkBRQ1Oe60O26ANqSsPeNO4Axe4bjAbHuPnuKm5+FXgsCkcpFCRKjMV3jZU5vF4kMlk0Gw2kUgksL6+jtHRUSwvL2N0dBTJZNJ4JYT2SEBotVoG1tHj5/UICyVLqHVvC0clLTBuxOdQxaJH2GsFD/62yy5xDDkHWl9Qx1jjMOwL6ddUtCr87eRtls1S616hJY3TUclwLNQw0bGhEcC547jyczYFnX/Tm9OjWRSWVdaiGjdqSKgnospR4WnOqT1fus61X7YSsfsGwJxIwPngfUKhEMbHxxEIBFCtVjE1NWXWLA9AZamw3bwt3S8cAz6HPb76/Pac6Dzxf+4jl2tA3rDHadjubUPF9YA32wJXa5QbVllhCq+pgut2+/X+CJ9xA3LzK0Wav23hb1uTLpfLFDV95zvficXFRXQ6HZw9exY7Ozs4fPgw5ubmAAyElNfrNYdInjx5EkePHjUxMiqYTqdjcpGocCiw2VfCSiwOSzhOn18ra7Dygo6rChxeW7+vcBPHg3Xz6J1pLT8V7oFAALFYzChvFUZud5+tWa1WUS6XHdCTPd68n8Kn3W4/P4kVQjgX6sHptTiPNAbq9Tqq1aqBe+mVUmERruKZabVazXhG/IwaNHqopXoWhL8Iieo8cQ2SkGM/d6/XT0rX3DUaPC6Xy0CJHP9Go4HV1VWsr6+btcZxPXbsGE6fPo1IJIJut89WLJfLeOSRR5BKpZBOp1EsFo2i13qIGl/jfLMP6h0qZK+woO15cQ3wmfl9oiCq6Ife1v3bECp8wJuSKkg5VgXC91SxUHhqkN2G/3RzAYOCojZsAThJCDbxYXt7G9vb29izZ4+hlReLRaytrWFyctKUZqJiZQA9nU4bCKdaraJer5tK8ryPegnqXaki5/sUqCow2NRzVGaibRmr92p7XvysEj3UsyC9W+eG404hyvgQMIiHMKbDvmvOlPZdGz+n0Cb7rQpADRxCpzqf6rHbeXwquNlUOfO3xhA1bmNDsAp5EmZUaNMmhLD/qth0fapX5fV6TZoFPSeF8qamphCJRFCpVBAOh019Qp7nxeRl/Y6OvXrd9md0PHbbLzquCg/a88W1ofe0533YBm2ouN4kTeEYt9ttYCa1qFXQKpxhkzPsnBvCdFpMVJWcCmEADpjt9u3beP311/He974Xb3nLW3DlyhXMz8/jC1/4AsbGxnD8+HGsr6/j9ddfN6SEbrdP0Mhms+bMKVLig8GgsWDVm9G4DvtDz0fhPwCO10gooDdCAoXmMpHNp8aAGgRadJiJ0VR+HGP2T2E85jrRY6SnCMBU1lCDg+drsb+MB6oQBODIdQJg6hfq+tDkbGBQhkhjoApJ2vlbhAzJlOQ1VOHYyctUKvSWOSdULgr1kpCyW8oDvbJgMIhEIoFgMGi8Q1bwYP/5LNvb21hdXTXjznQCv9+P06dPo91u4/nnn8fDDz+MZrOJ2dlZw3Tc2toy+4n7R40Mjd2pIlequw2dch1yDfI6/E3DiFVK1Giy43zDdm8bQoVvgqbxDQogpQ9rHEy9CBuy4Pu6uSgAuIHuFzBWy19jbYRodnZ2cOzYMTQaDUxOTpp8mampKczOzpocp16vh7GxMXg8HnMWEoPkFOzsu9K3NS6iyoFwnz6PWu0UbBq3YLMFjXoo6qkoBGQrG4XoOJYKIVLo0yPUvChNVlXISPPT2DftA8eGyslW6HwuZVDq3Gp8jB6RHcvhd7QKiu3Vq6JXL4XCVr0xjanpuNpxM46VKljtj50SQZgwl8uhWCwapUcjhV5/q9VCPp+Hy9VnsjJFYWdnx3hc6slq07qUqnT4vEqIsfejjpO9NvU7Gl/WcR623dtQcT3gTb0dtfYUFtOmTDMNLmvQnpvCFuo2NKGbTGMXFGi8z9raGjqdDubm5pBKpUztuo2NDaRSKczNzRlFq2cokTI+OjqKcDiMTqeDcrnsiN1p7ImWOq11Ci4VvISlVNCqEtd+62dseMYWsBReNpSjglc9W1VgqmTp3drKZ7fyVW6328To6BFriSBdF/RueA32QeeUkJwaA0rEoILReeZcsUAwjQ8dM10b+r8aDlSwXIsKI9pKmf2iV1uv1x2pHOwn13q5XMb6+joymYyjGkcqlcKePXvgdrtRKBRQLpfR6/VQKBSQSCTMmOqBlkqo4LPSg9N9pM+hxoIaePSybXhbiT26x/X5FW4ctnvbECp8wBs3Kjc6MKAS60bRmAc3hkIZtgBjU9xeaxRqQi8hGmAgmAit+P1+pNNpvPHGG3jqqafwj/7RP8L//J//ExMTE3jhhRfw9NNP48SJEwgGg2i1WqjX63C73Ugmk1hcXEQoFMLRo0dx4MAB3Lx5E5lMBvF43NyPm58WNABT5olQlsZa9LRjjh1r5elnKTQU8rKV+m6WcTAYNDUZ2S8KGZvWroQUvsZ+UCizxJOWV6JyVc+PSp2EA5a+UnKJwkqqtDU2xfdshUHyAyu5U5lpCSoV5C6Xy+HRkYDBv9WL59wwBkoFS2KJ2+02hZjZ71AohPn5eeOZUxnZkKvP50M6ncbly5exvLyMZDIJoH+68cmTJ/HQQw+hUqnglVdeMWXJdnZ2zNlc5XIZmUzGQJkcD8K7VJz2eOr+4boJh8MOo0ET+1VxEanQPa17lEbFMMZ1/zb0uB7wpgJWNw9wb2ka3VBUYmpJAk6yx24eiEIcFJ7cYPq+Uqo9Hg+uXbuGRqOBffv2IZfLIZVKIZ/PY2RkBGNjY4hEIgAGZ4v5/X40Gg1sbW2hUCggHA4jmUzC5/OZ2ncUemoZa/xNn5mHUhKOU2o7P6uUfBsC49gATkKEsvSAQTyQikkZmTr26gUybsNr8/7ss57+y/Hh85KqXavVHPAeG8eASsW2+uktaZyOcTcApu/q6VG4qqdqV7ZQGEvHmM/LvrG/fF8rhfCaeh0luPCcNT1WhuOuhhuTqFkrsN1uIx6PY2pqColEwhhZnU4Hi4uLKJfLRjGw/iKTu3Vt6Y8SQ2xYVWFDG3rW+CDH1Gb96vN/L1LOsA3a0ON6wJt6PbrgbcYXX1fYSKFAvq+YvAo7wJmMq/EGbnBVagoJjY6O4vOf/zxmZmbw7ne/G8FgED6fD8eOHcOFCxdw6NAhHDlyBC+++CLcbjeWl5cxNzeHUCiExcVFNJtNHDlyBAcOHEAoFMJ3vvMdQ5lmH1lPLhaLOZSnxpDUk1DPh4KZ1jED/BTaTBBmMF0NAwb7VZnwtGcqKPU8GHPjCcf8vh0PK5fL9zAZ2T8qop2dHePpcJw5Lnx+FeAkmSgUqMaNsvsIjykc5Xa7zdzRU+d1VFnwOvpdemacGy0SrBVGdAzo+Wr6QiqVchzUySNiOBe1Ws3cCwCWlpZw8+ZNzMzMIB6P48aNG2i1Wjh58iSOHDmCZDKJSqWCM2fO4OTJk3jppZcAAJFIBDs7O1hfXzdFg6vVqoEpue5oJKixYsc97zcGurfsmBfnQY0FNUhsiH/YnG3ocT3gjRtJPShgAPdpgFvLFgHOBGP+5jV3o//qdTWeoHClHd9i/CKTyeDGjRvY2trC1NQUNjY2AADLy8toNptYWFhAKBQyG7VUKhl22NbWFjY3NzEyMoKJiQmTs+Ry9anzlUrFAf1prEiL2KrCUWKDMtwIM/L5+bpCOXwuFd7AoKgrlSA9Agpm9XA5lrZw5vWpBLUvVKIaR1LvUWFD9Xjphdrva1xP6eMaI9QYp3qGeh16lurR65hp201Ycyz4PHYuGBUcIUqyJFWR8176XK1WC6urq9jc3ITb7TbKqNfrIZlMGjiw2WyaSi0ul8vEDdvtNgqFgnkeNRIVZbDJJwr9qfGo6IZ6rbpPNZ6sn9XxUsNr2HZvQ4/rTdC4yG0rj5vLhif0exq3sT0R/k+BQi9CvQdbkHe7g1p17BeFMiu9Lyws4PLly+Y6lUoFU1NTmJiYQLFYhMfjQaPRQDQahc/nQ6lUwtLSksm3iUQi5poUzIxdUMhRoPt8PiNsCWnpeNnwGeMYbDaso+w8/lCoKYmBysTOUQIGsTJlxSlUawsmhab4HJxnVdgcC9sDtyFcNSp0PvUz/JwyMimobbaiKh1+Zrc8I2W/2nCmrkVeQz1VrRzC5Gp6dfV6/R425sjICAqFAm7duoVSqYRUKmX6rutiZGQE29vbuHr1Krrd7j2wIslASopQVELHjHOlClkNClvx6BrUPaRjoogIm4YEhgps9zZUXA946/UGJ9+qB2VvAAD3CBrdiGy0eDUuQ6uS19OySzx+g42xIt5DFUWj0UChUMDBgwcxPz+PWq2GtbU1LC0tYX5+HmfOnEGlUsHq6ipqtRp8Ph9mZmZQLBbx0ksvwe1248knn8TevXuxvLyMUCgEAEin0+j1eojH44Z0wj7To1BBxziHncPEz7O/JAdQ+PB7HGP+kITh9XpNpQ6thaexGQpo5mQpPMux4/V5f/Uq1FBQyFe9OBX6+jqfj94K54RKRj0BwopK0ef19HRkO+VCq1zoGKhA11gXr002KY2MnZ0dR9yO5bhCoRCSyaSJd5IwwjlXL/U73/kOrl+/jvn5eUxMTGB9fR1u9+DUbuaTraysoNls4tSpU/j2t79trpXJZHD37t17jLXdjBw1CHS8qdBYcUTHikaWDd1zDdNYtL1kZQwrFDlsgzaECt8EzfaYbIhC31PrmbEK9RyU7KHKj68pCUOvyU1px2Rsi7DbHRzgF41GzUGRPp8P4+PjmJiYcJAiAoGAiWFks1mUSiWMj48jFoshFosZej0L8irrTuFPNlXUGtuxoTTGj3ZLDuVYKExkj6F6H5r7Q+Ful5LSM7D0+jqHOvZ8RvZb6fe8rqYLqJCl0NV8MCpvGkG8P6/NH40fcT6VzKPjqn1TIgMhT/VcaGDYsK4++8jICILBIMLhsDmUU0kRqqQ7nQ5yuRwAYHZ2FslkEoFAwPTL5eoz93iMCWHpYrGI2dlZtNttlEollEol85y258O1Y3vuumf0f1XchLA5b3axXe4dnffd8uWGbfc29Lge8KabFXASLGyFAgyEtMZHdJP1ej2HUGFTq5OCTuNaKmhtWIz/1+t11Ot1w9CiB5BOp+FyuTA2Nob5+Xm8+uqrRgloP9vt/onKx44dQ7VaNV4J4xM8gFJjBwpdad+0zzpe+mwcK4XCbKGtCsMWNoTEqODUo9Hx1hiX0tDtWKOtKHkNe86BARuQY6yesua6aRyQz6YQMPvMZ1U4Uj1xJvVyjNSLtWFZMhmpgG1lrs/L8aLCikaj95BMtPYi+1CpVNBoNBzGA70e9oVloBqNhjmBu9VqYWFhwaQXVKtVR56dDd9xbami5dzb8DzXsJ2gzLnWNcI4qc0iHEKD/+/aUHG9SZp6Whp3URiKG5gWrc0uoxLTeA43GDccMCgNxe9QeFAoAQNLXO+3tbWFpaUlfOADH8DJkyfx13/91zh58iQuXryIfD6PeDyOM2fO4Etf+hIajQZWVlZMjtXW1hai0SiWlpbw/ve/HxMTE7h58yaazSb279+P7e1th/VLmEuhLvaNwpfnc+lZUExmBYBAIGAEMYWVKnCOO8dKE55VcHM8VCFQMTLOooqG11RFpYQFwl30fujFKERqHwfC+I3Gk/gdEh7YT9sY4lqhJwoM0hZsAwEYHB5JA4ielFYCcblcBgr0eDxmrHmAo3ojgUDAVLiYmpoyfdWKFhwPn8+H7e1tXLlyBbVaDV6vF6+++ipCoRCKxSLa7TYOHDiARqOBTCaD69ev49ChQ4hEIrh9+zaOHj2K/fv3I5fLYWVlxZR74hiqEuJ6IrSqtR4JAeoe4prT59TGudS4qBpKwOA4nN3QjGEbtCFU+IA3CkC14DSWQjycm0lhNA3ua0LtbnCakgnUEt4tVqaQlgp8UtZbrRb27t2LSCSCcDiMcDiMra0teL1exONxJJNJE3+pVComkXljYwNbW1vI5/OmAC+JAmQaUsCowtBmew2A86A/9dAUSiPsZkN4tORti5nCB7i3diDHSr0RzhPHklAl6e5aO1GFFhWkzRjkNRVS1CojzJWj0lbSCf/md7QmJNebEktUEeqzKvzK/lN4a84Vx0UZgeopkeYfCARMf5UmTu+RTMz19XUsLy/D5/NhbGwMlUrFHCA5MTGBQ4cOoVarYWtryyidUqmEW7duYd++fYjFYibxuFQqGcNH542Nhh/gVPTa1HAE4Ehk1vnkWtA542doMNkM0WHbvQ09rge8qWLR49l3dnYcVis3B4Ufm0I+KvApfPldCkGtkUe4RrF2hbnUYwiFQiiXy1hcXEQul8PMzAyee+45nDt3DkeOHMGFCxeQSCQQjUbxzDPP4Nvf/jZu3bplzuLau3cvbty4gcuXL+NP/uRP8Na3vhXPPfcc4vE43G43Ll++bE5I1riHeiOAM2Gb0BSrFBCSGh0dNUqTxA5t+rzqRbndbkeNO44NT67V+oNKFFEGJIUX+6AecblcNvfRIzbYp2g06jiJmHAXPxeJRO7x9OgZMK9K43HdbheVSsWQcHhvQr2qiBhzorInpZzjzWfRhGKOH712m1jDUl/xeBwTExPmgEceV0NlwLJggUAAL7zwAp5//nk0m008/fTT2NnZQbFYxPb2Nnw+H5566imzllyufjWLV155BWtra0gkEnjkkUfg8/lw9uxZXLhwAaVSySgTNU4UWeD8c90xd0/hes4R541GEqv/c79x7yoMy7VhGydDj+v+behxPeBNPR79n/CMvm9DHSqg7FgEr6W/7Zp6GgfRoDGtb4ULuRlpxXY6/dqF6XTaHHVSKBSws7OD2dlZHDhwwAjoYrHoiEO8+uqr+MY3voFKpYJIJIIDBw5gYmICIyMjRkCqYOE5TUpEoNWuicJsIyMjCIVChglImEyfFxhY0lp1IhwOw+fzIZ/Po1arod1uGyUBOCuoq6ekxgANBeaB0TMiHFmr1VCtVs1xL3w+JUJoMjTjWzQ+2B8+t3qNfC4KaQpUKmjb2yPUqHCYwoeaEsAx5lxowVulwnOt0miIRCIIhUJwuwdUfDveyj5cuXIFKysr6HQ6prSUx+MxlTJisRgajYZhFvZ6PeRyOYRCIRw6dAihUMjA1LlczoEe6Hyp8aKQtO2J6nhq/JNNySi6rmhE8Bl1Pw09rX+4DT2uN0HT4LkSJpRgoNRvfgeAQ2EBA2FMIaqkBg0Yq1LTgDeVmO3p0TKvVqsoFAqYnp7G2NgYarWagRFLpRImJiaQSqVMHTpgwJBj1YZ8Po9z587h1VdfxUMPPYRwOIyHHnoIy8vLyOVyjnva8R72md6nel70ivgazwljnI3ek44Xx50wZyAQQC6XuydWYQsbWzBpbIxzxD6wr4Th1OLW6ib5fN54RloHUUs48dmUNMLX1XNQhaAQp3obfJ/KXWN0VERK7VZIEIA5X00VnRJrQqEQYrEY4vG4IwWDz6Ckll6vh2w2i0uXLiGbzSIajcLl6rMEXS4XYrEYxsbGMDo6inq9br5Dr3p+fh579+6Fy9U/AoUHTtqeurJDbUWvtQd1r+k+oeLiXrIhezabOWgTXXQdDdu9bai4HvBm59io8NMgt7KfVMnohuPm4DVZ2sZmSOnmtBVgp9MxtGMKY3oKQN/afuONNxAKhbBv3z5MT09jdXUVkUgEr7zyCkZHRzE/P4/Dhw8jEomYunG5XA7JZNJYzu12G7/927+No0eP4tFHH8XP/uzP4syZM/j617+OtbU1x2nOXq/XnEfF1zQGxabKiKQNACbO1G4PCr9yfPl8gUAA0WjUQJV79+5FMBhEu902x7pwvNxut6moQQiQipnjZpMter0eYrGYuQbvWy6XzbOSWDIyMoJIJHJP7AWAQ4lQGFNhcy1oJQyOAU+g1jwtekBK8uHz2fE4FcI0AkKhkIlRcVyZAByJRLB//34kk0mEQiHjOXNd0gji2l5bW8Prr7+OTCZjxqZYLCKbzQIA5ufnsWfPHhQKBWxubiIQCGB9fR2VSgVvectbsGfPHkxOTuLSpUt44YUXsLW1ZZSjrg+NAaui52++p6dtq3Khh8l1xj1iz5NWUlGUQD06m7gxbIM2hAof8GYHcFU4cJPZwV/AmRdEC55NIQlbGdo4vwb0bfhGlSGhFp/Ph9XVVRSLRXi9XoyNjaFcLuPkyZNoNBp4/fXX0W63EQ6HsXfvXgeDKpPJGGYY4yKXLl3C1772Ndy+fRsulwszMzPGS+EzUXkpYUGVFskPZOkpwYHEEMYPlYxAQc84Sy6XQ7lcxujoqDnZmQpSoUIdZzseBzhzxBjPofJUqIjEBVLFCalp4jSb9lUrlFO46vxzTSkkp89BaJF9VIHN/vOeHEP9X70ILd5LZcgkY1a4p+Gjfe52u8YYajabWF9fx40bNxyxqEKhgG63nzfIA0pZOqzVaqHRaGB6ehrz8/OIRqNotVq4cuUK7ty541AYOgbst65zPoc9DnxmNh17e6z4P8fT9uB07BSuHbbd29DjesCbLfw0zsQYhMJ6StXmZzU/iYqCgoFVFtQDYEAZGCQys1oGhbrGSYDB4X87OztYXFzEkSNHcPr0aRw/fhyLi4tYWVmB1+vFzZs3sbGxgQMHDuBHfuRHUKlUcPv2bRPz2N7eRqfTQTQaRTQaRalUwvLyMn7/938fTz/9NN73vvchmUxibW0Ni4uL5t4aFAdgkm1JaqGXQxhJ85GotDqdDgqFwj25cKVSyfRPK93z+6lUyiS00gJXhh+TpvkeCRC2J0TBpzlfHGPOJ+9bKpXgcrkQiUSMlc+1Yh8DQ6ODz06BScXo8XgcngOFaK83qNrC69A4UGKBGgz0sGxYjAbC9PS0I65lk1h47VqthlqthkgkgkuXLuEb3/gGrl69auKD6XQaf//3fw+v14vnnnsOyWQS+XwebrcbY2NjuHTpEs6cOYPTp0+j1Wphe3sbt2/fxvPPP49KpeIYU+4nzicVNsef8LJ64kqe4NySyq7FiJUMZRuLej/OAa+nCnHY7m1DxfUmaGrFKlwDDOriKeS0m/elFr96Vkrs2C1Az8+rh8eNRoXn8XgM84uw39ramqnmPjs7i8XFRXg8HszOzqJcLqPRaBjIMJ1Om3p0fr8f+XzeCFLCSIVCAVeuXME73vEOTExMIBKJIJPJGOiJOUV2HpuSBtTrUIIJvSXAeRaSkiL0CA5CX7wf2YJ2CSSdD/2bY8rvK8FBWaN2nAwYsBU5Bzovuj7UU7DrM6oRROGqtG+bHm57A/yuTdDRtafKmISRcDi8a+6c9oVwL5OLu92uIWSQ8EEB32w2EQgEEIvF4PP5sLW1Zejx09PT2LdvH4LBINbW1nDr1i1cunQJ1Wr1HnRByRL2OKoC0X2hBiL3BD1EjX8q2YNjqGQOXtfel0OP63u3oeJ6wJvGHbjZNU6lm0CD7gofqmVnb0ZlvVEY2ZtViQV6b+2TvtdoNLC8vIytrS0kEgnMz88b76DT6ZiK7zMzMzhy5AiWl5dx69YtU5pnZ2fHMMEIX3m9XuTzedy4ccN4Y6lUCsCAts3npNWr3o9CXvpsVL4aSGdrNpuo1+uGRMH+V6tVeL1ec5YWv6f5Xhrz0gRX23hQYUniBTA4RZmKkZ4b70cjgUqAHqHtQZB1yDggvRp9/k5nUFtRrX2NXelrSsLgulJITD+ra5jJuXyPHpz2hfDpzs4OAoEASqUSrl27hmKxeI8B1+12EQgE4PV6kcvlkMvlMDU1hRs3buCpp55COBxGo9EwSuvu3buO/nH8OP9UNJqMT4WmMLKtoPmeHnmiUL2OgzIYde7Z1Oi0YclhG7Sh4nrAm1rr6iVRqCmbkEJArWha84Sh7Ix9PdpCr83NTSFFqFDhLI0B+Hw+QxwYGRnBpUuX8Nprr+HDH/4wHn74YSNUK5UKXnvtNRSLRUxOTmLPnj340R/9UXziE58w0GAoFHJAm71eD2NjY/B6vfjiF7+IQqGAkydPIhKJoFKpoNfrV18gkUAt1na7bWIhmvfk9/sNdTqfz5szoBhjIzzk8/kwNTVlPDcqyUqlgp2dHeNFUDCzOgerjnNuer1BqS0lZ9hFjCmw9BRn0ttJQKEwbbfbJg+L1+P8EiINh8PmuoREGa+hcKX3bHvvu3kLVMpKBtJDMj0eD8LhsKMmIu/B78XjccRiMQOV6lyVSiWjRPP5PJ5//nmsrq4aWBMYKLlwOIzTp0/jzp072NrawokTJ3DlyhXE43EcPnwY9XodV65cwZe+9CUUCgVTC9GGYzXPDHDGj9VTVshex4+fpReu+4hjqQaA/s/G/bzbe8N2bxsqrjdBU5xc4RXbM1KhRuuRyaIej8dAGboxNF6lnppusN2EG5sdUKZXUavVcPPmTbTbbUQiESPMASAWi+HWrVvIZrPwer0YHx/H2NgYstmsEdJ63ZGREUSjUYRCIRQKBWxvbyObzRrvrlgsmoMH9XsUBDbhwWaSqYfGXDN6WeFw2GF9U6jZxAbeTxW+BvMZc7OVGfugFjswOBiTAlUt+V6vZ/LZ1OqnEcMjQphHpWPAGBjnkd4Xx0WVKDCIt9DD4zUIi/K5dQ3Sq4tEIiaGSkUWCoVMWgGNBN6fcUF6aDdv3sS1a9eMwlWI0ev1IpFIYHJyEnfv3sXs7CxSqRRGRkZw7NgxeL1e1Go1rKysmHggx1OfcWdnx5Bd1PNWKJPzqWOkMS/uK123ujcUVud6U1iY19ck5KGn9b3bUHG9CZp6QFzQNktMY1ykb5P6rEJWN4Qd97LxfYUrdJMpDMnXaV2yXyMjI7hx4wZyuRzC4TD8fj9WVlbQ7XZx6tQpLC8vI5/PI5FIIBAI4NixY3jxxRcd3iBp0YFAAPF4HNFo1MCMhUIBsVgMzWbT5Irx86qUARhh5Xb3DxtkX+mFBINBh0Di9+nlqHKnh6R0ZlrdFNJMcFZFoXPE7+ncaVxKrXkeS2J/h4pA42oU6BTEaoRwjvh99aQ1dYAxMQpmKizCfDSG6Fkx/mdXpx8ZGTFKn0rZ7XYjkUggHA6bZ+U4UrGzrmKj0cD58+cNqUchN871zMwMotEo/H4/9u/fDwCYnJzE7OwsdnZ2kM/nsb6+bvoIwMTO1NjS/aF7gWuESp/jq59VmH63/aJemq5tnXteU/s0hAm/dxsqrge86QaiJQjsXmFbcfp6ve5ggCnpQAkFGmdQaIRxLd20wMAyBu4NYNMip2eyvb2Nl156CW9/+9tx6tQp7Ozs4Jvf/CY+/OEPY2ZmBn/+53+ORx99FJOTk6aw7uc//3lHrs/4+LijIsKlS5cAAJlMBh/4wAcQi8UMbAfAwVRTgU8BPjk5afpZr9fhcvVLKe3s7JhKHUA/r8nl6heK1UK+mljKxnwjAEbA8xgNxskAGCWgTVMOlB3I/qtHokYC416ZTAatVgt+v9/kv9kEEzaulXq9brwmKvFkMmnWyvb2tomx8Z6E79TrmJiYwOjoKJrNJgqFghHCHKe1tTUAfQNgfHwcMzMzSKVSJvZGD0WPvllYWMDGxgZefPFFXLhwwaxXjU+6XC4EAgHs2bMH6XQajz32GAKBAM6dO4fDhw8jHo9jfX0dV69exfXr1w2Eql4T1z8VF408KphgMGgSwnXc7T2oHiY9L+4lGgWcQxZR5hqgocTr08Dh94ft/m2ouN4EbbfYluLhGuSlomNwXhUclRQ3ngbfeR+9DoUGFRnf12oDqrx4XQqHYDCIq1ev4siRI5iamsL+/ftx7do1ZLNZTE5OolAoIJPJIBaLGaLG5cuXcevWLSPsXa5+fcFer4etrS2TsExL2u/3mzqJgFMYqEJmn1X4UtDwGXkqrsvlcuTtKBxGIadnnRF6UyhIPSlVfArr8XM0LHq9ATVf50fXADCo5t5qtZDNZg0xJBqNolwuO+KRhKj0WfjcvJd6EyTCsGwS55n3ZrFjHjtDwkilUjGeWa/XM3R2eoCpVArxeNzAsuoFsS5hIpFAoVDAtWvX8MYbb5ix03gu12cqlUKj0TB5dblczkDNvV7PFNHV1A7On65nXfeKKhCp4Li43W5HRQ7dmzZyoYaSDRcqCsDP2/FcG10ZtnvbUHG9CRqtRQpgVVgKQ3CjKcTBDcnPUoBRQANOBcYNSGGrJ/YCMPg8/7ZhFFrQVKxf+cpXUC6X8W//7b/FqVOnEAqF8F/+y3/B/Pw8Dh06hKtXr6Jer2NhYQHz8/P4wAc+gE984hMGJqN3uL29jc3NTUSjUQBAPp/H8vIy5ufnEYvFsL6+bmI6brfbFGXlmPEZ2Xc7bsVcq2q1auJyJGlojIxjTFo2YSaNlam1rSw+kjHoCek41Wo1oyw0flKtVk0CcrvdRrVaNcJ4dHQUjzzyCBKJBGZmZjA7O4tcLoetrS1Tx29lZQXlchmdTseMTSQSMQqF3lcmk4Hb3c8vm5ycNFU+2L90Oo1ut5/sOz4+buJTmgPH/jNOuXfvXkxMTJhkbZfLZQwMAKhUKqaqyNGjR9Fut/EHf/AHuHjxIorFIgKBACqViuNYGo/Hg3379mHv3r3I5XI4evQo0uk0Ll26ZPISd3Z2cOvWLaysrJj54jyS+WkbYOqlKvnCRhs01sa9xDVApUlv2UY2uI/0b+5DVXDqWQ6V1+5tqLge8MbNo2wmtdQVO9eNqNabDWPxrCDdmKq0qKS4kSjk7WvTIwMGMKPGS2jZX7t2DRsbG5ibm0MymcTc3BzW1tbwzDPPoNVq4ebNm4ZgkUqlTHVvChMqDjLkCoUCGo0G0um0gbgUMlXmG/tGgaPPoEoegIG9gAEsRCWvKQBka+p1+Fn2lUqNgkg9Lio+l8tlSCUs/kohGA6H4Xa7UavVEI1GTYItae2s8XfkyBEEg0H4/X7jMVFpNRoNB/TJMWI5Kv5PAka73UatVkM6nTYVO0KhEHZ2dlCr1RznmBH2ooJutVoGFmU8cmZmBvF43HjMGrchwcTtdiOVSqHb7edrXbp0CaVSyUEq4Rp3u92YmprC9PQ0ut0uJiYmMDk5iXPnzqFarSKZTJqxIDuR99IYoyoIVURcv2rsqJfL+eP//Ly+xnvxHgpZ24aeHVPWGB6V7VBx7d6GiusBb/ZmV4Wlm0pJGzaEpxtKBTjfp+DWAPhusSv+rVAjrU5N4lXvY2RkBNlsFjdu3IDf78fo6CjOnDlj4giPPfYYCoUC1tfXMTk5idHRUZw6dQqVSsVAPTyWhEF7oA/lrKysmNgJyRBUNExWJcSkypcw0G5jQWhKjQUKH/2bx4RooJ7eqS1w1cJWIczcMCoOKg8AmJubM4qU3uPW1pYp8Ds7O4tIJIKZmRkDzTHhOpFIGFhrYmIC0WjUFD/mnGh8i7EpPl+9XjfeE+Ol1WrVeEx6urFC0kpY8Xq9pmiyKg3OEY0SEnfOnz+Pr33ta6aQcDgcNjl0/Hyv18Phw4cRi8VQLBZNfmA2m8XIyAgmJiZMlXnGHdlH3T8KC9rzzDnVWKQqHioYhcWBAQSpa0R/K0rBttv19N5DpXX/NlRcb4JGYaxeApUFrXpSfdn4WTLt1HPg50jeUEyeli4/r8qJwttOIiUcRiuR36OS6/V6+PSnP413vvOdeMc73oHjx48jFArhs5/9LN7+9rfjZ37mZ/CHf/iHmJmZwdve9jY89dRTmJqawl/91V+hXq9jbW0NzWYT1WoVxWLRWLo3b97Ezs6O+fz6+rqJq1BIakCcfbQD/SqECKHZnhWbeicUQnzmYrForhkOhx2FWDUPi+M9MjJiFBDzyHiPeDxuTt2lp5NKpcxzcH5YZopxLCULjIyMGC+EJwTzuJRGo4FCoeA4NZnQlsZ2qtUqcrkcgMGpyJubm6ZaBfPmwuGwiR/GYjHzN8eoWq2i2+2avDuv14uJiQkUi0W8+uqr+NSnPoVisYhUKuUoj8Viu+12G5OTkwiFQtjc3MT8/DwikQiWl5cBAIcOHcKBAwfg8XhQKBSwurpqYEsyM+1YE+dCj63hWGjOHfebIhR6HSosZV5yTvSkZP2+Eoe47jin3FvDdv82VFxvgmYvYqVs20QNtdY0YKxQIq8BOOENhRf1b8X/AWfdNb2XejXsI+HN5eVlnD17FnNzczh16hSSySQikQi+853v4L3vfS+OHTuG69ev4+rVq5iamsLk5CQefvhhcybV5uYmKpWKYaORBZbL5ZDJZJBIJOD1etFsNu+BN9kooOwx1GdnbE+9WbXEeW9NWFUvgh5ItVp1sMzc7sGBiIwB0eOKx+PmfDB6qlRIfB4qAs4blaXmNVFgapxSYy7JZNKc/ku2ZLVaNfdQ5qomDesYsFix2+02Bz8q/MX0At6bY8HvcC3FYjHU63XcuHEDL7zwAgqFgvken1uF++joKGKxGPL5PCKRCObm5lAul7GysmKSwEnLz+VyZvxUuajRp3EleqFqoCjCsNt7uzEdyby0oUiNaymUqHtTiSHD2NY/3Fy9N+EIlUolcwTED0PTpFduCD2Sg/GSer1uNo4GfQEn3AfcW6+Qn9FGgclitaocbXq4bkbdrJoM3ev1MDk5iX/zb/4N5ufnUS6X8dJLL+GVV17Bz/7sz6JUKuHb3/42pqamcODAAcRiMYyMjCCXy+FTn/oU8vm8YaMptEU6vcfjMXk/PKBRY1M8pJGCkPElWrvAgLJOgU2CBpUCYz9aaJbjySrvFLoa91JDgsV6k8kkjhw5glgsZk4C5n2U4k/iiBoYvE4oFDIKJZvNGkahVslXBcgYJ/vJY1M4b0zCpqAuFAqo1+ummC9h0mg0itHRUdRqNVQqFeNRud1u4xkRvvX5fMaTYlJ3t9vFJz/5SXznO99BOp3G9PQ0fD6fqXLidruN1/POd74TwWAQ2WzWkHh8Ph++/vWvo16v4+mnn0YikUAqlUI6ncbrr7+Ov/3bv3XEtJSSzvVAZU2lyrFT2JbXUMWir+nnFGbkmud+1T5wb9HLVWgZcEKTPwytWCwa0tX/2zb0uB7wRoWhkAUFquLjXPRaa1BjWGqfqLXJTbWbJahel8bL7CRMO3DN1zT21m73z7rKZDK4ceMGIpEIpqencfLkSWxsbODu3bvYt28fnn32WfzlX/4lAoGAiVfQK8nn8+h2u+YIEJbYyefzKJVKJkZGr4AChOwthTD5jBpIV0uZTceJCoKEBI0PaZxCjQQm7OqYAP1E2Eqlgo2NDZTLZXMwIj0OAA4PGYDDE6RBoGNOqE+fj7AnAKNQ6QFpPUf1Qmh00FCKRqPYs2ePKZfECv6qpDVOWiwWTQyQ/aQiHRsbQ7fbxa1bt3D58mXk83ljZOh6Afrw4sjICBKJhDEmpqam4HK5kM/nUa/XMTY2hvHxccRiMYRCIaTTaaysrDiOmdFr3o+gY9cOpEfF+dX4na4LjWWqMagxL91vvDb3l0Kz6r0N2/duQ8X1Jmhc6CoclYChUB09GwpiDW6rQFV6PJu9GakwlRzCz6kyvR9+z35w09OyvXjxIpLJJGZnZzE9PY3HHnsMf/d3f2fIBn6/H9evXzcJriMjI5ibmzPndVEZ0Ous1+vY2NhAMBg0icqsMA4Mjp3gGGnlBEJz9E74fMpI1NJKVF6kllOwUQhpnMgmLPB6FGStVguZTAalUgnlchmhUMhUleAYUumxzp4dr9O0BioIjo+dv6W5Q61WC5VKxeRQKaypuWCRSMRU+Pd6vajX69je3naUnKInxbVAw4IUfGVOBgIBbGxs4OLFi0in0/B6vQY90f6qd7u1tYVGo2GuVavVsLy8DI/Hg0QigWg0atiTN27cQDqdNs+pa5jX5Xvqveo+4hpWw49zoN8B4FBc2lSR6Y/GfhWSp4emxpOtyIdt0IaK6wFvdqxKiRi06Li4SXGmILaVmSoa3VRqhdpBYwb7KUDVulRFRgWlbEdueia0cuO+8MILuH37NuLxOBYWFnDy5EksLi7iK1/5CmZnZ/FjP/ZjuH37Nr7yla/g0KFD2LdvH9761rdibm4On/3sZx2xJj7Pyy+/jMXFRTzzzDMYHx9HPB5HrVZDoVAwhA4VXEpwYD6V2+021j/LQLForqYUkPjA7xBW1POvtCI8TyvWRF6OG0tWFQoFuFwuTE1NIRgMOk50VlYkyTbj4+PodrvI5XIG+oxGo2g2m9ja2jIw2/Lysqm2zqbwVSaTcXiFVMYs0Ltv3z5DEsnn88hkMoasQe/O5/MZxcF1ZnuxMzMziEQiOHv2LL72ta/hm9/8pmEeEuZWuj3JHl6vF9FoFKdPn8aePXtw4cIFk5z82GOPYXx8HIlEAq1WCxcuXMC5c+cchYf5TFTumidHo4VrVSuuqKJTo8WGB5W8Y3vrbBxfRUioILluGIOm8h4qre/dhorrTdJ009hBZjtepTRsbhhl2in0pVakXk+hSdui1M+yb7Q8lXEIwKEI+dPpdLC2tobz58/D4/Fgz549OHr0KGq1GjY2NuDxeHD69Glcv34dt27dQiqVwvz8PBYWFnD48GGsrKygWq0aBQ30obetrS2T/xUMBrGwsIDx8XGsr6+jWq2iVCqZMk8ul8t4HYFAwDyX0ruBQV08ZYYRouN4auxClSMFtxY5VlIHYTQy8yqVCorFIlyu/hEwHo/HMA05lkxiZrxJ6yPSAyP5QmFB9eC63a75XigUMkw/eotjY2Pw+XwGvqvVakbBVqtV069AIOCIj3E8SdDgWHBdlMtlfPvb38b58+eRz+cRj8fN96jgJicnkUgkkEgkkM1mzVySSLK0tASv14t9+/ZhYmICiUQCALC6uoqLFy+aNaGKQvcK1yLH017HCtnZcVuuC9vL4j103Sv9X+Odun8V4WBfNHY2bPdvQ8X1JmjqFXFx6wK/n+KiILMVj8bK1HtS5ahWs8ZmdouHUTCpN6YWJeNiCt14vV6cP3/enIY7MzNjvJ/r16/j8ccfx+OPP44XXngB165dw/z8PAKBgDki5ebNmyYpVo+Zp4fR6/UwOztrEmCLxSJWVlYcNfc2NzfRaDQQDAYd3iUAAzPqGKt1rqxMDaxzTAklqodlW/QATMkkCkVW1FDhxngNPSEqWgCmEgf7XC6XDaFiZ2fHkCbYN0KoJIOwqkWpVDIVRJTUkslkTCUReprBYNB4WPTseKQLz/8KBoMG2otGoygUClheXsZLL72E1dVV46kR0vR4PIhEIjh27JijOkogEEA6nUahUDCKdHp6Gnv37kUikUAoFMLGxgYuX76M27dvm3HSdc51rd6RElx0H+j+UYgeuNcI49zTQOF11OADBnE1jXXZylPXiMKJw7Z7G7IK3wTNjskQE1eFQi9A80oUYuRZRoxlqMcFOA+MZCIr4Cwsqptf42BK1SYLj0JXGVf8rfTiaDSKJ598Ev/8n/9zeL1erK2t4Qtf+AK2t7fxz/7ZP8POzg5eeOEFrK6u4qGHHsL+/ftRLpexuLiIP//zPzfPQWGrivLEiROYn5/HU089ZUoB9Xr9cktra2u4ePEiPB4P9u7da56NHg69IADIZrPI5/OoVCpG0cbjcTNGajjQQ7OPqFDFzv4BMEnZVL6Mwc3OzhqlQkUfj8dNvIgKwuPxoFKpYHt7G7du3TKkCxJUWGJJvQ3OKRWQWvf0/FRIM9ZF74jxJ5fLZRTj1NQUdnZ2sLW1Ba/Xi9nZWezZswculwulUgl//dd/jUuXLuHy5cvGa+S1PR4PUqkUDh48iAMHDqDVamFrawtra2sGumVpKR5MOjs7i9HRURSLRfzZn/0Zbt26hUKh4DDsgIHnQ08ZGCgLjfOSrWrHwnTt6h5RQgrnmIWP1SPjHHHd05hUb42f5z7i++rJ/yC3IavwB7QpbKXWo8aelDCgFqRuIPt63HhqPe4Gm9hW4v08PYVBFHKxlZ9u+kKhgIsXLyKTyWBmZgbj4+M4deoUzp07hxs3buDQoUN49NFHce7cOVy7dg379+9HLBbDgQMHsLCwgJWVFQCDtAAVRrdv3zZVFVKpFJLJJObn5x1KikdzfC9ohoqACkfPDONYadyi0+mYPCK32+2A+zh+FKLKKNMYWblcRiKRcFDklcpN1qTL1a9gzyKzFJTaZxumolDMZrPIZrMAYI4HUYXLo0lYCooxJ9Lzw+GwyZ1iLULChJFIBD6fD/l8HouLizh//jzS6bQ5bgfok2r4+ZmZGYyNjZnz1RhbYgkpVtOYnZ01ccD19XUsLS1heXnZQJYU9urx69xqHh/XvHpHimRo7BcYUOmpvNRwU0SCe1XnVhURDRF7H/6wKKr/P9rQ43oTNE0yVgxdvSplzAGDc5YU6uAG1c2rr/NvFeT0jngtvqdxNJsFpZYtcG8tNt6br42OjuL06dN429vehhMnTpiiuZ/5zGews7ODt771rRgZGcHrr79uavTNzs6i2+3i6tWrePXVV5HP57Gzs+MQjHZ8z+fz4emnnzZsRT5vpVIxBx9ynJU5ybynXq9nBLwaCBobo7Ck8GUlCXphvCeVAOeHHhXjaaOjo1hYWMChQ4cMvEcvgdcA+go7nU5jc3MTKysrJq5JCI9sNVbIcLkGhW49Ho853JIHdZIswQK6wWDQsDTHxsYwNjZmGIcTExOO51hdXcXGxgb279+PyclJnD9/Hq+88gouXLiAfD5vPBUq91arhWg0ivn5eTz99NMIBoN444030G63EYvFcOzYMUO2iEQiOHPmDA4cOICRkRGsra3hj//4j7G1tWXIM4QddT9wDLi+qfA5fro2qdyVZMHfusapeDRGpcYbvTcyS1Vx2ntOlZvCw71ez8H0/EFuQ4/rB7TpgrY3gx2rAuBY/JqAq5vZhrEosLkRbXagelw2jMLPU+iqEKDgUFYb7+H3+w30dO3aNQOVPPHEE5iYmMCJEydw48YNXLp0CW9961uxb98+3Lx509CxT506hYMHD6JWq+Gll14y8Jg+N+NC9Xod+Xwely5dwtzcHKampjA+Pu7wRtUw0LiE3+83MBIFlu116pgD/XPBNPhve1kUfnyNByhyDHdjuKk3wDEsl8uG1k4lxIK3FJLVahX5fN4ocRobLpfLsBcZ56OX1mw2zaGdhAZ1bPi8/J/rKxQKGSH0+uuv4+rVq8hmsyYZuV6vOxicPBE5FAqZ9cy5KJfLRoDv3bsX8/Pz8Hg8yGazuHLlijnaxl5vnHeFtXV+OReaw8a51XGmUlGjUY0vVVScMzVebI+KfdTntK/JvTls37sNFdeboNkEALXgKIy44NvttqOqhP09GwLRjaRWKH9TMFDA8vu7eVM2Y0qFADAIhGtgmgKiWCzi8uXLcLlcOHHiBCKRCA4ePAgAuHnzJjKZjPFKstks7t69iyNHjiAcDuPQoUNYWVkxNQ1VGVFA0tOkACe0SKUEDIgGfB47fkiKNZU0x0vrIdI4IMTGeIUqKY63xzM4YVi9ZZfLZaBIPVxQyQac72q1alh/fHaSJKigWICX48A+M26k3rutyHl/1ook6YIeK9ccWZ7RaBRutxvpdBpvvPEG0um0USKaNsCqH7Ozszh06BBcrv4Za8lk0vR/ZWUFrVYLs7OzOHHihGGI3rlzBxcuXDDKWdl+WgWF46pnn1Fpcp3ydTXMuEaVdKExLn5GG8dVG6/BedOUAxtaVNTDJmwM271tCBW+CZoKNDbb+gWcR47YysOG8Pg9JWsoBLibt2Vj+VSSJHRoLEC9F938vBcFilrtTHD9kR/5EbznPe/B4cOHUS6XcevWLbz88svodrs4ePAgRkdHkc1m8dprr2FychL79u1DMBhEJpPBN7/5TZRKJRNTYHIsn40Kwe3un/rLE5apjJlYS6gsGo06jqBXYgUFYjQaNUnHfDaWYqIXZFe5oPBmwF49OK/Xi8nJSUMX54nQsVjMUNJJqlhdXUUmkzFJ2I1GA+vr6ybetbCwYOBNek0KFZOEooKYUCgwMJroIQIw8cJEImHGNJ/PA+ifWn316lW88MIL+NrXvoZAIIBgMIhyuYxGo4FUKmVOCz527Bgee+wxHD16FJ/5zGfg8XjwYz/2YyiVSrh79y5WVlbgcrnwcz/3c5ienkatVsMf//Ef48KFC1hbWzPKnsqz0+kYggS9JVsh2UqD88VxUSPL9qaofNQAYUoCE695XdadVM9P8ynV2NQ+9Ho9s38UpfhBbkOo8Ae40bJUuEetb/2holArTmE+9QwU3tLv6+sAHPejJarvqeWq91ZhrgrW9gwpTIPBIC5duoRUKoXDhw8bC/z69evIZrPY3t7G3NwcZmdnsbi4iPX1dbTbbRw/fhzhcBgHDx7EysoKtra2HOxHZbBRIOXzeROvIXuNn+WYq4FAT00hVc37si19elm8t8YHlUWo/SJkGIvFTAyKDEKfz4darYZ6vW5gRdZR7Hb752+VSiVkMhlD+2dlCY1t2ueX8Vn5PPY48XlZ8xAYFCxmTUKt+sH8Oz2MlN/jGlDSx9LSErrdLk6fPm0Yktvb2+a8rYmJCXQ6Hayvr+P8+fNmzrWQr+YdasyKc8emEKw2Vdw6V/ZvNlWKJIYoE1e/p96abVRqjIuQ+pvQl/g/3oaK603QuMgpUAAnXs7FTladspOo6HRz2Dg9MGBBUdDbgWpWquj1eg4qtsYQVEmq16ZCEBhAMQrz6Cm3Kysr+Iu/+AuEQiGcOnUK09PTeOqpp7C1tYXLly/jwoULGB0dNdTpzc1NXLhwAUeOHMHRo0cxNzeHfD6PCxcumIKxFFi1Ws1B3c9ms1hbW0MwGMTExAQOHjxoWHFqIPC5+ExaPYMW/ujoqFHGkUjEsO6YgKxxIXp2IyMjphSSVgMhIYQKnnNOz0LJHmQVLi0toVgsotFoIBqNIpVKmTgi50e9OwCG8cj5ojKktU/SA4Vxs9k0cUl6cp1OB1NTU0Zpfetb38LW1hYCgYCh5wMwZA8qdLfbjcXFRSSTSfzjf/yP0Ww28fnPfx69Xj8H713vehdSqRRqtRpefPFFfP3rX8fq6qrxtGh02KWsuOY55lq1ReNabApf8zuas8e1q/CojiVrZlK585o0Bur1uomraaxMIUoqYFvpDtvubai43gSNAt9OBlayBXBvgV1ttlemFqYNFSn2T+VC5aPxFjtGwPuql8PP2nlBFCLAIEakUEmr1cIrr7xirj09PY1IJIJOp39EyvLyMrxeL1KpFA4cOIA33njDwI/tdhuhUAiHDx/GzZs3sbW1ZZS2TVZhPyqVClwul0nM5WnL7Luy0ezxo8BJJpNGSQWDQXOQIoW0stt4LRIUAoGAQ7BqzEoJIYSgmLemMUUqSXpswWDQnHxMJatWvkK3mvRMD8ZeN3wGepOk7dMLrNVquHjxInK5nIPdCAyU1tTUFNxuNyqVChKJBCYmJrB//350Oh2k02n0ej1MTU1hYWEBsVgMo6OjuHbtGs6ePYsbN2441qi9TpVwwc/wtyIBajjpXKgnpspM4T5+XhWOKkPuyd28V4XtNUbKtcT/hzGuf7gNFdeboGkgWRWEegK6IQnNAXBYcfrbDvQrbGQHrnlt/bH7oApUoRKFWTTWoCxGeloKKfZ6Pdy8edN8dm5uDmNjY+h0OuZIjTt37iAajWJ8fNzENrLZLHK5nBGSfI2kCvU+aVXztWaziY2NDVSrVYTDYUSjUUdNQz6zeo/qATOxlmdtUWmpsuQ16L1q8jHJHPR8d1MWzJ+it0WSAwCMj4+bUk5MC1C4lH+rAKa3QMVlQ2n2mqFnvrOzg/X1daNgu90uSqUSbt26hUaj4YgleTz9CvPJZBITExOGXn/gwAHs2bMH0WgUN27cwPXr15FMJjE3N2eeBeizE69du4ZarXaPIuVv9k/hNv62FZQadXwmNUTUANS9wTWk60AVlypDTVLmWOj828rT9uqHiut7tyE5403QlFRB61sFqSoCeyOo0OTmUqFrx6R4Ld2UdpBb4wO6gfm3DR1yE6sQ4X3YV43/qHKg9/RzP/dzOHPmDA4fPoxOp4NcLodvf/vbWF1dRTQaNYJTSQJud/+ww0AggOXlZSwuLiKfzxuLlzEkCjzCrX6/H2NjY4jFYkgmk0gmk+Z5ycQjsYTFbVmYl9AfyRNUNmTocVw0vkcPbXR01MCDVKSVSsWwD3nMvVaALxaLqNfrqNfruHPnDur1OtrttimsS7afxhRVqWilEDtfUH+4Dt1utzm88+bNmyiVSqYWoipJKloASCQSeMtb3gKgv3fHxsYwNTWF48ePA+jXGfzmN7+JqakpvPvd78bk5CTGxsZw9+5dvPLKK/jUpz5lYnbsv3qFXIf6txJQVCnpQaD8LP9mAr+SIkiSIGyucVo1Jvnc/GH1GTUYSPIgJKvxQxqHdvzrh6ENyRk/oE2FugoSLnhd7PxtB4eBe49aAJzWJTBIdlZYUoWdCgS7P8C9NGGbUqz90NgXBStZdnyNdO4XXngBzWYTc3NzCIVCpgpGoVBApVLBwsIC5ubm8PWvfx3Hjx9HPB7H+fPnUavV8La3vc3kKb3++usolUrodvvHzVNw6diMjIwYJh8A40HZUB/nhPEmCkUqRSoXjZ/oWJPOzvEhzNhoNMxxJyyhpMqU8TMKU16LtH4qEjt3jn1nXwAY78j2iFVo2lAv87uoHHWN8HMkhoTDYUxMTMDn86FYLGLv3r3Yt28ffD4ftra2kMvlcPPmTczPz+Po0aPmbC2Xy4WXX34ZX/3qV9FsNs26IONO43GqUGxhr16OjgXhb13nVIa6Z3TebC9M/1ajTb9r7wVdZ2q8KVxoQ9HDdm8bKq43QVPaLzCApQA44Av1Zgh/adkfVSIqyDSGxe/Z3o8NTSo8Q0Fnw4ZqTerG1hgd76+enyo23o91+FivkOd55XI53LhxA8Vi0ZRzInQ4Pz+PXC6HXC4Hn8+HmZkZlMtlLC8vG8q8LZA0gZksul6v5zgent4Ei8jy+1RcFKQ225LkGT67TYJwufrlm7a2tnDhwgVkMhlztpTP5zNsyomJCczPz8PlcqFYLJpTjBU2UyXM/hE65Flm9OoIGXIOmMjdbrdNLI2vdbv9qiBaJZ4MQ84Vjzk5ePCg8UTpOZ45c8aUgjp//jxyuRyazSaeeuopzMzMmFOV79y5g6985Su4ffu2GVOuHRoDCg/a61rHXRWGjSBo3Im/1RPietbra26Y7guNk90PIufeVehejT/tx7Ddvw2hwjdBI9ZvW9DcTEqTB5zZ97tZo5onwrOWVLFRMNgwCzfgbjEeFQSMN2mMwd7UvD7/V9adnhhsxyAikQhOnjyJ97znPXj66afRarVQLBbxP/7H/0ChUDDJq41GA7/0S7+E0dFR/Mmf/AlyuRy8Xi8WFhbQ6XRQKBRw7do1U5pJ4UIV0m6329C9A4EA9u7di1gshsnJSZPLFI1GzU+tVjPXHB0ddZzkrIaF9tPr9SIQCKBQKODKlStYXFzEhQsXjBfKzwL9ONb4+DhmZmbgcrnQaDRMuSrCLYQkafDwWTqdDur1uoEze70etre34fF4EAgEHJ5HuVxGNps1ECI900ajgbt37xpGJD/PGFkoFMKzzz6L8fFxFItFlEoluN1uPPXUU6YW4fXr13HlyhW0220cPHgQhw4dwqlTp+D3+/HGG2/gW9/6Fs6fP28IOBqr41pReFzhOmAAD3LM9cBLfoYnZdO7Uro7vTmuWb/fb9icXMu8D3DvOXYce0L7CmlynSnUaJ91x3qRwzyu+7ehx/UmaOrNUDmoUGKjElGFodab0sDV4tPirTZsxnvqdRTyo4VPWI+vU8CQsqwensI3NgRKoaGeGQV4r9dDPp/HuXPnEAwGcebMGaRSKcRiMTz33HN44YUXsLi4aOj6N2/exNTUFJ588kkUi0XcunULa2trJq4zNzcHv9+P9fV183w2e4xVISi0vV4vyuUyms0mSqUSqtUqDh06ZOJUPp8PzWbTHG9vQ4AUliRgUABXKhUsLi7i6tWrWF5evudU5na7jXq9js3NTRQKBWxsbJixDAQCiEQimJubc5SQIjxaq9VMrUKgn8isDDzbE6YiqlQqKBQKcLv7ZbNarRaq1apRUjRg6MF5vV6Mj49jenoa3W6/ZFMsFsPMzAxGRkaQyWRw+fJlLC0toVwu45lnnsHCwgImJyfh8XhQKpXwrW99C6+99hrS6fQ9XriuLfs9W6mp50KjjuvMXs9cuzZrl2uAjeuYY6SvaWUZvbcqNxuqV6SE68DOLxu23dvQ43oTNMI9VDK20ONGVCFnY+2EAxUG40anQmu1WhgZGTHWvW48Wqsq3GyKPBWXHqTI72iBWcXzCZ/xCHneSwWETRih8n3ve9+Lt7/97Th48KApD3X79m1kMhlsb28bAfjWt77VeErr6+tIp9NYX19HpVJBLBZDPp/H5uYmKpWKUUYkRNADUziQXinQr0nIa585cwYTExPm7CoNuPM7hBmVRVgul5FOp/GNb3wD29vbRtlR2CmzkRY7zyJTNifjbW6321S+93q9pkBvJBLB6OgoxsbGAMDEqjgHFJpra2vI5XIm/qYKivlMbrcb1WoVvV4PwWAQR48eNQdAcrxOnz6NTqeDzc1NvPzyy+h0OsZbnJubw6lTpxAKhTAyMoJvfvObePXVV/HVr37VKCHmxbGIrsJuCodSIbjdblPFwj6HzobrdF50/Hhvu1akxq8UNtTx0Zgt+6Pog+5TeqwK9dvG5g+LEvs/7nH93u/9Hj760Y/iX/7Lf4lPfOITAPrB3n/1r/4VPvOZz6DZbOJ973sfPvnJT2JyctJ8b3l5GR/5yEfw9a9/HeFwGB/+8Ifxu7/7u45SKsPmbIqFKyxCy43KSIPkdnyJ2Dy/xw2sioTwhr7H76uVTmWnVq1eV+FENv0s3ydksls1ED4Xm0Ivo6OjePHFF1GpVMzhkpOTk5ifn8f8/DxqtRpSqRTOnj2Ll19+GcvLyzh8+LDJERofH8dLL72EVquFeDwOoK+EqGzptdrxNgpEzkGtVsPt27fR6/WwtraGmZkZ7N+/HydOnLin7I+O3c7ODur1Ora3t5HJZHD37l1sbm4aRcWx7nQ6SCQSJk6knmyv169Wr3PFYrutVsvh3bndg0TcbDZrDBUWvdUqFJubm4acEgqFzLNyDFRZ8qiRubk5AP39H4vFMDc3Z7zcdDqNSCSCiYkJHDhwAMlk0hTW7Xa7WFlZwTe/+U1cu3bNQdohEsB1ZXta6g2x2fOmhpJ6OnYMTPeBEpx0z2jenPbjfkQo7iOFKhXGtFMO9FnfhP7E/9H2v6wpzp49i//8n/8zHn74Ycfrv/RLv4QvfOEL+NznPodYLIZf/MVfxE/8xE/ghRdeANAXPu9///sxNTWFF198ERsbG/jQhz6EkZER/M7v/M7/t6f5AW02ddde1Aq3afLibgqAn7MJFArLcYMqKURZWBQYtmDgZ9gn7ad+VjcwvUOFcmzlxfupRcx4zeuvv27q1u3duxeHDx9GOBzG6OgoDh8+jEAggJWVFSwuLmJ1dRWPPPIIJicnEY1GsWfPHqysrJjxiEQixlMhfKj0dKX1szwUhV6j0cCtW7ewsbFhiv3yHKlEImFqGVJJVyoVFItFLC0tmRJHrVbLUcOw1+tXgmBSsR5zQWuerxMydLvdhlrP8SWFnwqNZ3ABcMSm6NXRQ6PyoMCnAOfcJBIJHDhwwECD3W7/5OPDhw8DAF544QXU63V4vV488cQTSKVSplahx+NBLpfD6uoqrl69ivPnz6NarTrWKvvPfnB96zpRZcb1y3Wnno+99nRd6nrlWtM557zpvrLXuO0B2giFDZfzHja6oCjHsN2//S9BhZVKBWfOnMEnP/lJ/NZv/RZOnz6NT3ziEygWixgfH8enP/1p/ORP/iQA4Nq1azh27BheeuklPPHEE/i7v/s7fOADH8D6+rrxwv7Tf/pP+JVf+RVsb28bSOl7tR82qJCQlXpUavkrXML/qYDopSjMohRiwoNKylDrkBasblItfUOrkQFlPXZFIRX1qCi4+AxqgapSZd8VzuQ99RldrkG191QqZVh3zz33HGZmZuDz+VAoFLC6uoqvfe1rWFlZQTgcxjve8Q5zvXq9bnKiKKyq1aoppVSv1+FyDZiBHHslLqg3TChodHTUsBwJE7pcLkMnL5VKRqARGgNg4mXdbj//i5U8mLC8vLwMl8uFSCSCRqNh+uf3+03x23a7jXK5bIQuE7E1jqmJ35w7zg/nnBUw+DwTExMG8mPV+NOnT5uyT1//+tdx9+5dnDp1CsePH0cymTRe4vb2NnK5HPL5PF599VWsr68bAoc99wrlUZmRLMLqKvyeGm6Ak/kKOA+OBAbMW0UbdA+p8gwGg2b/qXLhPlLjj9/T1AQ7pqWEEBvO1D33w9L+j0GFv/ALv4D3v//9eM973oPf+q3fMq+/9tpr2NnZwXve8x7z2tGjR7GwsGAU10svvYSTJ086oMP3ve99+MhHPoLLly/jkUceued+zM5nK5VK/yvdftM2GxbUjapJjnZOlm4kNm5Ohel0k/A7FLKaPKlCGsA937ehPb6mQXG9P/ujQlOpy+wPv2+fj6RWLZX0+vo6tra2cPfuXbhc/SNSHn/8cUSjURw9ehQulwsXLlzAlStX8Oqrr+LIkSOYm5tDp9NBOBzGjRs3DCNQYddsNmuKqQJO5h7Hgp6SegTNZhNra2vmefi+Ckwdb9sTZXyQ8atoNGpIG0pZd7vdKJVKhgAC9L0pxqkUsvL5fMYDoTCm18Y+co5Yl5DsymQyiSNHjsDv95s6hGNjY0ilUqhWq1heXsbdu3cRCoXwyCOPIJVKodfrV0HJZrNYXFxENptFqVTCysqKEezqTXPdcGx2Y+2pN64eCtePKj0aODZCoOuGxhXf15ga9wDvq7ClfU+9JpUXlZpCn7ofVEnqGPwwKa/vt33fiuszn/kMXn/9dZw9e/ae99LpNHw+n4kZsE1OTpp8lHQ67VBafJ/v7dZ+93d/Fx//+Me/367+wDQKbFrrhOQ0eAzAsVGAgVC04UBSrLm57cA3cO8mUoWp76kA5Pfs+6vnBQwYWWrx8h6qvNh3FeLaT4WAqMQpUPP5PF588UWk02lEo1HMzs4iHo/jwIEDphzU5z//eXPGlN/vh9/vx/z8PDY2NgxxAgBmZ2cRi8WQyWSQyWRMX9RC5xhS2RHeUhKGQrMqKKlQ/H6/eV5eR+N/9L44bsyNCofDxnumgUdPiUQTzR3ifPBHPWVgECfSeRobGzM5ZCSHBINBHDhwAInE/9PemcfoWV1n/Mx4PJs9i9cZGy+YEmL2ls1MK9QFC0JRl5Q/UIRalEatSExFCkIJ3aCtVKJWatVNSFVb+KtBSVXSKiE0BIIJxGwGFxuCgxcwhLHHNp7F9szYnrn9w3re+b3PvN8YJ8HOh++RRjPzfe9733vPvfec8zz33PvOi71798YPfvCDeOedd2LZsmXFYcd6Q/P3vve92Lt3b/T39xeJJRqDTt1xXEqcIvTgRuOeWydUXtWaEREl9cL/db+cOp0f13R5EgcDM9ZR/ajPtAWlihLPcmI5Kcf1zjvvxB133BGPP/54kVJ8KuSee+6JO++8s/h/eHg4li9ffsqef7qFC75cVGZ6uSI6fU8kEBHTaDkeI0XqjusZmnxEYaL6mLnF/WMR5YV0Oi3Vi2tDdKa1kjn8R1QRUaOQYHNzc3Fg7eDgYLz88svxzjvvFIe5/tIv/VJxZt75558fW7ZsifXr1xd1uOaaawqDK4px7969xfmAs2fPjtHR0cLwiiqLiBLaIu3Z0NBQbFZW4oeoQZUhOk761qnrapP6RzriHq99+/aV6Njdu3eX0Jv6Si+X5CG7viYza9asWLBgQYHwFi1aVPRXc3NzjI2NxeLFi2PFihXR2toau3btivXr18cPf/jDmD9/flx44YVx1VVXRXNzc2zbti02bdoUmzdvjjfeeKNYe+PYUz2YTMT9S1VbCtTXnm0ZEQV9yLnh84h6kbMTOiatp3qqPmQ0JiYmik3cehcdHbDGveherTHqmRq/qj9Rp7MgWabLSTmujRs3xsDAQFx22WXFZxMTE/H000/HP/3TP8X//u//xpEjR2JwcLCEuvbs2RO9vb0REdHb2xsvvPBCqdw9e/YU31UJ37h6JooiNd8kyfUiOgGPHBkhykCRiuH1/hkzqXyB2qk/TnjWM6J8FI9HrfpehlPtZVRKdCVhfYjoSB/OmnX8Ve+Dg4Oxb9++aG5ujnPOOSeWLl0aK1asKIz9nj17Ytu2bfHiiy/G3LlzY/ny5UWyw+DgYLEPas6cOaUXMh46dKg4H5COl86LmYV0XOwbGT39rbYLscmAy7By7x0pMa7DyHjq2UQMjlYioli/uuCCC4r6ae+WXkQ5d+7cuOSSS2LWrFnxzDPPxJtvvhnj4+Nx4YUXxrJly6Knpyfa29tjdHQ0NmzYEG+88Ub09/cXx2KJFiZV7Mdi6XMmNugzidrtxt5ZBLZT1/E5VY5NgQOpVArRkeah6qexTwZCY0F/V80j9r8HnVmmy0klZ4yMjMTbb79d+uzTn/50rF69Or7whS/E8uXLY9GiRfHlL385brrppoiI2Lp1a6xevXpackZ/f38sXrw4IiL+5V/+Je6+++4YGBj4QA7qTEvO4InmmnxOm0WU03hJQ8kZcF2G5bEsJh1wojExghGrHCGNJJNGuDahexSFRkTJgPkCPR0c94jRiRHVCc35kUCkmBoajic09Pb2xic+8YniGKWmpqYYHBws6MV33323cMI9PT2FUd6zZ0+MjIwUL6FsaWmJkZGR6O/vj3379hXPGB0dLRCU3qCsdk5OThbRN89n5AkmTPbw/Vw0lor6U5raE8d+JkJX/9GYC1ktX748enp6oqOjIw4dOlT0T2trayxbtizOPffc4nDd7du3x759+2L+/Plx6aWXxrJly+Lss8+OY8eOxfvvvx8vv/xy7NixIzZu3FhyvjomieNYyJBBivREx86gikGP09wan3LsTETh2qLqxeCM2bssi3OOjsnry0OAmTiia+gseS+dIMc5nepHWT705IyOjo646KKLSp/NmTMnFixYUHz+mc98Ju68886YP39+dHZ2xh/8wR9EX19fXH311RERcd1118UFF1wQv/3bvx1//dd/Hbt3744/+ZM/iXXr1p3RqGomcc6dyEtGIWLqKCc5CEaqjMA5EZ3fj5gyaBFTKfgykD7hFM0zU0p/+9qFnBQzs2ic6OxoIFhPR11cQ+N3RCFCGzLkeo38U089Feedd1788i//csyfP794ceXKlSujqakpDhw4EMeOHYv+/v5C37Nnz44FCxZET09PvPfeezE4OBjNzc0xf/78IpGhqen4q0YGBwdLCR2k6NinWpeioST6VPuYPKBT7dnH0it/q1yhB6E1OcjOzs6YO3duzJs3LyYnJ+P999+PY8eOxcKFC2PRokWFjnfs2BG7du0qXhvT0tISV155ZZx11lnR0dERhw8fjnfffTd27NgR3/3ud4uzINXHPEKLxl7jjWdr0tgzrva1IN1HNMqgyVkHzReNkZkCNncuckzSp8Y86+gJJKyzj0X9zbqob7nlJEu1/MR3/P7d3/1dNDY2xk033VTagCyZNWtWfP3rX4/Pfvaz0dfXF3PmzIlbb701/uIv/uInXZWPjPAVCBHliVEVpflE4t9EK5y4jDIjokAtQlR0Lk77eSTrESsnPJGSGxWPQGnAiOScBqPhoYFh2/27lFK88cYbMTg4GJ2dnbF06dLo6OiI7u7u4kik/fv3x969e2PLli2xY8eOeOutt2LBggXFKzk6Ojpiz549xVt5I6I4bkrv89IJFETC3Oum6Fz/u9Fk5C19kBYVAhUFSScu5EEKN+I4iurs7Iz29vZig7H2hOnYJu2Fe/fddwuHJWOrU9zPPvvsiIgYHR2Nt99+O7Zu3Vrsl9Mztaam+jgNpnGtTEenkIWIJELVPn45DhW4sTyN+6r9gnqO659jk/3DccvgTHNFSJvzgc5O7VHQKUfl+86y1JZ85FMdCKlCOgVORCZliHbi5FHmk4yJKJeIqUlL2k/P8CiZSSBEdUyh5hFV3LSqz7iRlwvmEeXN1qJ7aIQ8UYXIk85NyI+OXGXKeYi+0v6krq6u6Ovri1WrVsXq1auL92MdOHAgDh8+HCMjI7Fz587Yt29fvPfee0Wm3bJly4r1n6NHj8bAwEDs2LGjMIJ79uyJ0dHRYmOv2sQ+1HoZ1zvkaNQHc+fOLbaGcB1RSSGNjY3Fm4alEwUaKU1lLeqk+8bGxuI1IkpE6e/vj/7+/uJU/La2tujq6orly5dHd3d3dHd3x9lnnx2zZs2KAwcOxPe///14880347XXXovh4eFpJ8/TUTmNS5pP44KOISJK+/2oC3dyHswx5d8djOhUp8PpqHhsGdGbPvPzPpuamoq1T6IntVEBptOPnINVKPNMkHzI7kdUOJk5kZi0ockUMZV664vB5OZ9jUxUkjsHCe/x1O+IqYnuiEqfMQLn346yaCTosNj+iCkUxXvoqNQOp0uFYogalSE4NjZWZCEePHgwFi9eHF1dXcUZfEeOHImOjo4YHh6Op556Knbv3h2Dg4Px9ttvR1dXV1xxxRXF+6eIrDo6OooEDyEQnc3Y3t5eOJqBgYGC/iKKlrHTKeVHjhwp1lDmzJlTBCXj4+PR0dER8+fPL/Z0tbS0FPrWG521uXnu3LmxYMGCOHbsWLz88suxf//+SCnFihUrYt68eUUmYXt7eyxevDjmzp0bHR0d0dbWFiMjI/Hqq6/G5s2b47333iuOiFK/Eg0TxWisqd9I//IaBmE06hyHdGB0bE5newIFnQvHOdEYxelsojPOUQWLdMIMEJ1a1Pcqh2ttZ5rzOlnJiKsORMkMoklooIV0IsrpupzcEVFsWOWJA5zsEVMnYoi6oiGhk4uY2nRZlQhBak5rPk5RqkwJDRTpwYjph4/WcoJqAyNd3q8yVS9HmjLUQmKtra3R3d0dF198cbEP7Pzzz485c+bEyMhIceq6jnrauXNnEekvXrw4zjrrrJg3b17xNmbKgQMHYnLy+FmHStSQ7ok66bzl+CIiuru7o7GxMUZHR6OlpSU6OjpiwYIFcfjw4Zg9e3YsWbIkOjs7S4hyaGioONT3vffei/7+/jhw4EDMnTs3rrzyyliyZEm0t7cXafONjccPrVXShTIoX3vttejv7y9tIFZqv8aWRHUnmnda2ulqv1fjimOHZTKtXcIgjmNAvx3tabzzGqfInRLXmCFdy7oS8daaR742p//PpNMzMuL6iAppNU1U7uvheo9Hk7qHi/k06LqGk1nfucHxqFZG39EREyac2uOanEekEt3jhs0Ngr5zQ8PPGdHzHq0vkCLi2XFyFNpj9fbbbxdHFy1atCi6u7ujs7Mz5s2bF11dXTEyMhLz5s2L/fv3x9jYWHGsUUQUiK23tzcmJiYKB6Q1NW7GlT70xmX1sZy/To1Zvnx5sadM5yvOmTOneKOxDMHOnTvj0KFDMTExEW+99VYcPHiwqOPk5GRcdtllsXLlyli8eHHR/2pzRBQvjdy6dWvs3bs3hoaGiteuMPiR8/XkCaISfaY+9rHiCN1RjpdFmtjXniQcG3Q6vMZpQqFeMhUcy1VrwxynTit6Zm0Vvcn6ZjmxZMdVB0KKrqmpqTgX0E/F4B4tTi5drx+VqYmoCeQpvnRmVRGq00IR0zMgPVrmegITTmo5VKc6ZejcmdEASmgY3JhQd6yz1j5aW1sLYymaTwkKCxcujNWrVxdUIpM6Dh8+HKOjo7Fz587Yv39/8ULGAwcOxPbt26el7OvVI3PmzIl58+YVa3AdHR3F+YSqX2tra4GGdJJ9Z2dngegOHDgQw8PDsW/fvsLp9vf3F/co5XzOnDmxZMmSWLx4cVx22WXR2toaAwMDRTsHBgaK0yJGRkZicHAwdu7cGUNDQyWakptomWTA4MKNs9qvYIfto+NjX3PNiGNWY8qDIwYvHuBonPO5fJ6jQo5zjiPWj22LiGlzjCfEeACoa7j25Y41y3TJVGEdiE6K4OkXmlxESYrWNQlEYxCVVFEX+s1Jr898kglh6Xnam6Oz/egcndarqhMjYp5UwPr6vi5PyqiKdNkuTwTxyFrIpioaVp2Z+TUxMVG8vLGjoyN+5md+JpYtWxarVq0qPp83b16klEovnDx06FDhmAYHB4sDcMfGxmJgYKDYiK91rMnJycIppZSip6cnli5dGu3t7bF9+/YYGhqK1tbW4kQLneAhFKjN6XPmzCnW0kgjNjU1xbvvvhvbt2+PRx99NPbv31+8bkVBhdZtpAPpRvqSPj2YYco31zPpjBhkEJmwXzm+Of48wUhlCTELUXsdGQRxbSui+iSPWvOKQRfHOueMkLOSQTzVn/dyTUxjoA5N848kmSr8CAtPF5Cj8GQKIhAu+EZMGWs6k4jqM+C4d6iKFuEz9VzVy9P26eR4j1N1TnNW0Sksyw2WI0GK6usZarqfzpFrDdKPjKSiZyGmvXv3xv79+2NgYCC6u7tj5cqV0dnZGT09PcVLEmfNmhXz5s0rUXERUaCitra2iDi+uX9gYCBSOr5u+NZbb8Xhw4djcHCwaJfebdXa2lq8AoRnIJ511lmxcOHCWLZsWcydO7fIytQxWDo2SYf2Hjp0KF555ZV49dVXY8eOHcV+Mhp/6pA618noFDp+7llTX0eU33TAflMf8HlV6eFOAVfRi0zQ8UxFD2zUXq6T+TjwOePOh3rRNXJutZgKtoV1ZbJGltqSHVcdCFFKxPT9JFXOSeInvGsCcuJ6hp6u0eTz9wbpGs8C0/98hYm+E63kxkFGifV0gxkR05wxI1NdR4dDpMU6Ow3kC/6kbiQqV5951t++ffviwIEDMTAwEM3NzdHZ2Rn79u2LRYsWxZw5c2LVqlXR2dkZbW1theNTarocV1tbW3HGohJDRNtp3erw4cMxNjYW4+PjsWDBgmhvb4+urq5Cl8uXL4+Ojo5YtGhR8W4xrZEJrWhDter79NNPx+7du4vAiOjSAyE32Aw2qCvvO/YPdcnx42uXrn+OM/7QkdVyBMwgZQIFy2P/C/lUtcvXynxtlfNADt6duBCrnyfpDi5LbclUYR2I9k1ROHk4QWno6dBI2TDrjxGi0yuc5KQMJTQe/J8JDu7AuI7Ag3VJgeo5VVRO1VoBqSgaMV1HhyfjzRPY3XkJWckIcV3Gs9X0LDmziYmJUtJMY2NjdHV1RXt7e3R0dBSp6KKQlOihNS2tYXZ2dhYZiso0pMPWUVFz5swp6Eetyw0NDcXg4GAcPHgwNm7cGNu3by9OxJiYmCjW3kh9EdUIedGQMsGARp36U1laJ6T+Hf3obyJe1YenqDtdqDJ53qOEAQfHPh0J9yBKn6RD6dAUsDni8pPgVXduQZHzJ+XJ8azn0pG74z1TJFOFH2HhBImYWgPgwjUnvK6RM5LRF9rR31rfOXbsWBHx03jTQGiCt7a2liLKWutLniocUT4Al3SlDB+dHR1i1foBHSINr3/PKN5pQt7DCJoL7DSCjIi57icjJyfCV4Ps27evMOp6hk6pmDNnTrE/qre3tzh+6eKLLy72XNEJkFptamqK9vb24jOdofjyyy/H9u3bY+/evfH666/HgQMHirrQSSvBIiJKm6M5lvzNw9JjFU3HYIEIohai5X3MNNWYoY59zOs7Bi9E3eqPpqamGBsbK+mejkz1JYPgz2CgRefFRAqyFBpXRKQc38wgrTpA2RF/lumSEVcdiLICeXAuI36JU3O6lg4gIkpvPNbnpO588yupPjo/dw6kAavWnvQsGmJNdK7hMfr1aJ/GyZ/na1s0eLxGhkUvYBwbGyvKZ0ReRVc54uNaHZ3n7NmzSyd/0OjqlRx8GSOf397eHuecc050dHTEypUrY8mSJcVGaJU7OTlZvInh4MGDceDAgXj66afjvffeiz179hR1am5uLiU0CA1zvxiTKdzptLS0FGPAqWHpmMhVnxFNO1rybRfUb9XZgwrYdI2+J2PAMjjWGGzQwXBMqu10aCqX20GICLXXkY5T7dbcEcJzZzpr1qyC/uWYoq7OJMeVEddHVOhUIqYfUqsfnoRNasL5c90nuiIipjkJTVAZM6chVR9eT5REB+GRKQ0E75ET8owqGi6nbfQs6iaijJ6qImo6HpUhOo7t8aicBrcqRZq6p/FR9M8Ej4aGhmhvby/2celZSs5oamqK/v7+YhNzd3d38U6wI0eOxMjISLz77rsxPDwcQ0NDMTAwULS5ra2t9Moboi0FCgyGPKPPaTE3ro2N5eOb9DnXqvjqlVqZnRxHvE7BEq+dmCgfJ8a6yKn4OHAn5X3ndCPnB4NDR+K6xyl831KiMjk3iTR9vLK9WWpLdlx1JD7g6SwYydKh8Lw7RbROX0SUD7blOW1VG4RVDiNZp3/orLx8d1r8jrSS/q/6XGUwMme0KmqI96pN+tyRK9duWG9SZTRy0itpLqJeIhWdYMGyjx49WiAaoraIKN7/dfDgwRgYGChl3DU0HH9tijYyOzpg8ojS6vWyw6qggf2o8knV6TqOHRpzOiTqXKifZVcFAlXISOOJY4iGnZ9zfLLv6SzZr0LzGj8M7NTHHqRxrKV0/BUyEVGcHMI6S5zxYNagr+OpfdRVltqSHVcdCBeDI6YmvSgn/e00ncT5dk1qLs7rO/5dZQQYbTPRgkaRdJvq60KHKMPhUXNK5TfzChXpHkrVvh4aFP1PepQL+Z6BSKFRY2YkjZn6gFSUggZt2KWBjDi+rsSsP9XFDZ2cmCcFqO/kFCcmJorECO5Lo2EUylK7aJjpSHwvXUpTL/bUsxw9ykkSRXn2HJ1/FX1HeleIn/3CtqoMrRlpPmjs8S0BjtYZkFSNT0eIrifpR0HCrFmzii0KQousz+TkZHEcmT53B6w2nUk04Y8q2XHVkdSidTQZmfYbESVjJ6GBrtrYqzKrImWPDOkcGDnyhYG6nlRk1boIN3k6gnMDIqHD8cw4R6NVkS0TMCLKR/K40SbqUtvc8aoMp5X0zIjyGXqqm5yV1hTdsPvCPVENk1+Ypcb2CB0zQKBDY797kKJ6cPz4/i22kQGQ9zH1Q134+CIibGyceskknY36nPV0JEkqVOPFmQAGO8zaZDkMUNgOD6bogDn2uJbl66zUB+nv7LxmlpycUQfiEaYbY/4vNMR9UzRmEt3LyewRutYUZDwiypsmI8oOR+gvYoq2kpHh+pEOsnVahNl7bvRJX0aUKTrSeFXZam78dZ3rV/fK2DHq5/MiokCcerZH+E4ZuROootqUhCOUIrpNCQtjY2MF4nF6zctmm2Us9RwhNVGYalsVvepGn/Qd0YTawsxXp5m9vlqrq7UPsQohOb2o8e5rWVXjSsGBB0HSCV+0ye0lTlP7PUTY0kdVXdkW6cjXIfW3tiScCZKTMz6ioskj+mFycrI4MZ70CyN2RwVEIFyY5nqFG1td4+nYckSk4bjGoTUbCqNiIkSPdh0FEUnR6EVMOSxG+nTIuob/0xDx/6qAgMiM0T7RktfN13z4HEcH1F9Dw9QaEvtPqIrOR/3CctRW1pd1Yx1YNjeLs46kQqlj6of1Vp9xDFUhzio0TyeheuttBtKPAihmYBK9OtXoiNL1UAsNVgVm3rc+r/SbW0c4nlQHDw7Yb/rxADNLtWTHVQfCBXhObGaKcV8U6SAmHHAiRUw/zYBOSJPKI2/WxcsgDelHK/n6E52AaB+VT6OghAantWhYdY4j76Nhc+pMxkNGUHrk+pJH2TS4Tmv5uhFRniMsiq5VvRR48LlVlCOdE42gO2D2G/u/ClER5RI5ep8RJTLocXHU5DQb0biXw/Va1o3jVHqrcsp0ZF5foi0PhpQoox+2hU5cz2JwpjHMdpKqdBSsQFHlci5k53ViyY6rDsQ3T6Y0tXjuxlZvn40on+4eEdMmjhs9UhZEDdwwGRGlNQdOfDcKEv9c0bWckg6VZSTMHzknOiCWy6QIOSw5clJ5itq5RkJjxoiftBipVtep7leZeoayzTwxQfeQlpTwxApuAdC9OsiYqfMyfKy/TtyQY+Z3LE9OV39L31WJKrxX1zoKYpnUNU9jYZYd+4b6bGhoKPRHgy79kFkgstT4UXKKHF57e3vxok21xVE3yyQa0t+zZs0qzS1R57pGNG+VvumkWEd3nKx7XuOaWbLjqgPxyJLGhBGmPpNwYmjyMXqk8Y6YQjssX789AWGm+lHoLOkYImLa2hEjaRk8UodeBo0CDYDaQudAGk2f6R6u0+nZahfXPnif6qTf+o60qkf5TlER5flJ5lyT45qUOwKWR2fjjsqRnxtM0q5qr6OkiKk3ApDW5TXSA9GD6l+V9CH9+7FedEh0qFy3k04YvLGficoZBDDg4hzimGAGJ2ls1ZnPI9vA8eGJSNI10S0pSachs9SW7LjqQDwCdNqBA93XtvQ3J6WucwOm36QhycnTebFsd2Ssi65z1BgxlfJcq51+bUT5hA6+yZmL5HQ++t51FlHOkHNjSuNI6rShoaGUlMDPPZLnZ6KNqg5LVj2rUA4dihwc17BojLmB29d12D6nG/V8GnE6Yw+AiCCFbByZqZ1Cy3R8DIS8f4kgq6gzoXShfvaz2kR2QHWkzojc5dzYRp6i4WNT1+pcSM4Nd/o6+kvPYv9yTa9qzmSZWbLjqgORAa16txaz95jVRNqmanLqXhdNcBlnnY7A6JcnJpD3J7JgGrI7XdWRxtANBevAMicnpzbYTkwc37fE17DQ4Shji+tfNMy6VnplBC89eAKAaEjq01Ef6UMiW77RWPqqejM1dSZdKPuODkrtEcJhOjwdCJMCWDduxPW2kuKkoU0pFa8mIUXoDocohKiZAQj1TOqPzj6i7OwYmNH4q+5E1+ob7qMTxSnhmFVfqAzVj0kTqjfZAPadxubo6GglsvXXuURMHcGm8yJrBYJZpiQ7rjoQTa6I6QfG0uhrQvG6iOkbl/UZI8WIMh3H67mG4MaHlJe+59oVjXIVUlS9HV2R6nOH5pSN05hEL3RM+o5nPtJBONpjGe74SWepzkQVPHuR7SNqYaDB77yfuObkdVC5bAvrwnIYBFBXRE763p2aZx6S2vIxxPHFOtNpsG/pjJlUpDrLidLJVKF91puJD+7MOdYZRHgQxnHvSJzfc+3K5xEpVepD65Aca5wTHJdZpkt2XHUgnOA0Or4ewL1buo/oxOkULqIrepahoBHh39p7o4nrzpNGw/dQsR2MqpkgQEQZEcWeJRkH7VFjnehA1OaGhoZiMV5GqSoV2ZGiylUUzGje6bLGxsbCALkhFKIl9URHrbZIf0Qf+ptOgOgwIooDgkdHR4u6cU1Hn3mdI6I47DUiSv0uik2vfWF57DsPXojOjhw5Ujrg2Y29IxDVhxl4qr9eeKnEHR//Eu5F9IQWInA5Nc9A1YkWLJ9rv3S8pPJ8/UoMAM+TJENAmpi0Iq+TPrLMLNlx1YF49BwxNbEYtY+Pj5cmrCYyz8ijs4soH6KqicMyNfEjypG8vmcauNNxnJyMSp22clTASLoKjVAvNLhuLElZSTyqpyHR9/zRZ3S8EeXjeXi0k66TsaKRp8hZVTlSRwDUDXXnjknCNR4aQToKf58V+4+OWN/RcJMCdINOOoxORmXxjc0KDrgeJYqODkzX0pH4Oph+9LkjOJ6KHzEVEKkPmZATMXUGobMdDKyoIzlE7x8P4PS5nDHHl8pxB5llumTHVQciREKHElF2ZPqcE5lrKnQONMKMnGnoud7hRpK0lydsMPrV8/SMWmfHEdmQGpKRpBFwg0HajLqYmJgoDkKtWkdR21RHSlXkrvLZhsnJqTVArr/oOkcWdOystztm3sdoXohXa2NsM/vSkULVc3mdnjMxMVHaf+fISmXSIdOR0RGzXl4Ogyb9TTqQDot15rPZRqeOPfBglmNE+bBbIlt9x77y/uCaqcY2z4VUvf01KWy7O1mOJ9dflmrJjqsOhOhJg53ZSn7UkAyCjKqoPTo0TQ4hFJ5eoHc4aUK6gaJBUERJqicipl1Dyo3OTeXTQZGmioiCkuNRSFXrXKQuI6b22jQ3NxcGiWtP0h8jb0XHTIQgZerZYKQCVTc6drWR2W6kbuns6OTZHk+Z13VOW3JNkYfAqk7c3ya90hGoPqTs9FktBK56M51dARAPgSbCcwMtOlBjw1G4xj8zHN1JOzJy/UuYlahrucbE4IxOhvrlvGGikvbZOfKjs+bztC+MQQ9pzCy1ZTqHkeWnTkih6X/SgZzEHvlxovhE1v/Nzc2lFw7KSAix0CiQBvQoXM/RbxlKnn6htpC+46Tmc7i/x4VITddzI7LqLQN65MiRYi1B9VW0LjTLZ9FhEFGofdxe4OiPDtk3EhMtSGc0bnRMEVM0lu4jrcWxwaw/9hH16TqmE2GfelDA69zx+A+dhCMf9QUTb/S5AgvP4GM51IeXTefLzb2eAUqEq3YzEOJ3ZBRct0RvDE5UPj93mrBqfjoqyzKzZMRVB8IJSIMpqkrXcNJJ6OwcncmQCFmR59cCPSkqrm3QGSolXcLEBr5GRM/XvSpPkSwNhBtYHs+k8jxSjijTZM3NzdPQJmm5KqfqQYKMkP/NVG1fz/BXbzDIcKqMCJiRN5GSOyoJ0/dVB/aXnqG28a3EzAokqqLBd5qYQQ+RGYMYnqHp4in4KluoRWdxsh+dqnSjrsBAWx+0zujrqGwfUaYHHWoP+47zgjQjxxznAscJ+1qna6SUivoePnx4WoCTEdeJJTuuOhGmHNPAOj1HOoYTQqKMMhp9GixGxUQvEeUEDqILIgZSJXROus8j+Sonxft93YSGlMbFUYDKFOXJstge3e/rNIyGJTTy7mz0LNaHTpS/ZfzUrzSMTm25EXOkyD6Qcax14oie4Y6FCEK6cMqLr0YhgtB3/J9jkIGGozIfP9Q19cSXNfoz9LnQ+djY2DTUxLb7nFB7da3QNKlrjRkGMNQt+4rBoeagns39htS/o16i0SzVkh1XHYgGPd9zxRf4uYFwA0CjxCixymDKccmgOAKhsXC6JWLKwTodqHq4wVSZblxo5IRieC2jYzdO+p+HtXJ/j9NArBtf40KqkX3BZ9KZcY2JCSFMZkgplRJmaJCd3qNe6KT0TGbvqR2k+zwgqEItpHWlJ40PXUsazstwhyK9SjR2Wltbi+QPPtez+fg3n+eUHcennqOxIuTFsjhGGEyp76g3UrqkHlkGx7zK1/N4Qgrpczok6UEHRLN/spxYsuOqA/EJTiMm40xkUUWHOe9OKk+GS+XzmZqE+o5ZZ6JouCCv11GwLJWnid7S0hIR5dRoGkJFvO5giOo8ciWFyoV0pr5HlNGFFtPHxsaisfF4Asj4+Pi0fVZEQTRw7BPpmPqdnJyclujCyNoNMVE0deaOwSm8iKkDlnkP9cG/q96tVoWuvU8cLfMwX1+joSEnfcoAwRkCT6PXZ6wn1z35Es3JyePbQRR4cI5ElJGqxoueJechp8d9bgx+vF/8+Cmna3W/ns97eaZh1X7HLDNLTs6oAyHlRirCo0AaIKfFUjrOv/NV8aTqqqJpZSg6RVO1FqJrGWkySYLG01O7I8rvPXIEpd9KoFD9SRdx0Z5GnYkrynLjgj1pH0cuTkH6dTJ0XM+gwdezmThBmq1q7YqOSG2UkaMuSMX6vioGH1yPoT6kO+rQ9c06+enppKilUwZVjtKr6GkGWD4mJQxYVI50zvFLx8754s/j2NaY9XuZecm+UX2qkDN1x7KIzhmcMKB0NJkd14klI646EBpKfyOxvidt4QZOk4IRJR2hxI1Z1ToNv3OD4EcrufBefzbFKbyI8gnspOVojFgnP7PO12DkbBU5y+lSf45qnO6hnvUMBQ08H4/94kaJxtv7kkjHjbqMotAl9aWxUosKZvv5t9pY1T9ss4IOjUE5JddJLWfN50ln3uc+hqkT6klOwFGp2qLf+p71lI6ctnWnrb95XdV6nK87OqXsLwQ90TzIUluy46ojaWiY2pNFaopH7ESU16+Ezjx7TiiFKd9VJ0BETBkARagUnhbgZ+/pXk5eTVg5HlE/nnyi7/wMPR6qy31mXEsg+tB9qsvY2FjhwOUI6eC4X4yZlMzIo/NqbJw6LosJDHR+zL4T6vNyqCv97TSlyqbxS2lqP5DS/n0/mZAq9VIrCcHpTumPSCUiYnR0tGgTtxmo7qTBGNSoHdIN+4d9r/HtjkAH4dKp0wnwzEanzEV7c/zrWjkeXa++dKfOujta5fcqk4he/cBjtujg5Uwz6jqxZKqwjsSjc9JzEuf2nbLR5PBySUvpWtI/njgg0cST4+FaUhWFw/JEyXi5pI4cBardpGLUZpYnw8Y1D9ZLz6HRoeHjmpQ+cwdJfUVMnbmnIICp39SBR+TSBR209w1FCIfrJFzLY/Ago+5JEEQsvNb7nn1CB0HHyDFZhVaqaGnpnFsSIqbWgjimHVFpHPN0Ct+4zL9nz55djAN3zKSwqRvpk0lQvi7JtnN9S/r20/a5zkUKm21yvWeploy46kAYXWpy8Jw3GZ7W1taImHpBIyejojxdX4VwhOb0TEWJ3NCpSU1jov/5ZmTW3ScijXbEVDQ6MTFRHHhKh8y1Ionq7M5RkT0Rkr5zIyono+ieKHZiYqLUHo+CRVGp7RFRcg6eaKC/hRQZIMgJCDnr+TKC3NzNpAF3wOpT37SttjoaIWLgO8b4vCoqk+t/RDREbY562F618/Dhw6VxzTYIyUq3pOJI2Tni1nhhgEDH7AhWwnHviMzXKtl+onWOBSJsndyi+aUUf9aBz8lo68SSHVediNNetZImIsoZYZxIvj+Lk74qcibVoewqCWkcIh5dKyEF4usqKntiYqLYnEmnKyGCYfIHjZDqpGeS/nKnRR25wSCdpXu0qVaGyO/R3imnwmptVHVHWEVpOkVahVwiymciku5iHxOhkPpyh6QyPANOzoz1pCPh/R4w6XuhKn8f2eTk5LStDqwzHZSE1LX3neqq71k3tpfjz8eO6kKqmGPG+0BShTZdN0ScbFd2Wicn2XHViTD6lQEl5SHDRGPs0a+MltAaJyuNkp4lwytH5AkdNJBcB/Dol+VWTXy1J2IqxbnKmDNyJ51DI+H18siZZx2S+qHBdcRI4826OIVH1KG6koZ1A8xnsE8jpgIDP6mfjk/XuXF3pKl6KfuPB/R6HzuFRWrN20Ba1g+epbPjGPA1Nd7DMUEqsqo+EVEaxxznarPS2vkcD3rUj05fus7ZXo7Lqr85B/QcT0bh2rKP3ywnluy46kA4qEntcPLpmqpoutZpCxFRWuBmIgINLieujJQmJ7OyeA+dHGkg1stT21k3oSxvO0VnKdKQ+sZhGQiiRyIK6Ux0JRGVFvSVPXfs2LFiD5qSBGQg9XwZtvHx8aK9ylr0RX4GIqqPjFwtY8u+pb54ndpIg85+1XVM4mAZPIqKWwe47kPHTWei+xobG0snXvBe1ctPbXekRWfELQf6zSBL97a0tMTExNQp937MlQd86kN3LOpvpyNVX6FwMhHufDiWnc5msgipeGcbslRLdlx1IDK8iiRpWBnpaiLSqFRFdU4n0QHpeyIPfs+o1lGKjAEdhoyK6kKKkt+pHqQZachUJ08vd2emunnkS7TmdYko7yNTGaSe3ECyvTT+rke2yyN56lZ/s+3sK9bVkYmjWxp1b4sjTVLHjj7Yxyyf/ebnLaocp9g8wYLle39QP+obXc8tF1X9rnrKcVXpVmUyyPPyql65QuTkyJNtYbtZN9/UrM896BB1mqW2ZMdVB5LS1OsTmGp99OjRaa/ZkCjadHSk7zRhFBVXUWVV62GKWp0+8YksUWRNxKW/lcatDD4emURDy4nNtRbfp+RpxmozjTQRDvVCxEGUQeNNdMC0ZUXffDP05ORkcTKHytR9NO5Cz7pfxo0Ig4iWqKkqU1DtV/voBNgm6aClpWVaokfVeNIapMog6lJb9EzR0dpa4C+BpBOreh5pNN86UJUuTh07RRcxhew5lrnm1tLSUpTJvmdgpzrorcw6bYXBGc8idJ0y8NBY5WtS9FmVQ84yXbLjqhPhRK3Fi3OiaPJwTYg0jK4hcogoryUpwlXEzMnHyF2TVlEs6ceIqTfYkjLhBNUz5ZgczaksGh8JrxcCpZOgvrjuojKromPVST+iCokIaGz1uUfOLFcZZ0RsfIav5dDpUC+il/TbnVcV3aTv9Hw+l0EIx5ocAeldImU6KwYTTsWpTexv/a/+UXl6npzD4cOHp9GFROA8kstRome96jPplmttRHmewMSAT98TiTFDUNdUsRWuf84DjUcGRllmlryPq07ET5yuQiGNjcdTqrk2xGhRk1zX0tjpWqKBiChNdkdZNChOL8rpqc40DpqkpJnc4PN/GTkiLV/f0DO1L4hrW54Rx/topN3guHOhcWQZip7lTNhOR43Siz5TJqUcm+qgcujQaIy9D9UPDFSoR6IR1p/PcafJ+6vQnSMSjT+2UdfSOekz7a1iOY58SVFzvHLfln6EWo8cOVJ873WWXkhl6m+i/qo1Qr5Rm/NC51EyIPJ263/OVzr2nKRxctKQ6lBTw8PD0dXVdbqrcUqlqamplDLuTocGyR2AvvcsPEWuND5CT5xsHr3z2CUthjsyIe3CiFuoyA0WDyr1tRrVi5Euo2MubtMoiHrxdRc3aBJ9p6hf5dNhySAyhVttJj3lho86odMhZcT1Sx4PRN178ODI1wMCOiG1wSld9i+/d0cuHXJbhCg37ksiunf9+Tjj2h/PZJQT8n7i99q3ODY2VkJspOz4m7pxFOrXca7oPumSWzvUFvYd60qH1NjYWMwtjU3SzAo6iODOBBkaGorOzs6TuicjrjoRGmpRb9qsq+9JvWiyKGLlGpVEk4noiZleRDIeDdIBKsKuiuZZLk98UBlOq7GOVc8n6qKjcqNIh1aLOuMznSpUO+SkJYzyvX9IA9ZyDnJICkDokB2hsV9kBNWW5ubmIrOU46OWjoi2qupIxE69uiGWcxDCJNpSmRwDbBcRFccMxxLRNPXs40/ORPXwPXN6rmdyMiCjc2VAQNRKdkNtE8omDelJL3o2aVGVwWvFCPim8SwzS9ZWnYgmuoxLxPSUYDckREuaJJy4EVHQNTJGEWUqThGhb+qUVGX7MXLlupCu4wK76sFkBEdWvF/lTUxMRFtbW+mcwKoUeicUWIb+Z/IA6ynxtHGW7U6V+qYxZN2qUKj04ht7aeS8/jSQvjdPOmYCQBUaJHql06M4AmFbFRixfkJSupflOJXGegmFuAPiep/TmRMTE0USjL/mxKlBR9qqj36TSeDc0tzhmKliJNi3pCrV96RO1c/j4+OluVCHBNhpkey46ki4edbTwmUsSOlMTExEa2trycBFTG2yJIojYiMqU7q91g1aW1tLry+RQeeRQTTQpAVlmHUoK5ESo1OnLiVVTtkpQq4BSjf6rb91DQ2l00ikUnkmIFOVnRLVczwRg4ercm8Y66/T1tU3OhZK6ypEUb4+p3Ulrh/pGjpN1UHfO22r/nKjTd3rPiVQaDOzni+DzQBC49I3l1NfTU1N0dLSUpysIT3REWgOaDxqrPBNCQzOfN4wDV26Ub3cYTo6Esuh9kg3VU6dTksiKrBqnDo69+Awy3TJjqtORBOnKir0hfSIKHHmvIb7V5zeYZSuiSiHRIPui+ISoj/9TYMnY6NnO0XJ+6sMAhMEZDRVFp9Jw6w2E2V5lpmcPE+KVxuJRJ3CZN+klEovSpSwXXQIdE76X86goaFh2l4eN8ZsL/tdhl56qkKA7GsGC8wilNCgM8hgxqquo0HmuHL0xPFHY+0olcjb1/+qkHRKqXDMDD6kFx+rGue+ZqX6sP1OexK1skxHkfrc2RGnLvVMd3hZqiU7rjoRoigOfEb2nExyCqIiIqJAO3QYNFykoThRSaf423MljGBJB/qiNg0gDSIdiQxQ1ZoEUSczufR8UZt6tvYSRUyti+hZNMQqnwZPCGJ8fLygYeXEmD3HNulEeiEqGnjpmA5cIr1Sp0JD7kikb1KuPMOR40N189M9HGlwfc6v0bhxRD42NlaiO1U/vqdLzp8INiJKST10tG1tbXHkyJFp6eqetamx7oGYOz5mcArFOd3Jenl76HxVX67/cdzyfs4t0fHqh5RStLS0lOYSafosJ5bsuOpESL+QFvLFbE40Tl6f0IwOtT5S65zAiKl0fNItzATk5NW97hzpfEh9sd5VQoTATZpu/FWeymJihKJqpujT2EaUHQVT6Iksmfqv//U9UQMNkDtfOleVIepS5XkKPQ0lderlUNequ/9NQ89tD3R0DGR0rY8rOXe2TWVRryxDG5L1N8ev6sYgQm31dT4hXF83knPwbEFdQ33RWWvsMGipQnVVY891RgfFz+iMq9a2qsZzlmrJjqtOxI0fI2V9J8PpadA0AERPPlnoRGo9nwZM0WQVbeVIzSel1sJICeo5fKU51zaIBOVIabj8VHpSf27gpReeLKJ6sb1uNPU5tyT4PiOn4OiIpEMvjzQSI3pfy2SU75Qg10oU6BBt8ho6JRpkfwuAxgPPcWS9PaAQpc3giEhOOuVRZXQ6OsmF6Jz60TPJDHB9l86S9+i5nn1IhoKUM/dped9qXJPW88Qg9iWds5fh/VsreMtSluy46kiINkgtOTpQdEfjIYcQEdMQmA6MdWfHyco1F5bL6J0p8YxaOXn9zD5NcK4PEQXwOaL+6FxYZx6HJIqPmXqqtwwM92uldDyDUnpV/YhgpENSO9S/ypTTUDlEe9IlnZtSq4Ugjh49Gs3NzaX2OXKWzvkc/aYzp8NQ23UN20YqkYhB7fX1H1FmfM+bnucsAI00kSn7TrrT8UvSkcYlnV9KqXS8FuslJ8T6c92QdC3Hs/Sv8ngCi67RM9gH0innJJ0ds141xlWG6stjrbJ8MMmOq06EUWAtKoSOScKoWkJjRqOqCafTzGtFfz5xaSA9Q0vGhwZTz9Vv0nuOzpzWkfjakVONisRlKGXQdG8V9UYHXqU7IjePwIkuKSdabCdyIjrRdwxCiCZk/GiM2a8RUXqLs9rBv+kUea8cqH6IZIgsHF2zTOmDyIZ9VQuR+Rigw3Oko8+Jfp0q1W+Wz77huGMd2R9Eq6orz8XUSS0ck2RFdB3RP8cVx1amCz+YZMdVR0IqkIvzpEtkoJVKPTY2FhHlDaw0XlVvLa6iS2g8OMGraLCIKYOs36RRnI6LiNICNrOrSCNxf9Ds2bMLBOpoU06YFJJ+6MRULxovtcENr1Cct1Wnmaiu2lPEdG0mmtABOIoSNaoUeG07YN2pE93jDtXPiiQiIAKk4W5rayuukcPTM+noafxJz8lIux7Zj3RKTq9KP8oU5Xjh2PaMRJWlunJOMKBgmr0objokBV2qq5fvgaNS930cS1cKIjXelWDiQQnLJ0WeZWbJjqtOhFGpR9akriRcD4oov6yRaw1VhsXXn6qia9J8NF5VKM2pKUbdpI9mch7uXFWOZ5QRJak8Uj5uLPXjGXotLS1FGXQSjJa1VkODLh2rXK7fRUwZNjl06lQ/RDm6jllvRLTsO6IO/5/jhXombVuLDnNnS31LeI+eTeTFMSU9keL2OugZRDlst481bzPHgKMtb1vVuiYDNDIb7Ffpj8GHjy2fg9zHxSAiIr/O5GQkO646ETdCNAoSn5iKMvUZo0gZfRojTn6igCqnQKOjslQ+1+KcmqGRpSOT0KHxOqIx0kYyHNKJ68ORBXUkh8C6Uj9V19MA6vn6nghKa1Qqk/pjtK1yuKbm9Bn1qM+FGISiarWzyni6vqv0yv7xZzsid4rNDTz7is+U0abDr9p0zMCCzoR64hxx50WHwH7U9/pM63kejLgO3Xm7fqkDBotkQ0ZHR6fplXrPMrNkx1Unookg2kcnIYyOjpZQA+k5OgmnOlQWjZUmlvYgaYMso+Vjx46VTsmgUWZ060jMkQgNYpWDUiIG60sqRyI98CQKPUcIiRlvXDdSYgbXx+i0dD/br6SBiLLhkv4jooQuU5pKJFCWo6Nhbvimkaawf2l8lXxCA0rDzf89E1PtkrGm4XcDzwQCz/R048x6cuwykcP37NGREKHRoWrsKclhbGxsGmJk4gjZAV+34vwQutamfSJlojbftK3yNM71HdctRSX7HOG8ViIIx2+WmSU7rjoSUhQyoprkvjeGTknXO6VESoqTn4aOxkdOgsZXBlmJDaonI089X8/ytamIqewsrkOpjvqe9BINnAwG6+rrMfqe6fuqq37XonckQmh0WJOTkyV0FTH92CHqwlGc68H7ij8MQISWieQYLFQZbG8nr/O6EoWrTfpfOnJK0YMZoggPaui8WX9+rt9ViMmdEvXC53v/Oyrj2pjGm9/jaNbrIv0oy5L9pbYJiStQYl9QR1k+mGTHVSfCyeNUgiJMN6pVGYNyfkRQnOR+3mHE1CSX4yC/79EnP3eqSeInruteRrm+DkBU4/SSG9+IMl3F7915s30eCet6ojJHh27QVEeeUEJKk3rS8/gdEYyupVFle9zJSjekbb0fUpqiMYVgmLBSCxHTyVYhCL9G49LRDctjEObJGhqbNOwSBjZeb7WbiRBK7vCkB0fJdPJ8pvqAG9T1DB9z+k3H6sGHnk0kJz3p1JUsM0t2XHUkRE+ShoaGaSiCBoPrP4zYGR1XpYeLVlIEqf012iDqBouUFY0QnRkdoBt8Glo3WDQQolaUNcnIn9QSDeysWbOK9QvVX98zSYLRs+gbZjTKEOkZdNoR1W85FsKkA2EfEmk6Zabf7nxl4Livjc9Wn5Dmk56Z4q5nqh50hnQCGgcMHtQvRCS6h5mqjsLYP3Kgqg+DhcnJ4+/boq6Vbk40w7Yq05RUKNssB9bQMEW5E4kxIKO+qSfP2NT3ZB8YXLre1D7VmfrgHMkys2THVSci5EGaLyKira2tZKTdaDFyJCXBExI0cXTSgvP7en4VUlH0y8muuvkamkRGl892Y8nonSiSUTOdAdvrkTAddxU6IO3HDasRU2iIUb7KJPIgxekIQ3V1p0Rn4vdUOS5SkHLe1BUdCftIz9cznbpTHaqeyf72RBQ6X0eAdGTUTRUN6pSn2qgzCxWYkVL0wMHL4qkpPE+S+tA9CspcR+xrOjefGxwLHswQZZL2Zp9KV2pvlhPLSR1FfN9995UiyYaGhli9enXx/djYWKxbty4WLFgQc+fOjZtuuin27NlTKmPXrl1x4403Rnt7eyxevDjuvvvuaYYmy3Qh7RAxhVCOHj1a7L1RZElxistpPlI+nDgTExOls/NI76k8GU+eRJHS8T1BVXRgVVQr4foW667vnGY6evRo8cN7uF6htrluOH5VPnWiv2VMiByE3hhIyGmoT0QN8n8aekefTJHXCfF6EwBRCp2t7heC1DP1Q0QrA8lna3+WvlfSQ2Pj8b1pLS0thfGnUZYDIsXM09uJ/IQ21BdsgxJq+KoX6VTPZt+706Rz0Qbg8fHxacdNqb3SD8uqGjdEfrrPk23oaNkXTLCYPXt2tLa2lsaT2sN3pzEoy/LB5aQR14UXXhjf/va3pwrAqw3+8A//ML7xjW/EV7/61ejq6orbb789fuu3fiueffbZiDg+OG688cbo7e2N733ve9Hf3x+/8zu/E7Nnz46/+qu/+gk056MrRCacgDJqjio4+SKmL2rrf3cwpDQYhZP+U/lEB3So/IxraVxz4zWOEvgZN896lE3qjIaZ9KQjK6driCRlpOiwfV2RjoPUkwyjdEWD5IaW9BgTLeQ4iPiqkIbqofp6JE9jyrUdGtuqZAM6Gd9KUUX9VW2lkHh/OnrndRzXRM5K4qk6A5D9q2czccjF+1OfSUfqN6+r/ncalmwC72G7qU85Rl5HdO7reFlmlpN2XE1NTdHb2zvt86Ghofi3f/u3+I//+I/4lV/5lYiIePDBB+P888+P5557Lq6++ur41re+Fa+//np8+9vfjp6envjZn/3Z+Mu//Mv4whe+EPfdd1+R/pylWpwaoWGh4yCyoWEgnSjxiRpRjhz1TBmyKrqLk9ejcdXBDaw+ZySv7/g5HQsdJdGZ2svr5JRVHtchaECJnGjwaHTYXn7GtZkqekl6c7RIqksIicjGdapnse/4LHeO7iT5uZ5PB0HHXEW1ss3eTtWNjsvpW9WXiT0RU0Ev68StAUSc3id0QI7SHQFV1UmJKfrb5wDvYeBTS5f+nW/2V31UblUfU89ZZpaTfmvZm2++GUuXLo1zzjknbrnllti1a1dERGzcuDGOHj0aa9euLa5dvXp1rFixIjZs2BARERs2bIiLL744enp6imuuv/76GB4ejtdee63mM8fHx2N4eLj0c6YJoznPptPkljHkIa50JBQaOxoule/30KHofjod1uXIkSNFJt6xY8cKysipTFIujILpfLnO4WgkopzWTKOttSm2SwZFPzTW/pvrGrpX98thqT3Svdoth0UqTnpl+2jI+doY6YzIj+jVkR2No+7XvjZfs1ObPLDRGKITIu0oXTM5gfqQMAjQNSqTG3tVB44JOXJd78EOkbHqLuRTtf7JbFDSytKb9Kyy2VaV74GE6k6KV+NYz5Uz4/2Tk8fPwhwfHy+tC5N65XjOMrOclONas2ZNPPTQQ/HYY4/FAw88EDt37oxrrrkmRkZGYvfu3dHc3Bzd3d2le3p6emL37t0REbF79+6S09L3+q6W3H///dHV1VX8LF++/GSq/ZGRqsheE7lW1FYVwTkCcBTmtI+udcTitJTu9To7UvS/3XjSqdZqA+tV6zp+XmujsSeC8D6n5bydHmXzOgYD7iCJHHRdLZTiwuifiFPls0/8fiIFiZyr65xt9Paq7v4M1l33UA+8l4ksrB+fSSfv7fD/OYb8ebyHgQA/5/qdU3gzzQ3XUS09S3y+VSG9LCeWk6IKb7jhhuLvSy65JNasWRMrV66Mr3zlK8UhnR+G3HPPPXHnnXcW/w8PD5+xziti+sSQ0aEhq2XEazkaX5viPe4I/RqfiKwTjboblojynhw+3yksRuW1ymXb/DpfHyI1yLUatYlRNOtGtOD6EdKq1Ue+rqTyqnSo+pI6I6Ighch1Nra91tFb1BWNLe8lwtA9rEvVePAx5ihF7WHAwLqxn4gIGSCojry2liNjQOAo0J9b1S795rqo61L/Vzm5Kn3z/6p14ywfTE6aKqR0d3fHeeedF9u2bYve3t44cuRIDA4Olq7Zs2dPsSbW29s7LctQ/1etm0laWlqis7Oz9HMmyomQ1ImkimJz1HUih+eozxGgOzCnULweVc9guTO109EF76fhrIUeayGKquvpHKsiebaDz2c99dxaKNERiwvvZz9UBQRuLKv6m+2fqe+9Dd7Hfq3rsaputZxHVVlVCIr14t8zIRrRgz7eXTdVzvCDzrcf5b6Z5l+WavmxHNfBgwdj+/btsWTJkrj88stj9uzZ8cQTTxTfb926NXbt2hV9fX0REdHX1xebN2+OgYGB4prHH388Ojs744ILLvhxqnLGiBsBflblhNxQ6ceRzgd1YH591Xe16j3TxKxFi/n/bmS8flVGq8rRkPakUa5Vtw9afsTUIrxf49dWOctazkD/ewp2laGlI3M6jmXVCjpqXefotspRVwU4tfq9qs2UKkc2k/w419VyvB7k1PqJiMrrWOZMgUJ2WCcp6STkrrvuSk899VTauXNnevbZZ9PatWvTwoUL08DAQEoppdtuuy2tWLEiPfnkk+mll15KfX19qa+vr7j/2LFj6aKLLkrXXXdd2rRpU3rsscfSokWL0j333HMy1UhDQ0MpIvJP/sk/+Sf/1PnP0NDQSdn/lI57/Q8sN998c1qyZElqbm5OZ511Vrr55pvTtm3biu9HR0fT5z73uTRv3rzU3t6ePvnJT6b+/v5SGW+99Va64YYbUltbW1q4cGG666670tGjR0+q0tlx5Z/8k3/yz0fj50dxXA0p1R9GHR4ejq6urtNdjSxZsmTJ8mPK0NDQSect/FhrXKdL6tDXZsmSJUuWCvlR7HldOq79+/ef7ipkyZIlS5afgIyMjJz0PXV5Ovz8+fMj4viBvZkyrBbtdXvnnXfO2O0DM0nWz8yS9TOzZP3MLB9EPymlGBkZiaVLl550+XXpuLTfpaurKw+aE8iZvO/tg0jWz8yS9TOzZP3MLCfSz48KPOqSKsySJUuWLGeuZMeVJUuWLFnqSurScbW0tMS9994bLS0tp7sqP7WSdTSzZP3MLFk/M0vWz8zyYeunLvdxZcmSJUuWM1fqEnFlyZIlS5YzV7LjypIlS5YsdSXZcWXJkiVLlrqS7LiyZMmSJUtdSV06rn/+53+Os88+O1pbW2PNmjXxwgsvnO4qnRJ5+umn49d+7ddi6dKl0dDQEF/72tdK36eU4s/+7M9iyZIl0dbWFmvXro0333yzdM37778ft9xyS3R2dkZ3d3d85jOfiYMHD57CVnx4cv/998eVV14ZHR0dsXjx4vjN3/zN2Lp1a+masbGxWLduXSxYsCDmzp0bN91007SXm+7atStuvPHGaG9vj8WLF8fdd98dx44dO5VN+VDkgQceiEsuuaTYFNrX1xff/OY3i+/PZN1UyZe+9KVoaGiIz3/+88VnZ7KO7rvvvmkvbV29enXx/SnVzUmfJ3+a5eGHH07Nzc3p3//939Nrr72Wfu/3fi91d3enPXv2nO6qfejy6KOPpj/+4z9O//Vf/5UiIj3yyCOl77/0pS+lrq6u9LWvfS393//9X/r1X//1tGrVqjQ6Olpc84lPfCJdeuml6bnnnkvf/e5307nnnps+9alPneKWfDhy/fXXpwcffDBt2bIlbdq0Kf3qr/5qWrFiRTp48GBxzW233ZaWL1+ennjiifTSSy+lq6++Ov38z/988b3eGbd27dr0yiuvpEcffTQtXLjwpN8Z99Mo//M//5O+8Y1vpB/84Adp69at6Y/+6I/S7Nmz05YtW1JKZ7ZuXF544YV09tlnp0suuSTdcccdxednso7uvffedOGFF6b+/v7iZ+/evcX3p1I3dee4rrrqqrRu3bri/4mJibR06dJ0//33n8ZanXpxxzU5OZl6e3vT3/zN3xSfDQ4OppaWlvTlL385pZTS66+/niIivfjii8U13/zmN1NDQ0P64Q9/eMrqfqpkYGAgRURav359Sum4PmbPnp2++tWvFtd8//vfTxGRNmzYkFI6Hhw0Njam3bt3F9c88MADqbOzM42Pj5/aBpwCmTdvXvrXf/3XrBvIyMhI+tjHPpYef/zx9Iu/+IuF4zrTdXTvvfemSy+9tPK7U62buqIKjxw5Ehs3boy1a9cWnzU2NsbatWtjw4YNp7Fmp1927twZu3fvLummq6sr1qxZU+hmw4YN0d3dHVdccUVxzdq1a6OxsTGef/75U17nD1uGhoYiYupQ5o0bN8bRo0dLOlq9enWsWLGipKOLL744enp6imuuv/76GB4ejtdee+0U1v7DlYmJiXj44Yfj0KFD0dfXl3UDWbduXdx4440lXUTk8RMR8eabb8bSpUvjnHPOiVtuuSV27doVEadeN3V1yO6+fftiYmKi1PCIiJ6ennjjjTdOU61+OmT37t0REZW60Xe7d++OxYsXl75vamqK+fPnF9d8VGRycjI+//nPxy/8wi/ERRddFBHH29/c3Bzd3d2la11HVTrUd/Uumzdvjr6+vhgbG4u5c+fGI488EhdccEFs2rTpjNdNRMTDDz8cL7/8crz44ovTvjvTx8+aNWvioYceio9//OPR398ff/7nfx7XXHNNbNmy5ZTrpq4cV5YsH1TWrVsXW7ZsiWeeeeZ0V+WnSj7+8Y/Hpk2bYmhoKP7zP/8zbr311li/fv3prtZPhbzzzjtxxx13xOOPPx6tra2nuzo/dXLDDTcUf19yySWxZs2aWLlyZXzlK1+Jtra2U1qXuqIKFy5cGLNmzZqWqbJnz57o7e09TbX66RC1fybd9Pb2xsDAQOn7Y8eOxfvvv/+R0t/tt98eX//61+M73/lOLFu2rPi8t7c3jhw5EoODg6XrXUdVOtR39S7Nzc1x7rnnxuWXXx73339/XHrppfH3f//3WTdxnO4aGBiIyy67LJqamqKpqSnWr18f//AP/xBNTU3R09NzxuuI0t3dHeedd15s27btlI+funJczc3Ncfnll8cTTzxRfDY5ORlPPPFE9PX1ncaanX5ZtWpV9Pb2lnQzPDwczz//fKGbvr6+GBwcjI0bNxbXPPnkkzE5ORlr1qw55XX+SUtKKW6//fZ45JFH4sknn4xVq1aVvr/88stj9uzZJR1t3bo1du3aVdLR5s2bSw7+8ccfj87OzrjgggtOTUNOoUxOTsb4+HjWTURce+21sXnz5ti0aVPxc8UVV8Qtt9xS/H2m64hy8ODB2L59eyxZsuTUj5+TTi05zfLwww+nlpaW9NBDD6XXX389/f7v/37q7u4uZap8VGVkZCS98sor6ZVXXkkRkf72b/82vfLKK+ntt99OKR1Ph+/u7k7//d//nV599dX0G7/xG5Xp8D/3cz+Xnn/++fTMM8+kj33sYx+ZdPjPfvazqaurKz311FOllN3Dhw8X19x2221pxYoV6cknn0wvvfRS6uvrS319fcX3Stm97rrr0qZNm9Jjjz2WFi1a9JFIZ/7iF7+Y1q9fn3bu3JleffXV9MUvfjE1NDSkb33rWymlM1s3tYRZhSmd2Tq666670lNPPZV27tyZnn322bR27dq0cOHCNDAwkFI6tbqpO8eVUkr/+I//mFasWJGam5vTVVddlZ577rnTXaVTIt/5zndSREz7ufXWW1NKx1Pi//RP/zT19PSklpaWdO2116atW7eWyti/f3/61Kc+lebOnZs6OzvTpz/96TQyMnIaWvOTlyrdRER68MEHi2tGR0fT5z73uTRv3rzU3t6ePvnJT6b+/v5SOW+99Va64YYbUltbW1q4cGG666670tGjR09xa37y8ru/+7tp5cqVqbm5OS1atChde+21hdNK6czWTS1xx3Um6+jmm29OS5YsSc3Nzemss85KN998c9q2bVvx/anUTX6tSZYsWbJkqSupqzWuLFmyZMmSJTuuLFmyZMlSV5IdV5YsWbJkqSvJjitLlixZstSVZMeVJUuWLFnqSrLjypIlS5YsdSXZcWXJkiVLlrqS7LiyZMmSJUtdSXZcWbJkyZKlriQ7rixZsmTJUleSHVeWLFmyZKkryY4rS5YsWbLUlfw/RpZ1LohzRV0AAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5Cl11km/tx7+/bNoW/fznGmp2e6J2iSRtZIQpZsgRE2trF3wbUsCxRlqlibXdYbWLMsC5tc5V2WZC/UVlG4KKCALdY2TsK2hC2HURhJI82MJk/nnG5OfcPvj67n9HPP3JFs8M9W4++t6uruG77vfCe84Xmf8x5Xo9FowBFHHHHEEUf2iLi/1w1wxBFHHHHEkW9HHMPliCOOOOLInhLHcDniiCOOOLKnxDFcjjjiiCOO7ClxDJcjjjjiiCN7ShzD5YgjjjjiyJ4Sx3A54ogjjjiyp8QxXI444ogjjuwpcQyXI4444ogje0ocw+WII4444sieku+Z4fr4xz+O0dFR+P1+vOlNb8Jzzz33vWqKI4444ogje0i+J4brL/7iL/ChD30I/+k//Se8+OKLOH78ON72trdhdXX1e9EcRxxxxBFH9pC4vhdFdt/0pjfhzJkz+NjHPgYAqNfrGBoawi/+4i/i3//7f//dbo4jjjjiiCN7SNq+2zesVCp44YUX8OEPf9i85na78dhjj+HcuXMtv1Mul1Eul83/9Xodm5ub6OzshMvl+v+9zY444ogjjnxnpdFoIJvNor+/H273twf+fdcN1/r6Omq1Gnp6eppe7+npwdWrV1t+5yMf+Qh+4zd+47vRPEccccQRR76LMjc3h8HBwW/rO3uCVfjhD38Y6XTa/MzOzn6vm+SII4444sh3QCKRyLf9ne96xJVMJuHxeLCystL0+srKCnp7e1t+x+fzwefzfTea54gjjjjiyHdR/i7pnu96xNXe3o7Tp0/jySefNK/V63U8+eSTOHv27He7OY444ogjjuwx+a5HXADwoQ99CD/90z+Ne++9F/fddx9++7d/G/l8Hj/7sz/7vWiOI98FcblceD0Cq3peLpcLLpcL9XodjUbDvMe/9Xr6Hn+73W7zv8fjMa/XajXz+bvdQ+9zt//1/vyt99Q22s/eaDSanoNSr9fN30xW87P6nHa7WvWvtqVV+7Wf+F3en31iP4N+rtXrd7tPqzbcbT606i+73/W5W42TI//w5XtiuH7iJ34Ca2tr+LVf+zUsLy/jxIkTeOKJJ+4gbDjyrYm9mPV1W5lRKVFaKRq3220UvK189V7263xPFaD+1jbZCkr/ZjtdLleTArYVcat7qFJ9PXktY8T/VYnr6/p5j8fTZGDse/AZ3G53U9+0MozaB9rP/OHr2ga7v+122P1n39c2KDT0+r62h+/XarWWzkOrdryWIdL5o3PTnn/6eWDHIdGxea35z/a3clL4vj4rP2e3136eu93bvn8r+VbnqSN3yvdkH9ffVzKZDGKx2Pe6Gd9VsRdPK0WtlFK+X6vV4Ha7zSIHmr14Ggleq5Xit5VGq8Vqt0c/rwpbP68ev0Y+rQxYtVqFx+NBrVa7o01qDNkuj8cDt9uNarXa0vjwc/Z3AbQ0ROxb9qet8D0eD1wuF9ra2lCv11GtVlGr1ZqiPbaVCt82Xvbz6DPSkeDzt7e3mz7le3aUZSv1trY2EzG53W7joKjCtiNAtkOvxfvwOvystl+vpQZO+4rt1mflPdXY28ZZ+1ENqv7Wtuq8vpuRt8ec/aPt1/bYkbveX/vWvtfrRdKc699Pkk6nEY1Gv63vfE8iLkf+bnK3RQrAKAuKLjS+rp6kDfuo4tPFa3ugdpRlf1aVsR1d6Wuq8IE7lRufQSMMKkpVXKroVWwD2uqarRSHvvZ6SlH/tx0DbZf2MT9Lpabt4j3ZJ/V6Hdvb203joP3FcdHxU4Wqz6vOgT2e9pzxer1N80f7me3XdnH89Tr1et201Y6SbEWvf7fqI3te6pxyu92mLTq3+H17/unY8vNqYPT79nzh57SdraIxezxava/zh9LKuXKktTiGa4+IQjT0IIFmD53/828qKS5Ovtfe3m4WNhc979HW1obt7W2j5Nrb2+8wWPwshcaRUdFrKX+NtGq1mnkOfR6FgFQR2xGFKg5bOekz85pqXNlWXlc9fTW4ttJkRAXAXFOjDm6UVwXNPrGVu0YT6slrJMO+aGtrM8aK7bWVoj4Do71WRlCjUW2TDaNphKLPYxtiO5psa2sz32GflcvlpgiMc4tzmf1kR2I6tvytTk6j0UAgEDDtr1QqZuzZVrZH/9a+431pbO25wz71er139Dm/d7dIVyM5r9fb9LzaLv3tyOuLY7j2iCiMQOVle2y2YtTFaOcDqMwrlYq59vb2dksFSyNnQx5qCHhNKkw72uGCfb2cRCvv2u12m0Wu3rVem8+vSlCVhHrXCmPxXnZuhc/RymDrsyksZBtSbYdtEFtFiS6Xy8B5VJDsS1WirfrYdlL4PG1tbU3GjnNIr0ljw3Hf3t42/arjYY+LihovdQrU4KhBpug9+HkqeI1a7HmhTgqfR/tCx8EeW4oiER6P5w442m43x0cNfivHSSO2SqVi5u/dCDN25OvI68ue2IDsSLMBsCEaGwaxISc78qlWq6hWq3dETephq9LlQlajQK/djk64aHXxqqgy0EhKFaeK1+tFe3u78Xh5DVXEthLns6sh1OegAqKxsfN66v3bhlz7145WWpFSbKhKjay+rwZW+5ev298DdiMaNeQ0fGqstG12W3kddRB4b4/HA6/Xa/7Xz9uRbFtbm/ksn4vzjHNN55eNDNh929bWZtrCv71erzFsNoy9vb3dNL52FGdH6sCOUW9vb2+6d6vxYpuYe+I81L5SI8gx4P98Bvv+dq5T57Ejry0OOWOPiCpbXSjqrSlUxPdsuMP2YCmtEvFqHHThEU6k56+Jb4UXeV22X712u/28993yJmyL3+/H9va2iQqoGBgtEs6hsqfBsw0s36f3bPcjjYEaADVs2i/8LvtFx4wKiYaT16tUKkYhM0piW9hejZwotpNAZarKmfewHRZG1bYi5/MpjMb3fT6faQef2+v1mvvyc3akqHkhhckAGMNM+LDR2IGveU11JLT/9H8ATQZR4ep6vQ6fz2eiKObB2KdsN40O32O7dX6qc6R5Qf1+KyeQ37WdN3UM6axpdFyr1Zrqsn4/iEPO+AcsulBUMfN1VZ6EAFtBeq2gOoXQABgFpouLEJ3mnrQNGgnYyruV4lcjoUqPXmelUjH30GgL2FUMCuOoolTDpArPhhf5XcJDVDTaZzbESYWqCon9r4rNzl/weTUaVUOteR2bCakQm92H2u+af9E+psdPBdvKUANoui+FSlSNCd9XiNGOVNQQ6ByhIbGjXPa/Olk0PPwOx0mdDc5XHSsKP6tRnMJ8dm5K+7LVWNu5qFboh64ltkuNLdvEv3kfO1p35LXFMVx7RGwsnF6irWhUUdqKUBegnXugcuPn6WG+Fuav8Ak/Q0aaUrRbGS9ez4ap1Hvld6nUarUaCoWC6Y9arWbgqe3tbRMJ2IaGykINFa9BI6lwG/uIn7NZa9oPtnHjM6lh5LMq8UVhPDvaVAPI6ET/V+dBIV7tb/s67D9GPmyXHbFpW+zIU+eBjrXtlNgQqM41n89n+lyJLmrodD7pe7y+bWD0+TQa02tqzpBkESXs6HgoNKoRFWFKAMYxrFQqJsrX5+Qc4vVLpVITaYX9sr293QRnOobrWxPHcO0hqdVqLdlQNgNKPVYuaoVF+L1WSovf5TUJX+hngdYGUhUA22dDR6oQqWwU0qIR4t98bjXaNpSjZAC2Ua+pfaaK0o5gVdlSyaiStJWmPr8aKo1KtE0cB/s7dqSgDokaSH1GNQh2pGN78Jw3Cnep8bb7RQ2REjn08zrfbAq+Qmu28dRomXOxVa6O46YRjSp3fa0VnV3niBrQu0WyfH7OSxu21PmqCIYdcdltvlsUTCNIw6fr0ZHXF8dw7VHRxWnnq2zFdbdIQRWxKm9Vatvb202etw3F6KIFmvfY6KIlrERvVz1djarU+2ylsFThq7et+27UcNowjioHNb42dKUKyzZehLDsa9DIq9JUx0INto6b3t/OifB6StluNc7aFgqjWAAm4rTnia3o7fbZe6ns6Mt2nux5oI4Mn8eOeO0ox4bgeH++b7ffNmZ6XxpW/Y7df3wenS86JtoGtk/7ws4n0uGzjaA6kpoztu/pyOuLY7j2iNhepC4KWwFQCA3xPcIzqvB0nxBhETvZrNfj9zUqU29avU6fz2cUB+E2jQQV1tG8iXrcwG4ezKblK1zGNtswpn62FVSpBkO/S+iR36W43W4DLarC1ChPlSE9a3rrvJ8aPjWS2jZgd9+YwmEKB9oRN/tK+1Ajg/b2dpRKJfO6GnxVnHYEpp+zGZcatbJ96tSwb9l/OgZ2XykEzjaRuNFoNMyY6Py1DWwrRIFt55xob283n1HnhvfVPK0aHF5HK6SQmUj4UdvPsfV6vU15YjpvfGb+rU6RI3cXx3DtEbGNFl+zladCXhQuPC42G8rQaITKQaEvVQqqZGwPWFlWGhlpxEGFYCt8Pg+vY0ulUmnyiOv1ujHK/L9VHoqGRv/n/e3v8m81ona/8jv6eSomva5tVPQ9vYYaUx1fGx6laJRgR80KQ+q8UWOnZAXbkGsUzPe1DzUvZhsujpvOFXVs7CjchtjoVGmUbUdi5XLZHG9kG02NjpRopNEMf9vXVSRCHbjXiv51PAn36TORBKKfJyyqxCZKKzjYkbuLY7j2kFBhqVfHDcR2EtyOWrgo1LBpboHX54LSxUoloYvNVmL6tyooeo/KHNSojJ9vBeuxHZqr0siI5IBWiXjNaVCojBXe4vPZBkLhLF6L5AobXtU9V3xOpVi3Up46VvrsarA0J2aPixpDW9npGKtxVladPpNGBjTCjARaQZFqVBQ243scs1bv04HS+axjo4aCUbZGpbxvqz6znQ8+n0a39tipo8H28zcj13K53DR29rrQ6Mp2MNXRsBEEHWPd0uHI64tjuPaIqIJS71fp25o/UA+Xnq/mJdQ40Lv0+/1mH4l6sB6Pp2lvUaVSaTJgyg67Wz7DztXwWmrYNPIjnKMwI69FpVUqlcz96SVrTofKgRuYqXSUzKHtViNK5Wd71/psVFIsqKsK2u/3N8GXauDUAbDzH1SWJC4opKfX2N7ebtq0rTAi2ZXKhtN+1YhEIzA+p01MsKM8e/+R5pKo8Pk3x1CjNzUO7D91TjQy5XX5/PpMnH+cP60idzsyVQiTUTu/w3vxfzqFeg3OJ36GY0GkAthl/CrcWK/v7EFkn+t7FPazI68vjuHaI6LeJtCsVOzciHquXHTEzvk3F5sqCKXp2rCg7e0r3q9evBqyVl6qRjzqhdqwkj635sV0YWsEZ8NefN9WOkqZV4+ZylUpy6qc7bGg1Gq1O+o58jmBXTq1tpftoEHSZ7cjUc2l2YpX9zepcfJ6vU0GUNui3r7dT2wPNwYrvGiPlY6/Rhk6V7XttuG3X2f7NSpU6NFmp/IeWmtTIU46bGybGkaK5sJawXS6Flr9rfPYjqIVdlX4WTd5KzrgRFrfnjiGa4+ILlSNWKg0FUYDdg0Bk8K6YNWTVEXJSIuLmErEhiL9fr9pCw2BwoUaZbHtbAvQDGXR0DHHAewqWO598fl85n3Nt2gURkVZqVTMNaiUFFayoTwqcu7F4Q+vr0abz6CQqipezWdx464aKY2+bMiUwiiU91YvXo0+FadCYUDzdgKFxnhfm81GJ4NGQve0cTx5LbaHbeQ80SNWVEHbjgYjHI1sOD90Dtl7pTT6Zx/ZpAy2VSNUNRL8nM/na2qrnYtqxQBkm4k0cLxaQanqSHJ+sp3sNzVkduToRFzfmjiGa4+IwiU25EZRFpV6sQoj0gvX9xXy0miLQqXM+2uEQ4VOBUAjZHug+lkqChpQ2/vXzyp0RFHPmJCg3UYadUI5QDPpQSNENcpA8+ZjW3G2gpTsKJD30vbTqPJaNiTG++r42RGwwpZqiJSdSWlFTrAjWj6HbRD1M2rcdR5qJGHnZjh/6DDZEbEdTdnjbztfCi3qGuBrFDUqOlY6HnY+SXNnGs3p/FDmoTofen1FGbS9XKs6Hjrf+J46HI68vjiGa48IFx2wu0AVjtBIpBVkBTQXU9XrAs17XzSprpCPRgtUZqp8NMrh/dRQ8LNapFQVkG0MeF9b+alHS6+XSkRhMWVM8rpaAV+NVSuDY+dIbHYl+1f72o7C1DDaSriV523vcVJoUPuIovfn/bRSih4nws/bUCydCI6NRijaZns8GO21ci60TerA3M248nOt8oqtjLvmIG3ok9e0t4poH+n3ta10gvR6NnyrBktRDp1L9jYDAHcQdvRzem1HXl8cw7VHhB6veoe6IGhI1MgAzRBPq7wWFZx69VykvK5NVSbLSpU/21Wr1ZraqnAUsLNgCaMphKbC/2u1msnXFIvFpusAzXCgwoZUCIwGqIyo+NlOPrMqXiWU2OQDjRJofO3ad7ZBoyGxcxx8zXZI1DgrwUSjUDsy4zPz2hqFqWK0o3X+rVEMlb1dPFjbZkfPNvTHyEHHwXZibMPCfVU6/jZEqPNaUQMbaWg0dost2+ugWCya5yPsqwZFr639zPXFdcG+rdVqBn7UfuH8VAeQz87+VMiV8+hueVVHmsUxXHtEdO9MK69dPXwuBKDZONhRiHqIaohsrJ7f12tSWbXa69LKuKhxoqeueQ0+F6M4Gy5izkKNL9vmdrvN/h4aW/WS1fDYkJZeC9iNSm2joPfi87CdWq9RPXP2hRpFzZ2p0bDhKrtvtW3a9lai0ZLm0HgfHWsaE3UsdNzt52LUSmkVFWmuj21lrlHfs50Nu6/VEOhzs191Lunctz/Ha+jcV4eN86XV+OlzcsztPlSjxP6015Q9J+x5p9CkI68vjuHaI0KlTWXHyW9XytYkPtA678XFpkpDIwNd9Fp4l0pXqe161IqtYDV3ogqZXqd6/5qIZ3vpNWtBVl3w9mZaesNspxp79psmyltBXLrfTBWmGkp7HxGfnaQVjezUuNDgs89VbIXHsVHv3/bI2T80JKxUosZFC+FqFGEbdiXUaESgUak+L/tBjYsqdOZsNJ/DyEpzizTQNGzqzFC0r3gdPY3Yhjf12up8cJOwklfYFp0nNgzJ93Rt6DMrIUjvpetGc6+6PrgWFFVw5PXF6aU9Iuq1254acGdUADR7dq0iIhuGsT1tvq5wFhedFga18112Ml6V2t0ozuoV25EgF3kr6Ij/2xXeNQLlc9lKUftFP9fKu2Z7tY1qwG1jpf2pylvbreeaAc3HyagB4/d1v5oaOm2v3s/uK7bJ7ku7v1vlwVrlOe3jRFrldVpBskpDv9t8VIdEjYlGvYTaeD3e337GVlES22bPQRuu1UjIPnlA+1Dvrfv37LnKcWQlGJv0YhttR1qLY7j2iDDfo0pNFxeVpnrRXPT2ZxUWso2DKhjbmwaaq6rzGvo6/1bloIrQ3rfUCjZR+KYV3KLX02fRPIttJFoZbn0GzRvaMJw+Fz+veRzdp2UbLUYRFF5bla223R4LfQY7X6L70aigPR5P0zEbel8dFx1b5uvYBhoDOiM2IYR9YcO6CsnyM5qH5LUZZdjt0DFQ9p8Ns3Fe28ZUHSR+Tmtz2kZe76dzSK9lrwOdD3wmhfd0LGwn0l4j+txqoB15fXEM1x4S29OzYRjbU9cSRbr/xo6AqFjsnA8XklakUOYi0HzaLpUDmWx2NQygGbrUWoO2ctdFr9GPGhcqWI0w1LvX/Wa8jq28bYXJexF20xqJVEjaRjsysY2wwqh6CjDHgtfifjj1uvU328I+5efK5bIhYyj9XMdOnQZtq/3s9pYHikbKagxyuZwxIPpjG1Rg9yRlhUBtx4jzTGE+RifsJ96f7bL/V0Om9SPZZraXWzGAXTiV73s8HpRKpTsidlZDUcheyUh2zpZt1jbZfaubvRVtcOS1xTFce0hawTLKSFOFqXub+F3bo1MPXuEaW7Hb0QGVoQ09tYpSeE3NofDeWqaHC5cKoZWBVkOh3jy/r89iPyc/o68rHKXGUqt4sx/0h8+n/6uoV28rZluUoMDP6Zgpk1KNpSpAtptEBTvyU4Wufaj9r+22+1KdAvanKnSNWDg3Nb+oxkX7k/fUuWb3n70lQftNHQ+OCY2rzjd1eNSxU3SBxozzz87fad5M26h91woRsY2z9hfbzOdR9qkjry0OhWWPSCvoSyOMVvkpoHlfkpIibNjJ/p6KvUj5mi5oG14ha9A2ItpG28gwmlBFA+wublUEtlGhYqSXTQOk0JQm2tlOKjAbQlOWGV9X+E6fSQ0tlZ6OlT6DjiX7gtfUvtQx5Xt2BKqRpJ3/0espOUDHzobQ1ICqA6FGmKKOjo6ZMif5OseVyllPgbYdEo1U+L8abIXW9FkVitN5qfMc2EEMNGJq9TnmEG1DpZUy+Bn+retSx8xGJuxn0bHW53HktcWJuPaIqNetHq19TAgXPCEIXei6YFSRMRLTfBSrTmhBXYVsWrEWbeVBmE69Tc35qFfv9XqNx0w4Ur19ZfvZcJZ+VtvI7+jZR7ofjcZJDRmjLa2/SCiO/UeYi3uB2Ed6HIxGwjZ7Uw0H2wfsliNiuzRSqdfrprgr96bxb0bBVNgadZFJp31JA8Now4447bbaLFE+uw3Z2SQIhUn5jABMmTKOlR3Nq1FTp0SdFcKKbK8SVzS60nnJecF5pK8rTKuQnxJx7DWmRkb35fE9dWY0X8g8JMeP93w9B9KRXXEirj0iqug0b2F72QoR2dCaRhd2tAQ055ZaQR28PhWq1qjTtgB3wnNqZNRo2l60fhbYzQWp10yx4Uj924aK1CCo0tbraNs0ktUoz4a9+Kx2BKftpRev/cco2B43ux/tZ6PoWKki1ZyTGhyNKvh5jSa0v20DaxMLaJS2t7dNVGu3XyMatsWOQLS9GuEqTKswoDpA2me2AdK26N92lEXnxoa6W42Jzgl7vtqf1/7jvZh/5PVsQ28jGo68tjgR1x4R9eTsXAW9Oj1CQis6AM3ljihcXEoS0NdaLX4qHz1qhIpHiRIULWCrbafCYBu1wrqt3GwjwEiCyk73R6ly4d4wVXDKMqMXbLPD+DzAjrLTY2TsaEoNlrZT90/Z/asOg9KgGZXYBpD/6+Zru6I5n4l/a7/ZToNCdWrMFBolOYHjr89v7+3T+amRFAknNBC6DcLlcpkxV/KPtoH9phue7TazL/ScNI2aNK+rBZcVMVADrvfWSJzPxt8k7+g4qDOic4Hzna8rE1PJODqvHEP22uIYrj0gXIDKCLQjDODuE149fMKAQPMhk/xfvXg7d8VrUQlRWdjwoxofzbEoBGZHg2yHRnf8LpWUkgIU/lLPV6MdNYB2TgzYVU5q4NlWXtOmlbOfVPHZERY/o8+jbbH72h5LNUL6mkZ/9viqIVTD1SpS1TFTaJDXAu6s0qGRGO9F50Ovow6M9q+OuyprnXt0Cmznp1XUY4+nPed0nWikp7CoDRdqf/O5bejQhhz5mkZ12lb2v0aT2rc2XOvItyaO4doDootFlapi//bRFq1gDPtvKhVVRjabyoZItC28t60c1NjporQ3e2qUovToVrCQPpt6rGyDGjmgGQZTSJHt4/dsBiOjSX5ODVsrZavPo8+tsJA+h+1c2F65rYBZw4/Kr5Wx5/96X5vQws9sb2+byFzHVj+jDoJeo5URViOrBlE/Z+ff2G825KrjoAad88TeE8j/+Tw0DnZ7+JoaNO1LHT87l2X3s73pWq9vR7H6PyN7hevtz9pj7MjdxTFce0Bs6E9zDJzwSo8nvKXK3DZEQDMdWsvgALsLVb3nVjklLmI9a0s3rJJIoJUtgsFgE6RkK1EtL6WRg0ZSSlBQ46LKhtfVsjtUbnakxvuQiKHKhn2okZY6BbwP+5PPoJGjHUUS6tTxUEPOa3DvlkY1qjTV0LONOubqxdt7pCjat60UKq9DpUsng+OnZ5zpHLpbZQ2FDFVsaJvPoQQgnctKUFHDb28v4FzhuW62s6XPr0ZbizNzPNl3JPzQaLa3tzftqdP78NlsJED7gP3L9jry2uIYrj0mpPJS8dpesG7+VJiIC5CMJiULKKSiCpByt+MrVLmoMlTDoAQO9ZRVyVIhAGjySIE7y1bp/VWRAWja4EtRQ6MHaOp17E277EcVO+rivRXa0r5QJayRhPaPGineU42oQrz2GLLdNtXcdii0DRqNsU0aDfFZbEjQNigK0drjocpdnRHbCdBITfvVJs28FoSm+/4UquT1NMKx+1rvy/cUwlRIj/1ms0b1GXS96VxphUK0Gh9Gjw5c+K2JY7j2kKhSU6UAtPZQAZhjQcj+Apo9Xl6DykWVEACTD+Nrdq7DVvSqWBXeUQ+/UCi0jFzYflbUUCOtXjXvaysm26irkqDBpvHSPEMwGLxjXxSfmzCmrXRsOElJD+pUkAqtUKhGMHo9NQSqHFXJqZLlGNgkCY2oNdfG7ys5Q6NL2wC1gtD4rPqMGomq0VJDRaq/QrKq+LU/NdeluU01okpqsQ28wujqiLlcLvh8PjPOCsvpWLS3t2N7exvFYtFcQ/N82kcklvD6hCw5n9UY6TjYeVV9dkdeXxzDtQdEPVmgOVkN7EYlmq+yIxmFJ7SCuipjKhNVYqowbeVtK5JWURI/a7eL7dGyUKrIVMHxPc3daRtU+dn9oUbbznXxO4wG7CigVcSq79kGRRlr2u/K5iSkqn2klc51rGwDbEfW7LdW50TZDogazVbRuuZdtB22IdYx1/ljR/Dav/p3K8fLjgLZP2Qd6nf0nmyD3Z9sB+dWq7mke8jsqLIVlKhGRZ0eNV46dmyb5vGUiGGzRjV/p+PsSGtxDNceEPXSuJBUOapyaeV560Lke/rbNgYaDbWCFPker6HRmho+3RPFz9uesq2YqQjoNWuUp8rHbj/QfOKywn4amdjGXKE9fp85uVb3UQ9dPXkdHzWyyibT/lOGJ/tP26x9y/up8dB5QdFotBUhRSMXVep2G3VslUih99MIXw2KbeA0+rLngo659rFGIGy3Omm8v10iyWYk2o6T3ltzjHYhXmU42s+sdSHtdtmRs0aiamz1NY3GlKXryGuLq7EHeymTySAWi32vm/FdE05wPUpEFR29djVAqnTUoOh3uBApmnOyFY0qTlViatA0amhlxCi8Br1efZ1eKu+p8A8/o0rNNtqq7Pic9h4r9qdWx/B6vfB6veZMJPWC9Tm1v/hMrFKiBkMNlV3bkc9jt9uOblQpazRNw1ytVs24c2zVcOveLxpmRp6EkKvVKsrlctP4ahs0f6RjTgJCq7nK/uUcsyNi9q0WWdZ2KtTHOUl2JR0KdT5sh0wdF16Lho59RMiw1ZjUarsFmm3jxOdTaFFFn1UZsLZhb+VY6jX2oFr+O0s6nUY0Gv22vuNkAveIcBHppNboS71+vkfhIlLFay8wLiRlgiksw43ENhmB19J2KAxkQ5J2uxUus3MBtiJVxaFKkPfQ72q0ROWk3qwN1fA6VDZa1slW3q0Ui+Zj+Bk1fBqF8Tp0RtTL12tzLPj8do7FTuS3irjtqJFt46bdVjCz9iHv2ypXxn7U/lFjpUgB+5alomg0FRrU8bOfka9xnuic13soAqCG347ybPhQ37MNjEbRrwWx2wiAijpldiSp17DXiiOtxYEK94jYHrgNhzBPo8qCf9uwlC5I2yCqgbA9QVVevAZwJ/vLVii20nS5dinKqvjYNo2ybCiISolK1lZ4tkGxjbzulVLFzvtpxGlXT1f4SPNWtqLRvJ8aLj3F2TaaNjWc31GFSVIF37OVN59TlSg/y77ifbUAss4ZjVDvFhHYfax5JDUaqoj5mtZ9ZB/SIVKHSfuPzoTC0TakZsO92n/aXwCafjNytD9Loo8dZer9Wjlg+hw637WNvJ7OQV0njuF6fXEM1x4QTmx7QfI1JuWp/DWPpF6lUp/Vk6fiKJfLZi+KQh1AMxmASkSNih4qqBXauQgJ8VARkeGnkBfQnCtQZh/Fjs7YPwoLtoLhVJlqX2gVEL5G+I35Pb2/bbDU+PHZFO5Uh4LwmO6/0/HQ/uI9tYyXGgIbvlUDqIaCbD4lnzDqVsKBMip1awLfVxhS9zfRiNMg3S1iYnsJS+pPtVpt2hStkbtt+GxCg15bjxVRsZmtHGPeg1EQI1C7L3WsuRZs5IIRZHt7O9ra2poKOytE38pI8oft14LEjrQWx3DtAdF8gUYmtheo3j0XIPdsUVmrd6yihlDhNxv2sOEbNYwasai3rIpcr9Mq6uF7raIQXo/Px8/qb722RqnsK+1L/Y7CXfy8HaXR8ABoigDsCFajCR1DGxriM6kTYbePxk/7pFWEy+/QGOi9tFaiGgN1iGwYkLBeuVxuarNewyaDaFRnR8JK37dhMu0vfoYwKq+h84qv6djp86nBVcOgDo3OxVaMU10DdqRriz3PtG06ztpGfSa+ZzuDjtxdHMO1B0TzUyRm2AtAFYMqDmWF0SNWz5ReoMfjMZUF7JN4gebEtArvx8WtypveOLC7H0wjORIk1NDx+qq4aTSoZHXPGFmASlxRZaqRqvYF76HKvxUl3iZb2PCffp59rKfk0ujxnhpl6pjx2mqsdV+Y3suuUGFHbUps4P1a9YM6QnxWGzLms2shY20vK1JwjBQOtA2mrZT9fv8dsDAp8DSm6hxolKSRINvDaI7t5dzWcdSohn2qe8x0a4FGQnbRXRv243hrAQBlFTYajabyXXp9rjXbgXDk7uIYrj0gevaQKndVXFxUqqAUBlFloIpbISAuOioDhQd5v7tBQRRNkPPzehaRKlle3/aCFZJhO+2IU3MTbJsdvWk+iddmBMNr8Hn5HpWj9iEVkh2R8X8+g+47otFqxT7T/TwaNWv7bQNuK0t9Nr5PR0AVcCuFqBGpws98Fo6FVuLQ7QEcA72Xzi1Gpkqi0HvZUZ4aT3urghpTOwLXduhz6X11/tI50XsqgqHrguOpTpndTjty59yhwVTDpmtXkQP7UM1WKIcjd4pjuPaI2FCEKk1gN/Gr3jIXmipJ4M5SNAop0bNVI2bTwjXaszF+VQqtPEf1Nu1EtR79wGdS+MyGOO2ozIYQ7e/YBABe3zYWVKqaT+HrdATU+DDKcbt3D97k/2o8bEV6t9/azzqmqjhbOQ9a41HhLe0r/V/HxI6w1VBybNW4aQRqGyC+ZkeLGmG43e6mqEeJEDqvdQx0nHUO2s+nhkPbqIZGc6qtSCBKzNH5rzCrrhG9v0a+mtPSeadRLr+v21GcqOu1xTFce0B0AZJKbDPr7EQ9F0apVDLX0ZyELnKFy5hA5+IjLGWX0NEIpr29vQka0lOZ+Tq/12rfGJ9PGX82S8xW7vZxIlp2h/cGditVqOdfrVbvOCNLowH+Vq9alQvfZ1+yr4rFYtNYaLvZdj35lm1XJW9DXfq8CtcqwUOVqj47+0XnCK9FUUYnDa/OL7v/eF32g+4j02dk+0j2sSMy21iqEeMz6HPxb3Wq2DdsI7+j/a7RF/td0QCdrzof+bo6K/pZiv2eIhu2c+Dz+ZqiKoV3dd47Ruv1xTFce0Bs7xVozmsozq8LVr1ANQyajLZJE7rgbBhN8X9V5o3GDsZPqKSVt6uR091gNy5czXdoBKERDO+rMAuNnEJGvL5WiKdoromfV+iMCkbzdwr1tIL/mENR71sjYPalGkSbjad5Jr2HDRfac6TVb/szfE59Httwa1TIfiPzU6MIRjY6NzWy1Oe3HS0bZlPlbcOHGl0q3KYGgPdXtp8Ng2r/6rzT57Wjep0zzGNpjo9MQh0jtoMOAtukDhznjI0Q2I6aI63FMVx7QGzYhAuo1WfsRU7IQoUGQpP4wO6GVz1dGIChGtMDtSE5NTRcfFQcGmkpHKkGSaM1hdnYNoV51IhrDs1O7qv3y3by+ho1tnoWtlsZjHpvVtmoVCpNUV6j0TBGW4k0bW1td+S/mE/TfWGsq+h2u80JxPZJz0BzFXlV3HwG3dSskZOdE+W11EhouSu3222q+5PmzYhcnQONwOm4qDFTI2MTUnR+0BiwL30+H4DmaMzO/2jf81mUFMG/Fb6zIWh+33aE2C86Z3UbBb+jc1fnra43dfS03/k6P2cbTkdai2O49oBwQuvGSY0CgN19VK2O9lBYTyMJhWJ04fLauqD0e6qwdJGTwUZlywVtExRsGEgVmN5PIzsaNypkO1LQfWt21KRerCpa3ePE56fSt42VKh3NN6lhtWnreg32t0KudvRsG1IdP3vM7AiOotfX6ICi7VZozFb6bLv9fK3ayOvTKNlRv0aOdiTcyrHQaB3YNT5abUPbrc+oTgdF54sd2WlfKRnIjv4U2uP91KmwDZI6ba0cBhuF4NjROXTktcUxXHtAbBjDVkrq1ermWXqyNubPhaisPl1UqvCZD1JIh5/VXIWd2Oa1lKHI7yv0oiQGRhtKNNEIi5+z4RWFflRJav/o8+kz6+c0QrWp3LqniJGWKl014jY5wY4aFS7T8WxV+0/FHgMbJrPhMVuZ23CaRjc6d7TdSvKwc2h2n+rcUbiT99DPU3Q+sV/UULeCE/VZdH1oVKdEBz6TffwL+0tzYDq3W8F1ek87r0zRKEqdF52XtgHT53JgwtcXx3DtAVHYw04s256/XQFdFYl6cvodfk49TKCZEMDoR6MPWznymvo9jWQ0YuJ9VXFQMdHYaqSkhA/NldnPY0N1CuWwr9gurTjCftaoVKM5PU/L7d5hxClhgNBfKwaa/k8hXVyNlRp87T/2HfuiVtstAksYTT1329FQmKrRaKBUKjVFTDQUuufJNq6MpgA0nXzMeeXz+cx4tcqBKuyq12WEq+OrG77VqJVKpaZ5Z4+rRuech9p2Rmh6H52jdp1OZaHaa4CVMSj2OmPei/dsb29v2ieo31UI824G3pFmcQzXHhD1rLmIdFGpcrANlhorjTBssaMGKhiFCe28E3D349ZtKMvO09mQjXqpGs0pDEVFZhtg25izf2wGoMKF/Fwr71dzZ5qv00gPQJPis+/P62kf2e2zYVfNN6kHz+dXr13zLuw7Leml/UgmKksJKRyqfWK3k6/ZY6pwoEYJNAaMnG0Sjs5fG0ZTxa1Km2PHv+3P2GOn60K/r46ADfnxc3xfoyXCu7oOgOaTltWYKppAg6QOGeF03lNZivZzOnJ3cQzXHhD19Dm5Ofntc6N0AQN3Vi3ge60UnB1FqQerSutueQL7Xnotinq46tmzrcCuUtDn0HvYBofeN5WDKhFV0DYMpArYVmRKurDhNzui4mdt0gSvaxsi29AqlKfGUz9vK3Ql6NgQk9LZ+T4VsFZFsY/H0ehd+5ARBq/FseF4aESqcJ2dG+K8VYeIz6XGRee4Ohq2sdfIiMLxpbSC6jSS13Zof7FNrMqiz2c7c+pk6bYJHQN7bjJKtx3FVk6LI3eKY7j2gGjlCTLRCInpInw9KjevBewaJS42hd2oFMko4yLWPTA21KQVJ7j4+Fn1OhuNBvx+PwAY5hzvoUl0NTIAmpLztlfMvtD7KVTkcrkQCATgdu/stVIFY0NaaoAbjV2WoO3NqxKlqMLXyMlWYoyC2O98vdX5VHZEyrYpbMV7qNK0cy/qyBDmsqNiij5TvV43VHg72rUNJu/Jgrn8jB0FtXKQ1FCq46OKXaG/uxl++5m8Xq+ZZ7aDx/vazENlJeqeMf2+wqQKd+qc4/fZ/0qn172SvCbXm71XzJE7xTFce0BUCakhIRyjC8BWAqq8WkVJGmkBu/CFDcfwhwrYpoprdKQKiorMVvAa0bRKpmubVGylAzTnhjSaabUNQJUdjaG2zY4gNTdoR2qqLDUKUOXJzzFy1fHUMQVwh9Lj8ygcpQbefi47GrKjR+0bJWZwDPhdjR50DvK37pWyYTg1sPa2DTV8HB/OYTWCOk72GGp7dH7bfclntQkZ2gaFr3W8NOqx15BNaLENIj9noxZsm76vbVGHx3YkHblTHMO1B0QXCZWn0r9VidGj002iwJ3eq8vlaoqgVGloORyFFlVh6ntaZFUXpFKD1Ti0oh1TsbtcLhSLRQB3FsNVj1rbxe/r/VpFQ7yOKhy3e5eUoLkFKlybacc2aJV4WzlpdKF9r8qabWAkqFFkqVQyRAQ+Z1tbGwqFgukPXpf306jRZpLaxAjmXjgH9Nm5nYFsUpJAbEIN26Hzhs9FWJH7sNRRsUkeNgyq84D3UIXfKsLVPKTCd5yX6lQpo5J9oM4J+0K3hLhczTDw3RwQdZ50Hej6Yh8zArMPEnUM1rcmjuHaA6LepSoILhCd7Op5qrK1IxVbYej3WuVU1EBqzoKLvpV3rgtYjZSdG+L1bSXDawBoys3YCktZdHqmku09ax9p9NgKtlJWow0N6b15LzunpPdkf7e3tzdBvWpgFXYKBoPGcBBWInSr52ZpFKUGXBmLdn/b46eGnmOnEbwy97StOm/sSJn9ptEdYV7dXK7t1k28LtduRXY1CGqw+VvHQOeRPovOLZ3D+jrbrY6ebTztaJ330L1z9nzTe2ofa0SnzpMyGx25uziGa4+IPZk18gDuJDao2IvUjt6A5kobvB9f52/NodiKj21SBWp7oqpQ9Jrado087O8TelJDqP3DtiqdWg2mKlXe14bc2C49XsOu5KHPYJME7KiL9/B6vQiHw+bIE5fLhe7ubvT19Rmve2pqCltbW/B4PPD7/Whvb0exWEShUDA1/9huEiv0VGs+t03YsSEsG1q0nRk+F6Mnhev0WupkqAFTw6SkGBUbcuS40ajTINFh4DVs58nO1anTQWOom/LVeOvGc302nZ9sv22AtK/0+XXc9X1dq/rMWn6tlePmSGtxDNceEE5kVdqEM+xktBogQkKEatSAKNSnkU+jsbunRksMAXee+8TFR09VF7h6sDQ4uphVgSrRgG1gu9hukgM0wa0KTyMjGhylfVMBqpJQqIgGWL+vEa0y+AAYgoNGOXwGjc48Hg86OjrMOWeHDx/Gvn37sH//fkQiEfj9fjNWuVwOW1tbyGQyePHFF3H9+nW0tbWhp6cHxWIRmUzG9LcaBM3n8P58Ls4RnUd2rs6upcfn5LX4npIi1DkBms/W0j4HmrdMsF8U6rURBY1g9fls50Qhb76mkBz/VrKD5lu1X7Twso4z+0sdLF0PNhKic4kQr50X1r624UR9HkfuLo7h2gOiDCcbeuOC4j4dezHRM7dhQzuy0uhGP6ORHRcXFa0Ns7hcLgN52J4sRSMqG+JR0oM+n3rGVEq2KExjKzltL3+rktbn4PcIa7H/WykYNcZKklHl6vP5sL29jXK5jHe84x0YHh5GIBBAPB5HIBBAuVw29wqFQmhvb0cikYDf78eBAwfwmc98BltbWwgEAggGg00MUrbXhve039Xg6ne0TzQ/aD+njrtGIrajwWvSACiTlGPQKlK2o3UbqrPnkN5LnQ6dr3o9NZraXzrHFf61jaftlNi/tb81qtO53Gp9qbNlQ++OvL44hmsPiC4wTnaNKKg4uRiA5jOu+F1dIGoYFCLR1zTvQrKHLnRVQqwaocpE3wPurMqtyl9pxxoJ0HO3DY8NQbIP+D/QvBeLhoobQEk9VuMJNENQNv3a5do9LVdf12vQ669Wq4acMDExgbe85S2oVCq4fPky3G43HnvsMfT29qJQKBgyCo1MLpfD4uIi2tra8Mu//MuYm5vD008/jaWlJQBAoVAwRW8ZVQE7ZIhqtWrIEXxOzTex35X4on2oOT+Ov77GSF+NHiFFzU9xnhAWtceQRqbV9flMWnhXo3iOrTpZapRJfmAkp/PYRhrYPz6fr4nhp1E61532Fz+nKIP2K0WrxWiUaUOQGsHyfUfuLneej+DIG06oANSoADDerSoI9fi5AHQR2Al29YSVHq5KhaJeKYA7FprmfXgtG05TFhXQTMfm+woB8lk0ilKjpUKDoW1TOMiGKu0CrZpbYPttA8nvqjJiW1n2yOXaYQuyvx5++GF0dXXhlVdeQSqVQr1eRzgcNlFyqVRCJpNBPp83ij+dTmNubg7VahWHDh3CW97yFqTTaXg8HgQCgSb2nY5Xo9EwhoNtJsOT/Wh/p1Vu046MWkFw2jf6fYVxbcOiBtHedqHjrLUhVezomPfStrEtNg2d46FGW/vFPueLwrnKHNzdROen9ok97zQa1PWpY+PIa4sTce0BUQVsL0KNQvi+wg02FKGKQqMtVSoKl/Ca+n178aoC1ChPozK2Uz1mG37U/JJCQPr8reAkGiE+p7bd3vzcyhBqhMjIUj+rbdD8gx1BUBE1GjubrD0eD/r7+9Hf349UKoWtrS3EYjEEg0F4PB5sbW1hcXERuVwOuVwOfr8fQ0NDBrrb3t7GwsICurq6sH//fiQSCZRKJYTDYeTzeePNU9hvdA44XjaMpvOEyljZiswD6ef1fzIENWqyYTkb8tJ+tvNkrb6n17ZJHK3gQ72H5vB0nihkbs8le97rnNH5zqhK16GuKRuN0KjMJvIoa1KdSEdeX77tiOvpp5/Gj/7oj6K/vx8ulwuf+tSnmt5vNBr4tV/7NfT19SEQCOCxxx7DjRs3mj6zubmJn/zJn0Q0GkU8HsfP/dzPIZfL/b0e5B+yaMREBUIlz5I0hD7UKNm5JFWwPp/PFP6k16esPo2UCDm53btH07MdmrB2u90GMtze3m4qilqpVAw7TqMcGqzt7W1UKhUTOXq9XuTz+SZygZ50S4XLaIL1+JQNyP7iZ7QfeI1WZ1fZxt42/PZeI/ZLNptFoVBAo9FAOBzGfffdhx/6oR9CKpXCtWvXEI/H0dHRgdHRUWxtbWFmZgb1et0wCCuVCtbW1rC8vGzgw3q9jrW1NVSrVbznPe/BwMAAstks/H6/UYher9ecQs2+VgfG7/ebKM1W9ow66AjZJwwz6uQ9VDg2GunxMzSi/L7mz3gvKm11UDRfa+e9WkXHihQoTKuGyH6PR4eowVByj8/na4qW+Cz2HOIcbG9vN9At5xJ/E6q0IW4toaXOp42aONJavm3Dlc/ncfz4cXz84x9v+f5HP/pR/O7v/i7+4A/+AM8++yxCoRDe9ra3NR0h/5M/+ZO4fPkyvvSlL+Gzn/0snn76afz8z//83/0p/oELFwmwG0Hxb4VL1MtVrF0VrZIqqKxtT1ajDTvasT1JWynZRApdjOpZa16DCkMNjG2stcKFGmeN4vS6NtzSKvqj0m6V11HDptdUR4H3YKkfYIe1Fg6H0dHRgaGhIUQiEeTzefj9fiSTSXR0dBgGnkZ/7e3t6OjoMP0QDofR3d2Nnp4elEolbGxsIJFI4NChQwgEAk1tsCE9Vao6vjq2VOZ6vpVGLpwz/OH4qfHRMVAjrw4NxYYKOQY0CDSCrfKcCmXTOdIx5rOo8tdn0ChOoyR15NSQ6pywI0dFF+j0KVSp46BzlX3FvrAhfV0jjtF6ffm2ocLHH38cjz/+eMv3Go0Gfvu3fxu/+qu/ine9610AgD/+4z9GT08PPvWpT+F973sfrly5gieeeALPP/887r33XgDA7/3e7+FHfuRH8D//5/9Ef3//3+Nx/mGK7ZGqhwg04/6qrDQqspWbRme26EK3E9ZqLG3YRRUTv69t0AhQoRylC9NL1f02VHA2XKhVHQA0MQGB3ZwElZF68KqYaJwIBWo/U5QKrgaW7eHng8Eg3G43Ojo6EI/H0Wg0kE6nEQgEEAgEDCkkl8thc3MTGxsbpoLEwMCA2Xzc09ODRCKBWCyGzc1N5HI5RKNR9PX1YXBwEPPz8/D7/SiVSncQHDTxz/61YWH2p84tfpcGQp+PhAxCXFoxnYaXY6vRjSpzrTWp80fzkAqfqXGq13criHCsbeNg5470+wofMkJWujrfsyvs6zzmvdTo0kDyPZ0LOhc1atR8oK7BVvk1R1rLdzTHNTU1heXlZTz22GPmtVgshje96U04d+4c3ve+9+HcuXOIx+PGaAHAY489BrfbjWeffRY/9mM/dsd1y+WyCa0BmP0s3y9ChQI0H/kBNJ8lBaBJiRP6oXdIUfhC2YCq2ChcXPa+FPVObYhDPWQuRvuMKIVRVKFo9GRDPjZ5hFCkKkLmqNTTVsiI1yuVSsZglUqlJiML7B5LoT+EVvUoeWA3j0aIqVwu49ChQwgGgyiVSgb2a29vRzAYxPb2Nr70pS/h2rVryGaz5t49PT3o7e3F4OAgHnzwQcRiMZRKJUPICIVCSCaTSCaT+K3f+i2zDyyTyRi2o44vx4FbFAKBQFN/q4HQSvH8DpUv5x/30NGx0Jwef7fKwfL7ND7qiPDZ6Qyow6BzkvNBDaEaD84xfk7LPbndzfU31WnhfFEHjdfg82thZ4UO1Znks6kxt51IJVDxe1rPUee5I68t31FW4fLyMgCgp6en6fWenh7z3vLyMrq7u5veb2trQyKRMJ+x5SMf+QhisZj5GRoa+k42e0+IGgRCPRrt8LfP5zOL1vYc1UNVmIpiw40aydlt0OvxHvp9hdwUprOT2jZJQKMjW7lqxMP/9bP6rLxuq8gI2IVPNeqz+0Kfn4qGZZsUbrMVTywWQzQaxfb2tiE90BDyiIzp6Wlks1l0dHQgkUggFAphdXUVMzMzuHnzpqkezjxfe3u7idh6e3vR399vDBYNsSo+u+/oFKhh4h4y9if3ioXDYUMu0bGq1WpG0duRtRJqqMh1zNmnapT4WY2udH7b466Qms5pdS74muZsdQ7o/FcjqPk/e63oetFISp9L5xifRQsE3A1abfV9R15f9gSr8MMf/jA+9KEPmf8zmcz3lfHSpLQNJdgnyKriUi/Tpga/1nUJmdBrVM/RzgOo96pwiraFf6uxAtCkoHTjsg3n2ZARSRj5fN4QAjRioFLi636/v6n2H6MBzaOwPeoRM6qgAtKcD7DrlXO/1vb2Njo6OnDixAkkEglks1nUajXEYjFsbW2hXq9jZWUFN2/exObmJpLJJMbHx1Gr1VAoFJBKpZDJZDAzM4NvfvObmJiYwNzcHBYWFhAKhfDII4+gWCwiEongve99L7761a/i1q1bpjKH3+9HsVhsaqsWzGXUpAV2aXRqtRoCgcAdxpjfZckqMhBV6XPuaZTb1tZmojZV2ncjyXg8HgPfqdFje3VPlTobRAw4b/m3IhRKzlACku0MqkHktTWPaDs3atAV3m5lcNk+vbbtaNjXceTu8h01XL29vQCAlZUV9PX1mddXVlZw4sQJ85nV1dWm71WrVWxubprv28Io4vtZFJYCmr1GXQBKjtCFqd4ov6+Lys5zaH7E9rDtRalJe6C5Lpvtcdp5FLZDDacqEfXieQ31pjWKoxJT0gEVop2PUBhKPWiNQDSKsD1qtke951gshpGRERw4cADRaLTJeObzeeTzeaRSKSwuLsLtdsPv9yOdTqNQKJhK4dFoFJlMBtPT0+jo6EAqlcLGxgaWl5fxwAMPGNh8cHAQx44dw9zcHDweD0qlkoFxs9msGQfmnlRZ65i2tbUhHA6jt7fXkEdisZiB7lKpFPL5PGZmZgzUFQqFUKvVUC6XDRSdTqfvyGMyOrFJIqrwORe4h4/9aRfYteeuzk2NWLTKhZ3X4nd4DXXEbFSB8KkdCdrrSeegwpCaQ+ZvjYL5WcLMunYdeX35jhquffv2obe3F08++aQxVJlMBs8++yx+4Rd+AQBw9uxZpFIpvPDCCzh9+jQA4KmnnkK9Xseb3vSm72Rz/sEIJ7MmpxUKU4+Qn1ejorkAXXCtoi3F5zW6ovdpw2nt7e1NCkYjKm2netJ6T7sN+r/mvahIGEGQpco8RaPRMG2kQuDrmptRWEvZcowyGflpzkI96FabotnugwcP4vjx4xgZGTFtYLTn8/mQTqeRSqVQLpcRj8fR1taGdDqNSqWCUqmEUChk6Nibm5vY2toyxrhUKiEajcLr9WJjYwP1eh0DAwPo6OjA1taWMVA+nw+ZTAaNRgPFYtH0V6Oxs7esra0NpVIJ+XweoVAIJ06cQG9vL/bt24dYLIZQKIRwONzUt6VSCVNTU1hdXUUmk8Hs7Czy+XyTodItFZyHbJPLtXtIIvtRmZiNRsNUwKfTAezWoOQc1LnN9aAGSKPhVsZG82pKwmB7OX8YjdKJaRU1afSo60nXoa4p/a25QZ3v/D77wIm87i7ftuHK5XK4efOm+X9qagoXLlxAIpHA8PAwfumXfgn/9b/+V4yPj2Pfvn34j//xP6K/vx/vfve7AQCTk5P44R/+Ybz//e/HH/zBH2B7exsf/OAH8b73vc9hFN5F1Psj/EehguWRF3bJGTvHoMrDhjf0fyoCwkB2rkeVhk2P5vX0Pry3wpNU6B6Px+zbUUOg1wBgjKRdrsiGtTRv4vf7EYvFzOf5fHw2GjY+m8/nQygUamK4Mbejhlqjzkajgf7+frz5zW9GR0cHisUiXnnlFcTjcYyOjqJSqZhogkSNeDwOAJiZmTGKfWlpCUNDQ+jv78fc3Bymp6dx/PhxHD9+HD6fD/v27UNbWxsWFxexsrICv9+PN73pTXjppZcwNzdncmGk0NdqNWQyGWNA1tbWEIvFcM8992BwcBDJZNKQSJjT8ng8ZkxYP9Hj8eCBBx4wEOG1a9cwNTWFJ554AqlUCgCaKOrFYrHJOHg8HlNMmBFGvV5HNps1xoNGSs8h05ygRjNcDxxnlmuiAWT0rQ4b5ylf51pRw2vX9bSPh9F2aZSvyAHnlpKRaMw1v8s9iXoeGj+rJ2E70lq+bcN1/vx5PProo+Z/5p5++qd/Gp/4xCfw7/7dv0M+n8fP//zPI5VK4aGHHsITTzxhjmsHgD/90z/FBz/4Qbz1rW+F2+3Ge9/7Xvzu7/7ud+Bx/mGKeob2hNb/NS+j+SUueEYT+nmNyPiaXkujC95PvVgbftKFre8pm0yhHCoavmYTJth+Ggx9ZlUIdlSpRAQqY6/XawgIVNb1eh2FQgGFQgH5fB5ra2soFApGufj9fkSjUaMsy+XyHRtYOzs7MTo6ikgkgu3tbXM0CVl/pVIJ9Xod+Xwe5XLZ5KMID3IzeDabRbVaRTQaNXmrRmOHbRiJRAzDkIZoe3sbnZ2dGBkZQa1Ww9zc3B0EGUZNgUAAp06dwtDQECYmJoxxAmDGgNEk82QaEdD4hEIhjI6OIh6PI5fL4cKFC5iZmQGwS3fXjbi8hzoJZF9qRKVQrw3F0QgyqtaxVtaeOmGc6+pg6XzX1zQyUydI145ChAq7M0Lid2xYnWtAoW6KQpW69hzI8PXF1diDPZTJZIwX/f0gmo/gImAiG9jdo0Kx6dAKf/B6hL2ULq8GxM5bqUetsIbWBgSaMX9VTJFIxPyfyWSMN61VP+wFS+NDo9EKZqRibm9vN/fI5XLwer2YnJzEwMAAjh07hkgkYowVlU8+n8fW1haWlpaMp1uv182G30KhgI2NDUxNTRlIr7u7G/F4HNFoFPV6HYFAAMePH8fw8DC8Xq95tsHBQaPAS6USZmdn8dRTT5n3Ozs7cf36dbO1gwQOkjui0Sg2NjaQzWbR2dmJAwcO4OjRo4apWCwWUS6X4ff74fP5UCqV8MUvfhFzc3OYn583Bu7kyZPYv38/BgYG4PP5zCnKrNYRiURQr9extLSEjY0NpNNprK+vNxX/9fl86O/vR1dXFzo7O9HV1QW/3494PI5yuYzV1VX8yZ/8Ca5fvw6Xy4VoNIpKpYKtrS1Uq1VTdYVjyCofPOpFoxEATY6POkDqCKlBUyNDEgdfozG0WXuaO1W0QckltqOka0rbx7yqRl2MLHmemUbonNeEsDXSsx3I7wdJp9OIRqPf1nf2BKvw+13UECkpQD1aoJmWrIuIYnvQ6gEq1m5T05UCbF9fjZt6lVovj0pB8x+8jzLcNOrStgJ31hZUY+t2uxGPx+FyuZBOp00U8sgjj6C7uxuDg4MIhUJNR8nX63VTwWJxcdFEqowsBgYGUKvVMDIygpGREWQyGWxubuLVV1/F1tYWHn74YSQSCXR0dGB4eBjhcBgzMzNYXV1Fe3s74vG4iQ6oTCuVCkKhELq6ulAqlUykEwqFEAqFTFmsfD6P0dFReDweTE9PY3NzE9vb2xgfHzfKmobJ7XYjEokgHo9jfHwcPp/PVODw+/04cuQIuru74fP5kEqlUCqVsH//fvT29sLr9WJzcxOpVArT09NYXl5GOp3G2tqaocr7fD5Dw2eEzD7i3AsEAnj00UcRj8fxzDPPIB6Po1KpIJ/PGwWuG4+ZG9LIlXOQY6uVUlrlhIBmmE2jdHXAdE6pseJ9arWdyvBtbW0oFotmPjFytIk5ikTcLdpTaN/r9Zr1VC6XjYNmE1c0mtN+cKS1OIZrD4hi4jbZQfNC/FuVPBeBGiYuEntxKMRkf16NoE0C0SiLbbWjM91nxGfigqcyI7uMisqudqH3p2IhEy8QCGB5eRmHDh3C0aNHsW/fPoyPjyMYDCISidyRe/N6vejp6UEgEEAmk0E2mzWV2tUgut1uw7YbHh42kRLPzeru7kYikUC9XsetW7dMRYtoNIpwOIxQKAQAmJ2dxfr6OgYGBhCLxYzhZn7L5XIhHo9jfn4eKysrePTRR+FyuZDP55HNZlGpVHD79m10dXU1MdEUGu3u7jZV6TmOgUDAkDEAIJlM4uTJkwiFQshms7h+/TqWlpawsLCAra0tFIvFJpo/HZb19XUUi0Xk83mEw2HE43GkUilTf7KzsxMPPfQQYrEYPvOZz5gIlIp4Y2PDKGqF2OwIyYYJdd6R1ahzh+1U46if4byyIT77vuowse84z7me1JhqLozXthm+zIkqMYgOGqM0Piew6/hpsQBHWotjuPaA6CIltKGLWE8qVqyeXqFNf9ZFxr029AC52Gkc1WAqLGMbJi2uy8Vcr+9WKmd06HK5DHxSqVSalIN6xQCMsmUeiFELAAORRSIRVCoVxONxPProo7jnnnvg8/malAo32+bz+aYCtMFgEIFAAENDQ8b7p+KemprC+vo6VlZWsLS01FSW6cyZMzh+/LgxmNw/1dfXZwxkMBhEe3s7yuUynnjiCTzzzDNGWbW1tWFsbAwTExOYn583cGVvb68ptnv06FHcvn0bBw8exPb2NrLZLD7zmc/g2LFjOHbsGNxuN9LpNCKRiMmbFQoFE1kWi0Xzmt/vR0dHB06ePIlYLIZCoYALFy7g4sWLOH/+PMrlMoLBIOLxOHp6eppYl6wjmM1mkclkTBFhXi8ej6NUKmF6ehrhcBgPPfSQibyq1SpCoVCT0ifESpiQcLFWJOFc0RytvdG7Wq2aSiCc49VqFcFg0Lxv55oIzylphAV9FdLT+cx1x/vyh+vCZqnaTMdKpWLYnV6vF5FIBLVaDblcrmlNsI3qeDpyd3EM1x4QLj47Kaxiw378rJI6uFg1p0DlBOwea64Lm9cB0LRolRRh5w2oTHQBU4lQedOz1D0sbCe9ZFUuavw0otvY2EAymcQ73/lODA0NGeNJA1+pVMxZV9wvVSgUkMlkUKvVjIGhYiRsNz4+ju7ubnR2dgIAlpaWkMvlsLKyYggMAJBKpYyx3r9/P4aGhpDL5QwZpFwuY3NzE/V6HZ2dnQZC7OjoQFdXF3K5HMLhMC5dumT2X2WzWRMpJhIJNBo7zLnZ2VljQPhchBwzmQzq9brZg8XDJicmJpBMJtHV1QWfz4etrS2cO3cOV69exdzcnFGqoVDI0OU5fxQe5mnNVMTAzikPrJ+YTqeRy+WQSqUwNjaGer2Oy5cvGxJIIBAwDhcdIJJP1EGy4W87qlSKOp2iYrHYlHfSXCjnLx0TG0pkpAbsEjIUquZ60FJjilrY60+/xzba817zzhr52QiKI3cXx3DtAdFcko3zA80Gg6I4ui4k+4cK24YNbfhPF6nmIfhZKgQ9FkPzXzSKAAzD1Mb11QhSWdg5sGAw2AQVDQ8P4/Tp0zh27JghfvAIj2q1imw2i9XVVePhF4tFZDIZZDIZQx9XJZZIJDAwMIChoSEMDAygr68PPT09uHHjBm7evIl0Oo3t7W0DfaVSKSwtLcHr9eLRRx9FIBBAsVhEoVAw3jzZf/feey96enoQCoXQ29uLXC6H27dvG+VVKpXQ1dWFjY0NuFwuRCIR5HI5AxcSUmTkWK1WsbKygq2tLaRSKUQiEUOqqNVq6OjoMPmvYDCI2dlZLC4u4vz581hZWUEul0MoFEI0GjWkFfYxI1rCW1S8wWDQRMrT09Nob2+Hz+fDxMQEZmdnsbGxgVAohJGREfT29mJtbQ2RSMREXoRkOWcbjYbZyKywKQCTc6rX66a0leZTbbjOXi+6LnRua2Sja4T1UBWOtyN3XQMUXY92vk63lxAu59zmvNbPO0brWxPHcO0BoUJXLFxxcoUq9DsaPdFIVCoVBINBAM0VKEhl1o3GxWLRGCcSAbQ6BQ2T/ZtKRPNWNGZtbW0IBAKmnYR4SBHnfWg4qSxYuoltaGtrw4/+6I/izJkz6OzsNGdbTU5OwuVyYXNzE1euXDGKn9UrFhYWDCRFA0rPFwA2NjawtLSE9fV1dHd3Y3R0FGfPnsWRI0dw+/Zt/Pmf/znK5TJSqZQpkZTNZk0OqLu7Gx0dHQgGg5ibm8PVq1extbWF48eP45FHHoHX6zVECgB49tlnsbm5ifvuu8/s/wJ2ohlWqLhx44apIr+1tYVKpYJjx46hs7MTxWIRpVLJGCwy+QCYcd7Y2MD09DT+5m/+BisrK+YkZSpkQqSMakKhkHEoGIVxPxX7rVqtGmPe09ODn/mZn8GZM2dQqVRw8eJFRKNRvP/97zdwZKVSMUQPLd+kkDXnmUY8dICU5UdjQEPj9/vN1oZ0Om3mM40hWafKxlX4T8uX2QxAda6CwaAxavqj7eXctdERkltKpVITWUSjLK5fwuJ6aKkjzeIYrj0kGp3YRkqp8aqQ6FVycenipDfaKrrSv6lc+JvX0u9wIQK7Vd21bRp9lcvlJsOq8IrCOWR8ud07G3dJH/b5fOjr68OJEyeM8i4Wi4hGoyZ3lslkTL4qn88jl8uZHA0AozxVKVIxVioVEz1ks1ljzAOBAJLJJDY2NrCxsWGUem9vLzweD9LptGkbALNRmBDh2tqaeeaBgQGkUinDCiTE+OKLL8Lj8WBtbQ0dHR0YHBw0FeTX1tawtraGQCCAiYkJBINBRKNRdHZ2olAomH1gGm0znzI1NWXo9zz4sNFoNFWf5+ubm5uGERiNRg2UqhGk7vHb2trClStXcOTIESSTSYRCIRQKBXR1deHgwYPIZrN47rnn7sgBqbKnotZK/coAVPhYc74K5wF3L1Jrw+cKX2v0pblkzlc6XxpBaW5Kc1Rsu6IcFIUwlanIuUjoU8lRjrQWx3DtAVF4UPc7EUPnIqQ3yZwIlRaw6/kxQc1FROYXr6n5Id7Phim9Xq8hOahnScVEhUklqiwphf14L3rZNCCkrVMRsPJEOBzG8ePHcc899+Dee+9FOBzG0tISCoUCBgcHTc5oeXkZs7OzJi/FqhIADMOwVtuphsFIk/kb9iWV46VLl3Dr1i3s378fPT09OH78OG7duoXFxUWTy4rFYujv78fi4iL8fj8ikQgymQwSiQQeeughuFwuzM3N4ZlnnjHKnRBjLpczdH5WoQiHw1hcXMTc3BzK5bIxhLlcDtlsFtFo1BjzhYUFLC8vo6uryxjstrY29PT0YGJiApVKBS+//DLOnz+PpaUlAM1kByp0t3tnz1Eul8P6+rpxhCKRiCG7VCqVO4oh+/1+NBoNfPrTn8YLL7yABx54AOPj48jn81hZWUFXVxfuv/9+rK+vmz5j5BwKhUxua3193UT8CrMpVMm2U7lHo1ED/7I9mrelUeLxMrbjpM/B77A9FDoBwC5BiUbGzu+y3a3qLOrJ4boWda0QQtWtJI60Fsdw7QHhomiVc+IE10rcCkHY+1CUyUSIhguKXiYNkO6xUUPGxUVlppCkEi6oDNT7tHMmbDONlU0aIT09HA6jp6cHjzzyCMbHx9HT04OlpSW4XC6zN6rRaBgW4NzcHKamppoMp5I8SqWSgZCYZ2HbCWnybxaYJcGiu7sbm5ubBvZJJBJwu91YXl5uOsa9s7MTbrcbL7/8Mq5fv47t7W10dXWhr68PpVLJlB0iUYQ5EFb3YO4qm80ilUqhWCyiv78f/f39xmCsr6+jt7cXJ0+exOc+9zm0tbWZjcXBYNAYjEwmYw6p5FjQ26eDoJ4+xzmbzZoCvpq/IQmGztP29jYWFhZw9epVTE5OIpFImP1n8Xgchw4dgsvlwoULF0zUrPlXOyLSzcecC2w3X2P/K3Rt54k49xkx0VHRSI/OmRKCdC62Ik/oPdhXms/ivOL64nPxmuw7RSpswocjdxfHcO0B0cmsixto3rulC48JdPX8FH7ggtGFpRCgDSUqhML7K1SihkkVoBoLpfNrTUUqUCoACo0isHOm25EjR3Dy5ElT/qhWq5lahB6PB7lcDvPz85iZmcHt27extLRkNuKyjaSJUxmzD2ncVCETptzc3DQJ9Xg8jlgsBp/PZxh2bW1t6O/vx/z8vFGirGZRKpVw8eJFZDIZHDx4EOPj4+js7MTs7KyJXrLZLLa3t01k2dbWZvZ6eTwe5PN5pNNpwxqs1+sGyiuXyzh48CAGBweNkW5ra0MkEkF7eztu375tWI2hUMjkspQEQ4WuY6J79Tjmdm6ITgXnXalUwvLyMnK5HLq6ukx1ewDYv38/KpUKrl27Zg7xpLKnIaFR0fmhpB+NZggJM8ri3KGzpnCjRnLMb2okpffRPLINiSvyoeukFTnKnvd2BMY+0wjWZvE6cndxDNceEBtLB3ZL2XBhcKGoJ0dvmAuai9OOyKi0GFWoN64JdGC3YjcT4wrPkDgB7OzB8ng8pqIF6doazVFR83q8B8katdpOGaaBgQH82I/9GO69914Eg0EsLS0hnU6bpLzL5cLi4iKmpqbw5S9/GcvLy9ja2jKRnJ6ezeiwXq8birbSoOv1utnz5ff7zWc2NzdRq9XQ1dWF/v5+Y1A8Hg9mZ2cxNjaGt7zlLXjiiSdw5coVDA0NmeoSx44dw8LCAkZGRsw+I5/PZ6qwc68UK6jzzK3+/n5cvHgRvb29JgLMZDJ46aWXzGZrt9uNoaEh9PX1obu727D6Ojs7Ua1W8corrzRFgizBRGIK98ppHkujAnU4bLYdr0GFzVzatWvX0NbWhr6+PrS3t2NrawtjY2NIJpO4desWbt682QTdqZHg/NOcFQ0XDQ7HkffWgrV0NrgWbOhOTwpQBEOZi8yzaZ5Q1xTXBNcPv89+pBOl5BJ16Pg8tVrNjLkaXs1fO9JaHMO1B0QTxRQlWyhEovkpG/ZQ2E/3cqni4PdsVqLCi0qosBcmjxtRT1TzAJr3UuXBfJfS891uN2KxGA4cOIDDhw8jmUwaiI6Gls+zsrKCqakpLC4uIp1Om3JFfFZVLnxNo02+zv6mI0AI1ufzoVqtYnl5GbFYDJFIBMBuRfpKpYLJyUkkk0nMzc0hFosZQ37q1ClTDZ73SyaT6OnpMRESsMuO43VDoZA52oQEkVQqhXg8bmocUgm3t7ejq6sLU1NTTVRrUsq1r+0N5nxNowuOIbBbIJf9qDlIVeDVatWUxuLpzsFg0ByBkkwmsW/fPqRSKaytrZlx1DPDlJSh+VWlpms0o46WKnyF8zQ/qz+6Yd+exxqBMTrTNahrRNuk7yvjkK9pBMt7c14o09DJcb22OIZrDwgXrZavYQUDYDdhbZM4AJi8iV5Hq1twYVJxkWHGZLHCbKr0qNzVE1cGIb1dGjJGGTQGhNpsFpfCPMePH8eb3/xm3H///UgmkygUCqbeH6OBnp4eNBoNfPKTn8Tzzz+PQqFgqsBrNEdISk/5ZR9ptKoRJJUPqdUAcOXKFQDA4cOHzRE//CwL4X7+85/HuXPncOPGDXR2duLs2bM4dOgQQqGQqWvodrsxPj6OQqGASCSCWCwGl8uFQCCAcDiMjY0N7N+/H8FgEF/+8pebmIMejwcnTpwweTTuuRoaGsKNGzfQ1dUFl8uFVCplDK+Oc6FQQL1eN0aS7zPqZaUSVrbnWKpwTxejD86vcrmM6elp9PT0YGBgwFTYz2Qy8Pv9eOCBB+D1evHCCy9gdnbWGFdGemynx+MxFfQ1QuKc4XhxbnFM+YxqoPgZNWYKiwIwZCYaP2UIcu7rnOE19R4a6dmGlHObxolGlzR9tseGHB1pLQ6gukdEPVEugLt9DriT/svf9uv8n4ZLoUE7Sa34OxestsnOedFb5vX0GajsyaDSzcYkKNx///04fvw4enp6UCgUsLW11XSfjo4OhMNh1Ot1U6KJUQ6vpx60QlNa/JSfZWSj9HhGFTTYpVIJm5ub8Hg86OnpQTgcNs9XrVYRiUQQDoexvLxsCtJOT0+jXq8bUgWJIDz2hPcPhUIGOuJzjo6ONvX7vn37MDAwgMHBQcPMC4fDJnLxeDymrFChUDDtViOte6L4GiM6WzQCsH9zrDnv2F9aG5F9xwofkUgEIyMjBkakc6GOlP6oEqdzwwr5em+dk5y7WiaKbeZrOr+5f1CJGOqs8bl0TmkUpzlSCg0f26jt0Lay/RphaS7ZkdbiRFx7QKg8lAShigdoLgOli0I9T5thqK8DzYQNTd4zWtJIxFYIvC49Sypf3QPGe1D0ORQKajQaGB4exrFjx9Db24tKpYK1tTVDfNANti6XC6urq1hcXESxWDR5I41GCeVov/A9VW4UO3+hhIDt7W1zbAr3UJHGzIjO7/ejUqmgv78fXq/X7N9KJBLweDwmyopGo4YGT8iQsBkp78Fg0LDqDh8+jPvuuw+RSARra2vIZrPw+XwIBoNNkSo3HrOEFMeJSlefWZW8rXw5T3S8OGbK1rQjcUbrhGNJ4kilUvD5fOju7sbhw4dx7do1eL1ec34Z55s952l4lRiic5nPxI3urdaAklAANM1xe9wVUlZ4XecTDaed+9I+1ftzjiujUa+j0LptyBy5UxzDtUeE0QuNBPMT9lHzuiCA3c2O9Kg12axKSGm+WoZGcz28vpZ6oqLSBa8sKsJMXLT0rjXHxTwLI7GJiQk8+uijGB0dxfb2NpaXlw2LjkVj4/E4tre3sbS0hG9+85tYW1szBAPeh94+PWX2BZUgPX47IlMFrAqfyqRcLjeVNjp//rwxOn6/HxsbGzh+/Lhp+/j4OKLRqIG8CoUC5ufnMTw8jImJCczMzCCVShmCQCAQwP79+02dv/HxcZTLZfzGb/wGKpUKnn/+edy+fdvk2UgL5/MFg0EsLy9jZmbGHN1CNqFNSGAODIAZK/vQTlX2qpyVoadbDnitfD6PfD6P1dVVrK6umlJbBw4cwOTkJF588UUUi0UEg0EsLi4CaHZ8gB0SEjeYc24xp8foi69zzNQIMH9KZ8suAu1yuZrygApZcs7QCDOCVidB1xjJL7qVhOuUz8ZtDGTM8jokarDvHMP12uIYrj0gdtJXoTmFI+zJroYEaE351SoXmkjmazahwU5S23CkRoY2G03/p5Gkp00DHAgEMDk5ieHhYeOtM/dCiEjzL6lUCpubmyaXov2i97UhLfYl22z3nRpxKkIaMY9np7IF+4yQHI0mDzotlUqm7l82m8XMzAyGhoZQLpfxwgsvoNFoYN++febE4WKxiEAggHg8Dr/fb2C0RCKBeDyOYrGI559/Hl/4whfMtUdGRkylcT5PIBBANpvF5uam6eNyuWwMIZU9FTPJB3ydY2iPOyMrNWzaV3YEn8/njdEhi3B9fR2hUAg9PT0YHBzEzZs374gy7E3vNrnBvl+9XjfGhWNij6saNjotfDZFDDTK5rV0H5mSQbRNNpLAvtU26j00SlOSjN33jrQWx3DtEbFhQipkoHmvjb3hl6IGBWg2NLbiUNjIVhq8B19jWzQnZEMsmtPi57n5Vq9LOG1iYgLd3d0ol8vIZrNN0JB6sawkwSiMNd74fIyktJo8FSthUYXHmPuioVTDtr29bY7/YFQFwNDOWW2Cymd+fh6rq6vwer0YHBzEysqK+Xw2m8WXv/xllMtlHD16FD09PUin06jVahgaGkJnZydqtZ2qJ4VCwbAaL1++jK985Su4fv06ent7kUql0NfXZwyX5rFY5ooMQDIo2ee1Wq1pE7BCyFSoNqSouTIVNX7Abl1LkkO47YE5OUZKExMTSKfTmJubQygUMk4KjYduw7DniTpWmodUIlMruFznpu3Q2UZJ57VG8jrP7XWg6xLYzXWx70g20W0HzPMy0nLyW68vjuHaA8IFTAUMNO9HoiLWDbxcgHbuiItLPXT1EKmw9Lwh5gOomNXrtT1ZKhxeuxWtmEqA36OMjo7iB3/wB3H69GlUq1VcuXLF7G/ipmNWRs/n88hkMuY4DTt3RYiHio3PqfuV9NBELT8F7CpEkiUqlYqhosfjcVOuKRQK4dixY/jKV76Cf/Ev/oWJmKanp1Gt7tQkfOihh7CysoJisYi5uTncvHkT1WoVf/EXf4GxsTFDbw+FQjhy5AgGBwdx4cIFbGxsGMr44uIirly5guXlZbO5eXFxEd3d3ZiamsKBAweQTqdRLpfNJuVoNIq1tTV0dnYiEAhgc3MTnZ2dqNd3NjBvb28bpakOhkLCPB9M9zZRuD+OkbDb7UYgEMDg4CCSyaTZrxUIBMzcPH78ODyenQ3yExMT6O3txblz5/C1r33NnALdavOxGhkaEAAmr2WjBYyAtf6fGhXd28d5a9PydT1pjrRVXsue64RdGeUCu84Doyz2p83atHNvjtwpjmnfQ0Lloh6kRjA2hEIjYnuuFBojLiLNkdErtL1UjeK0LQqj6HuK4fMzNtPN4/EgHA5jcHAQIyMjAGAOQaRSorLld3muk81a1GfTn1Z9acM3GoHxOwpvMkehfZLNZjE+Po5sNguXa/dojHvvvRenT5/GiRMnEA6HzcZjbtAlm5BVM0hkYNT36quv4sKFCwCAWCxmjkBZXV1FrbZTHsrv95tajNwqkMlkTJQViUTM/GAlDkKthAw5ZoyM+MOqHzw+RZ0U9h/3r2mkEAwG0dnZCY/Hg42NDaRSKeTzeSwuLuLq1atN0XGlUkE0GsXk5KTZhK1wrw35cjxsZ4xzVfOVOv84xzTHx+NY1Knh+8zl2XNDIzF7HnHOaP+w7zlHFeLnazT6Gg078vriGK43uNATtHNamiDmnhctnKp/A7gjOuP7TKxrxW8bHtLFyAXJUkpc/PoZkh74Wb7GwxX1Gny206dP47777kNXVxcymQzW19dNpBePx7GxsYGFhQVzACNhLlLANepkdKpeOPuIXjXhQCrbYDCItrY2k4uhUgZgSjy5XC50dHTA5XLh2LFjGB4eRi6Xwz333IOOjg6sra1hbm4O1WoV+/fvRyAQwMrKCubn5xEIBFAqlfDiiy9iZmYGpVIJkUgE+XzeKK10Om0qs1+9ehVf+cpX4Ha70dHRgXq9jv3796O9vd2UUdre3kY0GsXU1JQ5j8vj8ZiTmWu1Gt761rdiZWXFwKsulwvRaBThcNhEkyxRpbAh91cVCgUUCoWm/qJx47yhoqcRCgQCWFpawsrKCkqlEnK5HJ5//nmcO3cOn/zkJ3Ht2jXjiOTzeQwNDeGnfuqnkEwmTZ3Ger1u5jQVPOewbmWgs8G5y7nHtcPvcF57vV4zZ/T0ZeYYlS1IUaPGdcLntnPORC84H3lwKfOHtqOlUKQ+k5Pfem1xDNceEDsprQtIoxh667ZnaDMBdWHY+L96jWrINA+m+SZeUxeuQpE2yQPY9X41CT88PIzu7m4D4XEfEEsu8byreDyOQCBg8j48sZhG0SZiUMlo1ElFp5tWVTECMEds6KZv/t7c3EQymTR9TSbg1taWOQ/r9u3buHXrFvL5vDlNmVEkFavtIJBQkU6n4XK5DCRK4+33+xEKhZo2qzJnlM1mTb9HIhGzYXn//v0YHR3F+vo6EolEUw5P927Z+5To9HBuqbFiHytszCLIXV1dKJfLWF5eBgCTE8zn84Y9eOvWLZMj5KGXx44dw9ve9jakUimUy2VDANH2qMHStWDnl3QeatULhaXL5bI5okXzfurgKVLA/tYIXuFwZTPyO3YeWRENJTVpm+316UhrcQzXHhClL9ssP4omlW1PUyM1XRzAnZuTKQqV6GKl8iBUpFU3uNj4XXuBa5s1EnK5XBgeHkYikQAAk6Qne5DHd2SzWWO0XK6dWnnhcBjhcLgJLrKNMO9LBUNDpfkOJS/Ym0fZX1T6PGOL7W80GvD7/VhfX8fW1hbq9Tpu3ryJxcVFk8dj/USSSdgvNKzlctlEJyyR5PF4TPmkaDRqIgp65e3t7cawLy0tmTJQwWAQyWQSbW07x5ucOnUKgUAAPp8PPp/PRBZtbTuHerpcribolfNMYS6lvNPwKnzY3d2Nvr4+hEIhU/bJ4/GYPWbqPMzNzWFmZgaFQsGc7tzX14eTJ0/i+PHjBjYlDEk4W/tb26oQps45paTzezQK7HdGSJyHdMpswpKNNvCa6pjZhkfXnz23VNgedZwcw/Xa4pAz3uCii4VKkKQBWyEzgnG5XEahca+NEjWoSLiolTwBNBsezSMAu5CjRn78rK3sAZgit8y70Ghw0ReLRRw8eBAHDx408FG5XEY6nTZ7tW7fvo1nn33WwHTcE5XNZhGPx5FMJpHP51EqldDd3W3yM4zAFN7RCJMGl31BZQfA7JFin7e3t+Oee+7B0tISxsfH0d/fj5dffhnxeBzpdBqhUAg3b97EpUuXUCgUMD09Da/Xi6997Wu4efMmksmk8cq3trZMDT8ABnbt6OgwFedJonj11VcRDAYRDocNRMiSVuyHUCiE559/HuPj4wiHw6hUKujp6THEjHe84x3Yt28fPvrRjyKZTCKZTJrzr3gaNZ+R0bmyAcngBHYMB2tBcpO03+/HyMiIKb915coV84yLi4sGwi0Wi/D5fFhaWsI3vvENk0+KxWKYmJhAZ2cnfuInfgLr6+u4ePEivvjFLxpyBgkyJIuogSL8C+xG9mSYcr7pdWhwaUj0pGF1vvQ1RRHU8BDKtI2oUugpugHZzgtrVNcqn+xIszgR1x4Qm0Rhe5LKnqLQ0CgGz/9VcdtUdjtKUpICoy2FPdRY6X3sz9jkEH6vra0NQ0NDJq/BfEkulzPFWHlUxsbGhtmITKMUCATQ09Nj6u7x2sCd5YbowVO58X1GGxo9AruecKlUgs/nMzmp06dPo1gsIpPJIBqNol7fOTIkm82aslPFYhGhUMgo1lAoBI/HY3JoVOasJcn6gNXqzonNiUTCwIW5XA6bm5tNjDtGTIz25ubmzKGPwA7t/tChQ1hfX0d7ezsOHTqEM2fOoFQqoaenB93d3fB6vU3ngjHPxTHWKF9ZeNXqTgFjQo8avXm9XmPIS6USstks8vm8iWyYu0qlUlhYWMDS0hKmpqYMIxIAent78aY3vckYexoYbt4ltMfoWtEBzSFxfgEw0alN9gB2UQRCp2qYWiEHJFQoTMn5rp/TdWAbIXUIuUY1MnTktcWJuN7gwgmuBkI9P4UslJ2kmL8qIeDODc1Ac3VqZW3RS9TXNKqysXpeS7+vFQVsbzIWi2F8fBxut9uwCBuNhlF6AAxhoVKpYHl5GT09PcaIeDweDA4Ooq+vD8vLy8YYs91sjzIDKewjVY6sF8jiwITkWJqov78fhw8fxvXr1+FyuZBMJuF2uxEOh7GysoKVlRVMTk4aw+p2u01tQo9n5ygUlqUi0YLGKRqNGhZeX18fOjo6zHiTjk7FnMlkTPWIUCiEtbU1eDweQyLp7e3Fm9/8Zpw/fx6JRAKxWAwPP/ywef6hoSFUq1XMzs4ag8GNwpwrNLKcU4RTE4kEBgYGDKzpcrkQDAYRCoXMic5+vx+FQsFEljQOzGmxjBeN5/r6Ojo6Oszm7f7+fpw6dQpPP/20iYh4fRIqNNpRI6ZzU42QPX/V4Cg8qHAhr2lHSYowEEbmfe0csuYydT3b8D7/9vv9xolzjFhrcQzXG1wUI1eqL2EWeqHArvEg/AWgaXOjluXhgiZ8ooaN91Wcn9EHvX7NIaiHyehBae+MLuj96mI/deoU7r33XmxsbGB2dtYw/DY3NzE1NWVKTTFy+uu//mssLS1heHgYKysrcLlcGBwcxKOPPorz58+b6u1U4jxTi8IIlf1HOBXYUYzM+bS1tSEcDmNgYAB9fX24evUq1tfX8R/+w3/AQw89hC9+8Ysol8uIx+Oo1WqIx+P4y7/8S7NnKhAIoFgsolwuIxAIoKurC3Nzc4Yqnk6nUalUzCnHs7OzeOc734lGY4di39nZaaJQHgS5f/9+s5eNpwNcuXIFx44dQyAQwPr6ujF+nZ2dOHXqFD72sY+hv78f9913H8bGxtDW1oZPfvKTiEajOH78uInKyDwslUrmZOlEItE0Z2gskskkFhcX0dXVhfe85z2YnZ3F/v370Wg08NWvfhWlUgnT09P48R//cayvr+PVV1/Fvn374HK5sLy8jEKhYIxOOp3Ggw8+iM9//vN4//vfD49n53yzaDSKxx9/HCdOnMAf/uEfYnl52cwzRuWcx4yk9PwwheA4Xxl1k02pRAqFyenEcM8ft2EEAgFzXV6DfaIIAq8DwGyopmNpR2l2ewE0wbetNnw74hiuN7yo4QB2MXxi/WSIcXHSeNFLtPfgKCSoTCt+B2jOcfG+NHz6OV2E/B/Y3azJRUyWGCNBtoOGwe/34/bt2yiVSgiHw6bd3JcUiUQM9LS6utp0lAghxf7+fgwODuLKlSvGC3e5XE25NbaXz0WlxfxXsVg0zL3+/n7EYjEkEgkEg0EEAgEMDAxgdHQUsVjMRA70sN3unUMe9+/f3xSpAjtkCYWhtra2TH+y/p3CRIQs29vbsb29jUgkYvaJeb1eBINBpNNps4l4aWkJoVAIN27cQCAQMIy5RqNhjqgBgHQ6bY4XIYEiGo2ip6cHfX198Pv9qFarmJ+fN+PPaG92dhbV6s6RKFeuXIHH48E//+f/HIVCAZcuXQIALC4uYn19HZubm9i/fz8AmNJUhBTX19fNXAmHw9jc3ITf78eVK1dw4cIFJJNJbG1tIZPJoK+vD/v27cOpU6fw7LPPmtOrqeyVzMC1YRMmOLfpsLSqCEOjwXysznuuBzt3S+eMoggDx5D/a7TPdUFykG5Gtp9Lr+9IsziGaw8IvTouBHpvTDATcyckoVR0Lii3220IB7lczrzHa2shVSpj4v7KeKKCVSo7sMv2UmUeCAQQi8XMsfNUOmwTjy3hnqNwOIxoNGogq5MnT+LixYuGGNDe3o7NzU28+OKLSKfTGBgYALADNz7zzDM4ePAg3vrWt2J6ehoLCwumreVy2TxfOp0GsKOAlBzhdu/s5zp27Bh6enoQjUaxtLSEpaUls2mX/cSKHNyoy6iXeaNUKgWPx4NisWichlKphGg0ilwuZ9h/9Xod4XAYPp8PfX19hp4dCATQ19eHsbExzM3NYf/+/Uin07hy5Yrx+iORiKmEcenSJZw4cQLPPfccHnzwQfT39yOZTBoyxMLCgonQ3G43crkcVldXUSwWMTY2ZpQkocH5+XmUSiXTd/V6He94xzuQyWTw9a9/HW63G+985ztRLpfxf/7P/0E8HsetW7ewubmJ/v5+jI+PY3R0FI1GA+Pj4zh58iRKpRIKhQISiQRu376N9fV1ZLNZeL1eHDhwACdPnsQnPvEJvP/978fg4KApRBwMBvG+970P999/Pz796U/j5s2bTVR2rgXOxVAoZHJHnIvMwXGeKpHChuK5AZpnxqnTyEK/nAOaa9aco+bL2H90HPk3nQSl7FP0no60FsdwvcGFXjbzGRrtaFkmrYBNGM5OKlPoYWpOC9itzM2/GaEo84qLSqM3zV8pJKh0al6DG1UbjQYGBgaQSCTQaDTMfh+v14uVlRXkcjkcPXoUyWTSVJTgpk9WhxgYGMCVK1cwOTmJlZUVtLe34+TJkyavdPv2bdRqNSSTSUNcYHFeAE30+2AwiAMHDmB8fBxtbW3I5XImKtLDMKnQGRnWajVDZe/u7kZXVxeCwSCmp6dRKpWaqOXALoNQT/9lFAXAsPj0TDH9Po0LFS77ulqtYnh4GNFo1MCjLJW1uLiIjY0Ncx8SUgqFAlKpFHK5HJaXlxEOh9HV1WVg0lAoBLfbjcHBQZw5cwaXLl0yjk6xWMRf/dVfIZ1O44EHHjCHjsZiMTNXe3p6kEgk4Pf7sbKyArfbjYGBAbS3t2NjYwOvvvqqYYWOjo7i0KFDmJ+fx8DAAJLJJBYWFpBKpUyk++CDD+LSpUvo6OjA1tYWgF3ol3OXbFuF4sg61DJQNEJ06uicKe1eoyDOZ82P2bkqrif+cHyVBMV5xHFnnpZ9SmdUGcOO3CmO4doDws2XajSAOwvvqpAyTMWneTCgueSRQiu6D4rerGL4/JxGcpozU3iEm3hpuNjWaDSKUqmEeDxuFrbWR5ydnUUulzOVE1gFfWtrC0tLS6jValheXkZnZyfC4TDOnTuHAwcOYGpqCg888ACSyST6+vrQaDRM1FQsFtHV1WXO0AqHw2ZfVjqdNq8TfkulUqbiAY0VoyySOFTp6X4jrYfI/mLB4EwmYyAv1hwke5DPyntpfxM6ZA4sEomgvb0d5XLZMBZjsZhRyiREdHd3Y3FxEVtbW4jH46hWq2ZDMBmMKysrWF9fRzweR19fn4EN4/G4MdLVatVEqwMDA6hWq1hYWMCjjz6K3t5ec+YYx71er6Ojo8Pk6QhdBoNBdHR0wOv14urVq+bgzZ6eHtx777343Oc+hx/4gR/AwYMH0d3djdnZWczOzqK/vx/79u2Dx+MxpaLIMCVsrg4ZCTGESzl2dI4YMSkkbsOOrfaJKcHCZsgqs5Hv6TYWtk83KCusznF3Iq7XF8dw7QEhKYL4O+vlMYKh0meJIipO5ieA3WK5iveTjaWK0WZnAWjKTQEwORiXy2XIDPwf2DWaXIi8Fxl6ZJHt378f5XIZMzMzqNfrSCaTKBQKOH/+PMLhMNbX102O68EHH0Q6ncbNmzfx8ssvY2VlBa+88gqOHj2K3t5eXLp0CcPDw7h9+zaCwSDm5ubwy7/8y/D5fPjyl79smImEk2KxGDY2NoySX19fx9TUFPr7+00UxfJDrALBnAy3BnCvGHNVly9fRrW6Uym+t7cXo6OjqNfrJg9EBeb1enHy5EkzrowImE8j83BiYgLT09MIh8PGG2dh3K6uLtPO/v5+tLe3Y3FxEY1GAzdv3kQ+n0ckEkF3dzcuXryIVCqFtrY2k4eLxWKmigercQSDQZRKJXR1dRnDlUgkzJlaBw8exMTEBG7evInPf/7z+Imf+AkkEgmk02msrq6a/XpHjhzB8PAwAGB9fR2rq6tIpVLG8JLCTybo+vo6AoEAzp49i6effhq///u/j3e96114+OGHMTAwgFdeecUcCfNv/s2/wac//WlDwlGSULVaxdbWltmkTeOiVT84B2lAgOYTErh3jcQIjjWwe0Akx16hdho6ljZj1JTJZAxEqCW1CJuznYQUub7sPJsjzeIYrje4qLGgKMmA/3MRKOynnh2wC6vQwCnbz95HQmiPpZT0ekBzQVE72iNmz+vq3rNarYbNzU309fUhkUgYpRKLxRAIBMzxHvSoaVSp7Oh1X7p0Cbdu3YLb7UZvb6852DEWi6G3txe9vb24ffs2Tp48iaNHj2JjYwPlctnAriQ+bG9v48qVK8hkMoZJt7q6iq2tLUQiEbS1tWFubs4oFVajVw+aUVsgEEAkEkG1WsX09LTJl7BSxtDQkIky+/v7jcKMRCLGAeC5YpFIxECVwWDQnJjMavla+QHYcRY2NzeNcerp6TFQIfNXJLQwKgRgNjITHgyHw+js7DSwWyQSMTUeY7EYKpUKfvu3fxtutxvJZBL1eh2ZTMZEcMFg0BBbeJgknaft7W0Eg0ETIXEcNjc3AQDxeBzveMc7sLa2hm984xvYt28f/H6/mYuLi4t48MEH8YM/+INIpVJYXV01c10jVEZWfF41EnQWOKeJDijN3SZFaGUYzmfWtaTxotHSfXA0fDRiGrVrpE7DxrHRkl4OQaO1OIZrDwg9bXpiZKJRqQO7uREqMl3MCt/p+1TivAapu4ScuLAU8uIPFyINHRcnvdVGo2GYd9zTxLxNOBzG2972Nmxvb5uCs0eOHAEA49mPjo7C5/NheXnZkAUYBZ04cQKTk5N45plnDJ38bW97G65fv45isYjl5WV0dXXhf/yP/4GxsTH86q/+Kjo6OrC6umoiy1AohL6+PtMuVl33eHYPhkwmkyYfQzbc/Pw8rly5Ygwp+4MK6Pz580bB0aOPx+PIZrPI5XJoa2tDR0cHcrkchoaGEIlE0NPTg+3tbWxsbBjlxz7TM6oGBwexsLCAzc1NbGxsYHt7G729vSa/2dHRgWKxiOnpabMPLBqNolKpYGFhwRiCQqEAl8uFUCiEzs5OhEIhhMNhtLW1IZFIYGRkxCjq9vZ2RKNRRCIRrKys4A//8A/x6KOP4ujRo8jn87h9+zauX7+Ovr4+TE1NYXR01FT9YAUT5o54tlgkEjGbt3t7e02/JJNJPPDAAxgeHsaTTz6Jp556ChMTEzh8+DCWlpYwPT2NK1eu4NChQ/i5n/s5fPSjH0V3d7fpCzUsFNt503wVf+xDHJUswXlOxEKhPr0eHT/mQbnvjpGgsn5piNVYKjHELqHmyJ3iVM7YA6JYOtDMOuKiVHxcKe/8HqEH5h/sHfvAbiUJLn79nhIy7L1lvK96vQoV6mttbW0YGBjA4OAgcrkctra2DIkhlUqZjaiJRAJ9fX0Ih8Oo1+smj5NKpQyx4Z577sGBAwfQ0dGBeDyO48ePY35+3tTAe+CBB5pqBrLeH6OkXC6HUqmEzs5O9Pf3o6enB+FwGPF43HjOGpFoG1lSqFKpmIhoaGgIR44cwUMPPYT9+/cjHA6j0WhgcXHRGPBEIoGenh5z1tbm5iY2Nzeb9tnxe9lsFh6Px+T2VNFyXEmyKBQKph+ZlyMbMxaLYW1trWnbAitRtLe3m5qPoVDIKE/OCUYHW1tbOHfuHP72b/8W+/btQ6PRMEeq6IZtRmVsDw0650uhUEA2m8Xi4iKOHTuGyclJszHb5/Mhl8shGAzinnvuQSaTwdLSEjweDxKJBDweD27cuIGVlRX09PSYLRKcz1r6iaLrgo4Wmbi6p4/X0HytTZ3n50huUQKTvddSEQlGXVxjdCrp6LFqCteJXSrKkTvFibj2gBBX1wQ0RQ0JPXzb8NhUW76nzCVNUttHSNjsKt7PrlvIRczSRWwnFSbbMjw8jN7eXkN7J7tqaWkJGxsbGB4eRjAYRCKRMJtLeZ1isdhkUGgMSacHYKo3jI6OIpPJ4C//8i/xjne8A/39/aZ6ORW32+1GX1+fqTm4urpqCsOy3xXyY76GipQVL/x+P0ZHR82ZYiREZLNZPPfcc1hdXUUymURvb6/JsZBEMDc3h8HBQfNcgUAA+XweW1tbZlNwKpUyOTfOBYV0NSLl3jUe4tjf34/r168bJc9xYoTudu9U2ic0SBiVY8bTl//qr/4Khw8fNtFToVDA1tYWJicnsbS0ZGoncsO0RotkUpI0wcr1fr8fN27cwNraGkZGRswWgtHRUXR0dGBxcdHk4sLhMObn53Hz5k10dHTg2LFj+NrXvmaiGSVNcK4pVKfIA6NrIhi12s6J0BqxKbyt60dJSwqT8/OMVBk9adt0/aiDwLFUkohjvO4ujuF6gwsXGCE9Ghml3OoekVptp5gpSRbqDSpzjdGV0tVpzNLpdNPeMGVXMUfGRQbsVqPn/zySgt4pqdIkGdxzzz3o7OzE17/+dWxtbaGzsxPz8/O4ePEiqtWqYbMpQ43U7f7+fpP/InzH3E+j0TBwGdl79913H27cuIHf//3fx8TEBH7lV37FRAPJZBLAboFZ5sAY8eRyOVN/j8/96quvYmxszEBca2tr2L9/PzweD5599llcuXIF4+Pj5jiRRCKBs2fP4sqVK/jyl78MYCei2r9/Pw4ePIhcLoevfOUrSKVSuOeeewwtOpfLoVwuI5/Po6enB2NjY/ja175maO48P6yzs9PktVZXV41xA3aipY6ODpw+fRq3b9/G0tKSYdh5PDuV21k1xOv1IhqNoru7G2632xBZkskkcrkcfvM3fxMHDhzA29/+dtRqNXR0dOCll15CLBbDvffei6effhput9uwPhOJBLa2tpDL5RCJRNDf349cLodsNotwOIyhoSG0t7fj4MGDcLlcuHz5snEgSqUSxsbG8C//5b/Er//6ryOdTsPv92NoaAgzMzOYmppCoVDAO9/5TsTjcfy///f/AOzmhGyHi05XpVIxbFDOTxob5g1tlq7u4eOaISpBWJd75Hg9Qr1cDwpj0mHQnBsNI18nvOjkt+4ujuHaA6LVq4Hm0k702DRi4kLVzcoURmZcFPQ6uVjsRHWrSMuGB22GFqnPFC5mRgc9PT3weHZOyM3lckYBcGMujS69VebN6LkHAgEDL/He9JbL5bI5DZgR6iOPPIJQKISXXnoJ+XzeKCndH8bnCAQCpr/IRCOExFN7SS3XfAgVWCaTMezHWCyGnp4eDA8Po1arobe3F7FYDKFQyPRnNpvF1tYWisUiDhw4YN6r13dOLR4YGDD305wmx12hXX6Ppab0oMhwOIxsNmvGgdECn5nVSVgJvlgsmvfn5+fRaDRwzz33GMPH3F8oFEI8HkcwGMTq6qpR+tzsnkqlsLm5ifb2dnOki1ZsZ7He2dlZrK6uYmRkxMzbe+65B0eOHGk6xDKRSGB+ft7c6/Dhw8ZwEXpTeFCNEfuH/aiRj+atbESDr3EtKAtRt5MwwuKcsdcO769GTk8sUEPqRFuvLU6O6w0umuzVRLNuamQ0RaWhJAwuYtuwaOkc3UOii0ejOIU69DMKF+p7uph18QNAT08P2tp2jq3X/FYul2vKG5AAoTXoisWiie4ikYiBzliqifdXCnQkEsGZM2cwNjaGV199FZVKxbDtqGiYg+JGaDXoPEaESntlZQWZTKaphBCT6z6fD9vb21hZWcH169fx9NNP49Of/jReeOEFYxgIxWYyGbz88svY2toyEC2fPZvNolarYWJiwhgPl8tlolnCrMzTsZYeAPMax6Ne36nIns1mkUqlDLxK5R0MBtHZ2Yl4PA63e6eyBg1aPp/HSy+9hBMnTqCvr88Yhmq1io2NDaTTaWSzWSQSCaytrSGXy5n3Q6EQKpWKIbdwjEqlkiFncJ4VCgUsLy+bnM/W1hb6+vpw//33Y21tzVSTTyQSBspcXV1Fd3c3ent7TQ5JHSQlOXCO2lVmNLrSnLDOX84TXptzmtsRFEpUJ1BfJ0LBUmacdxwj/lYiiSN3F6eH3uBCz407/bnglMVE6E4hBy1xQ6VLrF89RZYtYnkgKgUaK3rnNAjqTXLBqWHTygVK6iAhwu/3I5FImNJHbW1t6O3tNbXwuCmWRnl0dBQjIyOGXLC+vo65uTmTR6nVaoYazWPgSSVfW1szCs7v9+Pd7343/uRP/gQf+9jHsLKygkOHDmFwcNAkx2OxmOlf3Qbg9/sxODiIffv2AYCpdtDX12eOSiEJgQc/sprG9vY20uk0ZmdnceHCBXzlK1/BF7/4RXi9XszMzOD69etIJpM4evSoYfxVq1VcvnwZX/jCFzA9PQ2Xy4X19XWT26KydLl2zvZaXFw0ObByuYzFxUVsbm4aGIpHoiwsLODGjRtNsG40GjUbtqPRKAAYCLKnpwdPPfUUPve5z+Gtb30rurq6zGbkp59+2mzo/tSnPoV3vvOdePe7342bN29i3759aGtrQywWM8bg+vXrKBQKOHLkiCkDRlh3eXkZqVQKN27cgNfrNfUK8/k8fvzHfxxTU1OYmZnB3NwcLl68aObt888/j3Q6jR/+4R9GV1eXieSY8+OBmVonUuF2zScxn6mOFv/mGCspwyZn8JpKZ6/Xd8qescoKDSbnFuea5qjr9Tp8Pp9xyBxpLY7heoOLQgaMjpSIwfd1Marh0IKdNEQ0UJoT0MQ2hfdQmEMjPZt5yM9qMlphx1KphEgkglpt56h5PXWY+4y05I7L5TJVFTKZTJOh1BN7ARi4jwcl+nw+rK2tIZvNmiiiVCrh1KlT2NzcxKc+9SnD8mOUFQwGjdIjPFkoFAw0RvjL6/UiHo+js7OzqWaknfMjTKu19Ri9rays4MaNG031EBmp0DkoFou4efMmisWiMUp6ACgjSxpIjjlPFWZ0qtCpRtLMc/FASEbj4XAYkUgEjUYD58+fx4EDBwzrjdHQrVu3MDAwgMcffxyTk5MmqiUzkYaAm5p7enqwsrJizjYDdoryZjIZ87zsJ56dtbGxYfJj3NxcrVaRzWbNRt+VlRUcOXIE4+PjBhrV+apzW1l+fJ0/dlV3JTbxbxo/XR/6ea5HRnbKElRKPOeIQv40xg4x41sTJ8e1B8Sm51IYAWktNt07AjRXv+bCU3iDyojXo/GgEuVmzVAoZEoV2acvM4fFazLpzxxSo9EwxikUCpnP67EsVKRerxf9/f0YGRkxEFi9Xsfy8jIqlYop18RkOyMiMt24SbnRaODWrVt48skncc899xhKN+sRXrhwAR/72Mfwj//xP0YsFjOkAh4bMjo6ipWVFSwsLJiDLvlshLSCwSDm5+dRrVbR2dkJYLfKiG5J4HP4fD6Tm3v55ZdNman19XVT+YOe/MMPP4xAIIAvfvGLTdEtaeupVMrAmBzDQqEAn8+Hzc1NLC8vo6+vz8Bb4XDYQHXVahWJRALJZBKdnZ0YGRkxkaLH4zF0/aeeegoHDhzAvffea0hAmUwGf/AHf4BarYahoSG0tbVhfHwcv/ALvwCXa/fkbUYpAwMDuHDhAra2trC2tobz589jbGwMhw4dwm/+5m/ixIkTGBsbw8mTJ7G+vo5nn30WZ86cQXd3tykq/Pjjj+Ov//qvkUql8CM/8iMmouzu7sb09DTe9a53Gafj2WefNXR323DRaaNDoXR3RlMKsdtwO42N1hLkdVkRxb4n965p/lnhfK4NEkoYmTmU+NcWJ+J6g4tGT4qva2TERaF7Uvg6sBupKdynojkqzYVp3oqLTH/sRWonlbk4NSKjQuNhgeFwuElhuN1udHV1ob+/35zrdP36dWNwWaRWK1+43W5sbGzg9u3bhq6ey+Vw7NgxhMNh3Lx503j6hFXPnDmDp556Ck8++WQTRbtUKqFSqSAcDqO/v99UrudYRKNRrK+vG7iQESMjKVLyARhlqM6A5tU6OjpMzol9xT1QhOp0LxRp+drv6sWzbBBrLZKMwciVG6oBmILDsVisqUoJjeLzzz+PV155BePj48bgut1uzM3NIRqN4uTJk0ilUrh06RJeffVV9PX1YXJyEo899ph5Fkauw8PDWFtbQyAQQC6XM9Xq29vb8eKLL+L8+fPmzLLl5WUsLCyYZ97a2sLo6Ch6e3tNpYrh4WGzX4zwbE9PDyYnJ40RsvcxKjVdIygaHc0v2vlcm5SkW0gIL9LQ8YdOGK/JiE7HTNc03+P/Clk6cqc4husNLrp5k5NeJzfQTIig962MKd0zorg6sGsY+X1GbWRO8W/duMyFq4uS96ESUOVB5cB8QSaTgcezUxS2Wq1ic3Ozif7Lkk2rq6t4+eWXsba2hkgkYnJ3mn9yu93GmFQqFZPvSaVS5jynJ554ApcvXzYEDMJR8XgcX/7yl7G+vm6MM3NTbrfbwIE0HpVKxRABSK1mH9I4xONxAGg6Jp59r1sQCCHGYjEkk0n4/X7zerFYNHUjuX2B8BlZg9Vq1RhZQmzAbp07svmAneM4GKlxwzHrXSaTSdNmkj+uXr2K8+fPo7e3F+Fw2OzFymQyOH/+PB5//HEcPXoU2WwW09PTuHXrFiYmJvCDP/iDmJycNHucWLNyZGQE+/btw6FDh1CtVrGysoLl5WUMDAwgGo2anKXP50M+n8fc3JyBA9PpNHp7ezE5OYloNNpk1FlphI4NjSxLmnH98NkYzbSCwLl2WIZKv8t5qd9RdIKv343CzvmhOTDbONp5YcdovbY4UOEbXDjhCc/RgFC4CJi4J2Rne5uKzdP4Eb4Cdgv5KuRn57YU7uDeMv6tZXL4WXrNwO5ZRo1GA5cuXUI8HjcVJbhPhpXDx8fH0d3djcuXLyOdTiMWi8Htdhs4jJFErVZDV1cX4vG4qbyQz+dx3333IRaLYXNzEx6PBxMTE/B6vfjGN76Bf/SP/hHy+TxyuRwefPBBXL9+HZ/4xCdw6tQpjIyMGM98dXUV4+PjOHr0qNnkWqlU0NXVhYcffhi5XA4HDhwwxXNdLhfi8bgpDkxGXa1Wa4ra2K+NRgOvvPKKOfYjm80a5clch8ezW4We+6EIIaVSqSa4qVKpIB6Pmw3auVwOm5ubcLlcyGQyOHLkCDY3NxEKhdDR0WGMAll+r776KlKpFGq1Gm7fvo377rsPg4ODWF1dhdfrxfr6Os6dO4dyuYzf+Z3fwfr6Ov70T/8UqVTKkA+KxaJhMHZ1dZkSW8yh5XI5Y1g4NoODgwCAz3zmM3j44Yfh8XgwMzMDj8eDgwcPYn19HV1dXXjzm9+MXC6HCxcu4MCBAzh27Bi+/vWvo729HV/96lfh8Xhw+PBhTE5O4qWXXjJzr1XOl8ZDafaMftiXzOmRYGETpBg9a91PMko1QufasBmDSshg1MZInFG8I3cXJ+J6g4tCbTZEqKw9foaGTSMgepQKByqpQfcrcZGrsdPktm5UpgFVY8rFTuH/utE5n89jc3PTRAlsExU182AulwtdXV3o6uoyf3s8HkM0AHaNKgv07tu3D319fRgZGcHNmzeRSqUwPDyMU6dO4dChQ3jppZfg9XrR0dFhzvRaX1/Hc889h+npacRiMcRiMdO/ZCjyWdzuneKyc3NzcLlcxpiQXk4ok33KNipsykME2ce5XA75fB6hUMjsR6NCIxzG3BuvSYKNbpzlWLAdzCXyc4wOGMEBO0WDb9y4gQsXLuDll1/G+fPnTTFgrbRx+fJlbGxsoKenB/V6Hd3d3aaqPM9NKxQK5pBShbS9Xi9isRji8TgGBgbQ399vIEkyMHO5HG7cuGHm6ubmJhqNhmFatre3Y3h4GNlsFqurq3C5XIjFYsaRun37NrxeL4aGhpogOv4wgiUa0Wq7BvsH2HXuFFK01yT/5nhp/orjbq9fPp+dByXsqEbMyXHdXRyz/gYXTdoqfs58FgkUXEg68ZksVu9ToyiFIBVX58ICmjc7q3CxAjsKnQcUqlFUYghPk2XV8Hq9bjx1t9uNVCqF7e1t9Pf3AwAWFhZQq+0cQbK2toaHH34Y/f39uHbtmmkf81ybm5uYmJgwxAKfz4fh4WFUqztHjNx3333w+Xw4efIkPvOZz+CVV17BPffcg7NnzyIUCmF7exu3bt3CX//1X+Of/tN/ihMnTphoUJVnOBxGoVBANBrF1NQURkZGMDg4iPn5eXR1dRmCB7BboZxwJvcq0UGIRqMmQnS73ejs7DSFcdfX1w0Tj0bS7XabqIxRAABzijDZfvV63RyLQuixs7PTRAuMVlmBfnZ2FgsLCxgeHjYMxWg0ikwmg0AggJ6eHrz66qumFFd7ezvOnTuH48eP41//63+Nz3/+87h48SIOHTqEdDqN+fl5pNNp9Pf3N+WSOjo6zN65SqViclk8xysejxv4sLu7G7lcDhsbGxgcHDR5wImJCfT19eGll15COp1GPB7H1tYWfD4fFhcXMTMzg0ceeQSLi4s4f/68mavMa+p8VNSBc5W/FUEgCYhz3iZW6DXJjAV2jaDmfblmeE9eT3O8/I5CiY7cKU7EtQekFWVd941wUWpiWQ2IsvaA3QhK8y/6HV2gKkrIsNujdGw1hBoRMmHNzdQ0jto2RiOs+r6ysmJK/mhFDoV+Go2GyXtUq1WjpDs6OgwEyc239957L4aHh3HhwgVDHvD5fOju7obf78e1a9eMASUFHYDJe/n9fgAwlHYAWFtbM3mm9fX1Jqo+jYFuEGeeLhgMoq+vD2NjY4byzYr66XQapVIJExMTGB8fRzKZNHvy4vG42ZenZ0NpVME8VqPRQCgUMnkqOjVU3GwvoVg6E6T8b21t4fr16zhx4gTGx8fR399vNk8fOnQIjz/+uOlP7sfKZDLIZrOGPKMUb46XQtgsC+ZyuZoqvc/OziKTyZgIKhQKYXh4GI1GAzdu3IDb7TZQd6PRwPT0NJLJJMbHx02UT1HkgblHziXbADGK5/d1CwiFf6sR4rW0UoyiHbo+dA1qWwCY6Nhef47sihNx7QFRthKNAhl2uhlY4T0qCY2kdCHYsCO/o8ZQKcG2YeI1ADQZUTVm/Aw9WNbZS6VSJtHOvVG1Ws0cc9FoNLC+vo6VlRVTd5GEC+6FAnZZewAMRZ5Kh5Ep93VVKhWsra0hkUhgcnISuVwO58+fx/j4uIk+ent7ceHCBbS3t+NNb3oTyuWyOYCShAhu0o3H44b8UCqVTKWLWq2GXC7XdGK1KjL2BckkR44cQV9fHwYGBgyhIpPJmH12rNEXj8exvr5u6hT6fD6Uy2WkUilTOkuPziCTlJVDeJCjHs1RLpcxPT1tFDP3svGYEwB47rnn0N3djYMHDxrDWiwWMTc3B5/Ph3g8jlOnTuFLX/qSuQcdK+Z76Axxb1qttnN2VWdnJwqFgtmGEAgEcPv2bSQSCYTDYSwvLyMWi+HgwYNmjoyNjWFhYcGc2OzxeDA7O4vt7W1MT0/j6NGjpnYkgCaDY6MNmge2561GSlxH6hSqM6bQKA2ODQ/TQHNs2D7du2XDkk7EdXdxDNceEU0yM3lrM5lIeafSIuZu58XUiOmGV/2sXoef42v6vh7NbhtPxfxpuLxeLxYXFwGgKQ8Ui8Vwzz334MyZM1hdXcWFCxcQDocxNjYGt9uN2dlZuFwu9Pb2GoPK56Xx4tlRlUoFN27cgM/nww/8wA9geHgY6XQa6+vryGaz6OzsxOOPP44vfvGLePHFF/H2t78dw8PDhn5+7tw5pFIpdHZ2YnZ2FsVi0dCvM5kMEokEBgYGzBlR/f39mJ2dRa1WQ2dnJ2q1GvL5vCFddHR0IBaLmcK42t+sIJ/P57G2toa5uTmsra0Zo7i8vGzIK1tbW6YfI5GIybENDAyY3CFhuXK5jLW1NWNsycBzuVxIp9PG4PF5uE+NZ4ytr6/j8uXLOHToELq7u/HZz34W8/PzZv8YWZRtbW2IRqPo7+83Fe0bjQaCwSAOHjxomJqpVArBYNCMH+dHJpMx1VDYH1/60pfwwAMPwO/342//9m/R2dmJoaEh1Go1HD58GI1GA1evXsXhw4cRj8fxv/7X/0Kj0cDc3BxeeeUV7N+/H52dndja2jJzlUabBAquF80nETnQslF0yBilatSmUZOSPOhYch3YzqNGfOoc0uAT+ncM193FMVx7QHQSc9JrtKU5JWLoNEIKQ+hiUZageqea59LNxcTndTFpdKZ5Nt3Tovkxl8tlqj/QU9VKFclk0uS0lpeXTR6I0BEp8HpUBoVecHt7O6anp/H1r38d73rXuzA4OIhqtWpKTdVqO8efeL1evOUtb8GNGzfw4osv4syZM0ZBtrW14dlnn8WRI0fMwY+komcyGfj9frNvi0aFcCCZjux/wqPFYhGrq6tNSotVIUgA4VljmUwG5XIZGxsbaDQahtnn9/uNI0GlvLa2hra2NoRCIVPaixR2AE3RJyn0PJU4m80iGAxiaGjI5GgajQa2trawsrKCzc1NXLhwAZubm4YgkUwmjbPC/mfNReYXyco8ePCgOSZlfn4e29vb6OvrM8zCQqFgNkQvLy+bPuHG73vvvRdLS0u4ceMGotEowuEwfD6fqcLBGolaQHhxcREHDhwwdHmuEeaJOT91O4cSJTSi0siKEC+wS8iwoT+uCV2Lmg/T79AI8rM22aMVrd6RXXEM1xtcNDrSRaJenm4uVo+QC5SfIUPNZg+qoQKa968ofMjP6d+6+BTO1L8pZMeRtADAHKY4MDDQBP0wf8Tj3wGY71ERMTpgjqTR2KGJMzHPPUXcXEuYi1FLIBDA5OQkXn31Vbz00ks4e/Ysuru74fP5MD09jdXVVRw4cACrq6sGumP0wJwTK9srQ5CGi8qd1Gv2PwBDriFpQ2vgZTIZ9Pf3w+VyYXZ2timp32g0mu7pcu3Q0FnLMRwOG8YkWX8k+GglEt6Px83QMJVKJaytrWFrawvlchnpdNrkjTgnSBWPRCLweHbOJHv++ecxOztrIMBarYaFhQWMjIw0OT5UynxWt9uNcDiMcDiMfD6PSCSCbDZrzvcKhUK4ePEiEomEOcGZ0O7169fhcrnQ3d1toqNcLodqtYqBgQHDUiTBopUjp/k3nceaH1OovhVBQ2uAUrTaBteQ3oe5SFbh5+c1D6rtc6RZHMP1Bhcaqrvh5Uxqc1ECuEM5at5Hc18AmhhTvIdGVrZHymtxAbOkDXCnJ6pYfjQaRUdHB7LZLCYnJw1ECQBDQ0Po7Ow0eZ4vfOELmJubQ19fX5NyCAQCJtphEVLWhAsGgygWi/j0pz+NWCyGt7/97bh9+zZu3ryJl156Cevr6ygUCggGg03KY21tDRMTE7hy5Qpu3bqFf/JP/gk6Ojrw1re+FS+++CKuXr2KQ4cOYWZmxlDINzc3DeRHuDQajeLAgQNYWFjAzMwMarWaqfe3vLwMYBc6Zf+QBk5iBwkb9Oz7+/vN9+v1ehMsyzHj0S4koTQaDVy5cgUHDhzA2NiYySV6vV5ks1lEo1GTVwwGg5iYmEA8Hkcul0OhUMDm5iampqZQqVQwODiIiYkJFItFAxG63W4EAgEkEgmMjo4aNmkikTCFjufn501F95deegl9fX04fPgwQqEQ0um0IZ/wiBv2XTqdNhu7b926hWw2i2PHjpkKJw899BCOHDmCYDCIAwcO4JlnnsHTTz+Nw4cPm6iuUChgfX0dp0+fxtzcHC5fvmzYtY3G7nYRLdvEs+70cE4aFn6HMCLXmu6V5BxlVMsybGTSqmNJiJ9nv9l5Nr22nYN2ZFccw/UGF054G0+nMWFdNq2moZGODVVonsz29BR/B3AHHGnj81yUFF5LhYs5FAqZ6CIej5vK8CMjIwiHw0gkEmbT8MbGBlwul4G9aCR8Pp8hDVCBezwek5+Zm5sztQrz+TzOnTuHlZUVVCoVRKNRDA0NmZOXy+Uyuru7USqV8Ld/+7fI5/NwuVyYmZkxJJEjR47gG9/4Bmq1GmKxmCEQNBoNQ22nZ87KFMwtut3NR7AAu3AmjTmVKJ+V121vb8fm5ibi8ThCoZDJt/CoEt2grHAU70VmJT9HRc1+prPi9XrNycvc87a1tYX29nZ0d3djZGTEHDdCSJQ5LRJEWNEklUqZ6yYSCRO5sZxWPB5HT0+PgRfr9Z2jbACgs7PTMCY5p3t7ezEzM4NTp06hWq1iamoK3d3dOHbsGFwuF6LRKOLxuIED4/E4VldXkU6nsba2hvHxcQwNDeHGjRtNDpXmoXSOaiRorx1dHzbCwGeh2Dlie93yunQAlciiUZrNNHSkWRzD9QYXemsKUzC5T/jFprlT0TPnQmVAL1MrV9sFQ4HdA/m06gMp5vQE7SgPwB1Kmew/XrdSqZhzmdbX13HgwAEcOHAAU1NT+IEf+AEAwCuvvIIbN26gu7u7KXcUCoXM+Vv5fB7pdNqUL8rlcjh37hwikQhGRkbw3HPPIZvNYnBwEGNjY6Y6RL1ex/j4OBqNhiFCdHR04Kd+6qcMzJrL5ZDL5ZBIJHDixAkcO3YMf/zHf4x6vY5IJIJIJILOzk7k83msrq4aBdzd3Y3+/n6srKzA7Xab56eSYnRIYoAqKEK3/D+Xy2FmZgb1eh0dHR2maDGJA7w+IVOlXgO7xZfz+TxmZ2eN0WLFDJaAovGZnZ3Fs88+a8b92LFjpu+npqYQCARMEWEaRkawPT09GBwcxPj4OKLRKKanp7G4uIhoNIpEImHm6K1btzA3N4djx46hs7MT7e3tKBQK5ocbmzlnY7EYnn/+eVOzslKp4HOf+xxGRkZw+vRpRCIR7Nu3D7lcDi6XC319fSiVSkilUrh+/TpOnz6NBx54AIuLi7hy5Qra2trMHOaGbBaQpnAclP6uaIc6e1qii+tHEQ8aJIUZ+Z4SrQjj8768pw09OtIszkaBPSB2bUK+poaDi4D5C11E/J4mp21ChlJwlWGo5A/Ng6nhUmhSzzSyozsys0qlElZXV81G6pmZGbS1tWFqagrf/OY3jXdO0gfLQrF9PGLE7XZjZWUFV65cQUdHB7q6uvC1r30N2WwWvb29SCaTJr9EJZ9MJg2ENz8/j9u3bxv6OZVwIBDA0tKSiT4eeOABEyXyiJB4PG72iQEwubuenh6T46EB0fqNVJoaGauiUueEikz39GiOUvfwcVx1HxcrkGhea3Nz0xz+2Gg0MDU1hZdfftnkx/r6+gwJZXV11Rg9ZZeyGDEPd7x16xby+bzZsByNRpucKdLsAWB+fh5LS0soFApIJBKmMgojcs6vtrY241y43W5TRPfrX/86lpeXzWbz9vZ2bG1tYXt72+QTeRBmLBZDV1fXHds16AjqoZhaqon9qMQiRTFoZJTKDuAO8hI/qwQozZ+xHRqV65px5O7iRFxvcCHMo5g3lRnQvBBoOOgJ8vv8npZdoiephkiP5AB2jyKnV6lEDn7G6/Ua71WjN2VV8fo8EoUMuv7+fgPtpNNpvPLKK7hy5QpOnTqFRCJh2kgCASMOKtPbt29jenoaAExepK2tDYcOHUI0Gm3ynFlUt9FooFgsmtOWC4UCpqenTYTW2dlpyhFNT0+jXq9jbGwMfr8fFy9eNHkYzbPxuPt6vY54PI6hoaGmgy7ZL7YBAmCMN8dF9/fonivdDKuwr16TY0j4lNUquFdKK8azL27evIn19XX09/cjHo+jVquZAzjr9ToSiYQxKjSaCoMVCgUsLi6arQh+v99sUmZVjEAggP7+ftPfZCkmk0lTYov9yPnEHNFzzz2HsbExVCoVxGIxXLx4Ec899xwikYg5/JKkEIXuyJjs7e01r5GgwshOWYRKQtL1xvdtI8ax47ym2HsZCecqSkGiFOeBRmN27syR1uIYrje4KBuLioOLhYtAqe38YUJaCRdUorpvRWnuirG3ysPws1qXj22yCRqELKkE2trakEqlMDk5abxwALhw4QJcLhdeffVVPPXUUwb+I6zm9/sRj8fh8/lM4p3MvqmpKbNnaXFxEQMDA2afj9K1C4UCMpkM1tbWzAm6wE5uhfuj1tbWcOPGDRw7dgwDAwM4duwYstksFhYWkMlkEAwGcf/99+PixYtYXFzE/Pw8fD4fEokEotEotre3DVGFR7Zks1lzECX7Usk0AEw/sn/pbZPAkEwmjeNAmNfuZ44XHRdWvSBUuri4iLm5OQSDQUQiERw9ehTxeBzZbBbr6+vmROr5+XnMz88bOJTHxzC6YKkojfoY0V29ehWhUAixWAyDg4Po6OjA5cuXzeGR0WjUREgbGxtNe668Xq85EaCzs9PsCXzPe96DF198EX6/HwMDA9jY2EAymcTf/M3f4Nq1a/hv/+2/4cyZM3jyySeRSqUwNjZmqoeQdMMtDcyRsrYjgCamoVLd6fAQRtSx0TJRHD+iABoh00DacLGuJSV8eDy7Z4XRYVGn1JFmcaDCN7golKdMPzu/BKAJkuKkVziJBkYTy61eo/JU4wbcCZfwtypbLm6NArhwg8GgOSwxGAwiGAyafUipVArpdPqOxUqDwOS1HqVRqVQwOzuL27dvY2JiAkNDQwBg9nOR7LCwsIDFxUWsrq6aPWDBYNAcrhiJRMxhlOl0GoVCwZwvdfjwYQM3bm9vY3BwEKOjo8bY5HI5ADAQKA0LS0npJmmNqLQyiVLhNbqlQuTJvsyHcD6o8VBPnf22vb0Nn89nYFaNXmmcWJVjcXERCwsL5gRk9h3p5Tr+VPLq1ABAPp83dRaBHceAURjzksFg0BTazeVyWF5eRiaTMfR9KvdisYhIJILJyUksLy8jEAhgYGDA7FlbXl7GxsYGEokEAJiN3LzG6uqqaYNuKGY/aDSj+V8iBRT7NdvZ07XDtaD3USNFg6ioBw1WMBhsisp0DTlypzgR1xtcuOC4gLiwtSoFsBuZsTpCsVi8gwGosIgqOYU2bENFQ9Tqs4yI6GnSgNGg0jtl7uHUqVMYGBjAlStXEI/H0dvba45ff/nll5uK5TK/RSr44cOH4Xa7cfnyZRN10btPJBLo7+9HvV431HO3221OJw6FQqb2IEs2sUIBAEPeoMKZnp5GrVbD+Pg4BgYGcPbsWRMBXbt2zRQCZiULVsZYWloy+8/6+vqwtbVlxkL7UdmYjFgIHzG/onmYaDRq9mnZ42RDTcyNTU1Nwev1IhKJIJ/Po1AoGMPC54pEIlhdXcXly5exubmJWCxmWJc8I62rq8scvaJGiqJ5IW4OX1hYMGMfi8VMzpC5sGPHjuHQoUO4fPkyFhcXsbW1Bbd75/yzer1uallyM/fs7Cy+9rWv4fjx4zh9+jSWlpYwPz+Pv/qrv8IjjzyCY8eO4dy5c3jmmWdw4MAB+Hw+3LhxA6Ojo9i3bx96e3uxuLjYtPFYoyzmHJmzYr/TgNDgKAGGToVCwco6VEjVfp1RHdeNnuDNa+tvR+4Ux3DtAVGPzt7xz/dtofHR/VtUPAovKeGCClU3KPOHBVvtIql8Tb1DeuWah0kkEqbcT7FYRFdXl6mLl8lkcPXqVUQiEXR0dBhGXKFQMEywUqlkPHQeBHno0CFzmGMul0OlUsHCwkKTUiLMxPaz/2j41TFgmwuFAi5evIilpSUkk0k89NBD6OvrM6zGjY2NO0pu8UgNAEilUiYPV6lUzB4ojovNQFNHRKMbrYKin2MEBqDJ81fYKp/PY2lpyVTf0B+SLXK5HK5du2bYlSRQEKrTYzbYJjWcgUDAnGjNNnKLQKPRMKcsM5rM5XJYW1vDxsaGIeBks1lkMhm8+OKLGBoaQnd3t+kX1uPs6+vD0tISurq6cPDgQUM6uX37NsbHxzEyMoJvfvObyGQyWFpaQnd3tymhNTQ0hI6ODszOzpq5qTkprgdGiQCa2LBKXOLzEcrWtaAOGw0Z1x+/r+xBRUvYZ8o+dejwry3fViz6kY98BGfOnEEkEkF3dzfe/e5349q1a02fKZVK+MAHPoDOzk6Ew2G8973vNV4oZXZ2Fm9/+9sRDAbR3d2Nf/tv/20TbuzIrtj5JWWJAbtGQr10/Q5Fk832Xi9g10PU69osRsIXSnpQaE+VFg0b29bZ2WlKG7ndO2da8boulwv5fB49PT3m6AuWH+LerWw2i5mZGXOgIg+bdLlcyGazmJqawtTUlGH+cVNsb2+viRa4p4j9RIgI2GXrMVdUqVQwNzeHixcv4qmnnsKlS5dQrVYNlZvXyOfzmJmZwfz8PIAdaKqzsxNut9tAcjTQSl1nnUalW7Pf7f09JJbouGllBY4DNzKT2KHPyvxOR0cHotEoarUaZmdnsbi4aBwT3etEJqCy8NRwkRLu8/maInKNClkWi1T8WCyGQqFg6jH29PRg37596OjowPLyMm7evGmObiGRo1KpYHx83Bxm6XLtnNo8OjpqImCWBgsGg4aI0mg0DGzZ0dHRlCsGmk/+VvjbXkvsa/5wvpJQw7muos4lx1D1G+/L8eQePTpDjtF6ffm2Iq6vfvWr+MAHPoAzZ86gWq3iV37lV/BDP/RDePXVV43n+6/+1b/C5z73Ofzf//t/EYvF8MEPfhDvec978I1vfAPAzqC+/e1vR29vL775zW9iaWkJ/+yf/TN4vV789//+37/zT7jHhWV5uAiUPEEYgwtFiRe6P0UjI5fLZerJAc0GjZUCeISH5oro/fI1jdbsGm4ATAmmeDyOQqGA0dFRsy9ocHAQg4ODuH79Omq1Gvr6+tDW1oYDBw4gkUiYvVDj4+PweDymAkOj0cDP/uzPYmRkBB6PB1//+tdx69Yt5HI5kwsaGRkxioz7nTKZjDGi3OhLeE6pz2y3y7WzL4hH3edyObz44otIpVI4efIk+vv7jYJcW1vDN7/5TVSrVYyOjpp6fQDMZl0yKZnLYlTkdrtNyR9GproHaHt7G/Pz8+ju7kZvby8ymYxxXHw+n2E2ulwuQ/mnwhwbG8Pp06cxPDxsth9wE3Y+n8elS5fMmqQxZh+wP5Q0olE/5wlJBHxfHRsAZqM3r9nd3Y21tTVjMI8ePYo3v/nNiMfj+MxnPoPbt29jaWkJ+/btQzQaNZuo9+/fj3w+j6tXryKTyZgSVBcvXsTNmzfNUS8ssMwN1JlMBpVKBWNjY3jhhReQSqWaqvYrQYIb+TXSpYOiFTNosPga10uj0TBnpCkiog4i9/bpYZbKYNQ1yes40lq+LcP1xBNPNP3/iU98At3d3XjhhRfw8MMPI51O4w//8A/xZ3/2Z3jLW94CAPijP/ojTE5O4plnnsH999+PL37xi3j11Vfx5S9/GT09PThx4gT+y3/5L/jlX/5l/Pqv/7opq+PIjigkqHt21Bjxc1SQ9CYV1qHBU6iQylK9R11wCrmpx6gstmKxaBQB3+PffD8YDMLv92NjYwOpVAqHDh1CW1sbVldXzYGLXV1dTUfA0zg2Gg3kcjl4PB6MjY3hzJkzcLlchtnHChzcXJtMJptqGPIZyTbjszDys0kufI+GOhKJGGVfqVTM8SWhUMhs5KXDEI1GjSLiFgFWhKjVaoZppmQKpUtTqDxJRmE0ocVzWWUCgKkuHwqFkEgkkEwmMTk5iX379jVFyIx6lpeXcfXqVSwvLyMcDpu8n7JWlaDA/9XY65YLzk0ljyg6oHNGo4y5uTlzjtqhQ4ewvr6OpaUldHR0mKLBHMOBgQHMzs4ilUoZuK63txcbGxumCj4jTp64zC0JsVjMzCf2q64PG55VVEKdMV0jOs/5OTqGwG7eTF/jvbVf2e+ch/odZz/X3eXvRVtJp9MAYJg9L7zwAra3t/HYY4+Zz0xMTGB4eBjnzp0DAJw7dw7Hjh1DT0+P+czb3vY2ZDIZXL58ueV9yuUyMplM08/3i3CR6R4mLjDNzQDNrD/ds6UbipUxSGPG6zKi05wY70Ejoh6prZxU8SmTitAZz6BKJpNwuVxNx7MnEgk0Gg2zQZZ7cRYXFzE7O4ve3l6cOXPGnBB85coVQ36ggYlEIk2VRvgeC7N6vd6maiJUPton7K9SqWSYdqwcEQqFsLGxYXJsgUDAwN1+v9/k46j08vm8OZvL5/OZPBLHiDkNrZyhUQ2jA55FBuxWfeA1eP+xsTHs378fhw4dwrFjx7Bv3z50dnZie3vbsDVZfJe0dxa1ZX1EpdRr3qZa3akqz6hO+0433XL8eQ2ScnQMdH4uLCzg0qVLuHXrFqLRKGKxGFZWVjA7O2s2f3P+d3V1YXJy0sDFtVoN/f396O7uNtsOtMRWMplEuVw2J1aTAKEwusLc6tjp/FVRp8NePzYsyL5TQo46eOwvmyxlR7eOtJa/MzmjXq/jl37pl/Dggw/i6NGjAHbODiIer9LT02PYXsvLy01Gi+/zvVbykY98BL/xG7/xd23qnhY1GGpEgF1ojt4dIxMqEC4KTd4DaDqEUhPDdjTXymABu8eTULlxsSt8qDmuU6dOGRy/o6MD/f39WFhYQLW6c8hhT08PwuEwZmZmcPXqVQNlbm1tGVbhe9/7Xhw7dgyf/vSn8eyzz5qj2/m8pHkrXKo5K6U76wmzJJawD5iTCQaDyOVySKVSePbZZzE0NISenh5jROLxOOLxOPbt24dGo4FoNIrr169jZmbGnLjscrlQKpWwtLSEcrmMeDxuqPfc5KtVNIDmYzE0p1QsFk11Dm4wHhgYMLBke3s7BgcHEQqFkEwmEY/HTVS7vb2NUCiEgYEBVCoVXL9+Hel0GtFo1ERbvC7Hv1QqGcICx5hV6RkReL1ekzfksygUpmw6wm7T09OmTFOpVMJzzz2HS5cu4YEHHjBHoMzNzaFYLJq8XiqVwtDQEM6ePYvf+Z3fQalUwmOPPYbe3l7EYjF4PB4sLCxgbW3NnEzNg0B5evPw8DAWFxebjATnLCE+wr+t8rw0VArn6n5I9hs/S4KFDReSrMHrkc3odu+c5sw1puxhR+6Uv3PE9YEPfACXLl3Cn//5n38n29NSPvzhDyOdTpufubm5/9/v+UYRXQBU0LqvhxCFspfUC6YXSO+eBkWjDfUiATQZO12EQPNiVqNFxVer7Z595PHsnEA8MDBgYCWSFLa3t82BiF6vF5ubm+YY+VKphEKhYM6n4n0XFxfxyiuvmD06ajAZ1bDNNjWfyoOfqdfrhhFH4WuE+Fg4d319HfPz8wZh0HI/rCNYLBZNPb+FhQWEQiGMj49jcnIShw4dwsTEBKrVKpaWllAsFg2pgYqJOSv+KHGARplj4fV6MT4+jkQige3t7SYyBtumrDduSCaRhbnH3t5ek/PT/qTjwz4lO5D70lS5st2qvIkAaN/zfzpA9XodoVAIPp8PpVIJc3NzKJVK6Orqgt/vNyWl+EzcAnH06FHDhGSbk8mk2aJAIg/nL6FDQo9KmrDhPhomm1nL+6gDp4aZzo9GWQqL8vvsH3X4AJh1y7HTdepIa/k7RVwf/OAH8dnPfhZPP/00BgcHzeu9vb2G/qtR18rKiim90tvbi+eee67pemQd8jO26CbK70eht6tQBhcLPWAaJhohYLe6O5Wg7i3Rhauevd6TEQkXFhcx80MaxWnOg4bJ7XbjyJEjGBkZwfnz5+HxeBCLxTA1NYWrV6+a7y8vLyOXyyEcDmNkZAQrKyvI5XLm4MWOjg68+OKLyOVyWFhYMLBTqVQyBkZzOZqzsPuR3jUVou6nAdB0TIhuMuZZXkeOHDEMt2AwaComAMDp06eNgWUVfL/fb45zOX36NKrVKubn5/Hss88ikUiYsalUKgaCJGOP5BJCdS6XCyMjIzhx4gQ6OzsNfBiJRBAKhQwcysizUCiY/N/o6Kg5coTkB7/fb+oG2mQdt9ttyi9xHlE4D7hpGIDJ/SnUyGciuYenQnd3d8Pj8aCzs9MY083NTbhcLnR0dKBWqyGXy+Hy5cuYnJw0e8ump6fx1re+FT6fD1/4whdw8OBBZLNZXL9+3eyB4kGUqVTKHFhJdieNCVEKni6Qz+fNGWOcNzaSwNdJrFHChg0XMoKiE8K+ZSUXhVvtiIpwtu4Zc+RO+bZMeqPRwAc/+EF88pOfxFNPPYV9+/Y1vX/69Gl4vV48+eST5rVr165hdnYWZ8+eBQCcPXsWFy9eNF4zAHzpS19CNBrF4cOH/z7P8g9SaLSZu1FiAbDrwal3pl4lIynNPWk0ospdiRt6XfWSFT7UvUhaNUOrOqhiJxHg1q1bprI6ocpgMIhkMmmUGnNRhJ82NzdRLpeRTCbNhlhgt1Yin1v30mguyaaHA7hDIbH9zDvxPToNmUwGKysrKBaLxrBojo/3ZUUOlliigXO73ejs7MThw4fR29uLdDrdVABYCRfscxrper2OAwcO4Pjx4xgcHDR7rdjOcDiMgYEB9PX1GaIKrxuPx825WW1tbeZ4ESX38J4cT44hgCZnSOEwzhmSXzhWmuvkNUqlkiHddHZ2IpFIGMPX1dVliiaT+OL3+5HJZLCxsWG2EZCVeejQIQQCAXNy9rVr13DlypWmivyEABlxMYqlIWFExvlCx47zn0ZOIyNFG7TPlLzBz/F/ex0pBG9HqUqOanUvR3bl24q4PvCBD+DP/uzP8OlPfxqRSMTkpLg7PhaL4ed+7ufwoQ99yNRw+8Vf/EWcPXsW999/PwDgh37oh3D48GH81E/9FD760Y9ieXkZv/qrv4oPfOAD39dR1d1EYTlVNKpAbNiDHiANA/MRfE8VlEZNvKYNodg5AY/HYxQnX2ckpxAJ3+dBhmT8vfLKK8jn84aF53a7DdGBRoz5HDVSzA+xQkOhUDAwlp1nsJ9H+0v3oemeKvaVklWAHXiTkBwrkw8NDRkoitfe2Ngwe4m4d4t5RJIs3G43+vr68Oijj+L69etYX19vUn4KCQO77DS3243jx48bSGxhYcFAcqFQyLDz6vW6iQhyuRxCoZCp1k5ok0e3kNTQKtpSw802aV/aUbjmNAEYyEvzsxxDGlV1ItjH1WrVGKqFhQWsrKwYYhKZmZ2dnThx4gSWlpYM45P5OkadjMTX19eNM8Lx5tpQREFLcnGtMHLSdWXndSl2PkodIYUCldiizhXnks5RR+4u35bh+v3f/30AwCOPPNL0+h/90R/hZ37mZwAAv/VbvwW32433vve9KJfLeNvb3ob//b//t/msx+PBZz/7WfzCL/wCzp49i1AohJ/+6Z/Gf/7P//nv9yT/QIV0c81NuVwuU/SUhA0ABqohvNNoNEwhUfWYlXDB7+qeJmWT8fNUvgqrUZnwc/zh3iQm2ElZ37dvn0nQ+3w+jIyMmCoGbW1tiMVicLlc2NrawsLCAiYmJsyG5EAg0ERpD4VCBqZShavRJD+vsIsdYRLSIhzo8/kQCASalC4Aw87LZDKoVqs4fPiwIXFMTExgZmbGwJihUAgHDx40BWMzmYypOM9czlve8hbcd999ppQTowHdBsAIg7ATjxyZnZ1FMBiEx+PB6Ogojh49irGxMWSzWWxtbcHj8RjGJQkO2WwWGxsbyGaz+OY3v2k28w4PDzcVTSbhgn2p0SgjON5bc6xKXFBCAiE5Gh/dX1iv143hpLFmO6LRKNLpNLa2tvDSSy9hbGwMHo8H165dw8TEBN785jfj937v93D27FmMj49jY2MDg4OD8Pv9ZqNzNBrF7du3zVzweDyGwKR7H2mI2NeEZfk+jZrOB65JEipoCNknytLld7lGKZobU0dA56zmYB3ZlW/LcH0r9Ey/34+Pf/zj+PjHP37Xz4yMjODzn//8t3Pr71uhN6hwhEYVuieFi8fOXWnUpJEGALMwGDUBu4uSuTSNyGwGnHqQmqxm/b/u7m6ziZnFaqnQ9PP0hLmnq16vo7u720RDNIb0nPm8dkTIZ1OyiUZcdnTJ99mXvLZWOyBURseAR9mTEs/tIGQKAjCV0qksSfGnsubfup+MwihaYUqXy2XapOSAkZERjIyMoKurC5lMxkSfnAvMe6bTaVMCilR4niat0LDdtwr7UWy40O5HGjkaNW7QpZHgNWgwAZhog/ev1XYOk6xUKtjc3DRMyWq1ilQqZaj9r7zyCu69916Uy2VsbGxgZGQEnZ2dKBQKJjonDMh222xaLfHEuaNjb48J285n0TwW14fmljUXpnOVfcXfyup05LXFqVX4BhdN0DIH0Gg0jKenSk9zEVyQ/x97fx4cZ3afh8JPL+h9QzcaC7EQ3PfhcHaOJFvLaPPIVkpyYl/Zlp1ykiqVbKsslz+XvnI58hLLcd1ynEpsJ65yObpJybJHN4ktWdvIVmY0m2aGw+FwhiRAEiSxA41G7wuAXr4/ep7Tz3vQlK6Sz7mk1IfFAtDL+573LL/l+T2/37G9IlVQZNndjoWnOWAULGTlad+46ShcCcHE43GcPn0a2WzWVLfY3t7G3r17MTQ0ZM6HAjoKZWFhwSiHRx991MBF7Kvb7UYsFkO73cmR0rGhslFWmB1r0XgdBRerjVPQkO1XLpdRr9dNsqvX63WQMW7duoV2u22YfZFIBG9961uRzWZRq9VQqVTgdrsxPj6OYDCIy5cvY3193dQDLBaL5vpkuy0sLKBSqaDZbBpG49jYmOl3pVIxOWvxeNxQ4t3uzoGapOBvbGwgk8nA5/MhHA5jZWUF58+fx5UrV0yyMoVvpVLZxWRUVpx6AFSE9pzzWmrAeL1ek/sFdBKmlbCggr/RaKBUKqHRaBi4mKkSoVAIKysruHbtGsbGxjA+Po58Po/l5WW84x3vwLe+9S0AwL333ovV1VWcO3cOIyMjuHLlCk6ePGmekScyZ7NZ00+Ou9ZaVBhdjTKgW0iYv3NfaHyKCIhWiKdHasexbHhdIViuz37r3fqK6w5vyj7STaVelnoWGo/QTH3dgEA3ZkZIjN4Vm5I0ACeRQRUWN6NuQvaDcZ5SqeRIRmWFDFLdSedmAD+bzWJsbMxB5yZUqPXcyFhjvwitaf1BwlOqhPX4EJIKyIpUz48wpnqtHA+mZjDexxOU/X4/crncLoo4mXUAjBfVarUMiYPxm2q1aqAlHmvPnCx6qYTD6DFVKhWHV85E72g0ikajYcos8aRgAA5lxflVhcWfvK7GYxQaZtPrMm6pMDQbiRxut9swAe31rnAb0yy4LnhIZblcxvj4OPbt24fZ2VkcPnwYQ0NDprwXD8ekR8+TAahIuK/UsySCoAQKeoV8v5fxp8Yer2XHu/js9j0VMdCz1mziVL85W19x3eHNZpn1itHwPYUa7LiWvWG4ESmcSUpQvB7oWtZqIWtel25Wu19aA1DJISQekC5dKpVQr9eNoKXFzficx+MxrDNudObmMAFW4UsqYI4HlR7HkoVoFXblmChESLYi4Up+rtXqHG3PkkL5fN7kbaVSKQwODprjSPQ5aHmzwoedasCjVShAt7e3TaI1PTW+Nzg4aEpA2TBVrVYzjMR8Po/5+XmsrKzsgsdoTFCZaF8oPG3Sz+2EqfZbc+VUaAPds68AJy2c86OQJe/p9/sNnV7rIzJOeuHCBcRiMYyOjhrIFIDx4En0YQ1LjpcSctQg47rmmNIbt6HkXl4Zv8O1pXC2wq0ak+X+VY+tDxd+59ZXXHd4U2iBlm8vz0mJCWzc8LyOxhfYlPLMDUoFptCkkjr0nkBXuABweCkAHPkuVAChUMjBogoEAtjc3ITX60WpVMLDDz+M0dFRLC4uGu9iZGQE29vb5pRhlk7S02IVulLLPhaLGSIHhQSVFJ85HA6j1Wohm82iUqkYGjVZi+129+gLjsva2hoymQzm5uYAdCrA3HPPPTh9+jR8Ph/q9bqh8QeDQTM/wWDQsBQ5b0xi5mcpgCuVijlUkfNN7w6A8VrcbreBYqm0/H4/Xn31VczMzCCfz5vafzyNmNekEuN86bEfWtmDY0yFp2xEJsUrASMYDDrWFA0Oevka14rH4yaWSQ+H/UkmkyZWt7m5CbfbjWKxiKmpKcMknJ2dBQCMj4+jVqvhzJkzuHz5MtrtNm7duoVUKoWxsTEzr6TKK3FHlQsNIPXOlEavJx7zmBNCrTQMuE44TnqStRbateN/Gpvut96tr7ju8KabCnBi6/o6FYoWxVV4S+Eu3RTKmNLEYs0B62VV0hPyer1GeQBdoU6lwmsSNuQmVSu73e7U0aMHuGfPHoRCISPkKJx8Pp+hOwNwVNVQYoYqHAplxjPYBwDmCA0aBAAMrKgHS0YiEZNUzTmg4CIrrtVqYWZmxrAdR0dHUa/XUalUzLMqNEcBynHXOAuLBfv9fiwvLztYeVR+KtxVsHJMyPxjrpjCVzzahDEbrRTB+/O6hP34Nz1pTbhV4Q10PalQKGRisWpUsC80moCugiSRg+Os62d7exuVSgXBYBB+v9+cPp1Op3Hz5k1sbGyYpO5AIICJiQmsrKxgfX0dPp8PkUhkl6KgF2rH7/hTCUnsM8dE2bb8vO4x29uiR2rvW/W+OHZ9qPA7t77iuguaKhsKGi5qWm5aSYNsLqXSquLjBnK73Q6lo16Ulu3R5EzAySrTftme3NbWlqEWh0IhxONxA68wz4bXHhgYwOLiInw+H/bs2YPt7W2j7MjOU6VFQU+BSOHr8XhM0nYwGDQxJD5PLBYz40nFRWEEwDAFgW6leL0PP+P3+43gC4VCaLVayGQyuHr1qslr5CGJtL6pNEkAYbkokjQ4TwqNshAxx5hQJgW6lgeiIm2328arrVarxjjhvKZSKaMIVOGrV6VzbMPA/Elhq+8R8qRy5xpST0bXDa/P5yCUx+tTMVDR0COlx0QFtbCwgJWVFYyNjSEWi6HVamH//v0IBAKGaMM8QH0uPj/7oDl+7K9C1HYcjHtNDUNNRObn9Xc7tsW51bgzf+/nc/VufcV1hzeNwRDCI6VcLTIKHm4ACmLFzCnYmStjCyVeXxOa1Zq3mWWEzxQ2osAiuYECVhUtA+6E1ADgb//2b+FyufCOd7wDjz32GBYWFozXxWfSmBNL+dATYt/e/+L7zXhRCek5SZf+8SUAMAJKhQkJJQMDA6hUKqjX60bJUKCHQiHjzfD5BwcHDU1+fn7e9Cufz2Ntbc2MRzqddigVFXperxeJRAI7OzuIx+PmvtFoFC6Xy7Ayg8EgRkdH4fP5UCgUzHNScVLRsYagEjXoxaVSKQMpsqnlz7XAcVJiCIWtxluVaUdjSAtCK0xMRUcITb1MGgL8rkJsNER4MjYPIi2Xy5ienkYwGMRLL72Eer2Oo0eP4sqVK3jkkUfwlre8BV/4whcMVf7YsWN45ZVXAMAoSXpHrO5PT4/riGuDCoXGGA0uGgDqudpGo8KDNsuX48H1TWOp327f+orrDm9q/alVpwuejd6UkiuA3Xk6wG6viZ4H72dDFoRHVGEqlq8xAIVJKLza7bY5CJH/SfnmJj948CDuv/9+DA0NYWNjw0HVbzQaDvZfs9k01PidnR287e/f1nlWrzNnRscOAI791THj5Vw/cN0ITSptfodwlFLr9feBgQGjVCjIGI+qVqtGiRQKBQODKmOR1S20DBU9MiZiq3JtNDrHw9Cb49Ek+/btM/lNZBdq9Qoq/HQ6bU6M1mfl2Gh8RT0uKiwlVSh8rcqLSoqxIcKhChtzfHWsFVLjOmafGBfje1QuhMqpBFKpFA4dOoSrV68iGAya2B8ZmawSsnfvXszMzJgDJ9mHgYEB4ynayodwor3/7Pw2XXNUdsok5NjZNHfdV0q577fbt77iusMbFzIXt3o7JBio0LDhPGVFUai4XC4jRBRLpxWo8EQv4a+wksbLVHnR8s7n85iamjKEBBIWdnZ2jEDPZDI4evQo3vGOd+CBBx7AuXPn8NJLLxkihhIPqCBarRbe9+33GWHajjqTjdXK19NqGZNqNBr40Vd+FADwzLue2QXlDA0NmXuzfBEAU9CXAoykArIjeWoxiQYAMDk5aUpahcNhJBIJ4/Wsrq6a8kxLS0uGafnGG2/A5eqcxEyP4oUXXsAzzzyDTCaDd73rXUgmk3jppZdw8OBBuFyd/K2BgQGMjo4amNDr9ZoakJx3hVs1VgZ0UxwUFgVgxl7jdGzq+dMLpRdMj1urgNCbUqVNRaCkGioSlhfj2LhcLpP/12x2TqGORCKYmJjA008/jWaziWKxiNdeew1DQ0NIpVK4du0a1tbWcPToUaytreH8+fMol8vGGFFyEqvS2DR+VfYayyXiQGILvUeFFJVKz5JmqtDsdUZlTQXdb87WV1x3eFPrUxWUbanauDsFAa0+bjzdULalCzitRm1qZWtSr8I92i8AhorM322rk3GKTCaDkZER7N27F263G+fPn8eNGzdMrIrCk7Dkzs4OHn/5cTSiXSoz+0NFzb4qkYExEvVkgG41Da2woGNKb5PJyuwL70HiRSqVMq8zCZnKkgm5FL4bGxtGkPMwyHA4bI6br9friMfjeOCBBxCLxZDJZPD666/D5/Ph1KlT+MAHPoBWq4W///u/N+dt8Tk07kUSCcdBqe42PGgrFa4/jh3n2hbK/C49KSX2ULgrnMj5V+iQn9X4kCIIXMe6Fnh/eleRSATDw8PI5XJIJBK4efMmcrkcxsfHsbKyYqrTT0xM4JVXXtmFLOheU6RDYT1bebHvumdY3Z3v8Xl67SW9t65bNSb6bXfrK647vKlw0GNL1AJUT0s3Axe/bk7AKWT0c/yu5tnYXhVfVziJcRBeWzc/vS8KGm5KlibK5/PIZDK45557kEwmUa1WcevWLVOYV3OgeIbXj77yo2ihZax4enmMAaniYf80tsDn5rOrQNYKEBw3Tcy1BbaOWzqdNocR7uzsoFarYWdnxxw/cvPmTYf3zIMww+EwDh48iOnpadOfUqmERCKBdDqNQqGAN954A48++igOHDhgKmowt4leFAkjzWbTQQip1Wq7PGubhKCQFiHGdrtt4pEcPypEfW4VuPq6KkquDYX9uB65lgnP2UpVP0dvhmPL+2xtbSEWi2H//v04d+4cwuEw1tbWsLGxgf3795takjs7O0in0wZSZR/1udg3O/2Da0B/t5Wt9lfXv8bK7BiWsgn5eV1f/ba79RXXHd64MShQKfQY7wGc9fcUlgC6MTK1qlVIqzdHSEchEn4HcBal1ZgXzz1iPCUYDBq2ohbcZb/JDlxYWMDzzz+PfD6PT33qU0gkEnj55ZdNUVo91JGC4kMXP4SWuyMYyuWyI5YGwBS5DYVChqJdqVR2VQVRwsqPvPQjAICvPPQVM+ZaLZzHirAYr3oCOrZKu19YWDBKLJ/Po9Vq4eLFi8hkMrj33nvxkY98BKdOnTInEq+traFQKKBarcLn8yEUCiGbzWJ9fR3hcBj33nsvpqenMT8/j+vXr2N1dRU3btzA1NSUUXbJZBK5XM54IDwSheuHgprvK8RFCI7zqHFLKkU1dKislNLONUJlVy6XTXUTQow0RCjAARiau9vtNoYH50mFeCQSwdjYGObn57GxsYHNzU1ThWVra8uclLy9vY3r16+jXq/j3LlzeN/73ofl5WWjvCYmJpBKpUyJLN0n/G+ng+gaY4yQ/df9wrqchLnttcIx0jgk76dKThGKftvd+orrDm9KqGC8gMJDmV0KxyjzjxufP1UgK3tKLWf1lnTT6r1V4enGpCCnVcqEUhUKFKi5XA6lUglut9sUqqViALrkAvYP6CrpdruNVrsFF7q5RoQCCevpcfR2LM72pBgz+/KDXzZWuOYeKQTLuIhWEGHfmOPEcaTw397eRjKZxMrKChYXF3H16lW0222Mjo4iHA5jenoaXq/XUdcxFovh2LFjiMfjAIBLly7h5ZdfxqVLl1CtVrGwsICPfvSjcLvdBgajkuUzsymhBugqHD4DYylk8NkMOD1dmtez4WRdR5x/O75K2FRr8WlciYxLKlE2rkemNpAEo3PIa8RiMVODkQngVJxkFw4NDWFtbQ2hUMjsi17Uc/UG6e3xb44l2Yn6nkKq6sHrflavX5WVjRj02+7WV1x3eKMwtIWuwjBkq9VqNSM4ldigMJvtqVEgk+XGDaQsRE18BbpCkJCU4v68NgXF4uIi1tbWzDO0Wp1CtsPDw8jn83C5XKaCw9raGlZWVgB0iQMUHP/k8j+Bx+NBHXWg7TwKXQVBu902pYG0RiEtaFXKVEDa+DdLILVaXfozvUtVDuoRajkiEk+azc5pvhsbG9i3bx+OHDmCRqOB69ev46WXXoLb7cbExASOHDmCt771rTh16hQGBgaMt/Wtb30L6+vryGazeO6558wJyLFYDD6fD/fccw+azSZKpRJSqRS8Xi+KxaI57JKJukrPprfDeJ/m6GkMk/NJsgU9CHpECqVxzl0ul4GFKeipHBknU2iXzL5KpQKge+AkDQZS8ev1OkqlEqLRKAYGBlCtVlGr1RAMBk2lEKBTSSQcDuPBBx/E1atXUavVcOnSJfj9flOwN5vN4u1vfzuWlpaMIiXawGen56SKWlM7dP3xuRgf1PftGLTGf/l97lkaampEkuDTb87WV1x3eFNLmXCPBrZp2VFgarzJtvpU2PLaCgHpJrOFkR2UV6UIOHPAtD/ZbBbZbNaU7SEtent7G7lczpzZxWvpc7CP/8fs/4Fmqwm3xw23yw244BAgRmCgDRe6hAwmqGp8QYVIL6uWXpcKGgoSJS/Y8I8q71ar5Sicy3gMva5EIoFoNIparYannnrKlGQibd3v92Nubg6zs7O4dOmSGYf3vOc9eOihh3Do0CGjTBKJhPE8eG96bRqX0/XUbDZN+axGo2GgWzv2qfNKBU3CjHqiatBQ2djVVKg49bRqGkUKWfNEaABm7ji+aqjxOZSQo17L2NgYisWiUfrMjWu1Wrh16xYefPBBjI+PY3Z21jybrhGOpz2v3Fe6N3spKzUGlDykHrrGj9XzInzYb7dvfcV1hzdVTApxaVDZZnmp0Ae6gXf9jo3ba5yM7wFdL0YxePaL7/M7utmZd7W9vY1SqWRq45HKXqlUkMlkTIWMYDBorGsyB1utFn567qfRxJvWqevNALqr87uOUbPZBFzOKiMai1MPUuN9HD8VIrYg0mLBJIQoS06hRT4/SRdA12omSSIYDJqqDgMDA7h48SJmZ2fxhS98wVQJmZ+fR6vVwr333ouRkREkk0k8/PDD2LNnj4N9yJwwVgQBgOvXr6NcLjuK6HL+aNgoGcMmXWi+lVZi4Xzr2qLSUCYi50RjOVwnWk1D15Pm7NnsUK4nNnppjNWxJmIgEDD1HmOxGFKpFGq1GkqlklG28Xjc0Of379+PmzdvOgoE2/mL7Kut/Omxu1wuR7KyEjd0XSn0rDFrzeXj8+p3+6136yuuu6BpfElpysq8UkFis5o0JqbXo2XM6/H6FLxaz003IJWgBtHZF34/HA6jUqngxIkT5nA/ltSJRCLweDzmcMVoNIqNjQ1ks1kAQCqVwurqKv7JlX+CFjpxLEJ3BmLxug2c02q10Gx1Xm+2mnChI2RIR+dx8aqQga6S03ECgPe/+H789b1/bcZWLW09kgSAg+bOihpA99gQ9iMajaJareL69euoVqsYHh5GKpXCfffdh1OnTqHR6ByQWCwWUS6X8dBDD5nxp9J55ZVX8Oyzz5qDKAOBAPbu3Wvyw+655x4cPnwY8/PzBq5jvli1WjVUfSZX01ujN0/PiPEurgGWuOJz08PTeJbWKfR4PKZ6Pz0gKm3NN1TDidenh+92d8tVcV0TdgU6ymtlZQWxWAyJRMI8QzqdNqdZJxIJDAwMoFwuw+VyYWRkBOfPn4fX60Umk8GJEydQqVTw2muvmZiZxlLVo2+1Wo5EdWVeasFcPgOrfyhDV1mL3J+KANDQUhJHv/VufcV1hzduBHo99qLmJtfYFOMKNqSh3pm9ifg+iRT8np3Pw8/p9WwrUz2wyclJjIyMmPdqtZr5PNBlti0sLBhGHJ8VbQAuoA0hGaANtIFW25kL43a50UYbrWYL7Tf/kRShCl4D372sWo1dmHuKt6tCl4qa46OV0dVbo1eUz+eRz+fRbndYh6VSyQj6SCRivu/3+5HP51EoFLC0tGQ+RwWpTL8bN24gHA6bmFc6ncbIyAhyuZzpA6+rHgD7RnICsJuWzXXE5+NnCDEDXQhPY2hU2grzMc5q52mpwWBDt1wHXq/XnHSg8TqeLE1vr1wuY3Bw0DAaXS6XYadSiR89ehSrq6tYWlpCOp3G1NQUXnrpJYRCIePB6fq3jUPNhbTTAHSdqDGpz6PEE92XiqZQwatB0G/O1ldcd3jTDaCwjgogwKnA+DeFs/2aCmBuEN1UvQS7KjtVbnxPPTIqWr/fj3Q6bXKJyCqjV8brtNttbG5uYnNz09TQUyWN9pv/AbjgQtvljAsAgMvtghtutD1ttFtvkkdaXTKGKhVgd2HT20EzfG4SMChMbOFGD1YFPAURyRxU3tlsFsvLyygWi1hbWzMkl0AgYJTt5uYmKpUKcrmcGRPNQePzFItFc0giz6caHR1FKBQyuWQKA5NMQ69K1wyfk3HPdrttCBwam9KkcACO69ED4bUIjbH6hcZ41PhSYc11zs9qv+nJuFwdEki5XDZzSUo9+6aEie3tbQwNDeHs2bN4+eWXsbKygqGhIaTTaWxvb5s0hl70fo1j6vjrPlIDTteXNhJh7GbHoXXP9Vvv1ldcd3izPSC1iHXTqCXLpjCGWo56lIluGI1jUNDSUtfP0Lvr9X1u3q2tLezduxfxeNwBRzG4r5W43W63gbFarRY++OoHUSqX0HL3LptDD8zE8tDuxL88bgy4BjreWBvwerpJ0cwPqlarxmthnhWFG617jhH7qY2Ck9CWVo8nRObxeMzzkJbfarWQTqfhdruRy+Vw8eJFE8+q1+vIZrPIZDJGCTLuQm+NtRGpODmeJBa0Wi2cP38e586dw+nTp7F3714kEgkAHaZesVg0z0MGpOZ7kQFIw4MHVzImyefmM/GzjUbDMP64VpPJpMnnY5yLldnpdamRoApK85449vTSCRezEDHPQ+N8sMQYWYgkOfD3oaEhJJNJhMNhLCws4ObNmzh+/DhOnjyJCxcuGK9O42tKwlElRmjPTkrWPauKSGOKXM+q2HVvqhfab71bX3Hd4Y0bXD0sYucKZymBg9a/KiLdILZy499qDdqf42cVHlSFxs3LPrVaLQwODsLtdpuj7TX2oTUXeb9Wq4V3PfMu1FHvxKnepL273C60W28qLs+bHhZcBjYkNNhqtcxrCtdQsbhcnRp3FGjmZGMX0Gw0TZxMn0XhQIVtdTzIftP8OJuhxrGNxWKo1WooFArm7DHCWYVCwYy15uFpP/hfYydUDhSmN2/eNGy9eDxuIEpa/PQWGDOk4aMkCK4xxhFJIlDvgwxRHstCw4WGip7bpZ6rjRioQabMO/Woba+GBYlZ2HhwcBAul8txACi/o3l3y8vL2NjYQCQSwcrKCpLJJA4cOID19XXkcjlzX1Wu6kUpxMnPav9shdML5eC8Kiyo11dDtN96t77iusObLniF/OwYiyofjVVxw1Jo2TEowlDcMAAcRIZe1G+NA9FSV0FPVtfQ0BBWV1eRz+cxNjZmLOFWq4VisYh6vW4UGYP+FMp+vx/VWtX0s9FuOIQbXB3l5fK4Oj9VMLi6TEr2q9lsolarYXFxEUCHDLC9s+0o99RutbHt2YbX48V7v/1efPHMF82hjvQyyuWyMQwoRDX9ANgdiKfHxXyjoaEhVCoVFItFVKtVRCIRBINBDA0NmRgOoTdNruaR9G6323hEVAhUwlRcjJGdPn0a+/fvd1TwYHyFuXucX01KJrlD89aUcEDojsrLZinydXp4PAxTFRrhQ96THi/H0I6v8fo+nw/j4+PY3NzE+vo65ufnEQ6H4ff7DSGH5bRqtZrx8pvNJm7evInFxUXcf//9qFQqmJ2dxfT0NM6ePYuvfe1rpn9aTopGH9CluqtXpR6SGo+cPz6PQqH0VvlZGlKmaHTbebZXvzlbX3Hd4U2VhVKTbZhONwAFK79Hwa35L/wsqef8rE0EMYoCvatPAF1KuNKqeTw687go/HlfWuVkxG1tbeFtf/82NNE0ytCcO4a2obrz+2Z83mQQttoteFweh4fCRgt/e3sbjWa3Av7Ozk7Hk2u/aSm3AQ88RhHzaJXBwUHjeeghiTQE7MRmnQeFxOjtNZtNk8dVq9XMWVyjo6OmlJGSWPhMe/bsQTQaRTQaNXlhhDQBmNJWXq8X5XIZKysrOH36NAKBAKLRKHK5nMPDZuP8Mzala0DXhdLGe42x/k3BrDEpep7qhfGzzN9So0g9Fa2FSW9leHjYwKDVatUc6EkWJxWPXek9HA5jdXUViUQCoVAI+XweoVAIBw8exJUrV4yhp0QbhQh7kS50r7KP9lj3iqHSKFHP8Hbx1n7rtr7iusNbL+aVBtQVTgF2byz+rcKGr+nGoiWrMA6/Q2Glwkzxef0MrxeLxTA4OIhSqYTNzU14vV4Eg0ETE2Fli1gshmg0ahJqFX6rVCsdokX7zbwtNxy5WgrL8Jl9A75d/aYA297eNt4ZlRUVlyFZtDr32Wns4B9f+sf47PRnUSgUHDlFCgnZ8R8lavDzbLlcDvV63ZRm4gGXsVgMY2Nj2LNnjzmLjDCYlgE6duwYxsfHEQqFcOPGDeTzeVQqFTMPNAYikQi2t7eRzWaRy+UQDodNlXgqIZ1P9l8VDNeYGjg0ctTTIMSo647jTq+NLEMqRp07GlX07Pkax1DXtya5b29vIxwOIxqNolwuOyqHKHxKeFpzAwcHB3H58mUMDg4CAAYHBxEIBHDs2DG0Wi3MzMwYD0gVkF1xxoY8VbmxKcKha+E7KX+9dr/1bn3FdYc320NSAoRuLgAOOIMbRgWClnSiQmQeF+MCrDhB74ieFK1wxeG5wVh9gS0cDuPDH/4wTp48ib/4i79AqVRCPB43saB6vY58Po9oNIpDhw5henoaD375QRRdRXNdr9eLRDzRKd+082aumdfTiW1RULg78S8XXCY+xcbrMOC+tbWFXC7XEaruLizKZOZ2+0024pswo8ftQRsdOI1lgZQ1SI9IBTPHlmPKezCfKZPJmFJM+/btw4EDB0wS8sDAAEqlEiKRCAYHBzEyMoJsNovLly+jXq8jHA4jEAhga2sLtVoN6+vrDqIJK8VTYDMv7Ny5c9i3b58hYGiiMPtOoapKmYdottttsx7YqFSUqk1vj140iSMsQxaJREztSM6Hwo4k6xBKpgei88lx5TMEg0FMTk5idnYWKysrSCQSGBoaMsYBr72zs2MYm+vr6xgYGMCZM2eMR/Xaa69hc3MTjz76KB577DEcP34cn/vc50x5NDUeCKlyj9GLtGPM/FuZs9wvXCcAjPfJZ+rFGO633a2vuO7wxsWsRAgKGo1L2TAFrWKFX5QJCDgrACgcyPvyurYXxuty81LwMNYxNTWFQ4cOmcRi3dyEhXK5HEKhEJLJpIN+TUFJBlwgEECz1S055HJ1lZV6eHx2fS7CXgBMpflWqwVILVVV+q12C2644XF7DGswnU6bCuQca40jqhGgnqBJlH5z7Fj2iQIwGAwiGo2i1erUQlxbW0O1WkUqlcLg4KBRHEzWHhgYwLVr18zz6WGQVAQcCzVWCNNGIhEkEglsbm466PFkLCqdXdeM7R1pPh8AQ+DgGBOao+fGceDaoDLUNct5pFFjV6JQ6IzX5ee1An6lUjHMTS0mvbOzY6qLsJ8HDhww5bUajQZmZ2exvr6O6elpjI2NYWpqCgsLC7sSrXt5RVRufM+OCeu6sWFaJWtw3fbhwu/e+orrDm+K81PJAM5yTvycQnncALay4XcovFik1M7t4WalVcnNSCVKAaQkEcKN73//+xGJRMyRJYcPH0ahUEC5XEYoFEImk8H6+jr27duHVCqFzc1NrK2vodlowuP1mNhNKpUyOUMbGxsdZeV2GSbhb33aBcqBdrvzu8ulZ0y5EI974fG0kM3Wkctt49c+1erS5Qe6XiWfIxwKO2rxseqGjq3GsDQxmDEWFbKNRgNzc3OGpp1KpTA6OopEIgGXy4XNzU3D+qtUKg5moXrMlUoF1WoVQ0NDmJqaMrX45ubmDPGBFj7ZcSy4u7S0hGg0iuHhYbTbbXMPKi7G7lQpsP9cS1pTkB5dvV43nlMsFjP3KxQKCAaDxtNUhUUvSCvEa56apkhwXZLkQUIIFQH7PDg4iGazaTxWKmJ6swBM9Y89e/bA4/Hg+PHjxiv7kR/5Edx77724fPkyVlZWEAgE8Na3vhXXrl3DlStX4HK5jIetdHaOIcfajgsqJE/jQ7+nMUDdk2oY9Fvv1ldcd3jjgqZ1accUVKnpkRqMLwDOmnxs/I4qPH5Gg9JqSdIqpCXLvrD5/X7U63UcOHAArVYLly5dQqvVKXharVbNgYqMxbAq/MNffRjrO+udONab1TIULgoGg+aMr9/8DXToGK4OLcMRT2g24XoTxrK9ylarhVazW/OQsTImNrtdbngGPEaYaQxLx9v2fklC4HeoPNgajc6hkK1WC8lkEqOjo0gmk6jVagb6CgQCSCQS8Pl82NraMopQ42rtdhsjIyM4dOgQpqamTGyNx8FwHHh6MiHkZrNpKkwwl4pVJXopKaWja8yKc6ExViqvZrNT4osxTM3102tp0rkqfq4prlVdl3xNY6ocZyq4QCCASqViWIp6LZ0Hel6EXfm6z+fD2NgY3G43FhcXsbGxAZ/Ph8nJSTQaDbOO1YMktMk1wXniWNrkDN17/IxC7nwWG4rvt96tr7ju8KabHNidz6UbQKs79GIzUehygzFuoBn96mkpU05P19WYiEImJAaMjIxgZmYG169fx8DAAEZHR82hgo1GA7VazVj7W1tbRoAbqOVNsoQeGfJ//n4YxWIT7UYD7h6QCwA0222g2T39V8fNECpcndgYALRbbZO87B3oFvi1IUile9txRFu46JgRIgQ6gm58fNwQCEhNZ+yJBYjL5XInFUCSownl7t27F2NjY4hGo1hdXTWKi/Ad4dpCoYBSqWTWQb1eR6FQwNjYmPEm+Z9zrYxCoJsfxuekIqRxpIqICoHv0+tRD1VjtMpMBGDSHxirU2OD8TStIM9rAjCVPsrlsqmkQfhT54YUf4/HYyBDwrc8A2zPnj1wuVwmxy6RSODAgQN49dVXd+0dMl+5ZzS+RYXcS0Hb60WNg15VNfqtd+srrju8KbFCE09ppaqA2d7eNrEOFap2zIXfV4WnljHjUPqeUnxV8PAeVGyPP/44NjY28Jd/+ZdIp9NIpVKYmJjAtWvXjHBcX183sZG3P/V25Cv5TtKwu+v9ueAyrLo/+D+jiLgjaLVaKBYKDvhFvQZen0KSpy3T+3S5XPjtT7vxm7/T8bSarQ6MNZgYdIwrlQWteXoQ6mXZQlmp8QpxEZZLJBKYnJw0MZexsTGH1U+FTkOAsGEwGDRxrng8bggGjUYDsVjM9Mfj8ZiyRadOnTIeyMbGhkl4pqIk845zznO72A/GrPi8VE4ADOSlycyqoF0ulzmmhuQRmyFHY0UNBf1Jr5VzplU9dKzZp3A4DJers16WlpZMhQxdwzz7a9++fYhGo7h06RI2NzdNbMzn8+GBBx7A0NAQTp8+jQsXLmBwcBCDg4MIBoMm/YCGoQ0D6j7ks9gsSdtzV0hZ95MqMfXe+63b+orrDm82nEPFw582OcF4FugqJ7UGqXQcEJvFiFL4gz81EVPfZx8ajQampqZw4sQJzM3NGaLBgQMH0G63USwWkU6nAXRo4XoqralS8Gbsih7Rb/x6E4FAE9E3vSjChVQMdmUGJrvymnqWGK321vY2fvvTbvzL3+r0nQpUn009EjYVOG6323iJNvNNYUQlSTBGwxJQvDZLDFHp2jHFRCJhIDgtL0WGHktLcY6onKgglWhRr9dNMV6y9xg/0vp+dnULjg0Vns67Vt9QWEwFd7vdNkpEPSd64DrWuib4k16YDbdRqKtwV7Yi7819pMpxY2MDhUIBOzs7uHHjBhqNBtLpNI4cOYLBwUGk02lTYisajWJtbc0xPmr4KURo7yWF09l/NXq0Cgdb3/P67q2vuO7w1gtCYMCb7/XaQAoPqtDV93Xj2PEIFdqqDDUmpkrV7e7kGU1PT+OJJ55AMBhEqVTC+Pi4g+Zcq9VQLBYNBMTrO5Szy+3wZPie3+9HLBYzQX3CU/y+UtIpaGkRBwIB1N+sled2ueARxWwrYRXAdjDermygyl4taApml8uFQCBgKjvwebQALPtIxcB4ZSgUctRK5BzZOWIKF/N9PhdhsVKpZE4QDgaDRsDTk+d5aPpdhe50HjRvjWOtRpVWW2EjJK3FetWDIbyn+Wb8HPtApaPKgYqNY6LKmsqOxgnXRqPRqSSfy+VQKpWwvLyMnZ0dvPrqqxgcHMSePXuwd+9ec/BpJBLB6uqqWS86F+wjr829qh5TL4NIY4a69nQv9GNct299xXWHN9tD0lI0Ss3tBU0wdqEQllqj6qFRWAJw5Ibxdb2+xsNcLheCwSBOnTqFxx9/HOFwGDdu3EAoFEKlUkEsFsPCwoIRTCyZNDY2ZnJ9ms0mopFOpYNmqwmP2/MmKcNvIEjmKPHQQLvvanUrrMlnIaV9582///VnBvD/+VTN1DVUpcPnU+KFxmMAZy1B9ZYo1Dc3Nw1Lc//+/eZ5XS6XKXBLQUfqPw2CZrNpDtdkbAboMEB5Ly0XpAqL88PncLlcJq9qdXXVKERCqM1mpxRWJBIxipXXoNAlRKcFeukBUhGooaHrlmPH71QqlV1elZISSEBS5aRVRLhmmMDebDbNuV2tVgsrKytwu91IJBKmf5FIxIxBq9UyieBMjmeS9nPPPYe5uTk8+uij+PEf/3F4PB5sbGwYb1n7pAqH46wKnlCxwvC8P+eG7ytEyHHpe13fufV5l3d4s9lZauVTgNFqV6iMn1PBolYqBZ5tEWrjZ5Wo0eszAHDgwAEkk0msr6/D5/OhUChgdHTUsOpisZjpbyQSQTqdxs7ODv6vff+X2fBut9t4W4ylADACjwVV6SUoFGdyvFzd0kIUJnxGr9eLUDgM35s5UqrgtNneE71DjaFxrBXC4n2BbkySXg/hSF5fIUwqdRX+JGTwM36/H8Fg0MSF9HtaSotrht+hF8NjTni2lyZUK0yq/eM9+F/hNlU89lrgmHLtUalyPh3w8JuNtHibuKGwm3rCXPNcH/xfLpdRLBYNDKmlsYhQeL1exxlm0WgUxWIRsVgMS0tLeOaZZ3D9+nXk83nDwNQ+6bNqH9VAZCFn/TzfVyVnx8zUGOl7XLdvfY/rDm+6oO04AvF2O7agSkoTmNXi47U1cdiOVbTbbRPwV+iN1wNgiASnTp1CtVrFV7/6VWxvb2N4eBgPP/wwZmdnkcvlDGSYyWRMDKFQKJjCsSYO0G7B6+oIR3pbfE4KT/aNQkCFqQpXBu+Vdj4yMmJOyPX7Oh6dxpY43l99+Ksd4d/yO5Q2FSwZkVrXjkVrWSIqHA4jnU6bKvn8bLvdNjlOttHA8WVlCioYKhmFdfXZ1Zjh3xqTi0ajaDY71TvGxsZMpRTWCGTiLyFX4PaHatIY0CR1KnCF0ngoqMvlMnlUSilXIka1WjVjSCWnRZdpkDFWxnHg/akEstmsSe5uNjuFhZmgTXg5GAzi4MGDSCQSGBwcNId7bm5uGqPr05/+NPbt24eRkRGHwaf7UY0aeteKkOg8qZes46qwtsaVVTH32+7WV1x3eFNcXBUU0IUeACflXYPEGn+xKcW8Pr+vgWIN6us1+F2NVxB+Wltbw8rKCnw+H44cOYJYLIaNjQ2zESloIpEI3O7OuVQsQwV0TzXmfSiQKNAIWdrkAX7Hjvlozo1CgExQ5TXtsba9LQ2wq+VN74gCqtFomDJHjKvFYjEHtMnr8DWF27QP9vOpl6JQGueYc6WxLvUE+ZwU/PQAOS9bW1tG6dtQnhoLVDRKTiEkq/CkIgKMbSoTkYqG71N46xjzP5WzQsIcO9trrtfrqFaru6BLjhGVRzAYxOBgh006Pj6OtbU1h2EBAJcvX0YulzNJ2kr04LrguKhhaUP3fGY1Cs2ab3Ur4ei6spGNfnO2vuK6CxoXMi1iG2e34RVazaqENBbCz6hysBWXQhY2vZcCw+PpHBsxNDSEgYEBrK+vY2trC8PDw5icnHR8n0IwEokgHo8D6JQjqtfr3fJNbZdDQNGCV5KGWvVsGhvQ/lPIaQkiQI+W39l1LcCpBDWOyH7ZkJxCVoQyCSeS8s5KEfa86rzYSktjH9pP25BQZauKVvPz6LVR6dB75Xf1gEfSz7luNE7DcSWsZysE9VyVPEPFxcLKrGpBr5Xz2CvWqJ6wxsQ0Xsv5ose7s7ODYDBoaP5UjPTu2u024vG4qQrv8XiMJ67xtGw2i3g87oDztI80WPi3bXTZpAw2fSb1UtXg6iuv27e+4rrDGxlfVAC62NXrYTBYIQcVgoQMafmppaqxFPVgVHCQXq4kAG6yQ4cOwe/348aNG/B6vUgmkwgEAiYJln0cHBzEwYMH4fV6TVmiRqOBncabhxS6XfB6ukqyUqkYy9ztdu9KTtXjWNQbpDegyliFHuM/7Xa3tp7deK1Wq2Xo6/QsNEakcca1tTXzzBTOgUDA9INEERW2tvHBOdNcJXpM6iEpIUPnT704hVPdbjfC4TAqlQqy2axjXihk6XkBzpw4OzZDBaMkHo0xsv+E/fj5crlsTizWc9h0LJgmocgB8/A0JYCeUbvdObiyVCqZ9ZjJZJDJZHDw4EHEYjEsLy/D7XZjYmICOzs7uHLlCvL5PE6dOoU9e/YgEong6NGjSCaTuHnzJjY2NszBm1xPhK35vBwnjVPpfNpohcbYtP9sqgx1Tfdb79ZXXHd4o6fFTWEHfAEnmcCGDu2TdO1AMK1qFYrqZdBrYCFcOyfF6/VicHAQW1tbph4fYxHlctl8jgV1eShhNBrF9PR0p1+bbmzvbJu+qgejz6WxII0fqNJSxctn1u+z2d6Mjqvb7TZnXPF9VYD8DN+n0cDSTlQirIavn1FlYNO+1aCw41/2c+i4KCyssJkhvLi7R5MAnZJbpL/zdR1L25NTool6EfypkLWSKhQeJgrAosC1Ws3UorShSF3n6v3aHi/XL2smKvyayWQwPj5u5lQJIkzJKBQKGB4ehsfjMYnH/H6xWDTPZSdbcz74U496sSFbzclT5a4J1jbJR+dbK/D3W7f1Fdcd3mjR66msKoBVuPM9VXIq6NSLoKBTS5on49K639rawsjICCKRiLF8d3Z2jPVISnIikTCFYpPJpOMEZQCGucWE2UqlgmAwiJGREVSrVXiue9BsdKpluN2d6uxsttWpMRyNC6gCUuVis7bsnBoVQGxfP/t1BNA9tZjXUi+U3ie9LQp3AObUYOYksX+8DoUdPWS+r/OjHqW9HvhT440a69I+qzfJvrNyBWnXttLjc1HYExrU2Bc9DY2JqfFApcVn0DWq5ZdcLpcjt0vnjvemElXjRRUClTznoNlsYmlpCXv37jVFknUMyDRkvchSqYRAIGDg7VAohJs3bxom5vb2tvG61dPT2JUd3+Lz6Hq0PVZ7PhXa1bHot92tr7ju8EaBrEJaF7UudLX69Bhwbipaq3zdrjzAuAzjY9PT03jggQfg8Xgc1cvn5+dN3CISiWB0dBRvvPEGWq3OWUwTExOIx+OoVqvY2tpCJBLB5uYmXn/9dSwtLcHn82HPnj2o1Wqo1+tdQd7Y6bAKvV74fX6HIga6BwnSA2XjsxOa4muE0VR5ULj+xqfbqIo3ysbYkMb0lLmnXhTnJhwOA+jmv7FMEA9zjMfjDpIBFYEtgJUIoc+sc6gelApAKjpNCObcqgHh9XpNPUS/32/KSamCK5fL5ln4bPQ2dnZ2UKvV0Gq1HEWd1ShQ75EeeKlUQj6fNzHAdrttalYyDkhjiMqQXquOhyrYSqUCAOYg0vX1dQNRzs/PY2xszJCEarUalpaWzOGRjUYDoVAIPp8P29vbqFQqRoE9/PDDCIfD+K//9b+atcF+c8/pfiIRh2uH/6mkaQzyGQnx67wTeraZi/3Wu/XzuO6CZsOD6i2oxQk4S0GpcFWh1wuSAbp4PUkUw8PD5gBIMvsYb2OAOxQKIRqNmk3fbHaOpVf4qNFoYH5+HteuXcPKyoqpYL66uoparYbPH/l8R8m436T2tzuC8Dc+3fWUVFizUVgqfKnWrUJfKuB/49NdKAzoVl9vNpv48oNfNoJXx0+FKZULjYBIJIJwOGzGnt4Mn1O9GFrw+gxqfetcaapDL89T4yj0nJRyrcqE33G73aYYrR7+qHCp9pf5UBw7Cmd63To/qnQV9lLITc8P0zJQKth7Pa/toWiOGPtLrzAYDKJer5tEY6YeVKtVk6ag/Y7H44jFYshms7h69SrW19dx77334sSJE4654r3Ua+fv6qXaSseG9O24pm2s9JXWd299j+sObwr98G/dxJpfxc0DOOud2QF2Ki9eSxl7PBL94MGD2Ldvn6NsEinE9XrdVH5PJBIIhUIol8uIRqPIZrMYGRkB0A1q1+t1zM7OwuVy4cCBAxgbG0M2mzVWO4vhwtWp2N5qtUyFeJerC62pN6QwpwbI7ROhVYEDwG//Ky/abidDjNekINODESnUmXAMdAUYWXPsWzQaRa1WM8nSJIGowrUVBKnbqhA1bqV95Hdcrg6dG+jGQBTmU5o/WXKa80bvgR4kE3LpnbLWIeE09bZsQgnXXygUcihr9pX/qTyUOENF0263zTjxWe24ozb1hDXmpIqhWq1idnYWPp8PBw4cMJVcEokE9u3bZ4rs1ut1ZLNZRKNRHD16FN/+9rdx/vx5HD9+HB/84AcRDAbx1FNPOdAO9k37a+8v5vRxTDneaoBR2TP2GQgEjCduow395mx9j+sOb2p52hi6/lRhYhMR+BkKSI0FKYGB14hGoxgaGjJFRgl1UBCzPBC/q7GUer2OSCRiNisribdanfOoDh48aJJL9YgMh6f05gnHdiyPVj7HhYKYSsX2GOiNqdehQscmAXzp/i85oC5+h38DTsID/xOOi8Vi5uRi9Sj4PVLQeQ2gt+fAPtveMt/TfmnlFE1Utqt4sC/sL6tJ8OwujiEZjDQo7Bw020voJVwVruT4EvZTRqp6zLYnokpA16auASWX8Iwtjg0NpvX1dfNZPiuVPsft1q1beOONNxCJRBCLxQyxKJlM4sCBA47nu51C1X2l6RdK6lBIWhWYrbDVW+233q2vuO7wphalDe1RyHLz26wyemuax2IH71VpUOgx14oMQABGkHFj8lq07gOBgCkq6/F4UK1WUalUjKCs1+sIhUKIxWKmVp8mcv7F4b/onI/VbsPj7iYY/8vf7ApHm1FHi1WFhh0AtxW/tl6CgTE05hcpAUAVvV6Xv0ciEXMWFRNha7WaITPws70YeHxN50vnXmFEAA5Fp4JevTY+I5+Hn6HiqtfrhqCgilyThG1hq38rFKvzox4ujRoaGDp+Ktx7fb+XkuCcaIyPBpUqLr7Po0sIkdbrdUcFFrfbjbW1NczOzpqjX7a3tw1Ddnh42CgTrn2uWd6L46WpCdxjNAT4jLYRxf5zn9gKvd96tz5UeIc3eiwAdgkRekLqNdjsMDvJVC0/bgy1jpvNJiYmJhAOh40FSKVFCCgWiyGVSqFcLmNkZAThcNgwwJgrtLi4iHK5jNHRURNraLc7x5vcunULW1tbSCaTu2IX/J2Cp9Fo4P/76y38q9/2OgSlfk4Ff6/mdrvx6d96U+BjN2QHOGMxhAiBbiCeZBTGr6g0lf3G03VZM49WdLlcRjgcdjD5GJynAaDzaJM0+Lys4KCKQUtWsV+ai9Vut40HwfgP1whJCVRuvA77QiXaS2mqRwfspm2TIaeeHFMnSMAwEDGctR2VQq/ePNc7r0dlTM9xZ2fHFPFl/9fX11EoFBAOh+Hz+UyF/FAoZPo5PDyMer2Oubk5o+jYgsEg4vE48vm8SWam0lXCjBIyaBxw/eiaJbzMnERlZGrRABsx6Tdn6yuuO7xRcGlVC74OOGnRCjuocKdFV6vVdr3PRsUGwAg3wFl+h5AHC76y+rvG1igESXcGunEWkjrIJGT/GFP6wokvoNls4qeu/ZTpE/vZUTwdYfRbn+6+rkQANoWYAOBf/iaAHqiLQq1fe+RrcLW7x9fbn+F9OEaa56WKhPdWC7tSqRg4TkkXtkelc8YYFY0NKiX+zu9qXUEdCyoyelXVatWU2opGo0axqGfay1PSftDb4XqyvS/bK9XG68ViMVSrVQDOIz/Yd/Vu7aRmjgvXmzIvGY/js6uxVi6XTS5itVo1c8fnmZiYMAqJ6zgWi5l4ID1SrX6i8TT1FjkWen8lAun31ChS40th037r3fqK6w5vXPQ2O0zjF+ot8H31rBgk1vp0JBUoNMSNFg6HEYlEAMB4WUzc5CnLPp8P1WoVw8PDJkYDAMlk0sQSmLe1srICoCOoWDHD5/M5lK/GRf7rqf+KD7/+YQcUqEmav/HpNtzuFlyunV3j4XLxnDCSNwC4dwsB/c6X7v8SWo2WEZbsDwUk89sUvlI2Hk/6pQBWun6r1cK1a9dQLpdx6tQpQ0JgzInPrRU8dI4U0mKgX70rFeq8H5WEeo8sdeR2u83BlC5Xh+RB74NClMpJT2hmMWSN69F7ZKySz+5yuQzBg4KanmUoFHIoKBo1NAh4TVVYbHwuGgMejwexWAwulwulUskoLiXwNBoNLC0tGRLR8vKyw1Nrt9s4ePAgWq0WFhcXMTo6isOHDyMcDmNjYwNra2sOD0wTsJXJyXGnEuLv3FdUjBwfPj+NGTYlv/S9rtu3fozrDm82gQDoCg87cK/vUXnZJWbs/9yA/A43EwPpaunS+qYSpPdFaKrRaJhzkAh90OJX7N/j8RgBDnTjOqps/++T//euOJL+t1l39jjpf20q5F0uF75+9uuGqKB0bQpmJU7ote2SPQAcikjfK5VKWFtbM0WF7X6px0olbZM01GixIVL1MAjj3U6RKZnD7e6cU8bYEF/TclZKzlDoj2PBa9rkEq4TuwSZphLoNeyYHhWdDQPzM6zEkkgkjDHF+WWyPp+TtQv1mcLhsKllyMr1iUQC09PTmJqaMsSO9fV1hwdkx4W1X9r4nBxLPo/9HHYs1o5p9lvv1ve47vDGjabCq9VqGcWhsAQ/r5tLIRg2hS5U0KiXwPdVWZGsQQhKvThCfslk0lCe/X6/UQQ804lCV4PyvSCmdruN/376v+PH3/jxnjEs9YDspkJEx0cFh9vtxtPveBooOxOw2XdbUKki4Ps21EehGXjzpGUd72KxaBJktWirxrK0EoNWnFB2pO1dsY/adG6r1aqBZzv1GbtpEDxhmXEwCldNsrbjgJw32+iwjSgdMz4HPS/Ou22Y8H722uRz835ca1xPlUrFERdUooPL5TK0d56gTRJNNBo18VmPx4OxsTEMDQ2h1Wohn89jcXERCwsLDnhQf6rRYK8/9ch0b9rKS9elrqm+t/WdW19x3eGNMSNgdxUFCjsqNm5YCkQVrBrb4ne5Yex4weXLlxEIBBCNRpFIJADAcQChwpSJRML0a3BwECMjI8hmswA6tPqlpSWUSiWMjY2ZxGQGwLk5WXCVjf31+Xz4ykNfAQA8/vLjRomrd8AxsuMINoTG9556+1Nd+rjHa5Kr1TCgQmYjrNRLUfI03larZbxIeimEECmAb968iWq1ir1795oCszo/ClPq89EjpPGg9f0UmuR36FVls1lcv34d9XodXq8XiUQCHk+nLh8PUdRKFlScPGWac9Nut41XQrIQ4UHCwoSrCS9yXXHsqdB2dnYQCoXgcrkQj8dNObGbN286YFCuLyUYcX1ScfFZS6USAJi4K0s08YTkpaUlrK6uYnp6Gvv27TN9Jf2dVWFOnDgBn8+HlZUVfPvb38Ybb7yBjY0NByTIfUMDQ5WSskcJE9brdce6sREC7kUaSDZ1vs8s7N36iusuaFzQCgnZcRHdQOoV0CpU5aWbjNYy0IV21tfXzYZNpVIA4CgnRC+uUCgYr4peIP8GYCx89pOCz2bMKRmBz6AkBgD48oNfhs/nw/u+/T7zuV4wqlrrtOLt3CG+R0VBD4BjQcYbr6VVInQcqQDr9fquYLzW36PAI8WeBgD7aXsZ6n30gkNVMSuUqGuBZIV6ve7ID/J6vRgaGkIoFHKwHKmgNE6lYxwKhcx8lMtl01edL51LQoh8T/P8qAhDoRAikYj5WyFHFdg6b0qp1/FlP5k4rWNUq9VQKBRM7mCr1TIKd2dnB9VqFTs7O6bySz6fx40bN5DNZs01OKY2wsF1rJ9TEo0SMNhfVUx6HT4Xr9f3um7f+orrLmm24KTQV6sPcFYtB3bn2vA1bvJe0Fc+n0culzOnyHLzKRTDz/r9fmxubprXCbe53W6T28VqDHrUvC2g+X0KJ76m8RSXy4VvvOUbRhF84NwHdj2vNlr8APD0O57uxBo8XjMWKtwoaFXhqFXM+6jCAboeD7/D52VCrNYH1Dmgp6xKUZ+Bc8z3aOWrYULW3+1qUAJdmrp6d+Fw2DHmjF9SqSpcSmUXjUbN8/J6CkHr+lEGrBoCXIfsn3ovJPvwmW2IViFD7Re9LjtOxvngnOTzeeOZ6euk0dOwqlQqBibc2dkxBow9/gofKjSva4rzomtb9x/H0YZUdc/2W+/WV1x3eNPNqmcyac5Lu93N5+LCpwDe2tpyWHKA82RfwLlZqtUqvF4vlpeXEQgEkEwmEQ6HDYWYXsPa2hpisRja7TY2Njaws7ODWCxmSv9ww1+9ehWFQgHBYNAIbtKMqcja7U7BVTvwb1udtgD/xlu+4bBo1cNsNpvGkvb7/QiUAggGg0gkEsbqZu4SWXa0/GmlK7GFY0hhpNR2MuP43WazaeJHVOS5XM7ks928eRNeb+fcMo1fKsFAjRPeW3O2KARJLnC7uxXn+TchsHa7jUQigWg0ag7xZM1EEhRUSVKg03MMhULGG1E4jApD6f3tdhuBQMC8p4m5ABAOhw079caNGygUCiYvcGBgwBAp+MwaE1JjodVqGUjT5XKZ5GLOCT/P51lYWEAoFMK9997rgEN5JAoJHhsbG7h06ZI5bFONFmW2ch+xtJNC05w3xgzV2+L8EsbU+dVYq22Q9puz9RXXXdCUamsLc4UO1fLjRqJg5He1eoZa8zbUqEwtfkaJGfl8HqFQCKFQyCS4Tk5OGssa6MRmNjY2jPBh3TuFerjRbQqzHbwnDZrCkDCfQoSE6mxCCoUNFb5dyUA9AtsAAJzkDXoUPM9KrWp6LgrNUuEkEgkjIHO5HDKZjIlVqfWuc62QIvuu46BjBnS9Eirl7e3uQZk8WoaxRHo7hG9VadqkCKYE2LCzkib4GY6DetM6T1S+jP8wdkolycRsTXDW2CN/1/FJJBKmoj0hYF23AExhYb7PGBjQOZ+MRYcJK7JsmY4rf1fFZcdQbcIG15PuXVXGqtj4t3rM/da79RXXHd4UzmPSqC583Qi2ENMNoYF7O35BoeFyuQx0VSgUkMvlzP3pwZVKJbPBp6am4Pf7UavVTGkjWuRutxulUsmctqu5QBQc6tHQA+MzMqbATcwisKz+wOM4ekGiFGq0+qmsWq2WISMoIYNnLWnRVioMNgoerd/HZ2EVB00yVsEfCAQQDoexZ88elMtlIyQ3NjaQTqcd42DPb7VaxdraGtbX1xEMBk18KpFIGEXNPtNLKhQKWF9fx/LyMoaGhjA4OIjh4WFEIhGHBxkKhRxFgBkXo/dLmFPTG5QUQaWrcSaNUWmFDIX+eDI0c7qU9MDjYFwul2FnUkFRYdLDIeU9Ho+bHK5CoeAw5mgAsVo8T1je3t5GKBQyc05lybkLBoMGHr106ZLpg8LsXKOqoNWA5DxyL9p/c91yb7Mv/fbdW19x3SWtF+QAwMSLaBFy02hMTK9BS5l/UxhQmPHapLEDztJQPL222WwaRhhjWNVq1WxAbmLCPkAXWuJ/ehya46KeEpvtYfJz6pVRgSgRQz0PVTwUaHp+l3pkKpA5xrwHFbhSwAn7KCGBz8A+EDJjgWIKdo3VqNdL6G91dRULCwvY3NxEIBBAvV5HIpEwY6clg3jPcrmMzc1N7OzsYGRkBIODg44SR+wjv8vxoiAmg5F9ViFMD5JjwrlTj4xelULR/KmUfvVGuNbU02LTfDBVAIoE2OuZ9+Kzsj6m1p/keqQCA2BSOkKhEA4fPoxGo4HZ2VmH120bh7aysY0oNl0XvI7GuBQ96LX2+63b+orrDm+9grf8SUWk8IkKPxtKUjy9l6KwlZ9WN280OmczVSoVxwGRLNbKA/kUGqJgICGDfcpkMmi320in00bIMeGZ3osKFzbd0Hpcur7H57PjdiQpMNmWylbZmrbAUOWjY0ihyNep0OwKGxxTPo/S5ekpFYtFU15IBXCz2USpVMLi4iI2NjYMO7Dd7hygyNjK8PCw+Q7hz3K5bAyIoaEh4/HwWTRuSk9H14HOF8dFP0uFr8nFykR0u93Ge6ZRpMKc/wkZ6v1pGGj8h8+m60AViO4Hvq/z12x2KnRwXPh9rl3Cvs1mE7FYDCdOnECj0cD09DS2t7eRSCSwvLzsiHVq/3St2UpI4Xg7CV+/qzCivtZvvVtfcd3hTb0sCiYKDcBZ8okbR9lVukHUM6PQseNYQLew7MbGBm7cuIFwOGyOIlleXsbm5qajSsbKyoojKE6adblcNgKJDLvt7W2srq4C6BA9aL2TAEChUq1WUSqVjEdDmIsBdZIQSBrhc2mFEKW1VyoV5HI5R8WOSCRiBKdWA7EFDe+nQpQwZaPRcLwPwMBwfEZClSpYQ6EQGo2GYbvxbDMqmZWVFczNzWF1ddXB6lPjIR6P4+jRo4jFYhgYGDDngG1vb5sK/4T6qKi5DmyGIqnzHk+njBLXBBOTCSW2222kUikzb8xj29jYMGxSxqqCwaDjtGONvVJp6WsADNTK+2nCs3rAKuD1EEqNfWmx3Z2dHRQKBVQqFYyOjhpvFgAeeughRCIRzM/P48iRI3jb296GxcVF1Ot1FItFU7iXzT7VmPdWZUqvnbAk1yabKnMbZbAN0n7b3fqK6y5oar3xb9u6o6DWxU5By41BxacBZdtC1OtRyZBVWC6XsbS0ZBh3FD5k7ilDrtVqmTqHmpeijDHCYYQfKfSYY0RlyEoO2k8KJKVnA11YT2MR4XDYQIZ6DhhjXZpsTC9RYSf1PkjsUAo8n2FgYMB4kOyDxsRsWJMKhAqQEB0A4w0oi09jI1QYOzs7qNVqRgkyx4rVITiXSkbhuKoXpkQOrhl73uhR6zVV2dtrSr1A9l8/p54gDYxesJ8qKl1P+hmOB2FFenz0rlUZUpExBhuNRjEyMoK5uTl4PB6k02kUCgVsbm5idXXVHMHD+VECi65LnR/Ou3qLGgPsFZtV778XBNlv3dZXXHd4Y34NAIewAZy0WYWwuKGpsNSLoMAGnBi9WsAKb9y4ccPck+QKbjINcDebTcOqCwaDKBQKRqAyrsP7j42NIZlMwu/3o1QqGSiPcA4tXIUSNZ+Ggl+Ta/kzFouZ0lS8P+MyW1tbKJVKBpojVVyVjdbxs5Uh4IwFKbTKPvWCgxjD4bhRCHL8+Hla94FAl7q/vr5uiB/si3qSVCqsgt5qtRyem0J7jEPRQyNpQckQ6sHSi9je3jY5UCRM0AAJhUKmCkihUHAwJBXeoxdkx/VIvrCrY3Dt0rDg2maMiixGQsuVSsUc3WJDkEocIYmDMHcmk0EwGMS9996Lubk5zM3NYX19HW63G/Pz85iZmXHAnRof5D7SOCefnUqOyen8nP5k01giv09vjvPeb87WV1x3SVNWFi1MO/hrC11VZGoVA7s9LCVsqPJSq9/2EAj1qael8NrW1paxyvk687noRRFCBDpwFYW0Yvy9gvuqnAlpATDxCqAL17BfVJ4aGFdoUWNqNkGAn9E4B79DIaOVvmk5k32mUKztMfM1TRYeGBgwB2+qh6pQmiZyq8dN5UgvW5+F71H58j+FL40QHQNlFbIyBZUa54mnZevBmfrsNqmC65afseeVikargdixSHo99JL1c3oNTfKu1WpmXOjlVioVo4C9Xi/i8TjW19extraGTCZjxk3hYvVcuT5t40f7SWWk/VNIGujmXNrrvt92t++p/PCf/Mmf4J577kEsFkMsFsPZs2fxla98xbxfr9fx8Y9/HKlUCpFIBB/+8IextrbmuMb8/Dwef/xxhEIhDA8P41d/9Vf7eQvfoSlspcpHvSz9rP29XkFxOyAM7E561GoEFA66edvtLkmAHgu9CgqDer2+Sxgq41DnnblRqVQKw8PDiEajDsFHNpwy6NRj5Pv02niEB6/h8XhM3hmFv8YXOMZq+avwtaEbWslUBFTgqhQ5dvQ0VekQ0uI4aP6V0sPT6TSmpqYwPT2NiYkJ7NmzB+Pj4xgaGkIkEjH3Ukzy0gAArcxJREFUUGWja0UNEXquQBeKpEWv3ryuD2WGMq7F79ETKxQKJg4XjUZNbpgmHiv8XKlUUCwWjfGlRoTGZ0mesRWderZcq+yfHjRJBICfbbVahvlKA6ndbht0oFgsmtdXV1dx8+ZN5HI5R7xTSTe95lmNDIVMbaVt70e+p+tN93O/Odv35HFNTEzg937v93Do0CG022189rOfxQc/+EGcP38eJ06cwC//8i/jb//2b/HEE08gHo/jF37hF/ChD30Izz77LIDOZD/++OMYHR3Fc889h5WVFXz0ox/FwMAAfvd3f/cf5AHv9sYYgTKkNK5DgUMLkt+xvQ0KBg0i64YGnJtKPQdSxCmIqMQuX76MVquFsbExrK6uIpvNYnNzE8ViEfl8HkAH62eCMmEmWtgU5gAM844KhiWTKGRYFYHHcAAwnoJ6FTw0kddxu90oFotGuZAOT4o6AENK8Ho7Bx0y+ZqCiEKKMGiz2TT3oAeiY89x4jzRC9SjNnhvhRCpFOjlNptNJJPJXRR8hXW3traMpU74kPfVPCwWniX0xzHl55Q8wvgQ40Aul8t4fhw7Jb3k83lsb2+byimahG7H0ujFc/w1n4/PSKXDQ0o1OZrrttVqGe+djE0tXaWFhzWfi2OTz+fRarWQTCYN2eXLX/4yisUiAoEASqWSI4eM86TzrDE7GiGKOthGp80mZLkurfihRka/3b59T4rrR3/0Rx1//6t/9a/wJ3/yJ3jhhRcwMTGBP/uzP8PnPvc5vPOd7wQA/Pmf/zmOHTuGF154AY888gi+/vWv49KlS/jGN76BkZER3Hvvvfjt3/5t/Nqv/Ro+/elPO4Lk/dZpVCLKWFMoRK01ZYrZgXAKHaDr9aiFx/eA3RUK2ChAWq0WwuEwisWiOVGWAtwOxJOkodClQncKN9kKWb0zfY5ekJMqAO1vr/OvNJaiCkZjaBxzvSe9Sz4n7814C6+rng0tcS1iq1Ahx5oeBgBHBQheR4Wg9pUKhvEm9QzUg+oFE9uftSFHPqeWmrLZlSykzKoU/KxCZeyv1+tFOBw248DnZTyIz6Pwr8Kz6glynAE42KX0+OmBcxzZB61WQpja4/EgEomgXC6jUCggn887PEWFk3XPsA82DMw1oeOq8S3uW5u4ovu5T874zu1/OsbVbDbxxBNPoFKp4OzZszh37hx2dnbw2GOPmc8cPXoUU1NTeP755/HII4/g+eefx6lTpzAyMmI+8973vhcf+9jH8MYbb+DMmTM970Wrko0kgR+ERu8G6Coxl8vliIfwdRVyylrS+IJag1QQvDY/rxuLFqbX6zUVFdjUIufmVGWgcCOvrbEKhX1YPomCQje6CnBeV5Vts9k0ZzLRq6Cnpp6dTW7hvVVB8Xm19BM/p3Ag76tzoI0Ci/2gR6XQIBvvo8QCrTpBIUwhq0rTJgxoySl7/GyBqwqIfbVZbxw7fZ/f0zyuUqlklIaeFadsRsbtOGb0ZBQFUGiQTFM73qixI4+nwxrlETLM1dI4E9eEKnc1CP1+P6LRqKMUGA0mjifXv0K97JfeiwaYEnT0Xr2UEb+rcKOuj37b3b5nxXXx4kWcPXsW9XodkUgE/+2//TccP34cr776Knw+nzm/iW1kZMTkS6yurjqUFt/ne7drn/nMZ/Cbv/mb32tXvy8aF7GSIqg8bKuWwoUbAICjgCqbVoUA4BBGfB+AIzcMcAp6BrlzuZzDOne7O9XHCYEoQ5H3oIdCQUVLXIUaISKt9AB0j1fRoLZ6aBwnxipYJ1DztahM6ZFRQVAoUSjTwqZAY00/xu7Y7HOjFKpjQeJgMIjx8XEEAgETH1IFrcopGAwaJabeIdmSbrfbeD4sfcV+0gPS9UPSARU5x5dKgQZKq9UyKQNAR0Gw1BbfV3IHvVDCjzp3um44RoQJWZ8wGo06FCT7y+8xxcAuDMy1xWdOJBKo1+umQK96mF6v1xgcfr8fqVTKGEE+nw/1et1xdhfXlO0J2YQKrg8dTzv2xuurYcdrqoFmMyC53ujh9tvu9j0rriNHjuDVV19FoVDAF77wBfzsz/4snnrqqX+Ivpn2qU99Cp/85CfN38ViEZOTk/+g97xTmu0tqceh0BGtXY0BUEnY3gQ/r3g7P68xMZtaT8GvgptC3+v1olqtmhwv9p330pI52tTT40+NQ/H+epgmLX2Oh8fjMWQOPrPSxu17qmWswkf7oAF0jhMFu7LY1KNUYUNjg0xGKlLtuyo7wJlDxn5pDJIQolrjCuMBHaGo9HH1BLhGdF7VA+ezKkVdoVwKWF2b/AzjTaps9bPsW71eR7VaNTEq+3w2ejn6Xa4dfUYqUfX6PB4PBgcHAQArKys9yUr0vrju6A3TiNG9o2tAPVP2QRUSn5vf0cryfE+Zk7wGvVkdO4Ul+613+54Vl8/nw8GDBwEA999/P1566SX823/7b/ETP/ET2N7eRj6fd3hda2trGB0dBQCMjo7ixRdfdFyPrEN+plfz+/0Gw/5Ba7YXRKtMFzg/RyuQG1A3AwPYTBamlwQ4qcatVrdEk8ZteG+tAL61tYVQKITBwUEEAgHkcjkUi0XjOZXLZbN58/m8OQGZ19Ln081LpUgYp9VqmWA5IZ2BgQEHVZ+VNfjsFH5Ueso041jx/gqjKWxFS1pzaSiYCE3t7OwgHA4br6BSqRh2I2GzVCplPAISRFS5UMHRW9Rx4TiwX8rU41xx/FidgtfVHDdCb/wMK5XQmyJhgvdTj1ahLPV+qQAIU3P8VLHSk1RomMKanqCOO+8HwHhK6rnTGGHzer2GKTowMGC8/ZWVFTOGXJ9kPXKeGG8LBAKGUahGDokeWtORyl4hTl0X9Ow0HqiKj+tRc744X6z9qQq033q3/2XqCmGZ+++/HwMDA/i7v/s7897MzAzm5+dx9uxZAMDZs2dx8eJFrK+vm888+eSTiMViOH78+P9qV74vm254Wr42hKSbXyENtQ5p7QHOGJjGM2woQwUlN6YKLsBJJOB3lQXHfttxOEKLJBfQ4rXjB/S8ADgEG5+T8JgqRG5+MvSUYq4ehCpNtY4VruL7HEMKZoXDeM6Vkjh4PIfmsjWbTaPsdLzVqucz3K5/OjYcEwpthVP5zOqV81oU/qo8lXnHedK4IueIOVw6D7p+OHZ27FDjmXaskeuH9+Tn+Vx6Xd0TXN+sct8LKufzJBIJJBIJs5ar1aqBXgkT0tCw9x+vw582e1cNLTUauFb4t20I2MQgjc31va3v3L4nj+tTn/oU3v/+92NqagqlUgmf+9zn8D/+x//A1772NcTjcfz8z/88PvnJTyKZTCIWi+EXf/EXcfbsWTzyyCMAgPe85z04fvw4fuZnfga///u/j9XVVfz6r/86Pv7xj//AelTfrRESUVhC4SPdzHZWv8KAGmvixrNhQHoiysayMX/ek8Kbiov/FQ4DulUQ1DNkf2ysn0LD5XIZocWNT5KAekrM87HP0OJ39FBFNhuKoQer8RuOkY6ZLZAUOuP9GUOiV6VHwlORAXBAcZxjvb7OsypzzoN6Nb2C+BxfhTPZPB6PqZDB2BTjQiqIGTNkX+n18Lk1h40GDvujioP35ueUiKPQtQ1xK1GD8wY4UzY4FpFIBNFo1MS4OCeMiZXLZaTTaQdbkgem1mo1hMNhE3fTvWaPn64Dm8HLfUdDjJ9Xz9mGb9XLd7lcu6pk9JXX7dv3pLjW19fx0Y9+FCsrK4jH47jnnnvwta99De9+97sBAP/m3/wbuN1ufPjDH8bW1hbe+9734o//+I/N9z0eD770pS/hYx/7GM6ePYtwOIyf/dmfxW/91m/9//epvo+aWni2wKUCofBSq5SLXgPAqlQorChw7MKhFABqXVKgsE+tVstYsefPn0ez2cTGxgYmJiaM8CYUtb6+jsHBQUSjUbOh1fuiAqTCDYfDGBwcRL1eR6VSMQKPgpXnOfE7LHekwoE5X3bNPo6fssKUKEGPTRUNPQ3+pCXfbDaxtLTkICxoXzl2ChNtbW2hWq0iGAwCcBIAqEjV+tY4EL0p3kMr+HPeOT7sn1a6CIfDCIfDcLvd5nBFjoUyCDXGptAda0mqN+X1dk4UZt/ZDx7uqF6F3+93QJM6Lmy8JhWmvf7UoAoEAjh48KCBoW/cuIF2u20M4UqlguXl5c4p2G+OSb1eN89Sr9cRj8exsrKCdrttjA+Ne2ocUhWofkbjZqr4VBFq6TYqPL223s8mUPWbs31PiuvP/uzPvuP7gUAAf/RHf4Q/+qM/uu1n9u7diy9/+cvfy21/oJtuCIXsesW4VNFobIt/U9nYn9HP6kbUgDLvz8brUkBQ8W1tbTkgH25KVh9nLKparWJwcHCX5dpsdqrKM3BNT0XzoTTmSaVClplasApNcZzUA1ToRsfStrDV++L7tlKjQKenR4GkCbFqfbPOnrIHqQxJkLC9DZuEQQHH32l0kCxDK579Z8yIz6BsU/WgqGz4WXq3dsknrhPel/MXDAbNWtTP6n+dD65N9Wh0Ltl0Hn0+n4lbJZNJNJtNpFIpXLlyxRBAuHapwAnX1Wo1+P1+RCIRAB3DhbUY9bl0j6gXbM+PQoRcV/xdjRy+rlCrXteGwvuK6/atX6vwLmiqANSSo1XGjaMsQfXK1ILTIDevAXQhPLX07A3Gz+n1arUa0uk0tra2EI1Gsbq6inQ6jeHhYSwtLZl+FwoFlEolcxQKK2vE43ETZ6CSYQzC5XIhHo8bEgGFJJVCsVg0BA2WIaLXoOV+CO3wPVrVHDu9N5+TVHw7bsj5oBJhNQ1a8Cz26nK5TAFiQliRSMR4oeVy2RBZeCIwoSZ6Tb3GX48TIeGi1WoZIc7n0OryJLlwbEulkiO+ouxHhZb1/UAgYIS/1iNUaFr7SsWlsTv13vUoEkUKqOx0DTMWR8VDMs7Ro0cRDAZNhY3h4WGUy2Wsrq6ao2K8Xq8pQ0XS0K1bt3Dw4EEHvMvcUBs251rnmCpRxp4bvqd7Sj1zja/aBijvQQVoIyf95mx9xXWXNTvYDjgTYQHnCboa8wG6hWd1w2icDNh9SCWFhyag8lpUWPV6HcPDw5ibmzP5fPwOAMOqS6VSSCaTxptivMHv9xu4iRCiWtx2AjHhPEJ6hOA0/kLBQw9EK8yrV8mSR26320Bv9JxsSFEFMcdZz31in+mFUWmo8UEoj+QRjqUe36KsMgozNhX0hPboibpcLgcpxVbgWgqJHqFCbxTcujZ0DTHVQPPYaByp8aNeFZWAxodoNFEB24QTQmu6FoHuCcWjo6MYGhpyQKc0AhQ50DXDscpkMnC5XMhkMuasOXr0CttSgej4qweo86P7h6+pEUmlpNCojrXGmvvtu7e+4rrDmwZx7U2sAsxmemkFi15whE1SUOuPjRCO9kU/6/V6jWVbq9UQCoVM5YJoNGqYdNyU2WwW6XQax48fRzwex9bWFm7evIlSqWToyRSI6gGpdQ90WY/KhlPWoCot9bSU/aVxJ2VOaiIt70O4Uj1WzoEyPvk3LXla/CSRUPF7PB4T32IxYjL59Dk1j43wlHpCbrfbXEfJLKTiE+KzoVilp3NMtP/6/KqQlMShsKWuCc6PzaDT6i9sqhBoOOiaVqIHFV8qlcLExASGh4eNJ8PcwVgshng8btaNzYhVj3NgYACZTMbAjNVqdVfsU5UZjQM7/sexUW9KFZHG5vS5Oebq0fM9RVP6rXfrK667oOki5sahUKSSsq1yAIbZZsM19Lr4GRub5wZlML3dbjsOduT9o9EonnvuOezbtw9erxe5XA7hcBi1Wg2JRMJ4Vq1Wp7ZhuVzG66+/jne/+92Ynp7G4uKi2bRapZweGHNy6IVREdnsO0JHPEGZQoV/k0HGY1goHNg33lstZCoSJUsolV3zpxhvoRfVarWwurpqvjs0NIRAIGByvzjGLEhLcgrzvOg9kcTAOBDhN7X61Ytk5XNCh/T4qNS1GDDQrYzSaDQcRYU5tgoh8hqaJ8fGcewFXauSVS+Z46YCn4pF85w4BvF4HKlUCqdPnzY1DpeXl82z0gsbHBx0JOLTcEgkEkilUqhUKlhdXcX4+DjK5TKOHj2K9fV13Lp1yzGnelq0HZvjnlPGq64bVX62MtPPAd06jfq3Gkv9yhm9W19x3eGt2Wya+AL/ppVme1QAHBtA4SndNJqfo8Fi3XRKUGCjkFOMfnl5GblcDhMTE8hmsxgcHESr1UI8HkcymXR8z+12o1qtIpPJoN1u48qVK8jn8yZORGHLuI16ObTEFVLihicFfWBgwAhnvq5jBnQFvVr3veJ32pThZ1vWdqxMlQaFLr1RQoZUgm6328TvWFCWio0EF1ZytwWfeqI0Jpgwrke3kJKv3qJ6iXY8C3DGnWwvXOOmOg+Mc9nevXpwvL8NrenzUAFyXJkUHA6HsWfPHnOfSqXi8Lw551SMqjxDoZDJ42J+H+cnlUqZMSa0ysb1wP7Ti1XYz96r6nXaUCINTUK09vv6nq7Lftvd+orrDm/cCLYCsqFBNhUMtrBl4wax6byEzXTTcZPasAg3crFYRLlcxp49e7CxsYFEIoFarYbh4WGMj4872HcUMtlsFltbW5ifnzdCiUQGCga1btk0xkbBwf4CzpOK2+2247gIHUeOh8KmNgHGPhZDP2ePsyoFKiN6XxSyVM5sOsYKhVFws86iliOyY5t8Ns6HkkU4XnpKtN5L4TD1llTIUtBqrEshRmXWcYxvZ0jZY8Z785qafsDPchwSiQTS6TRGRkbQbrdNfUw+tx6GSXq/zqfX262FSUOCRJ7R0VFzH+2jDafah2dqDE2NCT4zn0XjVnyt0Wjsyi/U9BT1/Pqtd+srrju8EUaj0NQNy42vViEFOoUNPSjGSDRuoIJIYwlaZFU/q4La7XajVCrB7/djYWEB9913H5599lns2bMHTz31FD7ykY/g+PHjiEQiyOVyBl4ZGBjAzMwMTpw4gXQ6jWKxaBQDq0xogiz7Swub8BohIH1GEjCobCqVCgCYQrF8HhISaEEro65XcFxjexwrWu0sW0QvjfBaMpk0hyYy7sdivySmULmyUeHs7OwYr5P1/NhvQn40Mgjr0ktzu93mJGn1zDV2xHsA3Rw69l3jgm6320CfXIt2RQ1lwCmpgutV15sSWahU2TSepongrVYLhw4dwuHDhxEIBLC4uAgAJm7IHL9Go4FqtYrV1VWzhhqNhinBxZjrhQsX4HK5DPt1bGwMmUwGKysrCIVCxmPnWuezEKnQOKPGl5WRqjE/oheqvLgOubZ0D+s9bei/37qtr7juokbrmFYg/7YD3rpJtIoFhYcGgxXCsUsE9RLkKsSBTn7WwsICfuiHfgiJRMKcabS5uYlIJILBwUGUy2XUajVz7bW1NRNgVyFLD4KKySZeEA7TRmFIS1iPv9FxUFalVtrQMdDvqcfBnCAVUKroNUbGn+r9kVpfqVRMfIYeFr1M2+vVs8/YZ6Wdc7zsnDySFfg89vUBmPHURqWvfdA11cv6Z5yV42SPYy8om6+7XC6Te8f+AbvLjXm9XqTTaRPza7fbhgJfqVSws7Nj2IQ8xJTPyHnhwaQulwtzc3OGkBGJROD3+83ho8qcpTGifWPfdd3Ye0U/b3v5qqzU8NR51hhYLyOq3zqtf8zmHd64oDU2wwWt8Q2FNhS6oLDXYzQo4Cj0uKFIKdeguW5MoIv7sw/1eh3nz59HNBrFW97yFhSLRRSLRZw7dw6tVgunT5/G8PAw/H4/7rvvPjz++OPY2dnB66+/Do/Hg3Q6Dbe7c05SMBh0eEblchnVatVAZVRkzFEiFMd+s4gsk52Z20Uh0Wq1HHUN+Ux6jD2vr0F5VZyaTOxyuczx9SRRECZUq3xoaAixWMzAhoVCwXgCFHg0KCg4w+EwfD4fSqWSOdxwZWUFS0tLWFpawsrKClZWVow31253curK5bIZT1bIUOGoz8V5Z/K0Hu2iOWxKqOD6YiyPwp+nCOsYU+FyvFnrUNMG+BqbltQCOnl+e/bsgcfjMflxkUgEbrfbeOs8tfratWvY2NgwCp2GUCKRQDweNwbB6dOn0Wg0jLdcKBQMcYb7Stmoinao96pzzGfiM+g40TBUD0xf4+9KSGGtyX7r3foe1x3ebIiBv+vfFETKLlRKsR1ct6+tTa14JSqod6CwGACTYMuz1SKRCBYWFrCzs4O9e/fixo0bWFpaQigUQjKZRKvVMgnIWiBWla1argzS0yvgc2jcTAUyX1PIxY6f3Y5ubHsOCseqsqeXsb29bfKydD6oAAGYShJKhtGEXQbkbciWc6BCnt6bpg2oBQ/AkWysiksL5JJwQgWj46gCVe+hnhifwSYA2flcGivUeaVXobE2jVVy/ZJ0A3TjQBTqVBChUAjr6+tYWloy64P90nge+82YmpaFUrYmx1sVvL0PdV50r9E45HUU7VDjT41PNSIUMu17XLdvfcV1hzdlTSmLzrbodIMAXYiIwlNxdI1bUckx5kPlp4w7/lQPjH3zeDzGw0kmkwbmW1paQi6Xw9TUFKanp3H+/HncunULwWDQ4R3Ra7QVqhIvqCCALhynhAIV2vy8TVVWRc+mHqvGJ2wDQUkKJECosOGxGYxF2vlW9JoDgYDxXrQ6hK3wADiOj+H9laDB9ACNNykT0PaugO6BlxT+NEbUaOB3lKTBcWEfuQb5jFyXCneq10DKt3rqvLdtVFE58ieVPpl/nAd+PhQKodHo1MJcWFhwPAvHicxNJZIw78vr9Zqaijpuui712biuVLlwfrivbAWlHpoSaTgOduz6drHWfuu2vuK6wxs3ix2noIBTq46bT6ENWvO8lkIT3HRUjAz0qzLk+5rIqYLQ7e5Qrufn53HPPffgAx/4AL7xjW+g1Wrhs5/9LH7rt34Lb3/72/HFL34RS0tLuHr1KiYnJ5HP55HJZDA6OopoNGqUp1rH7AsFvVr7fF9zrJhnRS+O19U8K46BHi+vsT2Op8bE+KwADHGEpYKCwSDi8TgajQay2axDeTAXh0qIFTra7e55XlSE6iG63d0zmwgRDwwMmDqPOg78r9AYSz1RCalQpaIjHZvwoCZIk5BBOJD9oUIIBoMOhabkCzU4qHRZykpjXvTmCWEHg0GHsdRsdmoPTk5OolarIZfLoVwuIxwOm+dtNpuIx+OYnZ3FU089hYsXL5r5zufzcLs7jNXp6WlEIhETyyJ8fvDgQUQiEWxsbKBUKjmUve4zPpPb7TaxR/uMNu47PqONIHAtUbExnqZrj/urH9/67q0f47rDG4WBHSCn8FZIx94sahlSyFPZKJFAoR6FjlQI29agCpl2u43V1VUAwIEDB0yFjPX1dbTbbQwPDyMWixnl6PF0KkcUCgXzmi2EbXyfCkCtWfW2lL2mlTK07BOVABuvoc+j3hbHUIUtvYl2u22K/bLau3qNOn+AE37S5GPtu/6nt0KFzFwujg9hQx0fvmaTJNRL0dgNmZvqRdOI0ZhiL5haSTFcK/S2ObYU+BqH1eRiKhAaAZwPPkcwGEQ0GnXkbdGjrdVq5jmWl5dx8+ZNMx4KwzERXufjueeeMzFEXptrS2FV9ex07yjhhffRPaawa6+54Hf0OrZ3xrXWb71b3+O6w5tWFVePSZULAIelppYjNxMFMa+jzCh+lvklpBLTy/B6veZ3haTohQ0MDODFF1/EsWPHcOzYMUNEiMfjuHHjBiYnJ3HixAk888wzaDQaJqj/2muvIRgMIpVKmesy6ZYwn7LlWB6JAl89LwCOCub0LihIqQQ074velMY36vW6g9FHhcnrlctlUzCXcS3G6+gRURhrrFDhIo4pv8/31WOmctB6j/QyFM5S2LJarTpqFgJdSJHClFR6wMlu4zpRWj3HgB4CGz/LuaGxoMQOKl8qWza9Lj0+zoPGJ5vNpiFVrK2toVwuG6VLQsf09DQajQaefPJJ3LhxA4ODg+ZcLZfLhXQ6jZMnTyIQCKBcLqPdbuMnf/InMTMzg0QiYViamUzGsT/sPaLQKr1mrtfboSDqdem867rj83LslLSiOXL9trv1Vfod3uy4AK1C9aoUJ1dhrkKAApIbTb0N9V60croNCapitKHKTCZjKmKMjo7C6/UimUxifX0dW1tbmJycNJYvYbKtrS3k8/ldXoIqY44BrXv1SAiJ8dn03CoADo+LnoRawUoaUEKHejZUJlTSFMr2uKlHotAZvQo1JBjnYh+1gLA+q1ry7Jsy/NgUYrLJLsrSU0XDflAJqKKlJ8NxU+NGCTo2Q9Cm2ev3bA9YGY3MyeKz0zumAqURo5VHgA5xY2NjA/Pz8+aanCe/34/BwUFTyaVYLGJpaQmrq6vw+XyIxWImsZhzoWOjhAxdh3xOvkfvV4kt+h0dC15D17GudV1LSlDpt92tPzJ3SdPYFOCEbGi1KnxoM8TsILFe14Yq9DA9fkdhNBtic7lcyGazyGQyqNVqJg40OjqKxcVF1Go1TE9PY2pqCsFgEJubm8Z63djYMImotOIpeNm8Xq+B1vjcFLyEZigU7eC4Upo1JqbEDiUEcGyYIKsVFUhusOE1FXD8Pqvd63liCmva5AlVWj6fzzADdb7tOQW6pylTuap3R6WpsTT10Bg75LhTiXCtqYenHrgSDPi8vbwqXSOcGzt+w/nR+Jg9BvR2WbuSXuHOzg7m5uaQz+dNzIxjFovFMDo6ing8bhTz6uoq5ubmsLa25khbIAyr+0C9db5nE4bUaLRJKhxjfY3rg2uJ19Z101dW/89aHyq8w5t6WLbQsq0129pzuVyG8ktBpTEHhQC5wWzLj9aleidKLacSyGQyuHLlCu6//34Eg0Fsb29j//79+Lu/+zuMjY3h1KlTyOVy2NjYwM2bN1GpVHDs2DFcunQJtVoNjzzyCICON8ZKF+y3wqCVSsVY8BSg9XrdMMdsD1Qp30AXetUEWz1GRWEzCnyNuxGGU8OB96pWq2Yco9GoGTuWnlJFq3PLa2giNcecHh/7pukJzD/TAyKZv6aQEwBzArAqZCozr9eLWCxmCCsbGxum7/SGqOB4CCNhWc6R7ZEzJshmF4tVmJvzyTEkKSQejzsU6sDAAIrFIqLRKEZHR/Hcc8/hL//yL00fA4EAstksWq0W9u3bhzNnzmBoaAiZTAZ+vx+FQgFnzpzB1atXMTY2hlQqhZWVFWxsbJiTDbgelKWq+4LeH1EIPqtNmFEyE6+l3iIVIJUYx1o99n67feur9zu8KU6uuDvQ9axohSqsCOyGK2yLkNfQe2lQWOEttQhVmOumZsLwnj17UCgUjCC6cOECms0motEoUqmUSVj1er1IJBLIZrMm/sRYj3p9hLM08ZjWtUI2WkVCn0G9EsZJ1EvitVU563W0vp0KWVredi6Uxjz4HNpoELC/Ogc2SYVjYR9sqZDp1taWUUb0orS+IT0x3lO9TD3uReFUGiZaXovkFlVK7Ad/Vy9Om3pn6mWql6PQNvumMV4aIel0GqFQCK+99hpWVlYccSQ+czqdRiqVMmkeWly3UqkglUrB7e6ULSPRQw1BTQBWiF09fo6hwn80TLhnlJGoylphYDVGdXz67fat73Hd4Y0Lm4JCoQndsOpFcOPTc6CCU+GgnhzgzCGyoUR6C/xdv68bsFaroVKpYGpqCqFQCIVCAdPT05idncXOzg4SiQSmpqbw6quvotHo1JaLRqPY3NxEvV43Vj+VCPtCIcJ+EFq0IUugS2DRcWE/KWhsS1gV9O28Ni21RKHEcdZcMQoyKh1W99AYlsvlMsqUjEqdB/WuVVlpU2tfIUwqIY0tcW1QqRAKA7oJzvV63eFZqwfFZ+L3KYxVuCsEymYbSgqP0iPRueAa9fl8hnKvrE6gQ4AJBoOoVquYnZ3F1taWKaOla31kZATxeNworUKhAKDj6dRqNUQiEbRaLRQKBWxvb5sqIxrfsuFD9lsVDZWTft6Oe+p3abRwLepnbQjZNjz7rdv6Htcd3ihMVfko/KXCUC1phZsIZSi2bgeeVRjzWmw2e6wXYQQAstksbt26hampKTzyyCNYWFjAu9/9bgQCAVQqFQwPD+Ohhx4yh/2trq4iGAzi5MmTuHjxIpaXl1Gv1w07r1armef3ersVvoEOJFYsFk0FBCoLm2pNur3f73eccUT6Mz0bACbhlQYAK61HIhGEQiG43Z0yQ6xdSO+P40PYTZUmjzOp1+vI5/PmzCwlUtgxp1qtZjwBVQZUklQq9IC0OjqriwSDQQSDQVN+ifevVCrw+/2IRqNIJBJGENdqNVOui14jx1SJGywPFQgEEAwGze+EEQn1keVYrVYdNQk5N7qWqKCBDqTJCit6yGWr1WEgDg0NYXNzE1//+teRy+UwPDzsqJbBtTg1NWUYiPV6HZcvXzYFdcvlMvx+P7LZLGZnZ03um61sdAyU/KH91lijQvjKFKXxoekA6v3y+fgelXlfcd2+9T2uO7yp9QvsLtOk1plaihSI3HjciAqDAc7jNfSMIPVg1PK0YRCgWxqqVCphfX0dALB37178/d//PUKhEA4cOICNjQ3EYjFEIhEkk0lDK2fQvVKpYH5+HoFAAKlUCqFQCJlMxihaehV8Jt6XkBIFFOMdHDsdR/2bwoVxHvXI9ORm3o+fpdLiWChD0I7jEGrjmPLIDZILlITCvlGokZKvikoNEV5TYVCbpNNud3Oi6KUqs+92Bghfp5GkLEl6vepdut1ux4GTqri1KTlIvQveE+gm0bNuJSFkn8+HRCKB7e1tzM3N4cqVK4hGoyYfkGshl8uZeWRqA6HovXv3YmZmxlTuz+fzhmWoMHMv5KHXWuKzaHV9bToGNCo1dqzQocZx1RPtt96tr7ju8EZLTS1BnvXEv22lpHEqhbwIk/F76s3wXhpA7hVf48F+Wu2B1OW1tTVcvXrV5Ng8+OCDyGQy+OEf/mH81V/9FX7sx34Mo6OjeOCBB9BoNHDr1i0sLS1hcnIS99xzD9544w288MILCIVC5siJer1uLHev14vBwUEjOOjN8D8hI3oiNrzWbDYdJwMrS47PT4XCShKExiKRCAYGBlCtVlEqlcwYqnDla3psCuNOZOvR0mbB2Hq97qCv2xAwTyZmrMmOMVLBsV4i44pqvbNfg4ODhvhCj5EV1jn3HEeOCceB68rlcqFUKqHd7p4S7Ha7MTY2ZooC37p1C81m0xSxJTRKg0pjihx39tfj8SCZTGJiYgLtdhulUgmJRMIcpvo3f/M3eOmll7CxsWEUUDwex9jYGBqNBhYWFjA2NmaMmUKhgMXFRXMsytraGj7ykY+gXq9jZmYGr7322i5SiQ0Tcu3oe/z7diQivZbG8xQh0Wty/u0+9Fvv1ocK7/CmFhiA2y52/VvjMmot83oKcaglrRtPrXqFE22ihjZ6XQyCHzx4ELdu3UKj0cDm5iY2NzfhcrkwOjqKsbExuFwurK+vY3NzE+FwGBMTE8ai3tzcxPj4OKampjA2NmagPrLL3G63Qwn5/X5TDYHPRo9HhT77rX3nWBG6sXOROIZUPiRraCBeWYEK4WpskrlI6hXSI9IahprXViqVDNymVSe0XBLnhzUg9TWOTSQSQTgcNgaHklzoPetZWxrDpBeisDMFL1mKus4Iw3Itcd1qrURd0zSIGo0G4vE4hoeHEY1GDbGF6MHa2houXLiA1dVVuN1uxGIx4/mxGG8gEEAymTSGyerqqsnnunnzJo4fP46JiQlsbm6a07uVJKMetjabtKSIhe4LGiYcC80t1H2o82PHr20CVb/tbn3FdYc3biRCTkoqUJiHwkep7vyO7ZHZSkmFiQpjNhsqUviQjffM5XImjjM6Oor5+Xnz/Vu3bqFer2N0dBT79+839yG8GI1GEYlEMDc3hxs3bphYTDKZNNCRXcbJJiPwmvRSlLqtAliD6prXZTPrdNwA9FR+msTKvtCruF1sh8e4KMOR9Hd6dcVi0cSNyNjUCumlUslUE9nZ2UG1WkWtVoPb7TbxJx5voikGVI56jAfHkutHY6sqkHVtqSDnsSYKcfJa6vkSelSYTGn+IyMjGB4eRjgcNt59s9lEqVTC/Pw8bt26ha2tLcTjceOJUUnt7OwgFoshHo+j1eokHd+8eRMHDx7EwMAAXn/9dZw5cwaDg4OmTBTHlPOj/3vBqMoo5N/2/rCbKjauMV1/t9vHfcV1+9aHCu+CRijFFswKA9LLItONTdlMhJ0URmNwn7/z+73iE0DX8tQNzN9DoRBWV1dx8+ZNRCIRpNNpAMBrr72Gs2fP4oUXXkAgEMD73/9+xGIxfOUrX0E2m8XOzo7Jv0kkEqhUKpiZmcFzzz2HvXv3IhqNwuvtnHbrdruNUNMcJz4jFRu9LMJitPb5rEwQVpIA85U4TlSU9LCazU5R3XA4jEQiAaCTd5bP5zEwMOAoI1SpVBxkGcZR1Gux4UOOvx3LAzpCrV6vG69pbW3NcVK11mIMh8OOU505Z1Rw6hFxrpUar4nPPJXaTmTmmmBclOeCNZtN4x0DMMqOOUqVSsWsX3p+jUYDIyMjGB0dxfj4uKn47vF4EI1GDYPwmWeeMRBrpVLBwMAAxsfHTRK72+3GyZMnceDAAayvr+Pll19Gq9XCjRs3cOnSJTz44IM4ceIEqtUqvva1r5k0DT6DEi2ozGkkKImCfed+sN/jd3Tv2AxJxoXVCKSnxbXQhwpv3/qK6y5pGjQGusFsZdFRUHJj2YFhtXAVb+9FyFBLktdXXJ7vqTKlkFpdXcW+ffvMSbUzMzMYHx9HrVbDjRs3UCqVEIlEMDU1hfX1dXg8HvMzGAwinU7D4/FgZmYGbrcbe/fuRTqdNrCa0p8ZF9G4FNl3fFbNr9HKGaqcKXiU4s3nVIguFAoZRdRudwrtUqBr3hRZnAodsmnuk56dxetpzFFztfRQRipGeqmkiVPxUfjaibEKAapSU8IGPXWFHDUORoalbTRojFXHlY3jr4Ic6Hhnk5OThnxB5eT1ehGPx7G4uIiVlRUsLi6aHLpSqWQMDLJBY7GYgQWvXr2KUqmEsbExzM7OYnJyEg8//DDq9Tpu3bqFmzdvOuo22rEt9l3JKLpHdK/xs732RK+YlSo5DQXwmvq9fuvd+orrDm+tVufMIYUZNK9FrTW/328EDpUPBRQJBBTsZM3ZMI5ahnaCL9BVoPweBTgtyIGBATzzzDMYHh5GKpXCwYMH4XK5UCwWMTIygnw+j9nZWRw5cgTvec970Gg08MYbb2BjYwPhcNiU4hkdHcXNmzexvr6OkydP4rHHHkMqlcKNGzdQrVYRCoV2VZWnolCoTz1OpSST3MKYDNAVuBxbwnCNRsP0C4ApScTfARivjPR8nvVEYgLnUgUaKeNUGpwvXlOJHOVyGZFIxOS/Me9tYmLCoXiazaYpYQQ486v4fPSUtHAu1w69McYEOX5KxGHfeIgm+8txjEQijjVMqjzXJeeDCeixWMxUWyG86fF4EA6HkU6n8cILL+Cll17ClStXkE6nzVwuLi5ieHgYJ0+eRDQaNWzNYrGItbU1jI6O4saNG3j88cdx+vRpxGIxfPnLX8bzzz+Pzc1NBwxskyoU5lSY2VZgqqxUYdljTY+Zr+laBbpKUvdsX3ndvvVjXHd4sz0e3Rz0ohQatGMKfE1/8rp2vExJGeqtUYmx2ZY8AMMSo0BZXV3Fzs4Okskk9u7di+PHjxuSxcbGBiqVCoaGhnDo0CGkUimHgmSVimAwiFqthitXrmB9fd0IPgpj7UOvOIKOmfaVjR6bemV8BmUzah6YMjS1nh3HlwKeSkerfWh/SDjggZq2dwt042i8nsZRmF/Ge6jCYa1IGiGM/6j1z/ghhaoSMXQsNS+MLE4V2ooC2B6mTXnXNcb58/v9aLfbyOVyKBQKjtJTfLZbt25hfX3dAaU2m02sr69jbW0NyWTSxPDy+Tzm5uYQjUYNhHjgwAH4fD5ks1mcP38e169f3+U56d98jZ6rHRvmT1Vi+p5eS/eQHf9SJafwbJ+Y8d1b3+O6w5sqotspJFqv6o0phKheGS17ZS7ZG0YFkAauNfaiwWq9XqPRqVt48+ZNlEolpNNpc3REMplENBrF2toa8vk8xsbGcODAASwsLGB9fd0I+Xw+j1gshnA4jFqthmw2i6tXr2JkZMRRaFcbN7oNU6ky0PGxYUMlJQAwQXuXy+VgL/ZiDKrQ570o8JrNJmq1mpkjKhfmGSk0qTUHKegYu9ra2jLKKBAIIBqNwufzGSuerzNWxedTmFM9bCouZVMqBGrDXKq0FULU9aUkE4Vnqag9Ho9hD6pnyTVGosXW1hZyuRySySQ2NjZw9epVbGxsOOJCrVbLHNxJz7bRaGB1dRWFQgHRaBTr6+s4ceIEQqGQ8fSvXr2KcrmMYDBo+q7QuW3k8Z5qHPGzfJ9Kupfhod6T7dWxKeRor8N+6936iusOb4SadFMQfmBMxc7zUoGqG42bjZ/n+4SZSK9WIdwrYKyxBX2fwqnVauGpp57CxMQEHn/8cQSDQfz93/89xsfH8e53vxu///u/j2aziR/5kR/B/v374ff7cf78ebTbbXNg4OLiIvbu3Wtgp9dffx1LS0u4//77HXCgCtNWq+WgvyutnKQLKhEAKBaLJs5hewkkgfD+hMX4N5UPSRm8P8kPCjkFg0G0Wi1z72AwiOHhYbTbbZMbxt/5PDyR1+v1GiWuBz8yh4pNyzHRWyR0xgMZE4kEarUa1tfXDbTJOdb6gvRs1HPk3/QcWZWDn7XP61LDiGPLvDOuX/bb5XIhHo9jYGAA169fN95YIBDA7OwsXnzxRQeMrZ4OiRyNRgP5fB75fB7hcBgLCwt4y1vegoceegiXLl3CuXPn8PLLL5samUpU4vxvbW2ZNW3vKcBZTJgoBEk3nCu+x7mx46VsnGeND9J778Xs7Tdn60OFd0lTz8uG+DTGw9cI5ynkYAeAuRHpPShkYUOGQJcdpV6X/ucGHhgYQKlUwqVLl+DxeJBKpZBOp3H58mUsLS1hbGwMt27dMrT5VCqFWCxmWGYUdLlczlS0Z9CeysgeDz6bwn20+vkan4GNytcmTwBdOJRJ27yXjiv/MwHaFtR6D84T0K1ewTOjkskkYrEYgC58qcnGtuWu11AFSk+PBo3f70cymcTw8LApTKuHXWo1dN6bVTYomO3SYjRcVLBrv3TtqYdBRUlDivPD79CooAc5ODiIfD5vFBljcmpwBQIBx7htbm6aOOShQ4dw+PBhAMD169dx/fp15HI5c0+ubTXo2Bf+1NQIjT2xqaKxx0HhQr2PenVsil7Qo+xDhd+59RXXXdAoOGwBRmFlx3aUmKBwiEIWWhIKcB50p9fUTatCjBtb4xwUUNzst27dMifXnjx5EpFIBBcuXMDp06fRbDaNIgoEAti3b58jVuDxeFCpVEyZpHa7ber46UZXC1w9BT2SRBOx6RV6PB5TFy8cDpuzs+it8XskOtiGgCpFjhvHRg9B5HXoWTC3jH1jTlc0GnV81o5dqsBj37VEF+cGgKk8wgTu0dFRQ15ot7unGdtEDKBrFFExcTz0IMhesR/OAxWTvk4lSS/SXqfsC9MbIpEI3G43Zmdn8frrrxvCBqFWzrvP5zPPpRBzrVbDiRMnkEql0Gg0MDc3h/X1dce6to0VjiPXj8aq9HBOzgP3lh4LpPtM95ZCh3b8Sg0sjg2Nkb7yun3rQ4V3QVPhCDgriGsuSK8NRctZ4Q/dlPSUFAbhhtHrqmCi5avsN8aCqGBcLhfm5ubw3HPP4ZFHHsHRo0fh8Xjw9a9/HT/6oz+K8fFxPPHEE3jLW96C/fv3433vex/i8Tiefvppcy8K5mazaYQZPbZkMrnLo6JyoVBT8gZ/V+GnSbKqgNvtbtkkJQwAcOROcbyoDCncKHj0ZGFCXX6/H81mE7lczghQKqE9e/YYIgfrNHJ+WdOR+WuMnZGNuWfPHtx3330mx4wMTfY5k8lgbm5u14nONARU+Ws8h/OpHj0JI4VCwRBBeE2l0lNpcRwAOM7xsolHHM9arYb5+Xk88cQT2NzcxMjIiKNCB7+zd+9eTE1NOdIpvF6viZ9ubW3h2rVrmJmZMWQf9Z416VyVjB1n5JjQe1bvXj1Ihd3Z1MhS6F7j0lwHqqgYW+vDhb1bX3HdBU1ZTmrl2gmMfJ2CjlYc4CQqKNRGqrMN+ylExevy2gqHqNVKr4bX9Hq9mJmZwZEjR0xFhJGREWxsbGB6ehqbm5uYnZ01UNmhQ4dw48YNrK2toVwum6KxZPW1223k83kEAgFTO9CGKYEuRZ1eEIUNlZMqFyp0HUOOFRl/SoDgM5JIoGNKYWQzLtVLVrIEx6zVahkKPeNljUYDlUrFVGungK3VaibZl1BrNBrF+Pg4Tpw4YQ4OpWfHsknsE8dKBaJ6PqpEGF+1SS1UiNp/Ki0SSVT5sT/8jBpNeh1Cgtvb29jc3EStVjMFjxWy4xwPDw8jFothc3PTFHHOZDJmrCuVCjY2NhzxLBuhUKIF14KOCZU0599mDPKaOsdKxNH9ptCvvS/t/dtv37n1Fdcd3hTaURiCwlfJEbaVrBYi/6anpLAaAHMUusIoZBWqglMhp3RnflbzWgDg2WefRTgcxj//5/8c09PTeNe73oX/9J/+Ex555BH81E/9FJ544gkAwDvf+U7s3bsX73vf+/Anf/InjqK5hLRISGFeE89Q0nhQo9FwlC8CuoViNc5FBUvBA3SECD0tekdbW1uGPBEIBIyHwrqIVAg2EYbCTAWkxuTYeH0q6FAohEQigcOHD5sKGaurqyiVSlhZWTGVLNLpNHw+Hw4fPowjR45gcnISkUjElIris2WzWaysrGB5edkIcLtShB0jVVhU46n0LhXK0hipClxVUqrMtQwW6yYyT06fd2ZmxswRi/oCHS/J7/djYmIC4+PjaLVaOH/+PI4cOYJIJILnn38ehw4dgt/vx/Lysin4yzXKcbaLVKsxxvWiY0GvUxWXQn/cTyQ5cX8QZuWzcx8pyYM/9bqq9Pttd+srrrugUQgq5dYO4Npwg21lKhSj8SleXxWOWn/6E+h6D9o3hZDs72SzWbz22msoFAoIBoNIJpMYHx/Hiy++iI985CM4efIkLl26hGq1Cp/PZ2Iz8/PzxhMhYzESiZjznsiao7Lis+uYqGfD/qmApXDSqhHKoCN7TwkjNARINadCVY+YwkeVmlrrAHadUdVsNs1hh81m01SSSCaT2LNnD8rlMubn503FjJGREcRiMRw4cACxWAwej8d4qhqPoaJnnhSLEavCtmM99Mr4N8dRY62MzXHcKax1Haonw+cirEwWHyHERCIBn8+HK1eu4Nq1a1hdXXV40+olBYNBjI2NIRqNIp/PY3h4GKOjo9jc3MTo6CgmJycdhJ6BgQFzX43/6vpV40X7yNf4XY1VanyVn+NPjhvXiza9F79jx8P67Tu3vuK6C5rGcAA4LHduDt00Nk6v8IMKSl6DwkEL1upnqKxuB2eoxaqKst1uIxqN4urVq7h16xYOHz6McDiM++67Dy+//DKazSbuu+8+XL9+3dSeGxgYwOnTp1GtVrG5uYlms2niNl6vF6VSCdvb2+YQQaXGaxV4mwCgAoL9VW+RgioYDJrnUiHCMaYiZbyFXkUvDxboein2vfUYD/a1UqmYfvL6ZB22Wi3s37/fVJJnzUS/328gMZ5LxVgj1wFjUJovpeQQXRckxTBeY3srGivUclVUXLwnX1cPRfOlAJgz2ahoC4WCydmi56z5YBzPwcFBjI2Nwev1IpvNGkWVyWSQTqfN0TcsTKyKQyFl9TA19sR+0xPSw1d1LPh9HSP2UT0yjYcpyUo9WjUIbGXab7ubq30Xjk6xWEQ8Hv9/uxv/2xoXNQPfCp0p3KP5XrY3RuHAGnZ2zTiFtqjEVFFpfEHZVRrABrpFR9WDC4VCOHr0KN7//vfj/vvvx87ODtbX1/H1r38dP/ZjP4Zms4k///M/x0MPPWTiXYuLi/iDP/gDuN1uRKNRnDp1CuVyGQsLCwA6zLkzZ84YOJECW5Nw2Xf2gx6DekwATLFbJuC63W6jIEiW4HMTEuXRLawmQSFEMoZ6G+yjnv9Fwad18Or1usnb2rdvHyKRCA4ePIh4PG6uw77yTLD5+XlkMhlsb29jdHQUHo/HcfKwntY8NzeHra0tR84VvSbmVwEwaQgKt/IZlYxCZa3kDj4fx4NeEquh0Egi+5TElMuXL+PGjRu7Et5J7KDncvz4cRw9ehQjIyOYnZ2F290prHvt2jVcvXoVb3vb23Do0CFsbW3hq1/9Kl555RVUq1WHQcU9ocpCPXc1aPSz3Feq4OidMT6ne8I2Htnsvuh+VdiQXu/3eyMB6ntpfY/rLmhc1ISm+L/ZbBrSglqR3Bi2YmLTDaEKSYPKNgvKxvSVum4TRNSqplB84403MDo6iomJCYyOjpoTjl977TU8+OCDqNfreOWVV3DmzBkkk0lMTk5ibGwMy8vLqFQqWFtbMx4JhcL29jYCgYCxgOlVsC/0DuzguhIOXC6XEdpKbWZjrMa2ghkrUco6x1+9ORuGUyXKnxxzrWlIhVMul42y5KGKiUTCzA1PBgZgvMFsNmtiXRsbG+Y8LibequLUeKbtlXLsOO9U+lwv9trRv5VdpyWnyDLc2dkxccJCoYDr168jn8+btAAaYva9pqamEI1GTZrEoUOHsLm5iYWFBVMNhPEtVtDXOePaV4KETXris9ssXIVX1aO3YXudb92b6vlzzG1Grw1v91vv1ldcd0FTAgb/5obg+UsaUOcGIBRE5aHKCNidHMngMYWarbQAZ5V4JR7welQAupn586tf/SpKpRJ+6Zd+CUNDQ3j729+OF198EZlMBp/4xCfwzW9+E1/84hfxcz/3cxgaGsLP/dzP4fr167h48aKhO/Nk3LW1NczMzGB6etocn2LDVSzEC8DkZAEdC5jxFa/Xi2g06oiRcYwYx6Fy43lX9HaVOUbiCBUmlWiz2TRwFfvD6ys0S0VKhZzP5+FydXKaSAzIZDIoFouoVqs4fPgw3G63qaheLBYxOzuLcrmMfD5vPMVisehQsCzqS/YhPSueMMxCulxvPEqG76uwpvekpCG7MamZ36GnGI1G4XK5MD8/j8uXL6PVaiGZTBpiBMeEkOHo6ChOnjyJsbExZDIZVCoVPPTQQ4jH4/irv/orpNNpnDp1CqdPn8bAwAD++q//Grdu3XLA2ITV1RNUxqWucdtTZ380XqxeprIK9Rr6us3ItRESVZj99p1bX3HdBY2egU2KoMJRa1BjPEDX2wCclqVN3wWc+WEaUNemVmEvKFHf44anZdloNHD58mWsra1h37592L9/P2q1Gi5evIhIJIIf+qEfwvLyMrLZrKGHHz58GJFIBC+++CLq9TpcLpcRyi6XC+VyGfF43ChcDXKTScm4leZUscQRhZB6kmokKHREaAiAEfz8DOEmZWxqCSXCiBRmhJXYVwb8NW7idrtRLBYN/MkyS4Czkn+1WkWhUEA2mzXeDOedUKDdD0J0dizFjl/acRyF0fiMZGFSYVMBKqFImZZM+l5YWMDNmzdNPhhjWuwTnyEcDuPw4cM4ePAgFhcX0Ww2zQnapVIJXq/XpFuQwLO8vGwMGTX0OA7ap14EDY1nqSfJMbNjurZ33Yt00Wsf87P2PuQ49lvv1ldcd0HrtdCV0k0BAWCXwlHhrB4UrUw9AsMWWLfbYAqd2O/rZlMBxFgXPaVkMolUKoUDBw5geXkZN27cwIEDB/Doo4/i2WefNTX23G43pqenUa1WsbCwgGw2i0qlYiC8nZ0dFItFRCIRh3AgaUOFNq1cm02ogomFbDU+QUVAZaKQn8YyGIdU71UVARUnx16VLT01TRwHOh5SpVIxtQapcKh4meu1ublpKlPw1GSFHvVYEc2ZUmKJKmvNnVIPXmE8fY3EGHqaHA9VDs1mE/F43KQxrKysIJfLOSBL5qhxrQYCAYyNjWF8fNxAndPT0xgaGkI+n8f6+jqCwSAGBweNd5zJZLCystITxlMFxLVsl69Sj4p9I0uRHhu9d15TkYteELoSNVQxqtfGdcr10Vdct299xXUXNGWjKYyhQogwEz0KtXA1eVMVmw0LalxKi88qtKjf183Ivuim43X9fr+B6kKhEP7Lf/kvWF1dxU//9E9jenoaoVAIn/3sZzE9PY23vOUtSKVS+OpXv4p3vetd5t5nzpzB0aNH8cQTT8DtdiMSiSAWi6FcLiObzeLw4cMYHBwE4GTytVotk4TLOnyMDdHCZ/FbjgFPRma1egDGmyUMqkpdr2mXlKIQo4FAD4XKjkeLUNFqsnG73XbkZB04cMD0k/dYWVnB6uoqKpUKMpmMgTQp/An7cb45RpwnenB6MrFWu6BCcbm6+V/spxYF1sr2evQJ1yLXEQlG2WwW2WzWMDlpVKhxBXTg3+PHj6NSqWB5eRlnz55Fo9GpAn/u3DkUCgX89E//NCYmJhCPx3HhwgU8/fTT5jgaEo2oiNkP/q4kHoUHCeWq0uX3GDtWaJFrzY75ad6awoHcM7w/DSQao/32nVtfcd0FTSEMm3Bge0G9vmM327oEuhAgBSg3kFqj+jmFJlXQ2P2mx0UBvrOzY3K71tbWMDQ0hGg0itHRUVy6dAmBQACPPvqo8RoGBwdRr9exvb2NSCSCPXv2YHl52QgiCmrCi0NDQz3ZXGr1si9a0BaAA2bVGB6v12h0zgpTWAfoWvGEC/kdMvGoOEOhkMNToTLlXDIWpmw2Ph9zr/TgzlarhVwuh0wmg1KphFKp5Eh/0GdmqgGFqx2PUZp4vV43sKfeT70KMjDZT77G69FrUziUQn97e9vEulgCi2sqGAyacfZ6OycgU/jv27cPa2trmJ+fR6FQQL1ex+TkJKanp00JsJmZGVy9etXch3Npp3/omuCaVwNO+63wtz4rv8f37BgYIWdND7D3qR0n0/npt9u3vuK6CxqFjJ6JBDgXvQpSte4UQlQITS1M3kNhHTtW1stq1E2quTYaG1ABprlQc3NzuHLlCo4dO4ZEIoFjx46hUqnglVdewQMPPIC3v/3t+PznP48zZ84gFoshl8vB5XLhyJEjcLlc2NzcRLlcNkpgdXXVQFF2EVlbYdkUbgp1wo9aKYHPwwK/FLgUPvwMn1cZjBrnI8FBaxgqiYX9oReg46aeH4vNNhqdYzz0LDPOvZIxCE2qEiJkqR48LX4aGl6v1zA2VTirR6AxGXqbVOr6vXa7bYwPoKMYK5WK4xqq7Bi/TCaTJodtfHwce/fuxTe/+U1sb28jGo0inU5jcnISqVQKHo8H2WwWFy9exMrKimMv0PjSMVHmpCoz9cbU01K4nY2sR/XW7WvZe9KOpymT1b5+v92+9RXXXdA0/qGKA3DWCyS8p0FyVWBaEV4tO24oCnzi96rACHXZ1bDVaue9CMGpxclrAd26dP/5P/9n3HvvvXjXu96F+++/H0eOHMHNmzfx2c9+Fu9973vxkz/5k3jyySeRz+fxzne+E5VKBSMjIxgdHcXa2hq+8Y1vmFgPD5xcWVnB2NgYpqamMDIyAqCTJ0JhQVhQS0op04+KQ8kYmhfFcWTCsK1oaF0THtPgPAkIqhgJxymDkcqKc0sq/M7ODkKhEHw+H55++mlcvnwZs7Oz5ll4VpjmkSm0xXWjeUucJ+ZZuVwuUweScCqFOdci4z8aKwyFQmbtaGyt2WwaliT/ZmyKDE1eZ3t725yXlU6n8ba3vc3cM5VKGQr86OgoRkZGcPToUaTTaRSLRbzxxhv49re/jQsXLhjFrYiBvWe4HjQxmHPL/cG1y7nkvuB3SEjhPlDlRvSCBBqbqKMKnn2jIdNv3731Fddd0NQ70o3C99Ty5Ybja9wY3EzciICTkkthqjEtfs+2Fm2PTi3MXni/UoHV41ldXTX5XSdPnkQikcCePXvg8XSqyP/Kr/wKPvShD+ELX/gCyuUykskktre34fP5kEwmTeysWq0aJZTNZo3gTKVS5rRgxpaUacgYFIW6bf1rFXMqISYBa/1I9Vw4PzqOKih5LdLn7e/y/koqYMIuC/42Gg0sLCxgbW3NeIkqAFUY63MpBMz36GXxbC7WDNSahEA3JqaCl89mE1ko4Elqoefr8XhQq9WwubmJXC5n+qmnIrtcLqTTaZNcns/nMTQ0hHK5jM3NTbhcLlORfmhoCIFAAFeuXMHLL7+My5cvOww29YY1lUS9WRtS14RinXuNk5HcpOvfZiyyKSyr+07Hkn1Qg6nfvnPrV864C5oN2alQUyFEpaUUdAbDAezaXPwOYUi1oqnMNJ5Fwcugt1Lj+Z1em1iXmAp39ikSieBf/It/gVOnTiGRSCCfz+PSpUu4cuUKHn/8cYyNjeFf/+t/jUajgbNnz5pitCsrK3j55ZcxOztriB+aZ0Tm4kMPPWQSWzOZjCFgUPmQWGAzMtl3ehG1Wg1bW1umBBWhQQpghd80L4xMRRvCIyxG5aEMQ1rr9CaDwSA+9KEPIZ1Oo1Qq4Qtf+IIpk8XGOBiVm3oFgDM1QlMCqGACgQCCwaCh0Kuw5nXUAOEaoALk9arVqoFDSUDgszz//PPmbCwaS7VazcQvH3vsMUSjUVPp49ixY8hkMpifn0ej0cBb3/pW7N27F0NDQ9ja2sKtW7fwp3/6p5ifnzesP86BepnKnlRmn0J3vZL19XOqfDTXTWN0nEfdk3yP8VQ1kPiT+7UXzPj93vqVM75Pmyoum8mkgWfFyQlVKFPJxvRtYa2bRWNiAIyy4qZX1h43tXouGueyla7GVbxeL4rFIp5//nkMDAzg8OHDSKVSOHr0KL71rW/hySefxPve9z584AMfwBe+8AWsrq4imUxiYGAAExMTxsq/evWqyU+iAGEi7tWrVzE0NIRgMGgSblXB6JgpdKUWMgU3ixerN8ODIUlBVwGnbE5li/F9xpH4HHx9c3PTfK7Z7NREZA3CQqGAYrGIdrubxGwbEWxkCCosBnS9IcazWLqKgp/X4/lfVGSE0ggbcyy0IgaVGAADN9brdUMk4drUc7oOHz6MvXv3YmBgALlcDlevXsUjjzyCcDiMb3/72wgEAhgdHcW+ffswOjoKr9eLixcv4pVXXsHi4qLpSy/PR40u/m0bVfyuGnX8npZaU+IMAIehx3nU/WgrJ1137XbbVDuxc7xsg6/fnK2vuO6CRitX4wu9Arm92EjqnakAVWsZ6EJegDPozvdUYKmAVFhDhYO+pu/p/SkgwuEwZmZmjMf00EMPIRaL4fTp07hy5QqeeuopfPCDH8QHP/hBfPGLXwQAc/rt3r17sb29jevXr5tYHOMbFDjXrl1DNpvF8PAwEomEofsDcDwXrWMKVs3D4TNQyHB8eB8qHo4xY0Ma99J50LlQa5v3LBaLBtYcGBgw5ZG2traQzWbNWVX0gtSboMDd2toyZBIVmqR5a6JyL4+T/eez8dmZ0K1EFH6Ga4Xjw2uura1hZWXFEXclezGZTOLQoUMIBALY3NzEysoKCoUCIpEIlpaW4PP5cOjQIaTTaQwNDcHtdmNjYwMvvPACZmZmUK/Xd7Eo2W/OnxpLun+osFTxc165fzTPTr0o/b6t8Ow5tpmoXF9qiKpHqxBiv+1ufcV1FzQt/qlCBehuAIX2NP6gm5WbkexEWvgUJvQsuCGVWk2LVi1t/uc1+FmgSwBQ4cX+q5fTarVMJYxvfvObOH/+PNxuN+655x6cPXsWU1NTeOWVV/Dkk0/i0UcfxenTp/HGG29gfX0dhw8fRiwWw549e/DQQw/h8uXLWF9fR71ed8ByuVwOlUoF29vbSCQSRrCSqRiJRMzz0qukJ8QxorJjvcR4PO4IzlOg81qE4JrNpom/UYkQNqRSopJjf1utloFMM5kM4vE4YrEY3G43FhcXcenSJeMJqCHBvq+urqJQKJh4YCQScdQAjEQipljv+vo6tra2DFzDnCr1iAEYgkq5XDZjo7Ern8+HeDyOsbEx7NmzB9lsFt/4xjeQyWSQyWSwuLhoiuoSWgSAvXv34uzZs9je3sbq6ipGR0fNOVvPPPMMVlZW8HM/93MYGRmB1+vFrVu3cPHiRbz66qt47bXXDIypBhT3i9Ya5J7R9QrsPoKEn1cmIusd0qOyFRDgPJ2c86vJ7jY8z9eUDaqKsK+0vnPrK667oClezgWtbDXdCLr4ga4XppvN/puCioJYA87cbLTSNXCtkAvQDeDTY+n1GQoUKi8KAiqJSqWCq1evYnx8HGNjY4Y99uSTT8Lv9+Pw4cPY3t7GzMwM8vm8gbCmpqaws7Nj2GskAtBabjY7BWtLpZKB3dgXUs11rNQb1WKvCu2x/zQMbJIHn58xLMZ8OJ62d6qCkTUKvd5OtfiRkRF4PB4Ui0UUi0XH59lvxuHW1taMgZBMJhEOh009Qnq4FK48bVjXlU131zw2QoLKtnO5OkzS4eFhTExMoNVqYXNzE1evXkU2mzX1FVVwNxoNpFIpHDp0CIlEAleuXIHf70coFDLxrvn5eUxNTWF4eNhAas8++yzOnz+PpaUl84xKu+drOv42TZ1NPSsb0tY4pe1BqTeue0SVJ/eQ7lO9L5sWC/hBjG/9z7Y+OeMuaIS81FK0ISzF8TU3yBaOtCxt2E9xd41bKdX7dpAI4KzXxzwc7Yc2fY1KRhUYAJw6dQqf+MQnMDIyglqthhdeeAEXLlzA2NgYDh8+jHa7jSeffBI+nw8jIyPmKIsXX3wRi4uLJinX4/GYclDb29vw+/2Ix+PmkEa/32+gLz4vPScqG3pZVHiEAjmeGtMCukeZ0JKvVqtmjPn8FPxa85AKlp4diSAnT57EsWPH4PF4cO7cOczNzQHoHsfCONTi4iIqlQqazc45XoODgyboTU9AKz4AMMnA9XodwWAQwWDQobiomElM0ULG5XIZPp8PqVQKp06dgs/nQy6Xw+c+9zmsrq4akgaNoWazk4S9tbWFVCqFH/7hH0aj0UChUMCBAwfQaDQMRJrP53Ho0CE8/PDDSKVSmJmZwblz5/Df//t/N2tFy2txrfF+9ISVJWgbe6pwdL1qySkaGQoPcr1zHasXpmxfu5gx956Oh64Lfv8HTYH1yRnfp42bgRtHISUAjg0EwPEZG37Q6tu0rhXmo+Wu1wW6cTaFFW2lqIFnNntDa59UASrkBgCXL1/GpUuXzFEVLLb71FNPoVqt4vTp03j44Ydx4cIFU7Q3HA5jenraKBcmuapS3N7eNocuFotFDA0NYWJiwqFM9LmokDkGWt+PApC5YbyvQrf6TBxD9omGgnqsSqaIRqPYv38/pqamEIvFsLa2ZkoYcRwpAGksBAIBhMNhc4yJQrN2PIZ9Ys1HXWO28FQmKGHrXC5njpYpl8sol8u4cuUKrl+/jmAwiK2tLQPZ8rq1Wg3pdBonT54EAHP4ZSgUMtcoFAqoVqs4cuQI0uk0lpeXceHCBVy8eNGMoR030tgZ1yff133Ry6Pu9Z6iC7ZXpuOoBp8SLPhdzWnjTxo7NiOXXrtNlOq33a2vuO6C1stS16CzQjqK2WvAuldMjNfWa9gwH3+qsFOBoRtYlRq/24utqMqNEAyVqH7v2WefRTAYxLFjxzA8PIxAIICrV69ibm4OLpcLjz/+OIaHh/HSSy/h9ddfx+joKMLhMPbu3WsC/fl83sRlaKGTYs44FAu0KgTEcWDuFsfXDtDTw6S3RsWm48jn5PNzLjX+aAuyaDSKwcFBTE1NIZVKOY6f9/v9JhmazD+mPkQiEUQiEYehQDiVc63kE1bI0Nw/29jgmuN/9cjoeV27dg0rKyu4evWq8Xw4TlTEADA8PIxTp05hcnISN2/exMDAAE6dOmVqbLLs1b59+7Bv3z4z56+//jqWlpZMf1Q56LPaa5hrS70sKgg+g46/KmdVUprUrcqQf9txM91TOrdKvLBRE85TP8b13VsfKrwLGgUL4DzyQJWXellq+WnA2SZHsCnxg5sQ6Ab7VaCpVWi/buP5FOaEbNQ6BZzV6HkdVZaMg5w5cwb/7J/9M8RiMRSLRZRKJVy4cAEzMzM4cOAAhoeH0W63cfPmTSwuLmJ8fBwjIyPY2dlBJpPBU089ZeI4eiYWq4GMjY1hdHQUqVQKyWTSPDuJE3riL/umZZNqtZqB5+gNaRyIzxSJRBAKhUySb6vVMueCsXIFYcr9+/cjGAwiGo2aGFUmk8G1a9ewvLyMQqHg8KI0MVZz90isYWFft7tzVAqfj+diqRev9G9eUz34UqlkcrYYI3z55ZfNGMdiMbhcnbJcjUYDwWAQzWYTQ0NDeN/73gefz4e1tTVEo1GcPHkSAwMDePLJJ7G5uYmJiQk88MADhnjz+uuv4zOf+QzW1taM0uxFHedPnifG9cY1yOelUlDFo4Vu9TWufZJcqIw15mcjB9yTRDa0YAB/6ljbxXrdbrepKPKD0vpQ4fdpU6Fve0NAV1Gp96PBYzalO/OzVGwUcArbaezGvg4Vi+0l8X2lE/MZFJqxN7s+lybhbm5u4sUXX8TDDz+MEydOYGhoCPF43GGJh0IhvPvd78Y73vEO/PVf/zWWlpaQz+exZ88epNNp3H///ZiZmcHi4iKKxaIhAZCcwMMXg8EgUqmU6S8tcfaPisKGmNhftcp1PFjpgUQJKkOOq3peTAJOJBKOmAvjYeFwGKFQyHgmHGMmCyszlMqnXq+bHDePx4NyuWz6yfhbNBo1rzHhulqtGhag0syZr0UYkFU91KPjs3FdjY2N4dChQ/D7/SgWiyiXyzh9+jSADlU+k8nA5/Ph5MmTmJycRDwex9WrV/HCCy9gfX3dAY9qvpSuP64r26u06eW69nhNO96l6SI2ZG57VFoWjdfTWJfeU9eF9tNWfPrdftvd+orrLmiK2SuURcWjEAibbhx+j59Ty5PC2RbIvC/gzAXTeJkKBt5LBbe94dlvbnSFeSiA9PONRgOhUAjFYhHf/OY30Wq18Nhjj8Hv92N8fBzvete78Prrr2NhYQEvvvgi3vrWt+KBBx7AhQsXsLq6io2NDYyMjODgwYMmSZgVFgA4jrPP5/OmRh5p5uwvhTu9GSU5MLep1WqZAxEjkYiD4p5IJBAKhZBKpUyRXDUeqMj0SBT1AuhRBQIBJBIJlEolbG5uotXqJD1TcXEu6SnRI9JYD2NovB8VAF/jNUnG4HzqwZA0cAYGBozSYoqEHn3CNeD3+3Hs2DEMDQ2ZKvaxWAwDAwNYXV3FtWvXEIlEsHfvXnPMTalUwrPPPouXXnrJrC1d13xN4TlFI3Q924aVrSD0NVVmCo0SUdAqJIp42P1SpEL3oKaO2H1Vxan97rfdrQ8V3gWNDDatfEDh2Wq1HEeAc2PYsB0hjl6EDt0squAU46dAUgq7Xos/9XVuVPs0XL2/QisqNGxPjAVmf+InfgL33nsvDh48iFQqZUgWzz77LJ555hmMjIyYQxcffvhhzM7O4qmnnsLExAQ8Hg/m5+eN50Whz1JJLpcLY2NjSCQSGBsbM2WheN6Wwqis9E54ant7G5lMBjs7O/D7/di3b5/xsHgAZCwWM3NJL4jKza5ewXnQfKw9e/agXq9jc3MTMzMzKJVKuHXrloMOzjlSz5uklNXVVVPaSb03jZ0CMMql0WhgcHDQ4YFw/r1eLyqVCm7cuIHl5WXDMCRECACJRMLEs/L5PLa3tzE4OIjR0VEEAgF8+9vfRrFYRCwWwz/6R/8IY2Nj2NrawpUrV3DhwgV8/etfN89AZcj1o2kO6lXp77om+bu+r/A2n4nK3z5kk+Nq51Pa8V3OA5m7qvwVwVBEhL9r7NqOeX4/tz5U+H3aVImoF8Om7+lrNoRiw3b8nk2U4O+6ATVwrddVAdErZsWfmuDJvCh6JXpf/Z5aufQEnnzySayuruLs2bN4xzveYZJm3/nOdyKVSuGLX/yiSTiORqN46KGH8K1vfQszMzOIRqPYs2cPYrEYVlZWcPny5V109s3NTUMpj8fjphq7wjz8T8GmuUz0SJrNbpkm+7k5ViR90OMhUYL9KJfLWFlZMcrQ4/GYE5DT6TQCgQA2NjZM7prOG/u7vb2NZrNTyZ6HK2qMjwdZqvfCZ6jX68YrJQRJwV+r1UyhX0KPzPOiED558iT27dtnYlqpVArT09NotVrI5/PI5XJIpVI4fPgwpqam4Pf78corr+CZZ57B7OysMXhs9iXXhNLW6Qmx2cpLlZAqLeYP2kiCjiPnupfhZXtL9jzcDgLnNbS8mG0I9tvtW9/jugua5ozYykM3gS58ja/QevN6nSf40rLkibWsEMDPcXNT6PJ+SgpgXzSuYntTrVbLVGSg0LNjXKRk66ZlP/k+f2dB3Yceegh79+7FyMgIHnzwQSSTSSwtLeHq1auYnZ3F0tISDhw4gLe97W1ot9tYWFjAV7/6VYRCIYyOjqJSqWB+fh4LCwuGYUiYjgKO9HIq8NHRUSSTScRiMRPrUUIE88YOHjxoKlTE43FHTKvVasHv98Pn86FUKiGXy6HZbGJ8fBwDAwPY2NjA3/zN32B9fR0rKysm/+zYsWOYnJxEMpk05Z8ymQwqlQpqtRpqtRrK5TI2NjYc8CA9unA47Eigdrm6FUA4j+12G7lczhxKOT4+bmokkkiyuLhoFA9jncVi0UCFDzzwgFGshC2PHz8OAHjhhReQzWbRbDbxnve8B4cOHcLIyAharRbeeOMN/MEf/IEjwZpGBZUmaf/qUXLNMxlZoW+9ho6/jQ70gst1PXPM6IkxnkVFpIQlVXK6ppWVyqR3rfChz6WK9/u9/W/3uH7v934Pn/rUp/CJT3wCf/iHfwigA4H8yq/8Cj7/+c9ja2sL733ve/HHf/zH5mwkAJifn8fHPvYxfPOb30QkEsHP/uzP4jOf+cwuq6nfOk2hP2D30QlsVCAKPWipJoUlNLbETcIyNbQOe1mtqqz4Ob7P7/AaQJeoYQsBwEml1+NVaEnzP69J4TAwMIBarYaXXnoJFy9eRDweR6FQwMmTJ7F//35EIhGMjo7iS1/6Eq5du4apqSlMTU1h7969OHbsGC5evIhqtYozZ86YE5YpTJvNpknsJUGBCciEfghb8nkJKbrdbnPvkZERQ4xQJiEFPf9vbm6aM7m2trawtraGmzdvYmZmxtD5lYSwurpqPEEAxkPjHHBubMufc6GQG8daBTIbj3yhF1Uul5HL5VAul7G6uuqIgZE9FwqFkEwmjVFZLBYRiUQwNjaGSqWC69evI5PJIBQKYXh4GPv378fIyAgCgQCee+45vPDCCygWiw5IUte2wnOKAqhioneuykCTfXWc9JgXjhXf13XP+9ND0u9wD/Aedo6lrXy4NzgXdkyLzw44WY795mz/05ripZdewn/8j/8R99xzj+P1X/7lX8bf/u3f4oknnkA8Hscv/MIv4EMf+hCeffZZAJ3JePzxxzE6OornnnsOKysr+OhHP4qBgQH87u/+7v/a03yfNhtGUHiKcRL1hNrttvGiarWa+Z4N93HzKXSnXhmVFT+rJA3dkIRbtOSRbn5egwK6V0InrVY7DsG+UxjxPY/HY5RKLpfDV77yFSwuLuKnfuqnMDIygnA4jLe//e14+eWX8c1vfhOHDh3C4cOHcf/99yMWi+HFF1/E5uYmEokE9u/fD7/fb6o9ADDjx2M3+JzZbNbU3GNuWCQSMUorlUphdHQUQ0NDyGazJia1tbWFwcFBY60TUmO1eZ/Ph/X1dVy9ehUzMzNYXV019GuOy8rKCtbX1x3Q3dTUlFFk7LOOrx5ISeVKRcX+06PlWlA4q1qtolQqIZvNolAooFKpmOoWalhMTk5ieHgYwWDQ1IWcmJjA4OAg/H4/nn/+eWMsDA8PIxaLmSrvmUwG3/zmN/HGG284igazqQfC57ZTOPg5hebsdar7yU7MtpWGjRwouUj3oRpsvJ/Gom24XJ/Ljvvy2jZTst92t/8pqLBcLuO+++7DH//xH+N3fud3cO+99+IP//APUSgUkE6n8bnPfQ4//uM/DgDmePbnn38ejzzyCL7yla/gAx/4AJaXl40X9h/+w3/Ar/3arxlK7HdrP4hQob3oGU/hhrJrnmkuD9DdFBT6Gr+iELKVDX+qt8T+qCKxP0tFo7i/CgQSPQjN2XEDVZ52UjPvTUXL3yksjh8/jkcffRT33HMPjhw5gkajgSeffBIXL17E2toaTp8+jcOHD8PtdmNmZsYol1AohJ2dHZw/f95UXu/lHfL+GsuJRCIGIqQifNvb3mYUVbFYdNQpbLfbBj7MZrOmrNSXvvQlczxLOBx23JuKhwWJg8EgBgYGUC6XjSKamJhAIBBAKBRCMBg0JAySR0hhZ14gc7DoXZZKJVO9gs9YqVQcCqHRaDgOnYzH40in00gkEgA6Z4I9+OCD8Hq9ePHFF7G+vo5ms4kDBw7g1KlTOH78OJrNTjHja9eu4fLly5iZmcH58+dNPUKNvdKbUxIF/3P+lWCkyISShHQOuYbtuJTuAfU+NSZGBaSnZvM19fL0+jS2NDHa3m9c/+pt/aB4XP/boMKPf/zjePzxx/HYY4/hd37nd8zr586dw87ODh577DHz2tGjRzE1NWUU1/PPP49Tp045oMP3vve9+NjHPoY33ngDZ86c2XU/YutsxMB/UJoyxW6HgXOT6AZXJQJgl1LhaxpkbrW6CcZ8n9dTKxOAgZrY1Htiv9k3Qji0WlUJqcKzj+mgVcz7aK6UnbfUbrfNoZLZbBajo6MYHBzE6dOnkUqlcOnSJVy4cAGbm5uYmprCsWPH4HK58PTTTyObzcLtdmNychKFQgHr6+tmPLTAMJVupVIxfaIC3tjYgNfrxfz8PLa2tkzFj0gk4hB0JD/s7OxgcXERuVzOeFuaOwUAyWTSIcR4iCbjVvF4HLVaDYVCAfPz80bB8aRmzhH/ezweBINBtFqdih8khZCMwX61Wi0H61HnlLDy2NgYBgcHzVyMj49j37598Hq9WFtbw+LiIlKpFNLptNnznJuNjQ383d/9Hebm5pDP5804ch7Zb10LvI+9Fjk3wG4lRQ9fmYQ2pKpKRP9z7fI6inyoQaXGGfePemzfKa6mhp/u477H9Z3b96y4Pv/5z+OVV14x+RXaVldX4fP5jPXFNjIygtXVVfMZVVp8n+/1ap/5zGfwm7/5m99rV79vmiot20pUq5KbSfF/O6al3o0qNNvz4ff4vr3Z+RnbI+sVBFfFqIqy16ZVIcXP2ErZ7pctgObn51Gr1bB//34cPnwYiUQC09PTiMfjWF5exq1bt7C2toZIJIKJiQmcPn0as7Oz2NzcRDAYxMjIiCkVRYVjn06rc2HH+3K5HJ599lksLS1hcnIShw8fNoxBesfNZqe+4IULF5DL5QztnVUydF6VmEDByHuxKHAsFsPGxoajCC4Vk85zs9lELpczHi/HmZUwqJSUOQnA4Qkxn4wepc/nw6lTpzA1NQWv14tXX30V169fx/j4OE6ePIl4PI54PI52u41Lly7h+vXrmJ+fxyuvvOKAJtUz1zVHyFQNHHud8CefUb0dRSJ0vajHo1CkwtFAN8asCkrXQi+lpN/Rz/eKo2mzFWe/9W7fk+JaWFjAJz7xCTz55JOOoPA/dPvUpz6FT37yk+bvYrGIycnJ/233/3+7qeVPgcIyNkysVWhNN5IqMCVkcHNooiihFzKebCsW6B4qyd8VPrOvqfAeX1O4hZ4KX1evTGM7LNZKj4HjoTE7LcPTarWwtraGf/fv/h0SiQQef/xxnDhxAvv27cMv/dIvYW5uDnNzc/jqV78Kl8uFM2fO4MiRI/D5fHjttdewtbWFkydPmjJMq6urjj6Uy2XD0utVFNXt7hT4ff3113HhwgVD3iD8yHHlOViE9HjIJcfe5XIZSno4HDaeJ+eDnhGVCj0seltutxuFQsHUNeR1+X2Px2OUoa08VIHwfzQaNdX1/X4/hoaGcM8992BsbAyFQgFzc3O4ceMGqtUqDh06hNOnT6PV6hTjPX/+PDKZDM6fP49CoQCgewyONts70ir8VKS2F2YjBPwMPWU+I9cOyT18Ru4r29Ox40/qeSpLlPdWUgkVKFm9Ou/2vubeZakqO8bbb7vb96S4zp07h/X1ddx3333mtWaziaeffhr//t//e3zta18zRxKo17W2tobR0VEAwOjoKF588UXHddfW1sx7vZrf73cc//CD1jQ+1SuorN6NYvxAdyPb1qUNtdhVBXrFq3TzKVxI9qJ6UsqE1CC69tkW0ra1ye9ozEOtcpuIoH1zuTpxm83NTTz//PMolUqo1Wq45557MD09jaGhIbRaLVy5cgXnzp3DjRs3cOjQIYyNjaFYLCIajZrjPnw+n4H/gsGgYQvSG1LhpRUw2H9Wl1BFz/WstRD5zApTtVotlMtlB4Snc8tn1lhftVo1hkIulzP9UnanXp9xJI6bwvJULsPDw4jH43C5XAiFQhgcHDTeVC6Xw3PPPYdcLoetrS28/e1vx+TkpCG8LC4u4sKFCygWi6hUKga+Y0zI9kLsNWZ7S1z/mjTMNasMTF1LaiDZa5/Gjk0KsT08fp/KxkYTbEahzgufQw1JXbeKLPTZ1d+9fU/kDGbqa/un//Sf4ujRo/i1X/s1TE5OIp1O4y/+4i/w4Q9/GAAwMzODo0eP7iJnrKysYHh4GADwp3/6p/jVX/1VrK+v/z9SUD9o5Aw7UOxydcroqBWqG1RhK24cCixubr2uvTn5OQozVm5gwF5zw+wYlAar6UWpcqUVTYFBQWInRfeCOdUyZv9tGNJmZmlMJhQK4cyZMzhz5gwOHjyI4eFhlMtlLC4u4tq1a7h69SrK5TIikQgefvhh+P1+FAoFLC4uGmo8SyZduXLFCE4+r+bOERZkv9vttkkGbrfbxvvS/trnNGnyLRUMYUbOD5vH43GciKykBc4RK+LrPBMuZP4a55DfYQWRUCiEeDyOVCqFyclJ+Hw+XLhwAYuLi2i1WpiYmMDIyAiGh4cxNTWFer2OZ555BjMzM+ZUas65zr166EA3bqnGlooohY1VwbGoMdedjQZwjdlwMz/Tiwmon+Pc0FhS+FLTC2wI2WY90oAghMt9xf5prOwHxeP6BydnsJqztnA4jFQqZV7/+Z//eXzyk580SZq/+Iu/iLNnz+KRRx4BALznPe/B8ePH8TM/8zP4/d//fayuruLXf/3X8fGPf/wH2qv6Tk0FDZsKbaCLtVMQ8TN8T61M/rfhIG4gxeW5oSlIVInyuwpDqbJQ2NJ+FjZVeBSWtgDRALh6dSrY7GMnbIHHAwtffvll5PN5rK6u4uGHH0Y4HMbBgweRTqexZ88eU6X8lVdewf+vvXOP7bs67//j29ex4zhO7MSOQy4woCTlshLW1NuqSSMqY2iXjj9QhTS0TZtog9RuqFq7aYNt0qg0adM2TfyzDf7qUDuVbuoFlUJhlAUIkKwkaTPCEhKai3PBcRLfYvv8/sjv/fHr8/bHDmlp0m9yHsmy/bmcy3POeS7v5znns2bNmuKoJmXi7d27txDoyq5T/YovTU9Plz73rrZTKOs9CTBBWOojNwXPxT8aGHxe95jsEBFFWr8bBFJ6iucJAm1sbCyU8DXXXFMc1TQ0NBSDg4Oxd+/eYt/aunXrirT8wcHBOHDgQGzdujWOHTtWQGaTk5Mlb47eFg0rzkmPBRHS1LykMnL0wOe0lF5VfYShyR+P4zLxiZ6ToyDiLWPOepYGHq8zHpdpbnrffdK/+7u/i8bGxrj77rtLG5BFTU1N8bWvfS0++clPxsDAQCxcuDDuu++++Mu//Mv3uymXDXHxEooTOSwSUT6pXYu56j1u2NQ1V5TcpxJRzv7yrCqHFnnSgMqoSnRQfRRCVMq+oAljUsC5MJHQ0PunT5+O3bt3x7Fjx2JsbCzWrl0bt912WyxevLhIn3/nnXdi586d8e6770atVou+vr7o7OyM7u7umJ4+d1xRY2NjcZ6fsvGUci64ruqgXLWPcKjDfxpnCk7+Ty9WVrrSselxyIjhdXq79BJUT1tbWwHZp5SKz72sWrUqmpqaYnh4OLZv3x6nT5+OpUuXxrXXXhv9/f2xYsWKUsKJPr8i73Jqaqqk2Dl2HE/OdbWZnikNHPVL/fB5oLp0j56c85WenPjvnhfnI2Ob82UFqv1cK7quTecq22H+THNTPvKpDkhQU8RMkJgLnIkRzIrSu/SAPDuKipCfKNdCojfjkKKELmNObilLyHDDKD089xwjZm8klaDwo3FIVAouONifiBmhNDk5GQsXLowNGzbEddddFytXrox169bF9PR0HD16NA4ePBgHDx6MHTt2xMmTJ6O1tbWAw3t7e4vY1dDQUAwNDRXHL8m7GxsbK84YZPIMA/DauK3/xVPGSzx+J96Lv+K9hCQFNE8k0bOdnZ3FeIg/K1euLM4l1D6w9vb26OzsjJGRkXjuueci4lxM7tZbb43+/v7im2ENDQ3x+uuvx7Zt2+Ltt9+OgwcPzoKo6SFReGuM1U5BZw77qgz1sbm5udhczXgq5zPjjqqXkDTnMz0/lSO+S/ERfteYUikxjqsxoRGn8umVaaw0J7Tm+PHNy53yIbuXKWkCS5jTqlbWFa1GWo/MliKU5pATBYwffsuFSCVED4gwCffO6DkeMFsVQzif5UpFqjKq0qEZ1yDPCN/oO1IR5zL7du7cGYcOHYoVK1ZEY2Nj9PX1RVdXV3Fc0dKlS2Pfvn1x9OjReOedd2Lfvn1x7bXXRm9vb3R0dMSyZcvi9OnT0dXVFUeOHIlTp05FW1tbjI6ORlNTU/EBTCkmKTwqGQk5nh5CoUqYkX1R4hKVlI6Xijh38kVHR0csWrSoUJoRMxBtY2NjtLe3F6eHkFc8pqm5uTl+5md+Jq666qq4/vrri71pQ0NDcfz48XjhhRdiz549MTw8HLVarchYVB0OGTu8zLnoRgvHltAgY0xS5DS+9K7H9ZgcMhcU6x6gx4X5jTzuLXPIkPOdikprg2uA4+98yVSm7HHVARHecNiQ0BMxfl1zqDCinHJMxSchoCQIZZtNTk4WcI+UJRWbhBJjBDwRnQFsKicGrtUfleUKjZap2jsXj9Q2Wu+6rmflxakdEnRKQLj11ltjzZo10d/fH2vWrCmgwMHBwSKt+9ixY0UG34IFC2Ljxo0ly3FsbKw4sHZ6emabgT4t0tzcXHwQUp6pTn8XL3nqxsjISHHKx8KFC2NkZKQ4IWNsbCwOHjwYjY3nTvIQj/jtsEWLFkVnZ2dxwsfChQtj//79cfz48Thw4EBxYobGpaOjI1atWhUrV66MX/zFX4yurq6YnJyM7du3xzvvvBPbt2+PgwcPFucpNjQ0FJ9lGR8fr9wHpiQU8V1jRSHvmYKa15qbms+aYzSQODeYfejzg3NP7SHEzPIFxxKKphFGQ6oK4ub/UrrytNU3Zlk2Ns5k6V4J9KN4XFlx1QEx847Kh3AHF/hcVqt+U/FwcdG6ZNl6h8KnylpUooDucTFXeWZ6xttJwUV4SAJDfWVmF+tUG12YuEDh95e8jUuXLo1ly5bF6tWrC6Hd1tYWra2tMTY2FoODgzE8PByDg4Oxc+fO4tBZfX/rpptuira2tpJVv3fv3jhz5kxERHFOIDMz9UFGKv4TJ06UDmaVha8Mw87OzqIP+t6XTtaQMTE+Ph5jY2PR3d1dZKNKqW/durU4GV+8a2triyVLlkRPT0/ceOON0dPTE93d3TE8PByHDh2Kr3zlK3HgwIHi3EZ+fVkQmvrgngVhTM43j0tGRGE46TrjVfTICf05TC1+ca7SG+IcJBRIw0axQq4Vbt7WXFMMT/0mpK/6VCZhTipo9/CuBMqK6zIlKSlRQ0NDaTMyn5Gw98+MiKampoqTvxmjojdDIaL/faMtf9OD8wwvttkFhz/rwoaxOPfmIqLYS8VFX5XyTOuYvGRcSaSyGEv50Ic+FFdddVX09fXF+vXrSxtZJyYmCoW0Y8eOOHr0aLH3q6urKxYsWBCrV6+ORYsWFd/NokXNGBzjjBKC2kg8Pj4eixcvjq6urjh58mR8//vfj+7u7rjuuuuKDb1MoBgbGys8heHh4RgeHi6SSfQZlenp6Vi2bFnxcUfuLevs7IzOzs5Yvnx5NDc3x969e4stAy+++GLB67mMJt/D5xAnhbgUFJ8l7EbvmnOZ847jzWdZFhWojAUaLvTgGG9Su5R1qdgkk2w4z3wO6R6vyeNSGr9D644oXM6UFddlSr4YeIYbBYGIXgmfo3cmZcSTE3wDJYPInu3nHoorBwpnBtAFwTDuwPazbsYwVC4TNPQ8lSCFHYUQE1MkgPjNMUI4EWVDgF7uypUriwzEvr6+WLhwYeGRNDU1FSejS1mcOXMmfvCDHxQxLh2tJF6uX7++EIxXX311LFu2rDAsRkdHo7OzMxYvXlzEcTo6OmJ8fDy2bdsWbW1t0dXVFT/84Q/jxIkT8e6778bQ0FABXUow6pSP1atXF4fw6ndPT0/hkSn2p9PrR0dH45VXXom33nor/u///q/kCbh3wvnl6eYyNjjmVNqMm7I8xmT1DPc6af7RGJFxxRPkeToM62XWp9okIlTIeJjKVfyS79Aw07xSfYI66ekxqUl893l4JVBOzriMiYtnLriQ2H4VPKL/aSFTQTD7TgpP2U2uIB1K9HL0DJWfiILKoRG2iZAOlZW8Rv1Ny5l7ZlzBMn5AKJVEoULPU1b2/v37o1arxYkTJ2LhwoXR1tYWt9xyS6xduzZWrFhRJGNIIYyPj0dvb28BJSpONTIyEocPH45du3bF+Ph4NDc3x7vvvlsc/7Rs2bLiu1+9vb3R3NwcJ0+eLI6d0qboU6dOFe9PT0/HwoULY926ddHd3V0YJk1NTcW3shoaziVvtLW1RVPTuYOBjx8/HocPHy4MF30HbGhoKLZu3VoYNTJypPjlFZJ3VGL0cGh8SFHTGPL5pbicvE167PyCs97X8yqX64TzSmOr8aSS5Ryhp6f5KQOH3j/jW1RkbEOVgUc0Q7D3XJ5jptmUFVcdEC0zLn6RBAsDulpQtFwjZoQEkyro+RBedIUSUT5rkM9HxKzfIioXen/eHofyVJZ7kIQA1aYqweExFNahut2TpOcgPvr2gKmpqTh8+HDx3KlTp4pMQ0Fsvb290dR07jSK1atXF3Vor5c+Grl169biOKixsbHCYztx4kS0tLRErVaL48ePR61WK30VQUdASSHpEyOCD9vb20tKmtCyzhkdGRmJXbt2xb59++LAgQMFj44cORKnT58uTvqo1WqFh6EyOW8YZ3QlQAOCxg3nNOcD4T3OO/5NpeLzgRmDVcYPvWjFCVWn6q/67Uki7J/Iy/fYnrxOzn21i6eHZDo/ZaiwDogxnIjZyQu+yBnfkhDQwvRkCSo4enAkYvMS4mqTZ3dx0ygXuWAZ7glj+1RPlQekgL/+j4hZljLvqSwqbGaReVyGz1GQURARrnJBJwhQFn9bW1t0d3cXMam1a9cWafM66klej5JexsfHY2hoKEZGRmJ4eLhQJAsXLiz62NPTU3g+7e3t0dXVFf39/UWW4bJly2JycjJOnToVx44di3fffTcOHjxYnM5x5syZGB0djSNHjhQe1cGDB4vN4TSKfC4RipNQ5vYExkjp8YtHVGD0tmkkyXPy+akxUh0cE46hFBbb5UaUylGMT0YfjZbp6eni8GpdcxiQXr5D3lJSWh/0LgltOwpBRVeHYvlHpgwVXqbEhUjYxZUOrVfCKlqkhHjcWmRdHovgPVrKzHLUtYgZ4Saqsky5+JlpRk+OHhFhSPdAVedc1jX/J1QVUU7cYD16r6mpqQSJuQemo5LY7pGRkRgfH4/BwcGo1Wqxd+/eWLBgQaxYsSI6OjpiwYIF0d/fH8uWLYtVq1YVKe09PT3FmYg9PT2RUor29vai3vb29mL8u7u7o7OzM5YsWVJ4UDpU+PXXXy8+3XLo0KEiUUPxIR2Gq74ru5H9E6+YOCLlwL/n8kIIGdMI0HsU1BwrzV+Pm1Kou3dOj4bbOOiVsRwmGXm5nHtzeYzumftziqupHP44wsGT7cnvK0lx/SiUPa46IMIrnnrL4WP6rYSv4ImzZ88WcSEJML1DoUFlQmtY7aBQofUqz8uhG091JvRCISVi5hYVrNouz8uD9xExS6nRsyMvKYjFD3pgPCKIQpMJJkwm8HakdO4TIxKsGisqxK6urli0aFHxMcbu7u64/vrrY8mSJcX5nzyeScaJNhy3tLTEyMhIcbTSO++8Ey+88ELhafmGZReIFObiAd/heLnX6waEiGPvikB1c4OtvsiscWX7WlpaZp1MISNCbZb3qv4pNd+TNziO9ATdC2RslErVv4DAeaS/GSN23okX2oNGSN2TVujJXSmUPa7LnCgoaU3qXhXEwENc/QBeWtcqg/e1GJX2Tcs5Ynaavi9WCQR6Tm59Rsz+rAmFpcp1iHIuxUo+UeHTqpXF7xtT2Q+11QUU61Y59AJEtLhdSSjh4PTp08XHK7UZWBmK69atiyVLlkRbW1tJmE9OTsaZM2fi4MGDceTIkXjppZfiwIEDxRFVErRtbW1FVqHayjkg4exGSkQZVmWignjHecR5SKPKY6s8WUJEIS4FpvRwVwbkIZUY20f+c04IPqRCoBGhMtUfzs0qBazn1E7yisaPPD+uL72nMplp6PM409yUFVcdEAU6ExJ8wvN3leXHzY4OWVChcP9JRPnjgyyfEBE9KG48FQylMmgN0/JUuVrYEVE6JYFtoVCpKteFAGMaLIdQFq1z8pH1sz71M2ImnVr9lIKgha5EjaamppJneubMmThz5kycOHEiTpw4Ee3t7dHR0VF89r6rq6s0XjrAd9euXXH06NF4++23Y2RkpFD0gv4kHJWtRkOF0KbzlZ4Fk1GkEMkXjRP77Z5V1WkS/ts9W/KcxhGVE+E6GjOE8qoUmdrGRAm+x03HHn8jlMcflSvDwuFFttfboznH5zKdnzJUWAekybxgwYJZECGhDio3pu96ejjTeWl10lOhsqNioACllVqr1UoxBpJbuQ7jeTtYn96n8nZBR+Gh/jU2NhawEmMqbJuu8+BVXff4CpNT9Jx/i4vKj8dmUaCzXvcY6RU4fBkRxXFKVBg6XZwCnh4gDRh5NfqfHpS8F59b9CbcM+Z8kTJI/x8alVdEWNqNH8ZdPVlCXqmMIHqDmgfil+BBzRP2zw0UeuJM5KDBQqUj3vJgZM4PbuJnWzlu09PTxYklaqPPMTeWMlQ4P2WPqw6Ii6gqBsVYEuEILkguBC5wCvoqSKRKmXiQ3mMeLvRVjmdSybKmp0QBUpXl6JY7rWvFDFhfxMzJDCzfLX5+3sU9Codw1FYpRvJHP0x2kIJQf8V/9xIjyqe+67pON+dxQdyErnYKZqNxQk+aY8FrnCfOI841eXL8IKb44UJfhpPmRJW3L6+mKkZI3tBoURluqPn8Zj30RlUWN4GTD1Wet+rjuuG7bI/WA5NVHJbmOBCN8A+JZpqbsuKqE9JiY1zFhZGeEwwSMSO0uRmVgk3xCmYeMvbBhVdlwdJTonVNq5h9kJKh4KXwlxCTx0QvgJZqSqlIWWaWGwWSezVSAlWKXv0VfySk9ZwECnlCfpMPFLZSiDoVwb0hCkhtiNWePI2LfhhnZJuZNKG5wHFjexk35H4sGh16joYFsyvdG6DX6cqU3kRVPI3ogM8hjg89bRENtCqomN61Z536muFvlh8RhYGieUfjg/wWH5R0QiRBnqhIbdV65ppwAy/TbMqKq47ILVJahC7guYh9EdD65G8XyPTCqMjUFglG1knoLWJ2pp+uMwBP5eLBeC5+la1+828JMbaZAkVl6zrfc49UUJ+EIk9lcAhOfaRA5DgQUqVy1nV5UbrPI6f8eCtBfa741HdldkbMnHjuPOJcYd3cwE6+e5yL841eBaFH1elGFXlPA4fP8Ngxh+/4rkOB7g37XjLG+HzuE8J0D46Igu57RiUVvCtTGjI+b9hmetqZzk9ZcdUBuZXpAt4huqp4FIVcFVwmb8vhH1eEtKrdY/C2RpQXvsqRpa9yqCS1wPW8BEHEjODW9arTBigcCINRGDHGp3fYb8/6YhspJB1W48bvuQQiFXZE+btU6ifTwGmcuCCmcNQ1zglPanFITHODp2pUQbVeB+vi/GB/eH0ugS2ekP+cy0x24LucT/rNLQz+fBUEzv9d4YikRDnv9JtjS69QP4RAXYGTnyqvyiDKNDdlxVUHpIUlKInCgEqqCsKLiOJDgzpNnQuQ0Jlb+BIIqpdtiZj9uQeWK2HEILSOH5I1rLZPTc1840v181lZ934qQkSU+uyKyQ/MpRfiAo2KQCdZMIuO8FAVZKXn2AaPiUhR6Fm96+NYBSfqfZVJ70t950GwUrD0gDwlXH2iIUEDhkrV56LHuPQlZM0jvssvCzg8VyXcm5qaoq2trWgrN+n6uEnh0OjRGLtXRE9L815QektLSwGlk7cppVkZhjIM1F+1j0YB5y35RsOChgnXc6bzU1ZcdUDu9XByVyUwSPjoby0W9wgiZk7A0KIRLKZ7hI4YXxO5FUnhq/v0VNwy1TMSWEzFdjiJQlrtI6TFVGT3hhgDY70uTMkbCjv3UClk1CcX5g7nsR4qI+5/YjvZfnoHzkem+rMdKouei77Dpb1WVf0h/Msy1R6NJ/sgxeJZlOSpX+MYuKc/PT1dHK5bdao6PSRXsOyPrjGGRu+WCsPXkGJvEVHaQkDec37J2FI9DoNrHNh2zoUqaDVTNWXFVQekhVgF3Tj0R+GiZ91Dc8vOBYKuuXXLuqkw1A56Dh4zooBhuynYGxsbo1arzToxwWEUCUoKDwp8j8fIC1GCgQt+F9L622HBKn4QqnUrms/pmict0IDwDa1VEJna5acweN0qi3EsKli94x4elRKTXTjf9JsntXBjs8dr9O0pV7D67bEgjRHLp4deNW/FL4998Tm2ibyiweEZfVI4VcqI/Y2YgRTplTrvqw7aFS99rmSam7LiqgNyC0yCmAJbC0B7fXTiuO6dPXu2FBcjns+9XiqfyoGpvhEzgogWZJUXIw9KJC+K0A4VHIWwBDiTGCTU9IwErDY5UyCw3dxbVqvVinfp1UjYKfuPAlYeLN+jQNNzntygduu+w1fqhyvbiYmJwjNSuwnhyWNyb07vqJ3Ok6amc19DbmxsLI5UIjzIw5spSFmPeEX4jnNIXrnmW0TMUp5K4hAUSIU9NTVVgrYbGhoKhUDBL97pt/qsMaCyUaINj7Ui/OdIhngjfuhZzlHB595vlcNx4Hpyo7K1tbWAwcXbrLjOT1lx1QHRq6J1KgFJmEOWnsNMhJi0+KlwRL53iTCPKxaHgGgR0xpWDItWO/tEJUlByUXsnoXXqbaw3+51TUxMlNL91U96TlJ4hHOodCRgHUJk3MLjfRTwvC4+eZm8zxihyqL35RBbRJTG1j1J8t2VqHtBvjeP91zIVrWD4y0+utfK+e08Vf/pSdGzIwrgUJ/mMb08toNKT8/xYF4pJYcqyQ9fV+Sx2ugeHg01joeUH73cTHNTPjmjDkhCUZPchXPV94HokcnCpBAkOTyoMrWQtZgcXvPnHeJiPVQufpo6U5epJD1tX+R/y9uJmIHIImYgNW4UptJT3zs6Ogpvqyqjj2W6gqbAZLYi2yjBytMTqp7zkzhUpsqnd6WyuNfNFZEns9DT9QxCekJVyoFjIkHr3o/KJRyqNqktDj3yb3l6bojpvEbCvOINeckEItXNBCJ5lpxrbLvmonjmR0JVxf74U6V8aQD5PkytG84vzWUquMud8skZlyn5QnCho2e0KLWQdJ2BcxLjKhIWXJQulEUUElXxNkKPErYe+6pSImqT7vM3Fzs9ILaFAsIhJrXFkwokqKkUPD5HQUlo0fkvxePfjKJV7t4FjQFPjXdoSfVUKW73OPSs+kCDx/ckkXe+VYEJB+49uiflik7PqC56tR6LclSB77hRo+vsM+c86yXfaGzwPE0pWyp15zPr0/jQQPL5y+0cbDuVIMe1sbFxlmLONDdlxVUnVAV9aTEq3uCBY4eJ9DcFHXF+CvUq6IeWNPf+UFjxNGxCJRFREhYu8LxOZkCSB+y7LH5POVZMg8qiSiFRYfgzVFjOhype6rdOKfHYXpVAZP8ZG6LlrzFhexQXq4KJvX0OsbKvnBsS3FJUPueqFC6VAXlDTzkiZikG9/h9TnpZ9Jqq5iaTOMQTxQOrjDGNiXtHKlP8oWLlXObc9X5Q4TuM7cYaY6xZWV0YZcVVJ+SCJqLsnRDOk0AhTMSUaFm73Mui8hzCYoxBi0vfxhIUJ6s1onpRSyn6kTcSaBQgDGgrCUCCoKGhoXRwrgu6iYmJUkBdwl/9Yh8pNAh9efYb9+lERCk7kR6fBBG9GbaN40Vecq8YlR3bJX5IGDPlXH1k/+lhUiGoLHpPTA6QwFcb1X7GXjS+Soihl02FxoQF8YPZirVaLcbHx2dlMNJT5n2VIeOACtCVjnikd6jo6WVznlIx89R/8UAJM5qLahfXpdYB1xjHkAkpVIRcp64MM1VTVlx1Qg4lUQjy43oRs+EK92xEFKoUaA6BUej7s/qb2XMifgyQFjGzyFi278MivDIXxEZvT8/SA6FCdKjOjQG3rNV/Wsl6nvVFlPfT0QtgG9gvlk0+00OSN00lqnvMGHWvT+XR85gP/pIBQiXJvuk+Y1QO07kHQX6rLhfOUooievT+W3OG2bHu0XGu+Nxl+TI8OKfVJypJGlHiU5Wycxidhg+9ZZ+P8rBVJudM9sDmp6y46oQoqJjMEBElS5ELhELcFV9EWShr0URESSlwAfJ0cl3zxU5rW+2kZ+aChEJBbVJ7VD4/BCilwDLUNlnGVCYSdhK49FBolTMpwGMsInl8VGTkL+Ep8Uf8ZN/0LGNYPi70Mp1Xruz0v8aQsRKm2pNv8iTpwcqL8kNlU0oxOjpaCFu1lf1SeTJAXLmorRLqmsfskyDW8fHxos/iETcO63+1V2n/bkyoDYyfqU08zYMKidmI4pkOzVX7PUao5BGuGcayNAc0R1U225fSuc3h4lWm+SkrrjogF6ARs+Mm/uNQT8TMQaoSYBSsFESe+RRRFvLejoiYpRR5zWMmVV6QW9mEtqpiPAxmUwGL6Nm5QvEYW1Xb2AcKRLaXP+Q1PULxndCZW94cZ3qaTMtvaJjJQNN4sB3uGbuHqX6L5ClI6WurAGMuLM+FvhQUeU0DhN6vG0A0qqiMyGv3oN0r1piJ3PP0hBTyggkf5L34qtip9rbpczHiOceQc5trUe3gWvPxID/0ozIyzU+N538k008D+eLlfh6HoegxefCXSnBycrI4+oeeAyE5WpAR5RPeWY/edW9O9frmYPbJ2+WKwDP49AyVSJUglyXOWI/iWFIGjDuwTYSnOAZsv8Nv5I3qr1IAhJ0otJw3VC7OL7ZJHo4rer2r335qu3vA+s4XvQAqRSoO9yq9D/4TMWNsSVnq46Msm3ys6i+V41wGCHlH5UgvlPOMc7BqLXH+sH3cPqCPcTIWynGv+syJ6nEj043UTLMp7+OqE9JiJ+QlCE6eh/b2EKobGxuLiLJSqYIQGUjm13s9saGpqan46i4hqogZr8w/qUHlQ0+LyoqQFd8T0ZtRHX6GHcunoJbQqoID+R7/p/DgffFdZVV5GPybgp4CUd/7ktBzz1HjzXeUcSivh/ATvR4fN5HawgQM/aaX7d5IlUfb0NBQJCtMTU0V2YiEH2lEeWICx0zjrJiP+E9joypGp7bzGucZ5z15RIhO9zj/q+KnjIt67FD3uJeRMDXf1+/R0dHSZnjOK/HgSqG8j+syJofuIsp7tLRINOFdwelvX2wSKhQOzKqSYKKH416EyqmKsYkIk1CBeHaW+kILlx4e4160YJnEoHeYIShBJEHPY3bcIpewpDdXJTA5Lj5OzBZUfzymofHyc+pUnlv4hEsjooDsWD8Fs8ZwvvlEocvkCBoBEVFSUjzhnt4qFbna4RlzbC+VmCs18s/vcTyrPDMaOJor7t3QMOCGXyoqtpHkRo7f4/NUwOy7e3FqU4YK3xtlxVUn5JafBP5cQkrWq8d3CPP4ItU1eSyEelQGLXuHdGhlMsurSqmyHlq2FHY8VUD32AeHeNzLUTslIJQu7kqCEGVV/MEFF4WyC1DxkL+5H4j1VXm0aj9jh1Qwqoe8IH8o8CNi1hef3XOg8PQ4JRNmGB+KmPmCMseexokUspQix5snc/gY8nqVwiOsrXYocUJ10PP0pB/3fujx0VDij/pE75nPuldFciVNw4j9Tmnm9PhM56esuOqIHIogDBYxe+MprVdmQ0n40LPiXq7R0dGiHMbSeEisID16T/LcaBErsO1CV4uXC17Crkq4NTTMZOKpnW7Fsh3il/OFikPPiz/M4lMf6IUK2uNXeukJMfNRB8TqObZD3pYrG/eS1U6NHYWdypbnqfEcHx+fBUFJmDM2Ssh0LmiNipnJBXqWhhLnG/vBz+S48la9fjqHFC0VCo0KtY2QHT0z/U2olXA4s0zVTtWjv6mcaERxnDUGUpy8p7nJ9tJYUp8555lGn2l+yoqrTshhlohyplJEORbBexQqjM+Mj48XJ4pTObEcF7709lin3nWvRe+6YGS6OwUQ+0P4Uqe6E+qhd0WPTO2TEGL8hZavex5Mr66K/+hZWtiEfuaCtCg4GfNR+VVxGi+LykX10VuhEqFCqvISXFkxlkhlybiX2kPDgWVybNR+n78ql7+dyE8Jc7WZ3qKuUQnrfY2/Gyzsd1UbmRhRBQVT2fJZKiEaDBxneq007CJmPO+stN47ZcVVJ+RZhFISCvLLY+DiiChn/jmkpUQLKpKI2eeySYhQadCybWxsLLwhlaeYCAWh2uOxGy5YKjF5ObrO/ToeS3JvRTyisJ/LC3QBJH6oXu5Jo2DjSRZqi67xYN+I8gkZHD9ep6fodcowYFmMJ+ldjYOX5Z4TvSO2gYk9usfn5HXSYGG59HK0AV2QNTMImWFIxMATe+iRc4MzeUnDS0qcSkq8ZnniI40+QroOTdLzVwKT+KX6aPiR/24gqL+Eoqenp0unkWSan7LiqhPyYDEzsWhZV+39ceuci5HBcy4ih4tUNz0v1u9elWP1VXCmb4iNKHsbhEaZZkxo0+MyFBq8J09Jnhj5wP1ILojda1F5Dj9JWXJ8CGHqt3uy9BipZJmyzeepbMVnlunxGzcw9By9P9VLiJE8ENH7VHkS1jSsWIbDjDSi6MGQd5zzzheR3ncUwg2VKsNICpLekRQy6696j8rPM0qZEcu5xHec1+onDbtM56esuOqEqDy00Kanp0snORCim+sUBwpMLjZXXBGzkwz0Ny1lCh0qQC1cTz+OmPGKPJlE7ZMScC+TSoJ8oSD1trN8F0R8luU0Nc0cCURFSAWiMlzREQpVP6oEs/pB4ca2VPFYbZBHR6Lgc6iREB7jcOK5f2uMHoz+piflykJziGWnlIoTMMQLebrsM9vpgp5zzv+vmjP6W89QuZKHHH+Nrfqga6xTPGdKvhs1nI+qn/f0jntzXLM0/jLNT1lx1QkxpVcLSVY5D/90oUQ4joLa4wVVqeEUCBFRWtRSSsrU09+6R6hNvyVEGDOKmIHo+DwFPAWUICsKEglNChYKN7WJZyfSY1XZ8vKorFz4u/IhvMU2EvJhFibhLPJfPKMwlxcgr4b3qSwlDKWACJuqbHo7fgoKPUbOMcGhHHtmEnKeqc1Vnp3qUtacjjbifKFBJHJPV8keVNoae42Z2lar1UptdRhR60Zt1pehRe4lsh00RqSUGxoaSu1yBEGKkcZIY2Njkezj2xgyzU9ZcdURzQWdUPALAmEMTIvMBQGtYy78iNnBcyo9/4koCyEpJ5VDRUmrkrEz7l/hYqd1GlGGOhXPoXAhnyTEXQG7h0OLX1S1zcCtbcahJicni1Pz9WxVnMT57Va9hD0zCano3Irn+LjX5O1VH+l9aqwcNqTC1ryoUtpV84p99DF3j9w9eIcSWR4VNn8T+iRMLj6yD+Rblafr810Gj9YZec1EFRpArIft4bPqKz/ZwrhZpvkpK646oVqtVoL0mBCgyS5BqkXlC4OQG9NzRRQqekeLX6dy0MrkZ0QILcmC5WdCVK632z8F4gJMHpIUMAW0LFzCi/ybSlSKwD2eiPImailcbiGo8gjUT93XiQeEnvQsU/vJK6a4eyajKzm9Kx7z5AzGAlNK0draWvCait1T/imsqyAqh3r5HD1DQs5KXFD/yBO9R4HPa9PT04UXpPmsuaL+K/mHc5YJKOKPToxpapr5fA8Nhunp6QKh4HioTN9CwjMMNV/UVsL1ntpOtEMKkAkbQktyZuGFUVZcdUK0yCl4adU7tEGIyC1EWXf8rAJTdwk56R1a4x5YJjQZMeNpcbE6PCbBQEXGdvBEcNVLpeQbNtlPCVz1x6FDKgTftOteAvtJj8a9QQqdqngcx5FCW+8SoiWxXWybe180PAhT6hkmIZCnel/95ByS8uD3zZyn5LN+kxcORYpohDgK4FCup+FzbGjI6bp//Vr1kx+674qVsLD6zniYj4EbAOy7t4kK1J/xuGWmuSkrrjohCk3H3KnAIsop11rAzDr0WJBb4CqHG14Z+5Gl74qIngE9H8JMfj1iRqCqzQ5v0fL1vuqa6vfUb1FVEJyCvoqfbC+hTtap2J7H7fQeT41QG/UeLW2VzfRzWv5SKKxDgpCbwP2HMB+TAdzAqEq4UDvogevdKuEsfjHGRiWheshHF/xUMHqeSovQrN6jUUFI0NeDt0VtpDdN3sljlwFGPjB+xjF3heSGhbeLSpIQe6b5KSuuOiGeJcdYgwvZycnJkkUtGEPPalEKSqF1y0CxK0LPANQiVuYYr1O4joyMFALFs90EQTp0J0VFD4SCV0KFXyFWu6kkqADdK3KBIj4yndkhUAnNpqam4svB2qPEGB1hKBfKEdXnR6rdhB817hFRHKYsPtMocc9PfKmKIXmygbxWQqDii2dG0oBoaWmJWq1W+ogpY480CESElTUnXDHpPSVx0GBpaCjDwzJ03ChgnXzfsx75jtom+M+TJtQujpfHzWgM6T7Xjb5p5m2ksstQ4XujrLjqhAh5VFlu/KHH4Z6aCwp+Y4gLmoFwWppcsBKeFNoUIlRiLkDo/VFBOFTl5dIDY+xDUKRDmkwS0fuuvPicCxGe8KF2sF0UXFXKVXUTklSfZWFzPN1rFB9ljLBs9Zf1MLZGwcl75Knuc4w9jieBTljWPV4pBd7nuPMa//dyuMGcEK5DwlKQDQ0zcVxX1DRW+JkRzi8afuyzyLMtHXLUGuJ4cT6Q6GExZkzjiMhAprkpK646IVqLblHyfwknntxAwTnfgvXFQ2HmAoflOOTmsTWHUAhXudDj4meyR5X34OVTWLA+h0bZBgojt5ar4ik82YFC3yEi9s83CcuTUf36kZVPg4MwJvlB6El1Odzn96g8HZLlhlz3fAiDuuGiPhBqYzKCe9hMflECjxtgDie6p876VCeVF8dVf1OJeByYfGOSDJWuZ14yNsty1YYqI1J9ZH8cIXAvLVM1ZcVVJ0TPiZlkhPF4pE6V9afYAL0DCn+mNbulzmQQZslJ0CrOQ+Wq/wUJ6v+xsbGScKZ1THiQfdQ99woZf6Iwd6ubnon6TWhL7zikqGcFdRL2c8+I1jJjR6qf5emaW/jiK/9Wf2WMcPylXHhkl8aPikckvqs/goxVl7dTcB2fY6yJXi/Hu8pL0j0pK2WKqv30mOVlci5rH5f+Z8aseOZ71Dj2hILlrUVEsYdLe78EEUqJT05OliBJ/mbdHrfkM4R/PR5XhQxkmp+y4qoT4kIUSTB6bIeCvep9LibPOnMPgzi+wxh6j4JLWWtUjhFREkJqo9fN52klU+lQObkCcu9EgphQJgWfezBUgOQv61IbKIwUJ6L365CnewtubdOTodXPcdA7hHp1jUqCJ+xTGXMc2CaOpStTCmb3zlVGlYchBav6mXko5SC4jMYOvRl6RRxT3lP5VfdIKtcNJa4VwebaqO7znHOB8TmHHvUsjS8pXXpaGlfnY1Ze56f8BeQ6IQk1LmQueIfjfOFK+Hs2lBaOZ/pJ8GhzMxWK4/Ks2xevBAKVgn8iQvWrDlcuEeWvK7Pv7F+V4PJsRHqMHqzXfd/PI8VAz7MKBqLC028KOUJsjG9RmIk/2otFAUolEhGFwlQ7yUP1SYkSHDtm/RGm1Xxg6js9aW5uV9lSSpyDDnep3IgZxUmYmgqA2yKqoDfWOTU1VUoEUZ+mpqYK74lzVMpBXhTrI4983XAuy9hjfbovz00QYkNDOZnE16iecyPlSlNc+QvIlzkxHkBlEjEjHHwBUphSMdBajSjj/npGkBTLcaLyEd7v3tV8e4YI9bl341asFBwFtbeDwonPkwceCyIcxX5SQZLvhAfd03DvlKn+FPBMBvF4iZ5vapo5P8/b6x4ojQ/Glvy0dc4XlUuF7H3nmKgtc3lj9Nbcs2b5blj4vJRCoodJRU+e01v2eUnlx5ihe9JuyNHgmMuLI2zJOe1zSnPBjQf9717gXOssU5my4qoT0mIjNEHPR88wzdqtfCkhF7j0IiLKCsIXFLF6XqegVNkMxovoMQqSofJSOQyas79MFGDAXP3y9jQ2Ns5K63YeiF+sS88QSlT7WYcrV/GIsToKUPJZY6lymDlIr4/10ljh+ZXu9bCPnB+85/z1vup5KirCyZx/DhcSxqTnxLI55jptw+co578rIW8TeValKNUuZcMSRnbjw69R8dPo01iTr5yLhDmrsiQdGXDvK1M1ZcVVR8TvbXE/jQSzoAopBP9+0Vz7ZvQ3rUz3iiQgBM1IAOi91tbWSGnmJA4KTfcOxsfHZ8UY2C4dwhoxk4BBAS0eeKyFqeu0xpkqr3oozHiQrPjk5z9GlIPq/tkR3Ve/pVSYBKD+MuamMqampmLBggVFAg3LqPI0KLir0sHVVu3pcs+IhyA7VEajQ/yS18RPwxDmotJxSIzXeESZyhUkLd5HlD+uSA+aio3znxu9lQDC0zSY/OBGgvOGmZSaA9wbp2fEC8KfGm/WzTLIZ6IC4qH6nml+yoqrTohWIOENQiAM7jqeT8+M3ppDZ1UejAQO4UmmeOu9qjgTLV/CkhGzv6XFTcRSDiyLylUxBbWTbafQpOcoIkxHRcJ3KWBdGQr+U9n0GMlfve8n5ZMfhDxVB7PzWL7aTriOm3o5prynNjtEJYODcUjy0+E4eknuyapf7EvVfKDnRAXsytnHXUQ4UvPQ20wPSeNE79T5xPixynAIke+5Z8nx9K8LMI7ocLx7s67sM81NWXHVGfkmVC1SCkguMM9aYlyInxx3uJGWvizIxsbGIj3aPTktTipJ1cs4TUNDQ3GK+vj4eNEffrZDnqVOpeD9iYmJksJTmVQOjLHIomd6OGE3CmS9xzR8WvmNjY3R1tZW8kZcaVQluzhM60rOrXT1hx6KTpKgocGYHhNNVL48GQpijje/uCvlJp5pDni2IuNOIyMjJQ+FRo82pns80XnLGBWVICFmP0SY7WHSBBW0iMiB5ofHwwgzEslQ3zwhRzxx1IBbA5zEU9XtCp9GZabzU96mXUfkQV5ab7rv1qlbcVxUbg27RSg4h3XqNwW3BIcUlMpyb4fv6zetZ5ZB5eseCQUxoSB6hPIIHEqTIqPXQMveYxEOzZHvhLB0n7EQtVP3mahBxaP/W1paCiVGZcL3xFf1S+3wMdLYebyN+73URioFKjZ6phLg9AzULvFMz7tBQSVE78Wz8xwRYNvIY7WNnjbr4/yk8SYjQe+3tLTMyoDkvOR8JlyscfCsTCpHrh210z1QtoPlZzo/ZY+rTsgt6IjZgVwqKXpatCYppKosU+6tipiJNcja1h4cliGcXwvRg/70AghlepYkPRGWofYxBkdBzWuEqNROxdT4nt5161vXKfxocU9MTBRtVzvpzVR5dXquSgFKwEVELFiwoKiPHqjeZ5zOeUwFyHY7HCXiPY6N5gu9c84HluHerXs37L8L7KpyfEwcZqax4X3wMfX5o3tMp2e7qYxoOLjhReWudkmByRtjViR5XwUL0pChUs80P2XFVSckgU9IT5Oc372KmDnzLWLmEya0RpW4QWtXAkyLTdaoezUOaUn4EkYSdFSlKLhPh4kcFPQU0hHlU0PkQRCWUtJAxAxco+sUYuqrhM/U1FQp6E4SD9RuEvscUYa/BJFxjMhb9kuk9o2NjZWEo5JECF/R43OvkwqIfSA/ta+ISsQhNnkhblxoTikRhzQ+Ph61Wq10ComMHEG8hI99TulUEJ2mQZiRClDfr1L7xD8R924x6UHlqQ/8nA/54WtM88jRCJXJOOLExES0tLREa2traUuIjCCV5Z5klWGZaX7KiquOiNZg1Vl5FOZc9CJ9+NEtUQkUP+8toryg9Q4tU5EHpbWoGUerErSsw61SelNMYabFylMi6P1Q6DAGpLbTo6C1z5ib7ulZQnsM6PPTMd4nClDnrer0/up/XtP/KkvKxY0O3VMMiwksVDY+X7hnjLCre3FUkPwyAPtCHmnsCP9xDxTbQQUlfkq58n3Nf6+bkDPnJseKcKb+5hzVGPmYUcHofc5pzi/3+Nyj4hpl2dnjeu+UY1x1QlzAEWXrmwuGeL57EoKgmIlIpURYROm+spgpYCmcKQgoXFQWha6EuHB9lcF31R4tXnoPrhgIv7kyZrn8VEsVvEoeOGREIUKIVLyMKAs28pRj53AaITaPg/GECvFKbeeYcrwpBKlQZTwweUHvciyptJ2vbLsUHJM63DNhfFPXOU8jZpQJDR56SoxbkTeMG7nHRI+R40sFTb5yrXAOs27nB/lCL5WGjpJxOLcmJiZKa4/vco1lj+u9Ufa46oQcStLEJ5YuQeALLGJGeFZ9Xt4tWEJIXl9KM4ejzvVlWL3PRAUGrlmHFJn6qHbpb0EuLrSouGj16vMb/B4WBbwgnYgoHfJKWNL3BqmP3nYKXrZR96pOLBdJAUSUTzIhfMoMxSpPSPykwhRkLEHpJ6BwTOWtundFGFnjIj5yjsl4olHCfgpq5De/1J+qzFDOD3mMzFikJyP+OQxMOJzj4IafK1HOfdXPucY1xbiW4FcaWlR4tVqttG6pJAUFc6zd28tUTdnjqiPyAL+ucf9TRDlpQ8Ke8R5a9hHlwDEFKi1u94BURq1WKxY5kxgo6FiH2smU8iqFpH64B+fWsASpBLY8ISo2eppVsSyRyiUUK2UgyIvtYaYfr9Hj5TiJv/wApPOfbVJ/JLRpiOiayPmu95VM4hArlYDPGyoAzruqMWaiA/vsQprjKT5RYTBzkopaylVnD7IM1qP2EEqlwcKsRe+TnidKoPuanw7D01gkLKh+0ut2mFpzTGs3IkpnUmY6P12Q4nr44Ydnucw33HBDcX9sbCw2b94c3d3d0dHREXfffXccOXKkVMb+/fvjrrvuivb29li+fHl89rOfzTvF3yMxlZkKSfciyqdjSMgwdkGLV4uutbW1CHoLHiS8RIUQcS5Wdvbs2dIzDrfI66nVakW2HONfUg5ugXrftOCpSNx6pXLUobBS5gyeE6akp6av+SrpgIkJ2jvFWBkVJmE+8Uh7rigsqTy4t4pjxZMy1B8qFbbN6ycpvkijgkaD+iOlxoxQens6wUT1sn2MoTpkJ5qcnCw8P47Z1NS5U17kCbW0tBT/S0k1NJxL2NBck+dFCI6KrampqbQ/kP0j1Mo5Td6JL/LIOZY0mujZshx5thHl78yNjY3Nikvqxz01etKZ5qcLhgo/+MEPxre//e2ZAppnivjDP/zD+PrXvx5f/vKXY/HixfHAAw/Eb/3Wb8WLL74YEecW1F133RV9fX3x3//933Ho0KH47d/+7WhpaYm//uu/fh+6c/kTLV7CFg7Z+KnZhEYozBhPqRKyIi5wWq4Srv5pD1dk7inQIqWVzjKr4jC0VMkHhxNVl5dPheeeBK+pHAovtouxQMacJNgo8JhlSL7Tqtd9KkIR4Vw9ywNpVa6uSWl7rIl1kZc+N+jl8T75RR6rP1VzdS5vkjEdetv03GQoEQFgKjznNmN3uq8+Ck5XGe4lyQP2NHuPGXKM/FR5j6MRmnSFpGt6VuV4wlOmuemCFVdzc3P09fXNun7y5Mn4l3/5l/jiF78Yv/zLvxwREY899lisW7cuXnrppfjIRz4S3/rWt2LXrl3x7W9/O3p7e+Nnf/Zn46/+6q/ij//4j+Phhx8unVGXaTZx8UXMCBkuEgruiLIFrHc93sAydY3eApUkhZDuUdhSSXk8xt+rgpeoqAhL6m8JFwoEKWp6QuKNK+AqnojUb/dymELP+A9jGc4Dxu5Yr/hclWno3hvvq78UvKyHvFJdPK2Dc4Zl8lxEKlJXlGwD55zuVY0VlRLnqBs+nINelisaVxS6RnjY9xlSec6X4Vk1tzk3vDy2h3yWMvQ1QQU1l2GW6b3RBce43nzzzejv749rrrkm7r333ti/f39ERLz22mtx9uzZ2LRpU/HsDTfcEKtXr44tW7ZERMSWLVvipptuit7e3uKZO+64I4aHh2Pnzp1z1jk+Ph7Dw8OlnyuNBDFFlFO0I87h49xkS0iFGUsUIoTgJOC4oHRPcKAf8KvyCUe6ZyE4RJANlZja5nEN3YsonwKhv9XeiYmJEtxEOEntpxUuxUY+6B31kQLJvUbxnYKS/KYSICTm3oTecS+EikPCjXE7hwTFV7ZRfJycnCwgKheaGidPDCFvXSizj/Ts6H36XBLfqajmgn3pJXndVFAO1dHQkbc9OTlZQIUqy+cf6xBPOM/5jMPgHGu1T0SjUXOf37/j2qKC15x3/mWamy5IcW3cuDEef/zxeOqpp+LRRx+NvXv3xkc/+tE4depUHD58OGq1WnR1dZXe6e3tjcOHD0dExOHDh0tKS/d1by565JFHYvHixcXPqlWrLqTZlxVVWXoR5SNxqDjoIcha1vNUIvSmuADpVYhcqKlcWraMaUkQV3lxXl6Vl+J9pMBTGQx6s0xa6oSHXGhQuFQpTnoa7pFR2Xnbq5QABaG/Q89qPgucHlBVnKsK2mQ7KSipqCnQGfdiJiD7z6OgfIw478gThyCroETnM8fVjST2mUknul/FG15zpEDXfAy9DH/fDR2W60YZ+0vDJHtd740uCCq88847i79vvvnm2LhxY6xZsya+9KUvRVtb2/veONHnP//5+KM/+qPi/+Hh4StWedH610SXsPdsQP4tSzmiDHtQKTkUqb9d4Im8DrbNYS0XThQMVAhzKWZ6XbpXFaOq8jDYNz1D4ebJEA7jkAfef3paDnG6slA71BfCVhRuEVF4U3rOFQt5TkXkY6T+Uii6IiH/SM4/F6rikcc1fRtAlaHgXqdiclWGgxsVVeiB/nYv09cCPV6+Tx45f9l2V6z0rKmwhE5wDFhOFTzoUGWmuenHSofv6uqK66+/Pvbs2RN9fX0xMTERQ0NDpWeOHDlSxMT6+vpmZRnq/6q4mai1tTU6OztLP1cqVXkKVYL+vZbBhXOh5bhQYNluZVZZri7Uq6xeKQ4XYiwjImYJCSpLtol99Osu0FW+Q5xUGBS2DkdVvce2VvWd5Xt8zj0P1uOKmb/padOT8ngS++68ck9qPk/EvXP+9nHj/6zTjRufV/PNU/K1ar3wus+rueqsqm+uOs5HVWv2QtZdph9TcZ0+fTreeuutWLFiRWzYsCFaWlrimWeeKe7v3r079u/fHwMDAxERMTAwEG+88UYMDg4Wzzz99NPR2dkZ69ev/3GackWRT3jCOH6fApTQkAtmFxxVwms+wc/77wdVQS9+3wW9911luPIjURDOd59lej1sj+5R0FORViXPuBdRVc98Y+AKsopncwlKKrcqZeV9dL6z7c6XqrKqlMNc8+Z8ymmuZy5kHs5leMzVH6+j6n7Vdo6q2N1c6EKm90DpAujBBx9Mzz33XNq7d2968cUX06ZNm1JPT08aHBxMKaV0//33p9WrV6dnn302vfrqq2lgYCANDAwU709OTqYbb7wxfexjH0vbt29PTz31VFq2bFn6/Oc/fyHNSCdPnkwRkX/yT/7JP/mnzn9Onjx5QfI/pXPa/j3TPffck1asWJFqtVpauXJluueee9KePXuK+6Ojo+lTn/pUWrJkSWpvb08f//jH06FDh0pl7Nu3L915552pra0t9fT0pAcffDCdPXv2ghqdFVf+yT/5J/9cHj8/iuJqSKn+/NTh4eFYvHjxpW5GpkyZMmX6MenkyZMXnLdQl2cV1qGuzZQpU6ZMFfSjyPO6VFzHjx+/1E3IlClTpkzvA506deqC36nLz5osXbo0Is4d2Jshw2rSXrcDBw5c0dsH5qLMn/kp82d+yvyZn94Lf1JKcerUqejv77/g8utScWmfyOLFi/OkOQ9d6fvezkeZP/NT5s/8lPkzP52PPz+q41GXUGGmTJkyZbpyKSuuTJkyZcpUV1SXiqu1tTUeeuih4sNxmWZT5tH8lPkzP2X+zE+ZP/PTT5o/dbmPK1OmTJkyXblUlx5XpkyZMmW6cikrrkyZMmXKVFeUFVemTJkyZaoryoorU6ZMmTLVFdWl4vqnf/qnWLt2bSxYsCA2btwYr7zyyqVu0kWh//qv/4pf+7Vfi/7+/mhoaIivfvWrpfsppfjzP//zWLFiRbS1tcWmTZvizTffLD1z4sSJuPfee6OzszO6urri937v9+L06dMXsRc/OXrkkUfi537u52LRokWxfPny+M3f/M3YvXt36ZmxsbHYvHlzdHd3R0dHR9x9992zPm66f//+uOuuu6K9vT2WL18en/3sZ4svAdczPfroo3HzzTcXm0IHBgbim9/8ZnH/SuZNFX3hC1+IhoaG+MxnPlNcu5J59PDDD8/6ztwNN9xQ3L+ovLng8+QvMT3xxBOpVqulf/3Xf007d+5Mv//7v5+6urrSkSNHLnXTfuL0jW98I/3pn/5p+spXvpIiIj355JOl+1/4whfS4sWL01e/+tX0P//zP+nXf/3X09VXX51GR0eLZ37lV34l3XLLLemll15KL7zwQrr22mvTJz7xiYvck58M3XHHHemxxx5LO3bsSNu3b0+/+qu/mlavXp1Onz5dPHP//fenVatWpWeeeSa9+uqr6SMf+Uj6+Z//+eK+vhm3adOmtG3btvSNb3wj9fT0XPA3434a6T//8z/T17/+9fS///u/affu3elP/uRPUktLS9qxY0dK6crmjdMrr7yS1q5dm26++eb06U9/urh+JfPooYceSh/84AfToUOHip+jR48W9y8mb+pOcX34wx9OmzdvLv6fmppK/f396ZFHHrmErbr45Ipreno69fX1pb/5m78prg0NDaXW1tb0b//2bymllHbt2pUiIm3durV45pvf/GZqaGhIP/zhDy9a2y8WDQ4OpohIzz//fErpHD9aWlrSl7/85eKZ73//+yki0pYtW1JK54yDxsbGdPjw4eKZRx99NHV2dqbx8fGL24GLQEuWLEn//M//nHkDOnXqVLruuuvS008/nX7pl36pUFxXOo8eeuihdMstt1Teu9i8qSuocGJiIl577bXYtGlTca2xsTE2bdoUW7ZsuYQtu/S0d+/eOHz4cIk3ixcvjo0bNxa82bJlS3R1dcVtt91WPLNp06ZobGyMl19++aK3+SdNJ0+ejIiZQ5lfe+21OHv2bIlHN9xwQ6xevbrEo5tuuil6e3uLZ+64444YHh6OnTt3XsTW/2RpamoqnnjiiThz5kwMDAxk3oA2b94cd911V4kXEXn+RES8+eab0d/fH9dcc03ce++9sX///oi4+Lypq0N2jx07FlNTU6WOR0T09vbGD37wg0vUqp8OOnz4cEREJW907/Dhw7F8+fLS/ebm5li6dGnxzOVC09PT8ZnPfCZ+4Rd+IW688caIONf/Wq0WXV1dpWedR1U81L16pzfeeCMGBgZibGwsOjo64sknn4z169fH9u3br3jeREQ88cQT8frrr8fWrVtn3bvS58/GjRvj8ccfjw984ANx6NCh+Iu/+Iv46Ec/Gjt27LjovKkrxZUp03ulzZs3x44dO+K73/3upW7KTxV94AMfiO3bt8fJkyfj3//93+O+++6L559//lI366eCDhw4EJ/+9Kfj6aefjgULFlzq5vzU0Z133ln8ffPNN8fGjRtjzZo18aUvfSna2toualvqCirs6emJpqamWZkqR44cib6+vkvUqp8OUv/n401fX18MDg6W7k9OTsaJEycuK/498MAD8bWvfS2+853vxFVXXVVc7+vri4mJiRgaGio97zyq4qHu1TvVarW49tprY8OGDfHII4/ELbfcEn//93+feRPn4K7BwcG49dZbo7m5OZqbm+P555+Pf/iHf4jm5ubo7e294nlE6urqiuuvvz727Nlz0edPXSmuWq0WGzZsiGeeeaa4Nj09Hc8880wMDAxcwpZderr66qujr6+vxJvh4eF4+eWXC94MDAzE0NBQvPbaa8Uzzz77bExPT8fGjRsvepvfb0opxQMPPBBPPvlkPPvss3H11VeX7m/YsCFaWlpKPNq9e3fs37+/xKM33nijpOCffvrp6OzsjPXr11+cjlxEmp6ejvHx8cybiLj99tvjjTfeiO3btxc/t912W9x7773F31c6j0inT5+Ot956K1asWHHx588Fp5ZcYnriiSdSa2trevzxx9OuXbvSH/zBH6Surq5SpsrlSqdOnUrbtm1L27ZtSxGR/vZv/zZt27Ytvf322ymlc+nwXV1d6T/+4z/S9773vfQbv/EblenwH/rQh9LLL7+cvvvd76brrrvuskmH/+QnP5kWL16cnnvuuVLK7sjISPHM/fffn1avXp2effbZ9Oqrr6aBgYE0MDBQ3FfK7sc+9rG0ffv29NRTT6Vly5ZdFunMn/vc59Lzzz+f9u7dm773ve+lz33uc6mhoSF961vfSild2byZi5hVmNKVzaMHH3wwPffcc2nv3r3pxRdfTJs2bUo9PT1pcHAwpXRxeVN3iiullP7xH/8xrV69OtVqtfThD384vfTSS5e6SReFvvOd76SImPVz3333pZTOpcT/2Z/9Wert7U2tra3p9ttvT7t37y6Vcfz48fSJT3widXR0pM7OzvQ7v/M76dSpU5egN+8/VfEmItJjjz1WPDM6Opo+9alPpSVLlqT29vb08Y9/PB06dKhUzr59+9Kdd96Z2traUk9PT3rwwQfT2bNnL3Jv3n/63d/93bRmzZpUq9XSsmXL0u23314orZSubN7MRa64rmQe3XPPPWnFihWpVqullStXpnvuuSft2bOnuH8xeZM/a5IpU6ZMmeqK6irGlSlTpkyZMmXFlSlTpkyZ6oqy4sqUKVOmTHVFWXFlypQpU6a6oqy4MmXKlClTXVFWXJkyZcqUqa4oK65MmTJlylRXlBVXpkyZMmWqK8qKK1OmTJky1RVlxZUpU6ZMmeqKsuLKlClTpkx1RVlxZcqUKVOmuqL/B0tyqcGQPhmCAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYys6VkeDl+1V9fe1dXV++mz78usHo/tsbE93uJYBBwZR4Q4liUjZEcKlkLiiBBIpJgsShCJE0RAgJVYIBA4YIzxgmHs8TD7eObsp8/WfXrfau3auqq+P/q77r7qOXVmMPCzp/F7S63urnqXZ72X614eX7fb7cIjjzzyyCOP9gj5v98N8MgjjzzyyKPvhjzB5ZFHHnnk0Z4iT3B55JFHHnm0p8gTXB555JFHHu0p8gSXRx555JFHe4o8weWRRx555NGeIk9weeSRRx55tKfIE1weeeSRRx7tKfIEl0ceeeSRR3uKPMHlkUceeeTRnqLvm+D67Gc/i/379yMajeKRRx7BM8888/1qikceeeSRR3uIvi+C63d+53fwqU99Cv/23/5bvPDCCzh37hze8573YGVl5fvRHI888sgjj/YQ+b4fRXYfeeQRPPzww/gf/+N/AAA6nQ6mpqbwz/7ZP8O/+lf/6nvdHI888sgjj/YQBb/XL2w2m3j++efx6U9/2j7z+/14/PHH8dRTT/W9p9FooNFo2P+dTgcbGxsYGhqCz+f7/7zNHnnkkUce/e1St9tFuVzG+Pg4/P7vDvz7nguutbU1tNttjIyM9Hw+MjKCy5cv973nM5/5DH7hF37he9E8jzzyyCOPvoc0NzeHycnJ7+qePRFV+OlPfxrFYtF+Zmdnv99N8sgjjzzy6G+Bksnkd33P99ziyuVyCAQCWF5e7vl8eXkZo6Ojfe+JRCKIRCLfi+Z55JFHHnn0PaS/jrvne25xhcNhPPjgg/j6179un3U6HXz961/Ho48++r1ujkceeeSRR3uMvucWFwB86lOfwkc+8hE89NBDeMMb3oBf+qVfQrVaxUc/+tHvR3M8+h4TNax+Aa39vnM1sm63C7/fD5/Ph06nY9f4fL6e+/i3fq73tttte7Ze82rtCwQC6HQ66Ha7d13H/zudTt826zvUGd3pdOD3+9Htdnuexev1XaRgMNjTDl7bbretf91ut6ctfIc+97XG3x1Tty96vY4lP3u1Me33bL3WfWe/Nr7WOHv0d5O+L4Lrx37sx7C6uoqf+7mfw9LSEu677z58+ctfvitgw6O/Gr0Ws3+1zdyPYSu5QoL/63NdRuV+7raBDLQfuczVZVLaHp/Pd1db+gkI/d8VdH6/3z7rdrsIBoN3MXV9Rj/B6AqjfmOq46Ht1B9XaGnb+s1LP+GjY+4+v1+bXebvjjvng0LeFfz93kNh2W+u3ee77XbH1117/fp3r/v79TkQCPQoLe77+gluVUjcMb7Xen4tgewJ1r8ZfV/yuP6mVCqVkE6nv9/N+J6TMjh3g5HJucxb/+amJSMKBoPw+/3Y3t62Z+km1WcGAgH4/X7T6Hn99va2bVz9nM/S75QBsc2uVaBWFIXI9va2tZ/ChW0E0MNAtR98J/tH4jh0Oh0EAgF7vn7XbretHyoo+1lb7LfLsPUz7SsAhEKhu4SIjg0tu3tZU65l5Vpe7ti6gpFj2Gw2bVy03a4FqP3hvRw3Zcgcz2AwiO3t7Z72vVrIs9/vh9/vR6vV6lFeOL/uvdpfHTddB67yxDXdj3R83D7pWLpCSsdU26Hrj+vTHWdd6zpH91JW/q5SsVhEKpX6ru7ZE1GFHvVq4f0sI2B38/eDUiikXM3YZZ76Dv2u34Z3NXMKN1dw8odarmrl2iaX+Wh/yMi1f7wvEAhYHyl49DmBQACBQAChUMjaqIxYr9W+sV8qONyx5rXss1pvypT0f7aRAkAtNe2bfs9+9BOMHHt9l9tHHW93/lxh5TJ7FWD9rDd3rt21446XjrU7zjqm/DsYDN4lhNy2+P3+nutcoav7R9dVPyva7a8rGHV+XaXL3aP9rEt3DnTcOI8evTp9X6BCj7576qeVqyYPoGfD8HsSNwS14HA4DL/fj0ajcRfzohXF99FqCYVCCIfDaLVaxsQpLPhZP83YbV+73UYoFDJLSBmIWnrNZhPBYBCRSATNZtMYDq+jICTT4rPC4TDa7Tba7XaPYOrHINgPfqeWjo67jhGfSYutn/BToUArhRZrP+2d3+nn/E0LhvMQDofR7XbRarUQDAZ7xqHb7SIUCvWMjwpO9p3vUkWG46tj4n6mQikUCt1lTbTbbUQiEfj9fjSbzZ7xo9JAS43PZltpTfO6fnPuWo6uktRP6eKa5/i5EKwqUrpf9JkUUlxrfKaua1e50TXlClS1mtX6+kGztv665AmuPUbcYGRYqtEpE1Ltn0Kg36bWa9Va0efwWv7mZuR1/YSqyyRpFei72H4VFmq1Ufj4fD5jxsp4wuGwvVMZvgu5aXv0+35QjgsvulYsmS7vDwaDaDabdzE+V/j0E5qdTqcv8wdggoUC2RUcaoHxmn5WEceqH7TGZxCe0/XiWnY6z5wDPsu17vpZMa613E8IKRSt86RWjH6mc8zxUjiZAlGFn2v5uc9g+1Qx47vc/aGKAdeMK0z1Ha6g1jHXteIJr9cmT3DtEVIh0A8q0g3gQnsuBKYCQBmrC/no/aoVUwhRuPTTdlWgun/rBiaMx+9IKryA3mi+druNQCCAYDDYUwpMLRpadK4woVarzO1eUX18rzIotZLYFldIq7bu/pAoGGmdqFXgMnkyzGazac/m52qNtVqtvvCXC2G5/XEh3n5+SP2t86ACku9iO9TidK9XC0WtPY6NClq9pp9fzbVsVTi6QoTvoI/RtUrZjlar1TMu7l7pt451jIFd4cf5pIXMdrhzxWe4PlmP7iZPcO0x4obRgALCeFz06vdQLZBMz4VK1ALqB2H1Y4IqAMPhsD2H16jmrQKCjEKtCVosLmwUDod7+qMBDZ1Op8dSYBtUk3UZgwahUAjQaiKT0XFVCEktMWVgZHCuxg7swk1sd6vVsrbrfNH3xjFRwb+9vW33qTauFh6tafZfGbsqB/oc0vb2tikOVAYUsnKhaWXa6nNTZqtWBwU6266Cy10XroWnkGG73TbomHOl8+AKPb1O1zLb4EYVqvBh4BL7xbbHYjFb89pvjq1asQx6Ybv4Hq7Pfv5SVyB7dG/yBNceIrWq+Fs3v6tFa+QZsMu4lWmqpURymZ6rHet1tGx4Hd+rkWcK4Wj7XahI/U4UGtoGFcBALwzoWj4AejR/MiSFK5W5khmpVca29mM+7A/9TQqHad+63a5VfSGjUwuD4+NaZvosYJfp8jON8uQ6UOGgCodaIjoXvJ6/Q6GQ9U/7wfHRtaDCT9eDzpMqQlw36n/j+HMNqSBQpUHnmooA+855Vf8ehQiv14AH9Um60JwKNrXwVYlw4XB+5yqD3Jf6DipfHGO2zbXkPHpt8gTXHiLVylxhoxBaIBBAo9HosbxUoJFxALsCQ60jMoJgMHiX/0PboUyS19Ai4cZVxqfEYIVGo9HTRloFvE83ugY2KATkWngunHQvf4N7La/XMeA9yjjV/0TGCewyVzJVColarWZCju9hv3VsVDGg4Nf2K+xGgUlmyPFx50ctB1p+2nZau2wbBYerDPWD2/qNpytsdXx0zRAN0Lnm/LnwHa/R8dfn9RsnriPOiyoNHGugN9BG15IrtBSmV0GnPkIKVF0jbttoiXEcXOTDo78aeYJrj5Bq0QpLuU571aBdoQTAtNF+zm59j2u56XdkzGrVkRR2VEiJ0BzQy3BcZkVSv40yCr7DFZ58Fn+rFuuGyLMv/K0Qp/aBf7vMhTAX/1cNXN/vQrSulcfvVAFg3/ksDYRw/YocV51LDZpR60IFkdsGvVcZt7ZJrwN2hbQLeVHwtdvtHmvUtf71Hl0HOq6udcj2qEXltse1lnQMuW6pNKnQddGMfugG26+5ZqpQ6PW6lnR98m/16akPzxNefzXyBNceIm5kNwSapFaDWlf8X3F9l1HpRlJm4jqlgV3rRwWJblxlltouZRzUgO91Ha1G17Jie5Vh6v3siwuh9vPVsa39LAvXStO2KmSmz+HY8TnsJ8esn3+Kz+9H/YSujgH/vlfADsfbtR5VaCuTdyE0ZcIK9bqQrK4VhoqrYsExU/hRhaz2X/2B+gyFj925JOle4HvYXleZ0HWjkZv3svS2t7cRiUR69pdar9vb2z2ogr5PoeV+8+e2zxNer02e4NojpEKJ+THuBtQNx2i1Wq3W439SX4bCLgqhKCSlmiw1asIi7iZzn0EGpHlh/TRN3cgk+hNUCNBRrwzTZdDumLGf/FEYiGPiQnuuVq/CQceCOXD3slZcgcfwfWXsGnbN/ynctf0KfWk/IpGIMXZXgPNaHSP2W3OkOBecDw22cQU40BvEweepMkXoksJHlQINkNHQdfadFjbfq8EM6ucjjA3AfGSRSATdbheNRqMHYlakgHsnGAxaO3Ws1NLnGGjwzb0UtFAohGaz2YNYqELRT8lRHyDHFEDPXHvUnzzBtcfI9QG4fg1ew02kGrsbZcX7+J0KNH7nOqmVaZIZ0DpyoSWSMnYAd4VL6yZ34UtudtXWXcuI7yNjo3Cghuxqwqo16xiyrXwPGagKd22f9kkFBH0p6gvj+5TxqeXD73kPhZtq6q4VpFCVziEFmdtu10JyITgVeGqhK9Sp867jqmkR2j9X2LvfuXOpkKIqZny/jrf2DdhVdlTA6ZjqWKsPUeFzvk+VKPaVSftq8fez/FxLk8/sVypL36PKkUevTp7g2kOk2qb6hFzfkTJYLYOjWr5qocrUVLtVQeUyFb7PZTKqZeqmVKbXD1bT56jgBHAXQ3X9NjoGrraujMCFf7R9CnHxO7Xy9B5q5NTEdZzYRoVjyXhZXUTHz/UV8b20PFxrWgWJvkPHr1//dI7dBGJdG2673FB8jo8rJNRq6vdMXQ+utUZB4M7Vvfqic6uIgK7PfkJWFTFFFXi9a5Wyr+p3UyWA7+S494McXaGs61DXOu9zUQOP+pMnuPYIuWHc3GTA3T4iV9NVbbjfpiED0I3Zz3JSDVGfp4EabmAG0L8UFYUvmY1aA+yPRsFRu9fSTiqg2SZlSMq4VGgrXKpQFEOp+YxAINBjwbjjwHaxb65gZpvI6DRiktdzzNR3496vFgCFpQpT1xrmOCmz1Ig4l6G686rv02do2SnOK6/hZ7pOVRi5fjF+roETqsgoTKhzoJUsOAauv9e16ChU2adQKGRRnZoSoknJen2j0UA4HO6pkMJ2aPCSWr4uFOxWfmFZMqIPvM+jvxp5RXb3CJGhKAzhMixuJHWEE9N3GVUwGDToA0CPL0Y1Zj5TmZlquyp8XGtFrY3t7e27mD/7pdq1Clzeq9fxO4V19DP3fg1M0D7xmUqu9ajjQZ8I+88ffq/avisM3P917sjMKEzZB7ctahm4NR6VqWv5p3tZMDoffFer1TLITAW8Ur8+6drTNqv12a+av2sd6ju4Nl0homuQY8jv2V72mftAP1NLk/1UeNlVuNz3uHtG1xDnhcqJ5i+q8qjt0nHTH49emzyLa48QNwEhLYUjgLsLhXJDaL4MmYF7HaEnhUpcrRrYDSBQBhSJRKzskDISFaSdTscK5ao2DfQyWDcAQQWO+hd4rTI+hQzVClPLzufzIRqNGmSnFoTPt5Nb5fqt6vV6z/Nc6E7HSK0Z3q+C240QVOtDLRv9jNf1e5eujW63awE52medB7UwtB2tVsuSpP1+v+WdqRBVa0F9b2otk/mrlcN2uNdynBQ1IIRIa0iFMP9nUImuD+0PhYNaUhpo465BWlr6nSpsal2rRczPdF+yX/os3sfPueYYMesqfB791cgTXHuINJEY6M301+9Jroaqgke/U6ao3/OZQC/kSNiDzIzMSq0bYLfCBBmFG5ygP3qdKwDYfrbDFU6uX0OFilqn6qjvx1T0tzJpoNeZ32/MVHPW73We+GzV9tVCVMHFdinMSyhLGbX6ItvttiUau0xd2+dGebrWu2uVcn5UaWGb+UNhoetGlRMKU3f+daxUOdB3qoB3LW93HeizdN25lr2S+v54r6aSuHtCC1wD6FlT7pzrfCuMruuRbdAyVR69OnmCa4+Qy/SV2ZDRKLNS3F1hMzJroDfRVi04l1mR4blwmH7GYAW+020HsGs5KKyjglV9UcqcAPQwWxVqhF4oQNWfQWajmr4ruLRd7IeOmfaXgli1dRciU+uEbVWByndqcVxXkOp4u4LdFcQ6F7zfnUvOBdujULKOlR55wznhNXy/wonaBp1PFaT9+q2k1pqOST+rXwWKa42qoqB/62cU/rreFUrU+eI1KoBcYa7rwkUxVKi661yVHlfYeYLrr0ae4NojxM2izFg3kya7KoNTaEhrFar2yHv4mxq7CjuNZKTfTB3qGmCgVhc/V0jItZjUguM9/RiCq7WyTBEtDTeARQWMauN8H5meVnsgpOkGi6gA0Lar5UNqt9vmfOf/brI3hS3z4QiTqi+E17lWpH6v60OFoL6L7VS4tNPpGAzqWrYqMNUKZpQlhVe/fED2gcEuajX5/bt5eIT9tF9ci2phqYDVNa9zrOMfiUTuglz5bFWCdN1r/Uifz2ewqeu/VSGpQTm6XrXqCQWRBtTwc/ZbkQY9jdqjVyfPE7hHqJ+1oZva1XjVAnOhEb221Wr1JDTzczfIQ31XGn6tm9Rlzto+bZNqpPxeowvVetF3aF/6WWv6LmXyrpWnkBTfq2WAlFkzLP3VYC796SdktL3qr1JlQYUQP9d3cmzUItO14VpY6tviffxM4V1eGwqFepLK+1n3GmCjCoP7LHeNKhyp1lM/f5uOgavwqCLjWnr9YEQdf75PLT7tp/aX46gWtjvvbIObigDABLoqRy4y4qIBLszv0auTr9vPrn6dU6lUQjqd/n4343tOtBTuBYXoyb90OiuzpiVFrZdMTDepC0kCd/sr3LBhoPdoBl5D6wzo749QuE0tGBViGmbdD/Zyw435bL2ODMKFV/mdJoYq9OYycdcPp2NFhkoro16v2zs4rlpYV/vPOVDYTNur46eWoRtI4zJrzTNT4e4GOHS7XbPC3NOtVeHQaiZ8H8dd3+1aZK7AV+uF1qkG5vB5WsXCVcK07TqvrmLjCs57KQ780WNM3HZqHwincjwBIBqN2rUakOJar+460vnS9faDQsViEalU6ru6x4MK9wi5vh+gN6mUGqli95qTREZAUkiIz+JGUxhRtWK10niPaznx2W4UnasRqzar5xspQ1UBpm3uRxpiTXLr3vGZ7jPIlFU7dv077hEp2l89bVcDWFQhUDi12+0tc+TOAckdd/6t7ePYuUJeGa1aQzpv7DvXCq+nkKBfUa1sVQ7YZxUA7u9+vjTX76VWlAowDfbR9yjsq2PGa1Xp0PHTdqjgUOGuAk+RALXG1Xp0hZMKJipFrkXIZ/J5buKyR69NnuDaI6Ran1oE3FSEQVxBwQ2q1QpI6sgn6eZ1LQPew+uUkbkh265fSN/rarG8RvumEB4FhwvV9GNYGtmm71ergPcrc+e9QG91dpfBu9pyv7FW35W+3223C4Oy36714L6DbeXckzmqhacQm2tNAHfnUmkirMKROoa63vi/G8Cg4+72TcdIrW1VYvgZ73dhSNdidRm9tkX75/padQ1y/DgGLmyn+0rXmWsFc41qcjItUl2/um/c8eHcePTq5EGFe4R0Q7vaXz84AugNZdbcFt2cugFVk6S2yM1O2Ecd2y6MBtztg1K/hDKSfv4kavVqVeg1ajWp5u9CP4REGXzgatxsrzrlNSKy09nNJeK17ItaPSQdK9dCUmHktlfnlm3TMdXDCGmNqBWjfi7tm869FpJln9lHv99vp0yzvVqRg20nk9c14p7V5vrcdH0wGINCne2jVeoW3nVPgWabXCWGYxKNRk346jM5X2rdsi9cIwqN6vxp1Ra1UNl/5i9qUjNwt0LAtaXvdv1yuu7cefxBIA8q/DtOLi6uGj4Ai7Ijw1CtjkxBfV4ujMO/FbrR0GqFdri56Fdz71Ht2BWkbiKzWpB6nQtRaW4NmTlJo/EUqnI1XFeA9YMyVZNXIeRCbtp2fZ8L+bnX9bO++Hk/y4VEBkghqm3j9a41oOtFw91dy86FRnWNuWHq7ppxYWx9N+fVvVetED6D80hmr9AnyVUAXEtYIXDtv2t56rjp+OoY0HpXi9Z9prZLlQyF7Pm5KyBdpUYP9/To1ckTXHuEXGjKZc4K47jWiDINbnKFyVwi4+Az6bNSC44MXp/raqX6PLaV3wO4S5C6wkKFGQWYOr01VFw1XdcfpUJDyRXWar0q9WN0tFqBu8Omtc+uwNT+KUNXIaJjo+PZD0pyx12tBh1ffk/lRp+rDFbXhLbZFWz9FAIqJRR0arG78LEr0HjkCy0gnWuF21ylRwUc54prXMdb51WfzXl0LXl3vCnw9DNXiOq61XHRfuvY6x5WqN2j1yZPcO0Rcp3k3MSqQWr+ETeQ+nxU8+un7RNSVM2Qmx7oZfBqnfSzrrQNrqDhs3Tjsh/sq2rgZFZaCkgFmI6P21Z+3g/GUybjOv8VStQxIvSk8KD2Vy0/Uj9YyLVygF1oUAWKCkBlwK5VouPprhNeT9jQ5/NZ+DvLOykcyucReiOcyLazr9p+FVRMLdB36Rzp/Gj/de0pJK19ctcNYWwNTHJD0IHdEPV6vd4zX1xjaiHyfC/Oiav46f1qBatSwPlptVo9EYiugHThZ9f35VF/8vK49gi5DJRChsRFz02hmi6ZvSYRu1q8ao16FIpCL6527kJBaqkpE2Tb9VgPCj1gN2xba9OpBUABpAEm4XC4p7SRa/EoNKSMju3VdiozVDiLv91r+H+z2ewR8v2gIwDGyHWc2J9+489xZW3Je1lAamlw7FVw62+1bLkWlMm696iAZ3vUold4Tsfo1aI+ORZ8p46HRmTyWSo81GJWC8YdH+2TKlPuGOpaVUSBz9S+ukJR0wx0jev4uxChIhbuezg+asV59OrkWVx7gLgpuMHUWa8+KNWCyfTUCgB2T4tVrV+hNtUI3areriXBz/hbzzzS3CLVWl1Iyq2WQOoH2fB5Ct1peLsyGD5Tx4v9JUPS2n/BYBADAwOo1Wo2Jq7Pg9dqUWEyr36wnzJLQl5so4bIqwBXAeZWGNe51LnQqE/OfbvdRrPZNOiO7fD7d4JWmHSufXQtCGXOzPNSXyMFCO9RpUhTHNQSdE9XVquHjFyt+E6n03PCAX/4Th0LVao4jlxHrj9Nx0sFnAayqDJG4dMPVeCPVsbQMVJB10+hUJiQQS+eAHt18gTXHiHXn6RQkgoszXlS7V2hm34FT3mvCgbVvJWh8fkkl2m7lof+uBq5+jPUolDGqZ+rhqqMsV8uDq8nk1TfBwUDmR59KPxfYUJ9lyblulaG689ymZwyTrdor1rI+k61BPtBh/oe14+k71Vmyjar4HOtFb5DrR93XBVWdC0vfu76JjkHKpzcuWWf3P6rVe0KAo6fu05dy0zf4So5un71/n4Wm2s16b5g9CMVD4VM9fn9xs0TWH818gTXHiHVINVSAnq1ZX6mIcSuI1yZHHA3rKYbkf8rg9BrlNnqJlemr/e5Vgy1Uq175woAtdT0M2Wm6vvhZ64D3NWU1dqiZt/Ph8P3aZuU+ahWzv65wl8Z472EnVotOhfu+/Uz9ceoheTOG9B78rDOvY4T3+GuLX0mv6c16zJcV8BRcOncuAqXtpfjRt8ax0rnRtebjo/2Wde82zZdjxQwLhypFrorwNwCyWo5a3t0jasyyTlwFSGdB4/uTZ7g2gOkC1phJ6DXd6BVFDRwgPX21E/hMjQAPT4F1RRVA2cbVHN2rap+Cbxq+ak/QZ+tgReuRcF+st98JhmCwp8cA9cXwme5DF6rRqjw4/u0PcrI2W6On8KHGtDgWkEcPwq0fn4hlnRSRUHzuFT5oODUUl58h/rBCGVplRC1mlQIc51puSXth/ok+TwKKD77Xj4wbR/vc/MJuQ5cP5X6o1R54Fpie/m9u74UBnSFto63jivXuK5N9Wc1m8272s+50L5TMeJ997KQXWHr0d3kBWfsESJDcIMyuAk0sdRd+NyA4XC452RZ/V4rPSizVEjLtcZ4lIkydb1OtdF+WjLfRWbkhhgr49N3UKhqxKQym34OcqAXRu0HpapA0Xa771eLwu0LlQS2SRUJZcLq/O+nmKiW7sKf7ljofNMSYhvUStne3u45tkXf6a4rd+2ppaaC816kAlaFlas0uf4wd6zdoAZe51rb7lzoCQdAb4CHu161L67/SxVFXS8cS1VguF94jWu165jzPe7Zaf0EmUd3k2dx7QHiQubmUA3RzUEhg2LBT7f2m97H65UxuZCFaqZ6vQoxFUxsr1oTLixGzdU92FI3Of92LTNaDerTok9BfVFqaXCMfD6fVdNQbVcZeSgUQjAYRKPR6In641EXrkKg/jkyLgowjp8qFwpPqT9LrWHeFwqFek56VutF/SVq6fp8vp6kcBUe7pwrw1bFiG3XcdH51blS2NAV6HpGGhWjWq1mhYj1Hq4TRQRca5l9pOBwa/wxsEHHVNek3++3fDH2T6FDfT7bv729bSdLuwEnblCN/t1oNGx82Be3diav5zXuAZUe3Zs8wbVHyBUgZLCEaQgVcUP028Bu+DQ3jOZXuUzKLZ2jjnYVYu7ZTK5/qd9RD/yun+aukKLrT3CtHfUtqXbu+t74bo1y7He9WjH9oE4yNZcx8l59J8dQhSyJ79FzxdgfPS9K28r7+lla7veudahWgKucqAKjAtRVmrSPSipc+Uz+7mdV9Qt/57y4fj5to5IKHM6PtlcVPK4nWjiudaOWP/eTPl+DdXQsXOtZaz7qPOt9oVDIfNCuX8+916P+5AmuPUK6uAHctelUAKiQU3hH73NrrLlanjJ0hbnUqtH73Ta5Dm036k/75MKIvF6tOW54FQLKtPnjMmxthzIzbaNr7amw5+dqLbnCtF9EmlqkWsnDFZKERPmZzhn7pnPMzzQiThUTWjLU7vk9rSK2Wev36bpyrQ5aB+qL6je2LqlS5M6XBluor88V+rSO7uWX0nvVstc1zL7yeo1i1fni+KvwVIHjKkJAbwqH23bdj26UI9+jbVDh59Frkye49gAp1ONqnmTmbn063kemA+yGDOumIazkwmdAbzkd3eDKRNgWapBkQCrUCD/x/+3tbYTDYYNUOp0OIpGIMbmtrS1jvlrcV4WaG7IOwE7VVf+YCjT22a2KwDYqbOQ+l8zMFWAKsfYL6XcFm8JhtGbdquQs4OoKdoW4XEGoio1CcUBvHUe1TPRvVXr0Hq4PzTHTgBLXN6hrp9ls3nUml2vN6ZlbfA7RBPUhcXzdXDdXUSIy4CpZ/SwZDTDR9a2WEf9vt9sGd+oe41hxPrn2KPhUEBEF4Xu5Hlyl1KPXJk9w7QFSKEeZdj9tVzey+jSA/pYZGSe/Vz+HCzO6EJs+WzefQjZq1bjCRNuu2q0yGW5sBoLwGpdxKZMnA9TnuUzVZdquleoGwCj82e127zp2ngxVBZm2i+OtAkw1bTI+FYjuPfzftQZd5qch2Ez4dUO1NTFbn8W+uu9WQedaQa5Q0TB5tVh17HVsNcKRVT10PTLYxLVONKJVlQbXInNhx3590nWjkK4qSxxHfq/jxLnjPSrkXYtN+67t6HdAq0f9yRNce4T6hZgDvdq0OuOVWfYjXkcLxYWdFHLic1Tw8b39kj37MS0yN17n1thT/x2f4eaA6XX8nM9wfQWq6bpatzI13q+CWK/T4Aa269X8S/xbfVnKiGgRcNxc31w/35lrUalFqwJDFYJ+OUWqWPSDtlwoU+FFFY76LFdR4j2q9Oh9rkWvgSC6FigIVDCq1dgPcma/tO8q6Hmt9t1dR66FrP1T61zHUuFsXa+6hnXOXSufz2d7PevrtckTXHuEVGPT38pI+UOGQAiOxM2jjFTD4LnJNGRaGbYLo5BJKDNWZuAyKba72Wz25By5goZt8fv9PW1RaFC1VTeyEugvsJXxsR28luOmwlU1aoUSmdulzIVtocWg+UT6bM4jIxd1fPUd/aBIBuOoz1ITkHUdaNtoVdP6cgWQK8j0bDGtzM7rXR8gr9WDFJXxu8/WZ7TbbTQajbssVlVuGDXaT1hpCTM+j6iBWmNsuwpx13emChAtfNey64cwaJv4TK5Fjp+uS1UwVcnR/ebRq5MnuPYA6YbUja2aKHB3ORrep9BdPzjN1bhdzZv3qQatDMu1UmhFqMbpapt8nkJP/eAUbbNrybj+mX7jBtwNkboWjAshaZg+AxX4Lk2edsdbBbsrtN173LHnd8ro9b2uJa394nPIhMl09Xqdi3sFAqg1xmsU/uPnnF93nbiwrAv7at91fPqNC9eRe7/6SvVdruXiWub6fL/f35Mgrn5ihUE53+6+UEhd3617getNFQMVnP1QBFUEPXp18gTXHiCFUFRjU82VVhb/VqvLDS/mfQzLdX0zZETUFtkGMjPmqNACUD9Nu922XCm1TvgMFSL9mBtwNwxFoU2rTv0NrvBwoTfN+3EZnQozbZMye37nhvizHd1u1ywZWhz01agAUqZPC0b/13aplaAMj+Opn6ty4gYQADDLNhAI2LEwruLDNmiwCtcZ+61+M46zG0CieVU6F/rOfkEdOg4Ko/F9qtyowqVCToU836PjoNa57ilao7re3FMKGN2o8K4KSs6lBoOof05hRrWWgV2h6SIKHr06eYJrDxAhB/5NIaIbFugfBu9CQUAv07kXlEJSBqzwDd/vngmmMKZqkvcKOlCByf71sxzV4mI7uOnVMtKNT8HtwjnKnBUmcq/T9uj3qtW717j+FL5Hx0PztNz+qUB14VrOlb7HFbRkwjrfrnWjbVFrXGFfJe2TrhGFP92x0+e6KAE/c49W0ftUGOv6Vr8X13A/2FL3iBsFS8vNHV/2idfruOs7VOjpPPNvHW8dL51nhRBdi83dgx7dTZ7g2gOki1m1eWqQrjBwQ+NdrJ5MQ/N63M3NTeVWaLgXqTbKSglaIFWtFm2rhocro3OFbT/h6sI3QG9ujcusXObJZ+hzXaHmQnzKeDShu59mrQy0H1TkzrEKDtdSUHhPlQ1gFwZU35S+T5UBHVe19rTdOr5sC61sfq6Wr45XPyVAEQJdZ+wv/1YrSdcGP1Prhla0+k5d2O5e73UtVfVZ6n7g89QqVKtO132/sXYVNR0jtWaB3ZJU+k6P7k2e4NoDpBq7q9nrxlJtXTeQFmcls2IFAZ6kzGcxd6rVaqHValnYN78H0Pf50WgUwG7tOYVLVFCwDcqMdaOq5q2M0IUWXejKtfj6WXcUCi5z1hwyFeZ8HsdFgy44pirM3ZBsnTsVshr+rWPAChraDmBXwHDcw+EwGo2Gae3adtXm2Q4yQ4VN2V439Lzb7d5ljej8KxStKRL6HrXQ3ERn7ROFhZZq4j0abt5ut3sgT7ZX89V0Xejcch24Vr+Ok/bXVTBIzD10IUO2xY1kdPeLjqsW69X1yvaoQuRRf/IE1x4hVwNVjUwZIz/XKhPKuLnptCI60Btx6DLafhYK/3Z9bUCvY9ytR6iMzGVwKlC0f/0swH6MAri7rJULYanmq5q9fub6s8hMVKi48I7rO+J3ZKyuRabfq0ADenOF+jFBWjuuBq+MVJki7+H4qABi290wfHf8XctULXmOoSpOuka0z66l6D5Xi+Gqr6xffUtVZvi/u3Z1bel86VpTH6Rr4eoeUMHrKmZuQrGOkY4F36mfc15cVMKje5MnuPYIqROdTC0QCPScDquWjDJfd6Ny01Gz3d7etqKynU4HjUajx0JzIxdZ2UHrGKrW6Wq9KnDZFxWAKuiU6SjDANADhbnwjFa9Z9vJkMis1XIhk+A71UGvDEuhN5cxuz4OtS5VcLBN6p8ik1RYl2HhfJYKIwA9AtPv3wmS4fEnamnrnLiKg7ZJLRINrNB3q7KjY92vajvHIhAImPVQr9d7wtl1zl3/qFolOp6KMqhfiNfru/u1X4WCKikuhKpWuUKSkUgErVbrrvHn2lI4ku3gOOi4sV8s3BsMBu3EbX43MDCAVqvVA816dDd5gmsPkG54hc36+Tm42fpFOrlWmQoa3fyudqmMQzeuqzHrsxVGZB/Uya5tUiFH0nffy/Ijc1QGrO1TQeWOlQpRPk/HRwUfx0itUbc9quGzLTpf7rtd6IyMViEpZaZ6nY6H9ldrIvLdbLc7v26bta8qpPm3WhQqPHQuOC4K27rWmgvlun3RfEAVKi7krILBhY81h6rfmma73Hmhta7CiP3RaiCu4sR1pO2+V7+B3WhcRoCqgkjY06NXJ+88rj1A7oYD+ucw6f8qbPg/fyvzCAR2zumKRCI9jEiZFN+rQRfqAwLuPghS2+OWz+H1ygDUya4CUK93A0D4mY6FHm7ojpsrWFzrw2Xoynj4Tvc6tpU/WtqIzEwj1VQQArAx1efpvLuMUMdcx4t91/XAvqo13i8gQK1Bkut71HGkdar+Lj5PUwPUL6fzqMJS594VTjpXriKgc6GKC9utsKk+i9bfa82jCmcV/Lqv1MLS57iCTa1F9ptCStcmLUhVsjzqT57FtQdINyMXOQMoyBiJ/7v5P65Wzb+pIbvwBzdYv83MxFZac+47+G6tnMC2MPCAjF3POGIFC2CXQbr+DJfJkIEqEyJ0SoaytbVl7VHLQ/08Wn9RmSrhIj6bbdQxBHaE3sDAQI91AuCezFOrV6jmr4qDCheNplTokOOraRIuBMo+UDCw71RC+Ey1ygH0CDllsjrXfr/f4FmuQ7aBbdSjO9SKY3+0X9petkFTH1y0gHOhlhavVYiz290JvqFSoXAt51fP6GJwEiF4jjkrnQQCAYPKdcx1njXi0rXade775V26Qs6j/uQJrj1CypC4odRP4UJYrjaopOHxCiG5fg1leHyOe86XC/H0Y1TKsNSac31kbj/5DBe6c3PJ+vkbXMHpJo3yc46VMl4X7tKq3/pcjqVCZO6c8RrXOlUhqt+7PioNEtAx0bHieGr+lbaRf2v4uCodOiaqgOh7Vajpe9UKVEvchfVcWM7tp84P124/eM+t/K5j4r5T94Xro3TvdZU3FeY6Huor1KhItpf9VMvfhZ37Qf0u2uHRq5MnuPYA9dtAaimRdPGrxcRnKHPij4ZD99vYQG+whUJsCh2psNL3qwWlQovtuJfWqhaMMiVlWG4ACskVQgwEYL4OBRXboBaOCjENDtD26ri41pi2j6RWnY41rTJlrDq+2gYVVupr0bbq/LhWG9/FMaAPSIWK2+5+a8AVBtoevt+19N37ldgu95n9xsvn8yEajVq73NQFzoEL5fWbX/ZZg4/UAtW5d6G/fuHqOifsF8dQA2xc69YVYB791cjX3YPivVQqIZ1Of7+b8T0jQhkKtTEPSyOylOm51pdq9wrhaBi6Bne4G08hG16j2qQGBigj0vOx2Cb2hQxdmT8tB7bJZWoKwaklBNwdBq7XKxzFvqqlwL7yGoXG9G+2nRAd36PXKgzIuXDHmvepBaSKBMfNbS9Jq+uz7WwT71UB5pagIjzFqD/XkuU9fr8fzWaz536+TyExZb7qz9P26VjoPWqZukV9+bnrq2IgC9e+RtTynQo1qrIVCATsHDhewzHVtvAzhRJ1zF3YUvvDSEQV1grl8x5FB7judH5/EKhYLCKVSn1X93gW1x4g1c7I6NyAB36nVpZ+pwKN97rJo8DdFR3c+4G7/RNkBm7YuxKFilYI0GeqL8GF+dTqUc1XBRbbohaka6kAd1e4UIHg+iP0WtcqUUHGvqig1OezXwqzuUqEjrVCcWqJKsTHNvaLilQhz36poqAM1bWOtW+u1aZQJL/X/1UgqQKkY0DfkQoSd65VudH0gH5td9c2n8lIQD5Pn8trdb673d0oVbWK9D5GAXY6nR7lwJ1/HTu17Ehq8amlp2Pp0auTJ7j2APWDQphrpZ+5TE4ZpW4WYNfPVa/XbQPyWSosuKmUCbhWis/nQzgc7lsnTwWNWn3c2GrBuTAPmbdqzGoB8ZlkzBoAoj66dnu3+KyGNatlRLiTQS/K0PhebaPmBrnWK8dLLQAGjahgDIfDSKfTPT6fdnunSoT6wNguPrufEFbBo0fZcLw13JpjyTlkf10BrXPTbrct0EPf5fqulNlzLVLg6bEnurb0GfV63SwvtofvVYtR36drjf1l/yj82G+1KnV/sX2cG4WhORfccz7fDmSpa7Pf87j+OH58t1sLUudBn+PRvckTXHuEXCsK2IXxVNvjNfq9/q/MVEtBAbvRdy7jdq0jJRUgZBAuQ+Vz3Haqz06FiauBuxq19kEFkvqJFNZzGanrD2I/NIrwtfqqcCfHisLHHe9udydyTROoAfS0neMfCoUQDofRbrftvC6OrWryaj3xXaq46Pv1na5g0TXhrh0db7Vkde5c6+de96vloVYeP9MIRn0noUr2U6Mo9V7to+bI+Xy7JxRo6gTXlSpP7tyqleRa9xxXtYRdC05/7uUXY9v0/DaPXps8wbUHqB8TcK0tDUZQhsl7dEMCu2WMyCzIXF3Yiu9S/N59Hxk2N3I/CEotMfVBaftUw+b/FMyayEwKh8Pmf3ATnZVhu5q4Mh+3n67Q0jaynxS0er1WklBhyzELBAKIRqMm2JPJJNLpNBKJhL2nVCqhUqlYcmowGES9XrcxVWtB368WlMv4+ikz2k4df3c83M91zbkogCs8XF+jCi6FIN21qmvNbb9aXSpMNVxeoWZVStx7Vdlw+6MKiq4X3uvCuO5e45iooqH7z1UUOIeaauLRq5MnuPYAuRvH9UOptsoN4EJdnU4HAwMDBjP6/f6eCg0AevwtwN3JlrxWBRI/0xI16nTmbzds3NXiXV8W267WiGut0cnOYq/9tF3ChHSMUxCynTqehBv5PreIrIbpa65TOBzu8efQH5RMJhEKhVCr1eDz+XDy5EkcOnQIo6OjOH36NILBINbX13sgrWaziVKphBdffBGzs7O4fv06APQwNSoZOk/A3aHXymQV4lTFh310i9oq4+W40dJjYWatkO/OsbZNlSSdQ1roXAsKZ6s1yWu1/ibbx/brGlBBoWtTlRq1kjQlgeOiQTKaJ+auE4W82Q9FAHS/0KInUYnR6xRa9eje5I3QHiAtbaRwCtBbwqcfDEJyk2HpbFaGDPQ65rkRydzJCNVHQWblRp2xbeqrUk2T7VX/jmqkbLMLy7BvPp+vR9AqTMh+KNTDz9TqU0ZGcqG5TqfTkzTMdrE/9B+pU5+BCHzHyMgIpqam8Ja3vAWZTAadTgcbGxvodrtYXFxErVYDAMTjcUSjUYRCIZw6dQpTU1MIBAK4ffs2Go0GMpkMtra2DMrV/C9XIHO8KAzV4nQtKhVQypw5xjpWtGrYPyoP97LM3AomKqTVN+RCbq7VA9xtUXK+FUZ1YWA+hwqMriHXGtJ5da0vVyArpOmuL71fx5Tt0b2plpf61Dx6dfIE1x4gxdIVDiGzAXBXRJRuHN6nzmcyV90kKnheLb9LtXa2jf4aWiAUcAoxqvVFbZMMUNvJ97mh0W5Um5ZKcqEdhX/c2nnKPIHe3B/XclVhq2PBCDlXY1ZBFgqFcObMGXzgAx9AqVRCoVBAp9NBpVLB/Pw8kskkRkZGrLBqsVhEtVpFKBRCpVJBvV7HO97xDkSjUWxsbOBLX/qStZ/CTq1xBqVQa9eIPGA3+EAtH84L50EDXygIXJhR14AqH2qF8xoSx5BpHDqvLrSs1p4LWSpzVwFEcus16ppWq8mFOtVaomXqIgFqDbopFBR8Orb8jL9dwaqKh7bTE1yvTZ7g2gOk0AgZv8uEXNwd6K0vx2uUoanG6UKRyjzI2PS5rq9CYSxlfCpIFb7rV1mAz2ZbWErIhbbca5Xpse3KDDgOvE6tKV6jYfr6bGVeKqwUPlULgs/O5XI4ffo0Hn74YQQCASwsLGBrawuHDx/G0NAQwuEwkskkhoeHbcxVYF66dAnr6+tYWFjA4cOHcfDgQZw4cQIXL15EpVIxC5dt1tOe1arQoBX3nn5M3CWFyfQeF/ZTBs6xdBWSfsqJawVzDbp+IA3kUSGhVjDf77aJf+v7XWHLtaVWvr5T9wXbpM8G0BMur9GrJApEfX+/dX+vufBolzzBtQfIhTEUT1e8notf4QYVSFoux4VmuMGUmQG91hmZuDJDClK19oC7tXq2xdVyuZlZxUHvBXotP/o5KKT7WYj822U2ZOLaD61ErkEg6q9Ri1JDytlO1ZqBHZ9ILBbD2bNncf/992Nqagp37tzB0tISxsfHcfjwYeRyOcTjcZTLZbOcfD4fBgYGEA6HEQgEMD4+jkKhgJs3b6LVauHkyZM4d+4c6vU6bt68aQnbynTZDv3R9aJ+HPqFVPBxrtw8JvVFURi5ygjnoh+sptAl73HXg8KY/eoi6trS9/BvVwi51+hYqd9JrT19hu4rTdDWNeXuPb5TlUj1i+p7dZzZNl1zHr06fdfhK0888QQ+8IEPYHx8HD6fD1/4whd6vu92u/i5n/s5jI2NYWBgAI8//jiuXbvWc83GxgZ+/Md/HKlUCplMBh/72MdQqVT+Rh35u0zczGSaupm5aVgclJtCGYFaOtvb2z0h1KqB0ndBAaHwH7/nfcxD4rW8z+/fyQ0DdoWJbmYyUA0aIBNVC4jfKVxH4cFn8AfYDUUnQ9GCqsoMVKCrANS6iQxaIZypEJxq+zqGZHBTU1N429vehne9610YHh7G0tISVldXMTo6iocffhjpdBq1Wg0rKytYXFzE4uIiVlZWMD8/j+vXr+P8+fN48cUX0el0cPDgQbRaLbz44ov46le/iqGhIbz97W/Hu971LrPadD4U0uKZToSneEK1KgsKe7rWDr/Tc6g4ti7c5/oeOd/8TseW3ymz53pw368WCYNBVPhxLbNdhKk12VutbQ2oca06rg+uI75bLWnOvypYVB4p3LTwNfumcKuiC6r0qJBTYetRf/quBVe1WsW5c+fw2c9+tu/3/+k//Sf88i//Mn7lV34FTz/9NOLxON7znvcYMwOAH//xH8eFCxfw1a9+FV/84hfxxBNP4OMf//hfvxc/AMSNp9F1GgCgjFYdwsDd51+pZu6GiCvkQ+iEkWTqX+iXoMl2quDgs1RAutq461BXi1JhPfaPxHFQQeJCR7yuH2Ny+wvsClsybB1/FbQKcbFf+XweR44cwbFjx9DpdDA7O2tK2/DwMNrtNhYXFzE7O4tAIIChoSEcPHgQBw4cwPT0NIaGhjAwMIBms4lKpdKjHFSrVWxvb2NgYAD5fB7j4+NWJsftiwsFK5ypTJ9jSutNmTSVGAoCtWRc5q1WlFI/KFetJP3cvU8tdfcz/WFfea36fVVwue/Wvui8UwnUeeVacMfA9dNxXLi3uD9VIaTySGVA/1cUw6NXp+8aKnzf+96H973vfX2/63a7+KVf+iX87M/+LH74h38YAPC5z30OIyMj+MIXvoAPf/jDuHTpEr785S/j2WefxUMPPQQA+O///b/j7/29v4f/8l/+C8bHx/8G3fm7SW4oum4QhbOA3bBx158A3A3VqbVAInNQRu3z7UbwKQSiEEu/2onqA1NS7VstFzJO1ViV+brJtrQIAdjGd8PYVZulMFRLS/1nJBVKZGgayKFzoHM0OjqK/fv3I5fLoVgsYm5uDsViEblcDrFYDOvr62i1WgiFQkgkEhbKT8smHA4jkUiYtUIrg/1sNpsIh8PIZDKYnp5Gs9lEoVDogTsVCtSxY71B+unYF/X96djSknYhXa2n5woYZbxsg65VJXfd3msu3EonvFeVFY2IdJUod73zGS5ErkqI68tyYXftO/eZ3u9GJ6rCpnuKz9V1z/9d5dOjXvpb9XHdvHkTS0tLePzxx+2zdDqNRx55BE899RQ+/OEP46mnnkImkzGhBQCPP/44/H4/nn76afzIj/zIXc9tNBo9eUKlUulvs9mve9JABvU9MYKKDFuZMTeHVsfgRnKDE9SiUSiD2iawC1cqA+F7eb8yTt3UbDvbAfQKB7UmyWwDgYCVo2J/yTRZIXxra6uHOegzKCC63d3j4FUTdgUemQXDv1nCimHUOmZklLROkskkMpkMzp07h9HRUdTrddy5cwc+nw/ZbBbpdBpbW1vW9na7ja985Su4du2aWVLtdhv79u3D0aNHMTIygnQ6jaWlJdTrdQwODmJ4eNiEQCQSwcmTJzE4OIhCoYDl5WUbq2AwaAKx2+3amVnsG+d1YGDAhBjHSyNUu92dfD/XV0N/JP9W+LAf1KVzzHHm/KuvTGFl16KiIqNrFOhfIolz7MKRatnrGvb5eqNktUKHjiEVJ1Vg9J1co91utyeFgO/g3NBfyP6pD1Vz5FzFyKNe+lsVXEtLSwCAkZGRns9HRkbsu6WlJeTz+d5GBIPIZrN2jUuf+cxn8Au/8At/m03dU+RWTFAtVa0oMlluRoUEXR+GwizUAvU9mpOkmjG/d9/vOvRdwaWkFgs3pwu/qdNbf/O9ri9MBRHfoWOl7VLhrtqvvpPMlP1Q/5nLXJPJJHK5HAYHB63WYbfbRTQatWoZ7BP9W0899RSq1SpisRgajQbq9Trq9ToqlQoOHTqEBx54AMBO3cFsNovx8XE0Gg0TyJFIBOl0GplMBpubm6jX6xatSWHVLw2ATJJ95jzwmWqtKPzlWh267tQvpdaVhqwDuz4dXQe6pvrNA5+vsLBaROwXyd0b7ty71uG92sbvFX3Q7xUG5/2u1aXjpHCtCk1aW4oKsBCxR/emPRFV+OlPfxqf+tSn7P9SqYSpqanvY4u+t6Qapm5AhdtUeCmTj0QiPVYMmT43vzIxbhYyOGqgCs3wGhVKyrRoCTIggL4xlpNygyOoTSvc44aWs2/sP2Evav7KpJXJ8NmE3/S9tDAUYvP7/YjFYjamalmwDdVqFQAQi8WQSqUwODiI06dPY3R0FIODgzbWyWTSxo7VF+bn5/HSSy/h8uXLCAaDOHXqFCKRCKrVKra2trC5uYlbt27hxo0biEajmJ6extmzZxEOhxGLxVAulw1tmJqaQi6Xw7ve9S5cvnwZt2/fxuXLl80vOTAwAKD3GBf6mXmSL9cH0AuVaTAKhXsqlbJ1RSFJy8xlzFwftMLU8o9Goz1CQRUNrh1XYKjg5HpVJEAVM4UDde3wc91DasFybWt9RI6dJj6rkCHioMiFChwGk6hlqooElUXuEa559tWje9PfquAaHR0FACwvL2NsbMw+X15exn333WfXrKys9Ny3vb2NjY0Nu9+lSCTSU/H6B5EINbi+JY2UUoEF7OLzCrVQK+fGBXYTV8nA6c9yNVb9Ub+Hyyz02XqP9kWFmMJ52k4Adz3HhfxarZbdy2cqtAfslrJS5zgZnhu4oEEpOoYKEfn9fgwNDSGXy1lAxuDgIAYGBlCr1XrGAgCSySQajQZmZmYwNzeHRqOByclJRCIRLC4uolqtGuQYiURQqVRw5coVDAwMYGxsDPV6Hd1uF5lMBuFw2KCoUCiEAwcOIBQKIRaLYXZ2FpubmwBg/iydv0QiAZ9vJ+y+3d4t4kvrLRqNmsXGfLV6vW7MlVCszjuvUeZLJk2hpEJOLTkljfRz157OP/vGd7i+IFchcwWgWkZ8PtcB51kFjCIDbsCP3q/Cm3vKjWx015XCp4QQdd14dG/6WxVcBw4cwOjoKL7+9a+boCqVSnj66afxUz/1UwCARx99FIVCAc8//zwefPBBAMCf/dmfodPp4JFHHvnbbM7fGXI1MNUuVVBosqhaYLqx9RpgN3qQAk0tHQDGsNRaU+tLn68CzIUqdaMrsQ/K2Nz2kRFpG6g5q+bLNrG9amURiqzVaj0MloxK/WDNZhOhUMh8QqwE0ul0EIlEEI/HMTExgbGxMYyNjWFychLxeLxHaFFohEIhDAwMYHNzE4uLiwBgeVzVahUrKyt2LQMv0uk01tfXcePGDeRyOWNqmUwGQ0NDFnXYaDQsibnVahlEv7W11bM2NL2Blle320UikcDk5CSy2SympqYsgjAej9tctFotbG1tYXZ2FltbW6jX6ygWiyb8KeBUeXBhNQD2TLVeKSjou9TvaP3o81Sw6enN9MVxfbvpCm50K+9T9EBhTbXC9VpFNhQuj0QiPXtDEQSuhWAwaDUrlVz4UqFqDy68N33XJyBXKhXMzMwAAO6//3781//6X/H2t78d2WwW+/btw3/8j/8Rv/iLv4jf+q3fwoEDB/Bv/s2/wcsvv4yLFy9aLsn73vc+LC8v41d+5VfQarXw0Y9+FA899BA+//nP/5Xa8IN2AjI3TiQS6dkUhExcP1K73cbAwAD8fj+2trZ6oDeg1wJRbdMNpFCcXuEa1UpVC1VYRSERapKuJaKMju+nRu9q0a4WzneQuRHu2d7eNl8QrYehoaEe4UmosFgs3pXTE41GLbqP1/LzaDSK0dFRjI6O4tixY1a0uN1uo1arYXNz05hxPB6H3+9HPB4HADz//PN44YUXbA4XFxexsbFh40foMxAIIJPJIJlMAgAefvhhjI+PY2BgAIlEwpjkzMwM6vU6QqEQBgcHkUwmEQgEzFq7desW1tfXUSgUjHFmMhlkMhkcOXIE6XQa8Xjc2jcwMGACLpfLWUQhA2EajQaq1So2Njbwwgsv4M6dO3jmmWdQLBatviKPH6lWq+ZLIzNmYIJaPGo9dzodO5WYwoa+OkKtus5UqHBN0jer60cVIc2p0ohXWktENFS48HrXJ9ZvHfMzF0ZU5ZIKou43VTq5zu8Vkft3kb4nJyA/99xzePvb327/0/f0kY98BL/5m7+Jn/mZn0G1WsXHP/5xFAoFvOUtb8GXv/xlE1oA8H//7//FJz/5Sbzzne+E3+/HBz/4QfzyL//yd9uUHxhSAeFaJGqpKI4OoEcwufCIQhsUMkpqUWkQA78juYyAm05hOBVk7vP7OcFVwyUz0kP8OCaEvjRiDtgRAtFo1Bg1sKNwVSoVlMtlExL5fL5H4G1vb6NQKKBUKiEcDiObzVrQRSKRQCwWw/DwMNLpNAYHBy2oYmFhwawO9aVQ0DDij0Kx0+mgXC73BMBQWWi321haWsLw8DACgQDW19dNiNVqtbusCb/fj0gkgkwmg0QigWaziUajgWAwaNGMsVgM8XgcR44cQSaTQSgUQrVaRbvdtvJRmUzGivxyzDWXjfORTqdx9uxZHDp0CMlkEhcuXMDS0hJqtZolROv5V7q+aN2rb4lrR5OU+T61glSxoXKkwkzhOn6nECHXhVpgGuhBQeNC3WqZccyB3gAhhUdVOOkeUkGu+8AVoNoPj+5N37XF9XqgHzSLi1CSqw26sB43CaEtF15R/4QrZMgUgN0q3Ex+VTiR7wF6/U5qbdESUcanDnD1odEa4Dt4v256+gb6RThq8Ecmk0E2m0Wz2cTa2pp9dv/992N0dNS+B3YCFCqVSg+DZAg+4USN3AsEAojFYhZwsrW1ZaHknU4HiUQC3W4XKysrWFtbA7ALCd6+fRvXr1/H2tqaBTfMz8+bNcpAA/qCEokEAoGdsk9bW1tIJBKYmprC4cOHrd/hcBjRaBTDw8Pml7x06RJ8Pp8J62aziU5nJ4eL1pLP58PQ0JAJqn379iEejyMSiVgy8tramkGRAwMD9nwqBJz/dDqNSCSCWq2G3/3d38WLL76IYrGIkZERVCoVbG5u2rVMA1BfZjgctndqYILW/FOrhGtOA3lIqhi5CpMrrFzkQIWdK5hcRVDfx3t1D7gogxu0ocoZ/3d9cRyXH5Qgje+JxeXR94/I5Mn8lYnrhtOIKN3cer4RNws3nTqSNQFSs/y5KRmuq8VUNbiB7XA3NDVbtQxdQawMSIvsUnABvUfWAzsw18TEBFqtFubn5xEOh5FKpfD2t78dR48exdGjR3vGTaFEWh0UQByjeDyOWCyGSCRiPhT2e2trC36/H8PDw0gkEuaDq1QqFjVH6KvdbmNhYQHlchnxeNzmB0BPn9jHUqlkvqt4PG5MsFQq2Rjy/3a7jcnJSbTbbRSLRdy6dQvJZBKJRAKdTgfVahWrq6tYX1/H2toaGo0GBgcHcfjwYUxPT5vAYsTjxsaGRS4yui8Wi5klQqFNRQMAEokEwuEwHnnkEYRCITzzzDMAgEwmY9GHGnbPsdIAIa4lPlf9XhxLjXJ0LSL+VsuKFjrXif4welH3gd7Pz9R3quua/VAFSvPLXKuJfXJ9eBSWHF+uC0VUPOpPnuDaA6RRbQDuyfhJ3OzcAK6PCOiNXKLF4TrOVTNUgaLaITenlmdSmIibU9tEZsDr3HwfMs1Go9HD5AgZdrtd+5zBD8ViEZ1OBydPnsT+/ftx6NAhnDhxwuCora0tVCoVtFoti1BNpVImrIrFIiqVClZWVrC9vY1YLIaBgQFEIhETWMzRajQamJqawvj4OGKxmAnDQqGAQqFg7WZE3urqKmq1mkXN1mo11Ot1C/Qgg2bKQKFQwIkTJzA6OopKpYL19XVUq1Wsr6+boNzY2EC1WsWJEycs8IJWYTgcxsrKCpaXl3Hr1i3LERsaGsLk5CROnjyJdDqNdrttbbt06ZIJN10DFJahUMgSrfP5vLW1Wq2iXC5jcHAQDz74IDKZDL7whS8gFAr19I1+L3ddu0EPKmA04d71+bjCjsoV51aFVj+B5MLWChfTEnMhcoUtVfCoT0oRDt1nipa4kD6Au4S1J7henTzBtQdIhRa1MuLlmteiwkyj+NRSUwuNz2WlBfpfeKIvYS0+n5taYTzVIDWUnd8r7MN38jNqoWQ6vJd91nZzI/v9fvNtBYNBDA4OYmhoCO985ztx+PBhZDIZ1Go1NBoNrK2toV6vIxgMmmXBkHNgx+9FJhYMBjEwMIDR0VGL6PP5fCasyLhDoRDC4TBGRkYQi8XQbretYC4rXRAmajabWF9fx8zMjAmBwcFBRCIRG89YLAZgR2Pf2tpCMLhzcvKRI0fQbrftoMlarWZRhlNTU4jFYpb3NTU1hcHBQZw8edKgu9XVVdy4cQPNZhNbW1sYHx/HRz/6UaTTaZTLZZw/fx7z8/O4ceMGWq2WwbcMaGm1WibwANj4xGIxlEolZLNZnD59GrFYDJ1OB3fu3EEul8OxY8fwwAMP4LnnnsPv/M7vYHR01Ji7npWligyJzH9ra8vWFIWF+jvD4bAFkxBKJrzMKEeuJ9eKV/+YCiUXinSrq1CwqRDUfUlSBZBKGsmFPSmg2GbGAfygQIR/E/IE1x4g1cyoYeqmA3ZLQLmamiaEUnho2Ltm6eu99Ef001DVic1qC/xfc8aA3XB6tsXv9/eUoeJ7NQ9NNWW2j7lHFAaxWAwPPfQQjh8/jkOHDuG+++5DOBy2I0RarRYGBgYQCoUwNDRkQoYCo9FoYHNz095Ji2VwcBAAzF9ESImWTDAYRC6XQyaTMUazvr6OO3fu9MBFS0tLZhVR0G9ubvaU9QF2EpoJXZI5JpNJ+Hw+lMtlrK2tmSa+urpqJaKOHTuGdruNmZkZNBoNxGIxsxx5IKXP50O9Xsfw8DAeeughxONxVCoVPPPMM5ifn0ehUDBhGYlEzHKjohAMBu28sFqtZmtvZWUFxWIRQ0NDOHDgADKZjPnR6vU6Dhw4gHA4jG9+85tYXl7G6OioRQjqemZVEUYTMnFa/Tuun0nhRc6nu1fU2lGFh3uEApN7QS2lfv4noDfSVp+p/mMVbPq9KpTqG+PnCoVqmz26N3mCa4+RLnZgVxvUUF+XQWg+kwo7bmAXyqP/jPAYi6v2i37SaDG+h5+phUfhxWu52fV61awVflGm4/f7kUwmMTU1hXe84x04efIkhoeH0Wg0sLKygrm5OaunNzQ0ZFYT/XXFYtHCtjXMmhZeIpGwyLutrS0LvGBYOAWf+sNWV1extLSEbDZrAnJubg7lchmBQMAiBJkHpRo5c7/YXwp21xoJhULIZrMoFotYWFjA5OQk/H4/FhcXDQasVqtYW1uzJGQGRPAgyo2NDczOzuLZZ59FoVDA9vY2UqlUjyJCYUDBpTldtG7q9TrK5TIuXbpk625ychKbm5uW4zUyMoLHHnsMTzzxBObn5zE6OmowqyoL/SxyTdtQZUznks+hoKHio0n6nFf1s+ke6hfApAqh1u50hZn62FTg6LWq+PSD99UvzPHlOzx6dfIE1x4htQooSIBd6IMbRPF5AD2huepTAnYZATcxN5ZuMM2HoiBiIqXr0+L7Cf+pcNN0CIUECU+SUZJpUUCQqVLD/9CHPoTDhw9jdHQUuVwOPp8PS0tLeOqppxCNRnH48GGDIxndyGf4fD4MDg7aeK2trZnFQUE0MjKCEydOIJ1OY2NjAzMzM7h8+bKFjzMC7s6dO8YkV1dX4ff7DRbb3Nw0X1oqlUIul0O73cbw8DD8fr9BYYRSKQgJZ5bLZczMzCAWiyGXy2F5eRmBQAAjIyMYHBzE+vo6lpaWMDY2ZlGAhCfpf1pfX8f29jaOHj2KI0eOoF6v40/+5E+wurpqEZGci+3tbQvPJ9GvRQtarVXO0+XLlzE7O4vR0VH8yI/8CIaGhpBMJjE3N4dAIICPfOQjeMc73oEnn3wSv/Vbv4VcLtfzznq9btGRXBP0halA4TW63tzADbaPkbCEmblOuV+YnM21QWuXa1cVKAp+rTWpPmMVSoog6P6ihc01rWgC79GyWz6fz6KCtQajR73kCa49QNyc6ltyN5HrJCbpPa6TmlaIQnR8plYOcOEZhTv4PLXa9Pn9/lZ/m/q4XLhEhWoul8Pp06fx6KOPYmxsDMFgEAsLC+ZfqlQq5oOigKFGT2vJHR/mYbHd29vbqFarlsNFf9jS0tJdlggDPdh3DbNnZF40GrVakdvb2xgdHTX/yvDwMMrlsoXkE9akorG4uGjBHHwnk8mz2Syq1WqPxViv1zExMYHh4WFsbGyYb2pkZATtdht37tzBzZs30Wg0LF+r0+mgUqkYM1cIDNhh5ByPWCxmofsUXoQmW60WLl26hIMHDyKfz1sycrvdxvj4OB5++GH80R/9EVZXV63Kh64tF0rjfDCwhqRrhp9zvdDnW6/Xe+A8+pzU1wTsChE3IVrvuZcl5QZXaL6kKn9sH32oGo3LftNvrMqlZ3G9Nnl5XHuAuKj7lcZR/5NbNkmJ/hNCMWTC1Dx1o9Mi8fl8FlqtzMLVQnmfMhyXCQG7jId9UcjFjQ6jVl8ul5HP5/Hxj38cZ86csfDvhYUFfPWrX0WpVDJLanJyEvv27YPf77eIwHq9jqWlJZRKJSwuLhqU6PP5LBqQVoXf77eKF+l0GiMjI8hms3ZCMdMMstmsacntdtuYpd+/U/19cXHRwumDwaAx/Ww2awz06tWr+M53vmMWmub9ZDIZrK+vo9Pp4NixY3Y/AJTLZbRaLZTLZYyNjSGXy6HRaMDv9+NDH/oQ6vU6vvCFL5j1eObMGSwvL+M73/kOZmZmbF7or6PgppKgDJjzy3GhVUooORKJmIUzODiIQ4cO4aGHHsLRo0dRq9UwNzeHWCyGoaEh3LhxA0888QS+9rWvWYoBLXdad6pYqJLEH64bEq9l+zudjkGIXE8UGPweuNsfrPAi55FrRJU6KhW0QDlWun5UcWN/KKg0YpPCj4EwbCvv5174QSAvj+vvKOnG1c2rAgHof0Cja1GR1C/AZ2jklpbo4fcKgfSLsuKmUybA71lpXQWVG/mlffX5duoKjo2N4dy5c3j44YeRy+WwsbGBzc1N3L59G+Vy2bTpwcFBxONxgzVDoZCdVXX+/HkUi0VsbGxgdXW1J9qLDIx9JyMuFovGaKLRqJ191el0UCwWkU6nkcvlMDAwgOvXr5vvqtPpmMBiMMaRI0ewuLiItbU1DA0NIRqNIpfLIRqNIpvNIpFIoFwu9wiobrdrVT6i0ahV3xgaGsLW1paF7x89ehTLy8uIRqMWfMHIy0wmg2q1isXFRXs+C+JSy6eyowKB46FzQgFPQeHOXaFQMF/W8ePHEY/He6zfkydPAgC++tWvotPZiVxlzUT6VSm8FFWgUFFFSQOOlMmrj0j9RxQSXH+0ijRfUYWV23fXd6zP0Xfx3Qo3si9uSov64FRRUEvUo3uTJ7j2AHFhcyNQswN2y+so7EIBovcDsDp3KnDIuMlMAPRoemRY1LK5qfk3NVnVjhWaJFN0mYdGjQHoEYR85uTkJM6ePYuHH34YY2NjaDQauHz5svlpyMQymQxGRkbMWgJ2fBk8IuT8+fOo1+tmYSk8pImqhJpisRh8Ph/W19ct9D0SiSAWi1l9Q5ZUYjg7I+oIA46NjeH69euYmZnB4OAg7ty5YwIon8/3CD4Kewq8ZrOJ+fl5G3eOVbPZtAokHK9IJIJgMIiRkRGLEmXtwGg0ipWVFSwsLBjkxzB3kioXwC5DpdBwAzPUN6NIQL1ex9raGm7duoVqtYqBgQHkcjkrs5XNZnHkyBGcOHECMzMz1g8qEUw25xrSxGyF31QB07+5ZtXSUX8vhZKWXdLnqu+Ja5brVA/j1HXt5h/q/lN/oe4LhUVd61bv9QTXq5MnuPYARaNRi7BSoaTwBICeAwRJ/cJ4FaZzfVLMKeHm1xqAWnZJHdLUOlXTVL8c26EVODTUXjd6IBBArVbD5OQkfvInfxIHDx5EOp3G4uIi7ty5gwsXLljbBgcHMT09bQEXfM/m5ibm5ubw3HPPYWVlBbOzsybk2G6FhDSvjNBfs9k0i21qagr5fN5qDQ4MDCAcDmNzcxMDAwPIZDJYWVmxI1ZarRai0Sje9KY34S1veQtu3LiByclJlEolPP/887hy5Qp+8id/Eq1WC9evX7fk5cXFRRw5cgQA8I53vAOtVgtf/vKXLbKP88TQ9263iwsXLuBtb3sb3vKWt2BhYQHFYhHlchkDAwPodDq4dOkSFhcXTRAwMIGWjM6/RqYCvcfPUHHh5+pbYyBEvV7H9evXMT8/j6mpKUQiEWxtbWF5eRlbW1vYt28fPvaxj+ErX/kKXnzxRUSjUWxtbfVEU2qwCgUx/+6X1+f6YylIeWq6Wl5EEdSfqn4uBkU0Gg3bS7ouOH6KVPB/jotr7ani5u41tWB1L+o5Xh71J09w7QEiDMJNq8xFywdpWLkGROj3qtXSZ6YanvtbLSUldS6rpkkGpNAHcPeREnofteNwOIxwOIxIJIKzZ8/i4MGDSKVSaLVaWFlZwcrKCqLRKCqVCqrVKo4fP45sNotut2sWBbCbV7W4uGgBDWwzrQ0mEisDUiiV2nW9XrdACwZQkJFVKhU0m03k83lrn8+3E+V48+ZNJBIJ7N+/H9PT05brRAY1NTVlEN7q6qpVu2AIPvtCyJTJykwKjkQiFvyxf/9+pFIpXLt2zaI3G40Gms1mz6GPXBfuAZlk3oQLyazVH8PPdT65djqdjtUw5HjVajUTQgAM3pyYmMBDDz2Eer2Ob3/724jH4waJcl2779H50QAi/VuhN7ZZ76UgcdemCyXqe/k3UQeFBlUIkVQ5UEiV0KzrN3R9wLzGhUc9ups8wbUHiCWEgF6tTgVRIBAwR7tqd8BujUP1B2iABBmbCzGqoOS9/fxiJBZMJRPktc1m04JAANxlxRHCCofDKBaL+PjHP45HHnkEyWQS3W4XpVIJFy9exNbWFtbW1pDNZnHu3DnkcjnU63XLSep2u7h69SpmZmYwOzuLQqFggRpkWuwXrQtCrWQu7Jv6Jer1OtbX183yXVtbswTgcrlshWq//e1vY3NzE/F4HM8//zyazSa+/vWvY2xsDGfOnMGb3/xmHDt2zIJJGLTQbDZx6NAhXL9+3U44VqiO1egXFhYsNPzUqVPYt28f1tbWTJgzSGJkZASLi4s2LlRSNC2AfiWG4HPNaFCPWhIcX7VE3HsYgLCwsIBMJmMlsYaGhrCwsIAbN27g1KlTeOSRR3DixAkL6/f7d1IE1JJSoce132w2UavVrE2aosE0Ba47wtiMhATQsx80alD70E9o9vMBKtyn65oKAp+lIfAk/Z5t5V7xYMK/Gvlf+xKPvt/kwgsamu0yHVcL1I3thrLrZlWG5UJFFFC0Nsgg7qWV87fCc5pDppudDJXh3slkEkePHrUztHjYYq1WQ6VSQT6fx6lTpzA5OWnWCAV2rVbDwsKCVZhg+zRpmEJVNWB3PHTcOeasdchDHFnLkJAnD4BkMAcjCAnLcY5qtRoKhQJWV1fNF6VWECPjWHZrcHAQ2Wy2p+qD3+/Hm970Jpw7d858WQyy4LNY/Z5jz+oU7BcFt0K7/b5n9KG7FikMFQrm+FJYaCBRsVi0ElO1Wg3Dw8M4evSoVdVXZq3P7hcYoZaSC1Wr9Q/sJvnqD0nXL9erCjfOh8LiXC9sj+vnUj8Y96OuObZZ9xq/1/Z7wuvVybO49gDpJuJC5//q4NXF7iYiK1yhG1s3P9B7SJ9qf3yPJgUro+emJKm2rtAKP1P/F/0PzWYThw8fxvj4OMLhMEqlEubn53Hnzh3T9k+fPm2JvGTGasGtra1ZoVsyA9bhIyN1o9cUZuLnGk7NZ/Dsqm63a8V12a9IJILR0VGzILLZLDY3N60c09TUFKrVKpaWltDtdrG0tGT5UbQiyPRrtRqGhobsLC6WRhocHMTY2BiOHTuG++67D4FAAN/4xjfM98b+MFS/VCrZuLbbbQsEYf+BXgtD1xmv45hoqTFXydGEYLXmuC45djzuJZVKIR6P4+zZs1hfX8fq6qqlaiipwqbrxg1yIIzu8919aKm2k9+zT67vivvFDdzg/bpntK9q4XGPKOzp+rNcWJPjy3w6vcaj/uQJrj1A3Kw85I9auev4BWCYOpkQN6mG5vK8H60jqI5orXqhxHeodk44rdPpmNZP2Ib+LjIWbmhq46yaAezALD/0Qz+EH/qhH0I0GkW1WsUzzzxjVSHuu+8+6+vS0hK2t7etNJMWg52fn8fKygo6nY5F3DGvjEJH/X7hcNgSQ8nYCG2yDwxYYah9MBhEKpVCqVSyqhM8OZh+nmq1imq1imQyiVOnTuHMmTMol8s4cOCA1eejNUYYlYLM7/fjscces5PDNzc3USqV8LGPfQzDw8OYn5/Hb//2b2P//v2Yn59HtVrF4OCgwaGJRALJZNKSmNfW1lAul3ssOwo3MktaeN1u1/xstFaBXSuHygLXB4OGmCysilKj0bA1wijMcrmMCxcuoFar4ZFHHsHo6CgSiQS++MUv2hjrWuW6d60orhn2SSMeacFrAIZah5xzTXxXaJZrFeiN2uW72R9exzEKh8M9uVqqYKrAdFEHpjqo9eoJrlcnT3DtAboXzKHwoDqXuTmo9akGqBvOjRBUR7cmKgPo0XR1I1P4aIFZarGuZcZ3aHtp1UxOTuLEiRMYHx+H3+9HpVKxBNWhoSEkEglsbGzYAYzxeByZTKanLQqJsq3UhBVmVeuLv5VZqOXItmsZKzIkPndra8usmEKhgGQyidHRUayuriKRSOD48ePIZDIWDVgqlZBIJOwZtKjUuqIFxSoZ0WgUyWQSGxsb+OY3v4lr165ZHhuDNxiM4ffv5HFRSUkkEiiVSjb2qthwrFRgKJOn8OGcabKsVrbgugsEAj0nPQcCAVMgBgcH7d2EMScmJnD//ffjz//8z62AsAaLaKKvBkfQL0Zrl33RACWuZ/XvUeHTta3r0c1VdINBuAc1WlfLTynUx+fqGKmlqNA+x4prTtvk0d3kCa49QKrFqmVEAaXCQTU5MmXi6wDuEnLc0HTAq1+CxI2rVQ14v2uVkSlQYLqMRJM+FYbZv38/pqamkE6n0e12DerLZrPYv38/CoUCLl++jFarZf4kMg0yW7VCGfHGwBOFa9QK1fBqWh5kmqrl698AzAkfiUSwvr6OVquFoaEh82MdPHgQ7XYbyWQS+Xzexi2RSNizK5UKBgcH7YgOBkqwHFOz2cTq6qqVaFpaWsLt27dx8+ZN1Go1K6ZLJlqv11GpVADsHoTp8/nsDC9CqhwXJYUL2R7XH+NGwvWDvSiIA4GABRXRMotGo8jn8zYPhUIBqVQKR44cwcjICObm5uwe9SvpuKuA7BccAuxC6lyzro/OhSWpwOn+4vM0ApCfqZJHIatKUT+fGq91n+H2Ud/v0b3JE1x7gFQr5v8qqLgJtGyOhrlzc3OzqzVCJsnnqsXGPBiFXfgeCiUGJ1BAEk7ie1S7Z3tVoPGgxkcffRSHDh1CLBbD+vo6ZmdnMTg4iH379qHZbOJzn/scFhYW8M53vhNjY2M4cuRIzzlizN+ij8eFeACYYCLcR+FA4Q2gh0mS1Mne7XaRSqWQTCYB7PiRZmdn0W638ba3vQ3Hjh3Dd77zHRw4cADDw8NYWVnB5cuXTfOn9fP0008jHo/jbW97G4LBIEqlEvL5PLrdnTJcr7zyCtbW1nDt2jWkUilMTU3hueeew507d1Cr1SyUXyNJm80mSqUSOp0OcrkcHnzwQXzzm9+0Kh08DoYh82wTIydVkVGYjXOqEawunEflgEKSB0wmEgk0m01cuHAB1WoVjz76KEZGRhAMBnH+/Hns27cP+/btwwc+8AH8yZ/8CS5evHhX+DjXjQawcN4BGDTNElSugqJ7QNvN/rvJwkBvTqRC5BwPKh+0QCm8KIgUQgd6/ae8Ty1cFaiaa+ZRf/IE1x4h1cJ0Y7jJkKrlETpxmTIZFJmN+w71VSjz57MVLlMNkdfyvf0EJe+htUSBNzIyYmdura6uolwuY3p6Gj6fD7dv37Yag/l8Hvl8Hslk0rTzSCTSU8ORfg8K8n7jo458bSN9OAoV8RpWHmH9RsJ+nItAIIB4PG5WY6lUwu3btw3qm5qaQrFYxK1bt1AqlRCLxfDWt77VigBnMhk7QuX69esmtOr1Om7fvo2xsTEL4d/e3u4JISdTZCBEJpPBxMSE5aDxOfRFAug5F41MmqRrRa1tHT9lssAOc04kElZkV/19CwsLKBQKdtTM8PAwfL6dqv/1eh2HDx/GmTNncOXKFVO83CAJVSoUCiepcGDbFYHg2mOis657Pk/75/rVFNbjuKuAZHvc4BVd9/oZhaAbbOXRa5MnuPYIUQjoxtGACP6vEJhqcFqYl0yFzIHaOxkZ/6cWr5oqgB5IUa0/V6tV5kMYTOEjnnn12GOP4ejRo+h2uygUClhaWrINPTs7i29+85vodDoYGRnBwYMHMTIyYu0bHx9HOp22hN94PG5Fa12NnWNBoo+GSbrqn1Dml8lkkEwmLZJxcnLSSjwVCgUkEgkMDw8jnU7D7/cjk8lgdnYWzz//PG7cuIFwOGxHmywvL6PRaGB9fR1nzpzB9vbOGWFra2sIh8NWkX5mZgbPP/88BgYGMDExge3tbVy7dq2nirzfv3M2GX1ZhNgqlQoWFhbw6KOP4p3vfCdeeeUV+P1+TE1NoVwuY2try5KXNcSec6RBC1oqyRUSjFSMxWKIRCJ2KnK5XMbVq1dx/PhxhEIhrK6uYmFhAZ1OBy+88AJu3LiBI0eO4L777gMAK6v1+OOP48UXX8Ts7GxP0WFgt7AzS0VxjjTQgYFAug6p5Gngh0ZKMn+Qe0oDJPgcphswEMWF5tViVwHvhsqzSosGk7DdujbdwzE9ups88b5HSLU83QwKg/SDudrt3Xp3bpitq8GqExy4u5qEaokaAs371fdGUn8bn0ltlsxyfHwcAAxeCoVCiMVixuAZEacwj1YoT6fTPSf4so20wrTUFLAbaEFGxsAGtV752fb2NhKJhAUAUDgqgwwGdyrAk5kzWCMajVpwRjabxdraWo+TP5vNmvBj5Q++l34iFu9NJBIIh8PY2tpCq9Wy/LVEImH949gzFL9areLgwYOYmpqCz+ez9rCkFQUOrUethEGq1WoWNOEyd/rM/P6dJO9sNot0Oo35+XnMz89bhRNCuBQWW1tbmJubw8rKivW92WwiHo/j8OHDViyZQlXXniIIqsjpOqYSouuxX/BEv33gKi8KvauQJ+SsaQgaeOFab7oXVAl1fb269zy6N3mCa4+QbjyFUChEXi0KSQUNIRGN3ALQs1HdjaZWHv8H+p+srBuSRK1Sc2x4/cDAAIaHh1GtVrGxsYFWq4VUKoVEIoFarYZGo9ETpcZjNWglAbBqEqFQqCcYRVMFdLxUULmCX30UFAYMViiXy0ilUggEAnY/rUpaL41GA2traygWi4jH4xgfH8fIyIgFbXC8+Ez2mzlinU7HCggzNJ7njWWzWTsnbGBgwIrZbm1tWc0/n8+H/fv3o16vY2FhwSp0UNjyhGaOLceM86mV45kDxqAXjh/Hn2PGiMhsNgu/34+FhQUEg0GzJBcWFuDz+QzS9fl8ZhUuLy+jUqmY0nH69GkcOnQIrVbL8s4oKKg86HpVhUiDblQ46D5w9xP75OZK6l7ol6cG7CbPu3C7GyClgRxsOy0s3SuuEPPo3uRBhXuANPjC1RY1kddN4CTTVqiHm0ZxdmqpGohBogOcgRrAbjKzRuW5NQs1Kk+d0Z1Ox5hnu71zrPzhw4d7qkm0220UCgXLzTp58qTlPi0tLSEajSKTycDn26mc4ff7LaJvYGDA8n7oHGd/FC6lZUSnP8eYUBSd/7lcDoFAwHxZg4ODAHYYHEP2GdE4Pz+P9fV1LCwsGLNvt9s9FSOi0SgmJiYMblxdXcX8/DyKxSIikQiGh4dt7hgaX6lUMD8/jwceeMAiDAHg8uXLWF9fx+3btzE1NYVWq4WtrS2cOXMGa2trePLJJ/HGN74RU1NT6Ha7uHXrForFIh566CGsrq5aSSzChpxjnlTMQzEZdk4GroKNa2D//v12OCYtxlu3bmF7exu3bt0yOHBubs7WUKfTQbVaxde+9jW86U1vQrPZxIkTJ7Bv3z4cOnQIv/d7v2d95Ry6AoDzzGTpWq3W18/EuWAuHmFFrnGGx7tBFHwX14gGFnGOKSjVIlMlk5Y4A6EYvKTPZTu5j90+eNRLnsW1B4ian1uqyA1X5gbQaCbdhK6PB4BBILSG+B4KI2rC/I5Mi5CcnmelEKAGNVCb1U3MPo2OjiKVSqFarRpMRYZOKAmABS2srq7asSZaLJYCOhKJWMKxMjRaBqzeTquBjJhtjkajVs4pHo+bIIzH43bYHU81LpfLJhjL5TLq9Tqi0agFZwBALBazU4bpr9q/fz9GRkZ6ErA7nQ5WV1ctKpDtoZVM/9rKygpmZmbsnuXlZTsnjAnqsVgMp0+ftnD88fFxjI+P44EHHkAul0MqlcKhQ4dw4MCBHkFdKpXM+qMiUSqVUK/XDaIMBAIYGRnB9PS0tcnv9yOVSiEajaJQKKDZbNpZZKxdmclkLOGagiIUCmH//v0IBncqy4fDYdRqNQwODuLBBx+0ueFJ1a5g4drS8mOcQ865BiKpJa5VQSjUdB3oXlKkgQJcIUzer4KG72EOmxuZy/njMxS18Oi1ybO49gAp3OBi9BRIGqGkG4BCQwWTaoSa8El4hM5/aqQubKEh0woXAjubkVaaWnF67hW1z8HBQUxMTCASiWBpacmKvrZaLVSrVTv7amJiws6yqtfrKBaLGBoastDnVquFQqGAQqFgeUhMnNVQfLaX93C8lFkxz4oWl0bKbW5uWgDF+vr6XZXc/X4/RkdHMTY2hps3byIYDCKZTGJlZQV+vx+nTp0y2K5UKhnEyAr4lUoFS0tLFuTB3C7mZm1vb6Ner2NmZga5XA6FQsEKD3e7XTuIMhKJ4MCBA8jn84jFYhgZGbHIxlarhdu3b2P//v0YHx9HJBJBtVrF3NwcSqUSQqGQJTZTmeCa4E8ul4PP57OTyGOxmFnRS0tLqFQqJsCbzSYymQxyuRzi8TjW19dNqeF48tyuVCpllufY2BhOnz6NCxcumBXONeBC3iQX4lPYTtcnsBtcokFNbtqG+iMZMMFncU8waMO18LhH1P/ltk9hTn2u64v26G7yBNfrnHQTbm1t2efU4BSGU2yfMJObqMlNqOG/FCZ0NGsiZrVaBQCLWuMGZv4TiZYHN7rCc66jm9r2uXPncOTIEdOq+ZsWwPDwMGZmZrCxsYFisYjbt28jEolgcHDQTjTudneiAi9cuIDV1VUEg0GMjo4in89jcXGxJ+S90+kgnU4bI2SxXFpI1IyBXQc6j02Zm5vD2toa3vWud+HkyZP4i7/4ix7Llwz86NGjCIVCOH/+PICd2omZTAZnz55FIpHA7OwsqtUqKpUKJiYmMDY2hsnJSRQKBZw/fx7NZhPlchkHDx5ErVbD2tqaCXKe88Vq681mE0NDQxboQEsRAHK5HM6cOYNOp4Ph4WGUSiU0Gg2Mjo7i9u3bBreyUPDExISdSByPxw0W4/jRAq7Varh27RoikQh+5md+BrOzs3jxxRcRDoextraGWq2Gc+fOYXR0FNeuXUM8HsfU1BRSqZQJ4cuXLwMAlpaWMDs7i3w+j29/+9v4wAc+YMI7n8/jYx/7GK5du4b//b//t1lkuqY0OESDbXiUDdczIWcNWVfhQUtM+0trnuuC65OCUCMZNaSd32lCMvemwn9aAoqCyj1uhsqXR3eTJ7he56RYuwYMqENdNTcKEG44hSc0uoqkm1HzePidbjwGR2hypjq1VTvVkGQKTH0uLal0Om217gBY0EW9XsfDDz9sMFWtVkO5XMbKyorBUslk0uBPnuzLk4oJS62vr2N5ednaMjAwgMHBQcRisR4fF8eNgjmZTCKRSCCTyeDixYt2xtTw8LCFxpMJUhADu9Ara/PV63Vks1kL/S8Wi/D5fCb4Y7GYWXSJRAIDAwNIJBIYGhrC2NgYCoWCWV7xeByhUAjDw8MmdLkGNjY2rOahVq9vNBpIJpN2LAqFN4UAT23OZrN2hpf2hTUXWZmffdq3bx8ikQguXbpkvrWNjQ34/TvpAFRAMpkM8vk8qtUqGo2GpSDonPn9frz00kvYt2+fCaHl5WUcPnwY09PTGB8fx+3bt/uGrOuaUxic86OBFBqZyP2i8Lc+X98B7PrBaEHxfq5n7lX+pnClEsC9w/3MJHgmfits+WqBVh7tkCe4XuekmprWbqM2R2bFKDdNhlXN0HU6awIyoRegN2GSIdTBYBDlctk2XD+BpNojNUYyIc29IbS2tbWF06dPIxqNYm5uzp5ZKBRQq9UwNzeHN7/5zVhaWsLly5fxwAMPmDWxtraG1dVVTE9PIxQKYX19HRsbG+b4Zm4Ryx5FIhELHyezIGOgpUnGxIhG+rE2NzexvLxstfaOHz+OeDxu0CcDGSjAFxYWcOnSJSuMm0gkMDIyglAohLW1NbTbOxVJDh48iLGxMWxubvY47FnZYmFhAfV6HRsbG6ZcbGxsIBwOY2Njo6fUVbfbxczMDCYmJmzcU6kUTp48iZs3byKfz1uxXQqzmzdvWoRksVjEk08+iXq9jlQqhTNnziASiSCXy2FychKxWAw//dM/jaGhITz33HP4xV/8RczNzeEb3/gGUqkU3vWud+GFF17A7du30e12Tfjed999yGQy8Pv9uH37Nnw+H86dO4fh4WFcvHgRCwsLWFhYwOjoKLrdLn79138dn/jEJzA2Nobl5WU8++yziMfj+Mf/+B/jlVdewVe+8pW71iD3BC1ERmtyrZA0YlQDPJhawSAJrdOo12uaBdc1hQwFl6ZIcA9q0V3eS0uNe0PzKpkn5vm7Xp08wbUHiNaI5utoqSKFrFytTS0yFTaERzR3ycX1aRmogKI1pZopmQmd9W4eDaP19KiLUCiEVCqFTmenZl0mkzHNvVQqWUDD+vo6Op0O9u3bZ0Lx1q1bWF5etoi+hYUF5HI5tFotbG5umi+MDHR8fBy1Wg3FYhHAbjFeOs+TyaQ565kv1Wq1UC6XMT8/j0QigUKhgKmpKStey4oQjNgjlFupVFCv1xGPxw3WZN5UpVIxhhWLxRAMBrG4uIhqtWpCnUxsZWXFxprQJhNgS6WShZazIv3Nmzfx2GOPWU5bLBZDPp/H1atXbZwYjs9Tipl6QKGfSqUMuszlchgbGzPri1Gb165dMytke3sbb3rTm5DP5/H888+bX9Dv91sRZAbKMFePlhF9ae12246EmZmZMZ/Y1NQUrly5gpWVFRw5cgRnzpzB4uIinnvuOdsXCrNReGhyuwoBRSGIFHB/UIHTMkxqPQG7UY18L5VHRRbcXC7dR36/36rZ00Kkta+FrNXXxud5dDd5gmsPkPqNNLJQN5huEK0aoULHFXC8TzVMXqcWEjVDraTg9++eQKsbjhYF362HT3JTk2EODAyY74Xaaa1Ww507d9BqtbC6umrwUyAQsLwmWmzLy8toNptYXFzE6dOnLXgBgFkP8XgcBw8eNN8R28sEXDI6Cg2XcZTLZcRiMRQKBezbtw8ALCLRPXK+UCgY7En4sVarYXV11foHwBh8KpWyyhnqX2P7fD5fD9REi5pzwKjPZDKJubk5K2LLaEfmeNEXxHJWFMx8d7FYRCaTsfdTwSAcW6lU8PLLL2N9fR1PPfWUHb8Sj8ctMjEcDmNsbAzRaBS5XM4O1eT641rZ3Ny0Qsmshj8yMmL+zGvXriEcDiObzZovr9FoIJ/P48EHH8STTz5ph0+6gotrlbCcVm7RXEf9H0DPOnaFBaFGRqJS2BDqVDTERTYoILXQsAZ1qEBl+3U9enRv8gTX65y63W5PTTpCGQy+YBV1anxkagpfUJCpH0A3ssKEhDm46RnyrpooLTP6hFgkVrVdzbvhtUwmbrVaePDBB82yAGCh1Cz5dOLECWxtbSEWi5nls76+jlwuh4mJCdRqNSwtLVmY9he+8AUcPnzYkldbrRaOHDmCfD4Pv9+PcrmMZDKJ4eFhGxPmLs3Pz1tOTiQSscCO1dVVK7F04MABPPzww1hfX7f8JiYNUyCsrq4iFoshm81aQMXm5qYFClBo0PczNTWFlZUVU0gAWEh9KpVCt9tFPp9HsVjE9vY2lpaWrBYiA1FYnDcUCqFYLGJwcBDf+c53kEql4PPtJPpub28jGo2a4MzlclZ2qFKpWP4Y869GR0cxOjqKkZERHD16FJVKBU8//TTK5TLGxsZw584dzM7O4sMf/jD8fj+uXbuGUqlk1+fzeUtQ5hplfhWVEkYalkol5HI5vPe978WZM2fwMz/zM3jxxRfxzne+E4cPH7YIzoGBATz66KOYmZmxwBhGoGqQRq1W67FcKUjow9I1TTiPwk4VLM3/0/B5rp2BgQGDXVUR5JpXi419575otVqIxWLodruoVqs9uVxURjx6dfIE1x4gCgqSwn2EjyiQtBIGNyGJm4NCSzcin6nJjxoEok5ubkz60zRiUHO+9LcetkdNvVwuY2NjwwIEGByQzWYxNTVlwQjc9GREyWQSY2NjSCQSCAQC5nO6fPkyjh49imQyiU5np7YhSy1RoKdSKbNomO/DdjL5NpvN4pVXXrFqFcBOPhaDDiisFfKitqywrlq7WnYqFothdXXVYE0K0UqlYpYULWgGSGjZLlf5YPRjoVBAPB43KJDh42o19AvOocVAa+ncuXNIpVIYGhpCPp+31IWhoSHUajX8/u//PoCdAJa1tTXMzs6iUqnYfNA657tofWxvb5slFo1GMTAwgDt37mBpaQmJRAIHDhzAsWPHcOnSJVy5cgWDg4NIp9MGwcZiMTzwwAPY3NzEs88+exfEzXWqfmAAVsRYaxkSoqMQY7i9tlv9t7pXKHw0iEPXulpQhPNpxap/WIWbttkNkvLobvIE1+ucaCmpw5YMiIcEMjmTjFMZFIWKkpu4q5oorTBaCD6fz3J9NKJRLTEycDJVthfY9UPo5n/ve9+LBx98EDMzM1hdXUUqleqB/s6dO4e3vvWtGBsbA7BTw5C+KEKhDOem74gJsZcvX8bZs2exf/9+y7FhCDyDLwhNsqAtSwuxSn0gEMArr7yCWCyGI0eOoFwuI5PJYGhoCN/5zndQr9dNS2aVjkqlgqmpKeRyOXOyDw4OYnBwEDdv3kSr1UI+n7dox/Pnz8Pv92NwcNCsgmg0aiWWGHjQ7XatGsXY2Jjlt01PT1sAAmHPW7dumUDf3NzE4OCgjX+pVLKCwOqP4TuBHUE0NTWFY8eOGbzXbDaxtrZm+XZ//ud/jmQyife///1IJBK4fv06bt++bQy80WigUCig2+32VKMPh8Mol8sAYNbf1tYW8vk8bt26hdXVVWQyGXzoQx/Cs88+iyeeeAJjY2OW2jA7O4uZmRk89NBD+PCHP4xkMoknn3zS1rCiDgq1MfGY0CGVBzdC0E3uV6idglcrZegxMLReVXnj+LqKg/q4gF6YkoiGQqAe9SdPcL3OSZ28JNeKcjVO9X2RNDDDDY+nBs9naBKzRmPRElMhR4aggSLciOoIVwuPB0Zubm6i2Wxa5QxCbwwMYLCHtp1toyBkW+jk39rawo0bNyw6sFwuY//+/Uin0wB2fRX0Z7h1DymEtra2MDw8bHAi/WVXrlxBoVBANps1X0ogEDCf2sDAgFkJ+Xze/DEqiJrNpoWjc26CwSAymQzq9TpqtVqPIz8ajaJUKlmtQp4MTeuCxYALhYIlKytUxqoYTBjmfNNf0+3unKNFQasJ1ZwXWm8vvPACzp07Z6dPr66uGkPm2JXLZQwODvb4klhLknUJOT48GXpjYwNTU1NWCX95edkiESnst7a2UC6XMTIygjNnzuAb3/hGTzSrWmC0YLhm1RdGXyznvJ8F6+ZraRShK2BohbkBSxRm3IsUrtw3iiSwvRoc1W8fe7RDXsmn1zkpk9YNSmGgoexAb/FQ3qPWGjVU/q0CgJuF2iewW22CGD83LJmtQpP8rfAi/Tuslu7z+azyQrFYRKPRsBBvWnWZTMaiDGu1mkGG1G5TqRQGBwctRHlgYAB+v9+O61hZWcHFixdRqVRQLBbNuhoYGEC9Xje4j74XwnUcp3K5bH4oatPpdBrJZBLXr1/HK6+8Yr6qra0tY4QrKytoNBqoVqtIp9MmvOPxuAmZWq1m/iBaTArN8mgRCkWG9xOCpBZ/8+ZN3L59G8ViEZubmygWi6jVaj1VNshIa7UaFhYWUCwWTdPnvFCgZDIZZLNZDA4O9oSEs2ZkMBjEnTt38PLLL2N6etr6vLi4aMfMsFQUK8Nz/dDCjcfjPRGu+XweR48eRSaTsaNsGA157tw5LC8v49atW1Ztg6dAb29vY3p62tAFXfdqUWlABAWKJibrumVb+RzN++LzSW4eJaFG7h9eq6iD7kE+kwLLDaH3oglfmzyL63VO3AhqKemi1ioXiuMzdwrorXWozyXEpxozsLuBCT8ymooMQK0BhUgUyqRQIeMHdv1jPExwdXXVoKs7d+6g0+nY0RZjY2NYWVmxvtdqNdRqNSuuS+e2379zzlQoFMLVq1dN4Ny6dQvj4+OIx+OW3Do0NGTH2WudQga6sITU2toahoeHkcvlLLR73759Fha/uLhoEXdzc3MYHR1FOBzG5cuXEY1GceXKFfzoj/4olpaWcO3aNYyNjVmxWlaMn56etvEng6XQIxS6uLiITqdjZ25dvHgRACwicX193cpF8Rm3bt3CuXPneorIsnagBskwKpBFijV/jQoE2xwKhfDNb34Tn/vc5zA8PGzWJquZvP3tb0elUsGf/dmfmcJUKBSQTqdRqVQsAKTT6WBjYwOpVArDw8P4y7/8SwwPDyMYDOKVV17B+Pi4rb0zZ87gwoULuHjxIgqFAg4ePIhUKoXr16+jWq3i7Nmz+If/8B/iD//wD1EsFnsUKtf60VMJGLjB9ahWE9tI60f9n8Bu4rybcMzz67TuJ++hgNccLeaNacQjoXdC8yqIPbqbPItrD5Bqa8AuxKMn/LpBEQqRaPkZWlNqUVEYqgB0YRHVKtXPxb8VVtFgDb6/09lNDg6FQpaYScuFwjEWi2FwcBDxeNyEcr1etzDq7e2dI0lqtZptdOZjRSIRbGxsWBDGzMwMNjc3sbS0hIsXL+Kll14yzZ/RjdTymfjLkPp4PG7+OuZkMf8qFovZ+5kPxdw6CkDWEaxUKhaEMTg4iCNHjmBkZMQEMccvGAyiWq1ibW2tx2pidXTNkQKAUqnUw3j9fj9yuZwJIgZDcL5YcgnYPeoegMGSjJKjz67RaGBzc9P8nU899RQ2Nzdx9OhRW4dra2vmXz1+/DiGhoawtbVlvkiuRS3SyzWqVUey2SyazaYlWLO9J0+eRCqVQrlcxuzsrJVyYgHgw4cP48SJE7YuXX8q94j6kCi4VBFjW/W3Xu+miyh8rpCt1v3ktZoOwvnSPa2fU0i5FppHd5MnuPYAcYHzbxaS1Ug7hT+IlWsEkwoQEnF4fYf6jfg5AKsu4VbZ5vtd4acaI6+p1WrI5XJ2YCKtFgpGAFadPRAIYG1tzc6ZYuFXZUTsayCwc64VDyDc3Nw0i2V2dhbATkHXq1evYn5+3qBDCikyOZZQqtfrPSceE4qs1WoG2/GUZVpuhA15/MlTTz1l1gKFOEtVsf8LCwt35Q4RHuT/hDIpYNlHBj0Q7my32xgeHragGlpwnHNWjtfCuVQKACCdThtEG4lEzNfGnK9XXnkFw8PDmJycNKbPWpBbW1s4fvw4zp49i2azaRYoGTyTuTudjvmxeGLy6OioJSdvbGxYGax4PI7p6WnLLyuXyygUCkgmkwCA5eVlDA0N2SnLbroGlTmOlSICKuRodVMRU0jcRTd0zVPZcAMpuH9IvM4N/lA/M79TYe8JrVcnDyp8nRMZjBaL5WbkkRG60TR7X//mdxQYCvWpL4zv1GACxex9Pl9PdBXQ69ciw6CfQHNkgsGgFdWlEGPkICPegsEghoaGAABPP/00qtWq5RgRJgTQw6A7nZ3qG+12G/F4HBsbG1hYWDDhNTo6iv3798Pv9+MrX/kKTpw4gQceeAATExMolUpWvT2RSFj03fj4uOWW8Yyszc1NTExM2Dgy8IHzsb29bXDl/v37AexWdO92u7h+/To6nQ4eeughC3YoFos2VswB63Z3cn+2t7fNggqHwxgYGDDYj/4yWsKs+8dAh263a3lxa2triEajdn6Yz7eT2MzggGw2i7GxMavhuLm5idXVVXS7O3lG3/rWtzA1NYVHHnkEBw4cwNLSEr797W9jfn4e+/btw/nz5/GLv/iLmJ6exn/+z//ZqneoZXPp0iWk02m89a1vRT6ft2oda2truHPnDr7yla9gdXUVDzzwAIaHh7G9vY3Dhw/j9OnTWFhYQCgUwu3bt3H//febZb21tYUHHngAf/AHf2C5jlwX7XbblBKNPCR0rblzhOq47t2QdY6T3kMlhydEa9CF+tN0ftTS5P5RAebuKY/uTZ7FtQeIm4JMm5FkhNIYqksNVy003q+JmPxfs/w1WpAJvGq1Aeh5j2Lz+k5er/lgZGIDAwPmx2DVc2L+DCbg2VetVsusIwBmZTYaDUukdUsssV3MiWIB18XFRayvr8Pn8yGdTqNQKODGjRsIh8MYGhqyAIVut4uNjQ07boNjx/JM7fbO+Vb5fN6qPnAMlalRMLtpCY1Gw4r+RiIRTE1N2fi12207Adrv96NUKqHZbFqxX8KYTLBVzZ5aPy3UUqnUwxjb7TYSiURPsAzbHY/Hkc1mbZwpADnm169fx1NPPYVjx44hm81aZOXc3Bw2NjZw5MgR5HI5XLhwwRLGCWtSWWHU5fr6OhYXF1EoFKx01ze+8Q18/etfR7VaxUsvvWRRh37/Tm7aqVOnDCIeGhrC5cuXrVI+gzaYgqBrm/tEEQUKNipWrk+Xa0t9Yhq1ST+VIheEFd0AKQ20cCNzVVC5QSUKPXrC697kWVx7gBR+o6DiJtV8FUJu1BCpWVLTo6BhODYtJW4ooPcQSmBXaFJ7VoHH52k7CGEFgzsHBlLQtdtt7Nu3DydPnsTKygpeeuklLC4uYnBwEIlEAgDsWBDmUV24cAEHDhywmnxDQ0MWsKEHWRIqGxgYsLOnCoUC3vSmN1le0csvv4yBgQE8/vjj8Pv9WFlZwbVr1+zkXjrMr1y5glu3buHkyZNoNpuoVqtWU3FhYQGrq6tWhYMllRimvbq6ameIKQxULBYRi8UwNDSEdruNa9eumdBgEdpGo4GZmRkUCgVEo1HLw9q3bx+azSZWV1dN+HIOqCTwXTdu3MCxY8dQKpVw6tQpm7dsNmuV10dHR9FqtSxJO5FI2HcMgmFU5cbGBn7t134NExMTOHr0qFljL7/8Mj7ykY/g137t1zA4OIj3vOc9+Pmf/3mDRT/wgQ/0CI9wOIzJyUmEQiHMzs6iWCxifHwcp0+fxtzcHAYGBvDggw9iY2MD3/jGN/CGN7zBKmu85z3vwec//3ksLy+j3W4jl8vh6tWr5sOMRqN497vfja985Su4fv16T1QsBY9WvaBlRuIccZ8wCpG5ZxQsRDcYxMHnaLAGn8d+q59Xoym5h9W/pfe5YfQe3U2e4Hqdk1o2qmFr5BLQeyw9mRs/B3bDeXmvhr/rpuFG5bUKoSgjcN/rbjK2QbXNVCplPi0mDjNHioEPhImWlpaQyWRMGEejUQtU4EbPZrOIxWJYWlqyOoSMUgyFQhgYGMDw8LAx/FZr5xBF+liq1So2NjYsPJ7h8swbIgzJ3CRWiOBhh2RkDDxgcV/WK/T9/6MXGcnHXDLWCGTtRVqyPC2X11BAc07o4yNspcoDAKysrGBqaqqnHd1u1/xyGpTDChsMyKDysba2hmvXrqHVamFxcRGJRAInT540f9rMzIwFt6TTaVy/fh1nz57FO9/5TszNzSGZTCKdTpsyQUEyMjKCeDyOubk5lMtlFItFg1NXVlaQSCSQSqUsEvPQoUOIx+MYGxvDyZMn7STmEydOmH+xVqthfn4e+/fvx4EDB7CwsGARkbp+++0pfkeLySUKNPoBFVVQBILrX+dKfWNuwJOmirj7j8/x/FuvTZ7g2gPkLmSNOlKIzvVFqXBSBkcNk4JFgzfU+tJgD4bNuyG66vTWDc128D0+387pwizPBOxsXsJ5AOzcKPp+mKdD6ArYTY5m7lG73Ua1WrUK7IwWpH8tHo9j//79mJubg9/vx/z8PDqdjuUilctlrK+v94QyA7ADFuv1Om7fvm3wJoMrKHjYD2rpFAhuRCfhLTInDX2v1+soFAoWes8jUEqlko0Rn0ltnXNNiIlCgsnTpVLJKrrTL0krhEJ9e3sbiUTCLN5Go4GFhQX86Z/+qT13amoK2WwW7XYbc3Nz+Na3voXh4WFsbm5idHQUly9fxrPPPouzZ89ieHgYnU7H+sX5YoQmfXXs7/j4uNVrHBkZQT6fx5UrV3Dz5k0rHpzP5/HQQw/ZiQChUAhTU1O4ceMGWq0WNjY2cP/99+Pw4cO4dOmSCRkXkuNvtkNLaClUp34nV4ioZaSwH4n7Si0sN2pXFTlVPtz3eNbWq5MnuPYIKR5P5qehvLrwaaX0EyoALHSbG1pzwXg/n0utkgffuQVJgd1SNnwGIUq+v9VqIZFIWOTa9evXzQIpFAqYnp5GOp3G2bNnMT4+jlu3bmF2dhaDg4PW51arZUfUE6Zj2SCWhBoZGbF6eqyXV6/XcfDgQRw4cADLy8tYXV3FnTt3sLKyglOnTiGXyyEYDGJtbQ1Xr17F5uamjRcDKL797W9bxB4tPdbOUybFzxm5p+V+eHAlsCPo7ty5g/n5eYN0l5aWcPToUdPI0+k07ty5Y4nUzKdSK7bZbCISiSAajWJrawvhcBjz8/OIx+PY3NzE8PAwWq0WlpeXMTs7a5XeWVOwXq9jfHwco6Oj2NzcRKPRsBy1sbEx+Hw+DA0NIRAI4Itf/CLOnz+PRCKBo0eP4saNGzh+/DjGxsbw3HPPIZFIYGpqCq1Wy5QE+g4JMbII8NbWFur1OhYXF5HL5fDGN74Rv//7v4+PfOQjOHjwIK5cuYIXX3wR+/btQ7lcxiOPPILNzU383u/9HmZnZzE8PGxwKtfnfffdh7W1NaujqLlcmlyulo4GRjB4gwKFZaI6nU7PwalUAphaoPtOrS1+rud4cU9S6NEKZl4ZfXBuUQGP7iYvOON1TtwA97Km3FBcrbChYc/qlwJ2ky/dd6m1RZ8WtVIVkO513KDqg6GGTWZMxziDEOiLoBCbmJhAPB7H+vo6isWinQ914MCBHtiN763VahYuPz4+jiNHjljiNaGtarVqodi0CCjYb926hVu3blkRWQ0v17az/3osCN9D/wcd+BpowvEivKfVGCh0C4WC1VPkUSm0ABnVyAg6CnDOLYnMktYM31GpVOD3+7G2toaZmRnzORIaZSg/YVtGHDL6LhqNYnh4GIFAABcvXoTf70cymexJh5iYmMAb3vAGPP/881hcXLS0Bj6Xa5DBLgMDA5YIvra2ZodrxuNxfOlLX0I6nbao0o2NDdRqNfPD5XI5rK6uolKpGOTMY2MYyenC6GpJqaKngUnuPuB+0UhZhfsI27rfafCGKm66tzRqkO/WnEwNiffo3uRZXK9zUuvKDZsl7KNwBwDT7qgl0nfCvB5uSm40voeMldCclg1S2IRCVIMEtG38TqEZau8MV2d7hoeHUavVcOLECRw8eBDb29t48cUXsbi4aNZVIpGwfjCUn4yajJCa/dzcnEFGS0tLKJVK5veJRqM4duyYQVX1eh0zMzPY2NjA6Ogo4vG4MVhadRSiPIl4YGAAuVzOwtF5OGQgEMDW1pa1m8EsrLpOqFWZlc5lILBzEjHnG4Ddl0gkLPmWTJmwFKMXOS+dTscq2UciERSLRTzxxBPw+/04fPiwQYaM6vzLv/xLS3heWlrCSy+9ZMWaDx8+jG63iz/5kz/BY489Br9/J5eN52cxefjUqVMYGBjAX/zFX6BareK+++4zK5DRpEx1YDBKNBrF1atXMTs7i06ngze84Q1YWlrCl770Jdx///1ot9v42te+hpWVFfyjf/SP8Mgjj6DT6eBXf/VXAQDT09NYWVmBz+fDiy++iFarhYmJCRw4cABXr161GpOdTsfy8LimOS9a4YWChJYaFSvmsWkwDH2Muic0UIP+UQYPAbtBTkQrgN1yarwfgAUJ8XsNlPJolzyL63VO1OY0tFiDNDRstp9lRM3SdSSrxudqha4Wqj401Qh1U3EDqlZKy4AJvszvYb4RmXq9XsfExIQx1NnZWSwtLRlsw82vFTI01JiWQDQaxezsrJ2oTKHO0Gz2P5FIYGRkxMbh9u3buHHjhll5g4ODqFar8Pl8VlKJ/WOJKB5CyUMjGa7O6DOSBlbQh6ZzRCFE3xwAE55qVRE+4rM17JsKhlrYPD4mm80iEokglUoBgJUTKpVKVnyX0ZM3btzA5uYmJicnsW/fPqRSKTz11FNoNBo4ceIERkdHrfL8ysoKNjc3sby8jM3NTRw/fhxve9vbMDY2hosXL1plDzJvBvVQmWKFfQBWgWRqagqXLl3CpUuXLOn88uXLWFpaQiQSwenTp62GJYN9GDxx584dNJtN7N+/38p6uYWfuR5dX627h7RqhrufeJ/uR92nrm9MA0VovevpCer/UuHmWV6vTp7F9TonDVlXuJC/lbkRCnE3DzcjNUXF/HmfOv01SVLDzvXd7vt0g/KdbL/P50MymbQqCDxQkkfJr6+vY3x8HNvb25ifn8fNmzdRKpVw5MgR66MGIHBTVyoVdDodO/mXIeuJRAL79++3YzRUs202m8ZwMpkMNjY2EAqFrEIFz4taWlqyShcaSaZjxbQECkUGb1A4kwEpo+LYsB0cI5JWZ2CwBZltPB63JORyudwzf1RoWEWE8NuZM2cMagRglggPN2S/bt++jY2NDUxMTGByctIq9i8vL+NNb3oTgJ0yU6urq7h58yb8fr8lLE9OTuLkyZMYHh7G2bNn8eUvfxm3bt3C2bNnbf6KxaLlvbHcVTKZRCAQwMbGBpaXl5FKpZDP5/HSSy+ZD2hlZQVXrlzB0NAQhoeHzUfKnEAmam9ubqJSqVhNypWVlZ5ThjXgwl2nKsR0LVPh4H5geLyiCu4eU2RE3+VC7yrkNHKXSqY+26O7yRNcr3PiIncdtnQY0xojPKU+LW4cwhtafUOjnnSDEULhRlIBRIaqybZkMPSXaJt9Pp8lH09OTiKfz6PRaKBSqaDZbOL06dNWBHd6ehp37tzBl770JTQaDWQymZ6D/RSSZNvJdMjMr169ina7jQcffBCJRMIiAzlukUjEIgEDgQCmp6cxPj6O559/Ho1GA6urqxgdHUUul7MQ+EgkYmWqGOG3trZmibYsvTUzM4NkMolsNmtRk6x8X6lUekLROWf8Wy1nniSdSCQsOo/h7JlMxgoBk1HS2mJYfiAQMIvR7/djfHzc/IMM2SZDpAV448YN3LhxA/v27cPExARCoRAWFxfx9NNP4/7770e5XMZv/MZvGHQ2MjICAHZ+2iuvvIL/9//+nylYw8PDaDQauHLlCsbGxhCLxVCtVlEqlZDJZJBIJKyIMU+JvnbtGhYWFnD69GnUajW8+OKLljv2h3/4h1hbW8O73/1uvO9978Pv/u7vYmFhAcePH8eRI0dw/fp11Ot1LCwsYP/+/Th+/Djm5uYshYJCmgEYhG25frknFIHgGqcAUp+sKoxc40xU5tp3C1r7fL6ed6pQ4t6iJah/e9SfPMH1Oif1L6k1pTkyWnJIN6Lr96Jg0YADbhQ+H0CPQKRfxtVW6QdQv5YKFr0G2D3QT8+hyufzFjHXbDaxuLhomnIoFLJAA4U2+RxGOupJuufPn0c+nzeoiMEV9ClpUIXrzygUCsbUksmkQWuqXUejUTuNOJvNGiOjkFOLNhwOm+Wjx4SQ0TEYhEKIeVecW0KfPDYF2ClqS3+lCmA9/oS+Oc4Hoxw5J5qewHqGc3NzyGazGB8fRzKZRLVaxerqKtbW1vCtb30LKysrJkRYIopJ0VSaFhYWrOLKtWvX0Ol0MDo6ikqlglwuZyHx0WjU4FgqPLSYV1dXrRjxmTNncPXqVRw6dMiSng8fPoxTp07h8uXLqFQqWFlZsb4COweOBoNBi4ikb4qCQCNrNYdL0wvc4CLgbhhc14XuC7Wcdd2oD1hJo3O5/3QPenRv8gTXHiD6LhQiVEzdhen4two6/RzAXUJM4UFuJsXftR38ns8lU3AjrXgPQ4fplwoEAuarWl1dRSgUQrVaxcrKikFaQC9TINxH6JJ/x+Nx+Hw+vPTSS7hx4wYeffRRawMj/La2tqw99Espo2B0ImFBHgpJpkZIcnR0tCdwgpZOuVxGtVq1aERCoIQgU6mUhT0r5EihyvFj8jTHSiMk+Vzmq/Hk5Hg8blYZx4sKDQBLyKUPTq1XTWc4fPgwJicnEQgEcPv2bavi0Wq1MDY2ZjUaU6kUJicnLVqT/jkKUPqeWH6qVquhUCjgyJEjSKVS5teq1+sWydjpdJBOp61CPJUHRlQ2m03MzMzgqaeewhve8Abcf//9mJubw8svv2yBK1QUGo0GRkZGepQ5rm2uaa0C41pCnBvXx0QLWQWWQu58Nt/F+Xd9vlyb+i53P+te8QRYf/IE1+ucyKDVegJ2o/Y0MlArp3Mj0GJSRsnIKj1eBLj7bC/drIq5a4CBCjw+XyFNPos5UGRU29vb2NjYwKVLlzAyMoJr165Z4VbmGbVaLTvKg1YTrROenFyr1XD16lVcu3bNmB1Dym/duoVwOIzR0VEMDg4imUxic3MT5XIZ9Xrdwq2Zl3PgwAG89a1vRbvdxq1bt0wQEx70+XwWHEBmRB9MoVBAtVrtCWLhUSmEdQnVMbGakZK0MBmuTmHv8/nsGby31WpZ+DpD9Hk//Vs8pJJFZpmIXCgUTIkoFosIh8M4fPiwnSjc7XYxOzuLF154AZVKBSMjIzhw4IAJ5vHxcdx33314+OGHsb6+jjt37lj1k+3tbVSrVQDAyMgIxsbGLOijVqvZ0S7dbtcEPBWKcDiMXC5npx+vrKwgHA5j//79uHnzJvbt24ft7W386Z/+KR544AEcOXIE733ve/HCCy/g5s2bPekBGxsbyOfzmJiYwO3bt83qohDgniCEzXXFuXADaBQ9AHqTzfk/17wboch9qdfxe9c/rCkU3Dee0Lo3eYLrdU4qCHSxuzAdsXjdYEBvyRn+T+JmUgexan4qgGgp9bPu2Cattq1to9OaZXo0l6hSqSCbzeLSpUuYnZ01WI0Cls9kaaJms2nh+rVaDYuLi7h+/bolK8/NzRnsxmoO+/fvNz/V8vKyVbcvlUooFou4efOmWXpkYCxPRYtia2sLq6urOHjwoPmMWAdRFQE+Qy0a1xLib8KeZFy0AjjuDPcnnMiAkE6n03MiMktKcawYbVculy26stvtIp1OW4g/faaHDh3Cvn37LPn48uXL5oPKZrMmKEdHRzE9PW2HgOrZaPRzcl5ZKHdgYADxeNzWCdcti/HqkSMMfqD/rN1uI5vNYm1trScv6+WXX0Yul0Mul7PEZh3nQqGAsbEx5PN5O5yUgoKRmxrMohCiWsAaWaj+L/VdqTVFYca50hwwJe5hjU5k27kG+D6Og0d3kye49gARctDgCjIe+oy48EncVP2EkPs8LQUEoOc5CrMo5Kiao2q0rmVHZsXCpAxpZ9UJn8+HcrmMW7duWUQYD1ikT4VM0OfzWcBCo9HAK6+8gs3NzZ4Iw5MnT2Jqagq5XA6pVMqSkO/cuWMh7keOHMHhw4ctwo3W3/z8PC5evGgRa8w7m56eNkuP7VlcXOwJ4EgkElhdXbX8KuZGse0ArLwSLSgyLwp6zqnCVIwoVB8YsOuzZFBAu71TZDiTyWBkZMQEF7ATlBIOh+1YmOXlZQDA4cOH8eCDD6Jer+OP/uiPsLa2hlAohPvuu8+EMsPQE4kEyuUynnzySXz961+39sRiMTs5mVbWysqK+ckIHbKKPCNHl5aWLD2i0+kYJMgz2liw98iRI5idnTXL+1d/9Vdx8+ZNfOhDH8IDDzyAubk5bG9vW8RhqVRCo9HAqVOnsLS0hFu3bpmSoGueQoJWFq1dPW9OA5GCwaBBwAoTqpXkntDgwvgakapCj8oj14kKao/6kye4XuekFhGwa/lQU1MrS2EG9xnu5+49aqnxfW6Ah+tnU8arQk21UF7H9oZCIauMoBYVGRahM7/fb7lIZC58DitMsEBuvV63klJTU1OW5LqysoJCoWCHOzYaDSvLxBOV2+02RkdHceDAAYyPj+PixYsWFMKgh5GREav/RyHC+wk1xWIxs+R8Pp8JWgaEdDq7Jy3Tj6ZMkaRBNxpEQgGmUYT8jAEIQ0NDyOfzPcEZAMwSYk3CYDCIVCqFgwcPot3eOU5lYGAAo6OjdtIz+zcyMoJoNIqFhQWsrKyYQA4Gg0gmk5Yjx3VJQRUOhy3oplAoYGlpCcFgEJOTk2i1Wtjc3MT8/LzBmt1uF1tbWzbvGoDDtZ/JZBAIBPDkk0/ivvvuw+HDhxGNRg3KHB0dtfPNMpkMhoaGcPv2bVvPekCnjiHfyehD1++lMKOu635Qnoa7u/vNRSX0czdgyMvjenXyBNfrnBRjVw3OXeia9MoN5gZo6MZTwedi7Vr1gozShRP1PXq9tlWLjqqjOZvNmtWkApM12xj4EA6HjdHr2VaVSgWrq6solUpWp/DYsWNWVaNcLlukIJk+mVSpVMLNmzfteBKfz4dz585henoaIyMjVoqI2jMPsGRgBgVhuVw2pspw9Xw+j2KxaBXvyYDJeLUKO4WQloLSWnlArx9TLS0KLK3KEIvFDMrTIsrhcBjNZhO1Ws2SgrPZLHK5HLLZrEGcU1NTqFQqKJVKKJVKAGB181ZWVjAzM4NGo2HXa3kxWjG6NhOJhEUoBgIBLC0tmd8snU4jl8thcXERnU7HoD8qAFwbxWLR4ERWlHj00Ufxx3/8x3jmmWfwEz/xExgdHTVFgspJtVq1OWOqBGE8Ch2F37lGFAqnFczvVYHjWlc/ryvIOF8KBapSqHtVhaX6yrxw+HuTJ7he50TN063ozu+4wFWT03I0hP/cKCaFDjWwghtRYSktUaMVKDSk2MX/+R1DkdfW1jA/P2/19Or1uuUk+f3+nqMw1EIhMyKjvnDhApaXl1EqlRCLxfDwww9jamoKW1tbWFlZwYULFwzOU6Gnh0/yyHnCRTdu3EA+n8fBgwfx9//+38fp06ftnC1GHNKKmZ+fN8gR2IX/AoEAHnnkEYuWW1paMosqlUr15J6x/4Qq6/V6TwFjClp+xnbG43EEg0HLmdve3sbIyAhGRkYwMTGBqakpEyQU+q1WCwsLCygWiyiXyxgbG8Pk5CSGhoaQyWQwPj6OSCSCb37zm7hz5w5arRZOnjwJv9+PQqGA8+fPW35YLpez3DjOO/2N0WjU1hAFOsPhu92u+dD++I//GIcPH7aTApaXl7G8vIzHHnsM4+PjyGQyKJfLqNVqVmYrGo3aqdapVAoPPvggXnrpJbTbbbzhDW/A9vY2FhYWcPXqVUxMTODll1/G+9//fpw9exa3bt2yU6lpuXMvcW1zjbkBGSTC8RTc3D+a4qD3qjDUd2lEKeF+WswkVpnhXtIAD492yRNcr3OiwHEXsFpbwL3hQdXUNYGSn/F7taYUAtTN5obsqo+LVgSwu/l4P3OdeJR8oVAAAKunp9Ai26cH+TEYYn19HXNzc5b79dBDD2FqagqhUAhzc3PY3NxEs9m0nCFacFtbW9b/dDqNbDaLUChkxXEbjQbW1tZQqVQwPDyMqakpjI+PW0i6Wji0MFUpYMRkIBCw2oqM6qNVxROr1fqjzw6AMSq1XlTZ4PhQsDUaDcRiMRw4cAD5fN7C43kdfU/f+c53zCpVRYT5b81mEwsLC7hw4YIFYTCHjn4mnr/FNrrWh0Jb/fKQut0uUqkUms0m5ufn0W63MTExgWw2i2q1iq2tLSwsLGBoaAhDQ0Pmk+M65TEqW1tbuH37tiWzz83NIZFImMV46dIlnDp1yg7jHBoaQi6Xw/Xr120cXZ8slTDXauI+UEvMDaFXi5Pfc3w1HF8tN46fWl26B11kxKP+5Amu1zlpoIRqcwr1qSNZYUD+rwwP2BV6DM1WRqrPcSMSueE1IdOFM1xsnxbU4uIi1tfXrap3IpFALBZDOp1GpVLB8vIyDh8+jHA4jJWVFQA7CcqRSAS1Wg1PPvmkBVjs378fjzzyCEZGRrC4uGgVHBguT58OAEtIZVIy2zMwMGD+p2QyiUajgfX1dTsBmUekJJNJbGxsWLUP+uKGh4etonupVMLw8DDu3LkDAFblgm1hNfytrS2r0+eOG+dWfZmNRsOqeDCMn/6z48ePI5fLYWpqytYBmeTIyAgCgQBu3bqFo0ePYmxszE5QBmDWXr1exwsvvIBvfvOb8Pv9OHPmDJLJJK5du2ZngbH6BCMI3cABVXb0vDG2h5YF0xdYQaNYLOLkyZM4fvw4Njc38dxzz2Fubg4/8RM/gcnJScvFWl9fx/DwMOLxOF555RUrdzUyMoIvfvGLOHHiBFZXV3Hy5ElL0M5kMlhbW0M2m8WRI0fw7LPP9ggQ7pl+icX8X/umBXc1n1CtM43yVT+YCnJGNVJ5UcWE7fL7/aZweVDhvckTXHuA1Bms2i0hPgquflF/QK/2qD6lflGB1PhIGjbsfu76CtR/wB8679l2RgXG43E7ObhYLGJoaAitVgvz8/O4deuWOdMjkQgqlYpVZjh06BAeeughq7RAP1YymTShrsKa1SQAGLRVr9dRrVatesXIyAhCoRCmp6cNumNC9Pr6uhWipVKQyWSsukYqlcK1a9cwODiITCZjgR20TujvAdAjtMjIeI3OF+9n2DsZIytDZDIZTE5O2mGQukZ8vp3cr5WVFaysrODhhx824cEkXVqahULB6kIeOHDASjCxqC0ro9PfqP5S9cFosJAKAB0HCo7BwUFL6i4UCkin08jn8wgEAlhYWMC1a9esun06nbYjadLpNA4cOIBr166hWq1aisLs7Cw2NzfR6XSQSqWwtbVl+XrxeNxOneYYqnXDNeyiFewD175aSq7vmEWVuZdcJZDv0v3H5+q9avW57fDobvquqsN/5jOfwcMPP2wnk/6Df/APcOXKlZ5r6vU6PvGJT2BoaAiJRAIf/OAHLfyWNDs7i/e///2IxWLI5/P4F//iX/RYFh71kkJ03DyaKEmitQTswhHcCMoYSdxMGhWoWiQ/U6FIJss2kQG4kCWfzbJM9DeVy2WDEFl9oVQqIRAIYG5uDs8++ywuXbqEa9eu4erVq7hw4QKef/55tFotJJNJPPbYY1aFQRNYNUiA4c+xWMwqYPDASR1TjdgjjDg9PY2jR48il8tZQi9LUdEHB+xGhaVSKWxubuLmzZtWzkjD+CkYDxw4gKmpKbPiaPExgEMtgGAwiIGBAWP6rCTBY12y2SxisRi63W5PjchwOIxEImHls1i1XmtPMu+p3d4pfMujQRjpuba2BmDHZxWPx81iYDs5lhqer2uGEXq8nmPA7yORCOLxOLrdLlZWViwilP655557DufPn8fc3JxZRoR58/m8RZSyaC/TEqrVKmKxGOr1OuLxuKUmMMKUaxLYVbrcPcH9pIFQ9N1yPzA4hd/xua7QUQhdlUVaohRe6qfW5ylU7NHd9F1ZXH/xF3+BT3ziE3j44Yexvb2Nf/2v/zXe/e534+LFi5Zo+NM//dP44z/+Y/zu7/4u0uk0PvnJT+JHf/RH8eSTTwLY2fDvf//7MTo6im9/+9tYXFzEP/kn/wShUAj/4T/8h7/9Hu5x4sanI1fzfKjhUVvT6EAAPddqcVZg11Gsh/1pyDo3MasLcHPppuLzXUuNVlc0GjUfBA/5W11dtTDqpaUllMtlpFIpvPjii6jX6xgYGMC+ffusaCqDQd773vfine98JyKRCG7evIn5+XkLnKhUKsa8E4mEMZlYLIZIJIKNjQ2rasEAA/qAtre37bwqVpkYGRnB8ePHMTExgbW1NVy7dg3FYtE0ZAZj1Go15PN5HDlyBDMzMxYxx/6rX5FnUpVKJSwvL1tlDhZmZSQdHfPVahXFYtEYZbvdxuDgIBKJhOW6dbtdxONxi/Jj5f3z589je3sbBw4cMH9WKpXCzMwM1tbWrEwSAx7i8TiazSbW19exsbGB8fFxE1r0bRFa1Ny8TqfTEwFHoUU4uFKpoF6vG/OnwpVKpdDp7FQduX37NsLhMD74wQ/i+vXr+J3f+R1sbGzg+PHjOHfunDF/1mIcGxuzhPEHHnjAoN9SqYTBwUHMz8/j1KlT+Na3voUTJ05YTh/zudy8RDeogp9rTiPnk+uba1uDj9Rq0ihEPlur1KiSRcWJ76BFpgEbHt1N35Xg+vKXv9zz/2/+5m8in8/j+eefx1vf+lYUi0X8+q//Oj7/+c/jHe94BwDgN37jN3DixAn85V/+Jd74xjfiK1/5Ci5evIivfe1rGBkZwX333Yd//+//Pf7lv/yX+Pmf//meIqwe7ZZ8UihOnbd0MAOwYAaFJTRk1w3HdQMz+L1qibyXG5T+NbUCyfSBXv8Z7y+XyxYQEQ6HDS6i74i+ong8jk6nYxF5+Xwe4XAYa2trOHHiBCYnJ3H58mXMzc1hY2PDatkRSmKeFCFIAD1BEd3uTmUF+r9CoRDK5bIlyvp8Pqyvr2NpacngqlAohEwmY/CaWmkMuU+n0xgeHsb6+jpisRgGBgbsHcBuYioZUjKZRDKZtLBzzoVCWTwhmdYbAPM3aSRnMpk0plepVCwROx6PmwDhs1kXkuOyubmJSCRi488Tk30+n5We4jqg4tTtds0vqtY+1wkVKNfi5/d8BhPRGZhx7tw5HDhwAKOjoyiVSlhZWbF1TcEVDAZx8OBBlMtlEyjxeByxWMyUio2NDYNh19bWMDg4aJCsCh4SK5cwmKefb0qtLdf/5Qah6L5VS5Tf6z7WaGB9B/ev5+O6N/2NDpIsFosAdvJyABik8/jjj9s1x48fx759+/DUU08BAJ566imcOXPGSrsAwHve8x6USiVcuHCh73sajYbll2ieyQ8CkWG4MIdCMMAuNMiE1n6OX/6vlQT0M41+4iajlsp3qMZKmMPdnAySYLIu/UmEwAYHB9HpdDA/P29aOUsYVSoVax/fV61WEQ6Hsb6+jkuXLmFhYQGFQsGYdCAQwPj4uIVTp9Nps7zIgMkY6OPa2tqyCEcKYx6jwmrkPFgxl8shn89bwAUDNQhb0e9VLpfNL0dfh1ZqYJg3sLNnWFKKY0thqLCm+hB1Lgi7UVAAQLlcthOHh4aGMDAwgJWVFSwtLWFhYcEqTLDdlUrFqtDz3C8qKAyiKJfLlhpA/5gLJVOxcYWWCjISy3yxf41GwyyvTqeD/fv3IxgM2vyy7xybkZERy88CYOef8XyzcrlsPq/19XUr2cUxIylKoZ+r8FDlTdc71zmvp3LowucuHK2wutYmVJ8a964nuF6d/trBGZ1OB//8n/9zvPnNb8bp06cB7Bz9zdIySiMjI1haWrJrVGjxe37Xjz7zmc/gF37hF/66Td3TxMKqbv4WAIPR6Dgvl8s9kIdGADJEnYJQMX5uGG4uhQ65gQifcENrQV9ClgrB6LMee+wxxONxbG5umoBcWlrC1tYW0uk0isWiVfZmGSFaTKurq8hkMrhy5Qq+/e1vY3Z2Fs1mE5FIBNls1uBIFbwDAwMWjs4yTdT2KZTr9TqKxSK2t7eRzWYxMjJiofm0RsrlMmKxGMbHxzE2NoZMJmOVNZhjxHeQea2srCCdTmNiYgKrq6smdOnToyVGbZsVNhSa5bEpmipABh0KhezARQ2AiUajKBaLGBsbM+ZarVbxxBNPGFR35swZjI+PW54ZS3AxaVqVHK4bzTMiPJlOpy3QhXCi+khpUZEPKJSm0Y2s7L+1tYUvfelLmJqawr59+6yqxuXLl3HixAlkMhlsbm6iWq1ienoaBw4cwNLSkp2SzRJRd+7cwZEjR/D0008jk8mYH4ynMit0q8KB464Clt9pcAZz5xT50KApFVRM/Ob9DLQBdlMImCZBgUjY3k1a9uhu+mtbXJ/4xCdw/vx5/PZv//bfZnv60qc//WkUi0X7mZub+//8na8X0rJIirurNk84jAyQgRtKGoihWmO/iDA3wELhQW5MhkarkKJw5TMpXPbv329Wjkb20SpiTT1g93wpJrnW63UMDQ1haWnJjmdnO7PZLIaHh60QLQUurU4GM6h1ycg++qw0Ko8MhtXKecwIw9gDgQCy2SwSiUTP9VtbW3aqM7CDRAQCATvORCE3jjVz0VRx0CAXhehY1oprQIUYP6NSkk6nTcFoNpuIxWIWAZlOp81/RgGqydn0tQGw9vD4Gb6TbeWRKwB61gPXBNcFBbFa5Czllc/nzacYCARQLBZRKpUMEi0UClaLkooSowc5/wy573a7BklzXCk4GHGq5FaBVwiQwskVHIpQcKwIWfJ/CmmGtKuA41ipj1hTTAj56hh61J/+WhbXJz/5SXzxi1/EE088gcnJSft8dHTUwmzV6lpeXsbo6Khd88wzz/Q8j1GHvMYlbp4fRGIoOjenanBMbuU1ZGSuIKE1oudSKcSo0YrUlglnaMFcbi76IVUzZwCBz+dDIpEwRs7q4zzuPZVKoV6vo1arIRwOm9Ci45o5VbFYDAsLC8jn80gkEnjhhReMaSeTSQtl1xQBFcDUgOkjInOmYKQV4/P5TFCyUgUAO46E0F27vVPEdmJiAoODg7h+/bqNiRZwLRaLKBQKqNVqdooz6xKylBX9KbVazfx+TAamgGQbOC+sNEI/oN+/U+ZpdXUVwI71cv36dRNi7C9rDXIcCoWCHRuifjbCm2wDfzP/jZYehSgFMwMySJo+weg/MuharYZYLIahoSELU2fZr1wuh1KpZAV1x8fHMT8/jxdffNGiKBuNBubn5zE1NYXHH38c169fx8mTJ/HMM89YkEo6nbaxWV5exvr6uikbrFlJa4d/U0hrrUQqYFzTGmShZdCY36VzR3SClhcha/V1ArC9RCQA2D0fj0qiJ7z603dlcXW7XXzyk5/EH/zBH+DP/uzPcODAgZ7vH3zwQYRCIXz961+3z65cuYLZ2Vk74O/RRx/FK6+8YkmmAPDVr34VqVQKJ0+e/Jv05e8kUdC45ZT6hc5qMIaGuWsxUTd4w2X8Gt2k0VZuYAg1VjI13dxqyVG48KgQHrnB+9gHZQas1J3P5y0Emud4dTodi9CjtUDhQehU88iAXYvE9ctxfHWMgN2K7PT5uOH2DGgYGBjogXA5Bjzag/AbiblRDNWnTw3YrWahz1NnfqfTsfJShBe73S6KxaJVDOl0Orh69Srm5+cNxkulUlabkDlxhP80YpBt57ypFaXRrBTutHw5lm7JMP5Wa5DQZCaTsTkmWsDSWFxDFLQ8aZnzTnh3bGwM165ds7HlMSmhUAiJRMKev7m5aUqIKjbcQ2rJqS9X14+uE/Udc51QMVF/nqsQqg+a3yksqxapriWP+tN3Jbg+8YlP4P/8n/+Dz3/+80gmk4Yz0+GcTqfxsY99DJ/61KfwjW98A88//zw++tGP4tFHH8Ub3/hGAMC73/1unDx5Ej/xEz+B73znO/jTP/1T/OzP/iw+8YlP/MBaVa9GGoHkRjTxezJ9ChJd8Lp5+gk8F6NXBzQ3tYYE80fDfzXBWNvDsOlarWaCizk8AMzqYMg0BQh9Zg888AAGBwcNemP74vE4BgYGegQwz+tyc4cA9FhjGm3JMeDBjLSseB3HnEnA9MF1Oh2DuCgQ/H6/HddCvyTfQSGvApPQG6HL7e1tJBIJDA4OmoWg881cLuZ3tdttY8wcn+npaRPmAwMDyGazFqzC8HYN9gB6k2wpmKkEcP4UetaEch1DZdicJ4UY+RwKEV6rz6BFTWGqZ6yVSiX4fDulv1ZWViyfbHZ21pQYQoO0urrdrkVOarqI7itFF7jGVHFw9yL7p0JO95b6hqlIUangXOr+UxiZ//Nv9/0e7dJ3BRX+r//1vwAAP/RDP9Tz+W/8xm/gn/7TfwoA+G//7b/B7/fjgx/8IBqNBt7znvfgf/7P/2nXBgIBfPGLX8RP/dRP4dFHH0U8HsdHPvIR/Lt/9+/+Zj35O0qqHQaDQcPOCVsoI+I1GkFIhqkOclpEKrz4uUaDMXmVwRCE2dxADDcRlbXxNjY2kMvlTHsfHR1FNBrF+vo6FhYWcP36dXu+arTZbBYnT55ELBazyg4sz0RtmjALfwYGBiwwg7lQTJRlpYVut4v19XWDh8hsWe6pVCohl8tZ0IBaWPy/VCoZtEUYLZfLodPp2JEaWv2egR4K8wWDQfOf0ddGWIn3qm9MNXkyQfaDAiEcDuO9732vMfmhoSGEQiEUi0UsLS31WEDATqJxoVDA+Pg4/P6dQsPtdtuOkaFlxdwyMlXCcTzdWAN01GpXXxjbzXmiD4epA9vb26b8UpgzWjOfz2NxcRGtVgvHjh3D4OCgHcPyYz/2Y/iDP/gD/PAP/zAA4OLFi/D5fBgdHbWE9cXFRZw6dcoEjRavpQDVqFOuDVfA04fMfcJ50Oe5ygD3iJaDUoGkypEKPD7D83Pdm74rwfVX0QCi0Sg++9nP4rOf/ew9r5mensaXvvSl7+bVP7CkEKCWEaKmSG0PgGnNKqBoKVGoKH6uMCQj5KgpUgt1oQ5g1+KjYORn6mNj2ycmJhCLxSxHiMKjWCwaBEX/nNZO3N7exo0bN1AoFIzpE7ZjO2KxmAkxattkULSAut2uRRYyEIR9Ua2ZY8F8Id7LcQB2AyuazSbW1taQSqXMAqLVp9cxEIW/+T3HTn1bGsXHSDMAFjVK6EuFLecOgJ06zEAHQncM+adA5TPL5TK63S4OHjxobWi1WgZDunAqx49jx/HTKFYNh1fLW9eYrjkKR123VMAYhh+PxxEOh+2gz3w+b/09fvw4jh07hq2tLUxPT2N6etpOIGCVE457LBazNakCSNcq361KmVpguvY1yEm/Y9/px6QSqCgE16e7D/ls7iOP7k1ercLXOZEBATvMipoYNTzVEnl+km48JW405uqQqBHq0RqEZbjR+kUqKjavFgE11pGRERw6dMisHkI6m5ubPUyOPh8y/FKpZGdD5fN5K7IK7AaB6PEULLyqeTAAjAmrfyYej1u+Ey0ftT4paFhhHtjN7aFgbbVaWFxcxNLSkh1zTwalkXgcM+YVsagwq6/zrK9Op4PNzU0ro0RBrlZfOBw2Rsu5AWDQ661bt5DP5w2OZSmt+fn5nuM4aLnyfYzSGxgYQLVatcrqDMYgVKrvV7+iBoPQouP3usZoxVLxYEkoBkToWmDAAstPZTIZrK6u4vr165iamjLhVa1W8cADD+Bzn/scPvjBD+LgwYP4xje+gYMHD+LFF1+050UiEUxNTeH27du2Rmmtcu2qUKG/y4XrVPCqlcn9psoHn8u/KZS4Hrk3NVGfv1VZ9Kg/eYLrdU4KMahzuZ/fS/0NqtnxHpL6WwhHUTvU9+q7VDPUtijM4ua4kKmp1ksHvRsCrpuZDE3bS0uQgRo8XVcj+yjUarWaWQ8MG1crh0ySQR6M+CLjoQWnvh6dA8Km9LOUy2VLdHUVDS1HValUzB9GweX3+3sqsGtIPMdCBSifRcFFi7PT6WBubg4jIyPodDrY2NiwwzIpdGm9sqbh9vY2CoUCstmswWsMNuBaImyoQUC6PkhcR8rAeU0gELB2ckw5V/0Ch9gvDbhIJpOoVCq4c+eOlevimWyhUAgvv/wyIpGIRe4dOXIE8/PzpqQxFUAtQW2fa13xPhdp4Dzwf7/f3wPf615T5VH9WLrHdP9qm/qNsUe75Amu1zm5G0ejAcn8GaSgMI76r9yNpz4ehTBU83Sd2O6Got9DE1T5DA2KIIREpkFGvba2ZnlPzIMCYMKGUXEMRwd2ITifbyeEnaHcwWDQSkrRIuDz2Aa36CsAKynFShgaAk2fixslRqshkUhYUIn6PGj1FgoFyxfjM6rVqgWNqKCmFUSBwXkhg1eIUq0CEudydXXVKnesrKz0JEADMF/S4OCgWYWrq6tIpVJWnX91dbWnJiHnSCPsOJeEOBV2VabNsHJ+TribfWI+H8dOoTsAFpwRCAQsvYbHlbDPPp8PBw4cwI0bN6zmIgCcOXPGAlK2t7eRSqWQyWQs+ZnrV+eYc8f2cO9owA6Je0z9eqo88l4VTPzt7mO9j/vaC854dfIE1+ucWq2WaemaCEyGoH4EbhZlAAodqr9BtXdgN6KJFoM6kPletbJ0gwK9p7vyGh5fT2hrbW3NGOfa2ppBk5ubmxbwwIACCle+g5ZTMpnsidZKJpN2TDuTWAOBgJWOAnZKITFijSWRcrkchoaGUC6XTUgy+MTn82FtbQ2BQACxWAz79u2zMSH0w2odnU7HGGyhUDCLZW5uznKvBgcH4fP5UCqVsLGxgXa7beWeaP3GYjHUajUT1pw39ekxqpEh351Op6eIbbe7Ex6/tbWFUqmEarVqVo0mqDPqMBgMWk3AN7zhDcjn86jVaigWiz2KhgpPYFeZ0og4rQAP7B51wu95IKdG5BGWVktNYd2hoSH4fD4Ui0X4fD4MDw/j6tWruHTpkvlP2+02jh8/jmKxiOeee87aFg6HcejQIdsn09PTeOCBB/DEE0/YvnKDJNSydyFB7jkG/hCuJ2RPRUPXvwbX6PNIXFM61xwXz9p6dfIE1+ucaAEolk5tFdgVVrq5FE93YUPF2F1oUJ3vwK61pT4gklZDUEGqbaADnpUcaFmRUWstunQ6bUmqLJJLv93g4CCGh4cRCoUsMo+CaWhoyKwtwn3JZBKxWKzH+iKjos+DR2DwSBWNDtP0gmaziXQ6bTlW9IFR497e3rakaL9/57j7arVqAk7Hk2NarVZ7wtBpMaumTYGlc0E4lxFzZPAMQqCiwBOflfmpBU1BRmFTq9XQaDRMkHCMCPGpUGI7gF1hxHlWPx/7rla2Wmm6BinA2X9FBvgcrpN2e6eY8Pr6OqamprC9vXO22+DgIFZWVgzaVOt/e3sbkUgEw8PDdkI2izNTQVKoG9j1PVHYumHqFEgafaj7w83NIpzNdeYqfxxf3Yce3Zs8wfU6J1oXXMjc7AoBUiOmj0A1cFpQuhFUo3PxeNcpzA2l2jOtAv2/X1AIK2+QCSrkGI/HrQJ6vV5HNptFsVhEJpPBqVOnrChsOp3G0NCQRYXxXRRuPLyR5YKCwSCSyaT51nTsfL6d0HUymVKphEajYblJKjwIyzWbTaysrNj5WYzGoxXFIASevFupVAxmJBPns3RcCoVCD9xE4ty5pyTQ2mOh23a7jUwmY0EgbAdDzHlgpz6Xz+Zv9XOyzQB6ojjJmLnuNGKRz1XfIeHNTme3/h/Xj/ozm82m+aP4HAoLjpVCcWTyrETCRGQKxfHxcaysrFihYwrxSqWCcrlsxZ2bzaYd7OlC6Pyb7+N60Ehcto3fcYyoUOhz3HlVpVJTWyj0aaGpf82j/uQJrtc5URhwwTNUnExHfTMAejabG8ZLbZqMhUyBzyQD572qFarg4f+q1VOgADAGtba2ZnlAkUjEnknmmk6nsbi4iEKhgNXVVbzlLW/Bm9/8ZiSTSczMzGBmZsZ8LIwaBGDVxZvNJmZmZqxt3W7XygOxj9R0mZfGArGsSk9rgeM2MjJi/jOOHyupMyQd2Il0Yz8vXLiA5eVl7N+/35gvLU2GZjMohYEZDPIg8wJ2g2YGBgYwPDxsFdpp1XDOWN6o2WxahJ2mLrCyRzwex8LCggkfWqJuseRO5//H3ptGyXmeZcJXrd21V1d39d6tbu2SJVuSHVvylthjxziesMT5JjBnCMPJnwkJM8A5HIY5gUDIBA5/gHPYhnOAj5MhAQITAglkxyaRLFuWJVv72q1W79VdXXt1Vdfy/Wiup6736ZJnwgzzSUk95+hIqnrrfd9nu5frvu77aZjxZRoAlTI9e6/Xa+YtFAqZ+BTnnt4foUUqU44h4ViuOSp0ZdeR4KIKoNFoIBKJmP5NTEyYOFwulzNHt+zevRv9/f34q7/6K8zNzeGxxx7DwYMHUa1W8cUvfhEbGxvo6+vD5OQkpqenHcqK407l6Xa7t5RnonJRKJ7ri7+lEUCvivtEvX2F6zWmzH8T0uWe7cS52reO4rrLG4WIBnLtOJYGdm0rT8kFCkPQ6uN3avnq5gJgFBJhJg3Ea803m4lo5+bwO74T7+PxeDA6OooHHngAe/fuNb/NZDKmwC0TdIPBoBEYzNXxeDzGwtbcredfex7VjU3m4Z/t/jMTl2DFDq00wvFgGSfCbc1m0yQ188BCej60jJlETLo/hbPmXynsxfGksKdQJuwYjUYxPj6OdDptyjmx6gQPk1xbWzPClVU26A2wX+o5EGZl//gOwWDQ4ZVSudAQUaWkxBaNZSlRgtfaBhcVtMKB9BYBGOZns9l0JHzruWaci3A4bAyPYDCI1dVV41ERvuQJyDyvrFgsIplMYnJyElevXjVKSMdKx0+9LAAGurbXOPedkqMUQtR9Yd+PilHJVJqrqTHVTnO2juK6yxstNjuniAIJcB4ECbQCyoBz41DI69/cpMpc40Yme08Vj8IrFGZqFermJM2beUD5fN4RM9A8o6effhrvec970Nvbi5MnT6JQKBh4jnlFVJyEsnw+H9537n1wN9zw5/0G2qO1X6wWjfL8dzf/3Wa85prPKOo/3fmnRlBSYLAmIoUaLf5QKITu7m4TL2M1D5fLZYT/1NSUUQis8EFPj+OhgkvZe/Ru4vE4+vv7MTo6ilAohEuXLjk8w0ajgWKxiJGREfT29uLrX/86Hn74YcRiMVOwWCHfWCyGrq4u9PT0GKHKGon0jmxmG3PDNKmb13P+CGcqccNeB4Q71dAql8sOBqZWmec1VIBUkjwrjEZTIBAw1Vd4BE6lUsH4+DgeffRRnDhxAidPnsTY2BgeeughuN1uXL58Gfl8Hg8++CCuXbuGdDqNXC5n6ijakLy+s+acaeyWLEklJhEi5R5Ssga9W5J2lODCdcO0iE57+9ZRXHd5o+VKwUrBqew/m0QBOCnLyoRSYgHvT0hDsXWbdm9TgYFWaRu+h82c4iYm/KLBeipkQk47d+5EMplErVbD9evXkcvlDGzG40FyuRxqtZqxzl88/yJ8AZ9D6KrwdLvccLvcgAvwerxwQWjIaOLfXv+3+Mv9f+lQwArraMCeylATT/mHydF6QrLGdXjsio4735mwoc22KxaLRmGxDiNrKrrdbuzbt88cAElCCb0MrheSOHiwJgWveuV8F03cVuhU45L0SDjnFL5aAcOOc/J3vC/XhypOjWEx0Vk9NhoTXPNcq0wkj8fjqFQq5jyy/v5+3Lx5E2fOnMHExAQikQiKxSKWlpZw6NAhjI6OOqBnPp/PU7Yj0DqTTGN0vFbjUza8aFPe+W+OgxqIXGdkiXZgwrdvHcV1lzcSHFQ5UCjYbD9a2TZbUAkA/F7hPb23wif6Pb0k/q0wlJI09H7MwQqHwwgGg4ZtR8XA75vNponVLC0tYWZmBkDraBEVnD6fD9/36vfB5XKZY0mAFkuLfyj4FMJSdhiFBpWqxjjYF1XGJERQkauXoPEdHQv+zRwtFhwmI5ICH8AWr49QoOY9kcgSj8eRTqdRKBRMzIrJ0G6320CHVKqk7istm++p9HN+rn+0H+r1A62yTVwzqrgUBaDS4TpWGI2fExIj1KcsQ30/KsXu7m6Uy2UUi0UMDw8D2Ky4Mjw8jNHRUVy7dg2XLl3C/fffj4GBAbjdblNCatu2bbhy5Ypj/tSg0D3DdU4WpkL0ugepeDR+p3tFvVV6eboftW9asb7T2reO4rrLmyorCn3NN1LhqnAalQ+tZ42zqHWvsCHp5Eq8oDWogguAESz0RCgUleLLPBdgk0XI//OAw5WVFRQKBSSTSSSTSdy8eRMnTpzA7du3EQ6H4fP5kMvlkM1mzf9/6K0fgifcEgSqOJvNpqPCu8vdil3UG86cGv79/1z8f/BXB/7KWPFUXPRqCWnVajUTU3G5XOY56uVRObCfJDtQEBcKBaTTaaTTaVMBvlqtYn193VTdoEICWozS1dVVlMtl8z4rKytIpVLYvn07fvRHfxTVatWc0sA5YHyNFSMAGIVmn3as+Us6rnwH28NUZWRTvAmd8j70QjhuXEtqtHCdccw5l0rRpyKh8dLf34/p6WnMzs5ix44dhgRTLpexe/dufPOb38Ta2ho+//nP40Mf+hASiYRJyL7vvvvwl3/5l446kepJkeDCuWOtS4XN+RsqUY4V+0EYlbl5Xq/XkbCuniPHul7fPLON49PxuO7cOorrHmjqMdmWvsI+ajlyk+v33Aiao6JBaNt7U0Vlw3CAs2SNxkDoxTBfiOw4jW0wj8rn8xnyw/LysjmnTXF/BvLpYalXZ3uOLrcLzdo/eY8uN+BpQVMNtCjd6j2wTqIKVsZn6BWoVWzHGGlEKItO54rlqXhfPSCSntH6+joKhQIKhQI8ns0jPSiMGbcbGBhAJBIxx9EzDqbzovfVU5KBFlTHfDCt+0hDRz1U9l+9Ed7H9gZYJUPjU2oo2Z6e3lthaxo6ejo11xWvoddCL5MGhc/nQz6fR19fH5LJpDESWHKMpwCMjo6aWCkVNj0kNQT5bCVQ6F7R9aAEDfXW7P2pXrl6V9w/nAc1yDpta+sorru8cTGroG02myYhlpaZbaWppcrfMY7BjcfNS0uScR0qF6XDUwAyxkSBBzhruNGS7OrqMkVb9QDAZrOJiYkJdHd3GzhsfHwcfr8fi4uLWFpaMjlEhAO9Xi/e+8Z7NwPkrpKxVNkoTNxuN+KxuMkTYozI5/MZdiHZbQpBvf/C+9FoNPDFB79oKrgrNEQBqjUPWcED2CQPNBoNkxOmsRJ6ERSO4XDYWPJMhGZeGj3NarWKS5cumZOL9+3bh56eHoyPj5t8Niq5q1evmtgI3zORSDjezxaqGn+jZ0blyHnk2tN55XgQwlXlFQwGzbrS/Cz+nmW7NDGXxoIaUEpW4FpjHiDQiiO6XC4EAgFTwDmRSMDv92NlZQV+vx/vete78NJLL5lTlScmJnDt2jW8/vrr6Ovrwzve8Q4cP37cGC1UXFQsStTgetD9pwqIEC375nK5HJ4cDQN7D/M3GjNU1mmn3bl1FNdd3rih+W9l9amHpB4Tr9d4GK9RQczPlGxB4WGXkgJa1icFnX5H4UPlZxNH+EcL77J238jIiGFtaVCeeVBK2+c767PVCqaSaDQaaDRbOUJutxsb7g3UG3XHPXTsnjv5HL75xDcdgp795nM0sE7hpZXT+SygVW5L348xL437UEn39PSgVCoZ6rrP58PQ0BB6enpMxRCWcVpaWkK5XDbxQ10LhFV1zIBWmSONmbJ//L3Gl9RDuJPHrWOhc8F8JoX+OKZKsqAyJVyp97TjcoooMLGdRBZCqfV6HWtra8YjvXbtGrLZLBKJBHp7e7G2tmZy7k6dOmUo+ao0VZna+0ljwbo+lA3JfaeIga4zrgNVfkoQoUfbiXPduXUU113eFHJRC5pQlcIwusGBVvxKEyw1OG43W0gxPgS0lKYqIYWTqHCUgcgNqCWcSDSYm5tDtVpFMpnErl27ADhzZWjZ08vRvqlC1mC69t32FjQGp4pamWIU2koy0GcoPEulRMVFD4vPZEyM8SRa7Oot6rz5fD5MTEwY5U+PiVUeKpWKySHb2NgwbEIqAq4V3p/zrJCVEghUwbDZMJcqDYXPuP50XlQYcw1Q+agHo8JZP9NYKZ9rC3eFaVXAsy4jvb5SqWSOMlleXkY2m0UymURfXx/y+Txu3LiByclJxONxU2GE64pzqsZSOwKHGiI2K5HXEG7nZwrH2gqJ64f9V8+v07a2juK6y5suco1RaUCXzC6Nuyi2bscYbGVHIafBY/Vq1BpvNpvmGA9CLG6321Q8YBItYbFKpYKLFy8ilUphfHwcfX19yGazOHPmDILBIJ588kk88sgjWF5eRrFYNMVnSW547xvv3XwfX4uxpWOhShZoKSq/34/urs1YktZ1pHBX4ayK992vvBt/e+RvTX6RHYfR+B3HmvdUOIjQE0kxPBuM78x7UDB5vV5TjYNCnaQLWv+MTWkZr2q1ak4XHhkZMbli9CLosdpGC+dUjRPGvTS2yQRgXqdCXo+Iofesn3Ed0hOyFSMhXa5bVcIAHOuR3huhbfZnfX0dmUwGlUoF8XjclACrVCrmuJbV1VWz9mq1GhYWFnD06FG85z3vwZe+9CVks1nH2uG+sj09hY7t/cRKJlSuGrOyWcGcb4VINcaqxlWntW8dxXWXNwoKspIUetHNQ6FpbxAVVGq98hoKMIV3gNYRKkyi1biFel76b/7O49ksljs8PIy1tTVcu3YNy8vLKBQK2L17NwCYJNpdu3YhGo3i6tWrqNVqJv7TaDTwQ2/9kIH7VHnoc/T/9r/JBqQ1r14i+6GCg54RlYOttPSZ6p3aLDxez1gf70klYxMA2D89uJNVI7QYLp+l3hJz4QCYQyo1P0lJJrZxY9Pb1StV2IxNx0NhU36mCkjnigqR3iLZq3qt7eHxvrrGdazZN7fbbcYJgHkOx5mx1HK5jGAwiEuXLgHYLOOVSCQwMTGB8+fPm+upVNWjVi9elQrHgwaF7Z0qGqDf2+iAepic/zuhIp222TqK6y5v6vnoJtDv1PJ3uVwOi1QhHf6htas5TTYcpzEzXqOwof5GhanCavF4HIuLi1heXobH48GNGzcQj8dNodRt27ZhbGwMXq/XnK3l8/kMU8yGsey4kxZltf9Wj8C8d9OZdH2nMbYNAIUMVXgpZNuO0KDKjd9T0FHhq/fEs6kAOJJ6db7pTXGOCZUxX47HldiQocZs+J76bG30nAEYerZCyAqn2vC0HR+kp0blValUDBFE46g6xmwcb4VwlW3IyixkZJI9qF4RPV0mKjMHbn5+HpFIBOPj4zh79qzD0OM7qzLhH35GQ1HZtArRs9lwM/9ND073o329HVPstFbrKK67vNlWnR1/oQAjvKZ5WRSeVDQK69neBxUeFSOVkTIV+RyF15SIAcAcA+L1ejEwMACXy4WZmRmUy2UcPnwYg4ODmJ+fR7lcxoEDB9Df349UKoXFxUVD3HjnS+9Eo9lAHa0qFwoJqnLg33a8RT1CrbGngoHjoAVhG40Gnn/teXzj8W+Y3xLSUyalKn7em56RzShjjI/zQS9IPZt6vW6OFwFg2IMax7IVjNZl5LtpuSEAhm2oEB/7z0bvUt8FaMUAuf50jjOZDAYHB41i4xqgUuHzldbNNAgtrstx4DrWiiWcL/aLcGE6nUa1WsXAwAAGBwdx/fp1U/5peHgYtdrmgZkez2Z5q3g8jo2NzROxP/rRj+Ly5cv45je/iZ07d2LXrl3weDyIRCLIZDLm2Wr0acxJY1vtWJdUsvRGNZFa9wn7RQNF2cE6T53WvnUU1z3QuIm4edoJHyVqqOdDLF0tQrukje3JqZCzhaV6D/y3Bv9pfbIY6ujoKB588EHUajU89NBDmJiYwOzsLLzezWrjLNXDahLPnXwOeXcerqYTxmy4WkdJqOejY2TDSrZnpdepYmsXNwPgEMjqnepY8DO9D70LzgOFu0KxzWbTxL/Uc2PTuKLdP30323OmslTPx+4PhSvp5iooKTzV26jVaqYOIqG5ZrNp6iCqAWNDxxrH4e8VDubfTMlg36mo7Phus7lZxozlq1gLk5CppnTwXqx5qXmEhUIB2WwWw8PD6OvrM1X4bY/PVjjaL36uyIdtEGpclntE96WOkXrA7dZup7VaR3Hd5Y2bQwW15k8p7VnjAErLBpwxGdui1LgKN5oKHIVJ+DvCPFo1gTTvbDaLxx57DPv27cP4+DgmJiZMvcGFhQWcPXsW1WoV3d3dSKVSWFpaMsd+KETIZ3o8HjSxNdnYhvIAOLxBfv/JTzhrOFL5bcqgBn7xl1wOCxkAnjn+DL567Ktm3GwBz+RejoV6uBSoVCDMFVJ6dDabNXUKCetpvpIqTc6tBvnpYWk/V1ZWDBxmewZKwuB64TvzHQhd6VErHH+ejEzPxePxGBKEDXVxXeq7u1wuB/TJJGx6G3wW/1aSBuegXC6beJ6STvr6+kyVft5bPcRwOGzOYbtw4YKp2DI1NYW+vj4cPnwYX/3qV80Yeb1eg06o96cMVzXqdG9SedFQpLLSOJeuRXrUClO3g7E7zdk6iusub2oJ295POw9LLXgKS7V4bc+EnoB6cqoQbMo9729j90px9ng2z7Xq6elBuVxGPp83DMOFhQWsrq46iqtSSLz3jfei7mpZoU00N4vjul1AA4CgJ9pnVcLqKfA6kYEOEoDCY7aAYDzFVlhU2Pxcc95UIOnYqJWu97fnlYJLCQCqvNTTVGXDfqTTadTrdcRiMcfaYbMt+XbwnsbW+Bt6Sex/uVw2x4XY+VeM3fD+fF8qSi1V5vP5TLkkNvVUGc9Sg8zj8RjFyet6enqMEcB8LjZFArxerznoU2FWJnqz1JZCdto3ey5swhPXicaY+W+FGzkeCjcqpNouNtppztZRXHd5s70HG55Q6MFOeFWrux28SGGgMKJahBQ8NmTGzzTuxPsyDpFIJBAKhbC0tIRsNou+vj5HrhQVF9+RnpBRts0GGvV/eg9slnKy+99OodrK4pd+sQmPBQ2yb7zmlz/ewMd+0cmE074qe1HJE7xOlaXODe9HqjT7TyGllUwAZw4aBT7vr8m8vI7j7HJtnjfFWojJZBLhcNjBGtS55v81Bsp51P/r+goGgwbaZQyHnol6SFRIul7sGCTHVROR1SBqJ7R1femRIIQCA4GAgTSZvM3+ax4hIVqmXfAaLebcbs/wfXSP6XrUudGxsOPIulYUbuT1HG/9vNO2to7iussbLXCXy9X2gD0KGsYE2Ox4mLKYuGGocGxas7Kl1DvRGJZai5oXBQCHDx/Gnj170Gw2cf36dROUZ2A+Ho8jkUiY+nG1Wg3/+vS/BtybmzsejxvLHnAqJd3wfGdeo+/vcrnw8V9oGIIFr1c2GwWmxnwIRQEwsKUKYvaZ408hpzELvrvStlmvke/INAMlhVAZcCwZE1P2HMkWpNfX63X09PQgHo87ILBoNGo+V0FK4ctn8jMSC2g4sHguxyMUCpnKHhsbG+jp6TGQHOdQPYt6vW6qfAAw8TCdM14PbMJ56r26XC5TkYTrmeWfFNZlxX1Ch+wXy1LV65vnvlGhxWIxrKysmKr5hKv7+vrQaDRM9RY7WVtJUeqJcew0RtmOIcg/mqSuionzrvfoKK47t47iusubwjrqXQBbLUPduDburpYs/88NaVva7axkhR/1ev7NzVupVLB3717E43HkcjmsrKygv7/f4emRWccistzMGnNhMisD90xG5e/bjU07OFS9LPZBhYItyDdqG0ATxovRskw6J3cSKrYHZcpNCcVcPVj1qPg+FF5UWmRFFgoFB6xXqVQMEy4WixlPa2VlBaVSCX6/H/F43IyDEluoJOzSXVTgdrxFPbauri6EQiGzfmzPSKFpHSfOu8ZYeU+FSXXe1KtXY0q9fo4LDyzVd6EC5v14Ntny8rIx+CqVCoLBIKLRqIEzNd3AZhDaa07JIOyzEpZstIO/syF6fqceXQcqbN86iusubxoXIZuLgkHjLFQaKpA13qCbgZaoQnZqPWrtNq0kr14cNx2/J7kCAI4cOYJyuYzXXnsNuVwO4+PjyGazyOVymJ+fR6PRwOjoKCKRCBYXF5HJZIyFy77oqb0UTqqo+E5UtvSKfvnjgM+3OTZdTe8WQa0xLbLMNj3Yf/q+thlbq9c26wECMKcdq9BUL0xjUvS+WHnD4/Egk8mYuoIam6nX6yapnJ4Hq8FXKhWTlwXA1OPz+Xzo6enByMiIg43m8/mQTCbh9XoxOzuLlZUVlMtlZDIZ430Eg0F4vV6TS8V+2H3g2mLj2mACNSvUl0olFItFAHBUzGCZK/WM8vm8eQcaJPRoa7Waw7uiImf8y/YOqeg4B0yO19gcK3l4PB5Eo1Fz30gkgng8bg7npEERCoUQCoUQj8eRyWSwsLDggLG1ODPnmfOopBs1DmmE8f05xvxM45n0onUeOu3OraO47vJmY/4KkXHx29agHYTXDahei8J+qrzUY1GvjkpAFRc9NgqU3t5euN1uTE9PY3p6GpFIBF1dXcjn82g2m0aQDgwMoNFomGC51mSjMGApI6AVtFfIUPv2S7/YhMsFoOEUfu08Bt6HjK6P/WIdG8zVatTRbDhjd2TvcUw8Ho8D9rLjUIR92A8qdXqe9PAAOOA0KmAKYUKOHItms4lQKITe3l4kk8ktRAUqwMHBQXg8HnOOF8eAZ2Jx7RB+pgJVqI/vr/E9kjcUYuVa4trQ2oSA07hQRa8KQGOdmvKgjFmtRs/x5Tsx9tZsNpHL5QwMaO8hKmvGu3jyAIv10svXgsb5fN5Bc+d7q6dp7z+NXeq6UaIP76nl2myilHpineZsHcV1lzcVvCpEKIBUqamyImzIjUAlZ0M3SlHW+AahGTsBWWMYFFAU1s3m5pElbrcbV65cwcLCAkZGRuByuQykRcUVjUZRKBSMN0KLU2NlmkyrSdE2TPfxX2jAK3E3JRsoFKiCRJUvIcLaRg21+j9BcW6PqbrA33B87MKnSmFXD5bCEtis8pBMJh2Ky+12I5fLmYoZjIupIuNnzWbTwFnxeByxWAxut9ukGTDu6Xa70dPTY0gMi4uL5iRl3lOp+wqBUpBqXpsy4Vi1Xk+eViWn/Wfci3Ol60lhbN6fRoQiDDrP6gFSUTDmyvqM9DBdLhf6+/sdngshZ5KYFD4OBALmu0AgYDzTYrGIxcVF3L592/GuQCslhfe2FbHGqux9x9/o+HNMFPnotDu3juK6y5sywxSW4ELn/9Ujs4kLai3anhoFuCoJLWZq08W5SflbFTZ79uzB888/j1dffRWvvvoqwuEwent7zZlcAJBOp01C7oULFzA7O4sfufYjcHdvtdr1uXwGSRcturYb7lqrxqAeMUJBrFCOepDsY6OxgWajpfDdLreB5IBNkgbjMwBMJQe3e5MmHovFHPEIVa70tKLRKMLhsBHu9KwIDVarVaRSKSwsLBjoFACGh4exa9cuQyqo1+smlqWemNLX/X6/OVXa5XJhbW3NeH58No0PKjWe70aSBuE3hQ/pKXNcaHCo8uPzSezgmNAj1PWqscNisbglcVo9OnpGXKP0EpWI0Wg0TMHc0dFRs34IpXLdcX1zTKjo2WhMDQ0NYXBwELOzs4jFYlhbW3MoL96b3ne5XDZ7kp6U1p/UIrw0NmhcqfFJL7/T7tw6iusub2rxq+dj02ypTIDNjU5FpLAE4Czwyc3Da9Tq06A5Gy1jhXaUTrx7926MjIzgm9/8JqLRqFFWhULBHOfudrvN59lsFj985YfhcreIA6p4+QxV1r/8cQC1rUF/u1+8DxWxelt2wLvZbG6+AzxwuTdPTqZQpbGg91KiAOM2JHNQ4JBe7fFslhPiMSXqlahQpVJjUi/zkbZt24Y9e/agp6cHFy9eRLFYNAJcPY96vW6SegmxejweJJNJ481RyUUiEVMTknFMJo+r8NS50PHUtWRD0gqD6npTkgLvR2+E19kel95fPTslcjBGBsAx1+rVctw1pqXXeb1ehEIho8zJnIxEIgiFQohEIuZd6THa5CcdI+5HhdF1n3J8FR2wYUHOrY5Hp7VaJwp4lzebeaRKyoYDuRnUm7qTF6BCQAUUBSq9AHuzUeDwvnzWwMAA9u/fj1gshlQqhUQiYYSx0tobjQbC4bCjOoH9PkD7kkaf+CXn5raD+ZoLpnCXenIaM6zVavgvH9v0KvFPetAFF+BqWflkpbGf+hwKMF7Dd9VcHI2l2H3UmCEVXCKRMNRxLZpcLpcdleLteA/jVSxtRJiOVSNcLpeBJOl1UXgrZEXDxVlhZGtpI/WG1IjSOVHjQskxeq0yPBX2to0tRQvssVPSjQp8/Y1CvYRUVRGxLJTf70dPTw8ikQjC4TD6+/uxbds2FAoFx3joemZ1et2nmvivhAzto8LVaqDq+ui09q3jcd0DTYUi0NrwALZsDN0M3Mi6YSigFFpST0ShGN5fv1fLl7/t6urCU089hSNHjmBlZcVANyMjI6YGHGGc1dVVHD58GF1dXS1CgNuzRZjbJas+8UsuNEQY2OVyeL16BHoOF/+mV0JiSKlchgv/5Em4XXDBBa9nUzm979z78Hfv+DtDbKEiU09BGWdaMYPvY8c8GFfk98r67OrqwvDwMAKBAC5cuID19XW88cYbOHv2LPx+P3bt2oXh4WEDw1FZaW4Tn0mB7PF4TLznypUr5hBKKjlVRurFcYwZG9IYDoWyrVyUMKFxQTVAKpWKYSCyqbLju9gog67Xer11ujI9XfXyGO+iYVStVo2XSniYRIxisejYP/RA77//fhNPLJVKWFtbQz6fd8B/tlJnXFXf3fbubSKHxnU19qbj0mlbW0dx3eVNIQXAeQ4X4BQYtoel39sWqhIKeL0KIgpkG+Kx4Q0KhKGhITQaDUxNTQHY3JDDw8OYn593KJpms4menh6HMNcNqh6gQnz1es3Ac/bY6D1UWKi3pZ6cxinQBNweZxUHZa1RSTGWYbPuOJ4cZ8bB6PXZBzOqRd5sNh0KmvGaaDQKv99vYji8fygUMixCPk8FqFaxoKLgfAUCAeMdMD/N7/ebWJvCceot8H4ay2IlEL6DQmY2fKjeCQ0uKm5NteDcqDJgU6XJVA17jdO40PiXMhR5vSpsJiSzf6T208Dju/b392NkZAQXLlxwoA+2Mci9YiMU3Jc2bK1xZ+07IctOu3PrKK67vNmCgRuR1hkhLxUQqoz4GX+jQkA9KIU17Ps0m63j6UnYoMVK9tWuXbtw69YtfOtb3wIAPPjgg9i9ezfm5+dNThNJGiRs5HI5NJoNB9OL70KBTa+qUmmlAmiflOKvSsq2gm1Ltlar4WO/WEftn2AiVWwc6y8c+gKwAaOMFCKlklMFzEZ2GqEnXqNeAs+k0kMiWY3D7/cjkUiYcXC7N9mDvb295l4KI/I96GG0SCetHCEASCQSWFxcNLX6qLiY16VQqipYAGbe6eGpoiAMyetDodCWedLYl+Y46Trn2mQCsO39cR55nQ2/se/pdBq5XM6QYjiOTDTmKcl9fX3o6enBxsYG4vE4bt68iVQqhVQqhWg0ipGREQDA4OAgDh48iLNnz5r3Zl/smKBCgZxLrmlCmrbCYp9VuSss32lbW0dx3eVNA82Kf2veFbCVHq8eiO1N6b35d7sNQoFDIW0zCl0uF9LpNPbs2QOfz4fZ2VkjAJkM63a7EQ6H0Wg0jAdRLBaxvLy8mXvT2EoTJmTDzb6pfLyOd76TJ8VrbKvWbvV6HfWGszSPPXZqrXMebHKCNttr0zI+theonhbHn8QOKqpSqYTV1VUjEO38Kb6DxjR1ruz+ElLk/aj0bANHBSvnXAWrjrsaO0qUUKjM9kLs8dS+6LyrsaGeFseAc05PjNcwjsV31zFoNpuGPk9SSq1WQzweRzAYNLG/qakp+P1+9Pb2Goo834NrQ9eLerfsM8dB49A2GcO+luulAxO+feuQM+7yposecMImClnZkNmdyA5AKxZjCxXdhCr41GLUADUt/7GxMdTrdUxPTwOAYWIxphCNRg0BIBAIbIm7qScItIL/aqWr19QudsJ+tCMB6D0pPOr1ulGaOo5sX3roS1tIHirY+T68F/tHL0vhP32u5s0puUa9X2Czdh8VPhWdxsNUCHJMbCXOMVGITaFLjlE7YouOhfZZE2Z1rdnKUxWXevOME1I58h4cB51rXR+ErVWZ6tqgcqUBQC9S9w7HmUgB34eswmg0aggsmUwG169fN+kbXM/0/nT/2TFfjq/OyduNo46lenIdb+vOreNx3eVNYTqyoWxlpla0WqlaVFfhBz3VV4P6tqfGTUlCggpcQkyRSAT33XcfpqenceXKFfj9fhw4cABerxfZbBbd3d0Ih8NIJBJIJpOmfp45iiLtQXWjCj/8jsRdzYUBnEmeFGykd6sAUOFHAaW/txUFT1dWwav3bDabjnOy1MOlla+elQpJ25K2vWO+h+1FU6A2Gg2k02l0dXVhaGjIwIEkg9gxqXbzyGdRqDPnjEqYMKlCrupd8XMqTuY/1Wo1A4fyfbWALK9XRV2v182caV/5GxpG/KOkC64J7SOhVRoM7DOLEWcyGaP8+TlrP1KB8OTjVCqF/fv3o6enBy+//DIuX76MmZkZZLNZ7Ny5Ex7PZkI6UQMdb/ZXmYWMkTHOqUaLeovBYNDAmFxDum46nlf71vG47vJmW2wqgFUA0QvhdWr1Ak7atE2x529sjN2mlDNeowqGOUqLi4tYX19HqVRCb28vKpWKOTWXjXkx+Xze1O7zejYTfhUGouJQT8BWqjarUn+nypsCqp1HwKNSVBCxUdAoVKqMsXq9jnK5jFKpZOaENQZV8AOtJHK+jxoTChMqe49zxsRlKgwlMgCtCulazUM9HCWIUBGpx0AFw2vUc7fjMvyO5ZXs9AL1xBkDs4VvpVIxuWrqddsQJfuoxoQSVdp5nexvo9FAPp83lfTZ2A/GGOl9dXd3I5fLIZfLIRaL4fDhwwaiTafTuHnzJtLptHlGOwKK3X/+W5P47bWra0Jji+3Wcac5W8fjugca8X57U9wpudGG/RS+UG+Nm0Xp80ArkZMMKABbLHI+r7e3F6FQCBcuXDC/C4fDKJVKyOVyxutTAT81NWXgn8/t/xyazSb+7bV/6xBatFr5zi5XY4ty43X8zFZi2h87puByuTZzt5pOJqLtsfAZqrRoXW9sbKBUKjmsaputaStEHXM1PpRhSQuchoFCezakZI+ZQo78na106TEz5kUlRLhNlQLjYIQpOW/si+ZQ8TObsKCCXtevPY9ksvJ6hVKVgs/1rO/Jsec6LZfLprIH6zFqTK1QKJgE7EgkgtXVVdy+fRtDQ0MYGBhAf38/lpaWEAgEzNE8SnjRtaTrj+/FeSZcybXZzstU5UxPreNtvX3rKK67vOkG5ubmBuRm0TwiZcC53W4DQZA0wd9RGOmJsXyG4u4sZ0NYhhufluSDDz6IgYEBrK6uoqenB729vQgGg6Z0EZlZc3NzpqxQKpVy5PPYMQsbdtM4iXqJhGL0t6ooVDDovXh9daMKNGGqevC7Lz74RbhdzpwwKhbCZRzDRqOBlZUVA/uEw2HHNXaskMJb2WUcV43bMWmbrDeOud0v9eZoHDDxm88mlV9rGRJK5btwrVExs8/VahUej8fUROQ6UPiLwpgeHEsrUZHQc1Uvmf2xiR4q4NnX9fV1R14aFSxZlFRKbrfboALFYhHZbNbkcOVyORQKBYyPj8Pr9WJ1dRVerxfBYBDj4+Mmd25tbQ0HDhzAO9/5Tnzuc5+D1+vFG2+8gVgsZgoWq2ekXpwdq7K9RTYaDmSWcv5Z2cM2vDpta+sorru8qXBS4a3QGC00jfEoLKZWLa8DtuaE8Rrel0LU9mLocQBAb2+vsSwZM2Ashu+8vr6OYrGIUCgEv99vSj7xHWxoT6ETXqOQXbuAtypbFX6NRsNRAcRBlqg30IQz3+aLD37R8Wwdaz6/Xq87qOv0njTmwlgSDQSdBxVi2hf1UjgGNFqUBMJx0t/YRA32VeE8jVECcECTvIbPpMGkCoTP5Pvx90pioULU+9IzIwmH4884pg1J8/3pfXEc3W63iTcqJKkCnnBtpVJxlLTierSJEWQgNputgsb5fB7Dw8MIhUKOPvL3ahDoeAMtY4p/20rY9jR5rXrhqvDsgs6dttk6iuseaJVKxWxUWrQqdGiFAjDQDgUdNwC9G1q+KsC5ydSLo3Dgs23h0N3djXK5jEQiYTaX5iyRfp1KpXD27FlEo1GMjo6ad6fwo/VJT5FWs61gf+HjDXz8FxoOy5uCQeMBqtApQCmY1GP7hY83MNtsOKBC9TgoZCm0FBJiLA/YZP91dXVhY2PDHINRqVTQ29troDgeyUKoyfY+9N3ZJyoNJahoAjDnmO+hCoBKotFoIB6Po9HYrFpSq9XQ29tr2HMsCksKOO9DBh/nVGNymtfFhF160nZMikoMgKPfnFcaFMwn47vbhkg7xcZ76lz7/X5UKhXjKc7OzmJ0dBQ7duww8DX3hMZrOW+12uYJ2Kurq+jv78fk5CROnz5t5lfHF4DZj3wfzonCf1zTin5wX3Ffsi+cWz6j43HduXWif3d5UwtUN6xCYza2riQN/l+FD4WibQlyE1JQKsNJm+askF0Yi8Ucp/3ScqxUKigUCvD7/QZ2tIPT+kw2WptaleKXPrE1V01hRE3wVe+DfWR/PvHJVg5co9mKD/3N4b9xeDwAtihGCt9AIGDIJhrj4nP039psr9COUalHwuv5HhwXzrd6RCrkdNxcLpcRyJobZZNs7Dwj3o8wo44r11E7eFb7qOkBSoPXda3zYsf/bIOEMTdNUNaYIuef0G+5XDYV9Wm4kdXI31BRbGxsOMpn6flkfC5JNOr5Kiqg76PrTxW+jhH/1vnnfOn4dtrW1lFcd3mzmVfcPCq8bc9L4UKFzJRibscSADgEYjuBolawWroU5B7P5qF+3NxAK3eGp/+SAUeBQOv+rx/4a0efFQayoU4VsOo58hp+rsLbjjPwOY16SzHcSRGoB8B7BAIBU4JJWXrsM+9xJwYnhboKcj5f31P7aBeTVaPEHicbEiRRQc/J0rXBvCeuLY1X0TvR9Qg48790Pvj+9MKU+q7/VzjMHjMtVKxzx/VPb80mg2gCdLVaxdraGhqNhoEYNSbHuBIVmsvlMgef5nI5VCoV8658Bn+vir7dWrX3Jz1HXRO20cKx0753WvvWgQrv8qbWnSobzWlRq5znEtEqViXGjUdBo5AO4QugVeLI5XKZskTNZtNYpxRArGC+vLxsjsoYHR018JXL5cLS0hKWlpYMPT6bzSKTySAWizmgs1AohM/f/3n4fD6879z7HMoRaAnMX/ylTSqg2w186pMtr4Q0dK2eXi6XHZBio9HAL3y8gbrCqNiMpXz12FfR5ekyQvFOHq4d12g2NwksrAWYTqfNPdg3ehxqSavXSwGmJ/7y2Qop6vVs9vio0nK73VhZWcHCwgIWFhbMOLFyBNAifHAu2Ed6H/RuisWiUWwKY+o78rf6f65FPkc9U/Zb47F2dft2cDg/1zOruCdu376NW7dumbFcWloyJZ20XBnzsSKRCEqlErLZLPr6+rBjxw54vV689tprWF5eNvFa7kPG/1TR6nvqGtH4s20k6rqyPU0l3HRa+9ZRXHd506A5sLUgrW58u8gnBZkNASmkoUJdBZHm9FCg0FKkBU4hmcvljCCjtcpnZLNZ5PN5o/i6u7sBwEAxfCf1JPhM20tSb6jRaODjvwxwjzcaDXzyE05igwqXTYXngtvnNgqd9/t/t/2/GNkYcbAr1UvQeWCzLWm3241QKGQC/PRgqtWqOUqeQo/Qk5JeeE/bi+CzbShVPUBVIhxL3mNlZQWpVAqFQsEkG9PLoGK1PXqdAz5LGXC2l6TwmHoS6tkz9qlwI9BKkleom3+Uccf7815UXFT4fNdCoWBqMdLrqlQqhhhEg4+KWNGEZDKJUCiEQqGApaUlU4yY1eDV0yQZiXFj9o/vq16nerF23Eu9L46D7u1Oa986iuseaGpVa2yAykA9J6BVl46bWynjFE5A6/gN9cRUePB7JXZwo29sbGBwcBChUAipVAobGxtIJBKIRCK4du0aXK7NStw8fZdnTUUiEVy/fh2NRsMoMRWiGxsb+B8H/wf8fj/ec+o95p3VC6QAUcve4/Hgk5/yweulovGg0SCk4zxJ18TNXG404GQ9Eia1K5dTMPE7Hu8OALlczsRI+vr64PV6jQdIBZZMJjE2NoZmc5PcUSgUALRYiXw/xstY3bydsOM8UXkoYUdr+lUqFczPzyOXy5l+UeByDHkPetsAHJVC6JmogZPP57ew5rgOFWLWChWlUsmxtvTkARX6nCO9jxow+kxNDWFfWNGDpz1XKhVzPpzX6zVjxPGlYmo0Gqaw8fT0NC5fvmxSNu6kWBWi5t+6R1UhcS2xb7qn2W8qdIVeO6196yiuu7xRIWmsRIPGXOhAiwKvsBEFHL9X6MWOu6ggUYFpwzq8RzgcNkK4q6sLoVDI3IfCb3193SjRXC7nqAJPD0QFgsbivnrsq3j3K+92jIda37q5bWjNFihKuuC/P73905vjixYTUnPm7LiR7bEqk47XkKHH2E+lUjGKLZFIGGXdDvbj5yoYFTZUD0zXgQq9ZrOVTFwqlVAoFLYw+aik1INqR/7gmOga1Pnp7u52eAx2P3TMFULkPGsaB9eoKiH2jd6ejpeiBjYE5/f7Tb/r9brJb6MitRUOoWG+Yy6XM+d0kaWoaQ00KFThcp+oYcl50f/bZBP16HWf6Xx32tbWUVz3QNMNzMVvY+uqZAA4FJpa7BQWKgwVLrGFEIWKem3cZN3d3YYazkoMhMC6u7tN3IyKa21tzUEJ5vMBOGJT+pyvPfo1PHfyuS0KqF3TMVHFrYqFwuWrx74K32WfA7qrVquIRqOOa1VgqSCm4CWJQWGd7u5uhEIhNJtNY/Gn02n09PQYy18VrcaWFGqjMrLjW4R1FY7TPlPgrq2tYW1tzdwbgEnmpcdCYa2sQR1f9dSBFhWcNShZlNaGsPW3VAoKTdrXqqLiuKoC52f8vaYZKEJAAoZCqWowcRxVCatyqtU2z+VaX193jLEyItWI5FrQOVLjSRWZfY2+O6+341sd5dW+dRTXXd6osAAndk6BoCxADXoraYMbSHOCbLiNsCObJu3a8A0D1hMTE+YepLwDm4y7aDSKer1uCu36fD7k83kDkfH5zOEhJMPvCGt1dXXh64993bz3u1959xbFq7EB21uyPbuX3/Xy5vH1aZ/D+6nXNxNPk8mkKRHEezOvi+9LiIrPTSQShvbvdrsRi8VMFXx6pIVCAdeuXcPQ0BCSySQikYhjHkmc4HP47npgYzAYdHhWqvxUEPr9fuRyOaRSKZRKJYTDYcRiMeRyOVMnMhqNmkRyPpdzrN6NGkJKU1fPslarOWod8jc87t7j8ZhUCMal7PWn0CSfwzgVx5nPUziU9+BzIpEIUqmUWYs+nw+3b9/G/v37EY1GN+fe5zOJ8rVazdScZAmvubk5BAIBM+8kpGhcS5mPXHNEMXQsFZYnxM535/izj1pirRPfevvWUVz3QFMFxU2tissW4vo7tfJUYKhSs4kRbHbsgr8n4aC3t9fhBZIazvty05PpCGCLYCYzkderolECiP1u7SBA/l+/B4ATz55oKXS4jXCnp6SWNO+hY6kekcI/Chmy34AzERXYPOZF+695bjZ0pGOvUK8qBY4RCQwKfSlsSK+YByZq4qw9z1RY+h7KeuN78hBJUuwJN1Kp6PgpZK0pA7qeFQ3Q31E5qrdG8o+SM3Td0NOnkuQ1NJi6u7sdFV54X/aJCrxSqSAej8PlcplK80ql5zvr37YC0/1ke2r6f3u9KrTY8bbu3DqK6y5vNixox0XsWI8NNdnC176Xbhxb+FE4qyCksIxGo4hGo0in00bI0IOhMGHQW6E1+/58BiEgFZRaBJbXf/2xrzv6zmcHg0E89vXHzOffePwbxtL31FoMSgpLHg64vr5u3k8Fteb7cIxs1iGbnSxKq5veEuv8uVybLDcdF/2NNgpBKkC+m/Zb14Z6mpVKxeRt0UP0ejfPnKLw1DiNskn1fvyjylnp4KzwTkWqHgPfk32zIUk2Zbfac80YkhouqtC4zuxYHL1AjiPTMMLhsFEW3d3dxqsn+Ui9oZ6eHni9XuTzeayurjqgRfXu+e4aA9T1reucnpgqJhsCtpViR3m1bx3FdZc3bkZdwLQ++ZlWRLBxc40pKKFD2Yi28KOCUUvW5XI5yv+Ew2EMDw/jxIkTiEQi5jPGsAAgm80aiIuCodl0Fu6lRxYKhRxQpcfTKhdEWAZwVqnXGEOj0cDxZ46bewJwEERojbMvsVgM4+PjyGQyBp7i+KnCYl8UZtV5YNkjPo/9ZL28er2ORCJh3qNcLmNxcdGcrqvQHMcFgCNu1Gw2TSxJyQW2sKQCWlxcxMzMDNbW1lAsFjE9PY21tTUMDg6iu7vb1PGjd8K1wONGmLekHoHCWTzjSintwWDQoayBVvkxKh/Cp1Ss6tFzzvksekv05Pk8/s1ns2o7lTtJMSwq7Xa7sba2hsXFRUSjUQwPD6Ovrw9TU1PIZDKOHESuk66uLuzatctUjb9586ah2HMONBeSe0JjaDpuSo7Sa3W/2dBnp7196yiuu7wpPVbJFbQ6bUihnTej8I8KQ/6t3pYqPoVx9Hta1+FwGOVyGYFAwMTIGo2GUThaI1AhTo3NaCUCJQiQssw+A9hirev7K5ymCaDaN+034SIKPCoDJROooFElrkw+G54Ftp5ey/mih7KxsYFcLmfiTBwLOz7He1PRRCIRQ3qx2ZPsk8u1eYRMsVg0Y0siQzweN3lF/D3XBXO8OJb8TvurwlhJK+qJat/VU+d7qjGiSp/Gme29ct41vmvDg4oqaGkxviuZhcznIlmIcUmyPdnP/v5+7Ny5Ez09PVheXjZGm0KFfBddyzYsz3flPtQ9wL1CA4TvbyMqnda+dRTXPdC0sCmFIJvGmBSKo6dFBaeWHQUcP+N1yh6kQFLBzsoUtVoN4XDYCH4KCj3NNZ1OY3Fx0QTtVUgxgZk5NWRyMe7E/uhps6Ta6x+1cGntE/ahcLMhVoXguru7EY1GHQcx8nkaswJatGmOHyvcK3lBIT0tN8XKGpo/ND8/j0ajgd27dxsvSHPu6DXOz8+bk3hXVlYwMjJiyhIBTsIOocjZ2VnjUQ0NDaGrq8tAu4xNEUJU6Ixlu+jFKBRoK0h6Jlx3hCb5PZU/78v55PehUMisX8b86ClxDes8K4NQK4zoPPNAzEAgYGBmt9uNTCaD2dlZhEIhHDhwwMCH6XQay8vLeOCBBzA5OYm+vj4EAgE888wzZi1ms1k0Gg0Eg0EUCgW4XC7zvlwLJG9Q8XIe1cDk3uTf2k8dMwCOuLJWB+m0Vusorru82UJDIUBuHiUmKMSlpYtUsfFaOxCvkKFCUqrQ+EeTSxW7bzabyGQyhopN9pnCR1SAChNROWrMQ9+L/2Zf2lnbVBj2eGg/9HfNZtNY6DZcZQtqvls761k9SvXKNFZEgcs52NjYQKFQMGNHZaF9LRQK5lyzcrmM1dVVNBoN9PT0YGxszHgv7Csp8IRoaVywP1qKinRvnUP1dDTORIWocT2NzVBYc31S6LLP9Fa05BIhQMaHqLgIoela01icwqIKEaq3yPWqBhrLOrFVq1Vz2CnHivAiAFOibHFx0bEHuPcUptd1quQT7Qv7aF8HwGFQsi80KjqKq33rKK67vNmKCYBDIGoAWBWP3WgB28F3Ffw2xKF1DSm4VaDTotzY2NhS/44UcAoP3qNUKpn+qKDX59qHBir8YrPT9Hd8hiohjYMpXKWMRXoEKiy1WKvCefwdhQoFsXpqfHcqTBoQVFyE7gCY4+I5znz+xsaGicEUi0W4XC5T+LVQKKC/v98QDDh3uVzO1CQMBAKmUgkTjrVaRK1WQ6lUQjAYdAhVNmWEcizVUNCxUi9DvX8KYK/Xi1KpZLwMzmlXV5fjKBzOE5WPesscY3qBXD/2vmAVfNvwINWdMVaPZzM5PJPJoNlsmgowfJdQKIRSqYTV1VVjFCiMRyXGfqo3r3uS19hEHDXCdO3wuw5c+Pato7ju8sYcGQoIFeCqbGjFqbekVr/GoDSeQmWmjCr1SBiQpnBSRaeKTQ/9c7vdxpMhhKZFZ7PZrInBMHGZMROFJmmxd3d3IxgMOhQHFQsbPTuFZfT0ZwoHjommEVA4U7hx3Hk92Xj0OlSZc7xIGFDPinNCijWVe6PRMGNz69YtdHV1IRKJmBgU351wHftNbxXYJL5QWdBLuH79OorFIkZGRtDf349wOGygXMJbjBexj/T4NI2B17HWIufAFtYa8wJg1gljSIFAwIxtuVx2zAOvp0dGwgfHWONmVPzqyajRQOOJMCgVFNCKi/K7bDaLgYEBhEIh1Go1rK2toVAoYGBgAPPz82ZNZrNZ3Lx5E2+88YYZQ8LyPJiS78l30vqNjKHZbEk7Xqx5XPS4Ne2l09q3juK6yxuFtHpear1RUamVR08CcNLc7eA576X3UMaWkg78fr8pNgrAQXd3uVyOxFFa1lSqCpcwNqReGI9E7+rqQnd3t6M8EAUTlYPtCdkQH5/HZ7I/fJYKagoU9ZA4Znov1tVTphqvUaWlHohCbcoCJCzHOazXN0sMMQGWgp6J2slk0uGtdHd3Ix6Po1wum+r33d3dqNVqyOfzcLvdJola4TmOkXrNaoTwb31XKgT2SWFojoN6uBxnKgs98FLjrGqAaRIv35EGlcZ4+L3Gfzj+jI3pZ7oHNF7EseT7c10zuZtV8WdnZ3H16lXMzs5u8Zbq9bqDQs81pU0NRio2jiGNEN2rLpezkHWnvX3rKK67vDEOY7Oz7lQEVuNJ/F6tRN2EtBL5HP6tsQx6IBRCvGZlZQUrKysIhUJYWlpCPp83lm6hUHDQuYPBIMLhsEM5UhlVKhVD9eYGp/KicGFMRpWuJhArFVotdaAFeWl/qYBZVJdNPQrNKysUCg6vltUWKGDpYTAWBMAQHihU6TXRG6Pyo0DL5/O4cOGCMSL4Ll6vF7FYzKFsvV4v0uk0CoUCwuEwAoGAgQPj8Tii0aiB1fRARKYzsP98X1LgOTdUcIxBcYz5PvQylDrP8WO/NG5HZcF3sNdns9lEOp2Gx+NBOBw2J1drBQ+OncYM+Sz2j+utq6vLnGjMGpqsGZnJZNBoNMwYJZNJXL58Gbt27cKZM2eQyWTg9/tx48YNLCwsmHnmu/DdOed8ZqVSMWuaxqaNImgslHE/2/uyYdBOa986iusubzZezs9smIqbQL0vtZA1zqMlonidkjdsIgYtRG44AKYaQV9fH6anp43yCYVCW96Jwo4WpvaJCpgWLKFDKgQqFq01Bzip1uohqpXNd9AYA4UdP6MiUm+D3hWv1xgjhTPQgks1v43KTpU/x0HhH2XJUVFromtXVxcqlQqy2awRvhR2pMdr34LBoIHcFC5l0/em8mg2myiXy+adND6nsLHCe0rIaOfRca7pGen5ZgqV0fNST1m9MR0rnVP7iBCuIzuOSQ+s2WwiEomYPlCR09v2+/3I5/NoNBpYW1vDpUuXDMxH2LBd/9VjUthdEQtVSnqN7mX1xHRvaMy107a27+gE5N/7vd/D/fffb6i1x44dw9///d+b79fX1/GRj3wEvb29CIfDePHFF7G0tOS4x8zMDF544QUEg0H09/fjZ3/2Z7fEKzqt1TQgzP8DzioH/L9uLt3Y3DgqcNv9zd/yD4UYBbQG1fP5PDKZDEZGRkwsRA9ypIBtZ13bxArGUJgMq380hqCeiEJyGhNRuE4Fpu1FKayqY8R/Uymo4lV2m52QrAIdcLI/FXq0oTi+QygUMhU2/H4/BgcH0dfXZ4QklSuVhc6N3+9HJBIxZYz47jZJgU1PA9bYExWzKi6NierY6Dup4qPBQbq+jjVhVyozQrCq8PmdlrKy341zoAaFbdhR+TG2yPw3eu5cK/qben2ztmY6nXbkbKky5xjoWWEKtatXxvln45wrSYfkFJsJq5912tb2HXlco6Oj+LVf+zXs2rULzWYTf/Inf4If+IEfwJkzZ3Dffffhp3/6p/GlL30Jn/vc5xCLxfDRj34U73vf+3D8+HEAm4LrhRdewODgIE6cOIGFhQV88IMfhM/nw6c+9al/kQ7e642bQjewCkKFSmyyhi0wKChVUKniU6XA74PBoBEmJDowfnL58mU88MADcLvdhlqcTCaxvr5uKNwq7MrlMnw+HxKJhNm4qnAAOFh+qkS1jI9S7xXCpKfUbDaNUNSqEAAc+T18Lj09oOUJqTeqCbAcU46LKnUqFHpgHHe1tOnN8pnqNQwNDRmvyufzoaenxygj0r+Z1E2m3urqKtbX1xEOh42y4PyqV6lrSQv/MtdKBb96sqrUqZTp/Wrsxha+igrYnqLGdqj4OBaEpj0eD4LBoMPzU3hVf89Tk3WsOT/MsYrH4/B6veYASXpe9G41JqeQMPuqhhbXm6YKMFarHpMai0Q5uI8IJ+qa0n1IBWZ7zp222b4jxfXe977X8f//+l//K37v934PJ0+exOjoKP7wD/8Qn/nMZ/D0008DAP74j/8Y+/btw8mTJ3H06FF89atfxcWLF/H1r38dAwMDOHToEH7lV34FP/dzP4df+qVfcuSldNpmU9hOGUrtjpdXIaUwnRIIbLgO2FoXzbYYValQObjdbmSzWbPha7Wa4+wn/Z3eXyFKpYXrtVQW/B0FBfunR0zwt/SwFO6jVawJo7ZFa1v07Tw7fbaSQzgXWtVdFRbfUQkH/JvjzHgOlTDLZjFGEg6HDRuRHi3fx+PZTOxm/9UrVEXC8WR/yuWyoY0ziVgJQApz6pgpfMz76lpRr4nza88/31Hjl7ZXrvfj+KkXaENoqpg1mVkZr+Fw2BQ75h/GIfUzhTG5vxSOVMiTz9T3sa9VJc89qlCyenDaPxtp6TRn+2f7ovV6HX/2Z3+GYrGIY8eO4fTp09jY2MAzzzxjrtm7dy/Gx8fxyiuvAABeeeUVHDx4EAMDA+aa5557DrlcDhcuXLjjsxhY1T/fK80WFCrU1QoFnLCixoPU0tfv+Z0qPD6TAktjBfwtNxnztEhCKJVKDqtcLU6+D4ULBb16PqrYbHiIsKHf7zfEDAozCidS9jVmxfOngK2HZyqcquNLZUxPi//XKvZ8P9tzU2WokJRWPeF9KOAV/iItns9X5eB2u03uE70Kelp8H+0bPTWOGdcN43d2LIpjZxsRVIK6nmxImWNPmI9QH9+dRpPf7zewsMLACvfZkCTnX4W95nrRGKARQKOBhjDz4BhLpLcTDAa3HG2jytdGNHR82Sddp7omOS5cBxqHpXLke9sGjr3vO21r+47JGefOncOxY8cMPPH5z38e+/fvx9mzZ+H3+xGPxx3XDwwMYHFxEcBm8U9VWvye392p/eqv/ip++Zd/+Tt91e+KphuTG5nC2g6ks+lGoQBRgaqwoh0LY6NiYQ4Q83oU8lpZWUG9XjcHJ66srBjhrDAbAIcFrMFrenCacEpYk2WB2BTKUQ8KaAkRFfRUDnxvMi9tIaz5bSrgKXTUay2XywCc55WxDh6FJd+d45DJZFCr1RxUf/ahXC4bBcMThUmLZ18IQdLD43gCMLAr/6+5V4TbGEcpFoum8K7f70d/f78R2IyJ0fjguHR3dztYmWrkqFDXHCYWM6bg19grPWP1ojjmVOJ8lhoUKuwZu6I3s7Gxgb6+PnR3d+P69eumNBPLP7GCy7Zt2zA5OYlYLGYIGfV6HcPDwwiHwwYx0HdXY8SG6HXcFRq0Y8Jc55rMrVCsxpr5vA4t/u3bd+xx7dmzB2fPnsWrr76KD3/4w/ixH/sxXLx48V/i3Uz7+Z//eWSzWfPn9u3b/6LPu5uaCmdVUGqZURDbG0yvt70mwHm+lCo3fZ5tfat1rBBdOBx21GijQKMgVk+B3gUFkAbjtR9qrar1zn7bfVIPzR4/vivQSlZWQ0BjE/RQ9Kww25sD4PisWq0inU4jl8s5WIw6P0Ar6ZcC2xZ0fCettqG5bOoF6b+pnJSBp/E5YDO1IZ/PO6jpNgyrsR31Euw1qB6lenc0VHStKMTIvhHaZN845krAYB+5Tnj+F8dclUU0GkVvb6/jQFKv12sKQLPyPZO86ZXl83lHDUfbc6UBo4aVva44zzZBimtN559jx7FVBaV7rEPOePv2HXtcfr8fO3fuBAA8+OCDOHXqFH7rt34LH/jAB1CtVpHJZBxe19LSEgYHBwEAg4ODeO211xz3I+uQ17RrylL6XmsUfOpRKM6uG0Y9EQasCSMxAE7hCDgZT/YzAZjcL25ehTXq9TpGR0fh9/uRzWaRSCRMLTi+R72+WeIpnU4jGo2a/CMqRyYtU0jzpGRVPNzE9AiU1adxGVaJYGkehfwo4Fwul0ly9vv9pioFj13RmAwtea2mYUOKVLSJRALr6+tIp9NGSbPgsMvlchwDwj96nAjnr1Qqmf6Vy2VUKhWjeCj0ydqjl8Oq7gCMZ0bFrIqkWq0im82iXq+jt7cXfX19CIVCJq9JYTGt7q/eAP8m1MjUB1vYa8yNHqMaCHxHzX/jeyoRiPG8YrFoPlfGJJ+ZTCYxOTkJv9+PU6dOGYVC0snq6irK5TLW1tZMxZJsNmvej6kGq6urBm5U4oR6uZxz7asaPbpu2dhvTQGwx02RAzsE0Glb2/+2Sm80NhMdH3zwQfh8PnzjG98w3125cgUzMzM4duwYAODYsWM4d+4clpeXzTVf+9rXEI1GsX///v/dV/mubBrv0cXOTafWKaEW9Zxsy1XjV2ot8lk2Pg+0qnfwD1skEjGVMEKhkLGIlToMtBSkengUbmqJ83kUdKoA9d98J252O76gnoZasPqHis32UChwaNXbgfp21GVWsyBExr7wD70J9fpsNiWNAypbj8djaj4yZ86uw6dBfnpq+mw+jwVjqZRisZjjlGD+ngnLqvxUcCusZXsenIc7UentWBmVg3ocOmZMjKZxof1RL9bj8SCZTJqSYPTENIbEe9IQcLlcpuoI51wrYNiIBY0JfqZQvH3/3AAAo9xJREFUuML2gDOWy3WkSl/HS095sJEM9rfT2rfvyOP6+Z//eTz//PMYHx9HPp/HZz7zGbz00kv4yle+glgshg996EP4mZ/5GSQSCUSjUfzkT/4kjh07hqNHjwIA3v3ud2P//v340R/9Ufz6r/86FhcX8bGPfQwf+chHvmc9qv9Zs+E/FaA2Jk4r1+VqZfork1AtPFVgajGqNanWJaE93oObkXUE3W63gf0Y37EhMlUUtvJi4+e6gfU9KZy0KRTFcQG2Hq1uKzJWJOE9tN9UAhxHFbjtICHS+EkG4fP02XwOn68xNI6RxlVY5UM9UD6L76ZxMM6XjhmL8mYyGUPo0Cr1XGO8B99Vq5LomrHnTokFagSoh8H1owKZRpCt6BQ5YAoDn6nCnO/s9XoRjUZNySsqn0qlYqBY/t7r9ZrjcdbX1xEKhUw8UBWMwuW2N6nKWdeMoiLqveq+slm99OD0Wh0HhcY7zdm+I8W1vLyMD37wg1hYWEAsFsP999+Pr3zlK3j22WcBAL/xG78Bt9uNF198EZVKBc899xx+93d/1/ze4/Hgi1/8Ij784Q/j2LFjCIVC+LEf+zF84hOf+D/bq++ipkpHrX0lByhLT8kHzWaLNq9Wo5bSAZw0ZVqf/LeysFQJAUAmk0EgEMD27dvRbDZRLBYxPz+PiYkJzMzMmJydUqlkcobW19exvr6OWCxmLFeXq1UeiRCNkiQAOOAr9p0n43IMeB1jZsqkbEdkUQ9ABerGxoYpAkzYylam/D3jJxSKLPJar9cRiUTQbDZN7hXvwyM1eA8KWMKDzWbTlFtiX2kY1OubBzCybBOh4GZzs0IE+0TW3tzcnIEIBwYGEI1GjTKxvRvOAw0f22DS33Gs6J0pbMjxIZGFAlpjmPyMcS6Px2PGjs9j/UY1EjQu53K5EI/HUavVMD8/j6WlJQSDQWSzWVN+TI9VSSQS6Ovrg8vlQj6fx+DgIHK5HOLxuIGtFeYEWmXClByj55QxJsr+ADA5d1yPtqHFcdCcLl1XHCNe22lb23ekuP7wD//wbb/v7u7G7/zO7+B3fud37njNtm3b8Hd/93ffyWO/pxs3nxYbpQCk1a6WOtBKYuQmtL0stUK1acAbcJab4qZW+Ih5RT09PaZQ6ezsLEZHRx3FdBnrYiHTfD6Per2OZDJphJjGz5SUYXsbCgMq7KLxPjumospK4UC1rO1mW//6e5tJxvHgAYb5fN6cDK2wlVreVHZ2BQ59DuNxCgNrDJNzzrnhOKqxo4V7qVzU+yM82Gy2ziZThaUQGGE3hXjVC6I3onCuKjM+Q+eU39mMU7677b3o+iUEm06njbfFornsn67bUChk2JUAEA6HUSqVjEFlx5cUXSDiwKYeNfeCemn2+tJ3t9cT4My77ECF//PWqVV4lzf1dmjdKrVWlZZax/Re+H/1xFirTi1BWpkqILlxeX9VaKTDu91u7N27F+fOncOOHTtw4cIFPPLIIxgdHcXt27fNva5du4Z9+/ZhcHDQUI/z+bwD56f1zU1bLpdRr9cdpZFIaiCBQSsb0POkwGNFBFUapKsrpKZJqwrN8j00NqdKll4H+8ACt8ViEblczpABqCzsnCEqZt6P3o7b7d6Si0QDht/HYjEAm8ebaPIzBSU9U+Y3xWIxhEIh8846XvT6SFrh9z6fz1SvoILkcSv2fZgWoakDnFP1wlSQax4bvS4qaaBVCV49c/03vceZmRn4fD7EYjFkMhkDr7JqPgD09fU5qrpwzafTaQDA2tqa2VcK/3KOiEJwL2i9R/aL/VFjSosu23EwoIV+MO1EjZwOVHjn1lFc90Brh6erp6DCgILAtuLtOJLGyfQe+r1t8anV6/F4TP5SIpHA6uoqEokELl26hGAwiJ6eHkdVCMI3Q0ND2L17N1ZWVnDlyhUALTKGXflBITw+kwpFPR0qYY3BkX3Hf3M8tFyUQl5AqzKI1uCjEFEyAO+hHiHJDfyecJKWdeIzCGeyBBLQCtTbMR8aHZoXxDXA/lPhU+hqPUAKcCpQ0r55f86RMt1UAFMxaw1KNZKUhKCCWb0uZYFq8WL13pSez3ElhMprabhpjJEGQCAQcBhB9FRJwuB6qFQqKBaLqNfrpiyZKmuuCzUYdO44Jpo+wrWhc9TO07cb17N6ee32XadtbR3FdZc39YDUulMhpp6Rfq+emF6jQoYCQIWRQiIKcWicA4CpPxiNRrG6umriDYzvkGUHwBw9PzY2huHhYQQCAaRSKZRKJRNnoWdJ70f7QcFqkwq0fJJtoWqelFrRvF6JGWoBK0mBAoq/s1mavEetVsPCwoL5rlgsmgReCnwtScX7ac089b5stiOtfgptQseMS4XDYUcMkcqHzE/2pVqtolgsGsVAj6jdGCpLT5WHJmir4OZv7HXJZynZQyFYu4oKP9cKMeyrjgt/S6+ciAHTBDhmHFces5LP5+H3+1Eqlcwc2QnDXB+ECXVNcp3omrLHgf3Q33Bs1IvX+2m/VGF22tbWUVx3eVNFo4vZji0ok6zRaJjzmWjxarxLSQu0hJV8oYpRlRUtYSoal8uF+fl57N6928AvrKvX29uL/v5+3Lhxw+TNXL58GdVqFbFYDNlsFktLSybuoHAfIUJubH0fW+gpk4t9pcekQXWln1MAUwhSwSljUVlrShLh7zmGSorRvCetBzgwMGCIFhRQ0WgUsVjMeGkADGzn8XgMrKfxOB4dQwXUaDQQDAYRDAbR1dWFdDptCA2M6TCnknlcTFlgHhWVLz0rwoVUsCyLRCOFlHK3222qTzAexzVFJUWChBogqhR4n2q1ilwuZ6BJQsC2MtfG8S+VSo7nF4tFlEolQ4yhkdDX14fe3l40Gg3Mzc3hvvvuM/cKBAIOMgeNF65LNfQ0AV1jwvRuNWanhqPOpc2s5V5Wj67T3r51FNdd3tQbUDqtemEq5NVi1v+r0Od91SJUy9b2uGwvh/drNjcPACwWiw6BUalUEIlEkEwmHbG0YrGIdDqNpaUlZDIZc3igeoW6qfWdbMIIBasmijL2oEqICov31LHhc/UkZR03DbLbc2K/n8fjQW9vr1F0c3Nzpjq+GgVsVIqMCzWbTaMYgJYy1Vwn9Tg4F4S0SqUSisWiUWZUQFrZg14tSQ13grQUwqOC57tR6fE9dB5sCJb30XVIxUBFSaNACSKEOwlpKlzLsaNCIRtS54zCn89n8WKFSyORiCFpcOzvlLemMT5VKnym5pnxc0U3dJw5jwrHKtJhG42d1r51FNdd3uwgre0x0VIjLGJbd0Bro7eDcDQYzM1p19PTTWdDRysrKwA2Pa1sNovR0VEUCgUMDAxgaGjI3IcCi1RxLfnEsjxqYWssyS6oq++g46RxESUsKLSmitpWQPq5xlF0/GzjQN8hFAqZeFK1WkUqlTIsR5fLZVh7qsxVcQGthFWWyAJaZaJ4DftOxVWv1025Ih4myblWhcNx4zPZN44Tn08B7XK5DDNSaen8LSE0wqbqNdvzwzGkN8Z3YhySsS/G6gA42IG6PjlvhETZX4U2GXOkgcBqIxx7j8djvDzCh5pXpcaR5tm125vcg4oK6P81RqrjTQSDz+0wCf/XW6cY1l3e1PqyYS8N6nIzahV1JnXbcKFCbfZG06RStRSVjafY/1tvvYXFxUU89dRTSKfTGBkZwcsvv4x6vY7t27c7Yl1kE66trSESiZgjPKrVKgKBgOkbYZ96vW7YbrRStZIC4S6+mwbuFUokw4/5TOw/vRDCZfYfVVz0OpV5x7FiiSfCpJVKBcFgEIlEAsFg0JxVBsBcC7QUEqEpFiv2+XxYWVnB6uqqqbenysLv95vK8Bof6+vrQyKRQKOxmbxbLBaRz+dRLBYNxBcIBBxxN43z8Tdu9+aJyqFQyLDwCA0rBMYDGrV8lRo3iUQCsVjMpEaoV0zaejabNZBjtVpFoVAwXieVjXpvGltaW1tDo9FAMplEvV7HwsICbt68aYR/rVZDKBRCIpFAMplEd3c3VldXMTc3h0ajgWw2i3379iGdTmNmZsZ4fprTqIYM5173pqZGKAytZAuNxymxSNcWFaSeHtBpd24dj+sub7aFb3tfVCQAHEJIg+k27MDvlJgBtKj16rm1g7j096urq1haWsLExAS+/OUvo1wuY2ZmxiinWCyGer2OQqFghPz09LSj3l69XjdKVskT6u1pnTo7FsD35G9s5UPLXQ+J5DOUZKAlnviHwloZZPb4kw1H4dtoNAyrzev1Ynl52fE+6k3a8UcqAXokNqRI75P344m+nGcKd5uyrvdQSEzHjHEdngEGwMCPml/FeI6uqXZrjfOrigeAo4IFYUzOOz1jJWaosOdz6K2HQiGEQiGsrq4in8+bormFQsHMczQaNeSV1dVVU0WkXq9jZGTExCPVaFPYXPeVDQfyGnuP6f5RWJr90PtoUwNVn91pztZRXHd5I8ymEKB6YFqSSGm5FELtFB3Qol/TCmSNOgppVQSEdlRQu92bJ+nevn0br732Gj760Y/iyJEj+PrXv45isYjTp0/j+eefx549e3DmzBkDC9XrdaRSKXR1daG/v99R+oeNUCFJB81m02GVA5tCkd6WlgsjLKgKjMJOhTXg9FjVAm6Xj0MBqmWIdLxUqPp8PlPFgpBbJpMxpAlCmuwrW6FQMOPk8/mwvr6O1dVVB7zI69PptKGB0/MplUoOL4pCsqury8CYVIQcQ3q8qtx1Lpg3qPR2u69UevRA+BxVBrwPx5nKnixIVYbt4EaNtdZqNePBbt++3RTIzWQyxltcWFgw6zWZTJoK8NPT02g2m8ab3bZtG+bm5rC6umrmmHE8hZubzaYxSjjvahSogrFJPhwf7QvXjSImathw/jqtfesornugqcWmQgVwFkm1C4RqTITXEmJj0/sqGUEVJJ9PCEVZjvl8HisrK+ju7sa+fftw+vRpdHd3Y2ZmBuVyGcPDw7h+/TpyuRwSiQQCgQBWVlZM4F3fTZ/N51FZ0RLn5qZC0PgAGwWFvfHtwLsqHd6LnymNWeEgDdZrzFC9GzvGFg6HTQxKPTm+q02x199SIZBtyfHimVPRaNQYEu28Uj1OhkaKrYiZqEyvTBWTxjvtGBvHxu12G8PGNnzoVbKPqpg4P5rMq0QUKlgbtl1fX0e5XEYoFDIM1Uwmg0wmg3A4bH5DQ4nJ16xqUq/Xsba2ZqC/fD6/pSYk55LrS/eUQvO6j5SIwt+qsagepBJNdLzZOkrr7VtHcd3ljUJQWVxsqmgUMlRmnsauKDx4H1USGphWEoIKa95bmW7r6+tYWVlBo9HA8PAw+vr6EIvFcOHCBczPz2NgYAA9PT2Ynp5GpVJBV1eXozI3LXZa5nwmvShWCNccL1U+VGKaRMzkW4XlbEVj59fwe5tUoMqb3op+r8F1Xg/AxEoYh1PhDsAcR6JKjAYFlSm9HxVu/J73JiTJMbTnlEoDgFGC7CvHiZ4b70clxvsq3KfrQ8sTqbFhM0M5ruyLHUPkb6l4uTaUQKLsRdLlw+EwAoEApqenkU6nzfE6QAtqBICenh5Eo1EAMJ5aNpvF+Pg4fD6f8VSpfHSNKMlClQtjjfTQFKrVuLRtSNoQLQ0KNY44trxXp21tHcV1lzduIC5u27PQhEwbP6fg0g2nQlb/TchDhaTGdDQ3h0KzVquhq6sLN27cwNzcHPr7+7Fv3z5zWN/nP/95/ORP/iTy+TxOnTqFhYUFzM/Pw+/3o1gsYs+ePaZQLgUVFZB6W7VazRS9JXmDwh1oKXeF9ygsVZAAMEVsAThgLhvGAZzHsbCpEGajMtOK6hybrq4uhMNh+P1+c8ikHhJJoUxvRWFCkm0ajU2WYU9PjyFBENqjQiTUq7EsHRde7/F4DFmDZaUCgYCpI6mKT4Ws5gVyHWocSMeEldnts604v3wm41RKXadCU8VIpiOLH/NeO3fuhNfrxaVLl7C4uIhSqWRKbnV3d6NarZoqLi6XC9lsFrOzs+jr60MgEMBDDz2EaDRqDgDlu3KcuNcUyeCaqtfrpog0FS3fWz1L/sZei4TcOQfc62wdhfX2rcMqvMubejq2QlEIkUrMTpalxcy4lw1TKERm56hwM9pQmgoXWplra2sAgPHxcZRKJWzbtg3ApmcxNDTksJ4Zs6Gw1ZgdY2dkD/K5pNLT29PzshRGspU2BQZJAITGdGxtOIfeGPtrQ13ad5s8o1ASBZzXu3mcCO/BmKUmFKv3rJ4I34MKSYvUKuFBk4c13gk4k7SphAi9Mj6m0DIVCmNUfI4aGOwL381edy5XK41BPVQlaJABq+Wu6EFyfXCeNSXA7XYjFAohEAiYivI0BMrlsjl4cmNjw1TQKJfLpmIGk+AJJRYKBUPm0DHn3Cp8y/nRPmtSMueFa0m9LF0z9lipp69klE5r3zoe113e1OrVSgfKZNKNpjAF4CzCa+PvHo/HCHHGvmilU+DTk9CSTFQkLAzKoPfk5CQOHDiAr33ta3jqqacwNDSERqOBvXv3YnJyErdu3TIbNhwOY25uDtFoFG63G+l0GvF43FROoGcHwLyDCly3220s+o2NDYdHwe8BJ/zG8bDPsmLSK+8NtNhkymBUSEyhRl5PAcTn0kMlNV7rEtZqNWQyGVMaiuOqwp5Hk3B+GBdkcq6yDHkuGmvxqUGgMTjCbFqOCmgdkMi8MMKK6m3YcCEbKdw6V8o6dLlcpvoGIVyuJSr0XC5n3qtUKjnIImpUUDknk0mUSiVcvHgRq6urCAaDiMfjmJ2dNbUIfT4fxsbGTFJ8uVzGAw88gEKhgEAggFwuh1QqhVQqhdXVVTSbTaPYVPlw3jnHfB+iApojqOOke0n3J+9tE6tshddpd24dxXWXN2W2KTZuez+6qWxvTL0ZjYUALbhQvwNabENa8GoxquCiAFpZWcH6+jr6+/sNhDIxMWHiDgMDA1haWjIJyDw3iTlcDLhrsjHQsj7JLlShYnub7A+FjXqnSi5pZ9nasQct/EtquMKKap3b82XHpTimVPT8dygUMtCX/p7Js6x4znHWWCaVCudN40ftjnThMzg+NFL4Ob0f9omKXL1w9bzYNyX62DCqrjMqYLIp23keCiuqsOe7Mg7GdymVSlhZWTHEH4XD6YHFYjGzTphorPG/9fV1Q3RpF8ezPSMdC7upsmFfdEw1Vmj324Yi7ft1mrN1oMJ7oFH42gQAhRPafQY4K8mrUKJQoEDg/W1YyIYn+ZnCVR6PB6lUCtls1lCsc7kc+vr6MD8/b4gb0WjUCETGcVhrDoCBhhReUgFAAoG+ByEkFXQKYSrEpJ4Dx0NjDxpn4R8Kb44BP+PnNmxre758D44Tn+/1bp7cGwqFjHGgyaelUgnZbBaFQgHlctnkGhHu1dgKFbqyClUh08skoYAQlw2t2qQUAIbRSS+Jnpj+VteVjq+9NukZKqRJWJJrm31QsgOfoTBpvb55oGahUHAoV1Xo4XDY5BE2m61z4FgNhPlqhBo5VtovNp2/drAu4EwwJpxqe1McD92T9nzZbMRO29o6Htdd3pTJppuHAh6AY4OzqYXXjqSgTD7+XxlUQKvAL+/H7ymgNTfr8uXLuHLlCiYmJjA2NoZ/+Id/wDPPPIO//uu/Rq1Ww8MPP4xqtYrjx4+bg/+CwSAuXryInTt3IhaLmfhLJBIx/dCAv8ezWXxWKfG28iC12/a6yE4kuYP162wlxrHgZ41GA5lMxjwjHA6jXt9M/LW9FMJaJF9QmdEb7u7udsRseD8KKU1GtqE0JSxwXSiMxtwmKiiF4Dh29Fo1Z499UIWrMKF6t2xqVKj3p4QVNXQ4VwAMCYSMRpJlSJRhHNPlahFQmIMWiUQwPj4Ov9+PSqWCb33rW1heXsbAwAC8Xi/S6bSB5yKRiIGoaWjMzMzgXe96F3w+H2ZnZzE2NoaNjQ3Mzc059hCJSFpXUeFKzpPGsBT2s/cv16uW8FIDUmOcXEfK5uy0ra3jcd1DTRORlRigQgKAQyHRIle4zw6W27CH3sv2VNTaVg8ik8lgeXkZxWIRO3fuxPr6OvL5PCKRCI4fP45EIoGJiQn09fUBgIn91Go1zM7OmnwjOz4HtCj49tEPCkWpkrJhQhUw+lul9avHRIGuZaSUrKDPsKGlduOniskum8X+UNnyPVjNnOy87u5uh8ep/VB40/ZWWLyWkJ7mT6ny0hiowpJcN1T4Wp/w7cgEulZ0TNRz02r6/I16Vvx/JBIxVViGh4cxMTGBZDKJVCqFXC7nSFInnBiNRjEyMoJwOGzYiCsrKwaiHhoaQjAYRLVaNceb6Ji2g9XZT86ZKm5C0TZxRteheu62QrIVYUdhvX3rKK57oCmMpbEVJQSo8GkX3LWhPntztIN6FAKz76nkEAoNwoX0oBYXF/Hggw9icXERoVAI27Ztw9jYmBGyrM23trZm8p14bxIJKGhpoeuZVPp/jVsoFZy/p7DV2I6yLTUOFQgEjMJQaM1mM1L4Uokr0cGm1Ou76ZjzvRWWBeDIpdL50nWgkKYq0GZzs9o5Y4gkehAKU1gyFAohEomYElxUXnw/m3zAcVXPm/28U0yM86NzQkiQwpzEDZ/PZ6qBEFqMRCLGgOCcUxFx/FlZhfOYTCYxMDCA7u5ulMtlZDIZrK6uolqt4ubNm+jv70ej0TBHz7B/alTooZdq+HF81BNTj1X3k+4zrmtFQOw9bsddO61960CFd3lTS7hd4B+AQzAALWtQLWL+zfupZWgrKg0O27lGqsTUs6tWq7h06RLOnz+Pp59+Gu9973vx2c9+Fo8//jhmZ2eRz+cxOTmJp556CsePHzdUcMYglpeX0dPTYwS7Wv+21Utaezqdhsu1mQ/DE5f5ewppwKkENOdK4yUsOcTj4BXeojWtBXnZZyZTh8NhuN1uI7wJAamQp1DWM7FYcFc9EbXSOd+EiW0jQhUwhWWhUDACua+vzwj+fD6PZrOJWCxmiuOyhp96lFqxgrEzzgnZerrevF6vUUZqUNkxIRIq7NgQWaHr6+vGcGg0GkgkEujr64Pb7TYFg3nm2M2bNzE9PY1IJIKFhQUUi0X09PRgdXUVAPDII49gYmLCjPXU1BQGBwfRaDRw/fp1/MiP/Ag2NjawuLho3psGjcap2JRRyzHn9UzvIHFHjQ1da4Ro1QvXhGul3Hfa27eO4rrLm8JdFAhsGj9Ryw9wFsNV4oZ6SvzM/r2dzKtQIWEtClmtZJ1Op7G4uAiXy4WRkREMDQ2hWCxi9+7dOHPmDB599FH09vYiHo8jlUphbW3N1JGbmpqC1+tFIpEwQoGbXq1XClNSw4FNAbu6umoEAOEvUu0J/1HQMq6jnoX2T/vJMdJxpFKlYmK8yyY38BmMMWklddLg9fk2ZGs/U6+jIKWCJtWeCprUdh7USe/Q7XYbj0bLQCmEqEYDn6frgYKY88Tq/FojkgYFhTOVog2f2QqYpBS/34/h4WETz+J45nI5LCwsYG5uzhghJPjwXh6PB/39/Sbpu9lsYmVlBePj41hbW0O9vnnqQKFQQCqVckB56vnyfmoM2WtGPUmF7vV7Nfh0fema5rX2Gui09q2juO7yxs2iXhSVUrPZNNYeF7/Gn7iRNGjOppXSNcAPwGFJawyIXgSv1XfxeDxYW1vDuXPnkM1m0dvbiyeffBLnzp3D448/jt/6rd9CNpvF93//9+Od73wnvvnNb2J+fh4ul8vkOJ09exYHDx40sQe/329KI83OzhrrlO/L3CXmL1GR8vNIJGKEMhWXkjOUNq7jDbRKMqnl3Gg0UCgUHF4DYyrFYhHBYNDAi4zfELarVqtIJBIGAiONW6u9K4xHQgE9QQo/rfzOpiQVmwLOnCYlbfT19ZkcuHw+b2A63leVEJ+nMTr+Yf+UoKKeOaHfWq1mjpQhscGOC5K4QAiRMOb6+rop01Sr1XDjxg0sLi4a1io/53qmcbBr1y4DI546dQqNRgPPP/88PvvZz2Lfvn3o7u7G1atXcfbsWUQiEaNYATgUDbD1YFU1IFT5q1es+4jjaMeL+Swek6Pf2VBipzlbJ8Z1DzRbeKo3pVamBurbkS5USQHOXBolBtjP4Xf6f42V8R03NjaQyWTMURuJRALT09PY2NjA3r17cf36deTzeezbtw+Tk5MAYJJNBwYGAACzs7PweDzGK6hWq8hkMgb+0rgQvQqfz4d4PI5kMonh4WH09/cb6r0KXCoVhXLYL46VDWNpgJ7ejZ7jBbQsZY2VKGzLZ/BEZMJhQOvgRj5Xq0RQIOr3NCC0ZiKVdSAQcJTD2tjYQC6XM/GfcDiMaDTqgGP5rrpm2H+Nvannr9+r964EBSoxjhcVmtLEVXExX47zrgc/surFysqKiaNyHHkfepCVSgXJZNLE9NxuN+bn57F7924Eg0Gsr69j586dqFarWF1dxcrKyhb2nh1f0nnWd1Zvi33g7+19pIalPXaawqBjpHu105yto7jukaYQn52Fr9aZBsx1s6iSs2NHGgxWwaRWoQp0myyg0E8ulzMKJhKJIJ/PY2lpCYcOHcLGxgbefPNNU2GDz8rn8wiHwwZCdLvdGB0dxeTkpPGamIMUiUQQj8e3EAroqTA/iO/pdrvNmU2sEK7VNWzBS0iNVG3+2461qVVO4axnaFFw0fNwu91GqTebTfT29pp6fTahQQWpHbDn/UjZVmVGJcOSWawDCGx6p319fYjH40YpMi9MITwVooCziLCt3Bk7VHhQBTvjZhr74ZgoCkCFp2WgXK7WGWw0brQ8Fp/Pd1byy+DgoJkL5ojt2LED6XQa/f392L17t4Ecl5eXHagB76FjomtM14pCwxwnjUGrMaLvrWvH9sZ0PXbanVsHKrzLmwaNgdYm54bSOAQ3H4UpG3+r8SitAGELFApXhU7U+iPspJusVtssKptKpQxrq6+vD8PDw/jzP/9z9PX1wev14u///u/x1FNP4emnn8ZnPvMZc+ptvV5HKBRCOp3GuXPn4Pf7cfjwYZRKJaTTaezatcuUKKKgVJit0WiYUkoUEBTw0WjUoawocAihMYeNkB8Fvu3VcoyZRMuxKBQKADbzjXg9WZJUuKzQsLS0hGQyifHxcfT19eHy5csol8twuVzo7e119I8eLGMyhOf4XK29yJw6Jc243W6Mj4+jp6fHHClTr9eNB5PL5Ux5KCp89Ua176VSyYwxIUhlgup6owDX2pL0TBgPtCtuqKLkvag8GIfq6+vDO97xDiwvLyObzRpiSalUQqVSQalUwvbt27F7925kMhmkUimcPHkS73vf+xAOh/EXf/EX+I//8T+ir68PX/nKV3DixAmsrKwYD0fXtb4b0EIU1ChSuLid124bUFSIjYbzXDk1huipdtrbt47HdQ80WrPcyBqL4mK3BbOSLTRRGWjh9JqHpVCRXqfKSwPPulFpiVJAzc3NmdyY4eFhDAwMYHV11dSDS6VSiEajGBsbM/EJnonkcrmwuLiIS5cuYXV11ZFozWer9a7xFMKAqsABJy1bvRelk1MJaJUNzbtRa1mhx66uLoenwWepF0FvkAYHY2R+v99xfhRjMpxr1h1kbIifa71Gzg0ZisFg0DzL7/ejv78fyWTSlI7SPtNT1GK6jFlRkalHpuuOY0ZSgm3IcNz5G2UitlufCv92d3c7FFulUsHa2hoWFxfh9XoRj8eRSCTgcrlM5REqxZ6eHsRiMayvr2N6ehrz8/MIhUK4cuUKCoUCEokE6vU6Lly4gLm5Ocf+YLPJE7rOOYbtUAc2em7tUhls2LUdbKp7tdPat47HdZc3LnLAWb1CPSUKVFpytFopvCnIVCgDToIFN44yq4CWkOJmBFrMRWU5Uij7fD6cPHkSk5OT6Ovrw9DQELq7u1EoFLCwsIDBwUF84QtfwAc+8AG8+OKL+PKXv4yzZ89idnbWMBFnZ2cxNTWFW7duGa8tk8kA2CzOSwFAa17fmZ/RG9CYgSovKoZ6vW4qNGieFY/xoADneFMxkEzAzyngCXERklSDgjG7QqGA+fl5RKNRbN++HdVqFSsrK7h8+bI5zoQeYL1eRzQaNbEeoFU4uNFoGOXHPvI38XgcAwMDGBsbM8pudXUVpVIJuVxuS9yFh1QqS5BjRliSY8x1yBObeSwKvSqSOZT2T1Ylm8aN2rE3l5eXMT8/b4g78/PzZtyo2Hp6ekwB44WFBTSbTRw8eBDbt2/HP/7jP+LatWt4/PHH8Td/8zfo7+/Hf/gP/wHZbBaXLl3CN77xDUdVfO4XG+bTpvuC/6cxwfXPMST8x7EiJKgGDvebzrfuww5keOfW8bjugaaBebUElRhhEy8UMtTcIG5GxewpPOyq3ry37bEBLatTNyLbwsICbt68ibW1NXMWUiaTwejoKI4cOYKbN29ibm4Ok5OT2LNnjxHMhULBYfGzEgcVBq1rKmyyA8ns02RSvpuSGNTSV0uYnhX7pfXyyEKkR9fV1eWgtav3pfdSL6VdXIQFX4HNpOf+/n6TC6a5YhRoa2trWF1dNfBeqVRCsVg0fSCklk6n4ff70dvbi4GBATOfhULBxB8VOiahg2MCwCh/oHXsCc8UY8yJgpmQpcbi2BTm5rjYnoTG9LhGlTnJMeRv0+k0VlZWkM/nHbE0j8eDWCyG/v5+uN1uTE1NYWxsDKFQCNFoFO9617vMadxvvvmmAwa245ecK+2HxqXs/cHP9HtVwjZKwHtyj/I3TP2wFWanbW0dxXWXN25OZWnZbDN7M+nmoSC0c7OAreWcFEbjPdptMD5D4UtuuFqthkKhgGvXrmFhYQGjo6Po6+tDKpVCOBzGxMQE/H4/Lly4YALl27Ztg8fjMUewA5tC9datW1hcXDRWvbK2bJYaBZB+xve0CQcKOdpjUCqVjPdBL5Mll/R0YIW9WDSW97TjINq07NPGxgbS6TRqtc0iwtu3b8fIyIhJgqaX0mw2TfWHtbU1c9ovvcJ6vW7GbmNjA4ODgxgeHkY8HjfxqEwmY440IasxGAw63l2hVbsiCRW22+12nGmmEDPghK/VI1HlQ+hUIWD1hBnv3Lt3L/bs2WPmgF6dVlFhXNLtdmNwcBDRaNR4MaOjo5ibm8Njjz2GvXv3otls4syZM3jrrbfgcrlMQjD7ybVvw4c2JMg+8DutXcjP9LfcQ1pD096nfGd7LjqtfetAhXd5U4/Hxt4B52F1CnuoMFY4UO/L7yg4tBaiJjJr/Mr2+vQdqTT8fj9effVVBAIB/Jf/8l/w8MMP4+TJkzh+/Dh27tyJ9773vfjSl76ERqOBhx56CABw/vx5eL1eZDIZcyYXk0VDoRBGR0eNwOS7aYCb767KRoveUuHQO6CCUSXIUkIAzDEZtVrNKC5CPhrjU2iNY6EVMZS9x/fk2LFyw8rKChKJBIaGhjAwMIBisYgTJ06gXC4jkUgYhUphSUhYmWnr6+tIJpPYtWsXDh8+jEqlgnw+j6mpKRSLRaOMNSnZ7XabpGQ7FqPKmcqHniWTenXN8Tc8usWOF3KeCN9SYRCu1VgqT3t+3/veh66uLrz66qtIpVLwer0IhULmLDJ6XfF4HCMjI9i3bx/S6TRef/11TExM4MyZMyiVSvjQhz6ETCaDb3/72/gf/+N/ODwkZUPyzDA7dsv31RgflZuWfdIqGLYxyXkDWpVGaJzwc65TrqNOu3PreFz3QFPhantNduBYvSOl8bbbUJpTY1PsleVlM600PsH3U0+N1vONGzewtrYGl8uFbdu2wev14syZMxgfH8fY2Bimp6cBbJ6aTC/D5XKZfCu32228BbskkRZF1few6xcqgUMp4+pdaj8JA3JsaQ3blGbeQ70Nu8iqzp8NF/J9gE2BR/IBvQfmoim82d3djVgshng8jnp981gPnucVCoUwOTmJ7du3w+fbPAl4dXXVkF7U29R6j1phg0V8VfmrUgacVTUUaiW8yu9IING4IdexndSssBzHpFQqYXFxEUtLS+ZU41wuh0AggEQiYXK23G43du3ahYmJCfT29uLKlStYW1sz6+bhhx9GNpvFhQsX8NprrznmRBmPaghyrHTMbChQkRAdC907tmdme/7cS/ocVeCddufW8bjuocZNRYhQPSCFLLj4m82moUgzZqAQiA2X0fJ9O29Or6eyU0GuSbgrKytYXV1FPB5Hf38/4vE4zp8/j6NHj+LIkSM4ceIEYrEYenp6MDIygsuXLxvKMBXYxsYGFhYWMDIyYixUejXt2F1AK0Zje5gkUqjyIdRHga2Cl/fVShKAU1FynFSQcbx5P9tTZSMUSGV769YtRCIRJJNJjI2NIRwOo1KpmPwvAMbzYxJ0uVxGPB5HPB7H3r170d/fj0KhgGw2i3K5vCX2pEqHSokKymY2qkHCRjp9o9Ew5Ab9HT1fpdgr05L/1tioCnyur0KhgDNnzqC7u9vAotVq1VGYuVQqwe/3Y9u2bSahe2pqCr29vVheXjbe59TUFE6dOoWLFy860icU0uS40ODjnOveUO9T76FIiA21637T/DCOpW3AtIsDdtrW1lFc90jjhlMPgX+rR0YBoMw/zbFhrgq/s4U/m20VqiBTqxtw1m3jZmTy55kzZzA4OGhiFcePH8fc3ByOHDmCL3zhC6hWq3j/+9+P7/u+74PX6zUlo0jC6O7uNqSEeDxuiAmMOdmCgXEQegkkW6gXofEvelfsM4VYoVAwMJaONcdMoTSgVb2CHoWy00jsYOknPsvr9SIcDhtFmclkTDHZAwcOmOof6XQas7OzuHnzJjY2NgzNvbu7Gw888AB2796NkZERdHd3I5PJ4NKlS47cMio6oOWVqhet3jkP+CQNn7/hH3pKelK1nWrAuBlZchw7erz0zpi/x3khI5J5XpcuXTLeYjweRzqdxtLSEoaGhhAIBBCJRLBr1y6TUpDJZNDf348jR47gpZdewrPPPouenh78xV/8Bc6ePYtCoeCotsG+kIjDvtjwJuedxggZhDpuXCd6fAz/1t/ocxSq5hriHlJDrNO2to7iugeaWuvtcrLs/1OxEJdXT4WbRgPx7ZodB9JntHs32zMDgEgkgjNnzmD//v3Ytm0bent7MTIygqtXr+K+++7D3r17cfXqVSwuLpoYxeLiIpaXl40Ao2ArFosmF4mWMCnphKPopel7qzdGuIaNAkU9AbIDKVx5f95PD1mkEKKlzt/aZBa+G6s5cHwJdXEcWXMRAHK5HMLhMCKRCAYHBxGJRBzKYGRkBIlEAtu3b0d/fz9isZgxFlha6k6ej00wAGCSrhUC5bsCztylSCTiUNocR61cwrFWr57PpqJm3h4VYVdXl6H8szzT8vKyOQBU42vxeBwHDx5Ef3+/ecf5+Xns2rULXq8Xo6OjiEQiKBaLWFxcRKlUcsSlOC+AM3ma76NHmmgMz47tagxMyR16P41N6ljynvpvft9pb986iuseaOrp8I/GcLh57FNYuZk0D0c3GK/h37ZQViVIL05hDYU69H1owVarVZw8eRI+nw//+T//Z0xMTMDn8+FP/uRP8Kd/+qf4wAc+gM9//vP47Gc/i5/4iZ/A0aNHEQqF8Ed/9EcAYLwhshQbjQYmJycd9GUNlCtMA7RysZQQoTlpqmA0lkRCCCtN6BwAm8KI8aBms2m8AmXGud3OFANVTFrUVhN8A4EAenp6TIWMXC6HUqmE8fFx7Ny5Ez/0Qz+EfD6PQqFg3qVUKhlaPVmKTHDmu1Kx0xOkAUQPwe12m+LBAAyxhMpLlSu9WRIxOG6qyJm/xcb+2rExjitJNzRQCDmyasry8rJhQhYKBSwvL6NWq2FkZASBQADVahXT09O4evUq9u3bh3/4h3/Av/k3/wbd3d24fv06pqamHHuEc8T50Vidrnv1MO19oXCfGghAK7eP46X7iutRjQOuO45ZJ4frf9465Ix7pNlxKBUmNulArWb9rR1A1nuq5cj72gpMYSFVELbXxnfiM65fv45UKgUA6O3txZ49e8ypxw888IDjKIuJiQkMDw+bUkoUJqVSyZTnIdzHs69UqWoflaShUCfgrNxtx3EAGA+AsR+OpVbL0GupAGwyi3o6/L96zxov45hTMbDfa2trqFQqCIVCSCQSiMfj5h347kww5nlUnAd77u3n2tfaHhGVsSphKuVAIGCK4pLpyHO11LOk4OY1dj1HAOYkYoVZSd/n+PA9XS4XwuEwfD6focPPzc0hGo1iYWEBS0tL6OnpMXCkPl+9GV37+n8lSKj3pEQKe3+wr7re7LVlrwHtv8avbW+407a2jsd1DzRVHAr38TuFD+3AOjFzYOvx9hS0CuvwOt5bg+baKJD1vkrb52+6u7uxtLRkDv3z+/3YsWOHOZ4imUxicnIS09PT2L17N3p6erB3715ks1mjuJj4SoYcITktfaSeDd9Bx0jfy1ZwyqhUocKmrEHm2QAtiEmZeLyHMuzUoFAGp8ZINEjP6ygUWRm9VCoZ5UBiBUkb6+vrmJubQzabdYxDu+RzZfLZ3nyz2TQFeiuViolXqWfOnC6FtvRYECWyMMZKSJWeF6FeKnzOF5UiWZMKa3O8Q6GQyQesVqtYWlpCNpvF0aNHcePGDUSjUQSDQaTTaVMlpB2pyIaTuYc09sfx0pgX50fvxzlnU7KGvVfYFxtmt/dzJ8Z159ZRXPdAU+9G/297WHqdja3rhmXCK70WwFnORmE1QiqEWbhJaalyI/N3qug0nqJ5W8PDw3jXu96FP/7jP8aTTz6J9773vfjUpz6FY8eO4fDhw3jiiScwNDSEP/3TPzUQUiAQQD6fx7Vr1zA2NoZgMGiKuAItth0FPgUmvQV+R6ufgoMClGNFT4YQWVdXFyKRiGP8yKxj3k48HnfEugA48sUoiMje43gTKmTTyh9ULh6PB8ViETdu3EBfX5/xBAcHB+FyuXDt2jWj1FZWVgBsCnb2lQQTej7sIxUE55mpAMxlYw3JaDRq2J2Eu0iAyeVypg96kCWfqX0lLFYoFBzjT2+VlTmoqG/fvo1bt24ZxU8vbmhoCIcPH8bBgwfNfa5cuYLHH38chw4dwrlz5/COd7wDjUYD8/PzuHbtmuO8K46Lrn2OteZwcZ6VVMG9p5C8KiU1BHmNxpYVflSCBw0AoOXVdaDCt28dxXUPNHsDKJNQvQTbi+BvAWyxutnUmuR1qvQYT9JzrNQjU0tZP6OgpyK7fv06Lly4gPHxccRiMVOt/MKFC9izZw927tyJc+fOYXBw0BxpMj4+jtu3bxuihtvtRiqVQiQSMYKOwks9LD6TTT1AwjG2slUITBUzBQvHmQqRXoVCSWpx2/On7wG0vDSgJawURuS1hMMKhQLW1tYwPj5uKPTlchlLS0tYW1tDtVo1fVLSgw0R8xqNTfL/9HT4b4UUbTZes9l0VH9Xurt6Dwpnulwu48HRgy4Wi8Yw4fymUimsrKw46Ogc76GhISSTSbjdm8fE5PN5DA4OYteuXUbRDA0NoVqtIpVKYXFx0QHBqRLi3zZcaBt/VHBUZjY0rfex46V8ps6FDV0r4cNeL53WvnUU1z3SuGm4YViuxrb8FGMHnNn/CklojIv3VzhDYRKXy2XYbCqc1EtTSq8dF2DFir/927/FxsYGfuInfgJdXV04evQojh8/jq9//ev48R//cfz1X/81vva1r+EDH/gA4vE4fuAHfgBnz57F66+/jkKhgN7eXlQqFVy5cgWlUslQ7OklqOVKUgqFMVlimkzM/vD4ES3do1CSkhkqlYo51FLL81AJ8DlawJXehhZRJUxGmBaA8TjUU6byX19fR6lUQk9PDwYGBvD6669jamoKS0tLjnqKhPoYG9Rkas0r42dUOuptqAdByJAHUPJdtPRYs9l0xL/oael5XywXpedt0ZMi0291dRXnz583Css2hrq7u3HfffchmUyiWq3iwoULWF9fx4//+I9jeXkZX/rSl/Dss8/iwIEDmJ6exiuvvIILFy4YI8pOGeF7aJxUjRz1tjQ2piQkVco25K5rSZUj9wVJU9pXrtGO0nr71lFc90Czg7gUStxohLC0+jQXvsY47DiZ/puWvY23A05FZluPGh/RTagbnYqv0displEoFBAOhzE0NIQdO3bg0qVLiEQiePLJJzE1NYVsNmsOPrzvvvtQKBTw5ptvGmXBpORt27YZaK9QKJi8L+0/x6udh9TOsqV1TeGrFjiVkB10V3iUwpBKSa+3xwpw5jcxBsR7qsen7+b1epHL5cyxL1S8NFgIgxHa43t0dXWZd1BqulLf6d2wbxwHZePZ5Bxep2PLxvWgMDXfgb/xeDzI5/NYXl42z9Y0DiqZRCKBnp4ec32hUMD+/fuxvr6ON954A6urqxgeHkYoFMLCwgJmZ2cdY63xI/WM1ACz4b92a4XvpExae5/wXnofNSh1/+i61H3eUV53bh3qyj3QFGJSuEOhOgBbFJTWVqPwsAPSummBlofFprCbwk36ez5DhYRamSoMb926hZmZGbjdbiSTSezcuRPhcBjpdBo7d+7EE088gRs3bhiK9/DwMI4cOYJgMGiOC3G5XCgWi+Z8L0JPZJDxfTg2ehqwCgsKeYUP6UmooqZCIQFBIcVms2mqWFDJaJVvhXQ18G8rMv2O86ExOq/Xa0ofkZmn0KQaHIT5ON+8N0kVnBv2lffie9I7pIFE5afXqwdBT4p/1NtnbpdW0ue4MWnb4/EYeFDXmlYwiUajGB8fh9/vR6lUwo0bN7Bjxw4cOHAAb731FqampjA6OopYLIZms4mrV69ieXnZ8by3i/8CLahPlazuL91/Op+ajK7jrmPMpikldk6d/r/T3r51PK57oPFkX5ahsWFBAFvgFaClhGzihlrG/E7zSfQ3tsfB3/A6/YybVy1LCj1VYJ/+9Kfx4osv4uGHHzaK6NOf/jR+8Ad/EE8//TR+5Vd+BQsLC3jXu95lCuy+8MILuHXrFgqFgvE4pqamUKlUTDIuhTrHTJUM33Fubs4cg9Hb2+sQtno0vJ7npbX9lBYPbAofJrfGYjEjtDQu0tXV5YDjCClSUOoYaqUFzhUhpVwuh/n5ebhcm8nM8XjcKNVyuYxSqeQQvDr+9HDUy1Y2oMbItGAxPWW7IoTH0yqYy3srVAvAeHjqwaui5FrJZDJYWFhAPp83a1aRhdHRURw7dgy7d+/GG2+8gXQ6jcnJSUxOTmJqagrz8/N48cUXTc3LGzdu4Ktf/ap5f3qzVOjqNepa5hwoKUO9Z4UEeR8aNu2geO5XoOVJqTGpCmpjY8NxwnWnvX3reFz3QLOJAkrU0NZOyahVzE1JwUhBY1ukCoWpIFGl9HYBZRXSuqn5/+vXr+P06dOoVCrw+XxIJpPY2NjAyy+/jKWlJTz33HPI5/PIZDKGAj4xMYEjR44gFos5austLy9jbm4OPp8P8XjcAblRSJIxV6/Xsba2ZhiB9DIAOJKB+XuFghQSIrRmx4baCUNlOur48B6q1O35Vm+Wc8TiualUCtls1iiffD7v8JxsT4r9tQWnGigUxN3d3eYYGVbiYKkthRE1100TuoFWHUbCmBwXeq6sbVir1UyhYB6+qf1tNBrYu3cvxsbG4PV6DUFl27ZtOH/+PC5cuID77rsP27ZtQ39/P1KpFM6fP29Yjlxz2mfdK5p3p/tJFZAiDeodsZ+ca16nBolCj7bXrXtKDU77XTpta+sornuk0UIGnKVmdAPyOg0y29CDCkgqJv5On9UO81cFZled0I2uipbCCWidkpzNZnH27FksLi6i2WwiFoth7969WFxcxMsvv4zdu3fjXe96Fy5duoTV1VVUq1X4/X4MDQ1hbGwM8Xjc1PhLp9OYnp5GJpNxeBWNRsNUlKcnw/p9brfbVL4AYIQpi8cqlKbxKQosTXxWxaMKX8dDFYYdH9MxtxUcm45npVJBOp3G3NycORIlm806LHtVIPQ46bXpGrITavm3wn6aAsD30BJbdhUSvi+Vvg2bKQzJsScsrAgBPU8mrMdiMeTzeSSTSWzfvh2VSgVzc3Po6urCyMgIenp64Pf78eabb+Jb3/oWurq6UK1WzRzz/TQOy/djUrmuadtLVDIP17vdZ2Vicj3o+PB+9vxzbu011Wl3bq7mPThCuVzO1K37XmiaZwK0PCSb4cfNo5/zN8TWVVgBrfIzXAZKHlDvSmNdahESzuEz7NgWmW5a+42/f+GFF/Dkk09i+/btKBQKuH37Nt544w0Eg0E8+eSTOHfuHL761a8iHo/jySefNLRpFqz9whe+gCtXrqBaraKvrw89PT2YnJxENBqFz+dDNpt1JOhubGwgHA4biJB91nhOLBZzVMEgVMgxLpVKKJVKCIVCJj7D7xg/4rjYv6eXSG+N+WMaW+E7aRyEirK/vx+RSAS1Wg1nzpxBvV53HH1CqnkgEDDCnx4RmajsZ61WM6co6zsw7sTG+aSX6na7HXlifDbXUbFYNHAuK7ZTeTebrfJOjUbD1CK8ffs2yuUyfD6fgXtrtRr279+P/fv344knnsDq6ipOnDiBZ599Ful0Gi+//DKOHDmCkZERHDhwwBB/Pv7xj5t0AB1XYGtCPdeowrsa+9S5VEVlky74LCX0UFG3i7GpQanzzf2pRs73Qstms4hGo9/RbzoxrnugqWKhxaeWswab1doFtnpPFKRs3My252RDgfxMoRa1SvmdWu7cwPZ3/M2FCxfQ19eHcDiM4eFhAJsb+M///M/R1dWFxx9/HADwta99Devr6wiHw1hfX0dPTw/GxsYwOTmJhYUFZLNZ1Go1U8NubGwM/f39RpCw76VSyeR/8R2ocHgNvQyNAyqMQyta6d86trzGJqno82xCiBIS+ButnqBECCb7MglYk3xV4aqHYZN36PmwKK/ddzWM2JR0oaQP3pseAwsJcx2qQFavrV6vY35+HqlUytReZAyUCnnv3r3o6enB+vq6YY1ubGzg+vXrqFQqGB0dRX9/P7q6unDlyhWcOnXKVIBn4jr7q+uW76PrV/vLOVEYz4ZUOb5EEdQrJr1flSfvoZChPkf3hk2Y6rStreNx3QONXoud30EhxbJI6u3YFh2FmOazsKlSodLjBtP78m9uWj5boQ5bAFBIKyypUM3Gxgbuv/9+/NRP/RSSyaSJgb388suYmJjAww8/jGq1it/8zd/E/fffj56eHjSbTezduxdutxvHjx/HuXPnkE6nUSgUkM/n4ff70dfXZyrST0xMoFbbPKxRhT1ZbvSOlEygFjffeWNjA7lcDi7XZq08QkDsl52fpIdaKgSngkpJERRszMsCWlXbvd7NI1DK5bLJfSIMxntznXCOgBaZQtdNqVQy71cqlYynzsLCVORKrKHXRkVF44nrjcxK5psxZkWvNJ/PGyFdKpWQSqVw+vRph4JgP8bGxrB//340Gg1kMhn09fUZgsu5c+cwMDCA7/u+78O+ffvQbDbxjW98A1/84hdx9epV49WyzwrZcd3Z3piOO8fTZvipclOj0Ov1GihRiUA0CGwjRPeZQv3cH5wLRSm+29s/x+PqxLjugaYJkprvocxCwjEqTNi4eSk0+RnvQ6XWLnCscAr/rc+ht6BW/tspRT5bhcilS5dw8eJF5HI5uN1uDA0N4R3veAfOnDmDt956C93d3di1axfeeusthMNhuN1u3L59G4lEAgcPHsTExIRhRQYCATSbTaysrODmzZuYmZlBPp83ZYg0RmdXr7C9WDaNa/A6VdK2cCO8p0QEkj30ORpPseNPOnd8X4W6+DvGaLTuH8klhL7oCfEPlZ+W8OI1hPG071TqjAVprUP2QQU9YVhVkOxHrVZDNpvF8vKy4/3Z176+PoyOjsLj8WBhYQGJRALRaBSlUglLS0vw+Xx49NFHsWPHDrjdm5U2Xn75ZVy/ft1heNCDVGNC50fn2Da2ON+alM41bhszOpe6Buz1z32q19kGpO2ddtqdW0dx3QPNjkvZzD4VqPyeglB/Z288VVKAMw9MIRLeQy1GPpsbvh3hQJ+jBVmpKNfX103li1OnTuHmzZvI5XLo6urC0NAQotEoXnnlFVy8eBFPP/20ia1UKhXMzs4auGjv3r1GUTDOU6/XDc16aWkJ+XzeIbTUyte+2kqfFrNa2qq0VcErBKfXKBRoM/60Grw+h56c/l+NCN6PxAulolMJsVI743KlUgnlctkoccKk9LBUeepas9eBTSLR76hE6S2l02kUi0UzTmtra1hYWEAmkzFeIhWdy+XC5OQkBgcHAQCTk5N48MEHUSqVMDU1hYWFBTzxxBPYu3cv4vE45ubmcPbsWVy8eNExF2w2BKif6f7RNaDrXNcI/98OQlcvTsdI/+b82ftU91M7qLnT2rcOVHgPNC1NoywtWpXqAekGIxSnCZXqPWggGnB6RJq3o7AgLUJbCfI7haoUcgRacRJ6kIrlN5tNjI2N4b777sMP//APIxQKYWVlBdevX8fx48fx/ve/H+FwGH/7t39ratx1d3fjPe95D5LJJP7gD/4Ab775JjY2NhAMBhEIBNDV1YWNjQ3E43FMTk6iv7/fIbA1jmXHlzQRW2E3xmOCwaCj7p5S24FWTpbCPSrU6PHFYrEtbDp6x/X6Jn2f1HIAhkZO7ycajaJerxtPShOxOcb01llvkPNLaJHKjeuJR4YojV0hPWVeqifJsVpfXzfngjG3bXV1Fel0GlNTU+bMLY6Dy7VJLBkYGMATTzyBeDyO9fV1nDp1CkNDQ7h27RqOHTuGyclJ7N27F41GA7dv38bv//7vY3p62gHLcS7Vo7LjvGo88bNGo2GOZ2EKhc6JvRd179D44rM0RYKN+4bepZ0mYhf6tT237+bWIWd8lzZi32yqDGwiAP/mv9sRLnRjcOPR2taAvsJB7Sx+oOVB6Xupp6AYvpaq4m/VGp6dnUWhUMDRo0eNVb19+3aUy2WcPHkSjz/+OJ599llTdPaP/uiPcPz4cTzxxBM4cuQIUqkUZmdnUSqVHLG5XC6HXC5nqqsTylPhwPFlvpda5YATFlIvh7EvjT/yueqVKZEBgONUYgoxLfBLpVepVBz1Btl0HHkP5rxRMbhcrZqIHo/HFLJVGM1mOGqOH2tMtlPGdnxI40msoxkOh40iu3nzJorFouPdNG66a9cu9Pf3m4LB9Npu3bqFQ4cO4cEHH0Rvby/K5TKmpqZw5swZXLt2zVDeKfRZgFiVl8J5fFdVxFSiaqTpPrLRBVVcinjYnp0dA1MDlNewcQ3oPuu0O7eOx3UPNHpVtJTV49Kgslr3dsBX4Q9lW7GpEFISBp9FIWfnw6hVrnlRtrBW74XX8/8AzPOYSPzUU08Zz6tSqeAv/uIvcO7cOTzzzDPYvn07ent7sby8jJdeegkXLlzAv/t3/w6VSgV/+Id/iFQqZQQSSwR1d3dj9+7dePDBBw2RgEQNek2E7uy4BpWdphaosNRj4dkUXqWXpAJQC/Ryjn0+n2HlUZDWajVTDX15edlByqAnRkWXz+eNIOe7EIqjslWFp/NOkgawqbz1dGfOKb0rpYfbXgu9v2KxiKtXr5rTkHl/rR7Cd5qYmMCBAwdQKBSQTCbR19eHtbU1XL16FfF4HB/84AcRCAQwNzeH//7f/zsuXbqEdDrtIPgonKdGBuBkvdL75OccDyp/Gg/qQXF9ar4av1ejUY1ERTXs7xWxIFLBuXC73SbO+L0CF3Y8ru/SxoVOC1WhCVVA7bwsXmPnsvB6tRpVuWjOV7vNZpMXuPH5f42B6DNsD8SOHTWbTczPz+OVV17Bk08+iT179iAcDuPhhx+G2+3Gq6++ivn5eVNN4Z3vfCf8fj9OnjyJd7zjHXjkkUdw6tQppNNplMtlI6zL5TLm5uawfft2czS9joUdT9K+aaxEIUQK4EKhALfbbXKq9J4ul8vBDFS4zbbU6b3xeYQ9I5GIgSnJ/CuXy0b5ci7pBYZCIYeQ5hioENZ35DWacG0XZ1Y4kF4EFTLXjHpcmUzGKFoARhnzXqq0ksmkSTR//PHH4Xa7sbKyApfLhV27diEUCpkcv3PnzmFtbc0Rz6LisQkWnCNdo7of1ENWhabrW40NWznxmTapRteLemY2UqLrXhXrPehL/F9vHcV1jzRuLIWWKKwI9yjEoZtImWO2p0XrndcqGcHlcjmgIjtmpYQApcZrUJvfUXDZwXE2hRP9fr8jGXlsbAzj4+PG65ibm8Pq6ioef/xxDA4O4rHHHsNv//Zvw+VyYf/+/XC73Th16hRmZ2cNAaTZbCKTyWBmZgaDg4MIBAJGOSu7jrEkm/lHJWTn7dTrmyf1bmxsmJgX50uFFOeHUJzmcqk3x7FhzGp4eBjxeBxra2uGuKJeNOfF5WoxKgOBgDEwVOiyT/Zvdd3wHdSzosLV5Ha7f5oWkcvlkMlkTB8rlYrDk+E62L59O5LJJIBNiv7Q0BBCoRCmp6dx4cIFPPzwwzh48CBWVlbwxhtv4Nvf/rY54Znvzv7RAND3sA04+91tT4y1F5vNzaNh1IvjuChrkY3zwXvqftGkcyInOsY2esHvOsrr7VsHKrwHGs9pArBlYyhcwg2sCZbciKrMFOZSkoTGbJRooU3JHxqnsJcRoUOFHm0rlu9FpaxeHmMcExMTeOyxx/DDP/zD8Pv9WFpawtLSEqampnDixAmEQiE88sgjePLJJ3H27Fl87Wtfw+7duxGNRg1NmnlFHMtoNIr+/n7s27fPvCPJC/F4HABM/TyNB1HhsL4ex2Z5eRkrKytwuzcrb7D8kMY2+Bzep7u7G16vF8Vi0VDTi8WiEfLVahXBYBA/+IM/iK6uLly8eBF/+Zd/iYGBAUxMTJhx0rwwKgp6WLVazUB9qnA11kiFTSq5GjUKpencK+mEHlYulzMw4blz5xz1ILmOOAdjY2MYGxuDz+czdPndu3djaGgI58+fx+3bt3HkyBF88IMfRC6Xw2/+5m/i9ddfR6lUchhaqoz5nqpwtCqMvR+opJQMocqoq6vLkG5IKuIe47PYP/XGaIhwL/GeNMi4t2wCBuePMUGO//dC60CF36XNDsq73W5T4Vwp1zaMod4P4Aw2K4bOf2uxUdsqtSEzCg2Fu3Tj2/AIhYhChdovteApFLq6unDz5k0UCgXs2bMHu3fvxuDgIHp7ezE6OoqNjQ2cPn0a3/72t3H06FEcPHgQJ0+exKVLlzA+Po6jR48iFovhW9/6lhFwzCNqNBoYHBxET0+P8bIYJ1LhSI+BsQiOkY5pX18fGo0GUqkU0uk0KpWKoXQ3m03zjEKhYJQZc6a02rp6XkNDQxgcHER/fz/K5bIZs1KphEwmg0QiYZST3gNoecLqndObtWN57JcaKnpEi8Km6oFwPrkG6FEVi0XkcjmzPvlcGi48g41nZmmR5enpady8eROHDh3CI488gnK5jCtXruDy5csol8tbSEoaV1QDjePOfvD/Shbi2lOoVtegze5To0uhcds7UhhS42KqPNXbUqSC76OKrdPat47iugeaHSNSqEk3lr0pbDhOcXdVdrq57Wfq//m3Kihg60GXGkugN2PDLTYDi/1RpeZyuRAKhZBKpfA3f/M3ePzxx/HUU08hFoshFArhscceg9vtxiuvvIKvfOUreOihh/Ce97wHr776Kq5du4bR0VEcPnwYU1NTmJubcxxbkslkMDs7i0ajYWBIVsbw+/1GmfF9NdWAApP9IjyYyWRQrVaRzWYNXZ0VJwi1MfBOAUxiQXd3NxKJBGq1GgKBAA4fPozBwUFEo1FTx4/kjZWVFcTjcYdXp3FLzq0Ws3W73cazUyuffdQSRfRams2m8XyVhadeNMkkrCTPXDE7PkohzcM/19bWEAwGMTExAbfbjStXriCfz+PQoUN49tlnMTo6iitXruDVV191wI7aRztGpBCizpdd41P7q4pHFaP2mYpe30ENQz0CxSZvsH4l54Pvy3HUMeV9tY5mp7VvHajwHmjccMy7UbxcrUX1hBSCs5WGbbny97yH/q1xKrUi1cLldXw+BYXtielS0+8UxmF/NQZDMorb7cbBgwexY8cO7Ny5E+985zvR1dWFUqmE3//938fU1BT+1b/6V9i9ezc2Njbwx3/8xwgEAnjooYewurqKGzdu4K233nLks/G8L8aSdMz5DoT1tM+aLEyvhx7TysoK1tbWzJz19vaaRF+Wc2KNPd4/Go2aqvexWMwosXw+j7W1NaysrOArX/kKpqenUSgUEI1GHcVw1QBR1iGrnqsHwnwuvgu/J4uRZBMqX43tqaeu/S6VSpibm8PU1BRSqZTx5qjoBwcHMT4+DpfLhfX1dUxOTuL+++/HzMwMLl68iEgkggMHDuCZZ54x3tdv/dZvYWZmZkv8j2tNEQIqSi1QS7iQ3pMiB0qyaQeH63dctyw7xbVIJUWSDBWOekuE+am0uIbseDEhXlWc96Bo/me1DlT4Xdq4YZXtpAQNtUR1Y3MT6UZUuI7/V3aWKia1WO1gtt1sa5jX6TuoJ8jnaaMiaBf7Yp8vXLiAmzdv4uLFi/D7/Thw4ADi8Tief/55nDp1CsePH8fKygp27dqF7//+78crr7yCK1eumNgQPS16Kvl83lQnHxwcxMDAgIlFUHhUq1VDQ2delBIuCK9RUSSTSeTzeayvr6NYLBqBFo/HEY1GEQqFMD4+bvKqCEGGQiHEYjGEw2FTnoneTCgUQn9/vykoTEVDA0DHSck1Oo/hcLjt3HH+GGdbX1939JPvR+VAwo7St+fn5zE/P28Og+R8skp8b28vvF4v8vk89u/fj3379mFmZgZvvfUWisUinnrqKUxOTiKTyeDatWt44403cOvWLUdiO5/JPtET4jq7kwFkw4nq9Sv0p+tTEQTei97qncgx7Y6WIfOScDnXMe+tnmG7upKd1r51PK57oNkxKm5OO+mR3osKVm4yVQSqCMlEq1QqBhayCSBK0uCGpJCgUFZFyg2qjD0ADuGjBAzCZRQKqgQVblQhRMGza9cuPPTQQ/jABz6Arq4unDx5EidOnMDc3Bwef/xx7NmzBzdv3sT58+eRSqUwOTmJ7u5urKys4MSJEyaYTi+2r68PoVDIMA9tT6PRaBjviZBiPB43sBy9GZYo2tjYwL59+zA5OYkDBw4gEolsUYyci1qthkQiYQ7LpEBlIvL169dx4cIF3L592+RrKRNO4SYbgqJSJZmCXhSv12NJyuUyYrGYSRugYOVYkexSLBaxuLhoqryr4dFoNBCPx7F7926EQiGsra1hYGAABw4cQFdXF5aWlvDKK69g37592LNnD/bu3Yt8Po9Pf/rTOHfunKNivBpDGmNVyFMhcDYb1lZolOuX91J4W5V7OyhdyU+6P3TtqnHIdW8XAFbEwb6vHTv7bm7/14vs/tqv/RpcLhd+6qd+yny2vr6Oj3zkI+jt7UU4HMaLL76IpaUlx+9mZmbwwgsvIBgMor+/Hz/7sz/rYDN1mrO1ixWpQNL4kCYNU8EAzpppqvzU+qSgUDYYn6UBfN3YFA60rlWRqbAhGUA9AQpCOwCum56Nn6mV22g0cP36dRPTqlQquP/++/H000/jwIED+Na3voWTJ09i7969eP755/Hggw9iamoK6+vrGBgYwOTkpKGOU8Fns1mkUilMT09jZmYGCwsLKBaLjjI+Grux40tUgvQGIpEIdu7ciYmJCYRCIUe+k13QltCb9l8ruPf395tDE/ke6m3RI9RCuBqP03Wkpxfb8SPOIwBHsWCSSRjHu379Oq5evYqlpSWHAuZ8jo2NYWhoCMFgEENDQ9i/fz9qtRrOnz+PV155Bbt378ahQ4ewfft2ZDIZc6JxLpcz72LDgzr+ul5UqaiBx/2j6/lO6EE7RadKhIrRprQrs7Yd0qAoCQ033p/vy/vp/zvtzu2fDRWeOnUK/+2//Tfcf//9js9/+qd/Gl/60pfwuc99DrFYDB/96Efxvve9D8ePHwewaYW/8MILGBwcxIkTJ7CwsIAPfvCD8Pl8+NSnPvW/15vv0qbxIw16t7uOm4xCS+ENDU4rzq6BaoVG7GtVMLGpIuGmJ+avFqTGyOhhaYBbn8f7MbZl/16VdaVSwdTUFL75zW+iXC7j0UcfxcGDB9HX12cU0P79+5FMJvHAAw/g8uXLuHnzJhKJBHbt2oV4PI433njDeCHs09raGrLZrGG9hUIheL1ecw4Wx5sxDsa3VGDG43FTtiqRSABoHbxJoaUsRRIAKpUKUqmUUaSlUgldXV0YHx/H0NCQOQWZ5AgKQi1wS+HarvyWnUvG65k7pgaPQsmEJ1OpFFZWVjAzM2OIHOxbvV5HIBAw8GCzuVklfv/+/QgGg3jppZcwPz8Pn8+HQ4cOYXx8HN3d3XjllVfw2muvIZ1Om7XFdcv3Vu9Em3r86t2z6Weq9NSostefQqGVSsUxfpx7xvH0XmogqkemRoPuU651zoPmRnbands/CyosFAo4cuQIfvd3fxef/OQncejQIfzmb/4mstkskskkPvOZz+D9738/AODy5cvYt28fXnnlFRw9ehR///d/j3/9r/815ufnMTAwAAD4/d//ffzcz/0cUqmU4/C/O7XvNaiQm0ShEVt56YZSpUQPiFAYBT9jE2qJq2BrB8UALZqwLbwV7gOciofeDKm/fr/fCDxubBWi/D8Vn/ZP4S8NnAObwfN//+//PR566CEMDw+jUqng0qVL+PM//3M0Gg2MjIzg2WefBQDMz8/jy1/+MkKhEILBIJaXl7G4uIhiseigMHs8HoRCIRPHYuUKj8eDYDCIeDyOkZERE8uhFxOJRBCJREzMio2eJ8dsfX3d9KOrqwvZbBazs7P4u7/7O3NCMQ9RfM973mOgzqWlJZRKJaytrRklRZhSC+xq/IbjqFb9+vq66ScPbPT7/QauJIS4uLiIpaUlpNNpzM/Pm3mk0uDJybFYDJOTk3C5XEgmkyaOl0qlcPXqVRw8eBCHDh3C4OAgfD4f5ufnce3aNXz2s5915EwpsUNjeRqH4mdaEFhJEDbsDbSgQJ7OrKWdaCTpXtI1zmfaKQI0qLiW9VmqlBSxUGNAFZsNS34vtP9r5IyPfOQjeOGFF/DMM8/gk5/8pPn89OnT2NjYwDPPPGM+27t3L8bHx43ieuWVV3Dw4EGjtADgueeew4c//GFcuHABhw8f3vI8BqrZCCV8rzTF2YHW5uNmUIxcN4oNX2gMgJvKps6r12GzBdvBMVRYqshsy5X34+dKKND3tdmPCmPqO5MwQqXM+1WrVXzjG99AsVjE/fffjwMHDmDHjh04dOgQrl69ilQqhZmZGezatQv79u3D0tISLl26ZGI6Xq8Xi4uLKJVKRkH7fD6EQiHjTWQyGXPcvcfjwdramqmv2NPTg2g0ilgshrGxMSP819bWUCgUUK+3itlS4GtAn8SE8+fP48qVK+YdCD2+9NJLmJmZQW9vr6PuIMdEPXKOOfvC+Jta9GoE2NAaj0ShJ3bt2jVT8Z3KT40YVqofGhpCOBxGs9lENBqFy+VCPp/HtWvXEAwG8dhjj2F0dBRerxenTp3CG2+8gRs3bpgKJ+qlawkqzrOuUSorXS+KDrBf6q3bxpXP53OcF6YIgq5bhVNtZq16p7o/bSheDTUbruS1VIq2UdZpzvYdK64/+7M/wxtvvIFTp05t+W5xcRF+v99BKwaAgYEBLC4ummtUafF7fteu/eqv/ip++Zd/+Tt91e+axsVPaELjIirU1UtRBqIdF+O/23ls/E6hmXaWoMYdtFCoWqz8t72RAWeSrEJTem8bklQhweuULOLz+XDz5k0DsY2OjprKGn19fbh8+bIpG7Rnzx48/PDD6Ovrw4kTJwwcNzk5aWAwAMjn84hEIgBakJPCY9VqFVNTU0gkEkaY833ohTEOQu9Iha8Kt+vXr+P06dO4du2ag81Hr2d5ednkdJE2Pzw8bIriUjATteBz7QRXzg2L31IIF4tF838ApiJGtVpFKpVyFE+moA8EAsZajkajiEQi8Pl8ZswuXbqEVCqFwcFBHDlyBAMDA6jX60ilUvjWt76F8+fPo1AomMLASoLR9cF1rIaRKiQbdlbyhBJ62HeNrdoGHBWYTTZRg9H2knTN67rne+t9dL9pn2x0odPu3L4jxXX79m38p//0n/C1r33NkUPyL91+/ud/Hj/zMz9j/p/L5TA2NvZ/7fn/fzctXcONSAGouDit82azaSAXW0EpOQJw5rAQcmLlct3gWnneroigXpDGn5TVCDiLkGochu9FYaTCn31Q9hf7RwXCZ1JAT01NYXp6Grdv38YjjzyC5557zpSO+od/+AecPXsWp06dwsGDB7Fnzx78yI/8CJaWlnDjxg1HAd+FhQWsrq5ienraCDQ9bZgCdmZmBlNTU3jzzTfh9/sRCATQ19eHgYEBjI+P49FHHzWQmc4hITjmP7366qsmrpZIJAysSOHIZFYASKVSWF5extTUlDkbjNcFAoEt5A8t/8Qx1CLAVHjNZhNLS0sOT5CKgR5RNBo1/2b1+cOHD5sq9vl8Hul0GpcuXcK+ffvwxBNP4MCBA6jX6/j617+OixcvYnFxETMzMw4IXOngOucqyBVdsOOtjFXZa1I9Q95LSTBc75xfl8tlIFzuB13PGveyDT4aGyTnKFlFiVM6rtxnHP+Ot/U/b9+R4jp9+jSWl5dx5MgR81m9Xsc//uM/4rd/+7fxla98BdVqFZlMxuF1LS0tmRI4g4ODeO211xz3JeuQ19itq6vLJGt+LzZl1KmFZluKdqImm20NKhav8IVamtxcGoBWJaj5J+3wfYVAGHdhs1lY7KN6j3oPNhv21GdSmVKgAMD58+eRy+UwMTGBnTt3IhqN4ujRo0gkEjh//jzefPNNpFIpPP300xgYGEAkEkE6ncbKygomJycxMjKCTCaD06dPY21tzSgDCjR6CZVKxShikk9yuRxu376Na9euIZfLYXBwELFYzHEszfr6Oi5fvozbt29jaWkJxWIRfr/f0NC1LBMAcwJ0o9FAJBIxlTDI+HO5XKbCRq1W28JaVGNGYy7NZhPFYtF4r6pYbY9Cj31h/K+3txfbt2+H2+1GLpfDhQsXUCgUcOzYMezbtw/hcBi5XA6Li4s4fvw4ZmZmDMRsx97sXCzOLdcM0EIQ+G/1zlQp83MaNlRkdlxVPSQ7xqrlqjwej1FsHFvuEXvNKvSn7wTAAYHasWL2x0YcOs3ZviNyRj6fx61btxyf/fiP/zj27t2Ln/u5n8PY2BiSySQ++9nP4sUXXwQAXLlyBXv37t1CzlhYWEB/fz8A4A/+4A/wsz/7s1heXv5fUlDfa+QM5v2owuKmUOtM4ToV6vw383goaNXqVkgmEAiYI+hVMHCD87k2zKHPtL08oEUXV4aWWteqjO0NrJ4HA+TtGGIuV6uSu47HxMQE9uzZg+///u9HLBZDo9HApUuXcPnyZVy4cAFerxfJZBKPPPII6vU6Xn/9dVSrVcMkzOfzyOVyhk7PIrIqzOhV8V0ooPQ8Lio7tcKpDLj2GXvhWVv0dpPJpFFKLKuk5Bp9J44nayLSq/L5fCZm5nK5TDUIzgHjYjZ0FQqFzPpJJpMmL40G0+uvv46lpSW4XC48+OCD2L9/PwYGBow3euLECaysrCCfz2+J7wBwzLWODdA6RoVwMJ+pSkYVB2OT6tGr0rPhR+4tNv5e17z9vrzOhu35Hhor0/gj70kjgR4Z9wiRhO8lpfUvTs5gWRZttLj4+Yc+9CH8zM/8DBKJBKLRKH7yJ38Sx44dw9GjRwEA7373u7F//3786I/+KH79138di4uL+NjHPoaPfOQj39Ne1ds1LmxNhgWc+L8KbIXhNF7VLiCs3g83jypDhf8UVmyH4ytESGXTLg7A3wNOQgktUn2+eliqNKnceI0Gz9lPpadfu3YN8/PziMfj2LNnD5LJJPbs2WPYbdPT00ilUnj11Vexbds2TExMIJ1OI51OI5PJoNHYTJjetm2bOduLRXP53HK5bIQUSymxj5oPBcB8TyYg0IKvtCnZYmlpyYyVnrrMhGjGuQqFgnmuMkSVIMBnkoBhjxnJL319fWYdUYk/+uijGBkZQbPZxNzcHG7cuIFUKoWBgQGMjIzg8ccfRyAQwNWrV3H27FncunXLUbpJ14C9jnStqqDXa7UpmmATIPR7XUdcm7qeVVlxDfNetuKyDULOs56qwO+5Nl2uFmuRc9MOAlcYsdPu3P6PJw38xm/8BtxuN1588UVUKhU899xz+N3f/V3zvcfjwRe/+EV8+MMfxrFjxxAKhfBjP/Zj+MQnPvF/+lW+a5oKabZ2HoZan+odUeiTVsyNoomQQEtAUIAqNGhbxkr44HP4meYq2QKHglc3vAoIvYbvpH214Ui9xrbY+Tn7WiwW8Y1vfAMzMzPYsWMHnnjiCfT29uLxxx/H2NgYbt68iTfffBNTU1M4dOgQYrEYurq6sLi4aIQOBXpvb69RSPybR9bzvegdEL5TZUNFT2PEPlGXqQRa8og5VqzAQA+EMCFp+kq7VuitUqmYd+Q8sV861ywx1dfXB7/fj2KxiHg8bhTT4OAg6vW6qVDi9/vx0EMPYXJyEolEAoFAAJlMBt/+9rdx48YN42UBzvgoSSTqYalislmE9vyqV837aFxM54JroB2Zwr6/bci18w5tr1n3gvaFY2vfX++j76L1Rzvtzq1T8ukeaKQ+EzLixiBmzw1sw3RUakCrCjkFlL35VGBoAVK7JiJxfz4nGAwaSEqbCigbQlTPUOMtapmq92cLIN7HPiqFn2k/bXhS2V2HDh3C7t278eijjyKRSMDlcqFQKCCVSuEf//EfMTc3B4/Hg0gkgtHRUQwMDMDtdmNxcRG3b99GoVBAoVAwUN/a2hpKpZLj6HU+i8pLLWsAjpJNCtkFg0Hj+agQ1kRhkgk4Hmp08DOOo3q1vJbP4b3pUSUSCaOIh4eHsWPHDvT09KBSqSCTyeCtt95Cd3c3jh49amJ30WgU+Xwei4uL+PKXv2xqF3K+uZb4bABmTLh+lJijkJsaZlT4ZEvaaIDOuyoejqsqBSp1xh25XlUp8j2UaKR7wlZCfD9FM9h3NQ7sPcF3sw3G74XWKbL7XdpsL4ebXyFDG2pRoambzIY/+Jt2QoPP0lgRG+9Di53xDypIbnoVpBqP4Ua1hYxCl/Z16iXaG5vPoKLUwPedhNbFixcNg45kjImJCfT398Pn8+HixYu4ffs25ubmkEql0Nvbi0cffdRUki8Wi1hdXcXs7CwAIBwOG7IGvVvGqGyYlXAUBSLQqjgCwHhG6mEwcVvnl16Yx+NxVIVX6JQMQCoAKlo+k8pexzwSiWBwcBCHDh0yB1lOTU0BAHbv3o0dO3Zgx44daDY3c77Onz9vmIJvvfWWg5WoykprZ2ryL40NJa9wLjWWp+9JRW7Hkzi/apBp7iHnQMdRm16j61GhPIUllWjCv3Wu7X3Ybv3qZ99LSuuf2zoe1z3QFAZTKARwZv4zxsHrNLjOgL/WELSTj22GF+BkItrPpDDUjapxLqBFX1ZLVJUbsLViPQVKV1eX8V5swcN78zM9aoLf2b+hR0MPlkKfXkg4HMY73/lO7N69GwcPHkQwGEStVsPy8jLS6TSWl5dx6tQp5HI5dHd3Y2BgAENDQ+jv78f6+jpu3bqFXC6HYrFoiB3NZhOZTAYbGxuGUOFyuQxzUL1AKhGt68h4pdvtNjlh9HjZP44fj01hqkqjsVlQV2OeWlaq2Wyauofd3d3o6+szxXVdrk3m3EsvvQSPx4MjR45gfHwc0WgUwWAQmUwGr732Gm7fvo3l5WWsrq6auVOPnIqB8CbXpaZwqAFmkyKINNhekBpdih4o0UcVlx0/bWcMqoGkBp7uF30uvUl9lhpJhEO1j7yOhB4iFeod2zT/7/b2z/G4OorrHmgKMbGpslGMHmjBcVQgejCdHfxXhajBc1rn9v3VylXFxf8rXdguoUOCiRYbtWEtvocKO31nWxBpIN22WBVG47WqgNsJsWAwiOHhYTz11FMYHx831TDYp+vXr2N2dhZXrlwxJIht27ZheHjYPIPkDb5bLpczz+Y86plYWhA3HA6b05Lr9Tqi0aiB0qhsyuUypqamHKcHr6+vIxQKmViaPV/r6+sIBoOG1ej3+xGNRk1prGq1ikgkApfLhZs3b2JlZQWZTAbj4+PYu3cv9u/fb7xH5sm99tpryGazjlgP88l0jdBTsdeCPff2PNKoUFhQ9wDHjt6pTVbierJLYClUSyWicUZVhrpG9f2UKGXHrlQZam4Wx0AhRT2lWY3N7yVyRkdxfZc2Cjl6H9yUNl6um1HLISlbCmh5TBSYWrOwHbTD39jf2xYpBQ2Vj0KPGp9gLIH3orClN8B+qnBQoa/VJKgcVHDxb6V68x7KdNQ+aizM5XJheHgYIyMjGBkZweHDh5FIJBAMBlGv181xHozpnDp1Co1GA2NjY4bQkMvljILg2VwcR2V8spo7c6J4svGtW7dQKpXQ398Pj8eDXC6HbDYLACiVSmZtsG/0tDRmo1Bkd3c3JiYmUK9vVvCg4gqHw6b+YLVaRbFYRD6fNyWsnn76aSQSCeRyOczPz2NxcRGnT5/G6uoq1tbWHEm5ashQWRCGpIBWqE0VhRJOFMbjfNhpFACMd8oyVLwX/9aakFyLmt/F8VPShn5uj6XGu4huAM54rkL1NszNZyhKoTA6n6kK7HuhdRTXd2njxtDcD40paexG8X5787BpTIEbhMfAK7W32Wya87psHF+tUn2uelJ2Eqt+x+u5kanIVAFxw+s4qOVus7nUG2PfWcEAwJaSRfpbXqNeIQVIIBBAf38/+vr6cP/99yMej2NychI9PT3wer1YXV1FLpfD3Nwcbt++bSj0uVwO9Xodhw4dQiQSQTweN+QKVsbI5/NGgFerVeTzeVSrVUxOTiIej2N+fh5utxvJZBI9PT3I5/Oo1+sYGRlBpVLBzZs3TT1FnpNVLpexsLCAdDrtmM9KpWLII4QTu7u70dPTg+HhYaPMdu/ebTyny5cv48aNG/j2t7+NdDptjJBqtWoK1Wpsk4pMjRWgBd0qm1AhQBX4XCPtKOu8l22csZ9UdNwX3C82C1ANPfXwqKi4LrQ4tZ2CofCg7lNd21o0nLl0NvRN40oNNRsZ+W5uHXLGd2lTJaQCVze9QhBKZ9eiqtzA6gWpglAvhIKATEbeS6E2O+amHiCvUW9Hn6mCRK1pvVbfR59je4UKMwKt4quaaM1n2uPI+6jwosCixZ7P55HNZjEzM4PV1VX09vYik8lgYGAA0WgUiUQCg4ODGB4exs6dO5HJZLC2toaFhQUsLCzg9OnT8Hg8GBkZMSWhenp6TKkmYDMf0uVyIZvNolwuY3R01NQj9Hg8iMViCIVCSKfTxtPj6c2EZfP5PABnxXclaAQCAUQiEQwMDKCnp8dU6YjFYsYQJJSYTqeRSqXw5S9/GdPT08hkMmZ90UOnwFU2JJsaE1wL6mnSa+aatMsy6fwr9KbGisZaqRB4P6YT6PN1vXGulZHYDh63Y2y6Pmz6PpsqM00N4fO4/nQP2JD195Li+ue0juK6B5q9oQEnMUE9IFuJ2Nh7O1hRYQ5ep6xAO8algl6foffl9fbv7OoHGqy3N7HtSalAaQdXan8AGG9LLfJ2yk77ogxACk7Ck/V6HTdu3MDc3JxRYL29vdi7dy96e3vNqcnAZvmyXbt2IZfLmdJSCwsLBkJdWFgwyqinpwc9PT2mYgnhSMaU2L+VlRWjUG7cuGG8J8Z6KBS3bduGeDxuCCjBYBDRaBS9vb0AYBRms9lELpczFT9Is5+fn8f09DSmp6dx5swZRzK1QnecdxvC01ipwq/qMeuY08tVJaj3Vm+e16sBp0YLDS07v0uhPjZVIrqv9MgWoOXB22u/nXJWr445dvY61rXNsbLXYae9fetAhfdAIyOQia5c7NzYuimAFiuJm1lzXRSS47XckOopcVNxE1K58B0Ui9dn23Ae7wU4lQWtVvZPYxt8N5uhptdSmKgHyfiY5tHQiqbVbEM3FJr6zoxttPNK7efSwvf5fBgaGkIikUBPTw8OHjyI/v5+cy4XFRbLNbF0VKlUQiaTQT6f3+Ixazym2dxkPfK8r8HBQcTjcQwODsLv9xsPRuEpJcd4vV5kMhlTPJY5WadPn0apVEI2mzV5aalUyowVoTL1gll+SYvP2hCvrcx0HXBeVSnpd5wLjUfyGl3XtuescSr+nmucv7dhQs0Rs40a3X9c50xZoDGhnp2tLPlbNRZ5X/aJZCauI0KSnRjX27eOx3WPNC58hRD4GRWYEiz4PYAtG6GdraLYu20l26V6KHDaeXh2PEEtUDu2ZAs2vpta0VSUKtgURrKD9vr++myNTaiSvJN3p5RkkltswcvrWdD2xo0bWFhYQDQaRS6XQ39/P/r7+7F9+3YEg0H09vbC5XIhGo0amIyKjFR5YLN0VDabRaPRMBR5/p7eVX9/P2KxmPGiADgIDlQw+Xwe5XIZxWIR165dQ6FQQLlcRqFQwOrqKq5du2Yqaqi30mxuxrF4hle5XN5CftF4Kn/HueM8KBrA3ymbU9ejDZlpDEgNBfs91MDQ9anKh2vO3hv2Gtb9pffWPaF95ZrT92yntPksOw7WTul32v+8dRTXPdA03mR7RmzcODZLSb0lCja7ygXgtDJp6aqwbwcd2sQMfRf1HtopCIUHbeXLf9uC1IYiueEpJO4ElfL9NOitsR/+lpApx1f7z2vU4uZ760nArNi+vLxsrP5kMolQKGRqI0ajUYyMjCAej6O3txeBQMB4NRwzKrVSqQSPZ7OmYXd3t4nfkEAyNTWF2dlZZLNZ473xXLt6vY6lpSXk83mUSiWsrq5uEfoqZMlepUfF+VbPWOde4Te+uzLiuAb0OlUyei9eR0Gu3pbC5HeCx5W9qN4cn6tQta4x28DSta6ekhpw6n3TO29nyLFP6vFxzbDPdtK/jWB0WvvWUVz3QNPNC7Q/AqKd1aibnRtQFQaw1ftSxajKxk60bPd+ymAjkcOGYHi9Kgu1lFVoqFVvQ48qkDS/p11/dJzsWN6dhAQ9NfUi2B87eK71/3QuqABmZ2fhdm8e+RGNRhEKhTA+Po5kMomxsTHE43GEw2EkEglz3hcTlDXfi4KvWCxidnYW6XQax48fx/T0tPGs1tfXTW4Vx5pzoJAfx1Dz4SjQlfRARaJkDL4Hr+HvdUw0vqhzp/9WQa+Qo867XqvrTT0dPpvKoJ33pMYGlQPHyO6DrhnbOOK99P30OXZ/bcXEzzW3kkrUZjl22p1bR3HdA02Vh8Iz7TwINrXc1FtQYaVKz7aECdG1owyrMORn/GOTP+iJ8Hcak7OhJrVs2wkeZYDxOtt61grcHBf2SwWOKiLtizb1/BT6UsHPPtmwlXoRvGZxcRGrq6vweDyYmZlBMBhEMplELBZDOBzG2NgYent70dPTY/K3eHgkz/jK5XJYXV3FqVOnsLq6iosXL6JQKDjeIRgMOlIAFIID4PAQOEZ2XNQeK81V4rzahAJVcnrmlM63VrCw17jGf9qtD65LKjntlw212cYb72Ov53b7gdfyvRnHYqzZ5WodvqnrVQkmula1b1xTdv/43I7y+l9rHcV1DzRahLqoCVlpPggXu+1R8RoKYDuGoAFrm4GnlqoKKlVUvJZKw+/3O7wgKg87d4UbXQU9BYQND6kCsoWlCkT+Vj0rG0rU/yu7kv3jGGmcq51y0/ex31+p2KrgCL3V63VkMhncvn3bjBHJLzxh2eXaPAerXt88dLJQKDgSeznPzOlTggarbKgXwbWkyl3nlbAWhTW9RqClANnsEko2VKhV63UdqwfTznunIlBF/P+1d64xelXVG1/TTuedNrUdoLTTIuUSLpVLUYuU0RATmYC18YJ8aEgTiRoNUhLQhggaBWNiSUxM1Bi+qPDJPwEjaOQSSgtVsNxqKy1opaRYYnpRSG/QmU5n9v9D85z5nWf2O20FprzMXsmbeec95+y99tp7r7Wetdfeh6dPMAWdSJK8aOwxKqF+4dFTjBD42pb6RB86OhHDJ//TgHuI0VEg3wCgUDATP3KIrlCeiuFqEfKJGFF/3QnRA706R1KuuJ3olUbUj92RV+mxfhowN340CHrGwyYRMcKTdx58UvN+KgWhCSIsf55rKURS5Ne9en0c9epDr5+hLCaXeOiRDgLXMQcGBqKzszMGBgaqMwAbjUZ1dqLWKcUrDazkQJ6ZPOCOAI0uUbErU/YFEyXYlzTQlA9lTLnSiWG/cMzK6ETECIPHscgwo/e3xlRu3xR/YwIRjQ/LFH/K3OSmfRp2d5Y4vsQviUau0JGpGK4WIHnYnCBUFArheKglYvg0br53SWnMKotIjmXoN74SRUaJBobXcuEcojZ/1tcKqCByBphhH9ZDBUQlIY+c7XGlxFAN28v1oIjhja46SYEITvxq7cKVrGRM75vtkkEUeujv74/29vbo6uqqFLr2BEmufX19FYJgKjb3BlF+dC70v8JgQhA+rnLKXHIiEbk62lVZNO4RUWVWekjO68sZTx9bNLo8MV5zQGNaaFB9wBApUVUuhZ7tUuIQUalkThQYMbwtQX1EhKs62TbP4i00korhahFKKdWy7Jj9JsXACUCFQ+PAhWgagxwy4qTl/e6FUgE7KfzF/WO+D431sx4/OohGlsZGZelD2YgkA3/9Cj1/lkUkQb78JASVm0uWcQTGxAAqLClUR37qc8rd140of/LPM/aYcOBtlpz1XETd8BHVsx+8DF/n0/Mqj2s8+kvjyIQe3cPyKC/V6wrfjRX3RXl5fIbP5pwnjkHJwccH+VDWJ0PRRPHM2s0hLO/PQiOpGK4WIBofIhYiME4m/RUiyYWMqJCpCOS1cmKKNMk8DEhvN6L+8kk3jizTr3Nh3xUk1xrEC71W/Ualy/PzvBy2hzLmwaxS6kQtRFpuGIloHP3yXvan/y8ehdwOHDgQEydOrNa06I3LSHsiAutjhqDkk1uPooy4xpJzVCRDbvB1x4lOD2VPZJgz7Fw7Yxk+Fikr9SX/pyzUDh3mzDU/lqV62S/kz5GXrskQ6TqNsvqS62CesSj+mSRS1rhGp2K4WoCoPDxhgAveirdLQXEzsCMqNwLMjtK9XHOgF+iGUuSKzdGgrjMZxD33iDpa5FoLEaNkkttLpvbTUEu58Nw5hrekgNx402umHKjs5V1r/YnyZFtFXDN0+THcFTG8+VlhLXrpChGyH9vaDifhHDhwoJIlQ19EDXRq3FBQ8VMWVKpM5BA/REVMtKFS5roT+5djwtcyPbFHc0EnT0hu4o39oPC4kjx0zqD4pDz4m8aVnBmVJx4Y9tQ4cQPKNUMiau9z9m1BW0emYrhahDjBRI44PHwhxeOKkqEvlssQXUQ9q8rrFlHJsz4ZwZzy49qSt8cRA9GYFLCe4eZh8cJnHGkxrJMrj/KIGFaW3HQt+VLZukEhEiKqleJjG+m9U6bih+hAhmXChOGDX7nXymVJLz+ivg7FfqEMuI7jfZ4LB1Im5FF1eWhXCt5RHB0qojJHQpSffieSJN/sf67x6lk3oBw7HjEQyQBp3VSZuuKNIUEaYEePdOY4ZjieCzWnksLSAuSKRB/3mHVdz9BL5QZSKQdfB9P/ukYFojKJnHLhmYjhF/zpN/HH9RYaTvdCxaMbErZFnrSv+bgBppGmYfEQlPPoysPlSXSpZ12maouMGhNsdE3kqInydPmoLb4eJLnKQObWLHkfw32UnYeCqex1H5GuGyLJnWVoCwDHGkOwOWXNNxuoHSyDY0/1yZnRGCR65AkgHi7k2KJsGUEQMmIbWRbnJcco5cj6OAZ8ThcanQriahEiWoqoIzBfsxocHKxeouheuP7S66R3rFCT/qdxkSJh1p0mp2jixOHXwjNsqf81qRlWcUNG4j059OSGm+EcecNEe+LHURTDbwzviG8hKyV3MLTmyItOAMNqbKPq40G1EcOKV2FHOgU0egxBuvFSeJGp4uLFswf7+vpi4sSJI9Bro9GIlFLVl+ovrRM5elc4kLJxp8PRN8eOh6v1jD480okH43I8KiSotqtdDJPK8DAiIaeDCNmRrlCuylR/SR6UC+cU76Wx1xqm5lqzjdmF8lQQVwsQlXFE3RN1tBFRVxLKrqJRcITkE9Tj8fQmc5lvVHge96eCc4VEz59tdGPlPIr8NyrCnEw8AYH1sF7x66hGbaJDwDp0XQpeH/WDrokXRxlEIfTY2Ua1i6eLMCwYEbWzBikrlikExD1Z5Ef3qC007CqPTlQORWvsEeVR9rmTWXLleX9rHHIdl7xw/Pm6nI8b3k/Uzf7XvXRgfCw5EqfD48hYspWjw+iGj7dCeSqIqwWIE1iTS7/xDDsmLmhSyAvk22Ijht87pOcZLouI2u85D1JGRRPNQyac8Dwyhx60XitC5U9kJW+ZHnLEsFFhuEvftfbADcpMpJAy8c2oDHsKrTIsJWJWn7/IkOXwBZyNRqP6Lv5pvCQrrouJlFBAB0GITm1zR0WZc+xXKUNf9+PxTy4H8srQHOXPPmMfi1gmHRGGMykLGjZff1TdGqd8xQyfiRg+C1Dt4h48okJHb5SZPkws8f6j00DjLmdAY4mZl+KXzovKLojr6KgYrhYgooCIkQkLRGLycPv6+qrfHA15jN8TCBjLZ3iKisA9aPeYuf/LURCVKdtGj50Ik2WLPKnBw1K+BkY04ujRMxWp6Nzz5/u9VD/3+4i4ZtXf3z8iu5PGICJqXr7WZhhepLIjgvM+oaH30KQnSni40ZE061ZI09G37nekrXqk+Bkuc5QnWeXWuXzc0DA2258lI8rnieyVXCF5+ZqcDFtuDDryzUUhmjlZnA+O1DwykRvzhYapGK4WIE0KrV1w135Oubt3S29aSMfXYVypOhrQhOfEUhlEOKqfqIwKjUqUyMLDNhF179Pvp/dNJUx5uTJhGIhto8KLiNpJEm6gyau/EkVEdCAPW88NDQ1V6zRSjlw/ciTMNTKWIaIBd/n5GCFKpWEmKvIyOC6kpHPK1VGIOyasn/ImihO/LNuNovqezhCjCHQKVAadKEYOdF3rYnL2NJ7cUVRf0WD6OKMBiojaeY10HsQ35ap+KXRkKoarBYgeMdEEw4NtbW2192xpAvtitx/O68cDUTkRtTAWzzKIzlwRMXwiRT04OFghEIV2iFr8d5WnLLH+/v7KqIjkOTvKcAUTETXkQGPGTEq1yRU6Q1GUoXjkPi7VPzg4WO01UqKDyqFn3tbWVkMJSnf39T/97xuLyatOoVDbHSkxtEoEQydDbdSzROA5lEHlTkeFRsyNHQ0bQ7zqLyYzkB9dY2iSe+bEh/j09VpuDxgcPHyAMR0FvguM/DM8mUvy4LhnP9OI+8HSbJv4K+HCI1MxXC1CuYlPNKB7fG2CoQhNCmZQuWfsaywyaPKkORHFg3vH9OZd+eQQgf9O4+BrNTo5nQv7vv4ivtx4emiHPPm6CuuV4aBx4H4nKlMpJQ/LSWl5/VSyXO+gEmZf0+DS8Hl7uYaie2ignTycS4PJvvL+1bNuDH2sSp48vUI8SZ4cy67AWZf3hSNFhQp1nY4ExyP501qwjxGNCRo7H//6zu0XLlP9ZeSAfUfeCh2ZiuFqAdLAd4Xra1yutDxUF1HPvGt2mCcnFxWFe8seumMc33kmaiSS07oc32/E7C0eK5QzxuKP7ZUsiDrED1Onue7E8Kd73DnHQMqGnrqQDpW/6qcc2Hesh3KX4p08eXKlDIXCPLNPZShdW7IjYuA4UlIMlSzL0X1En0R5DN/R8dGBvzK8HgFwRa62Njs1QmOBWXw8KUNokyfiywCoPiZW6Hk3TO4MRsSItH8afbZd7Vd9jCCorQoBayuFIg7ky+cLeSo0korhaiHKIQpHMLpG5U40wetUJkQmLEfP6n9HCPTqc/xwUnKtiIralWdEPVlBxEmt0CE3tsrw5eSh+hkiFb855BpRf6U8kYTucQNFY04Dqo8bRLbLnQLPfhvNkNL4elhQm565d81l7kiHfcB+cWeAIUxP76cB45hg2I7jgcZMiEmGgnvuiKzcWZGxp1PiSIZjxftd/HK7iUcjGJpnP7NdrIN9xLAlf2efsm8KNadiuFqAqHip0GlscsjKFTEVr5Qyz+4TUZlxHUeUMz45Y8h7Ha2oTJ/kUlpCYs6Ty0ETXzKhUqBSzyl9T/EnYmT7VCe9Z9XrqNXRkCskDyNxwZ5KVzw2e8mhyibapJdPuRHp6n6W5+udOaRG5cuDh6nAGV51J0vlsK9FDF37uHGURvnpo3s9DBlRjyo4EiJPjDAoOcfnGMed+GWZjUaj+j/3sk5uNs7JVlTQ1pGpGK4Woba24YVdhvs0mZSyzJCFlJSHNTRZmEjgYRYqMylG/a4EB3nFmsS+tkHPl0kijvT0vFAQEzkcOZIn59/rVvn8q7pUh1Abs/uIgIgyciE6GmBHI45cJDu2mWEtGgXxxLbpPm+nPn5iRltbW/UOL67T6ePKl+3xeunMKIRLY88kEQ8p5mTJdUeNO/EkvpT9yvUzIj85EURIkoHkyb5n1IHp8Lzu6FGoVYbOtyjwxaVCfOJPcuL2BjoILmuPeBRqTsVwtQgxtKHJ7MiIHn2zRWRNuIiR56TxNw/TETG54SCyyHmP9MRdaVKRSmnQM/c1OxpV1uWZkN52DzkyxEVj4kqEbSE6csUmGVFW4sH3wukeKTHd4xmgjrRy6IPhQZIbVhpb7w8PN/I+Gk9HSpQR08TZZ84P6yJqzCl0Hx+UH50lGhU6ZqpXRsQdIR8/3ALBMeqhO/HPTEbNR7ZNBlVrj7m9h3QAiLYLjU7FcLUIMSyXMxJECdyDwjUaeYdUAlTWvt+IxovhN77RVc+zHFeYbjg4sX1thGFFKnG1VzypPK7b0bDnUJH40f0evuQzDLW60SQ6Jc/as0MPnvxz3UcIjwko7FPyTtnmECjHh48ZX8uiYhVPESNPmmAITmWrLnd8PImCxo110TEhiqOMck4DQ3UcR76HTe3JoUXKkWPZx7uuq394H/mk8ROvnrjh49bLJu9ay3MHpFCeiuFqAZJnxvg9w4buvXPy5g4tZfaaJo0mnhsAhk5yCoChtoiR6xVUKlyP4WkKqpNZfgzPMYQmL9f3x9AgsSytfVCpUikrJBVRXzcS7wzFUulx/aO/v78KXcl4OQIW8X+izKGhoRF7zCZOHLlnjkatGQrh+6NcQTsa1mG6SoCgbBnC9NCnkhiI8MWf6tfv7hBQ1gwLazzTANNRcEeE4UX2Ow1qxDDicWfEnQA3QpKpyyyHZpUVy31eEVFt39AY1vqXeJAsmLXYLNu30DAVw9UipAkngyCDwRCPe680VFyDoAHiZNbk97UBTlbyEBEjlCJDlDRO+l2GR0qH7aNC4LoQeVWdbgB0LxWKnuGahLfJjbhk5efuydjpO+UpZUuF7ciKCMez4VQ3jYSjJyInIhr2FY0y184UysyFdtVnrnA5hhwdyYHgOX8eBuN4zKF9ypHODh0HykiOC1Etw48clznD7sifocBcxMDRj4cQfd5wbElmnJd8hgiSxs8di0LNqRiuFiApBg97kIhyXDlIISs12pWqiChGdRFB+LqZ7qeHL6VGT1tKjoqE13UiBhEfDZ/q41FMEcNePttMpUxjSwRGBcRrRFIRw4afSoonO0jR5N4A7Av3jgxknHj4McO9Cj0SoaSUaq/tIOrQMzQWROJqg5AVDQTXgIg21Q88EDml4WQFb6/44AZyOQAM6dJg8VldU908AFgfGWG10dcGeaIFxwUNMuWleiR/timHMmVkiZZUlu7T7+4USfaaf3TQ1HfFcB0dFcPVIqQJJm/QQxsKiUXU3ynl3p6UJD1qJyo2TV4qSl9Pc49Vv/M7icpVyogerXv7DBOJJxqt3LP0uFmOr2npGRovhhRddo4+JW/Wo/sYnjx06FBldNyAeVICkSOdFV+ncpRFVEjEyvZKSZNf1s01KKJcykpGTG1xebBf1B7PQCX/Wutzo+lGgIYrF/5UfWyHj2/OG75oUmFZonVH5yyvo6OjFppXP3Fcidxp8PHHI9MKHR0Vw9UixEmkv5xkHjrTp6Ojo0qJpldL46FnPMQSUU+MoGJguMYVHJUoFamHbppNVpUl5cN3WZF/V5DeHv+N7WDY1HmgbPkc20mk6k6AeJVCzq330ZMn0qFhouNBmRJ1k1f2h9d36NChCnEzVMnzEdn/kr0bMq3lqQ1MD6c8iCbcoSDa8DAZ+09yZGjaQ2t0asSf97nzwL6irFWuZKV7aNDIP+XCPvX6ODd8/IlXOinOe6GR1JZa0Mzv3bs3pk+ffrzZGFMiKqGiY4iMk5deKpWaKOexcjFe5AiH6EkesHjSps2+vr7qOxeafZ2GE1RKjApcSRXNeOZEd0+XyIWKUco74vBp4KMZIyonlUP0pfZxDY1tyhkY9YGSLlift0ltds+f61dMHGnWp0J8THTQfUROup99onAty3HkR4OhMiZOnFgdiMyQoZ7j2OF6GdcWdYQUTzkhvx6uc+Ok+4iwaIDoPLgcVG6ujVoLVD9ofjD8TT44pmkwabhVn8Lm44n27NkT06ZNO6ZnCuJqEXLF5wqV3l1bW1vtdQquwPVbxPCaQMTIVOyIuiLT/1R8MhAKi/H9RlJQORRGj1vE726QHO0xi033SwlKASiBRfLLIYCIGNEe1a0N3doImzPwrvS41uiG+EhGlf3rPPE+T3ghGnUUyz7Q744AOJ7UT1wTZL/RqPIa+aeRlxHjizV1zdGisiojDhsZGi7xy785Y8/QLMe6rtGhcqTKccqQJMsmaqLsaJTIo/qJ96eURryZfLQIRKGRVAxXi5CMgbwxTRROMHrgjUajSp93NOOJEERjnu3HCaUwExWbJquntwt1KdQn752k60ze4LqXiN65X5fhIJrQX6beU4G7AvLsOCkYvh5EbRwaGqqdDOFJHwwj0ZDT6FDZkg+m0LuxZl+pbPabp1Or3QcPHqxSsoUUWLfa4n0hPiQPf8t0RIwIg+q66tV4ZVJDxMijrYhC1T5l9TnCI8JkOJN9ysQY8aZxyTeCEzUxcYL8EQWqDJ8jHP9E70za8RB2bl20GK6jp2K4Wox8crn3SeUlpe6Tn+E/xtZ5cromUmdnZ0QMK0Yqq4j6K0V4UoDKZYaZeKThE//NQjT8S0XNdos/D0VKeXt2mtdDpCmSt89EBFdovvZE5CpDIOeBylP3ENmqnTSO7tUTFeXe56Xr3NhNdEqkRqNO/jyMJrnwGUdfNF6O6rhVgMaX93uIUx9HirpHY7GZMZGMWJ6jeT1Hx8eTLORM0Onwce3zQNc9A1c8cszm1ruK4To6KoarRUjeIpUzDQkVT8RIb1hlyMB4CI71cBJxculeKnqFXKjANBGlYDzsJeWvcnwdxUNoLINIzA0flaYbNleofD4nAyIgKlIZJUdJrhzpYLBMhp5ovIQu/ABblknkKDlTrgxdSmZEZx4ay3n6RK+6T4aS/eaOiMqho0QEqvayLh9rOWdFfct6iTa9b9yh0PiKGPlGbY4L9hPrkzzp8JA/8pNzpvgsjZJ452tXWEeh0akYrhYhhXS4DiGip0eSp+veJJUuX5zooZuhoaEqI5H7v+hdanLzZGzywn1D9FqJGqWQ+O4tPStFqvY6gqNhEmLhetehQ4dqp09Qifv+LcpWr3Fne93oNBqNWplEDkSdVOx+Mjjbx1eP8FQK/dU6EUNv7FMqb8nFjbju1/hgP0muMja6R+WoDKX1HzhwYMRalcuSSl1tUko+5aU2MYwtfvwMQkdq6n/VqVClO3GMMtBpUDmaDzLU+o3ziwad40VjW+NOvHu4Un+1PUDzT+FNyrxQcyqGq0WIk4uKKvdiPE0OxfE18TgZHW3QoEmZ8TXjHtagZ0zDQuSjujzcRUUu3rkm4WE7v5+8E3VI+akMVzjcYE2kwDq8bZQZ+4HOA/cM6VkqIRpI9iNDVXQcuD7CMml4/HUd9NxpnOl0iIgOiYb1rJcp58SNPZWxh2n1uxsHR+KOUlUG+edf8eMOnOaFjxM+QxTHMmnIaQD1G9FlDn1xfNAZYJ/xu88BotISKjw6KoarxcjDEkwe0LWI+kG7mqAMs+l3hs4Y4vNJToUorzyivmdME8/3YXmoiN47Q0XMFKRB8RCXK0L99dAbvf+cMvT2ucFVGblXsjcLwTmyGhgYqLLl3ABTfoODgxWS8T5wubJOJmKIN65bEWmLaPRYlqNiGRidrCGD7MkQOeQrA+jOQc4AqB05ZKNxqed1P/8SIdI54HjR/3zdSG7MEGExNMnkIzpzrMPl6DJmGFa/M9TM8VxodCqGq0WIoY6IYU9cIRFOVikfHn7LSRpRTxHWdaKuiPoLFvldKI9l0uOW4mM2oVCVvjdDPI7+6O3TQxWJp0ajERExIhlCz/nxVFIaDNm4oSfqkJzUPiEGtUt1HTx4MNrb2+Ott96q5ExFTgXIftE9HR0d0dHRUbXDQ1IMQ7EPJWcpZhqTHFoh2qPSVZhN8mFmpJJVdB/7R7KdMGFCLQvP28B3n9Hwc9ywv8kbyyO/RIpyFnIIUm0lovLQr8LLuXGmNvHt1CyL79+SDB0BchwR1aktEyZMqMLUhZpTMVwtQhMmTKilhHsoI6KemednA3qYQr9H1E9YoPJRvSpbqE2TVkpdypLervj1tG0iNP5P3nzdhJOcXjhDQWoHDbWIZXlmmBs4prczRCTycxfp0TPbjWEwD5USwZB38se1P+eDYSUPQ+ZQp/rUx0hOnpIJ07uHhoZqxoAo3xGSIwfKl8iPfcuycokXvk5ImbPfZBg5xnWvrsvwEwGz7TQsrIPOFI0+2yfHwg2WhzA1VtQvGg+Fjp6K4WohcmXnCIKhCu41cs9OzzYajcqjprJSPTr6xhWxlAM9ZF/Ep5LROX08XigXXvMwU0TU1opkmKQI2EYlLlBpUVlRgcnwqiwu5EfECDkwJdoVoGQjg0vvXbzIg3bFTQQguRJ98TUpvM/DYn6UE1GJr0nRCPJ3hjbFN9tJY82DbMUXZaYxwIxTNxI0sDS43C8mopM0MDAwwlmjs6M+0FmCbsjJg9rkWwuIwrimTNk5CuRvOpSYjoUnBvHUEEYXaMgLNadiuFqEuF7EsKG/hoLfOUn1vxuHHOrS//IsU6of8MtrTOCIqGdS8ZR4EuvPKRaSL86rXkeNDJFRYVChKCTIxXA/TZzrfkS2VPSUMZ0F3u8bWnVd8lB/Sq7sIypSPUv0Ix48EUDtE6lcD486GlJb9ZvK0W963kN77D/1vcKvKottd8XPdU+uQzoqpDJn3/h+Ot7nDh75lrGnQ8Z+53hRmVx/5f8REY1GI4aGDmfgdnZ2Vie2sP95viMTctwJKBmFR0fFcLUIScn4QrsrA3rR+q5rvohNo6eJJAVJlMaQiK8pkD/VISXgx0mxHURsNK66pue5T43KXfU1W8Pg+oyHqURUkpRZTrF72IrhJSruZiFRD9/xeSpWPevhUipBojuVx+QO9rkjWrWLKIdGiX2p75STZMusSHeqmCjCuj0xgcZChkDl58YxtwDQ+Pt+O4a62QY3ZqzTr+f63vvDx74jcT7rfaZ+Zxi0GK6jp2K4WoSaeaVUDFSgOvmBax9U5iqTBo17rhSq0sQmQvJJK0XjZ8oJUTCElEMuyrzz1H0aSdUjHiKiynijF6vrPM7HZUAlzpc/6h4aVBoKySG3juZGUfwwEUHhQ4bjdE9E1A5XdcUm/oR+VSfXurTnjgcyC4nKwHINxxW2jJjvGVT54oGhYbZX/UklT0TGsKSQmfqJyJ0ZfwqDSjaOsIaGhqKzs7NC97msQY4XN/wcT+pTrQtqbU/1Clm5w+XbTPiCV40t8s+5SqTIk2cKjU7FcLUIcXJJoUjBe2iFIb2IkadH5EI2VDZ6FQrfAutrE1R6euGhvjvaIGKQUomoh31o9OTR09DpmiY611LcEDpCo/wcvbBc1e2ydk9dvLsBJMLVPZ656IiDfcSwlIh9x75iP+o714novXtYj+2Rw0ClrnrYZs8+5RggWpMMaaBdjjRmMmJE6VwPo8x8nHq/0Gg6aqaxI1IUb0TmfFEm188cfbIvvE8YZo2IynkQTzkU7KivUHMqrzVpEfKQiCagJpl7h/R29dH1zs7Oyrhx3UIJFEQ3jNXTKHCiUSl7mM7Dk64EyKcMsbxu3aMwGK9zkjOkJIWok92V8MBrEfVQlRtYlZlSqlL/VY7kwtdw5NLp2Ufax8V2MwSaQyXikXvIuH7lxz/pXinb3OnmjqjET8TIg28lc7Vd6NvDZnrWDZe+C6Hqfo43Km6hLiITJsJwrHGLhX4TDx56dMPfbB1NdVIWjgBptBmK5NihQ8kx4AbUxxplON7CheW1JuOEuA7AiZlDIPSidT9TgiNihBKJqGfx6RmiAiolGkqWwbRp945dqdDIkl/VIeUpcoWk3/g8j7MiQnQvWQrVj2Miz1Q0lE+uP1hXzktnP6oM1c16qUAlG88c5PFJuXAo+4Sog//73i/x6OFX7vtyBEVjRGTBBAr2G9snWfn+NtXn97EOv84xRyOja0qc8KiDO0JsE/uNfeMG3O9hPzHEybAonT0i1EKjUzFcLURUDhromgBUSvKq6d0RSWliUolxEjdDSERF4kcJAfSKqaR8LU6/u5JUuTSMNL4K7eT22UgR8DemQrMelq820oBE1I+p0j1ERWwD07dz3rSHpfQsFS5/1/3c4OvGVuWzLQp38egnPqN7aNhksMkb14Q8YUObvIkm9L8jR8maaFO/yQhKXkJRRIccA1yz0/05h4Rjk+2hbJl5SsTvTgr7mG11h4Rzivco2uAolbx7v7PPCo1OxXC1EDEExIV8esJUKvLG+Z2erH5TqKWvr6+GWNwTVV1S2BERb7311gg0FRFVaI/vVeJEZ3oxw0VUXgydEE0SfTB0yVCUkkuE1HSiBe+jgqbilVEYHBysQkK+3qb7qbAYFtX6lg7OZRnuTEQcXpBXajyNOJUf5UA0QmVPvrhOKD6VxMHQGhV4DhlpHPBEDRoN/fVXl7BM/Z/L5Ms5BSpXfeCOD501IlLKRmOBp5/QkRFffIu3GzCV0wwRuUHjGFVfae7qXobT1TbxnzO+hUZSMVwtRlRYnPRUHh4j93CI7qVCyIU5SDQQLJMvKPQ6/flcyIfoTjwyO0u8udL37zlE4r+JaBRVH7PI6A3njLLzQDQn5cw9QbqmeidOnFglRdBoenmq09GxyqXijqifZO9hMBI3w7pjknNW3KDleOF9OeOgseloSuX5GpruobJne1SPZ7vSIHJtT9d1P9fFOCa8DJH6yccUHQpuC6ADQ2RJZO4IneHnQqNTMVwtQkQfbqCoBCJGKp/cnitOQIZPcrH73ETkmhcVme5jAoCeo4Jm8kBOGegZtk/k4T332PUb1+dyG1dlGH1tTTzRM3bl7pl7niLPzdeqg8bZ11DYbsmbbY6oGz+uf+maK14afI4dooHcGwOI4Jo5QWwP73Png+tkHGfimWW6kaUSd6fHx4AbYR/jOSeGcvbQnUcFOAdYPsc/x68MkcKclD9RoCcHuZNRKE/FcLUQ+fmDMgBap9B1TSaFxzwGz7MFuY8poq4g9D/DU56RNmHChCrzjWtRVESc/L6/hkqF4RJltclIUjHxHkcGDK0JSel5lUlPXO3SPZ2dnTWHgN/dYDhiJG+OmqQMeZyWI08hD/VdLjTmis0Nh3hR+7RVgckfCkMqXOxlaw8gM0r5+hyNHT870x0NjQ8ZgYjDGa3MZlUfKPTdbDxQ1m4kmU2pfndHS2NTJ2b09fXVrol/8eNhQZ8rkqOHtrXv7M0336zK1/yQ7Nrb26PRaER/f/8IlEZUWKg5FcPVQsTQhiaQb1Sl98f4vK8psBzG1rleRvSh9ZKI+poaUQXDLo7CqFyoiB0hqC4p/qGh4Q2fEcPIjWs0ETHCAEgRCVkxKcAVgxQrQ0/imyEdeusy4FRc6iP9rj7gdfFKZa66FKokiiAq0X2OQJvx6wbav3Pc0CD62KCDwOe9boasuYbIengYM8OANBgce6xL48j7gpSTje7zMGKzay4D/WVIWZuEibA5ftxxU9vdmaJx1nPFcB2ZjulEx9tvv32Ecpg3b151va+vL5YtWxYnnXRSTJ06Na6++urYuXNnrYxt27bF4sWLY8qUKTFz5sy4+eaby2LkUZI8VaIaTmBHIpow8vr0O9dxNAn7+/uzSpZeIOtypapTEPxZKUUiF76yg0ZG/0t5aRO0nmPd3DQrORAFRhz24nWaBFPGibCo6KRcZMC5J0qp1B7GI4pSWVQ8QqRCUlJcamOj0YjOzs4KOat9ko+SOxzhsc8nTZpUOwtPHj334lEhs9/8PEk5MHR8IoYdJLVd19QmP+jXEZKel8In8hYPfm6f+oS8yxHTGqHKV5lMiKAxVr/SANO4snxfh1P/0/CSJ92jMvv7+6v+Vr8wY/bgwYMjZJ4LWRZqTseMuM4///x47LHHhgvAvolvfvOb8eCDD8Z9990X06dPjxtuuCG++MUvxlNPPRURhwfY4sWLo7u7O/7yl7/E9u3b40tf+lJMmjQpfvSjH70DzXl/E71oNxBuHDzDy717KlopIk70nDFgjJ6nQigcpGcYqomop5fTWHFNydeoImLE9RzaoKHyNSUaOraXiNLDUEQirIO/+7NcH3IkwHaKiEycL9ZFJUuDRbTAsig39beQpMuMf/VdjkDOiHgdbAcdA8nb1/A0Rpg6zzMN9bzCwxxzzi8RGPuChoC8cB2JY55lyklQP/iaVcRh46PtH/ydDqMbIcmHyUWcm7rPs1YLjU7HbLja29uju7t7xO979uyJX/3qV/Gb3/wmPvWpT0VExF133RUf+tCH4umnn45LL700Hn300XjppZfisccei1mzZsWHP/zh+OEPfxjf/va34/bbb68GRaE8uWJ0ZcmB75M7h9CYCeUhEiorr1dGi3xQqSgVXhPSFQfbw6QJKoCcsqXxYjaZe9YeznIFQ0VHo+cyFBG5en+oXIZPmT3G53m/EBZT071u9qEUqxsSTyCg0WD7GO4UD94OGlgPpek7HQc6UVTaJI2T3HVH8kJ7vE4lzzBazpBTdrkxQATI8abrDGf7WHPnxo1qLuwrhEmHUzLxELsnrhQanY755S8vv/xyzJkzJ84888xYunRpbNu2LSIi1q1bFwMDA9Hb21vdO2/evJg7d26sXbs2IiLWrl0bF154YcyaNau658orr4y9e/fGiy++2LTO/v7+2Lt3b+0zHomGQxPJT+LWwGdIUYpF4S6G79yQ6K8jBL8upcuJzwmtMJ/WbcijjBW9e3rdHvqUkj506FAcPHiwptx8IV68UKnzHnnTOcXvsmYoi4rTZS0S72yHh6NkyA8cOBD9/f21uj1c5MrTMxepTLlWRQdFiQFudNh2ksaMQpw0ujSkahuzEp0f1sFxoN94RJn4pSPDkLfK8v6LiCqcyvFO+eUMrfPnIVnnS+NQ93DuqG72FY2U2iyZaT8cnZCCuI6NjslwLVy4MO6+++545JFH4s4774ytW7fGZZddFvv27YsdO3ZER0dHdHV11Z6ZNWtW7NixIyIiduzYUTNauq5rzWjFihUxffr06nPqqaceC9vvK/JJ4948DYmTe7ecKO4Jqwz3aBne8BBSDjU4j74+wHp1PafAeT/50PoIeW9mUJwf8kxU4Dx7qE5/XU48N5LJLAwH6X8mJOT60JHXkdBgbp2YKJUoIrcWqXZI3pSry9zryBl/GgfPCqUhyKFElcuQJ+VFxE3+RV4XnTleo1w9iuHjUkaRz/u9bjj9PsqOfe5yKXRkOqZQ4aJFi6rv8+fPj4ULF8Zpp50W9957b0yePPkdZ0506623xre+9a3q/717945L40VlQCWRMzp8Rr/x/VgiZmm5N6rnpdAZPpJC1zWGxeTZ5sJRRAY5nvkcDSzrdSNCxUBlqGvij6EmlufKknLj2gTRoier6Bn9RkOSC9fpO3lw1OTrLVRuqt8P22WdKQ0fpMyyHcnlnBnKTO31RBh/TnXmECP7yfuFv+XkRtnmxoyPMb+/WciZfPgY47FmOcPI57keNhofbgzZbneuCo1Ob+s90V1dXXHOOefEli1boru7Ow4ePBi7d++u3bNz585qTay7u3tElqH+z62biRqNRkybNq32Ga/kXtw7VWbESEPA33iffndP0g2NE9GMKzM964qOCDOnAPUMER2Vv9dNnt3jzSlw1uXIzxVNDslSbjIUNFqO/hzJOa+8n6jEZZ5T8irPkQF5z7V9tPbmkmDIgyMpdxJGG8Ms1+/NKX13aJxPd6SaIbXc92OlXH80Ky9XZ6HR6W0Zrv3798crr7wSs2fPjgULFsSkSZNi1apV1fXNmzfHtm3boqenJyIienp6YuPGjbFr167qnpUrV8a0adPivPPOezusjBvKKQd+pNhy4bDc/VwLY1Zis+eare/wudF+O5qJmVNQR1OXty9iZAad8+4K2WWZMyaOlprxkzP+RK6j8UW04N58M6Of6+Nm8hpNSXpdbiRyz+aMnX7PIZFmMstdf7tjoBl/OX5H4yU3NiKi5lQ0M9y5/wu9DUrHQMuXL09PPPFE2rp1a3rqqadSb29vmjFjRtq1a1dKKaXrrrsuzZ07N61evTo9//zzqaenJ/X09FTPHzp0KF1wwQXpiiuuSBs2bEiPPPJIOvnkk9Ott956LGykPXv2pIgon/Ipn/Ipnxb/7Nmz55j0f0qHvYejpiVLlqTZs2enjo6OdMopp6QlS5akLVu2VNcPHDiQrr/++nTCCSekKVOmpKuuuipt3769Vsarr76aFi1alCZPnpxmzJiRli9fngYGBo6J6WK4yqd8yqd83h+f/8VwlTcgFypUqFCh40b/yxuQ39Ya1/GiFrS1hQoVKlQoQ/+LPm9Jw/X6668fbxYKFSpUqNA7QPv27TvmZ1rydPgTTzwxIg4f2FtChnnSXrfXXnttXG8faEZFPqNTkc/oVOQzOh2NfFJKsW/fvpgzZ84xl9+ShkvpxNOnTy+D5gg03ve9HYmKfEanIp/RqchndDqSfP5X4NGSocJChQoVKjR+qRiuQoUKFSrUUtSShqvRaMRtt90WjUbjeLPynqUio9GpyGd0KvIZnYp8Rqd3Wz4tuY+rUKFChQqNX2pJxFWoUKFChcYvFcNVqFChQoVaiorhKlSoUKFCLUXFcBUqVKhQoZailjRcv/jFL+L000+Pzs7OWLhwYTz77LPHm6UxoT/96U/x2c9+NubMmRNtbW3xwAMP1K6nlOL73/9+zJ49OyZPnhy9vb3x8ssv1+554403YunSpTFt2rTo6uqKr371q7F///4xbMW7RytWrIiPfexj8YEPfCBmzpwZX/jCF2Lz5s21e/r6+mLZsmVx0kknxdSpU+Pqq68e8XLTbdu2xeLFi2PKlCkxc+bMuPnmm2tv5m1VuvPOO2P+/PnVptCenp54+OGHq+vjWTY5uuOOO6KtrS1uuumm6rfxLKPbb7+99sLRtra2mDdvXnV9TGVzzOfJH2e65557UkdHR/r1r3+dXnzxxfS1r30tdXV1pZ07dx5v1t51euihh9J3v/vd9Lvf/S5FRLr//vtr1++44440ffr09MADD6S//e1v6XOf+1w644wz0oEDB6p7Pv3pT6eLLrooPf300+nPf/5zOuuss9I111wzxi15d+jKK69Md911V9q0aVPasGFD+sxnPpPmzp2b9u/fX91z3XXXpVNPPTWtWrUqPf/88+nSSy9NH//4x6vremdcb29vWr9+fXrooYfSjBkzjvmdce9F+sMf/pAefPDB9M9//jNt3rw5fec730mTJk1KmzZtSimNb9k4Pfvss+n0009P8+fPTzfeeGP1+3iW0W233ZbOP//8tH379urzn//8p7o+lrJpOcN1ySWXpGXLllX/Dw4Opjlz5qQVK1YcR67GntxwDQ0Npe7u7vTjH/+4+m337t2p0Wik//u//0sppfTSSy+liEjPPfdcdc/DDz+c2tra0r///e8x432saNeuXSki0po1a1JKh+UxadKkdN9991X3/P3vf08RkdauXZtSOuwcTJgwIe3YsaO6584770zTpk1L/f39Y9uAMaATTjgh/fKXvyyyAe3bty+dffbZaeXKlemTn/xkZbjGu4xuu+22dNFFF2WvjbVsWipUePDgwVi3bl309vZWv02YMCF6e3tj7dq1x5Gz409bt26NHTt21GQzffr0WLhwYSWbtWvXRldXV1x88cXVPb29vTFhwoR45plnxpznd5v27NkTEcOHMq9bty4GBgZqMpo3b17MnTu3JqMLL7wwZs2aVd1z5ZVXxt69e+PFF18cQ+7fXRocHIx77rkn3nzzzejp6SmyAS1btiwWL15ck0VEGT8RES+//HLMmTMnzjzzzFi6dGls27YtIsZeNi11yO5///vfGBwcrDU8ImLWrFnxj3/84zhx9d6gHTt2RERkZaNrO3bsiJkzZ9aut7e3x4knnljd836hoaGhuOmmm+ITn/hEXHDBBRFxuP0dHR3R1dVVu9dllJOhrrU6bdy4MXp6eqKvry+mTp0a999/f5x33nmxYcOGcS+biIh77rkn/vrXv8Zzzz034tp4Hz8LFy6Mu+++O84999zYvn17/OAHP4jLLrssNm3aNOayaSnDVajQ0dKyZcti06ZN8eSTTx5vVt5TdO6558aGDRtiz5498dvf/jauvfbaWLNmzfFm6z1Br732Wtx4442xcuXK6OzsPN7svOdo0aJF1ff58+fHwoUL47TTTot77703Jk+ePKa8tFSocMaMGTFx4sQRmSo7d+6M7u7u48TVe4PU/tFk093dHbt27apdP3ToULzxxhvvK/ndcMMN8cc//jEef/zx+OAHP1j93t3dHQcPHozdu3fX7ncZ5WSoa61OHR0dcdZZZ8WCBQtixYoVcdFFF8VPf/rTIps4HO7atWtXfPSjH4329vZob2+PNWvWxM9+9rNob2+PWbNmjXsZkbq6uuKcc86JLVu2jPn4aSnD1dHREQsWLIhVq1ZVvw0NDcWqVauip6fnOHJ2/OmMM86I7u7ummz27t0bzzzzTCWbnp6e2L17d6xbt666Z/Xq1TE0NBQLFy4cc57faUopxQ033BD3339/rF69Os4444za9QULFsSkSZNqMtq8eXNs27atJqONGzfWDPzKlStj2rRpcd55541NQ8aQhoaGor+/v8gmIi6//PLYuHFjbNiwofpcfPHFsXTp0ur7eJcRaf/+/fHKK6/E7Nmzx378HHNqyXGme+65JzUajXT33Xenl156KX39619PXV1dtUyV9yvt27cvrV+/Pq1fvz5FRPrJT36S1q9fn/71r3+llA6nw3d1daXf//736YUXXkif//zns+nwH/nIR9IzzzyTnnzyyXT22We/b9Lhv/GNb6Tp06enJ554opay+9Zbb1X3XHfddWnu3Llp9erV6fnnn089PT2pp6enuq6U3SuuuCJt2LAhPfLII+nkk09+X6Qz33LLLWnNmjVp69at6YUXXki33HJLamtrS48++mhKaXzLphkxqzCl8S2j5cuXpyeeeCJt3bo1PfXUU6m3tzfNmDEj7dq1K6U0trJpOcOVUko///nP09y5c1NHR0e65JJL0tNPP328WRoTevzxx1NEjPhce+21KaXDKfHf+9730qxZs1Kj0UiXX3552rx5c62M119/PV1zzTVp6tSpadq0aenLX/5y2rdv33FozTtPOdlERLrrrruqew4cOJCuv/76dMIJJ6QpU6akq666Km3fvr1WzquvvpoWLVqUJk+enGbMmJGWL1+eBgYGxrg17zx95StfSaeddlrq6OhIJ598crr88ssro5XS+JZNM3LDNZ5ltGTJkjR79uzU0dGRTjnllLRkyZK0ZcuW6vpYyqa81qRQoUKFCrUUtdQaV6FChQoVKlQMV6FChQoVaikqhqtQoUKFCrUUFcNVqFChQoVaiorhKlSoUKFCLUXFcBUqVKhQoZaiYrgKFSpUqFBLUTFchQoVKlSopagYrkKFChUq1FJUDFehQoUKFWopKoarUKFChQq1FBXDVahQoUKFWor+H6v02PsVmFJJAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9aZCkaXUe+uS+L5WZtS+9r/RsPcPAAAMIY5BAISRABl9fGUkOSUGAHDLhDYVsWfJCWHaEJSFZCjtkJDmMt7iB0YIIYECCQTPD7EtPL9NLde175Vq5VWbeH3Wft548nT0DEhem4DsRHdWV9eX3vd+7nOec55z3vL5er9eDJ5544oknnhwQ8X+3G+CJJ5544okn34p4wOWJJ5544smBEg+4PPHEE088OVDiAZcnnnjiiScHSjzg8sQTTzzx5ECJB1yeeOKJJ54cKPGAyxNPPPHEkwMlHnB54oknnnhyoMQDLk888cQTTw6UeMDliSeeeOLJgZLvGnD99m//Ng4fPoxoNIrXve51+MY3vvHdaoonnnjiiScHSL4rwPU//+f/xMc+9jH88i//Mp566incddddeOc734m1tbXvRnM88cQTTzw5QOL7bhTZfd3rXofXvva1+K3f+i0AQLfbxfT0NH7+538e//Sf/tPvdHM88cQTTzw5QBL8Tj+w1WrhySefxMc//nH3md/vx9vf/nY88sgjA7/TbDbRbDbd791uF1tbW8jn8/D5fP+/t9kTTzzxxJNvr/R6PVQqFUxMTMDv/9bIv+84cG1sbKDT6WB0dLTv89HRUVy6dGngdz7xiU/gV37lV74TzfPEE0888eQ7KPPz85iamvqWvnMgsgo//vGPo1QquX9zc3Pf7SZ54oknnnjybZBUKvUtf+c77nEVCgUEAgGsrq72fb66uoqxsbGB34lEIohEIt+J5nniiSeeePIdlL9KuOc77nGFw2Hce++9eOihh9xn3W4XDz30EB544IHvdHM88cQTTzw5YPId97gA4GMf+xg+9KEP4b777sP999+PX//1X0etVsNP/dRPfTea48mrVNQSY/Krz+fr+79Kr9e77d/5/263C5/P567r9Xrw+/3u/7yOP/UzvS/v4/f70el03P14b16v3x/U/m63i2AwCJ/Ph93d3Vuu0Wv1c71O269tYBv1Wl6vv+v/b/cs2898pu1bfZbtQ35Pr7NtG/SdV5Jv9jpPvnfkuwJcH/jAB7C+vo5//s//OVZWVnD33Xfj85///C0JG5781cUq20GfD1Iweg2VHzN+VJlaBa3KWRWmfo/34T21barQ9Hu3A5LbKWl9h0Ag0NcWq8jt+3W73YFtvx2AWsWr9wkGg7fc077LoHvyedoOBRqKfQ97HyvaV/ocC94cg9uBurbJtjsQCACAA/LbzRF+146XBXj2QyAQQKfTue0Y2PFhWwYBJO/zcvP+dmtjkCFk19ege3ny7Zfvyj6uv66Uy2VkMpnvdjO+40LFOMgit5+/nJV/O6ucCz0YDDqFS2Wk31UPg3/f3d3tUxBsKxWF/Uwtf74H20ilo4CpCp0SCoWcsu12u649nU4Hfr8fwWAQnU7HvQfvryCnYMM+JvDw3to/VgHrO/r9/lvup0p0EAja8dB+YVv4/gqI+kz+rmBi+1e/w35Rpa/AoGBljRYFBPapeouBQMDNBe3zTqfT1w+cExS+G9u2u7vbB1iBQMA9R9tHsePJ/ho0f+3asR6rts2Cu8oreekcP52ztzM0dI1aA+57XUqlEtLp9Lf0ne+Kx+XJX110sVrKhgt9kPIatGAHWYu8fpDFqAt1kCVOxa0Lj4pjkJIZ9H0FFWspK4gMsreo3PR+Pp/P7QH0+/1OwQJ7wAf0g64qJ72PBRc7Hvr5IG+S70Blbr0BAH1gzffVaywQWUBk/yho8jv8m4LJ7drP9qmhxHey1Ki2kZ/T8NH30jEd5MFz7BX81TCy700DSr9v78ln6/e5Rtgn1sNWsfNz0Dqy80b/pkYbRcfDjoEn37x4wHWAZBAdQ+WlliyFSkYVnipjAH2KnNe1221370H0noIIP6cnEAqFsLu76yxjv9+PUCiERqPRt6j5HlapWRBT614pN7/fj3a73ddGtk+VE99DPURVuLT0u91unyeo76c/B3mNlvrSe9NL4LNtOwaNkyriTqeDYDCIQCCAVqvVZ1To++lY8jk6T4LBICKRCNrtNrrdLkKhEHw+HxqNxi39znvwHTjmHIPbedlsJ5U755G2Sb0X3lNBs16vIxQK3eIF8R89Ou1ztpNzC9hLAuNY6LzTecZ2c5xCoRA6nc4t3qx6bexPNXBezvPSzzlXBxmWbIcHYt+ceMB1wEQpLWs52wXZ6/UQDAb7AMfeh4Cji1w9Oau4qaDUwtZ2ENQIZlTaVPBqJWvb9J1UsQH9C169DCpJBQFSfNp2/Y62Va1xVfQan+Jn2ga2fXd39xYaiO/UaDT6vE8FNks76fN17Kz1zncjyNn3Y18NUoAcL46HpanUMOH7893tfCCdp3SqvZc1RHSeDkriGMQIEBjV8+M/TWTR7yjwD/Jq7PdoaOmc0GeqEaLe3yDGwHp3tg8suGpbtZ888HplORAbkD3ZE0tpcDGoItPPgX7rexBAKL2mykMXGRU3f9d/loq0VGW320W73UYoFHLKf1CyAdtNOs/+zbZ3kBJQD02prUGWtv6uIKftVpC2Frq22SoxpY34Xcbj+Hda9urpaP+pUudn9Gj4fvybUlLqgVu6rtVq3ZKIou9nPUxtL0GK37X9qYaBzjPrmXBODjJCXi7bkdfp+OoY6H21PXYua3vZPuux6jxQA8re06433msQYCszYN9DjUBPvjnxPK4DIn6/H5FIBL1ez1FGXIiW1gH2LElVVqrwdXHRClflRGXl8/nQarXc9e1223kabJMqGH5GRavWuaVHKKpogX3lq7EUVTztdrsPkDSBQZU8gD7PaRCdpkrRinpPqlg09sN7Ko2pQKIUlHozvEYTDrRfCN4cQ7ZD63XacebvNBKU7uLz9H58Rz6H3qPf70er1XLfDYVCCAaDaLfb7rmWClWFq16y9fw4VsFgELFYzFGJu7u7btxsQob2iZ27fAedi7xO5yCNBm0zr2PfW49XvVj14kkrK1hqOzRJRmPO7D/Op0gk0vd89So9eWXxPK4DJIOoLgUZa4Wqh8LPVBkD+wuN91PqLhAIDMzKUiuVXoKldPS7VOjWq9HrBgWytQ0K0PaZ+mxmptl7qYejbRxEQ2k/UbnY+A2VolJvFpzZtt3dXQe4VNLWK7P/t+Ot91Pa0u79sh6FNQQsWCsg2DbdzmvV/rKf857a//rT9puOn/VmaVRpDNcCpfVi9Psaf7TX6pxRINb7EAD5U0XfX8FT1532A42AQaL9o2vYk9uL53EdEKH3pL9rooZVllx4tKaVblHrU+MmVLL82+7urrOMqfj4HaV4FATVk7Ap2taz4vW8J5+jngCFlJZ6NoyBqAK1KdqtVstZ3JaKo0LS91GvlM8Kh8Ou/dp2fXcCrPax0m42fkevWb03jlMwGEQ4HO5LftB+Yhs4vvy7jjs/0yQFenLhcLhPOfOZbIcCsd/vR71ed2A+aCwt6KiHrF65/p3p7vruOo5qOGgslQaAekUKEBxjCzQ6bsoeBINB14dkJxR81HPlMxU42e5wOIxWq9W3nvge+u6ca2pw8BnqKXvy8uIB1wEWa6krSFiaDei3CFUhqqgVDOxRT1SaXIg2BqHKSa1ntbD1uZa24buoAqQyUqDR71oPSeN8amHb79oqF7bvFHS63S7C4bBTrNpe22e2fwlCg6gjTQbQ7FDbBnt/9ZSUGiXNS4Wt7bG0LT+3Y2/fTWk2AH2ZfIO8GKUNLWWn16tHqLSfGiycAwqeg+a7zm8dT7vxXPudQKJzSOe3tt1mQupYsM2WRdD+B/bpajV0aEBou21fevLy4gHXARGrFKzi1cVjvQ+KtWZ7vV5fDEzpN12ofAYLHTebzb77qwWsC52LX+Ni9CTUWrYWOO9lM+AUUAfRjvyuCu+vvwO3xmL4XfZvKBRyoM3rLdWoStPSZVTY6n3yWqvMdbw0JsL7qWfJ7+pPAoyl0BSorbdKRa3K11LG1ltS8FdAsaBl56HOCcsIKKiz3YOoSd5TaWodPwVAbh2wHjHBV9tDD45iPbhBY6zjQO9NaUi79my/63117XLeMx7mye3Fq5xxQISLmRawLgagP2PLKn1ambrAeD+lC7mIdH+U0neDFKkuZPWwqICU7qKoklGKjopYAQTYBwFer0BkgYzXWG+LfcTvDvIkBlFcqoiVilVRWpZ9a5MDNK6l76SWvipkTWpRr0zBjf2u72kTL9QQ0bliPRkFJc001Pbxd7ZBaTH1JiwNyj7S97D3poTD4VvmJvea6b303moYqTFE8GBSiiYVaT9Yb1DHRSnCQfvxbKxQjQqOga5b/Q5/D4fD8Pl8rt++3+hCr3LG97AQgDjxuci0PJPKICVPoeWn2Yj6u3L7VnEqEGjbbDqvKkfrXaiSZFt1saqFr4CkioT9YBWfVUS8h1Us6kHwe7afBwn7SWNLNovQ0knqZVnvx9Jb2hY+y2Yt8m/WoBj0PhaMbR/xvmq86Hvw+zZ7jvdQ2tOCmM4h9oWOvXol/L8mkGi/6fsOomwVhLUNOkfUiFPQt54m26xp+zpWaiio0abPtPPOVmfRdalzwZNvTjzgOiDCOMag9Fkbe1CloMrM0izqPdA7olK2ikcz+vhTn6kLXpWU9aRsAoNVRJYO1NiMgqu+F8VSXryOP9kn6hFZZaLKUZ+jSkW9DQUB63VqWxS89b6qtGjV8134XE1e4NjSI7PeorabP1Xp8nk6D6xytn2j/WEBQj1bTUjQWKP1Jgf1iwKi3t8ChX2nQZSrziEFL+1nnd/8v8aj1OMeZNhpP/N5mkxkDRhdI/oO+s7sj+83j+uvIh5wHSDRUkyc3Fr5wio5taKB/c3IuneKG4MZuO52u64skCp1jX+pF6W0HP9p6RwFTVUCar1a5cvUc1XG6nGol8I2asyK92N/qZKkItN7WwBpt9uIRqPodruOvlFl1+120Ww2+/qVbdC9WWyHgo72h8+3FzdkmzShRpUccGvdRBoxqujYJ3Y8VAFTlEZkf/Dd9J5Km1G0sob2mxo8llLl/zV+Yz1PvSffw3qdpK7ZRqW/mf3ZaDT61oSOd7vd7nv3SCTixkUzAxW8aDTyM80IVMOKCTxqpNk4rfaljqd64p68snjAdYBEFaylenRBWcvudotBF51eT/Dx+fZ4d11YqgDtolOQHJRNpkClCkvvZxM+dHHbbDEFikGUzqD+Y1v4fbWGNSZnadZBYKIerQVQC+zqDes46jNszMnSovS0VPnyHdQDpDLnOCqlp54PPWwtX6WxKkuJKcASPNkPClY6Nynqreg84PdtvFMBQA0eXq8AwM+VtlRhuxTgOb+tJ6Rel4Ktevp2fOwY2/kyCJSssRMMBvu2u3jy8uIB1wERpbEoatFTlP7gP+7lYQah0hzNZrMv84xKkPek98PCuQQIzdCysSZWb9BFzPZzDxGzvhR4LVVD5ayKw8a++Fzd8KkxLKtMFVgoSmWpsuLn6inxp1abCIfDTvFocWEdI76HerEKerwvYzCsdajvrF6e7k1TmlPvrd+hR2Tni3o3+m6cL+rVqoepc4jJD5pMYuk69XI4tuptU3nre2sbB3ly7CsFMu1PNcrs2mE/9Ho95/XW63X3vtFotK8WJUFe34PeGecLx169bgU26/3q+tACyh5V+MriAdcBES46SztYq9zKoL0oFHsfzd5TmkatQbVSCXLAfpUDXqPWtMY8dD+N9TxUmal1rdaq9QCsd2Q9QlUY/IxKdlDcjv2hz1LLWdvDv9nkDJs8YPf2qIdmx0PbYsdMQY+eC98F2M+QJP2r1JreQ/uNgKrjqN7GILqXwMatDbplgNdZr9a+uwUnpcE1pqReNQ0qu6lXx5zXKt2tWxNs/zJ1nr+r4aExVgsmluJk+9TQ0XG2MVNrQNrx9+TlxQOuAyRc1FpVwlJ4VuEo6LxccFiVry5K9ajsIuVzaLEPUsaWulOwtUeqaPtVKdnznXgvjYPQQ1LFZBWmtkn7Q71U+1MpSKXs+H2tSmLf2Xql+o4vR1taINX28r3oVer76Zjad9Ux1SQVggjHeBCNq2NoQYzzhdSbArptk41lKjhbL4l9rLElfRf2vd1QTINIvV59lu1/Cq/VmJSCC++vYKrvw3dW4LXvzfdSg8iOtcavPbm9ePu4DogoOKg1CuyDlCokfkeVgk2D73Q6jibRTakMWNMKtnEYVTAKkNbbUQpvEBWie5Wsp6IL2b6rBs07nY7zACzlebsag4MUptJtCtYUKkgtTcT35HcHxZGsxwH0B+V1MzgTFwZ5chQ+l/udbMFlKnRNYFBRMFRQprKlJ6XGzKC+GnRPVdz8nPcgnajzj+3Q5wyiPHVs1diw763gys/U47aAwkxCZRp0blpPTjfODwIofk/7RE860PbyM+vNaX98v4i3j+t7XCztZyk04Fa6iWJBQS13/lQFz3taSkOVnFrVwK1eExUO72eTKQZZoQpItHD53UHt0aQHfqY0kCpmKnSrbOy7WhBV74lt0T5XhWq9KbWubcxDx2iQd0MFqd6RKnfb7+xLjfGp96A/eb2tValzRr0WrTBhExgswJFe0/dRZcx20LCwbeOzbaaonfvaXp1PCjp2LvPe/I7OA51v1osaBLDaPv3M0tNsk/W69ZmD3tuT24sHXAdENCZDxaCegVZM0AXNa3kKMbBnrbOckc0QU3Dh71xc+iyl50jRALfGkDSOZNOMFUiA/owzW2RV97DxvrSA1ePT+7Bsk1Yv0PfTZAkqFT5TA/+aUKBWvFK3FAXNQe+k48J347EnCkwcp1Ao5EpscXz57mynjnuz2UQ4HHZjyzaqMlX6Tj1C/UyBj+PL8Vegs96+PkspZgKqxqmYIWnBQ4GMfWVjrRqL5TM4PprMw7HRo2U0k0/HyoKrjhWw73Vz7th4sCbs8H11rVn6kPOD3282m33etSe3Fw+4DohYCs2mXfNvqpTU07B7YdSD4fdJVQ1KK1bLWRUZlQW9Cc0UtLSPtULVY7RVz/UfgD5w05RtfocKSdPCFfT43goSmgyi4GS9L6t0VKHbvrZKWIFIQdF6REo78TOOh74D+3TQfi2bgMA28H3VQ+B8GeT9KZixTQrk/F4kEuk7pkXbp6ClAKtUmfU2KNpn6uWzXUo5EqjUO7IZfjqPbKKMrivuAyPo6xhadkHbpWOu3qR6UTajlGPCJBKOiwdc35x4wHVARBU1sB/rGUSfAfuLX+MJSnWphW8pIlWgep1tj3paVO5WWVBRKEBqWxR0+X09ioV/43sNKnGlAKFxIgUlvpf+336mCkjvo9ex7/gZn2tBzd7Pgjb7wL4Hhck3qth0bPT5qui17Rq3Avo3Zw9SumyTfQd6D4O2Wuh31OvSuaHt1I3Zqti1P7R92qcKRoMA6HZGkvaRGig6v3mdfS+91iYT2XsrsPMa3Vup7dF5oXUM7Xh4Mlg84DogosqE9JJas1ZxxePxWxIf1OK2qeBWoalC1/iOfkblZOkY3UipSkHjTfyuUloWGPh9taRVCetpyAS8QUrdWr6qnKlsd3d3HcWksRm+l8+3fxq09dLoCSjIKI1rPQtVmpam4nO1f63Xxz5W+o3tVFBXZan71DRzjtfrhlyN5ehYKNWpdJnOT6u8rTfJvlDvnePCs8JIhXIc2X4FYu136/3rHFMwIF1rKTv1knTuaJ+o58o28XuWHeC80q0F1lNT4KWBOci48WSweMB1QESpHgCvOMFVaSqNpgtaKReNm3CRafxoUMDYLjhd3FaJqSLXf9ZDVIWmfydI2Kwt63GqQlYQAvorsmscz3pIagGrEudPzXLUayjqkVkLWpWdghqAvliWPfdsECWsHsMgsCMg2/FWALQ0HPtJv2MpMvU0OSadzv5pxephq8et/aOejKVS1bu2npWNaalBN8irtx6R9aAHeUscEwV1fkfnHN9P+wbALZ6n/Zsad3Z9EJA9eXnxgOuAiPUcrFVsgUzTxzUeYONGVhFZQBlknVrAUXBUhaZ/t1awpupbj8S2Q5Wh9R4BDLxGlR7vozUQVeFo36lS0mcpGOq11rtgUgnjilSwNllF405U5Brj0PezdKYCvE340PiXpRj5fQV0fXdtC++ryQb8PkXfU+fKIIOAc1aBitfofizOI72e1+m803ex8dpB1+kcBPYzWRWYtS81Hqn31TloAVONgUG0qmUyOEctG+Kdx/XK4gHXARH1NHZ3dxGNRuH3+9FoNPrASzOrSHXwnwax1XMIBALOAqRSU/pR76+WIReZLlZdsAqUmt1GelEVv8YC1AuhUmL77Flg+j09+lyVjP5fs+B4f6VN9R34GYFAx4HXaYyEn7M9qoz4HCoqVXpalYRCALFxQqW2mHGo11oqUAGB/ar787gfzJaY0niSAqOOLftHDSNeZzcCa0Yhwc56LfpTaU9rBGlfaSFpNbD4Pe1r9g/nO7Nt1XCz3hffRdcen8F2KHByjmo/sV0sd6ZAbdeJV6/wmxP/K1/iyXdbrPVIsdb+IMtcF6AqL6WYrLemVrtSV+ot8JlUTLRYNW7DduiC50K1e1eA/mQCbR+/p/SZtXZVaejJxbzOAo16Xdo//A4tcm2n7SsqXRvj4PN8Pp87JFDvR+F46ZjpcxRkVQnybwBuicNYa599r//sFgj7bJtUwWeznQq+/B7je+o5ss9tv9v5p/EljqXG9Ow/7Q97AgDbp/fXcVFDZlCsV71HpRN1TlrKWuepXR86V1Xs3GG79GgUT24vnsd1AEQnOReSFk+lRCIRZ9FZOkz5cy5spezUmwL2a8fxM/6u36EXodXI2Q4qSQu67XbbUSEW4FSptFqtPhBTK9p6jepRqndj4yy8Bui3mPkMPs/uCWNxYvt93UvG79tEFg3QNxqNPspN9zHZTbP6nlpsmO3lXq1Bfaw0qfYZ54ECFt+NbVVFrpQf28SqGnxX3lPjhjZpAthP8FHDhfuW9DkKcBSbiajjqeNFr049GBv7VEDUzFWgP0HGptED+x6TxghtvI9gqOuH92Sf8f/WS9PkIk9eXjzgOiBCJae0nQ0cU0nq52p9KmBZz430jG4KVkVjF5R6IQpwGhdRK5iiSkEteN5TlRjQX9/OUkWaWaj9oZQg/+mGYPaX3Q9m308/t9Sb0nE2gUCfzXewlJDG+NQjVeWtogp4kIel/aZ79thXOlZsk/7UcbHjq54o0J8VqWOkCpyAq+3RfVi2P+w88vl8bgO5Ptt66jrveJ3+ru+tBoq2j2tlUJq99oO+t74b+0xpXfUMtW90PWmyEMfFS8z45sSjCg+I6IKwFjZ/VzpORT0UoN+D0w2kSgtqiRqlAy3g8XqlkrQy96B/SrUofRYKhZy3QMWlHpUG1G3iAS18/WlpGlUQ2k8WZJTKVFCwfWmBwaY+qyfL9qtna6nCQfSo0khKsdGjtTSYBQZ9N+039eyUUtZ2q8LlGNFQsJ4N40U2bV2BTz1nzWDlfLB9p/NOx1CBQb9n14G+E6+3wMD2KrDwOdqnagxxrJVqVHDUTezaj3YNWIOJwOfJK4vncR0AsZSRWrYW0HTx0prkgrDlgdTyU+XPwq1q0eqzNa2ez6ECsbEFG+zW99C/RSIRBxRAv0egwXomnQQCATQaDQd2pCv5faVVFVgZlFdvjfdW6510XDAYRL1ed39XqpWfseIC+0MBRkEDAGKxGPx+P5rNJoB+sFMPVBUhlS6Bj16IVkYnbamUqCp+9iGAW7LW+N4am9H2aKklm9SiYMA2sz8HzV32Ba/j73ymZkrqmWjqGbK9Ovc1E9F6MWyjGiR8L2UkdO5qksTtCjVrkot69RwvriO+k64Hzcbk36yR5MntxfO4DohQ6WuSxCAPTKkmDZKr5ar/t96BpV3UWlQLUZWpKgprmeo92H4uco21qBeoYGrbqICgilY/V7rL798/n0rvpVYvr1Mq0t5Pr7XeCcFMv6+0rVKnCk4KruoN2eQFPsd6MZoBqUpRPVM1GnQs7fxRj4lt0PnD3wOBQF+2Ku9jwdqOvxpB6n1q33FcrPejHpvOCwUv/l09SAr7XOeTetMKSmqY8Fptk/afip0/lv4maNr5p+tCGQZPXl68Y00OkKhXYheQpTioKJiwoH8fFHjmQiLtQ1Ah7UeLHujfHEulpkqQyRm6yVK9CioApq+rt6NeBrCvQFutVp/HoCBJUQBVkGH7ut2uO7KF78zUZCosKmX1StRQ0P7jZ7qEFDT4DL4T/6bxEXoj1kMB9iuksI9s3MrGo/h3BQ+bim+NHpvIop6R3kcB0YKFevuq4DWeqJ60ghRFqUu9L5+t7VLwtmDJ8bOV+G1CkdLqBCr2NQ/WZP/y6B+t8cnvaRvVw9a26bYIHTf2BZ/Pgzm/3/ZxeceafA8LFw4VgrXWuTjVY1FahVY1gD7FomBExaBV35XqYTushcx7Ejist6SUpnpmQH+yhLWYVRGqZ6fBfwVDS3dZD0njGbxGQVIV3SBPlO3RDDnr+Q0Cy0FKjQqLz+UeJwsK1vtQi57fU69a6VIde35u22E9JwVOS/GpF8Gx05ibPrPX6z8AVI0b3ksNKu1HC4Aa+6RosofORR0Linp9PO34dnNLx4uf6QnRFjRv13bbv3aMNA7I+a8etCcvLx5wHQDRBakcPXBrYU5VmrpwlCpTBaXWMmktPcKCz+R3tU0EPlX2fr+/L/vRWuLWo7JemLZFvQDdvKlKjfdQZQMMTmZR8NfvacIB0J/BpwAD3LpHh5/pO+nftA02hmEVp1JUjMvZLQ38qdSTjifvqeOkytR6XfxMtwDwdzvedr4Nel9+xjHlfNJxsf3I3/kd/VzBzYKfPp/3UI9GAVRjSvyOZQosDantVC/felW2X3QcrMeqRoU+h/Ocf9M17smt4gHXARFNxlDvSheOegKa2quUhVqUao1zsbEiBwA0Gg1Eo1GnXH0+n7NYSeFR8QP99CR/1wXI+BwTE1golotYkyaAfcBst9vu2lgs5jLq9L21NI9VftYbsMqHMqjIripJehZ8d32ujXNpG6wHqcqMbeZ+Kj7fZohaoLfxLWCv1iFpXgKeegIcZ6WvtF/Ue1JPnMYIx4RemAUD9QB7vd4t52Kp56PGjMb+LBhzHgH954QpLczizuwDYI/eY5/yXTiHdIyDwSAajUbf3NC5bI0Qjpcah7ou1RvT+a/GzSAv2m5r8eTlxUvOOADCgLguImAw1aPWHbBP7dlMNSpZehk2Gw64dX8OP6Ni1fiXFevJUVSha3usF8WFr/EXjQloP9wuwUETIPgcgqN+pm3W+1lPzr7PoESZQd6HVcBsn3qp1gvS92C/KJ1kPWp9H1X+vJeOgfXE6V2pR8tn837qgfF7ll5Tmlg3Yg/yMjRJQ+eGzjl+h/fjOwxK5rBArqCi3qQFG5uIoXOBRoD2Ne9h1xT7PxgMuli0NXoUoPUznfuaQenJ7cXzuA6IWEqNYtN5+RmVqsYBqCAVpPgdxleYnEHFomnmGrfic6h8lOqwClMVhb6LVeTqaahi0vuzHb1ez22YVo9B31OVtaZEW4qHPwfdh56Fvq/GK/i5xmzUY1ClxvdXZajbDHTTuPWW2EZtlxotQP9mYhtH0YQcGkL63tYztx4PPRe9XtulsbZBBpU1bvQ69Z70b/Z6ZRIUvBVA2F6t/6h9qZ6STSKxn9t4qPXUORdsko2OD+c9+1fnpB0r/cyTlxcPuA6AqMJRSkMXq5b5UZDhnhqClVJlXOCkKqgQBlF9FvzYFlXeSqOocldqRRMqbIaW3sfn8/Ud025BgFUVuOj5TC2Cq3SNVgThdbwf+0YVIXCrF6XABqCPUrPGgzUUfD5fX7kkfkc9Cd0MzntoTIrP1z5WOk5pMd5D26vzSQEY2NtfxjJbHF+/3496vY5Go+HmEqneQXE/VcLcW6dKXRWyenkaY1MPXgFEx5XP4jUUAijvy3sr7cl7KIAr4PAeXAu2Pqauh0HsBQ0dNfL4HU2o0b142j7rHXsyWDyf9ACItX75U6khXmctN03F5T9eawvfWvpJFQeVh6V2lJpUK9lanhZ4bNxJlauly/S99d34uX0njYWw/QQ7BRPtV+1TZrFZD9ACk7ZFFZT+rs9QKs2CsVrdti+0jUol6fesF67emdK/6oXx/rxGM+f4U5U1+1fnnHpJbJPOQ+sV6vziWFmP0npr1gNhe/Td+FNpSBt7slS09cZ0Hvr9/j6v1CZy6DO1f5QCteOk/cXPdD7YrFJPbi/ePq4DIExKaDQabqFrfTW18tS6474Qew1FYzm9Xq9vj5NapZ1Opy94rEpAFZ+C0iAaRi1ULnxNG+d1ej9azDZpQulCegG0XtXb0XvSixsEKpZq0sLB/JyAp5+rJ6nKTSuWWCBWL3kQgFrjwYKiUncKXFYp67Os1zDoefyu0rtKHzLWRW/E7juiYaTGjip9Psu+h3rnttiwBU4tqKtGlFKh9r04j3kvrgfOcRo0mrEajUbdeyqFy/Hg50oF6ry09B+fySor9Xrdfa40KL3o7yf5q+zj8jyuAyBKdWmWFzdEUrkrcKmyUAWqf1fLUC1I4NZTfDVwr0rbKnylmdh2qzAtFaSKWtugoKVeiLZb6R32jSprVaDq6bAv2RZ+31r3ti81dqb1+vj+aunzOHr+XZWn2ovWYqeol2s9YOvlqnVv+1qNBb2Gfcm28Zn6LuolqgdrPRCl6BQIuSHYeoVU/mpUUBTQrHdqvVp+j31tPXPtX33HQV4sP1dw1jmk3pmWILP0u3qdmnU6KAZo58ag+efJreLFuA6A9Hr7ddGs0rGps0ppWcrH1ksDbgUm65GpJ6TgohauKjhrIbOdeg9VxKTibFo1wVqVEz9nGyzw6fP12VTclrq0Hsqgd1Tr/3bt1FieZraph6Wgpl6x9o9a/fQsmKGm8Sf1dNXC17HWPlBPVRWk0lfaVmawauV9W0+PnrUFHY0P0hvW/lFvF0Cfp8pnWoPIeof6T71CC2qWvtR7DAJinbM6NoMoXL2nrgGdm/ZajiPfj89huad6vd4Hop7cXjzgOgCi6c1WsQG4RSmp0gdu3SyrgKELzgaUrRXMv9kMQxtQ50JVxa88v92jZBWRJnBoTKrb7boEB/5OpagUod1AbUGav3MfFoPlSj9ZJQWg771VmamVbYFFlWgsFnMbqZngwP7T+JrST7T82TYLpEpdWe+J9yB4qBfg8/n6NtWqgaIeJZ+htB9jMQRVPott1+KzFgAUvDST1NLZVODsR74792ZRtL3W+9e5aOehpsJzn6B6h3oPXYd8p2azeUvMWOcJgVufY5Or9Cf3R6pB4sntxQOuAyBccIPoFl2UunD5PZvqa0W/o97LoP+rQuH1g4BLFdSgALl6KkB/FQVVkApevE4pHfWylKpRaxboz6zkcwC4Y+sHHUOh76fPZLyDhyAqgGg7+Jm2m9Y1761ttckO/Ix0qYKiXme9CX6mnpH2r/az9q96z3aOafsVcJj1aZU744PqlelcU6ABbs2ss1l++k/voc/Q8et0OojH4/D5+mOa6mGpt2afoWCpXp/ucaNXqnOKc0O9Pes5DmI0BtGznry8eMB1QESt1NspRlVMuheL11gqwy5aem28hwKIWouqFAlkPJHZ0lL8TPcr8fRevpeCXyCwV1DXbmDlM5vNZh89pEqMIERRmsrGfoB9z49KitY3RQu28vuszMC2qRfItvG9LCAzHkLFaY//UA9y0NjpuyiQ6phooF89b6uM6Q1YsGZ/87n6fwVZC2Tq0bBfGJ+zRZk1BsRxsN64ArT2mc6vQWWc/P69bMBms4lwOIxoNOrmJt9NAV3HXNcT34sUHtvCd1UPUd9FgY19b7cE+P1+RCIRAPuVPnTtevLK4gHXARAqHAB9Vp9ajcCtMRNez3uola/XqhWtgMZnqLKnQuLz1EpXD8XuJ7IgZkFWFZuNi5CGerk9PKrkeV8qO/UMbDq/bbvNXrxd3w76XL0VpbP0eaqQrXfDz0ldcpw4/gRwvT+9E0sX6r3V22A2IK+x+7EUgPSn3tt6Zup5KzWpxosmYuizCWwUa0hZ74xjYr12NWIsSOp64LWW4uP3SKNybtv5qdQewZvGA9uqtKwm89j4onp+dj168vLiAdcBEF20qjxUeSk9pB6EWoJczKo01XuzC1wXGhfmoHiYKnMqBM1m49/4ubWiLTWlXiXbbqlSG8uyHumgFGX1zvR5CtTav5oJpiCm1r9a7KokFfzs/6kM+Q70xAj46u1asFPRvrPj8HLUn95HqTF+Pogq5P91Dil1x7ZbBaygpW1VMBj0PnodQYLP0ney76PrQGNn2jc+335augIyhX3H5+rGYgVWGnHW6GJf2PiazgHGVNkmXWvqwXkyWDzgOgCi1pwqbtJNjIPY1GOlNNRyZ4Bds/ZUaXW7XXcvZrOp0mdSgy74QZUP1DrWd2BCBE8w7vV6bt+M7muyYERQUwVCOqrVavVltFmqTak0to19q0kItris0lF6rVJvBIpBbbfe8e3qAvL+7A89rLHX67m4kdJyVOw2WWbQmPFeCobWslcPQO/3St6oGhXaLi1azPiPLZ+lHnIwGOyjYtVrG7Sfin1FUPH59s6C41YRNVi0Ukqn00Gj0bhlrHhvHTNrrPGn9qO+H/tNTzNg/ys1rCA/yDDy5OXFA64DIFwYCgqc3GrtW2+o19tLp7ZeiR7toda2TU3X73GhMnjOz2zVcAUPgo69l8ao1ILl91QpWU9REwV0Dxpwa1o3f+r36EERaK2HZakl62XZz7Xttpgr+4J9Zz07TZ2nch10xDvFeo+8h2ZDqpfFMVKPCbi1FqD1yvT+fFcLstondj+WZQbYt3r/QTSvzlEFLlXqVrTtBArta/YRz9Qa5G1q1q6KzjVtJ3+S5qTRpHPMxiJ1zgL7AE4DRY0Pjyp8ZfGA64CIejOqoNWi1omvykvpMbWKVaGpwlCPQOkOtbB5L13YlpqzgKQKRhUsFYuCjh43obScXdQa8Nb+4P8pVCRqKasiYvvs//l+2rcW6Pm7xs8A9MVuqLzpWbAP1GvTgsFUshZEFBD0WvXE2CabhUjFqSDMJAFN4uD1Ok7qcWg/6dgOou8UPPg7r9GtA/b+1tjSMdXr9Fqg35CzxgXfn96Rxn0HzSXegzFSBTiO3e0obwVKrls1Qvhca8xYA8mTweIB1wEQm2ari55KVT0YTcBoNpvo9XquPI9VnLxOq05QWevvwD59o8qCe3kUDFU5Kh3JNuvBjUqh2PqACho2Sw7YzxrktUA/rUqloFlrqtB5L1JrQD8wKX2kHg7pWatAlRZSC1zHiDExjbFwHNVLAPaUXzwed+/VaDRuiVupIuU7qFXPe2kclH2v3oGCjSbq6LPYh/YoHLZPAcB62Oxba8Dwc6WwrYFkY566n4r0q44VReewjpkyBexDC7ZqKNKw0HWhiTK6Frnpmv3HDFoFYaWxSY9zPHg9Cxt7Mlg84DogoopKA8I27mApIIruBdKSNkqfaXaUWsK6oIFbz+my1qZSUUrx8DObPm2pIOsl8rvWI9KYjKW6VCnbNmsZHn2GemjWw1QlrOW39HqlLm3cQsHMZq7p9wjwGkuzXqz1FBUY2f8WiCzlZWlK7WM7Tjq3+J46BtoWS3dZz0u9Nz7fGgr6DBo0muVn54mOFUXjdPo+1nuy3veguaztV0NJU/etEcDvsu9tX+mcU8PHi299c+IB1wGQ29FfAPqyrjR7SxMkNE6gGWGacWXjY2ph8jvWw6DlqlQXsM/bt9ttRKPRvg2p9HCsp6KKyyZ30Eux76V9o9lhvIbP1EC5gvag/Ue2D3q9/f1WWp1DlbwqKnp07AMCi2am+f1+xGKxvvYq0HQ6HdRqNafUNC5nPST17Kg8+UwaOXwXjZupR6FjzOsYG6Wip7Gk3+X7sWKGjivngWUGFEStQcTxYX/oHif2P8dS+17BaxCtSePOFkLW8aZBM6jiDPtQt1Uou6CnV/P/fAZjtayMod9TL11ZBfUaPRksHnAdALGBbAUoKnRdpEpN6D2UHlLFx0Wv5XbUYtbPNM6mSQe8VmkgS2cB/bE6/q7vaK17XsN30T1kllrifRTUtA/sfRVs9dlK1VlaTjeeWm+C3hSVOL9HpR8MBpFMJvveMRKJOEXOjbI+n89RsAQVghc9YgUk9QQ5XuoNKr2sYKfzxtKF1iO2MScqZd5Hla0aSuppaFv0eUzqsWPP69Ro4T+to6hjDKBvDdjtEWyfenmWFlVQ4/MJQLbPCUIaP9T72Pvz+6QqdX7xb7oePBksHnAdAFFlQ+l2u32HKQ6iULjYbFzKWtd6X3oXqjjUggX2PQsbTNe2sj2DlKR6IxT1pqxCsjSTbY9SRao0+HcqRkt7aSCf37XP5DuoMqOo52WVFZUaAOdFaJzl9OnTmJiYQC6XQ6vVQr1eR6VScceEzM3NoVarOWtdvS5thxoZfK4mdlgPW/uaY8V3UW+TwGAVro4bn8OsOutBKg1t57ImLrBNnNfaRgKyJqDo+/J5vLdS4jTEdD4rwHD81OscRPv5fL6+7FmdC/revDfvD8DFqrQvrZdoAdUDrVcWD7gOgKg1qsq/1+u5ckPWO6Fi0O9o1hQ/J1BpPMdWvbB/t8pFgYPXqyKiQrFxCA1iq1LVWIy+G6krVWC6CVktfCpwvb/Sodo3qrSpvMLhcF/7eA0NBT1kkIpLU/iDwSDS6TSSySSOHDmCXC6HQ4cOIZFIIBgMIpPJIBQKYWVlBTs7OwiFQsjn82i326jX6y6pZnNzE1tbW1hfX8fly5exs7Nzi5eoVj2VsCp7tp9gpOOvQK3/2Eda1Jj3JD1Mpcxrde+bgrrdawjA0YrcAsB3sjSt7vtSz8W2X7/L57A9WopLx4z3Z0zRVrtX4Od85TxVb9yyFNbQUtDjuwyKuXI89YRkTwaLB1wHQFSpa2KGWo2a4WQD8fwuf+fi1wC1VWBqVdqFqECi97Kejop6IoMyx3g/G8Niexjb0I2l/L5VrJZWUwDUzcvaH3YDKd9JrXBtq25aZjxIY2DZbBaHDh3CzMwMjh8/jmg0imPHjiEej6NWq+HixYsolUq4fv06Wq0W0uk0zp49i3K5jGKxiHg8jnw+j+npaYyPj6PRaCAYDGJubg7lchk7Ozt9bSVQa6Ymx0ITcSjW29aK/Qpu7EsFJvWg7X3tmKiRBfQXp2W71fPW+KTS4Do2Oh4KHtb71bmpYKFrZpAHp8+w2wzYJ+rFKaWo1KSCoKVc+V2d77byvSe3Fw+4DoCocrGFRamUVGGrxcvvKQ2hNJJ6I5p1xb9rFqINjAP7Cl6VitIvQH/mGL+jtA6Vrj7TemGayWfvp7Qon6tKWRUYhe20CoX93Wq1HAgEg0HngbHPgf59PQAwMzODqakpTE1N4ejRoy7lvVgsolQqIZfLIZ1OIxaLuX0+IyMjaLVaGBkZwenTp1EqlbCwsIBisYitrS0Ui0WkUinMzMzgx3/8x7G5uYnt7W0899xzWFlZwfXr1/uSCzQVvtvt3pJ2r0pb+02VvXrrGlPSOBrHUZU3FTqfx/5hjIgFazlOfDbHSkHSxsIs8Og8ZBIIx1rnJz07jjn7xhpMFgTVo9YEGCaMaGaozjcajnwXpUW1+okaUzTI2Edcg57cXjzgOgCiJZbUiubCthY1PyetRtEFzev4c1BCBn9ysdnDBKm0VJFQ1EIFbq3WoN4igL56fWyLVTpq+Wq6uNJ56n2qZazPVUpMFaztI76btp+gqiBH6u/06dM4fvw4JiYmEI1GUSwWHZ1GRc1DA0dHR1Gv15FOp9Hr9ZBMJhGPx9015XIZtVoNm5ubqFQqWFtbw9DQEAqFArLZLAAgnU5jc3MTpVLJtY0gw36iJ2jHjO+nHqidP9qvStHZe+g/G9PS8eHvanCo92GB0O6T0rmpgGeTQJTiUwZAKT3NkrR/U29KwZ5zk0YHn6Vek8aTlXrU9+bn6rmqMenJK4sHXAdAbkeLKA1BS9nSR4OuVWvPei6qrAmKXJxK91hrUxXJIMVvA86WylG6hoqFv+vnCjBUDgqyav0qVahgY6ka9RL13amoNHAP7HuwBKPR0VEMDw/j+PHjGBsbQyqVQqVSQaVSQa/XQyaTQSAQcJmCu7u72NnZQaVScZuKG40G4vF4H2BHIhGMjIy4a0hFxeNxHDlyBOFwGNeuXUO323WeDNtogZ1joPEtxnUsELGvlO7S7/EZOqYKEBr3ZP/b5+icUcOBbVbvWue4nadMwtB72nFWGts+T+lK/Zs1aPT5gyhO9QrVM7X9pgampRt7vV4fKHpye/mWe+irX/0q/t2/+3d48sknsby8jM985jP40R/9Uff3Xq+HX/7lX8Z//s//GcViEW984xvxO7/zOzhx4oS7ZmtrCz//8z+PP/7jP4bf78f73vc+/MZv/AaSyeS35aW+14QLX2NSujg0+4qL3mbR6b0UCFmQlFYjrXYuMqVcaA1yYWlKr1rk/Iz/NNCsoKbXa5FgtkdpPy2wqqBMCpNehcZIer294r2amq6KMBKJ9G0ipSIhZUPgU0s+FAohmUxidHQU+Xwe6XQax48fRz6fd3vW1tfX4fP5kEwmXZbg7u4u5ubmsLKyAp/Ph62tLTQaDdfmRqOB69ev98XmwuGw88KsYh8bG0MikcDm5iYWFxexurqKy5cvO5pJT1Jmf+s+K1JYSv9akKCXzfmn80HHkeCglVnUy7OxVIK30opsg6XRdMy1ggzfTfdB6dzTvrIV3K0hY9kACyz8mwKgPtNS6mqQqeelRkA4HHZz3RoK1sjz5Fb5loGrVqvhrrvuwk//9E/jve997y1//7Vf+zX85m/+Jv7gD/4AR44cwT/7Z/8M73znO/Hiiy8iGo0CAP7O3/k7WF5exhe/+EW022381E/9FH72Z38Wn/70p//6b/Q9KOqdcAHczqsg308gUKUL7C8+zbLTvUnWW1KaRC1Da20qTaftG7R/RuNXBB+7r0vjdKqI7PPUY+Tf2BdKr2r/qfJlUF3vSzpPwZp/TyQSSKfTmJ6extDQEFKpFHK5nEvQoHfG/Vntdhs7OzsOKCORCBKJBE6cONFHM3W7/ce3b29vo9FooFarOcp3UGr16OioA6CFhQWUy+U+sAXQN3Y2IYGiZZN4nSpd9SC0GDP7Vss8aUkvNa44rtqfNplB6T+KelV8HvvMes/M9tOYqRognOdafFppUs5NpYR1HWjfWa9N43G3YxRs3NUyIkB/2SpPBsu3DFw/9EM/hB/6oR8a+Lder4df//Vfxy/90i/hPe95DwDgD//wDzE6Oor/83/+Dz74wQ/i4sWL+PznP4/HH38c9913HwDgk5/8JN71rnfh3//7f4+JiYm/xut8b4q1IIF9KosL1V6nSQeWu1dlb6kVpfsUqFTBaoo1P1PgsnSepaj0vXg/9Rj1XQZRP/y/VQL8XDME1ZOwVJatV0dly/8rHUiDIJPJIJvNIpPJIJVKIZlMuiSDZrPZB9hMbff7/YhGo0in00gkEn0gRyudoMUkELatUqk45Vsul50Hx5p2iUTCtb9QKMDn86FcLjsFSqWqXpvNINR31T6iR8P5pEDFvubYsb28l9a+tLFGO1917Kz3zjayT9WLUdqRbdQ1ooaSzm1+x267UG+UfaDbLRTsNcFD14ZNILHJGAqiBGT2oV03ntxevq1k6o0bN7CysoK3v/3t7rNMJoPXve51eOSRR/DBD34QjzzyCLLZrAMtAHj7298Ov9+Pxx57DD/2Yz92y32bzabL5gGAcrn87Wz2q14000qVBRWtTYUH9rPKuGi48BXIrKWo1jPQX2Gb1wJw2VEEG/X8rHU5aP8W20c6C9g/o4sKhZaxVSqq7Ozz7BlW7Bf9PmlOzQpTMCX4KE2Xz+eRSqUQj8ddVmAul0MymeyrcEEPjcqV3s/o6ChCoRA2NjZw8+ZNlEolPP3002i1WgiFQqjVaqjX60ilUshms0gmk5iYmEAikUAymUQikYDf70c8HofP50Oj0cD6+rp7l2QyiXQ6jUAggJWVFTz//PPY2NhApVJBs9l0HkQ8Hu+L5yhFNShWqSASjUbd32OxmKvyoQCsoMJ7at+qN8V2qBHEOaZ0oh5FYj1JBTVerxQz26UZqTrXeR0BROeLem+DGAadX5zPXIPch6VgpZ6dbqXQtcA5b7NVPblVvq3AtbKyAgAYHR3t+3x0dNT9bWVlBSMjI/2NCAaRy+XcNVY+8YlP4Fd+5Ve+nU09cKIKWUFCPSJLMShgWHBSJaWAoNazgh6APuAD+hWRLnp9nqa2W2pFvTG7iHl/G3tQusZa2BTeS6lSvZ9a81Q07ItQKIRwOIxIJIJoNIpwOIxYLOZAJZ/PIxQKIZ1OO+q70Wj0eVl8J1Y2aTQaKJfLuHr1KorFIqrVKpaWltDpdJBKpVCv1x14VSoVRCIRFItFDA8Pu71fpC+VftWYYzgcxuTkpPsuP1tcXOwrJWU3bNt4noKY0mxKQbMP+XwbS1PPQ+ehzj/OJ2uI8P86ZlotZNB8sJ63UsIaw2Sb6QUpuOoaUJqPfWYTdLTdNLAUeG/XNm2LrjH1Bj3AemU5EOkrH//4x/Gxj33M/V4ulzE9Pf1dbNF3VrgXR6sNcOFZ6kyVhi4W4NZ6gOqxWCBQ5Q7sV7kA9oP31tviM7SeoCobpaX4ux6RwfbS67GWpz6L1jTfxyZzqLdAT6PT6WBnZ6evL/j/QCCAcDiMbDaLUCiEkZER5PN5581ks1mkUikkEgk3Bj7fXsLD1taWe5YqyEajgUajgaeffhrr6+solUoIh8Pw+/0YHh6Gz+dzCUnFYhHFYtHFxBYXF5FIJLC+vu48vlOnTrkkEAJgr9dz7cpkMshkMhgfH0etVkO5XMYLL7yAjY0NVKtVV1JKAYnesyrncDjs3k/3W5GmJBWpcykSibj3JhCq0cN+oVFCj0QTg9Qb4++cG5roYdkD61lrYpJ6WbyGPy1zofNK5701xrTfdG3o+PNaeo18D11TnM98LwVZD7xeXr6twDU2NgYAWF1dxfj4uPt8dXUVd999t7tmbW2t73u7u7vY2tpy37fCoPb3q6iVp9acgpMC1yB+XMFIA8+WegHQZ5Vr3InPpGKgkhnUBioGXczq6alS03urMtB6dlR0qoxUoep9LMXJ7+v+JsbC+D4EruHhYUSjUUxNTWF0dBTJZNJ5XaTsVPFT0XW7exU0AoG9Tdxra2solUqoVCqYm5tDqVRCKBRCPB5HOBxGJpNBp9NBNBp19F8oFEKj0XB0UbfbRbFYxO7uLqrVKvL5POLxuEv80DRw9RZTqZSLucXjcZRKJVSrVSwsLKBWq6Farbo+qFaraDab2NnZ6TOK9L7dbhfxeNxRo6VSCe12G5ubm2g2m+69lfb1+/19e9iSyaQDc+vh6/8121DpXaWdNZ6qSl7BSfdxKRByfhBUdD7qT2D/HDwCjm4P0PmmDAHnhHpSyoTw//yOzlkVjyp8efm2AteRI0cwNjaGhx56yAFVuVzGY489hg9/+MMAgAceeADFYhFPPvkk7r33XgDAl7/8ZXS7Xbzuda/7djbne0aUhuGisOnudtOnjV3p4qa3ZIPVCja8j1qxSvGpVameldJ+aqkOSvjQeIb93H6f4EAFqdfo81TRUWkoYBEMw+EwCoWCuxfjVzMzM4jFYhgbG3OgxZiXUortdtulnjNBIxqNYnd3F+VyGdVqFevr61heXnaeFGNWsVgMQ0NDbs8O3217e9uBUbPZxO7urgOJRqOB1dVVpNNpRCIRB1IEQQIaDRO+48zMDBqNBprNJoaGhpwn1mq13H4ypQg59vQWuYdsZ2cH9Xrd7ReLRqPI5XLO66PnxMSRSCTSV9cwGo268RwUa9VxpNceiURuiTtZgFG6kt9lH1hg02vt9/V7g4w6rh39qfNWqVFdizR0dP6rKDtiM2s9ub18y8BVrVZx9epV9/uNGzfwzDPPIJfLYWZmBr/wC7+Af/Wv/hVOnDjh0uEnJibcXq8zZ87gB3/wB/EzP/Mz+N3f/V2022189KMfxQc/+EEvo/A2wkVGpaz/V45dkzes8iZIKa2hYKCUiC5iAokqGwVK9YKUnrMlnADcAlBKU1IJM8amlKd6fepdkDpVMGU7o9EoJiYm3J6rWCzmqlJEo1FEIhHEYjFEIhFks1nEYjHE43FMTEwgEAg4urLb7ToQabfbqFQqblzorbDtm5ubKJfL2NzcxAsvvICrV68iFoshk8lgd3cXQ0NDCIfDrvQRq7+nUimnTDXBxOfb2+9VLpeRSCQQjUYdpTQyMuJS8ZlhuL29jXa7jeXlZQBANBpFLBZz4EyPL5/Pu7EqFotOcbKfCdjcsxaLxRAOhx0Azs/PY25uDlevXsX4+DiSyaQD6kqlglqt5jzkSCTiwJ8GANtD79IaVa1Wy80BerCcLxwbpYo1Tslx0w3YCmpKP/JvfL4abZzzNlHJUuc0jID9Ooyc70q1klZW708TYvgZKVvP43p5+ZaB64knnsAP/MAPuN8Ze/rQhz6E3//938c//sf/GLVaDT/7sz+LYrGIN73pTfj85z/vAtkA8N/+23/DRz/6UfyNv/E34PfvbUD+zd/8zW/D63xvChcLF4omS2isikpfJ7wClFJ8VCQKWlqJW2lALijGGmjZa3wC2Pd4NIlAY1dK3ymIAftZhfpeXMQKqry/pq13u3uVI3w+H7LZLAqFAnK5HM6cOePiU5pFyP/XajWEw2GMjY0hHo8jGo0im83C5/O5Cu0ELHoVGtvY3d1FrVbD1tYWAoEAdnZ2UCqVsL29jevXrzt6jV5Is9l0YEVPht5LNBp1n/n9fiQSCafo6HHt7OygXC6jXC4jl8sBgANAej5+vx+bm5vOkyL1FwgEUK1W0e12nVep4zOIciVAtNttpFIp5+WdO3cOk5OTaLVamJ+fR7FYRCwWQzqdRjgcRrvddlmWnDscf90/NYjao3Gl8aFEIoFOp9MHSurZ63c5B3W+ECA499S71KNmuMbUGFQvyxqHOpcHxYft/jOl9u339fmevLL4egcQ1svlMjKZzHe7Gd8xsZXLgX76TZWOptXydwbL6/U6QqEQYrGYU5JarYJWKC1koD+uZeMSfI5arBrw1liQWppqZdJaZrkjKktaqlSutMAZ76QlHggEEIvF8PrXvx4TExM4cuQI4vE4AoEAUqkUYrEYkslkn3dar9ddkoGCdqvVch5Vq9XCzs6OS+Zg/1B5JRIJ9Ho9lEolF5NaWVnB+vo6VldXsbOzg0AggFqthpGRERQKBVy7dg21Wg2BQAD1et2l3LM9VPKkLhkPYnyn1WqhUChgbGwM99xzDzKZDAqFAgC4ShzRaBSbm5uo1WoOeKkYY7GYU5z0osbHx11yh1KwrVarbwM2+0FpyImJCcTjcTSbTfzRH/0RnnvuOSwtLeHQoUNot9tYWVnpo5oJXARLxupIvarXRw9RjTXOU/VMBsWp1HjSuUvAoTHATE3OUz32Begvpsz1p0aiptJzralhaUER6GdPyJpwbnLLj8aCvx+kVCohnU5/S985EFmF3++i9JrGovRvdlOw/p0KQZW0Xegaz+L1lo/ns/gc/l+TOTRmYONuvF7bD+x5Lix/tLu7fzw7z1HSzDGCT7vdxvDwMGZmZnDkyBHcf//9jg4E4ArfksajB0CvqVarOdApFosuflMsFh0A7+zsoNlsIhaL9bWBbQyFQkilUqjVak4RJxIJZLNZlEol1Ot1BAIBJBIJ7O7uulT/3d1dR1OqN8pEDbaT/UaviW0Nh8PY2toCsJfsxO8Wi0UAcB5xOBxGsVh0CpFe3dbWlts3RmC32XNMf4/FYn1Ff6ngd3Z2sLy87LzVd73rXTh69CgefvhhXL58GVNTUxgeHnbxPc6XRqPhAILvC/QnLajHROoQQN9YEpwA3FJM2qat6/y2iU0cF5twwe/qPXTO67Xq3WksS0FMx1nZj9vdx5OXFw+4DogoaCm1oPSbejP29GOCBUGC97SAyM808UIpRaX5+FxdcOqh6WnKarXyWoKSxibUmwPQZznv7u66mFI2m8X999+PM2fOYGJiAoVCwf2NmXt836WlJRd7Iejt7OygWq06y5nAtbGxcUt7uR2h1+u5ShikmUKhkKMAqfATiQQmJycB7AEo6ULu99JKHAQVv9/fVzeQyR7FYrFvrGkkMBOQYxMMBl3bUqkU0um0y+JrtVqOqvf7/djY2MDo6Cji8TgymQwSiQSazaYDCMbS+DxmKpI2JIjv7Oxgbm4OqVQKx44dwwMPPICZmRn863/9r3HlyhWcPHkSALC5uen6lHEtzaKjImf8EUAfoKgxReDSTfCWWrRzk31Kz1VjrpoFqPS4zlPrefFzPlcNSwVAzmc14HS86C1qBRf2gwU2T/rFowoPgHAx6dlKwK2eGGkmpV+A/qMXFNzopSnVQctQKRb9p0qA96YXYffY0OJk27W9CnYKWFz8VI6aJNJoNHD+/HnccccdOHz4ME6dOuXor0aj4ejFarWKYrGIjY0NtFotbG9vo16vo9VquRJJrVYL4XAYQ0NDLlbVbDZdgsPExIRLP2cbW60W5ubm+uJS0WgUq6urKBaLqFQqWFhYwM7ODnq9HmZmZpDL5eD3+11a+9LSEtbX193mZKVfmZUYCoVQKBQQDAbRaDRQrVaRSCRc2+LxOM6cOYN4PI6TJ086UFlcXESr1UI+n0cmk0G328Xc3JyLNTUaDSwvL+PQoUN4xzvegZGRkb6TlqvVKnZ3dxGNRl0ckZ4llT4TX5hBWK/XsbOzg0ajgXQ67bbBXL9+Hf/pP/0nlMtl+P1+l4JPuo8KWlPOmUhC0CBVyvhiKBRyXio9Z96TYo0rG6/inNJYJz17erdsj85njWsqlaieKo0RTTDimuUcVcNFE38UbHVz9PeDeFTh97AQNDTJQSkNtTj9fr/LuNNMQFrLli5Rr4mLGtjPnBpEYyjwWXCj0rCVHoBbD+3T5yrNQuVE5bazs4ORkRG84Q1vwJEjR5DL5W7JmKvX67h69SrW19ddYVtWjqdno9Z2s9lEsVh0MSmmmfv9fmxtbTmlHY1GnedEz4wZdr1er+/wTcbGOp0O1tfXUa/XEY/HUSwWUSgUMDEx4WJa7C8qvFar5fpnZ2fHKT0CMqnIQCCA+fl5pFIpRCIRTE1NIZvN4vTp0yiXy1hYWHDvWy6XHVDMz8+j2Wzife97H8bHxxEIBFwFD1KBSsvRA2LSCttJr4hZiplMxp3M3G63ceLECZw5cwbvec978Nhjj2F5eRnRaNSVwNLMOQUTApTGU/X/Ghe14MG/04jSKvmaLagxWRpseoK1TZnnfa03px6jrkE1Ikl96/ri/e2xPRx3GoxeksbLiwdcB0AspWc9FypvLhS790XpROXr1dlWYLTejuX0FZyUiuGC42JVKscebaLgaxer9ezoAd133304ffo0MpmMAxgGwJeXl11ihBa27XQ6qFQqri4g9xYxS8/n8zl6sNVqYWhoCH6/34FOp9PB6OhoH3VE2lQ9BipPem+pVArVahWlUgmjo6MOjJiOvr6+jlgs1tfHjP1QgWt1e83q8/v9WFlZQafTwdzcHBKJBIaHh3Hq1CkUi0VcvXrV0XPtdrvvQMtTp04hlUq5NPuLFy8CgKNLNXOSoBqPx10SBzMH+XeCG+NZ3W4XW1tbyGQyuP/++xGPx/HEE0/gpZdeQi6Xw+bmpgNh9pe+u4216X4szYpVOlk9Lpu5qp6Txp6YPs93UIZBwUTvr6yDGpA0DrkWCFzsV5ucAewfCWT3eA2i4D25VTzgOgCihXS5cDQb0HotXPD0uggktD4Zf2KsQBUwFSljQVTImnpPb0HTqFmElc9SZaH3VRpFKUlVJPrd3d1dTE1N4cMf/jBGR0edBxAIBLCxsYGFhQVsbm5ic3PTpU5HIhG0220sLCw4cCMILC4uulR3Khzu4ep29/Y1sYBuMBhErVbDpUuXnAKMRCIYGhrC6dOnEY/HXd9cu3YNc3NzqNVqTmkx4aTb3as8sbu769LzFxYWkEgkXPYgx4rKORKJ9O1XIu2pGabMIGT1Clb4OHHiBF566SVUKhXEYjHnLbz1rW9FJBLBCy+8gNXVVWxsbGB5edmBD2Na9Ho0/pPNZhGPx5FIJDAzM4OhoSEcP34cqVQKAFzleyrwSqWCdDqNBx98EPfddx/+1//6X7h8+bLbUE2FbRMtOO/o5XIusi0sGgzsJ65wPnGM6X0zzqlxWgXHXq/nPHKuG64dpe8IULaGJ703Xq9xK64XFmEm1cl35HsrQA1K/vBksHjAdQCEVqGmBXPx2H1dNvVcqRZdiLQMlRZUy9VamRo7UO6df1cAJV0J7HtUClSW6rTxLd2Xc+jQIbz2ta/FxMSEU8xUTJcvX3axI6bJ93o9bG1tucQLxqja7TaazSYqlUrfe7PMUyKRQKPRwOLiIvx+vzu1mNsGNFbBdPhsNgu/f2/PFdPlmRhCpchMxbW1NXcGV6/Xw5kzZ3Dt2jWXrGATAjSzkRUutBI9U+rpuVSrVdy4ccNlWwLA+vq684KSyaQ7VJMV6qvVqlP6fEfGYpRi7nb3Kme0Wi3U63WXZcj9VQQvjhnff3NzE8PDw4jFYnjzm9/sCmk3Gg34fD4XC/T5fM5w4O+k+jivOU9sRqzP53Pgo+OjlLdSftaj0fVBoFQDQpkN/q4eklafV6OLfapem3pyXCMEUV3b3y+xrb+OeMB1AGRQWjnQfygfPQLdMMtFpt4RFwYXCj0BWvxqTepmS5tiTO9K42WqYDQTURWILnrL/7NtyWQS5XIZf+tv/S3ce++9KBQKrlr7+vo6lpaWsLKygp2dHecthkIhlMtl9/2hoSFHfa2traFer6Pb7br0b6W7eGRJIpHAyMgItre3+1Lc1bviZtxcLodsNgsArnL8oUOH4Pf7USqVsL6+jkBg7/yuVquFbDaLM2fOwOfz4caNG0in03jzm9+Mxx9/3MXBlOYioPC4ElWEzJ4sFouYnp7G2toaOp0OnnvuOQwPD+PBBx9EKpVCKpXCs88+65Isbty4gfX1dVy7ds1Z/wQZZvERrOnNMIuRG6e1DNPGxgamp6cxOTmJEydOuHYyiYRebzAYxPj4uKtk8pWvfAXXr193lK2mwFsApWGkhaXZD5Y+1wxaNZ64bm5H22mslcDI+1LUuCLYMcFCKV1db9pWrr9Ba1r3LJJN8eJcLy8ecB0gsXy/LmD9R1Hw4u8ak1IQ1AWohU7pwZEK4fPsM5SjV0WgVQ7sPdXaVa+xXq8jk8ngzJkzyOVyTqHW63U8//zzKJVKaLVaffvHWOdvenraJV4wI48gxOK5pPK01mAqlYLP58Pp06extraG9fV15+Hp5lsmcNjjQUih5fN5dDodzM7OYm5uDouLi26TbjAYdHUK5+fnkU6nkU6n+zLuSNexH1njjzQVY3ekwrgXiiBOz1IpN9YN3NjYwNbWVl81Bx1HjdGo9U9g4zVapYO07cjIiNsPxr1afEaj0cD29jZSqRTOnDnjYpDPPPOM60cmpqjXQ0qafaJGlbZRFfzt4qScjzpf+X01wGy/6H11i4TOW80CVM9J70UDUP+v76JUvF3HntwqHnAdEFFQGBS4VY5eLTw91kETN4B9atGm11vvSjP3qEQ1MD1owWn72GZVilQwNkOMVuzZs2eRz+dd9YadnR0sLCxgeXnZXcd2kaLL5XLo9faqWdRqNXeQIpMacrkc0ul0XwJCIBBwwMWYSCwWw/DwMMLhMKrVKlZXV/vKQ9GTZLyP/cpYEEF5cnIS1WoVV65cQbFY7KMnmfnJOBeL3vLe1kjhGFugV6Cj97mxsYFOp4NisejqDe7u7hXsJT1nYzg6PvS8NWajc4Ee/c7ODorFIvx+P1ZXV9FqtRCLxdw99RywWq0Gn2/vlOa77roLPp8PL774ons/rU3IJCObVKRt0LmlQEBjRL0x/m49GF6jKfB6raUV7f24dYH9yfZo8obO+UHrWcdSE0k8b+vlxQOuAyBUIKRuNHhOBcrJzwWsio1iPSMLgL1ezxU01YVFa9huXObfdT8LFxyVIWsI6uZafocBeCpC7uU4f/483vzmNzuAiUQi+PM//3NsbGxgZ2cHhUIBhw8fdkonEom4vUSzs7NuvwxPEda9MlrYlW1mHIhKN5FIIJfLuYw8vlMqlcLIyAgOHTqETCaDra0tLC0t4caNG3jppZewtLSEhx9+GDs7O6jVahgaGsLQ0BDOnj3r0urpKcbjcVcfUY84Yczq2rVrLvmCVJKOdzweR7vddoAxPj6OUCiEY8eOIRqN4sUXX0SxWEQ6nXZjR0qRtCc9U7/f70415lio981aizQUOJf0aBO+TzKZxJ133oloNIrZ2dm+GpKbm5vodruYnJzE5OQkrl27hieeeALr6+tuDtJr0XmkhhTnld/v74vF2dqCQP/mda4N3p9eqD6Tz1KvSdcHAYXemgKTenjsP91Owu9z7vE5WiiAfa6nGXgyWDzgOgCifD6wn06unLoN6uoiVGpErUMuXKULLdVBUauTcRFrzVrFYf+uAW9d+EyuCAQC2N7edinbBOtisYj19XW0Wi3MzMzg8OHDSCQSWFlZcQr10qVLDmC514hAxGeot6d9wYQNZgF2Oh1kMhm3X8vv9yObzbrDJKPRKLa2tlyV9K2tLVdGigBYKBTQ6/Vw9epVbG9vA4A75DGRSCAUCmF8fNwljBBQo9EoEomE21itGXBaT5IKs9FooFgsIp/PuwzR6elp3Lx503lDpF9ZGoleeKezfz6WHWcdT36Hwus165ExUop6+sC+N7O5uekO57zrrruwtbXlvFFV/AoOjMHaOW+pQAU7u24UdG16vaUR7Ty2AMRr1TvSxAtlRTjvtBIJwUnbYvvKMiqe9IsHXAdAuAAZrOaiUUVsJzoXuioBLggCD4A+ika9EF1QXIiqRJWXpxKxVqqlWHSB0hpmHCOdTqNYLOLcuXM4ffq0qxCxubmJy5cvIxQK4fz588jn81hdXcWLL76IRqPhACUcDrvSRjwCpFKpOOVMpaaZl1T8TAfnhmNWtaBFnM/n4ffvVb8YGhrC9evXcfPmTZdaPzw8jKmpKbTbbayvr2Nzc9PVC6S3nEqlXOJBs9lENBrFXXfd5Q5VnZ6exvnz551XtLm5iWKxiJGREVeDUA0Nv3+/YG2z2USz2UQ6ncaVK1fw1re+FZVKxRUSZkIFqSgFQKUoAdziObPSCMGPz1GwsB4CDY5wOIxyueyeRTC+du0ahoeH8cADD6BQKCCTyeDP/uzP3BYAoD92xPfmnFPDS5Ml+G66PjjHCVyaKUmDRjNqlbmgIciECd3fxmt8Pp/biM61YLevKPvAdjB2qc+3XqMHXrcX/ytf4sl3W+hNqRXLQDYXwu1SeRnf0cXJRatZg5aD53OtNaoKgfdUalK9AXpvbJ9WC1CahcoyEong8OHD7vnNZtPRS3fffTeOHj2Ky5cv4/HHH8eVK1ewurrqwOuuu+7C1NSUy5ZTpUrwpPLlvilSejs7O6hUKg7oaOEzhgHAXZvP512ZqGq1Cp/P5yg/vmMsFkM0GnWZityUzIK4tVoN0WjUbQReWVlBrVbD0aNHcfToUeTzeUSj0b54FL0pjqVWFWe1iGQy6b6TSqUwNDTkfrceExUrDQigv+o/RZMzLHBQSbN/lO4CgHg8Dp/Ph3K5jKWlJWxsbLj5s7W1hUgkgpmZGZw9e7bvmQoySn2rB6jzmVQq57HOZ313Gk+8nkk2+i66n1CZAvWCCNqMzQ0CGM6/QdmQvCfbY+lG9Q49GSxe7xwQ4eJVvp4LlIsVQN/EtxSQekTqBdl72+u5qJWC4eK3lBBBzbZT70HlpopkdXUVU1NTmJmZccDGtPRkMonDhw+jXq/j0UcfxeXLl7GxsQFgb+NroVDA9PQ0pqambvEY2CZmrpHe0sQKBTGWcuIGZbaT8bZcLofh4WHX50xjVyDI5XJuQy+/Wy6XXakk9RTr9ToqlQp2dnaQTqcxNDTkqmvwWio6xsmoCLnZmpl5PGqFVrye6aXp/1T+ej/2EdCf+s1+A/bPTLPVNXq9veLDSvny+dwAzUM2ubGbVFkmk8Hhw4fdtgGKgqtSiGyfTXywSRpKOVqjie2zYuexrg1NkKFYENckC36mQKlGnoKXgpq225Pbi0cVHgCh0uLuewambRBZaRJ+RsWlng1wa51D/l/5eC4qYJ9CGhQD05gI6ater+cqpw8CK7YT2KtGPj09jXe9612Ynp528ZKNjQ3E43GcOnUKs7Oz+OxnP4tr167B5/Mhl8vhwQcfxMmTJ5HNZlGpVFzSA9tIqVarfUeFkDbl6b9akZxxMrW4WcMvGAy6jbjc76U1DHnQY7PZRC6XQz6fd/uwGKtjHcGf+ImfcNmMuVwOwWAQq6ur7qDII0eOoFgs4vr16w7gmLWoZZZmZ2fd2A0PD7ttAYlEAoVCwe2VSiaT7r2pyFmjTxUwsJ/1yHHXtPRWq+UKEmtyjt/vd6WnWEEjk8lgZmYGADA3N4e1tTX3ealUws2bNzE6Oorjx4/jHe94Bx599FEsLy87yozgqOyBpZ3ZJgUFzYS0AMU1RI+a9K3P53NjTw+W3pI18ji3lbGgMcG1wX1xakRa407bx+/o9d5G5NuLB1wHRDjxaV1zgivAWEVCa1MpP7UemQ2oioDApWBGJcJFpp6XUihMx7ZKUDOp+C76HL/fjxMnTmB8fPwWUB4eHsbQ0BC++tWvYn5+3rUhmUy64rJqWcdiMQfg7BdmSmoyiAI9M/nYv+q90rugR0P6MJ/PO5DOZDJYWVlBvV7H2NiYiwGxygf3TrHuH8GMJyezWPDc3Jyrqzg8PIxsNusUKS1yejGJRMJV82CVD8b6WAIqmUw6OotzRUFdvWqlEjnHFMDpnep5Wjo3o9Goq84B7Jc14jiTjl1eXsbQ0BB6vb1tC6Q0jx075sBNjSqd++plKW2t8SnOBfW6mHDD+3IstB8GMRqkDbUqB0XXh8aRLe2noMd769y360C3Wnhye/GA64AIFwOtRLswyKdrFiHQnxGlixy4NfvKJlpYalGtS/XcCBpUjJqtxRqGwH69Q/XyWAj38OHDSKfTaDQajq5LpVIYHR2Fz+fD1atXXVYcyzSl02ln2TJmxD1RPCOrXq+7fggEAi7lm23S99WYIUGLYBuNRt0RJTxzi0qN5YpIHbZaLayvr7tn7OzsIBQKubOv8vk8qtUqVlZWXDp8IBDAwsKCi2XxPbW/uHlZszrpQRC0M5mMq0SvBy/u7u6dZaXVKJhGTtDie+u4E4DosWp2psbZeKKy3+93Z3tVq1XU63VUq1Xs7OygXq9jbm4OPp/PJdPo1oWZmRk88cQTbh7pRmQCkM5FTSCiKMhRbHo9jQF6SdofNsvPAqECigKsNQg4r/g9y2xYcOUc1Ri1J7cXD7gOgJC6YwaZWs+Wr9cNkVykurjVOlQvTPdT0btSBcBn8N7qAXKhERD4XJ9vP+OKn+meNNI05XIZJ06cQLfbdec3AcCxY8eQzWZx4cIFzM7OOmUyMjKC8+fPo1wu48aNG0gkEjhx4oTbb8S2r62tuQw+fR8qX60zxwK9BAXtZ3oz2WzW7SWr1WpYWVnB8PAwAoG9ahHr6+tYWVmBz+dDIpFw3x0aGnLJGzwEkxTgqVOn3InJTMJgbcJWq9WX9Xf48GEcPnwYOzs7eOSRR5w32Ol0UCgUsLu7i+HhYVy6dAn3338/IpGI25Td7XZx/PhxLCwsoFqtOoOC99cYkN0zCOx7UKFQyFWIZ3yPFC3n5NLSElZXV7G6ugoADjyZmDI3N+eqkoTDYSQSCRw7dgzBYBB//Md/7E5qVm9FaTQLIhxT60ESPAhUSomq96NGHY1DZQ5sooWuK9Lj7Xbbefb8Due4PdSV7eNaVIBTStGT24sHXAdA6OGoJ6WLlovVUhO8ToPyuuBtgsTtuHilUTT2wEXO7ysg2u/YADcXdKPRcLUICcy0fqPRqEsxB/YVYCKRQDKZ7Iuf8b34HFW0an3HYjH3dz2ji9mXfF/+ZIyn0Wi4vVA+314lCO73sptz7SZxpsdPTU05Bb+5uYlGo4HDhw+7RIxSqeSSQuh1Km0Zj8ddliOPLWFJKpZhisViWFxcdNcnk0lUKhVUq1VkMhk0m013YKS2l8+we5t0Tun4EdiY+EElzX5iOj+VNu/V7XaxsbGBdruNfD6PRCLhElLGxsYwOjrqjnxhqS2KZRE4n22sSecCAUTXkN+/X/1D26aUo36fz9Z1pEBHL5yMAPtWU+r1HoPWiPXKPHl58YDrAAgtbq0VqJlgWipIaRGlF9Ua5d+A/iKrDIDbvT6aOUhlp/uh9FkKFlR69IKUbmw2mxgeHsbm5ibuuusuBAIBrKysoFQquQoT9Xod6+vrePbZZ51yisViyOVybp8UC+qyino2m0WxWESpVHJ9wpOFWWKJ4MvCsRr0p7dJT4N9zr1UU1NTSCQS7nceJ5LNZh3VydOVmSjS7XZd4WCfb6+uYKlUcgkV3ESsYFcsFt0eqFKp5MCZlj2zLeltMIuvUCjgi1/8Ik6cOIFjx45hZGQEwWDQpfqPjY2hXC67osNMWSeQ02tmOwieqqSpqJViBPYyIBcWFtxZZpyzrJDf6/WwurqKtbU1HDlyxKXJFwoFdDod5PN5fOADH8BnP/tZXL161VGKnG8EKjXUCKLAPk1IuprzVo+M4XeVJgT2twXQgONBpAqKCurqMbE6iP5TD5/PIT2qwKdrUWPLfGdPBosHXAdAlPvmwqBCpQJST4nKjP/ngiTdoRy7Lk4AfWCkXpK1mik2cE6KhQCoyRv6HlQgoVDIpbFr2jXr4K2trWFjY8MBTzqdRjKZdACgnhrjTMBe9hhTsamUFJiZSMK2ESg1bqFA3+l0XOYi41tMOGApLCpZeiAcK3pZjUbDFellP5B2rFarfYBPOjMej6NUKiEUCrm0eWDPc2RciwV2W62We9bVq1fdfjBSoGtra9jd3cXQ0BAikYjLoqMStZ67jSMx9Z5grTQex4BVMHw+nzvuRMtmEfCPHz+OcrmMarXqvDSfz4cTJ07grrvuwsLCQl+auI0PKXOgwGUTIex847xmX7Of1bPSdaZzh9Q857ICu95DjTntW6UZ2c+8TsFMGQJPBovXQwdE1NrUhap/03+60NVSJsVDaswuVE2u0MXO62gx2ufxevX8mEbNe+ozgP3DEAuFgkuoAPaBlxl2TFKgN8c0blZCZ51CxmuYHJBMJpFIJProUNJGTIpIJpN9m1fZP0xsUAOhWCy6eA4TC6h0GRfi8St8P61s0el03EGYHEPeg/E5PfcrHA4jEom4sdNzxng2F1Pj6cXyCJXFxUVsbGwglUo574C0VCgUctl82hbSfkq16vxgv7BNStfV63VsbGxgbW3NZUHScykWiy6mRQ98YmLCFSFmdfytrS0MDw/jjjvuwMzMjKu0QeOHbdfMT/aVgpbOd01y4PzkfNa5zZ8EYaD/HDC+J+OQ1sNScGTf2CQq3otzkc9Uw5Lv43lbLy8ecB0A0coJqkiZUWazkXq9nlMuAFwQHkBfejh/p/JSuoyKS7MFqTio5Bkb0oXKorj0CChU3lTwfr8f5XIZp06dwsTEBObn51Gr1VyGHmNd+Xwer3vd63Dy5En0ensFcVnfju3VBItms4lyuYzV1VVEIhGk02lHre3s7PSBmMa1gsGgO1eLm5rD4TC2trYAwGXr5XI5HDlyBJubm/D5fK4wMNPBk8kkIpGIy6bjOK2vr8Pv3zv/jHExeosELdJ29OJYb3FiYgKhUAirq6tuozLLXwFANptFPp9HJpNBKpXCvffei62tLXz1q1/F2NgY8vk8Njc3XU1FlsQigI2Ojrrkk/HxcZw8eRKHDx/GoUOHcPz4cUc50oMlsM3MzGBsbMztQdvc3MTY2BiuX7+OarWKJ554Ao888gjm5uZw8uRJ3H///S5ZpNfrufPLnn76aZw5cwbj4+MoFos4ceIE3v/+96NUKrmjUjhuNFw4bjoH+JMGDue+xrhoIOl85PhrAhPjYFwLwP7+Nibj8FBNAjpBXoFUDUVdd+qBkVqkJ64eoyeDxQOuAyC6oGiNDUrG0AxAuwA0HsZ7EET0Wpt9SCtQjxHRRcf2cfER5JR+VFC0VvGRI0eQSqVcwgdruPV6eycZkybMZrPw+XzY3t7G1tYWarWaUwqaEUgPBNgvVsp9WqQbNZaknhjLAOlRI0wiGBsbQywWQzabRS6XcxuNSZ/lcjnnUVBhqcdCmolGAvtV9zoFg0G32bnb7bqK7ZlMBoVCAc1m0yVwTE9P4/Tp0y4zkv3s8/nc9cvLy0in05iamnLVPviesVjMeTQ+n88VEM7lcjh69CiOHz+OI0eOYGZmBuPj4+45VPZM1+c7MN1fq8GXSiUX3yPFy319jGUePnwYlUoFkUgE+XweW1tbLmmF8TiOKWOTuiVE6T/1mNVjVENL40q6PnQd8e/KOHCNqKiHpidJD0poseyErg9de15yxjcnXozrAInSEaoUbbxK+XKl6JRD53cZh9IyNfzJ6xi74v91cWl2mgIBf9rsK6VGWOk9mUy6Z/CIkm636462j0ajSKfTiMViqNfrrhTU5OSkU/gEAwKVFkWld8MisaRpqFRIP5EOs0VpDx065GJmuVwOALCysuI23Pp8Pre/qlarwe/3u/gOqVWei8VUb6W/NKOT49Vut5HNZrG9ve08Ip78zIoU2WzWUaTxeNwVcWXfrq6uun1jjUYDKysrfdUyqHiDwSDS6XRfPI9zQJV+Mpl0dRlpHDBDkSWuFhcXcebMGTcO+XweMzMzaLfbLvORiTGZTAZ33323S50fGxtztSTHxsbwxje+EV//+tcdPerz+W7ZpqBzkrErAH0JEzQS+D7q9ShYkJWwW0HUiNOMQd5LM2sHxbo0YYptYjIU165ubdEN/J4MFg+4DoBwkmvA3yZs0NrUwK4WalUPSZMlNIOMi55yO+4f2A+Ia9KD/q6xNpadUks4Eong/vvvx8mTJ925V6yowM25MzMzaDabePrpp/G2t70Ny8vL2NrawuLiIp5//nmcOXPGAdK1a9ewsbHhgCQQCLjNx5lMxh0i2Ww23XEnnc7e2VSjo6OuukO5XEYikUCpVEK1WsWhQ4dwxx134ObNmwgGgygUClhcXMT6+jp++Id/GKOjo47+2tnZwfLyMiYnJ907shxVJpPBa17zGgSDQaysrKDZbDo6kkqfAEDK1e/349ixY7h+/TpyuRwmJycxOzuL9fV15HI5VKtVd93c3Bw2NzdRrVYRj8dx+PBhlMtlFItF3H333ZiensbCwgIuXLiA17zmNWg2m5ifn8fi4qKjPHkaM2OP9I4SiQSmpqZcHUJuGqZ3mEwm0W63sba2hqGhIRePI50ZCoXw3HPPwefzYWxsDC+88AIuXbqEH//xH8fU1BRSqRQ+9alP4f3vfz8ikQhWVlbQ6XTw7ne/GzMzM/jkJz/paF16ozTiNNamB3Ry3qqRpd73zs5OX6IT54M1zGzCBKlygpYyF+qtMXmFQKfencbCSMdzjfPZXvWMlxcPuA6AaCBaEyeUcrKLTfn4QVmAXPya6q4enabocuGpN8Z7sU2aMMJr1fvSBczrmN1Gq53eQKVSwfb2Nk6fPu3AMplMIpvNuqzF+fl5B3blchmzs7NoNpvIZrOOjmOJouHhYQcOzADkcSbpdNod5KjWvL4rEyHi8TiazSZmZ2ddgVt6c8xq7Ha7DgBZrYJxKsaIKpUKgH0lyL6rVCrw+/19142NjWF7exvlchmpVAqpVArr6+s4f/48er0eCoWCo9fYFu6PCwaDmJubw8jICKampnD48GHMzc1hZ2fHtenGjRsuU5FlonjmWDgcRqVScac/x2IxNx9CoRAWFxfd+F+7ds1RoZubm/D7/e5IFMbwfD4fJiYmMD09jdnZWVQqFaf0K5UKbt68iWPHjqFcLmNhYcHFP3mUDUtjqSE2aE7aNUGjylakIB2ombI0CG1WrnpN6uUxG5ZrR+lCtkGZCK0IYj1cPYrIS854efFiXAdAlK5Rbl5rxmk8h2WUWN5H41hqndKiBvaD0wQZBos1FqTf58KkJar1AfVvfLamijN+dPToUQQCAaytrWFkZAS5XA7NZhMrKyvY2NhwyoxKdHx8HD/yIz+C8+fPIxgMuuNNrly5gnw+j3vuuccd0jg0NIR8Pu/2ZBFcM5mM659oNIqhoSHnRXCvE1PT8/k8VlZWcPPmTbz00kuOCnv00UddO2lpb2xswOfzuecD+5mY+gwm1LDaQiQSwejoKIaHh112Yre7t5F3e3sbsVgMJ0+exKFDhxCJRHDHHXfg9OnT+NKXvoSHHnrIHbUyMzPjvLxYLIZKpYJyuYynnnoKX/jCF/DEE09gZGQEd999N65cuYKbN28iHA7j/vvvx8TEBJ5++mksLS05gE6n0xgeHsb4+DiOHTuGt7zlLTh37pwD6Waz6TIISVlyXjAphgZENBrFoUOHMDY2hkKhgLe97W3odruYn593RYff+MY34vOf/zyCwSDGx8fRbrfxwgsvoNPp4Od+7ufwute9zm1XIOAwdqgbymkEqRdFL9/v97u2a7q7ZsvyTDZNPlIjjB4ds0R1LTLbkHNCjUEambqhnICnXh7fzUuJf3nxPK4DIBoothaipRbUo9HFAMClKdt9LZocwMVHUctQN0CrZas/lbpRS1XjXVQAyWTSeRbJZBKxWAwrKysuY3BoaAiLi4tOQUQiEYyMjLiYWLPZxMbGhqv+zn1LVL7cb6WbpUnD0ZNiEgUTKkiJBgJ7xW9ZxXxra6vvxOJ2u41KpeLiLiykyzgYwYdUqVrlBK1areZqHdLgYHyPY8j2MLbHOBMzEiuVCs6cOeMqiRAYuUcMANbX17G0tIQTJ0647QHr6+su/jUxMYG5uTmUy2XnxbE6SSAQQCqVQqFQwIULF3Dt2jV3svLq6iqmp6fdhnG2mdXh+U48PoWgkslkcOTIEdRqNfesO+64A88//zzm5+dddufs7Cx2d3dx/vx5vPa1r8VLL73k3pljqLFaFfX8OZ4ai+VP+31NHtIU+F6v57xGTbDQdWIBxzIdBDT9nqbFc+0OSgTxpF88WD8AooBkwYif6eZGzZQD+oPDg7w1m52l2U9a+49JEAqOjLHQy6DHoBmMtMS1DfT4uI+HcSfSXoVCATMzM0gmky71mM/K5XI4duwYQqEQSqUSSqUSXnjhBVy9evUWqoXPofLs9XouTqLHWRBU2F/cfuDz+XDz5k10Oh0cO3bMvRP3KBGc2b5AIOD2h+l5VPyndBVje/QG9WRq0pBsG5+xsrKC5eVlAHuxO3oXo6OjDrAIFqwTubm5idnZWXS7XXfWV7fbxdLSksteZPyv3W4jlUq5ZJiRkREcOnQI1WoVTz31FG7cuIHt7W2srq66uVYul/tSvWkQELxYWYTZmD6fD2fPnsX8/LzzjsfHx3H27FlcuHDBlfhisWIAOHr0KM6ePdtnYNAI4/hqNq16/Ux44PwhWNAjsmvAZgbavyntR3rPZgRqAozNLlQjVJOW+DddK54MFs/jOgBCT4fKgbEELhSm4vIztSi5sOmhULnowXa62Akq9Ey0tI1+j8/kd7WaBYGBbVcg7Ha7KJVKeMtb3oJQKIT19XVsb2/jxIkTqNVqmJ2dxZ133onz588jkUjgxo0bKBQK2N7exs7ODra3t9078e/1eh3T09N4/vnnXYyo2Wxibm4OhUIBExMTjrZaWFhwe6zY3rW1NbeJWY0Axt2CwSDuvPNO3H333XjooYdQLBYRjUaxvb3txmhnZwc7OzsO6Ak27PdgMOgqZ7BfOp0OFhYWEIvFcPjwYbTbbZcNl0ql+uopEoxIl21vb8Pv92NychJPPPEEqtUq3vve97rEgWQyCQDI5/O4du0aFhcXcccddyAej+P8+fOo1Wq4dOkSbt68iaGhIZw9exbXr1/HM888g3PnzsHn87nsx0ajgV//9V/HjRs3cOjQIUxPT7uY5crKiuv3RqOBWq2GVCrlklUINDzqZXV1FcFgEIcPH8Yf/MEfYGRkBPl8HiMjI3jLW96CX/3VX8XKygqOHz+OyclJbG5u4ubNm5iensbf/tt/G88++6yjI1kbUA/DZKUUGiQA+ow6m1FrswwtC0G6UClnBUkFRH7Hxos1eUkNRMbHSKPTi9S4sCeDxfO4DoAo7cbFxAWi9BuBih6DWo02xRnoT66wAW/eV9PteR9dfPzHPVK62LiwNdWeZYq4cVU9FVbBmJmZwaFDh1AqlbC1tYXDhw87BU5FyiQLTfwYGxtz2Vn0tKLRqNtUTJqN7aUHxNJDbIt6SIzRsEYhPcJ4PO7ek/Ex9gnrJvJ3ZsSphc1kh2az6U4HtunXHBveK51Ou3JYfC4V9NLSEiqViutDKtHp6Wmk02lnMPC+2WwWx44dw/b2Nur1OhKJBMbHx10sjuO9sbGBubk5VKtVFAoF5PN5DA8Pu43iW1tbfdRtp7NXBJmnLxPQuWmcXiar9i8uLqJarSISiWBychLDw8OoVqtYW1tDIpHAkSNHnJecTqdx+vRp168U9W7ICtg1otdwHHQOsN95LecI15IaajTcuM+PY6zjR4POJpAM8uK0LJpNfPJksHge16tcuIAYk7Ebh5VG5AJTK5LeE70A3bBKIOEC5l4tZqRxL5Sm9rJNmvYeCARc2R5anlQepHSUbszlcpiamnIgNjExAZ/Ph6WlJQDAkSNH3BEcuVwOQ0ND2NjY6FMIwJ7yHR0dxc7ODq5fv46hoSFXRqjVamFiYgLBYBAjIyMuWYWbbHnSMJMMSPnE43FHcbFo7fXr1501zE2zwWAQFy9exO7uLmq1Gra3t5HJZFz1DpZe4hlYpPUYqOc/Al29Xkc2m8Xm5iZqtZoDX451JpPB+Pg4xsbGsLW1hVarhWKxiJWVFfR6PdRqNTz99NOYnJzs26s1MzODQCCARx991HlrpVIJfr/ftenatWsum3BsbAylUgkjIyOIx+POuPiRH/kRjI6OolAo4HOf+5yrHJLL5RCPx3H58mVkMhlHQzL2x0xP0p58p/n5eXS7XczNzWF2dtZ5WO973/vwpS99CQsLC7h69arz/i5duoRUKoX3v//9yOVy+MIXvuCMOT03jZmMjUajL3OWolStGmh2fivo6NEvmhmr3rlm5vIezIAl6Om1uk9Qq9Jwnft8eycQeJThYPE8rgMitNB09796RMqRUzTrSuNLVP60OjVtXWM9muChQGUTQ4D+ah36Nw2Ks73pdBqpVMopZ1ZcWF1ddVUdGI8aVBuOm4SZQRcIBLC5uYmVlRXnjZVKJSwsLLj0b8bj+Lx4PI5arYZarYZSqYRKpeI8LlU+sVjMnSFVr9dRKBQwPT2N0dHRPsqJCpKnEzN9nzSQ0j+aFMAMNe6N0i0OrORBhcmEltHRUQcibDOwl05fLBadocOYF6k4Pf6EdO7IyIjzlkmD8TwtFjFOp9M4evQoZmZmXOo6k1d6vR4uXLjgxqXVamFhYQFbW1t984HULg/NpFd48+ZNPP300466nZqacnUKb968iStXrqDdbmN7exvLy8soFAo4deoU8vl8X3xIPSz1nLgmlE1QwLHsAftcKUKdy/TkNXZq46q6fpQlsX/n+mObuFa1nZ4MFg+4XuWilp+NFenvwL6Vpx6XbtTUFF8FIF30FJt9yIXO2IxSj0rRWCWi/D69saGhIWQyGXfmFLCndLe2thzNxGrmBCLd/0LlQlAjMNdqNUfZce9VqVTC3Nwctra2XByQiQeksWidKz2jfdjr9XDjxg2Uy2UMDw9jeHjY1RukJa418lKplEs2oWhGmypVggjBVRNEmIGo2W3AHgjQc+S4RKNRVCoVbG5uunTveDyOcDiMfD6PqakplEolrK2t9Sn3I0eOIJvN9sVv1tfXXSyQoKnniOnhnBsbG9ja2sLp06cRCoVQrVZx48YNzM7OOuWuxkw6nXb7zLhJ/PHHH8f6+jra7TaGh4dx6NAhpNNp1Ot1XLp0yVVKKRaLCAQCDtxowLDfCNR2fiplzn+6WZ+fEXzVM1LjjfNZPSxdl5wr1pi0sTTeS8dav8t/Hl14e/Gowle5cDKr9arWu6awa6FPrQ/InxqkprVHWolK0XpMXEA2gGzjY/wu/9GSbLfbrjwQ98CcOHEC6XQaX/3qV7GxsYFDhw65+AdpwnQ6jS996UsIBoOuXiE3ElPRLC8vo9VqufTzdruNq1evOq/q6NGjiEaj+PrXv458Po8TJ07g1KlTiMViqFarWFxcRLlcdkktIyMjDswZw2LM7cknn8Sf//mf421vexuCwSCuXr3qYjfZbNZ5G9vb2xgeHkYqlXJxuHw+j2w227dXKB6Po9fruU21rVbLUYIEavYhAJdqz2exvt99993nvBfWMWQMLp1OY21tDZlMBul0Gjdu3MDa2hpOnjwJYC9Nfnh4GOfOncPzzz+P0dFRN2+YeLK7u4tisYhUKoVOp4MLFy64DM1vfOMbuHHjBqampvCTP/mTePzxx/HQQw+h09k7AuaOO+5AOBx2nl4gEEA+n0etVsPm5qYD+J2dHTz88MPI5/M4fvw4AoEAtra23CbuRx55xMUJr127hunpabz3ve/F888/7wBQD4bUjFkaBqQLbSKSGoLc56VxMQqTVTSDFkDf2uF1+o/GDeOamiSiZZ80jsyKLx5NeHvxPK4DIta6U9rQpuIC/QF+/T7/RqvRegC8VukOoL9ih7aF96TFrtlW2jalx3K5nKsozr1QzEZMpVJIJBJug+/w8LALgCcSCdduWtuJRMIlX5BmDAaDjjpkpl+tVsPa2pqjC1k4VjeSUgkxTkjgZSr31atXEQwG3Z4pn8/nautp/KNerzvPK5fLuf1lSjGp4cBMRHoC9BxYh5CxS8ZBNAYzMTGB8fFxV6We8Up6wc8++yweeeQRvPDCC65CPD1MJnIwlslahzQ0+H40dBqNhkth39zcxIULF1Cr1VAul5HP53H27FlXsZ4xGs5THkHT7XZd1REaZIlEAteuXcO1a9fcBuTjx4+7uUXvn0ko1WrV0Z+cGzTglI5Tr1/T4DlfCSD0sviT7efc59jq37k2BtHjSv2x/fbaQenx7GdPXlk84DoAQkXFhQbsW2O6IJQyVO9MQQropzwoSoHo77bkk40jkLpjZXYqAE3c0H0qAFAoFPqKzfKQxHA4jJGREQDA2toaAGB0dNTRXtFo1GVzdbtdpNNpDA0NIZVKOWuWx3QEAgFXSZ79VKlU+uoEMoVfM8fUY1UwGR8fdxl4sVgM5XIZwB5Q7OzsuIQOAic39zIDT/uTHjO/x/gHFS+9BlZi16oQ9MaY6s1NvrFYzIGi0n6zs7N4+umn8dhjj+HGjRtYX1/H8vIySqWSo0pJtRLUSSVTufKInNnZWdy4cQPBYBAvvfSSyyZkjOzkyZM4deqU8yboAQL92ZGxWAyTk5MIBoNuXG/evInHH38cjUYD6XQax48fd+n/GmPa3t7G4uIidnd3MTEx0Zd8pHOSpa90069u0eB8ISAp6Nh4ma4V67Hdbv3omrUenq4nzTDU97TUvSf94lGFr3JRkFHqgGnbunj4d6XvtPyNcu5aIYKLSa1VBS3exz6P99TMRHoPVH70QOjdjIyM4OjRo/D7/a5ixtTUFB566CEcOXIE58+fx4ULF/DUU09hZmYGiUQCwWAQQ0ND8Pl8KJVKLgNwZGSkT1Gw2KvP50OhUHBFYBuNBnq9vWzJxx57DIVCAffccw/e8pa34Mknn8TTTz8Nv9+Per3uPDfSh51OB7VaDWNjY2g2m/ja176GH/7hH3be3e7urquawaK54XAYyWTSJVowC9DG/7hHjCBFek7jMUzhr1QqqFQqWF9fd4kllUrFUXjMYux0OiiVSk7B8jgTALjnnnsAAFeuXHHlqjY2NtxZUdw6sL293XcYZzAYxGc/+1lcuHABd955J5577jm0223nOd9xxx34jd/4DfzDf/gP8YEPfABPPPEECoUCMpmMq5ZPL5LHlAwNDeHOO+9EsVh0ccaHHnoIP/zDP4y77roLp06dwt13342vfe1rzrul933z5k0kEgm84Q1vwMbGBq5du+binpwbCiwEJo0fMXtUt3to3JegQiOG2ZVcKwQcTahRlkLvwzilxr50g7buBRsEkp7cKp7HdQCEE1g9KaA/HqWnBNssPBsb4724cG16O61oBSq7F4YLG9ivzKH7xXQPjX5/aGiobyNtLBZzpZ+mpqYwOjqK5557Dn/5l3/pQCuVSt2ysZbttmdoqfdJL4KUFFPX19bWcO3aNaTTaRw+fNglQajXwf5hUoLf78fo6CguXryI2dlZVymdB1RqDUKt1KD7fbSfGPPQU5ZpjNDqZ91DFr/VTbAAXLbdzs6Oo+H4nqok6REznZ6HQvp8PszPz2N2dtZRhPTYmDUYjUZRq9Vw8eJFZDIZJBIJVCoVtw2BZ389/fTT+MM//EOXwNLtdlEoFNz+PFX4NCZ0PtHTvnLliqvoce7cOUxNTbnEm2q16mpNBgIBjI2NYXx83K0BApTGqJSu1n+abWspPM381LmrRhKBh/1tqXb9jlL5uibYZlKRdt+ZB1q3F8/jepWLKmImAFhREFIqSlNtae3zc2DfElVlaTl3ljVSJaCLjJYi26cBb81K7PV6iEajeM1rXoNAYK+wbjQaxcjIiKOM3vrWtyKdTuOhhx7CwsICxsfH4fPt7Z0qFotIJBIYGxtDsVh0B0kyVsMsQyZAdLtdVKtVByyJRALpdBrxeBy7u7t48cUXsb6+jlQqhUwm0wcWTPbgs1lrkAVmP/nJT+LUqVPY3t52wOn3+92RHo1GA1tbW66f6O11u12Xxs/4FZXW7u4uyuVyX6YijRHda8TU91AohFqthpWVFUSjUUfnURFGIhHE43Fsbm6i1Wq5uCHjanrYZqlUQj6fRz6fd9Tb0aNHMTU1hevXr+PrX/86ms0mhoaG8I1vfANvetOb3Gbser2OK1eu4Gd+5mfwxBNP4GMf+5jbnJzJZAAAS0tLbt5oEhApVQCuxNd/+S//BQsLC3j/+9+PH/zBH0QoFMJv/uZvIhgMulqKgUAAV65cwf33348HH3wQTz31FOr1eh+QMNtQjTC7DhRoNMHD0t1cc1xLLI6shqQabUpd0ojkWuC9AfTF/ZQhsQanJ7eKB1wHQGihcdHTktNgLq1sjUMxRgP00xc2VmY5dqUllbbSBaW/k2bk99SzAPYXfCwW64s/+Xx7BzDu7u4dAz88POzS2ROJBGq1mvOAuAm02+06EGCqPL+je9JYTBbYqzhBxaT0zvz8PAC48kEAkEqlnNKjZ8lqHcBezK1SqeDixYsOSDSWooqSfUkh5aVenSYg8O/sM41Zss0slMy6glR8wP6xGOwr9aYJxjqmPp8P+Xze7T9jXKjZbLo6ks8++yxWVlYQi8VQLBYdJUkPlEfQ1Ot1vOlNb0IqlcILL7yAqakpAHAHaGrhX44BN9zWajU0Gg2XMXnhwgXcc889OHv2LI4ePeoMg3g87mKfpVIJr3nNazA+Pu4yMXX8tQyT9uPtMnT1Ot4DQJ/nqnNZY1Z2A7HOfV2jGqdWmtIDrW9dPOA6AELLjhYd0F/zTEFI02wVVOxC0EC1KmnL9WuWFYWAqN6VLmzNQGQqcK/XQyqVwvDwMDqdDra3t9Htdl2iwx133IFoNIrr1687r0mTSuiZaP25arXqyh/5fD5XrJc03MTEhHtGr9dDs9nEwsKCi7FQERKo6LFqzTgKqaVQKITR0VF3sKR6uaTxNMlD44T82+7urqMBCXTqOdIip+UOwMXNCHx8d44LKa5Wq4Vyuey8Q9J/qVTKtYOGAOOCgUDA1XL0+/1ot9suBjY/P494PO7uT4MCgCsBlU6n8eSTT+Lee+/F3Xff7U6DZukr7mmzVDLvubu7i5WVFYRCIUxNTeHGjRv4yle+gre//e2YmppCLpfD5uZmX6yoWq1iY2MDp0+fRqFQcPvLOCY2WUkTIoD9pCb1BPm7shJKh/N3NTaUWdD1wTHl/NX4l8az1GOjcaJr1gOwweIB16tcdPJbKqTT6bj9VSw4yknPRcW/K2+uFIdSUcC+h0ALmUVhmSqtlqrP53OUF++l1iRpKy760dFRnDlzBhsbG1haWnIHHz788MP4xV/8RWxsbOB//I//4SizM2fOuBhJNpt173H48GFkMhmUSiW34fr69evupOGtrS30ej0cO3YM3e7euU/0mPhM0mNjY2O4ceOGi5PxyI5cLufek/EzKstEIoHp6em+MlE+nw/lcnmgYlYA5Diw3cyai8fjKBaL2N7eRiQSQS6XcwkuwJ7CK5fLbh6QdkwkEi6WRsDc3Nx0BgljaDxWhJQnY3e9Xg/ZbBZTU1OORk2n07h69SqefvppV/EinU6706YfffRRRCIRHDt2zFXymJubw8MPPwyfz4cf/MEfRDwex9LSkivUzPmSSCRcMgkrv4dCIWxvb+PSpUuYmprC2bNn8bWvfQ2/+7u/i5/7uZ/DBz/4QXz2s591cUmCwgsvvIBEIoG3vvWtAIDLly8DQN/eRo1L+Xw+ZxQpSOkhoAQy3SKhiUbcK6mJUloVg8Ck2yNoBDGuC8CBLJ/Jo26sx+bJYPGSM17lMshz4gIkNaJWPr0NAgjQX65JExc0QE1QszSFUlcaWKZw8amHpvy+Vs1Ip9PI5/OYn59Hs9nE5OQkAoEASqUSkskk1tbWsLS05I7eCIfDrt5dq9VCvV53YMrNuENDQ0in067+HvdlAftHrGg5JtbgYyyq0Wg4ECGVxQMfW62Wi6VFo1GXdk9FrmnoGmDXVGi2gcKx4JjxbzQQOB6sBq80cblcdunwWm4I6PegdbOtPnNnZ8cdlsnvlUolV0uR9CDjkalUCuVy2X2H2xDUy+P4DA0N4fjx44hGo3j00UexsLAAYL8IMr/HRBEFZd0GUa1WkUql8KY3vQlf/OIXcfnyZbeBWzNhWX3j5s2bGB4edpvaCUzWMOOWAoquG92GoGnzg2h0vSdBh+tT1xBF15l+rnStUsb6fE9uL57H9SoXTZ7QxU7lSNqGoKULRDOmlApUWoRJDVwwlpbkLn5KOBx2f7MbMrvdrtt8qzQHkwzOnz+PQ4cO4ZOf/CQSiQTOnDmDtbU1BINBPPHEE/i93/s9bG9vu1RqArMCC8GJaeFMDd/Y2HBeGak/Hg3P7ECe7aUZeEoNcZ8UQSSZTDoPjWBQKBQQiUTcOVq9Xs95KqTENBmAHhmrojPY32w2B6ZtM7uPfUgwZIo+34ft0UQZnm0VCARQLpedAcF32NjYcKngqVQK165dQ7lcdnup1tbW8Oyzz6JSqSCXy2FyctJVnSdNqCc8X7hwwW1Q5kZwxr3+4i/+Aul02sWgqKg5ZkzdL5fLqNVqSCaTmJycxMLCAqLRKE6dOoUnnngCf//v/3289a1vRa/Xw5EjR/DMM8+4folGo3jppZdw+PBh3HnnnajX6/jCF77gqmkAe0yEnuSthpaCksaEdQ0py6DAqbExjR1yznJctOj1oAxeGjHq2ZFK9OT24gHXARC72ID9PVnq6XDSA/sJFrqomAlFZambHLmQuLh4f8001JiTem8aewP6jx/nd9PpNCYnJ121dL/f7048TiQS+LM/+zPMzc25GnTRaNTdl3Efn+/WY9G73a6rzM5yQuyPdruNUqnkaDVa1+wfUpyNRsMlJ7APGYsiNaRJMDwgkvfku6p3qaW01DOyFr16TPTWSK9qbC8UCrnDHqk4dW7QC4vFYs4TYtYeFTc9H6aTVyqVvsMnGSNLpVIYGRlxe/IajQZWV1fdWNBg6nQ6LmWexg/35QF7m8g5/gpenG/JZBKtVssZDPQWWfj48OHDeOaZZ/DCCy/g9OnTuP/++/Hss8/2xYW63a5LwZ+cnLzF01JqnJ4PP+Mc0urx/K7ew85nG3eyrINex7HUdcvYp22nTZ7x4lu3Fw+4DoAwRVqteC4GS99xEd4uQ8l+xvtw8yYXGD0cKmO770UVuS5KLY+jFCSrmVOZr6ysOJpwaGgIjz/+OCYnJ3H06FFsbGwgGAw6y5nP01iJbv69efMmxsfHXYo49yBtb2+jWq26OJ+CRigUQrFYdM8B9o/EIBAwm5AbfdvttishxWQJFsflPbXvqCQJNJrtqQWJdRx0fCm8P0tedbtdl7ZOgPT5fI6yrNfrjjIlkJGW5LWkXpl4QQMlGo1ifHzcVZOnd0hwikQimJiYcJXjuS9vfn7e1ZvkPqxgMIjt7W1niHAeMyuUFGE4HEapVHIg0unsbfrmmWGlUgmxWAz33Xcf/uiP/giLi4sYHR1FrVZz3i+LH9Nr0tit9aY0MUNZCa4Ppe7oRemc1jWnnpkalnwP3denbeG7WuqVoGrH3pN+8YDrVS5U9Er1WQuQliOzowDcsihJsZHC0HRcpvHGYrE+ryQQCPQlXhCEtBIB76eWKbCf5dbr9ZDL5XDixAlMTk5ieXnZUYrlchmbm5s4fvw4EokE7rrrLhfPYmyJNB1Bq9PpoFAoIJVK4bnnnsNTTz2FcDiMXC7nvAwmjdCqJz0F7FGfNALK5TJGRkYwOjrqyhPFYjF0u3tp7qTIKpUK8vm8o+CazSZGR0ddoVxWxdAix0zHb7fbDoCZ8ZhMJt2hkABc7EgLCNNoUJqXRoEKP6dXV61W3b44epXVarUvq42blll94/jx41hdXUWtVsP4+DgKhQIajQZmZ2fd4Y533nlnXzyU55lxHmgBWc4/0q/lchlPPfUUxsfHcejQIZdtODU15c5Mu3Dhgivmy4ScSCSCo0eP4uLFi3jyySfxAz/wA/jJn/xJ/Nt/+29djGtoaAhLS0uu3VNTU1hcXHTzhdsGlBbmGPEzJtkoLajzmr9rDNjGFjUJQxOYaKTovW2BAKX2tY0eaN1ePOB6lQsVA7CfkmvTaC3dpxalfq7X8bu0Bi3vrgvXUhf2mbrj3wIn41PT09NIJBLY2NhAIBBALpfDysqKA4hCoeAqQSjFpokPCty93t5RI51Ox4GWHjVPINCag7u7u1hfX3cbcXO5HBKJhKMle70eEonELVavnoDL35kkwfRxG+dgXEpjiNxYrIF5CqlTVnonIJGuo1fMdyFY8rsE9Xa77WhMem4EEbaZNQqZQTg+Pu62FbAvqtUqotEozp07h8nJSWQyGXdsyvz8PEqlkjs8FNjbK8fMQ1KPLNG0traGy5cvuyQPjifjjcFgEIVC4Rb6mbTl5OQknn32WfzZn/0Z3vWud+HIkSPY3t5GLBbD6uoqRkZGUKlUkE6nUSgUsLKy0gdM7Hed38oGAOjzyNinNnFJPWSd94xj0ctWapLXa0zVxjYVvDzQ+ubEA65XuTBLUNNnme5rwUbjXUA/LUjFrHULeY0qC+X/qSx1QWoSh7aRXpoCJO/VaDQwOjqKcDiM7e1tBAIBpFIpbG1toVqt4sKFCzhy5Ig7JoTJHKRnBsXcyuUyFhcXXaFXFtPVzb9UzvR4WEmDiozAxUC/3+9HNpvtC7pToat3CcDF6RSw+Z3d3V13ejATPQhu7GcNwPNvun8rFAq587R4HZMsGIcjPch20MKPx+N9R28Ae15dqVRy7Wf87tChQxgfH0e323UZkt1u13mFpPLW19exvr6OpaUlzM/Pw+/fq9av1C3fmbUhuY1gYmIC0WgUKysr2NzcdDUdG40GVlZWMDQ0hFgshlwuh2q12lfWitmn5XIZX//61/FjP/ZjeP3rX4///t//O86fP4+/+Iu/cKde+/1+tw+MdR/Zn9q/twMFBRQbl1KjjaIeGL1OPe2Y/azGJK+3hosaZUpjegA2WDzgepULrUClKpQzV3qQwX21EpUSVJDiAlQaUqlFKmJu+rTemnpWvFYD0Yxh+Hx7G4PHxsbQaDSwuLiIdruN6elpV3y31+shk8ng5s2baLfbGBkZQa/Xc6cJA3sHTfr9fkxOTmJzcxNPPfUUJiYmnCewtrbm2kBgZwo8E1NGRkbcib9MGAHgylpRmTKWQ+AslUou+45AZKm73d1dl66vniepTlb34Pd0CwPHgN5lp9NBvV53IKIJGix6yxJHbA/3m/H/VHiMTfF06OHhYYyMjLjN4Pfffz9SqRQ2NjYQj8ddfUgq4/X1dVy8eBFXrlxxc2pychJnzpzBm9/8Zvj9fmxvb+PJJ5/EysqKM0aAPXAvFAqYnJzEj/3Yj2Frawuf+tSnMD8/79Lni8UiisUipqamkEwm+/bhBQIBV0H/Na95DTKZDB577DG8853vdHv7UqkUbt68iYWFBcTjcZw5cwblchkPPfSQ827U+OHcILAQ7GmMcQuCgpUmzDCrlmuCc0n375Fi57PUq1PKVmlKfZYCnAdcg8UDrle5WLBRgAHQZ8lprCkYDPal0eueL4rN/KP1zLiW7j+xSR5cgOr16QZKjYWRtuPRHKzU4PP5MD09jWw265IJWLVbN67yfoxrXLt2DWtra7jjjjsAwBVtbTabSKVSiEajSCaTLhU7k8kgmUw674reIbPoNKGE2XLsD8aZuG+Opw6TwlNvp9Vquf5lH3LseJ3ed1ASAH9njI8epfa3VmZghiCTHzROwhgbjZR0Ou3KKjHGxnmiY8dYG89EozfL+9ITJEDv7OygWCxifX0dpVLJbYngmG9ubiKTySCXy7l44vLyMiYmJpBOp9Htdh01SdpXaUg+P5lM4sknn8T58+dx7tw5PPfcczh8+DAuX76MXq+HlZUVjI6OYnx8vO8AR4Igf+e7aGo7qVyKxhdpjKjnxH7m/zXTU9ekxv24fpSK1vWjLIgnLy8ecB0AUYVGhQn0ZzxxYQL7lIcqMF6vXplaoQxkc1FRAVPJaykdPcxQwY3fpUIgHRWNRpFOp7G1tYWtrS2nbNPpNE6fPg2/348XX3zR0VyVSgW9Xg9jY2MOMAiCf/7nf45ut4tjx47h2rVr7liMQqGA8fFx3HPPPcjlci7mQoVEL4TeFQBsbGw4q1mpUQVxejmVSsVVYWexXgIDr9fEFI1lkNIjWGssJRqNOqXF/mq1Wi57kRU8dJyZaMPv2zhKKpUCAHdUCg0CAO7kZ+6VW1xcdN4awYYFebe3t91WgUwmg3K5jGq1iosXL+LGjRt49tln4fPtHTbJ40uYwdnr7R1nU6lUUCwW8fTTT+P06dO4++67MTw8jGeeeQYPPfQQTpw4gePHj7uEncOHD+Pw4cNYWVnB0tKS29NWqVQQCATw1FNP4b/+1/+Kt7zlLXj00Ufxzne+E2traxgbG8P29rajCzOZjNu3xjgxgYEHZwLoOx1ZPR+KNTr0PpoNaNegemO8hvEwYL8+pq5RJkd5XtYriwdcr3LRBaOxHlqA/LvNduL1mhUF7C9EWpn8m2YvalVyfSbQT0dycfI+FiQZYOcenmKx6CgwtVSVyuTv3DCsGWH8/tDQENrtNjY3N+Hz+ZDNZvHggw9iamoKU1NTfZXBmfbN9/P5fI5e08K92k+WKgqHw24TMT1LKiBWB2E1CN6PAEjgVGrRjieBTIP3TMNnH+l4aD1DHVu9lnNHsz15ynGv13NVP/iePJU4FAphZ2cHpVIJGxsbDrBZYYNeaqvV6tvnBexvSOdzaQgFg0FUq1VcvXoVMzMzSCaTOHz4MC5cuIDr168jFArh2LFjfRmAHMPd3V1XZzEQCGBmZgYXL17E0aNHUalU3FlnWueRlU02Njb6vC2bMKEekP7k+rHAxBizemKcuwqQmi2oc1tjyJaWZ0yS80FjyJ7cKh5wvcqFcSag38LT2BQnuSZoaI1AS0coeAH7nhuvtYkISify+ZqEAewnhPD/2lZunGXKOYvFMj2fCo419OLxOIaGhpzyImitrKy4rLWFhQUMDQ25mM29996LVCqF3d1dd4BkuVx2cSeCJfc98Z2VOlVgUOuaSkWTNSgam1BLnkkT6rmSmlMLn/dlv2lxV1ZNp1emSpH72PT5mkCgXp2+H8eNSSykGGmQ9Ho9LC4uYn193e2DI2ixnTQwNB6k84/gS6Bn7K3RaODixYs4cuQIhoaGkM1mUalUMDs7i4mJCUQiEVQqFUdfkjIm2AQCAZw4cQLPPPMM5ufnEQgEMD8/j2Qy6ZKXmFU5PDyMpaWlW6posB+VdVDjkO/BaziPCTT6u763JkTxJ5+hmaS2mICCFDe9qzHnyWDxgOtVLlQywL4Xo8DDuIrGvZRv10236i3Z5ArSPAz8K7VB5U26TTcqc3HbDbMaZGZFCx7nwTgGK7MrbZZOp91eHmYFdjod3Lx5ExsbG1hbW0O9XseRI0fwgQ98AIVCAbFYDGtray5Iz4MdU6kU4vG4S8LQzbnqtVLJMy7FDDlNoGDsh3uuqLgZDwL2aVx6GfT46IGxf1UhEXx04223u3ceFoA+wCCAqtdYrVb7KqIAcB4R94KRzgOAiYkJpFIpN2bdbheVSsVt5m2325ibm3M0VjabRSQScePHTcYsdsvyWfl83iWC0KMD4KhUUsBPPfUUrl+/jrNnz+Ltb387nn/+eczPz+OJJ57A9PS027Db7XaRy+XcfjEC/vj4OIaHh3H58mX86I/+KD796U/j9a9/PR5//HF0u13Mzc3h2LFjOHv2LGq1Gp5//nk37+gNayKFJvKo50XjwrISNtOPnhj7nffl2tEi2LpZXD17PlONQ5ue70m/eMD1KhcuFrUOaZnTKgRuTYG3lIXSE5ai4veU6lNFyN9plSodBKCPXlRLkTSN1uDjPikqPRsv4E/ulWo2m6jX664yA4+yuPfeezE1NeViKTdu3HCbg2nZMolAAV/brB6L0mpq4bOiCIE+Fou5mA4BlvcnuAP7FcoJXHY8+TyOI9+DMbixsTH4fD5XExHYL32lMTm+i3rd6glrEgXnjo5/pVJBqVRyHi/nB0GYVUICgYB7bz5PN14TDNXTUjag2+06Cq9Wq+HGjRuuUkqn08Hc3By63S6mp6ddAgwBWA9bJFBzs/To6ChisZjz/iqVCur1OtLpNEZHR3H16tW+7NVYLOaMActUKO1O4NaEGvVo1fPSsVVqXb07TWDieuI1XCNKWVuA9KRfPOB6lYsqIgUsKiSgv1aaLjwuCFXY+h31qLgwSd9pzEkXNL0HBQIFVL/f77LK2G5apEzfphXKZ3KBMg2cz6lUKlhaWsLNmzfx0ksvodfr4QMf+ADe8IY3YGxsDAsLC1heXka9XnenKTMrUNtML441Brm3q1qtumubzSbK5TLW1tZcYgLr8Cm1NzExgUajgbm5Oayvr7vCsgoO2hea7MHxZD/0evsnIzMmxEQU7mfTWAfbwrElkCnFqc/n/bnxOJlMun4nyG5ubrqTnPkMTRjhe7FifiqV6vNQ/X6/qxKiSp7xH83Ui8fjOHHiBG7cuOGo3+PHj2NsbAx/+qd/iqWlJTz11FO47777MDU15Tw4zqdgMIi1tTX3zEqlgh/6oR/Co48+iqmpKczOzroTr1mW6urVq1hdXXUUonpIXA9K43Ee8ifZBo1p2YNG1dPi5zTkdMz1tAReT2OQfUnP26MKX1484HqVC6k8jSeod6CxJS5AWndKFXEhcHGp1agWunppml6vz9AYF0GOi5eAqMkipKRYzokxLr4HFZyeZhwOh1EulzE/P4/l5WXE43GcOnUKb3jDGzA6OopGo+FoQVaYUEVNZc5K5IyZMSGBypxxBZtgodmCujEY2C+F1el0UKlUMD4+3mcEaFYivRYAfTE77WfeNxKJOOqRVfOZvq4WvnpPmiCj+6/o7fGYFgAuc5DeJO9JsGKGoo3f2CQftoEUs4230nPjNQQCxmuZobi6uoqxsTEkk0kcOXIE1WoVc3NzyOfzbjsDj52h105aL5vN4qWXXsJrXvMarK6uYnJy0lXp577BdDrtsgsJGjRsFCDYbnrJ3MfHvqSxoO+vMcdBfaVel64trj0CmFLJGnsdtPY82ZdvKXXlE5/4BF772te66tE/+qM/6g5vozQaDXzkIx9xk+9973ufqyxNmZubw7vf/W7E43GMjIzgH/2jf9RnmXmyL1xQnPRUWGqR6T4TTnatJ6j0mHpIGnBWCkuBh8JFDuxbqTabsdvtuqwwPk8XKM+TYkJAo9FAvV531jz37zAOtba2hvn5eWxsbODuu+/Gu9/9bhw+fBiVSgXXr193FcV7vb3DE5eXl7G8vIz19fW+s6uopLjfqFgsuv1GjUYDOzs7qFarDsA03Z9xEdI8Ozs7jnpi7IiemyowjaEB+/EUBQECCL0qxviYVajH0Svlph4WsL8fjSBB0Gq1Wn3p1bFYrE8hagafekmcZ2rAaNktJsDoHjEFw1Ao5IwEAiIBzufzueNRyuUylpaWUKvVMDU1hUOHDrkDJefm5hAKhZDNZt1BnRrLzefzuHDhAmq1mqvGks/nsbu7V3iZHubo6GhfnEjjXDq2+o/P4HtrP7D/uDa1r/RzrZSiz9AsVh1LpRm17z0ZLN+Sx/UXf/EX+MhHPoLXvva12N3dxS/+4i/iHe94B1588UWXOfQP/sE/wJ/+6Z/if//v/41MJoOPfvSjeO9734uvf/3rAPYU4Lvf/W6MjY3hL//yL7G8vIy/+3f/LkKhEP7Nv/k33/43POCi8RAqe11UzLqyGUr8XWkffq7Wuy4U5fCpFPk8AH3PoTCQzfiBz+dzVrIqf4IF28Tj53kPYF/51et1rK+v4/nnn8fm5ibS6TR++qd/GidPnsTnPvc5vPjiiwCA48ePo9FoYHt7Gzdv3oTP53Pp0Dz0EQAWFxfR6XSwurqKtbU1F7MhqPF3ZjUyNZzp4/QCmTwBAENDQ2g0GiiVSrh27Rqy2Szy+Xzfpml6mbVarc871fhZKpXq84rodTHjjx6zUrwEAn62u7vr+tbv97uYD+N89ECZxMHv0osIhUKu1iPBghQYq+1zL1upVEKxWHTtZfJLIpFwHpYqeQqNE4JfNpvF4uIiXnzxRSwtLeGtb30r3va2t2FjYwNXr15FqVTCoUOHMDY2hkAggGKx2Leh2O/3Y2dnB48++ijGx8exuLiI48eP4+rVq9ja2kK73cbExATOnTuHL3/5yy57VQ0tlmgiuDBjlHFNzslB8UN6SKTWbVairg8Fd2D/SB2Okab+KyviUYW3l28JuD7/+c/3/f77v//7GBkZwZNPPok3v/nNKJVK+L3f+z18+tOfxtve9jYAwKc+9SmcOXMGjz76KF7/+tfjC1/4Al588UV86UtfwujoKO6++278y3/5L/FP/sk/wb/4F//CKRtP9oUK1vLx6oEB6Jv0ushpSdsMQE2i4ELUTZOWAqHFy2u5IHlPAocCIKkbBqUZL2CtP76fUpn1eh1ra2vY3d1FNpvFzMwM8vk8SqUSXnrpJVSrVWSzWWxvb6NSqfRVWdB3pOfG6unsL/YJ31GtXradgKEpyqQASdFGo1E0Gg1HG6pFPWh8bNyL96GipIfEz5XOA/Y3g6sVzxR8pY7Vs1OlSo9SY5L8XcuGacyUc4/XML1cY2uMxZEd0NJVbC/HmsfAcO60221sbW1hYWEBR48exetf/3oAe2d5Xbp0yc0jzrNEIoFOp+POJaNhw6NwCDi1Ws2d6sz2KqvD8dF1wrYqm6C0rhqRBDx9F11vun4oGhdjX5Eq1H/MgPQ8rtvLXyvGVSqVAMDt7n/yySfRbrfx9re/3V1z+vRpzMzM4JFHHsHrX/96PPLII7jjjjswOjrqrnnnO9+JD3/4w7hw4QLuueeeW57D48Ep5XL5r9PsAyVKu3EyKyUIoA8A1IMC9sED2F+sSmtxQdvsKIKUgqLSlWwbFzIVGeknKkrSXmrB0lPhMzWBANijFTc3NwHsza3p6Wns7u5icXERW1tbjq66fPmy84AYuyKIUCHQc8lkMq4Kho07EFA0TqVHu2i1EsbA+F16MZpV2Wq1XLyIHpImKrCvgP24FzdKa+yK7dB723gk6T+2dVA2qKaC0yvS+oeazKEZdPo7qdx6vY5kMolYLOYyHvmPip2GgiYuMKGHDAHnDOnNixcvIhQK4c4770QsFsMTTzyBl156CYlEAiMjI2584/G4o5PD4TBqtZqjCHn2WqfTwfb2tjuUlP2hCSS6htg2zmddR5ZS1LiirgWl+mgoWMBjcpXGqe29FKQ9ub38lYGr2+3iF37hF/DGN74R586dAwCsrKwgHA67I9Qpo6OjWFlZcdcoaPHv/Nsg+cQnPoFf+ZVf+as29UCLprxr3TxabEwVBvqPcWcCgbUMddGq1a8KkokOvIYARKVkvTICAZWi1nlLpVK44447sL29jfX1dcRiMWxubmJpaQn1et3FmXhMRqfTQSaTQalUcoF4APjc5z6H2dlZl1XGrD6CEeNdiUTCKQPG0ur1ulOgpMg6nQ5SqZSj9viz0+k4II3H424zK9+v1+s5BQ7ApYsz9Z4AzGQPKiTG0ggu7D+CBz9n9Qpmx7Gdmlih+7mSyaRT5BzPnZ0d9+58L84lgrMmkti0b/YR+4nHoDAOyP1xWlVDaTCCvho4BB7ShexXKu+1tTV87Wtfw9jYGF772tfi6NGj+K3f+i0899xzePe73+1AioWXq9Wqq6XIwy2ff/55vPGNb8Rjjz2G5eVlvOY1r8HExARCoRDK5bJLGqHHz/HTLE3Od43ncn5wrdkkDO5FVHpU46/sZ2sw2Wdw7XkZha8sf2Xg+shHPoIXXngBDz/88LezPQPl4x//OD72sY+538vlMqanp/9/f+6rQdQj0AnNBcRrKEp3UWlqBpUmVhCwlA4B0Ad2vA+tRaCfjuNC1dJMANziP3HiBE6ePIlqtYqdnR3npdCDpDJlUVkA7swuZgSGw2E899xz2Nra6gMYBu6pRMLhsPOsSOXR6teMLQKQUkdK4VD5sn2WiqWSodfCxAj+pAJi/6pXQuE9tYSSNSzo+VSrVQdS9GY41tp+jqWCosYuNV5Dr1oPNWTfanvoBRCQe70earVan3GjHqg+U+eltkm3RTBGGgwGsbKygm984xvw+/c2PudyORSLRVeZn6nxsVjMebKZTAY+nw8zMzO4fPkyhoeHEYlE3HzL5/NIJBJuY7cmPrBN6nGrQcbxUG9Zsw91zXG8BiWZqeGgSSCa9NHr7R9Eyv2NHnjdXv5KwPXRj34Uf/Inf4KvfvWrmJqacp+zKGqxWOzzupj2ymu+8Y1v9N2PWYe8xkokEnGVAr4fRT0eUhs6+W1mE5WBKk4uDHoj+n8AfTEAjXdpvEXpII2dcPFRyXMh+3w+nD17FjMzM3jhhRcQiUSQTCaxtrbmzsVihYVgMIhyuezes9Fo4D3veQ/OnDmDYrGIixcvotvtujOeotEo4vF4H43M86CA/rPIfD6fU/b0YIPBoMtqZMJIKBTCyMiIO4qECSRMPKInpUrY7/e7U5X1oER6NVoPkV4Yz9Xy+XwuKQLYS1fnM9keeou9Xg8jIyMOcFTB0VtgPI8p9dazosHAucF4IkGfQGOTRXZ2drC+vu7mhh5dQiqVBWLZL8zGs4YMwYbgwncpFArI5XK4cOEC/viP/xhHjx7FsWPHcOHCBTzzzDM4ffo0MplMX+UTHgI6OzvrDKRAIOD2+F26dAkPPvggkskkyuVyH7AzbqlxYd2bqPFJpfEs3aj3YkUZGz8D+uNb7FdNrGLyCA0cTWzx5Fb5ltLhe70ePvrRj+Izn/kMvvzlL+PIkSN9f7/33nsRCoXw0EMPuc8uX76Mubk5PPDAAwCABx54AM8//zzW1tbcNV/84heRTqdx9uzZv867fE8KA/AaBNYYFK/RlFvGD5T+4IIC+msJajB/0LM1pmZB0gImRbOw6vU6isUigL1MvFQq5SpicN+U3+9HLpdDJpNxVmu73cbw8LCLifn9fqfMWYGDylf3WtGj0uQCtkXjP/RQNNOs3W47y9zu3dLEA6Z5s/38Sc+ByoztoLJkqj2VOseB/ydNpAkf9A51MzI/U69A40Uqmgiglj/fiXQi+8t62u12G6VSydGWmnihY66p4mosERColDU93nr54XAY+Xwe3W4XKysriMViyOfz2N7exvb2tvPW2U4efNloNLC5uenoWx5fw8r4NAjU+1TWQNeTXUd8F62yYmPL7GdN3KAMyjRk3+q8sge2eh7Xy8u35HF95CMfwac//Wl89rOfRSqVcjGpTCbjjj74e3/v7+FjH/uYO1ri53/+5/HAAw+4bKF3vOMdOHv2LH7iJ34Cv/Zrv4aVlRX80i/9Ej7ykY98X3tVtxO7wNXq02vUWuR1wD69BfTv91LqQ+MTmqihiSEat6DC5SKjt8WFq9RLo9FwwKWeTLvd7kta0GyxTqeDfD4Pv9+Pzc1NLCwsOFCgx6XVLKx1r0rpdoqA76Yxnna77fYEZbNZ1w+a9MDn0Cvl39lPOjYKAOq5qsLTdpGSo5dFICLjoF4xjRKl+jQLUONmCpo0CihK9bJf2B72CRNgCNxUzgRnemfqzXBM1ICg10dhm7rdrku2yGazqFarLkY0MjKCmzdvYm5uDtls1lVHAeCSTlqtFmZnZ7G1teXOXYtEIq44MMeS3hP7XZMudI6oYcbvqYHAvtF1Z8tw6dgqSCmY69wY9GxPbi/fEnD9zu/8DgDgrW99a9/nn/rUp/CTP/mTAID/8B/+A/x+P973vveh2Wzine98J/7jf/yP7tpAIIA/+ZM/wYc//GE88MADSCQS+NCHPoRf/dVf/eu9yfeoqFVNUXBgKjSVrwbXAfQpbqA/YK5xDs0qU0ua16knodYrf2o7fT4fotEo6vU6hoeHEY/HUS6XXdV23RfFQwKPHj2K0dFRZwSdOHEC3W4XV65cwerqKoLBIFKplEvk0axHUmkA+ipDELiq1Wrf+5PKYXJIqVRySpdBeN6LHiH7kH/TrENa+GqhazYaNxLrfdQzUoUXCOydU7a9vd2XbUbDgIqeAMC4oXqUSkUqlUvwYwxLKV6OHf/GtnK/Eb1ftpHv5vP5UCqVHGjo/bWiiXqJHB/GJ0mpsrRTPp9345JOpx0duLGxgfe85z3Oy2IcMxAIYGtrC7lczu1dY63Lzc1NHDlyBN/4xjcc0GvVDwVXLVM2KOYL7Hu7yoLQIND4IdeubotQw0M9cfaxloPi2KmR4cm+fEvA9c1YAdFoFL/927+N3/7t377tNYcOHcLnPve5b+XR37diuXV+pnuflG9XBQqg7zNgn/673f9t7IyiyQvAfhKIJncA6FuogUAAhULBHUzIxcrKE1TyBEUqnXPnzmF8fBzz8/Mol8vOgqe1q54l+4Nig+a60Zm0HhXX9va2iwuxDdy8C+zTqOxHvp9ScvR8FAB0XNTz0H4j6GoqNpUfQYd9SKOC2W+avcZ4iHqBbAPnCa9Tw4YegnqpbB+vb7VaDtS5KZpjBuydqExg12QOHR+Ci35XU/F1XrGNrB5y8+ZNjI+PY3Jy0lWw39nZQSaTcXOalfwZ95qdnUUgEHClwCqVimunAjXnkc5xNSys96xzTLcL6Hrh9WQkNBnEshjKoLDSiCboWO/Nk37xahUeANFMQaX1qKS44Oh9aVCZitOmxas1rxY70J8MoveiZ0OFzMWoWVaqhLPZLKamplCpVNw5XBQ+iycJP/vss6hUKgiHw3jHO94Bv9+Pxx9/HKurq4hEIjh+/LirLM826DlS7CPNiKvVamg2m660WCQScWdM7ezsoNvtIpvNYmJioq9dGk+jIqP3wFR41rzTBBY+X6mzbrfrSln5/X4kk8lb9oUxrsUTmTkG3W4XyWQSmUwGwWDQVWYnZUqvgm1mEglpRo6Tzh2CGfuQ4Kz0H4WeNVPQa7UaNjY2XN8lk0nE4/G+sl6aAq5gSeOAHhfHX2NLPG05Ho8jEAi4c7fe9ra3IZPJ4MqVK3j++edx/vx5d5ZXp9PBmTNn8LWvfQ3RaBQPP/ww3vSmNznAfPrpp/E3/+bfxMmTJ3Hx4kUXp1OKUI06/tSjewjGGp9kPE1rDHLNqDGgyRecLzSG1KjQfufmao8uvL14wPUqF0tF0FrVbDF7vXpLNtiuVhwXlH7GwDuVoQaXNeVdN2Jq7AeAy2YcHR11JY2i0Siy2WzfybmM5TQaDayurjqQWVtbQ7e7Vx2eFAv3XGmQnJ6TJgooXcdSR8PDwxgaGnL35HsMDQ25bDa2g/dWT0atavYj43RUOnYPkNKwzDqkt6NxDLazUqm4+wBAMpm8JZ6lxkqxWOxLKuA91cPTOKbOHwoVNIV9yxhZLBbD0NDQLen/3W4X1WrVxaJ4rAmAvjPHtFCxHvnC+2kcT5U034eZd81mE6lUCmNjY3jppZcwPz/ft6dxfHwcQ0NDKJVKfdU9SCPH43EcO3YMly5d6nuWxjk5FuotqrektKIafErDc/7zXurJA3AbzDWuxTVEYKQho8aqJ7eKB1wHQGwiAAGFSoRKcRCtYSkKLjQqUd5TF5NaxFxUVDpKewD7Spzp1KqUSfn4/X7k83nE43FH4fR6PWxsbKDb7fYVxAX29nFRoYbDYSSTSZfizeQNYP/EWI3j6cZZKg6eFUUPhfcljUkhjWSTOdg32pcESI0lqvWtcRvGnXRMqNy4N4kWPvt6YmLCFfVlH2p1kO3t7T6DgdQb34P9Q3pRwYuAx2SYXq/n2keAYpwsFAq5LFDWUQyFQtje3sbKyooDRxoJHC81YjiH2VYFNqUPtdgvj1Dh5vRoNIqhoSG0Wi3cuHEDmUwGw8PDaDabSCQSmJiYwMWLFxGNRrGzs4PJyUlcu3bNFeidnp7G2NgY1tbWXFyQ42yTW3Sc1FCzFS40YUfXh4KfziEFNn02P1NqeNB+ME/2xQOuV7nQMrUKlYsd2MvWsxPdLhSl/ID94LBSGRo70ziJDa6rR6cbUWmt01Jmkojf70ehUHB7/PL5PDY3N52nRes6FArhnnvuQSKRwMrKClKpFJLJpPM+LMWp3gKVNBV6JBLB0NCQSxagNX3q1Km+PW7AfgILFSeFfcD4HPe/BYNBZDIZdyIyv69t5P4yn8/nqD72n26IZhHjfD6PRqPh9re122138CIp2nQ67dp95cqVvvqPemAkY0paAJbKl1X6A4GAO1ur3W67vXGkYAmEKysr7owyprIHg0EMDw9jcnLSKd61tTV3OnI0GnVH2DBeRzqVyRSsJEKgTiQSDuhLpZI7qHNoaAjLy8vY3d3FxMQERkdHsba25ipqcP/coUOHcO3aNeRyOSwvL+NnfuZn8Nhjj+HSpUsoFouYmprCgw8+iM985jOu2gjBRctT0fNhe3UtKdVqY4zAPsVHINTxoRer+/q4dnkf3tsDrVcWD7he5aKgQaDR+AGpBrtp0YKMUlNAfxUFAqItN6PWo3pSqoiUJrHZWsFgELFYzCmocDiMkZERzM7OotvtIp1Ou3hBtVrF1NQUTp486YBPkyWUDlR6lJ4QN80yzqKxHG7o1Ww7tltjLz6fr4+Cstl2zWbTHUYYj8cRiUScAgbQZwSoklZvlOCitBStbAIQ+2N3dxfJZLIv4UL3udm0do310QDRWCSf3+3ubeTOZrMOmFkqS2Og5XLZ0W8EWd43EAggl8shFou5uB37WveMcS6yjQrgTBAhoBK4SeVyM3W1WsX29jaSySQKhQJWV1extbXlqFUmabBmKg8BPXbsGNbW1twWB1LCmgXKcefYce6wv/x+vzMA6JXahA711Ol5s991HSrtrokiHBOCnqX0PblVPOB6lYtSekB/mR9VzrzO8vHW6+K1+ncqK6WRlEqxi1wXnAKAxmDoRTEFm0q/UCi4eE48Hncn4RK4pqamsLS05I7YoEXKmJ6Ww6HlSkpN6cVgMOgC6PQ42Gd8R1VSFI1Z2PgR28EKIARrVTb6LI4f26pjZPuYgMDvEJwYF/H7947x4GcEUvW0FNjZHgURPjcej7vN4EpZsg1K3dIDYbsIPM1mE0tLS0gkEm4bA+OI2l86Z9WjUK+z0+k4w4OGTzQaRSwWc3Or3W67ijzcXlGpVDA0NARgL8nnyJEjeOGFF7C7u+uK7+bzeayvr2NoaAjJZNK9E9unfafZglwzbLduAeFYMtFDDRCdB/q+gUDAbaVQ9kMzHNUY1Xnhya3iAderXGwgX70dgo3uS+KCUSuXC0h5dyZJWKWn8Sx9Pr0OPl8rS2hWlS44VvFntQMqwxMnTuDcuXN49tlnMTc3h4WFBRw+fBhveMMbcPLkSVy6dMlRTpoEwhgVaTg9MSASibgyY2w/92+x3iGAvu8w5ZvKyu/3uxiYgiQrwGsyCjfBWuCj58N33t3ddaDK9vO7qVTKtZk0WTAY7Ktgr+DKPmg2m9jc3MTu7q6r2Vkul1GtVt2ZYiw+PDMzg1Qq5dKt1TunV8W+7na72NzcRK1Wc0ZIu713cvD4+LiLfXU6e9XX19bW3JE1NCx41AuVs5baYnIM+5XeDAGTtKp6j0zyoVfr9/sxMzODmzdv4sKFCzh37hx6vb2q8SdPnsRXvvIVxONxrK6u4i1veQtSqRR+//d/HxsbGxgdHcXw8LDbEK9zi4DEcVYqkG3h/Ff6VecQPS3G6GycWGnIQWDJdasJNh5wDRYPuF7lovSCluYB9ikzu2dLLV5N2uACUq+MGYtUEkp98NmMASiA6n258NQD8/l8LsaTTqeRz+exsbGBSqWCWCzmAv2dzl5liFwu5zYr07PQYD6VhIKZLmrSVSy/pNYuSwMp0AP9e5b4buxLKioqGSozghiz+kg1ahYi35/gQEXe6ewdRFmpVNxYpVIpNxa8N/uUHo6OK9tLEGNcivvd2IZEIuFOIWd6OcdJj5HZ2tpCr9fD4cOHndLU9rNvbbyH3jMTZCqVinu2jo3W1VQDAYAbE1KlpNkoWqKMtRgBuNhfuVxGsVhELBZz+7VYImppaQk+nw8TExPw+/0olUooFAoYGxvD8vKyMy7Uo9WkCTXCOG/0yB4V9dB4vY6hxq30Xvp9tkG/q5SkJ/3iAderXJSaA/pT2gkyBBMtlEoLktSILg7dO6RUpIISn60gSMXKTDBSZWwL79Htdl36M4+TYCp7rVbD3NwcNjc3cenSJSwuLqLb7eL+++/HuXPnnEWaTCaRz+cxOjqKbDaL3d2985bomTDuoYqw2WziQzc/hFg01qdoItcj+Mydn3EZjbphWOMa6gEozcqzw3w+Hw4dOuSq0FOxrKysoN1uY2ZmxilJxsH8fj8WFxcB7HlYzWbTJVCQ/tM9Y/TOGFNh+2jNcx9QIpFAvV53/c3PYrEYxsbGXL/Rw+OBmxrn0xJOY2NjLsOzWq06Q8Dn8zlvVbNQ6dXRoKhWqw64mJyhwA70G05Af2IPPTu+I6lkYN9z5vEhkUgE09PTePHFF3Ht2jUUCgXn3b/5zW/Gww8/jK985SvI5XK4//77USwWXV+94Q1vwOzsLOr1el/mqe7bYnakUnWc0wD6jD32B69RNoSfM9mFz6BnxzmoAMe1OojG9mRfPOB6lQuBQxMOrFVIpapej2Yg3m6BERTVw7IJG7yei0s32uo9gVvr7tESZzyGmYak2phZ2O12cerUKUxNTaHZbKJQKMDv3zvaIpFIuFJCiUTCFVPlvfjc//v6/41up4tmsIluZ39jNOMkTKKgV8Z3pQLhO7M/CRbMNmM7y+VyX+xI93rpMSrcGKweMr0TKmFmMbLP6QkxjkajQOlaSi6XQ6lUwsbGhquwTxBhvcNwOIxqtYpyudxHtVlvWeNwVJoEU9sG/t0mtJDaomJWg0b/WWOKbaCnpvNWn8u5xr5k3Gtra8tlL7ZaLQwNDWFiYgJPP/00nnvuOUxPTztjZ2trC6dPn8bk5CTm5+dRqVTcOGolF02CGhTv0nXINmsClc4rGk9sv916ol6/9pHnbb28eMD1KhddMLoodOJrJiDQX8tQPTXeR2kbVYgKgLyWilfBTgPwlnbjTwIb6TdSdMyy6/V62NnZwe7uLiKRCCYnJzE0NOSyxzSBhIqcFi+9CHpFf/fG30Wnt28Z7+zsoNPtIJ1KA9gDjHc9/i7s7u7i/zn3/zhFpwpGQUGBnkqZFFupVEKr1UIul3PZablczmXmMQ18a2vLUWq5XK4v1kUlpd4f+4MxNptt1ul03NEhPp8P2WwWzWYTq6urjnrlPbiBm7UhNa6lsTtN0CHVyJR/rdHIcWSbOBaDsjH1/uxX7WctmaVZd2qYcU6zbUp/a+V5jvXOzg6SyaTzVMfHx/H8889jeXkZi4uLSKfTbv9WoVDAoUOHHF1Impf34zPpUfH9dC1oHFepVf1J4TvRU1QqWdkCpf/5HQ+8bi8ecL3KRak7AoAqNVU+ln/vdrtIpVKOJuEiJVUBoM+6Uw+B3pgqjk6ng3q97hSQKhdNYS+VSm4PTrPZdMF+VoAH4JQusHcC9uTkJObm5vDkk0/iwoULLkWalBmpqd3dXfzIMz+Czu7/Fw/xAb1QD4GeVDn3AZFwxJWIqlQr6HX3FND/dfX/QjSylxr/+dd9HsB+MV32JZ/D+JRmxTHlfmtry1Uzn5ycdF4PM/7oZRYKBdxxxx1YX1/Ho48+6jYUA3DZiewPptD3ej1XX5EHKBIMADjvLpPJOIpM50Sj0cDKygrW19cRj8ddNX32ISt56Nliy8vL7vmaWEKaUPcfMcmA/a1KeXd3F6VSyb2f1qHkkTTB4P5ZaDrP2N8A+rYQ0JPl80i35vN5VKtVLC8vI5VKIRAIYHV1tS8J46GHHsJ9992HxcVFR/ned999+PrXv45YLNZXYxEAYrFYXxahrgt6TOxvXS/quVIsK8AYncatCYLsA03q8OT24gHXARBaq7rQlScH9hMM1GtSj4wejBaq5b1JEyntp2WZeG+g/wgPpXH4PHoH3KxaKpWwtLSEeDyOdDrdF+tqNBru2PVkMonZ2Vm88MILWFlZcVluANxR9rFYDOl0GpFwBL7I/h42nirX6e5lc0XCEUcRNptNoLdPWcVjcfdu73r8Xej1evjyg192fUblROWqleeBfctYy03ROGAdQ1bbp5IF4MojMQkjkUg45cy+jEajLvOQldJJjzGbUiuYZ7NZ5wnyuT6fD4lEwrUzHo87j4xVJLrdrgMojicBhu+u9Q7tPOR3bJo87805xr9rkoPOF36Xc9TSi5pMo4k/bEc6nUaz2US5XHZloarVKvL5PAqFAtbX1132ZTKZxObmJorFIjKZDCqVCjKZDHZ2dvooPK4vGk3sR64xNeQsi0FRD41eKUGfYKWeGPtKM4W95IyXFw+4XuWifLvSCrSElVLQgDCFqddUQno/BTq1/PhPKUHNvGNyB5/LBc0sQR47QUoLgNuTtbOzg2Kx6I7B8Pv9uOeee9But3Hx4kXMzc25xR4Oh90ptz9x/Sf26ucVYwhk996RySV8j2ariUQ84Sz0ra0tdHtdxKIxd/gjAVGt3nc++k586Y1fcindvCe9IRbrBeDiV9wrFgqFsLS05A5aVO+YBzCyyG4ul8PQ0BBGRkac0t3a2nJWNmNoPAImmUw6Co6eDbMqCRbcoFupVLC1tQWfz+cyFYE9cGMSBsefdQUtEGn8SPcdKb1LpUtw1u9TOXNjOfuY/cR+0WfwnpqVqdQ05xX3fvF6vnuv18PS0pKrtBIMBrG5uYm7774bxWIRy8vLqFQqOH78ODY3N/HEE0/gDW94A6ampjA7O+sSPpSKJcjyvZXRAPpLNinlrjSjHuBKSlFjYrp+aIApMPJzLx1+sHjAdQBE+W+1Am02kl7HGnWazKHnbqnFq5y9AoFSQ7z2/2Xvz4Prvs7zcPy5C3D3BTtAECDBXZRIU4sl04tU2bKdVFadWMk3mTTeJk1nXDtp42kmk5l02qTZJv8kmUniNlMn42bquLGzeIutSLZlyVopUpQoijtIAsQOXNwNd8Hdfn/g95z7fF5eyrHbpKR9zwwGwL2f5azv8rzPeQ8VmD6HC5f7V5hSp1aruQ2jjUY7Lx73DzFekkqlsLS0hLW1Nfh8Pkezjsfj6Ovr21J6c97UOCxa34A/4Nh69XodjWYDPvjcZlZLzVbr913feRe+ft/XPR6oxp/Yx/QslGJOpaX9qlAss6kPDAxgdHQUqVTKCX/CSRwfzd2nAl/JERRyQFsRRCKR66jsvFYT6ypb0noAyqrTH+vpaB/pWGhMSr0XPTCSzyHsao0yHRcba+Pc5z2hUNuzZqqsSCTioEueTBAMBpFMJhGPx91m923btuHq1avuvcy4wrnTiSSiMTmdF9p3mvmdyq9T/Ix9o+Qdtl33fXVL59JVXDd50eC8LmBaiVwYyriybEGfz+fOoVIBS6GvZA9L3tCiC1QtTF6nDDSgDQfpYm40trIkMBv8zp07kU6nMT8/j2w2i1Ao5KA35im0cI2tE/tJhTsVAgWnVdhq1bKuSjBh36rgAeAS3SpbUWMZVPYUzvyf+f14NpSSNBSOoxfRarUcnKj1pGJjYmP2bygUcl6cpVKzD5R6becY60tYzlLX2bf6XDVotCj0rFnhFWZTSFvHTpUpvTLWi3UnTEtSSG9vr9vgPTQ05HIrDgwMoL+/38UiY7EYlpaWkMvlMDU1hePHj7sUWxwra+xpZhSuEYUKbYxOY1/aH7re2Oc0pNi/agBa+LFbvKWruG7yQqtbrTUVqvSi1MplsbEtCmQlaZCNRg+j1fIedaELGWhnqreWIr0Fv9+PjY0NDA0NYWxszAXECdO1Wi2cPn0ac3Nz6Ovrw4MPPojJyUm8/vrrKJfLSKVSjoVXrVbx7mffjWq1ikqt4gQhhYdm/lDSx2ZtE5vVdmyK3h4Al7PQ7/c74gV/HnrmIXzpzi+5OBSwpYhisRii0ajrJ6aYogIBvLFC9gOF6tDQEPr7+9Hf349WayvDST6fx+bmpiN1UCjyiBB6d9rvJC+USiUUCgX09PRgdHTUXdfX1+f6hYI8kUg44gLjYKwvi8b3WBh/I7FHY5u8R+chDSc1DOhpqQLQzeyce1RWJLXo3CPMyb/J5GT7mCEkn89jdnYWO3bscHO4r68PY2NjjvE5NTWF1dVVnD17Fvfffz9OnDiBK1euuPbyJGLuQ6PC6e3t9cDIpM7beLMqX/We2Jecp7yGBg/Hj23ieNu12C3t0qWv3OSFAoICUS1Afq9MQC42/Yz338iS4/+EPtTq5Tvsb1rEVCK0Vm3wn1nbueh7e3tRKBRQqVSQSqVc5nemO9IF/NAzD22REja3NrM2W96sAsp6VOEJAP7A//9zv1fgqhfQab/RIyce8ZANmM2B7WEfsI6M+fH8Kmbp4DsDgYA794vCuVAooFAoOAhR4S9VftVq1Xl0rKumJyqXyyiVSu43FQmp6gqvUZByfDTOqfNIvW3OBxo77Df2D8fbeuf6Hftc42jKwuMYUgmw6Hs0jZJ60VSOjJWS0s+NyzTYyGodGRmBz+dziYAnJiY8pBD1kNmHukasZ6n3Am3CjsKxOl/ZH7oO7XrUfuuWG5eux3WTF05iG8BWsoV6P7yHi0yhCcBrMVN4c/FYvN4KMd6nnpx+ZpllzWbTZYbn3p9Wq4WVlRWXrqjVarm9UfRa1tbWALQ37Prgg8/vg9/n91j1QBumYpC9Xq8j0AqgFdjyWALBgKsrBZmlMVv6MYkXVEzK3uRY6P4fPlNp9OxXv9/vzhPj1oBCoeBifLTG2af0qhhzUUo6n6mCjaw4HXPG+ajIVTCrB61CU+NXVFa8l+/UOaXKiHPFQtV23uj72K8Kq7Ff+bkaC+wXeiT0IAOBrSweq6urbtM3Y6qch1RoQ0NDziioVCrYvn07RkZGsLCwgEql4tmETE+Ya4djqYadrk019KiQ1HDUdcjxUkhS45o283+3XF+6iusmL7VazRN052LQYC/QphVTgOjmUBWyankD8DyHnykEZ4UN4R7+T4FnN1lOTU1hcHDQMfO4P6Zer2NlZQWtVgupVAqZTMaTm5AezvuOvw8NX1uAdIJBGc+hwNWM4/6mH36fH8FA0EMa4F40K7xpzff09OBfHvuX+Mbbv+H6TgU0/x8eHr7OYOBzA4GAyxHIn3q9jkwm46jbqhDoAdGLYh5EQlSaT88qat1X19vb60kMbPdgcU5Y5U84jEX7i8e46OdUhGQvcnuDJpv1+dqpojg3+ByNtVFxK6ORRgCzd2xsbLjtBNpPCwsLiEaj2LlzJ1KpFMrlMtbW1hCPxx00zMMnc7kcRkdHsX//fszPz2N9fR07duzA0aNH8bd/+7eeGFqz2fSc4cb+0i0onK9q/Gg8lNC1zjt+zz5Qb7jVamdeIUzdhQpvXLqK6yYvKjSoIKwFrXCNWntKw+V3yvpSqEKVon6m1F21kFWJKKTIDaZTU1PYvn27O/yQMYRiseg22zLJKXMI8pkfOPUBNAPeM4oIkWmsRZWuCmK2QRUTr9e0UzYmoW1WaFHbqe1XiIufsV3cNK3xDUKk9NKoBFkvLZo7j4qJ8wDwHrli5wufrfNA+4x/a1/xOiW/qBembbaEFR0L9eCswrNZKvR5fK96xxxzelpUHtzcrfBjT08ParUaisWiO9Wa8ycajTqj4tChQwC2jIxoNIqBgQHPHNYYII0LheGtp6prhf1ivS32k37vgbVlPaqBqUZRt3hLV3Hd5IULQyexTnoKQfW0AHio75YZRmuPGbd5DRclrUmFsFT4qeKkUOMemN7eXtx222247777kEwmce7cOZfJYHp6GufPn8fa2hp6e3uxbds2NJtNtxlUT961cTaNBanS4HcUBqyPU9BoU9jZHo2RKexFb1LjL2wnv2dmB6vw6/WtxLnJZBLNZtPBVsDWkSOZTMZBoFbAsb4UuMFgELOzs+6ZjJ35fD6XmYPPZj8Qhkwmkx6ly711JLtQmFPJ6PYBjX1pPKvVarlM/4x1MebEPtKN0eoxUBmSYMH3+/3eDOmcU9ynxs+q1arbC6cQLEk8fB6PgllbW0MymfScTk2vv1gsYmJiAuvr67h8+TLi8TiGh4fRaDTcZmS2wZJuuGbYl/xc4UF6/GwfP+d4sI1cs4wL83t6rDpfu6Vz6ZIzbvKicSSNRQHtVDTE5dWCVU8CaFvFtGL1On7P36osbRzLejidIEWef8W0TjxFt1gsYnV1Fa1Wyx1NQQ/NbtDkj76f77Uekyoy62k1G144T70qJXaQYMHy7mff7YEJrfemno1lEpLGTiOCOQqj0ShisZjnFGZLOGB2kHg87vYpcRM2j4KhErjR+Nk+ohDl2LNuep3OC00grGNMoo16ZXwv+4+kBiop7Xv1EtWzokepY6Jjo3OLitPu72IMlfErFioZJlYuFAoO1vT5to7cicVirv1si64ZnWca19J5qf+rl8V7NKVYo9E+w8v2ozWuuqVz6XpcN3lRD4LCRoPnQHuBqULRQLIqI8CrBG28i89jUSVon6+fkUrcarUc/ELGG7OeM4NEs9l0Bwbad7zv+PvQjLQVLtuqMSkrEHWRe5SX34dWs20tq9JS+E0tW41ZUCnp51poGWscgnXUOCGJFvSolLihcBHvZQ7DRqPhWIrWW9E6MMMIAJdJn+9h3Vh/jSuRfq6xFmX5Ad59Y/TstD4KfanwVlIIn6demipGevSdYEyti8b4WDeFeLlXURWXIg6NRsOdnAzA7e8aHBzE1atXPXFhNQgYH9QxUI9Z261wonqOmttTERNtJ5/VCQLuFm/pKq6bvNjsBKqklCHGBUwBQ4uUC0QXnOL5CsVZ612/454bWttqKTOYHYlEsL6+joMHDyIajaJSqWB0dBQDAwNuoQNbcND27dsdTMi60BrVtDsUgJ3qx7ppDIF1VmVoFRPQttxV6dn28VoVhhS4pMNTcVDosR30MLPZLIrFosfwaDabLj0R20x4kXAps50nk0mnBOfn5z3EiFgshomJCRdLI4yVy+UcLEhPnCmSNG5GggdzE5KCrx6EZmMnjMz0XZybJGFw3NiXhL3YJgutqceYSCQ8ngiNFd7D+axKjnOF8S6OC+nvTBVVLBZRLpedl+/z+TyHmQ4NDeHSpUtOEeu2Ao6lKlmOsyIAVFYcYxYlcxCatV6VwsXsH37fLZ1LV3Hd5MVCdwpdkD4NeD0s/g94jzjhQuGzlKar8TAlQCgsqdfbLBk+nw8bGxtIJBIYGxuD3791KCIXP/P9VSoVRKNRDA4Oejyeer2OH3vlx4BAu91sg2VF6nt1cSucqN6V9qOFfNQTZTvZD3oaMn8o7NU7UMFMC53nYOmRLtqXZF8qCUNTASlRgtfRe4pGo9i2bRuSyaTbdOxieq2WB/bS8acHScadz+dzMSUqXNZHPS/epz+ce5qWinNKFaT1LK2Xy7HoBC/yeUA7CS3nKn+zb9hPVOC6ZUPHjxBsLpdziYy1Tro2+Hy7ljp5Q2TDKkSvKAELn8H1pu9hHXWddkvn0lVcN3lRYazCm1a4xl1oxdr7bO41PkuFv8Jieh2FEnMfUgCrt8DF32w2cd9992FoaAgnT57E8ePHEY1GcenSJfh8PqysrODSpUvo6+vD5OSko7or049EAW0L60QBB7TjLgrL6G96H6p8lW3HPmJRKFChLt1UyrrSmuc9akxQ+DebTRerYqJbhQNJ519YWHCnLlcqFUeXL5fL7n3AlmCMxWIYHR3F8PCwZ0MzBXckEkEgEEAikXAU+Eql4sY1FoshEAh4PqMCYhvVe1A4lZ5Ms9k+bZl9oR4Rn8k4lCpRVWI21qXjoYgBz2LTcaEXw2wv2WzWzQ+eOs3MImoIkOzi8/mwsLCAeDyOXbt2IZ1Oe+Z2q9VycUgqFo6B1kMhTIVG9XNFGiyjshNUzXeq59Ut15eu4rrJi7UcAS99tlMQXOM0KlD1exYuago/tbbVc9GDA5VhyOf5/X6kUins2rUL2WwWZ8+exezsLIaGhpwgZ7aIwcFBz2bdRqOB/+/M/+eeqUqEAoGLWYW/ClotSqhgsZ6W/fxG7+Zz1BMD4FGgahlTWfT09CCVSrngP9M/qUdEmIt7lBgrVMFOBRYIBDAyMoKBgQEXz1JlTm/D59ti3DGmqNDb5uYment7nbenyl2VDw0Z9cLpxdTrdbfpmfepZ8hxUW+V/cz/+SzNTMH2dPIyCEWqsgPaQl2hOI4BGa4cX0UT7FliNGaoDHm9rh2rSNSTV2idY9dJIXOtsX/VGNU5qH3aLZ1LV3Hd5IWTXa04oL2BkYvLKhoAzjrWwLA+V+/VZ3MhU5CqRWmVFtBOLLtt2zaMjo7iypUruHDhAhYXF11uuUajvfGX8TLN/6bWqQoM/bGKxSoh/VyhOa2rjcFYj9UqIu0XFTR2cyqfwzZFo1F3LIluPlWiSSgUQn9/P4LBILLZLGq1mqO96zYFkggGBgY8SXgJ/3EM+Vsp/dzAzL1PjO/Qs1W6OiFb62WowiDUqGmltJ+0jZ1gNe1r2+92jKgwNLUYx5fxLc5lJdGUSiXEYjGkUikEg0EPzT0QCLiDNWlIdII1VeF28rSUcWkVrq5HbQ8NA0UC1Dhin1mIs1uuL13FdZMXChPdSKxegpI3NJis5whx0VsBzkWq1h2hLhugV0aXXk/BOTAwgAcffBDbtm3Dn//5n+PUqVMIBoNYXV11cA7jJ41GA9PT0w4iY4yIC16FIa1Ta/H6fG1SAAWfQlWd4FXep54B+9BS/VWoUOFSiQSDQRcnUko8SQGRSASDg4NOWSmEpN4wALdHKxqNYnp62nkArVYLGxsb8Pl8GBkZQTqdhs/nc9BZJBJBs9n0nKqrsRWfb4udODAw4GJumUzGZRsB2rE2VcCq8FUBEfqjl0IlSMVs458atwLgyCKqfAjP6fhoXkZLHtI+5HVKFOF4MInx6OioS7WlCjuZTLo+Z/H7/Y6YQoWmRT02RSU0W4jGmS0krwYS0zqxXxVKZFu75Iw3Ll3FdZMXXSQ2Y4YuJutxaUCdi0b3xKjVDuC6a/keazlaWITX7dy5Ezt27EAgEMDMzAzK5TJ6e3uRy+UQDAaxsrLigWzm5ubQbDad8FBos5MVrvVST5PlRlavCgDtS4UcO0Ezj73lMfjgpUSzTrZe6rkGg0HE4/HrrHi1+BXSAraELfe0kQFHJU9FQiXGY1FYLwtzsii8GQgE3D4wq8zt3FFjRuM4gDdBrvaXQrnaH+wz9VAsKmC9Zx1XVXS8TzdKa1HYmJ6mptVSY4V1q1QqKBaL180pxu+opPlMfYf2l46nxqd03rJfbdsVXWA9GbsFujGuG5Wu4roFisJ6gDdBLosKik5wh4XgWHQxcvEo7q7vUlhDk9ACwN69ezE8POw2GTNjQz6fR6u1lUiXAoDwTbPZdIQCradlV3XqC8v2sp4o+8EqWPUc9TnWI9WYmibCVe+E0CCFXjgcdhAh66XeohoACknSCo/FYlhZWUGlUnGKPxgMolgsolgsOtq73+9HuVx2sKAqGgCed3LDsHpH+n7NfmEhUT5L+8rn8zmiDvuMRo+SIezcUuaceiCdYjx8H//XeaHHjSh8zbmvHk21WnXtUwJKq9Vy6ccKhYKrE/fMpVIpNBoNFItFbGxseCBJ7WuFQlWZWoNPY5bqhfEe/m0VXrfcuHQV1y1UuFg0W4NCEro4dJOrJRJobEk3gqpQ5zPUM6FQIDzY29uLSCSCUqmEo0ePolqt4uWXX4bfv7UPqVKpYGNjAwMDAwgEAs774tlWzCTB03s70Y+t8tL6cHF3glD5ud1Xo9+pgrT36n4htYb5o/EzKi3G83gv+1YT2GqMi/AU4bvh4WH09PRgYWEBr732mvOwmHmjv78ffX19Lo7DE4JVqdBLYx+Wy2WPEaMKjvuefD4f4vG4hzzA59FD5Dlhvb29yGQybh5SoQNe+I/jxx/Cz1S8VulQcOuhnCrIWdT75XlqSnTg3rqVlRUsLi4iHo8jFotheXnZkzmEHlehUHD1Gh8fRygUQl9fH0KhEJrNJvL5PF566SWnrHX+WAhY54hFNTjPqPz0Pv5N41ORkW7pXLqK6xYoan1SGCr+r5Ocv/UAP2vdU0BZBWDjPDfyelQoV6tVpNNpRCIRzM3N4cqVKx4hxJOCy+WyJx6nORVtih2tFwWfxgrUYlcvlMVa9ypwFDq6kWdH4U9ausY+kskk/H6/J2dhp71M6iVbqFffpZ6CJn2dnp727FdiXIseFmMqjLGwHnw+P1M4NBgMOiq8Qs38bb1KOwepJPW8K92TpF4Q663v6WRYaH11DipkrPPbeiJWKZMdS49KPUo+Q89Vo7Jj7IsKmpnvmW9zbW3tOqIUt4Dwb1X6uu7stg4qW4Xm+RwLpXZL59JVXDd5sRCQZcpp7ISLgVCI9cYoXBl8ViGjz+Y1Pp/PHSWhiVUVKmw2m7j77rtRrVbx/PPP48KFCzh48CAAYHR0FK+//jry+bxjy+kBgIwhcJ8O26lWKNuqx3VQEWh+Q15L2nknrwjwZjxnsRt/6/U6FhcXXQYK5hcE4DZOT09PO9IM66qnQPf19bl3apYFhY+Uzs0NtsFgECMjIxgbG8P6+jrq9ToikQji8bjbXMt7lJyhnp7OB/Y1BWgwGMTi4qKD9pjbr16ve2jyauio50UF3kk5qUHBuWvnE0kanHNK3tBncBw4Z1h3ZvggUYZEDc2jSEVNiJWbtGkUMfdjq9VCoVDAxYsXkUqlsGPHDtRqNfT19TljzOfb2vP18ssve85nU+XK/ldjS9NusfBerjUaG4QiiWLQa7TGQ7e0SzfJ7k1edGFQQBDe0UWkljs9LUtMALyH4gHwwCxqmauQtR4XFyc3dO7atQuFQgFLS0vIZrNIpVIIhUJIp9OIx+POkgWAZDKJUCjkkqKqNcp3KUSngpNClT+2j6zgtLCiKsJObaKlXKlUkM1mHRQVDocduSESibiN02rtKwFDn8f2qDVuvTEqGL2GgpOCNpVKufiSpsfSWJ5S9VXwq2ejHpA+h9nXtf7KeONnCiNaiFIZdxrnYv/o2Opc1TrrHLBesELWOr4kYhBKVw9ePUjC67oWAKBSqWBgYAADAwNIJBIej4wQIjPRq+GhXqZ+p23U/tFrtV1KgWebuIG8WzqXrsd1CxQLJwDe9DOaxUIFPeBNzaRQkEIS/Fw3hFoaLxUe0BZCfr8fY2NjmJycxPLyMrLZrFNmtG7HxsZQrVaRz+cde05JDyq4bgSPUIiyjbxW+8Teq/1gmVkWBlWlVq/X8Ve3/RVqmZr7TjcQU4FSyOj/anF3Yr2x3TbOwULh6/NtxbZIDEgkEkilUtcZE/Sidd+Pjrl6mq1Wy3m4HF/OIRWanEvqGXQ6jVe9RIV02TYbn2K91VBRD1sVr/5oW7W/9B1KmFBCjjJl1TPjcwjB8jgaema6QTkUCjkPeGZmxhlgnban6BpUqJZFFZquLW2H7Ytu6Vy6iusmLxQEakUqRKZCkouAC10te83oTatTY070NmxOPYUsuNiZ9SIYDOKee+7BxMQEvvCFLziiAQXAwsIC1tfXXTvuuecejIyMONIHMzBQuWi2Bi1WmKmSYb1IGtFkrDb+pQpdhaHSj//m0N+gsdFw51Qlk0kMDQ25NgBbAiaRSKBSqXi8YBXilUoFoVDIk4NPFQCVMRUyBS3rFI/HMTExgVar5QgsADwKnu3mOzXNEvfIqYet97EfSf4A4Dxh66lbJdTT0+M8Pwv1KXlHCRzcS0V4j/fwXZzTVrDz3cywHwqFPNlFSPW3iALP8Mrn8y5bCA+kTCaT6O/vRzgcRl9fH3bu3ImBgQGkUinXJq4remMHDhzAyy+/7IkJco3YmJeFiHkN17DS9BlrpmFh52xXeXUuXcV1kxdriSqpgsVCKtZD6nSdwi38X1llVGwKY6kwIRzJI+wzmYzzDvg9j0zv6+vD6Ogodu/e7YRDoVBALpcD0LZe7T4z2ybWjcJS4zn8sXEvhZbYXhXKFIBWefBsLOa+Uxinp6cHiUTCAwexWKq9KjOlVfMzjbfZzbwUdIRutU0W7tL9QzpG/D8YDLotCozBkHHHWJlCXrq1ggLW9iE9Ggstd6LQq3HFtljPV2FPxt/US9W2UMkBcDFNjT0BWwqiXC6j1drKys6tGcyawefw/DgqLdaNioSHefKMOfazrkuNYSqk2WmbgiIb6gHqfO8qrjcu3RjXTV4IHSg2rhCKCnOFJ3iPCnm7ydheT/jOQhjWYme9ms0mhoeHAbRZg+l02nMgI7CVzXx4eBjxeByRSAT9/f0u2wEF15fu/JIHctH4QadYB61bCiqNs6gy1r6yilyFC/uGXoDfv5VIl8oEaAts5iFkLKS3t9cJQiWHqOLUGI5VOmwT7yWZQgWwFWD6HeNT2hbtC/7QmGg0GohGoxgdHUU0GvXkKGQdqWj1f44FvSodH1XUoVDIzSPey2czf6IqMhoMnaj4qrg4rhx//Y5jwH4ipEfyCuekjgPr1dfXB8DrIZVKJU8uQxI6NAas/UpFrkgIi8KuOnZsv84BoE1asZ5ut7RL1+O6yYsylNTrUZgG8J5vROGiEJjdnKxkDH7GvTaEm9RyV6uXMJjf78f27duxsrKCVmtrf8z+/fsdZNXb24uBgQE0Gg2cPn0aFy9exMjICA4cOIBMJuOEAZXuX9/x16jVavixV37MeX9c7IQ6WW8KK/1NgaBkCPXQFIoCro+3aIwhnU67ZLY+n89tlF5dXUW5XEYqlUIsFnOMS2VqUvFR+FOwa4xMN+1a4gLJBqwn60RWoSoKbrLlM6jE+FwdY37X39+PyclJhEIhnDt3DpVKxRFO9IgQ1kU9DPZFT0+PM1YajYZrm54DR0+O9dVtGOpBKYFCN7UrbKywuN/v99RB0yex7alUCmtra8hms055AVuHm0ajURfvajab2LFjB86dO4eVlRUkk0kEg0HMzc1hcHDQKXYmTOZeRIXYWdRQ0Rgc56Emqi6VSh7PjAaYem/W0OqWdukqrpu8cJErIUG9Ed3safcr8XPF47mgNNZD+IVwUSeITb0DhWiCwSDW19edQAuHwygUCigUCiiXywiHw9jc3MTa2pqDH8fHx1Gr1dwx9BTKFOZa/0azgWajDampgrFxEMI7Kji0LQpRqWDg7797098hUAo45c1+oucFALlczp0pFg6HUSqVPDCeWtoqkGyfqwfDQmGqVHM+W69ViFHJFDre6glRqPt8PiQSCWdYlEolrK2toaenx0GG6qVqX9n4k3pcagxZRp1to/aNQqlUmNpnNn6rc5l1oCdjY42M1XFOU9moMcZncQO8Hq+TzWaRTqc9c1/7RX/UuNP2KkzKcWD8TOeezlXAu7evWzqXruK6BYrmfAPgEWZcwMTKNaceiy5Ua+HR+lcrXoWwBqs1EN5sNjE0NAS/34+1tTVnxdfrdVy9etXFvMLhMBYXF51wTCQS7vh3niXFDBq0nj3WbAse7wRobxrttLlVYRZCOwqpavxAvZq/OfQ3KBaLzoMD2gqiXq87Rax09Gg0img0irW1NZcxXaEkFfQ2j50qG8C7MVpZfhwvHlPCovAkPWtCbny+jiNhWTI+FxcX3X6uVCrlPgeAYrHogRs5FqpI1ZulJ0h4jVsdSMSo17cSEFOpsd8VDuOYaByQsKfOfY2n2XnN+cqN75wnPO1Y45WMY8ZiMRfj0r1tKysrGBoaQiwWQ29vL7LZLDKZjFP65XLZ9YPCwerlqvHHdnN8dB7YdWdzhnbL9aULot7khRabLk5dHNYrskrNFiswNHjM9/FZKvx4LyEPn2/r3KdqtYpsNos9e/ZgcHAQvb29yOfzKJVKzuINBAIYGxvD6OioU1AqxBqN9pHtgUAAf33HX3sYdj7/9datbbfGqWwMQ61bjfmwfP2+r3s2YlMBsZ95ZhYVMT0tVT7MskHrn2Og8R0WjdmoIaFeCIUwx0C9NY1l8RrtL4VKWQ+y+nw+HzKZDFZXVx3ky2dbZqYaAkCbAq+xJd2zZeNh6h3ZeJvOaz6bHrOdj532wLEvVGkoGsHncf7Ra1b0oaenB9Fo1O2X4zxiHdRj1RRraszxHho5NsaqbeGzSWihIaaGQLf840pXcd3kxWLdFD66gBXisRasCs9OwV4VLvytClGFPJUC4clUKoVcLodMJoPh4WGXCqhUKrnTcuv1uvMMSM7I5/MoFovw+dqbXLnhku/6q9v+aqtuPiDgb+81Ui/CQlvaFwpddaJ3W8ICrVx6CxQsNoktBeDq6qrbt0aqerFYdHkFFdpiH/OZSizgGOumYRWg6oFQiSj8aeE59oEKe45DLBZDLBZDsVh0HqJupuZ4WyXD7xXuYlt4rdYP2IqV6UnLVIpUGDY3JcfCpijTeadrQsdU+8DCslQ2Gl9ShaQsVL6f1HuN/9IooZFlyRM6L20cUhEEVbr8zMKgqoC7pXPpQoU3eVFLU+ExFk58had4jYUu+Dz1xoj92zx6fK+SOFQwRiIR7N27F9PT07h8+TL27NmDUqnkvC0ACIfD2NjYcM9iBvlXX30VhULBwUzNZtMFvZmstlar4W8O/Q3ef/L9HgGqyksD+SSLKBRFy1uL9gkziDNQDsDt+SFcSKGpfdhsNjE7O4tr164hlUrhtttuw8DAAFZXV1EqlVAqlVymDR4louMItCExPSlYvSYlOXDfEr0jVfi8VoUwcxFGIhG0WluZ+ZvNJsbGxpzh0dvb6zZWsy9YB2UTWsOJiod9TuhUP1eyBYkb7AcSgJQV2mxu7XvTvXCd4jxUTmqwqEGi86m3txfhcBjZbBa5XA7pdBrRaNRdw7FXT5lEjGKx6E6uTqVSyGazuHr16nXwtCp7NaZ0rfB6RTrUQNFzvNgvVkl3y/Wlq7hu8qKYN4PMumAVzlOviWw3G1imAFXPTQWyzbpA4UNoBNgS5olEAslkEteuXUMsFvNYkvF4HK3WVtLYXC7n4h6xWMwd+8Fzp5gjT4UeaeatVptp+MHpD3r6BGjvcdOYl/YBi/Vs1BP58l1fxmZ2ixhAr0AD/cquZNyF/VCtVrG6uorV1VV3npbPt5XfkUl4lRZu4xuW/q25JunZqCdms67bNlKgKrmEzLpgMIhMJoNSqYRgcCtDv+Z9ZH2sx8Bna/zOGhHaJ5wzCoWy7/nDa9Wz0nfa+KAqaYXeLAPS7/c7Q4BbCrgJmXVSZWmVIsfK7/c77zQUCiGTyWB5edm9Q9ul42C9U16vhqQal9Yj63pa//jSVVw3eeHkV+YUJ75CRIw/EO7Q2AMXEa9TwUcBTRiM11MY0COjV+f3b9Gqh4eHMTQ0hBMnTjiSAlM6HTp0CMDW3q4zZ844htfFixdx7tw5rK+vu82w/KHQp7IgjMX4gg10U6CpcFerVq1yjQv6fD48/c6nEQhsZbYP5UOOEEKPj/dTkes5WISRhoaGHDTIjPjpdNrR6JkCa35+HhMTE56N2bZuQDujvb5b68x2A3CxQxsvUliu1WphfX0dL7/8MgBgaGgIa2trKBQKmJiYcB4lBavCfhwbhbOULAG0DSHNDEIYjUaEwm2cP9Fo1F3H+aXCnQQUfb6edK3KjeOmMF8+n4fPt5WmKxjcyoY/PT2NyclJj6elxl40GoXP50M2m3XrZtu2bY5VeOrUKZw4ccKRUHScVNFqbNDC2KyvVWRqNGhsmn2m3le3tEtXcd0ihZPZwlY64TWwrXu+1HsCvBtz1bIlfKFpeagMKSSoLJl1gcpCvYd4PO68PZ9v66wnwoYkbfh8Pk/2CSVo8D1UvL29vfjqPV9FvV7Hj73yYx5hoH3BftLfVABsz1MPPgUfvOcgqTWsisXv9zvYUNtDpUmvZXNzE9VqFWtra6hUKo6lRs9rbm4Oo6Oj6Ovr83g1QBtmUiWmFjiVsgbw1SJXQ0Q3wNZqNWQyGWSzWZfuCIBTzjYGo0qSZ1Hx3XaPHIslMHSaszrfFPKlYFaSh85RzgH9reOlRopuvuZ3rGcgEEA2m0W5XPbkmwTgEirT0+ZJCD6fz2WGr9VqWFxcxObmpturx+zturbYTm0bP2NfahxP1yavUyVvPcJu8Zau4rrJi4UBOcHV+lThq9aaWnUqvO3z+JsLX+EqCz+q0uHhg5qqKBAIIBaLOYGRTCYRjUaRSqU8AorUZCq9QqHgrHBaxpVKxVmxtLq/dOeXXJ1//NUf9wgL22dvtPApgKzXqn3CZ1FIURjy+UosCAQC7sTcZrOJqakpRKNRzM/PY3Fx0SMg1bLW+ug7OV7a552EmRJHFJrK5/NYXV315IVkpn72ucbcLPylBBFVOFpXJUQoSaMT/GXnnR0L26+qoFTQaz3o7bF/dP8WjTi2nXOJRggVHk+S5vxqNBoOImw2mw5q1Payv+gtqlFn28j+13HTv3XMrIf93ebwD3PpKq6bvCgMo7nOeLQJg7mEYlQIqxXH+23gV6ENtWwJN5EAoaSGnp4e7Nq1CyMjIwCAbdu2uZNjuR8mk8ng2rVrALaC+MwKz9OPFTrRQxj5v7Xwe3t7EY1GXaaIRqOBvzn0Nw66YvDf52tnqCBBQkkIEV87We3S0pIjkmgaIwpBVeKA96RlQoeVSgWtVsvBrPRsGLdLp9OYmZnB4uIiksmkY1922m/HMVHFwBRUKth0TAmrcmzpLa+trWFlZcUJ92q1isHBQSQSCRQKBQ+7kW0D2spDtyewvYTyeNy9KlLC1+xnNYQ4Z4gKcK52MqCUbagECAv7qiGm9UilUqjX6w4RALY2jW9sbCAWi7l+j0QijhBCmI/GFOOwlUoFa2tryOfzLrGwKiElsXA8WNgu9USVgMG1pygJ+61T+7vFW7qK6yYvOnk1sKyemFq4aq1bGA9oHxipHoSFJtRbU7YiPStCKbRK+c50Ou3S5ayvr7tsGXpQJK1T9b4IX1EoAW0avlrdGuNTYa5KVyEc9gffzbrYvmNbuQ9MrWkV6EpQ0dgQ30WLn0QInsKbSCTcQYd2gy0L26XjrbE7/k8Foe3Q+JjGonp6ehCPx90zNWu7xkDZh5q1RBWPfs8YpIUIbwTfsv9t7E7jr+wP9q96LDpG+p2OK79jvZQIRAiQBgDnHxUR4XF6+jTiWD+mydK+vlHcSeedek9qoKgHpQmKrTfdVVpvXLqK6yYvulitYFN2EgAnzEloALzEDAp2LkTe00nQWyiSAoQLX63eWq3mvItWayvLA1MjhcNht7/LWswK+wBtZWDjObT0lVoM4DqhCXjPSdJr1HNjHymxAYCzvjV2oYF0FutJUOBSEPn9fqysrHjy6Pl8PpTLZeRyOecNaj9rMJ+KWoUyx4n0fFWgNjbEJLbcLM1YjnqKqvSZeUVPmbbClNRx9hH7lmOoQrZTzIp1s0aW3kOvRec15wnbrR6MwoQcM7JU2XaiEzzShNfSy9dcioQQ6RUSSrR5QTln7FrjeNi4lypzS+mnMWiVcjfG9calq7hu8qJKC4BH4CikA8DBP7wOaAtsXUgUHlRi3Exq4QtCOoDXOlQrn88kiaFWq6FcLjsLl95WpVJx1/N9ao2qt0VFodY5yRsUAAovqpdJxpjfv5WIVTdAU/DzHb29vY6S39PT4zk/Sz0G5iPUPUaEfQgxqcJj//f09KBQKDgqNT2wfD6PAwcOuPfzXkK9rB+wBXOtrKzA7/dj9+7drg5KmtDchs1mE9PT01heXnb7okgmYNwwlUrB7/d7PA62lUYC5wA9RXqjVHQqnDn3yATV/lZvkX1IJa+xKULMSrbQvXSE9bgXS706ekvNZtOd8abvqFarWF5edvuyqBibza2chD6fDyMjI5idnXXwL9udy+U8xpumJGOfa1s6wfG65jQW5vf73XylgaRzXN/TLd7SzZxxCxRaZmpZAl7iBhWVemRq8dIS5MLQQkhKFUin/ToWvqPiA9oJYhkzonVJxWphL12cDI7rZkwrGLUv7P8q7AntUPFSiFAxsb0APHuZCL9RwbANQHsTshoBSiBgn9HKpwDngYWW+VcsFh2tnu9WQa/KZGVlBdeuXcPMzIxT/hxX9dJYKpUK1tfXHVEkm806b0vHg33DFEQcAyo4JeqwPzT7BeeEpoliTJH3qYBWT/FGnoSFaNWQ4Xd23nRCC6h8WG/mSqSRwk3WxWLRpb3iCdP0bjkGrLfChWoEEk5X71/rpN+p8akKTeFFXtf1tt64dD2uW6xYpUTohwLXMrAUdqBVS6FED00FYaPRcCmMrBDXhb26uopWq+UYW+Vy2QP3tFpb5It4PI7+/n53lAS/U09JrctGo4GNjQ0EAgG350fjevTAyF5UIcNnMGsCjyJRYaOKfHBwEMFgEBcvXgSwBRX29PQ4BUHaOADnFSglmn1BqJRkgHq97ixpbkzOZDKOXVgsFjE7OwsArg2sGxUk28UNzvV6HWfPnsXIyAiSyaQ7D4z1Yfs2NjZQKBQ8Vn4oFEI6nXbZ+5lRg16xeqnsB3pWhNo0JkVvk4rOxmIUmma9mNuRjFPGmDhu/Mx6VISIeX6ben70yNRYYpwqk8mgXC4jFouhWq1iaWkJg4OD6Ovrc9evr68jHo8jn89jx44deOyxx9xJyBsbG1heXsbCwoKDDokssI8UfmZRBIEepiYQUMiR3/NvRQ5uFEfrlq3SVVw3eeHCVsafFvWAlGkFePc0Udhaa1UJGoQLLbxIYgRLq9VCNpt1e7Jo3dICZzCcMJ1mW9cgPp+rcQFVZCr4LDVfLXCFnAjf8Uc9TX0Pf1Pwl8tllEolpNNpjwfKNtnYjO0njgEVHNsIAIlEAq1WyxE2gLbQ1KzsbCdhUF7LdFalUgmFQgHBYNBtsKU3RwXCuuv40hOkwqdwtaf5auxM55eSfTT7h52PSppRQ0Hvs2Os3nuz2fTEfLQOrHelUvHA4FQSlqBSrVadARIMBlEqlVz2f2Z+4Ritr69jaGjIbV6ORqPIZDK4evWqO2uOY8P36lyyMDHQJkHpZ4pY8H/2kRJ/LKGqW64vXcV1kxeFB3Wiq2XWCSrRSa+xBRVoCjXZALf12gBv3j5mjQgEAs7j4vMKhQKKxSIajYYnF57d58L/1UInbKZtpUBTMocKRrXagXb+Rf4wVqPkD97L921ubjpPjxAoPSkVWHymenkWstJ4Gq+JRqNIp9NOARHSGxkZ8bTVesDBYNAdmqjJafVdnBvMu0foj14JGaD0VggZsn1sm5J/rJJSsgbfrV7ujWIyOr/0f/Xeda7xWBELgfJeXRM3yqvIWOvGxgZqtZo7QoeKq9lsujO4fD4fFhYWcPjwYVSrVczNzaG3txeLi4u4evWqSxel8SkSQPg+ncfqaakyonJWo0nXMv8G2gmVCVV2y/Wlq7hu8kIhzklMQcogsUJ5Clno/iOgfYovY1GE9NSa1swVisv7/X6XIYL3FAoF5PN5t2+mUCg463Z5eRn5fB5+v99tUuaz1Rui0LRxLXooCi0qcUKVEoU5IRwSEQhj2aIQGgX78PAw5ubmUC6XndWtpBcy8zQ1FD017Xeb+V2JLr29vRgaGkIikUClUsHq6qo7XmRgYMBtnKXHwjYNDg46ksnw8DDi8bgnNsYxqdVqmJ6exsLCgiPSMAVXX18f/H4/yuWyS7sUDAYdo45xLBXQGrvTOcjrNU5m265KkONGaLBYLLpnauFYE84G4AwfQq8cC87LQqHgDors7e11pJJ4PA6fz4f19XWUSiUkk0nU63XkcjmX8JeEj3Q6jaWlJdRqNYyMjODpp5/GhQsXUC6X3Xs4Tzl/6LWpt0gjgHOY2x74vd6jnqbGuZRUYo3PbvGWruK6yYvCJrQygTaDTL0Kq6zUw1KYThWTwl1qPXPhdMLaKUgqlYoTGCQAcBErnq+WowoBS2fmtTapqs/nc7kM1SNTD0xjLRRONk2TKgb1vhKJBEKhkKM+s44KEVGQKySl/cjrlAau9aNg0pOVNzc3sbq6ip6eHsf0oxdC6JXxKD6PXhzJHUD7LLCVlRWXmZ7ptNgWjhkzoPv9W6xLJSxQiBK+5LtYL9se9ZoUitQ5y2vI0mOf0YjR+clxZE5AfaeFwxnP5XxVr1qz0SuFnnOZhki9Xkc4HHZKisfuzM/PexQK+1k9Un0u26T14fXaX0pW4fN1+wefxbp2FdeNS1dx3eRFF4FSyC3zTYUlPRSNd6jQU0EIwGMpqjBS7F0FVE9PD2ZnZ7GwsIBwOIz19XUniIGt5LobGxsuzsVCpcN3sFCoa1yJe3ForYbDYSeYaMEr9KIxJo1vsb0UEpZm7/f73REWpEGzjRrT0s272h6NR2hf83/tSw3op1IpNBpb2Tuy2SyGh4exZ88e+HxbB1eur687oanZ8tfX11Gr1ZBKpdyeNDIVi8UigsEgDh06hHA47Dw7GhIcD7aFbbYEHApYzjON8zWbTee5MR4FbAl97tejZ6pMU3rkGu/k2HOfFMeW7E7NsE+Pl5+xrwOBgGMHAsDevXvR19fngYhJ1gkEttKQ7dq1C319fe4d7FOObbVadfOU76Gi0vghP2esUOcC51wnJcb5x/vZD3wG192NDMdu6Squm77oxFUPSkkLFDiMDWjMwMYR1EPTBQJ4iR7qqShsQS+ACWQJu9h3stCC1jiU9bB4nY2TcCED3vga79ON1LSKLSlAlbS2n31Lg4BxID2hloXQje0HChZ+pv/bWJAqMGDL6mdaoVKphOXlZYyOjjolxWu5J45jtrGx4RHaFHQbGxsA4BS+Jkq25BUWVS4kgFBBdIoXsi8UUlb4l2OvpBESdXSMtehcs/CZemJa+ByyIrnPLZ1OY3R0FIFAwHmSHBPeQ0XN9uoWA57Nxv5V8o+NP2p9NX6sRpl6q9Z71LXGdcN7+Lyux3Xj8j3t4/rUpz6Fw4cPI5lMIplM4ujRo/ja177mvq9UKvj4xz+OgYEBxONxPProo1haWvI8Y2ZmBg8//DCi0SiGh4fxy7/8y90A5HcploigVp96SbqY1Krj4mPRzwF4hK0KOBUyGohX/J5ZtHmPwo1Uiqr87F4orTvjMqyTKhwLHRFO4w+Ajvezv9hGJVIw0N7b2+uSBivkyr/pseizrDfFwhiQwkLsP+1/xp/opeRyOczNzXn2XbVaLRSLRRcLW19fd8SXXC6HbDaLQqHgsprTM1XjgXVUIgE9P2ukWFiZZIlOabTUwFDvRlN6MfamTEPtT30G+05jbXYs6YHS26tWq+6gyHq9jmQyiYGBAccq5PM1+wU9T7JMm82mByrmeWXsF4WILZxui0KJOr+VjNHJcNT1yPd1Fdcbl+/J49q+fTt+93d/F3v37kWr1cJnPvMZvP/978fLL7+M22+/Hb/0S7+Er371q/j85z+PVCqFT3ziE/jABz6AZ555BsDWBHz44YcxOjqKZ599FgsLC/jQhz6Enp4e/PZv//Y/SQNv9cIFTCGqmS4Yt+DCsEQOwHsUO//XTcgqxPk/AI8S00zbjUYD5XIZkUgEzWYTfX19iEQiHhiMC6+3t9fR5pWgwTrxnCsWhTTZTpIgKJw17xwtfdYRgIP41MtQYUKBovtnotEohoaG4Pf7kcvlPPUBtvZGkeyhcUR9loV6NIbDwtgR+zsUCmFychKFQgFLS0uYnp7GzMyM28zLPVfFYhG1Wg2JRAK9vb0olUoOrqNADYfDGB4edgQcbuhOJBJuLtAzW1tbc89KJpMeZh77hP3JPlNlbsdN9wfy/0aj4dn0q7Aj+4VjzXHjuLPv+Q41HNh/xWIR6+vrjrA0ODiIHTt2uD1bTEFGKJDED47B8vKyiwemUikkEglkMhlnzCgMqnOaypMGiiIcilzwM84N9f7InOS1GovTtdhVXDcu35PieuSRRzz//9Zv/RY+9alP4fnnn8f27dvx6U9/Gp/97Gfxzne+EwDw53/+57jtttvw/PPP4y1veQv+4R/+Aa+//jqeeOIJjIyM4MiRI/iv//W/4ld+5VfwX/7Lf/Eshm7ZKrScVdFw0XOviJIPVIgqhKXWLRcei3pq6t34fO3cdvoeKi2FrKhAlQIMeBPDUtCq1W8hTQsNab1VACh0oxa/JRCwr9QbVO9Cr2N2DYU1NX7F9igcpPuOuGeN92scR71SCx2GQiEMDAw4BVKr1VAoFBCLxTA4OIihoSFsbGy4dEXAljIlY48lkUg4+I/9HYlEXJ21/9l/fAbZeQCu62O9Tz1rGg1WQas3y75lfJXGBueV9Q4Jy7JwPmn/b25uolQqufHy+/3uoM65uTksLy974p0AHJlDvUj14H0+HzY2NtzeQvW0lGT0RnEnaxypslUP0yImdp7r/13l1bl83ymfGo0GPve5z2FjYwNHjx7F8ePHUavV8NBDD7lrDhw4gMnJSTz33HMAgOeeew6HDh1yx2EAwHvf+17k83mcPn36hu/imTj688NUdPJSIanlHwgEPEfEU5lQqFm4QlP36IJSmMLi8fxbvRj9jILPCgSgHaejIKH1XS6XHdRHT4pQEYUVLXllEyp0SthOc+qpIFRFqIKC7dI0QvRk9TTgToJLhYzWU+ugY6bxLjU8ms2maz9jNNxY3GptbYqmwmHGCY6dnnHGMdXjTXTbA9vA2JfGndTjVsOB7eJ4c+xUcSl7UwsVkHrxGg9SBIDPJ3rAOug4ar8B7ZgjWYChUMhtGbh27RoymYxHadKYYExUCS8K12kGDp3fnLudYlOcC6rs2F4L4/N5GkPTPrPv7CqtG5fvmZxx6tQpHD16FJVKBfF4HH/7t3+LgwcP4uTJk+jt7XXHXbOMjIxgcXERALC4uOhRWvye392o/M7v/A5+/dd//Xut6g9E4USnMqCSIqyi5AWrZOgp0eKlwGRMiAtLiQdUPhROGs9SZaieRyAQQKlUQr2+dQ4S4axms4l8Po+1tTVMTU1dJ8xIo+fzNbZBYUZBF41GHSWeBAHdgMq+0ZiMtdZVwPIzJRTQk1SPQZ+jef2sR0tojO+IxWIOXlQ4SD1oZctRyVAQR6NRj2fBsSS0yX1rhAp5QCTrxOcqLLqysoJ8Pu9OaA6Hw8hmsx6jQyFlTTxM4g8VARW8GhEqjDkuyqj0+dqZ6xuNhtuT5vNtJTKmMtXYGPvO7/e7PVyEQiORiGMA+v1+l8CYhCE+i3OmXC47VIcpykqlkktezOfqHLCeNsdO1wT/ZrFbKnRdKvRq92txLVmYsluuL9+z4tq/fz9OnjyJXC6HL3zhC/jwhz+Mb3/72/8UdXPlV3/1V/HJT37S/Z/P5zExMfFP+s6bpVg4QQWxwmQsGl9SggUFGKFAtRgpdFSo6iJVCFIFlGL7VCTMnwe0BZAGwnk/hZ7CcloYZ2GdFHLkM2wWcgoE1ptKTHPtWU9QFTDvUTKAZqHQ7B8sVKy8lkVTEzFzgxVGVJb6PApr5lnU9ujG6s3NTSe0qex4L71azgPuZysWiygUCkin0459qHucrBet7dO6q/er88h6p6rUeB/HXA0tbT89LYUM9Xs7N2kAcOzZH+q9qSHCZ1JZb25uOgNCCRnaNvW07VrRtahIhHpbrK/uNWSfKgSv3p16bt1yffmeFVdvby/27NkDALj77rtx7Ngx/OEf/iF+6qd+Cpubm8hmsx6va2lpCaOjowCA0dFRvPjii57nkXXIazqVUCjkLMwfxsLFQgtPYxi6N0uJAboAFWen5UqBrYJRIR39AdrHmgBANpvF2NgY0um0s2T9fj/W19exfft2JJNJrK6uOs9JrUqg7eUw7RAD/iwUcGw7Yz4ac2FSW1rI6rlRQCkESOFFBcA6qNJShatUews7EcZjXUmjJ7THRL3sPz17i8+0p+daViaw5SGSMcdnMT5E4c4+UCMFaMPB9Jqz2Syaza0kt/39/S421N/fj0KhgIWFhevYmXoiAecMx4BjpIqPfVkul92cYJ/SKND5rGNEQ4VHyPh8PgebMiOGbmLmu+idqjKJRqNYWlrCxsbGdYqOXiSNmXq9jmg0ilwuh3w+78bEbvHgWLP+JKBYkgX7T9ebelQ6v9Vjt3/rZ91yffk/Ptak2dyil959993o6enBN77xDffduXPnMDMzg6NHjwIAjh49ilOnTmF5edld8/jjjyOZTOLgwYP/p1X5gSyMcagSUKacTniNYVGhKQ2cz9JnU+Gp96NKz8Z5KGCALWEVi8WwubmJ/v5+zM/Pu2wEQJs2rzEf1lPjMJVKBfl8HhsbGy6Pn1rAvNZuoGYd+Ex6GyRJ6H1qfWv7NG7EGI4SKZQBRxhH8wZyXBhb0mwTdhzVi1EjwY4TPSvCdBw7HtCZzWY9uSHVG1XiRDAYxMbGBlZWVrC2toZgMOgIHown6nEvdk5Zr4H1tLFDS0KgQaLCV5WyVdJ2HrNNjIPyh5vaOWd1TJRWTmhciTXapz6fD4VCwd0Xi8UQCoWc8cM1pJ4m66v9oCQLtkPHnetJ7+XnnVi8/K1eW7d0Lt+Tx/Wrv/qr+NEf/VFH4f3sZz+LJ598Eo899hhSqRR+7ud+Dp/85CfR39+PZDKJX/iFX8DRo0fxlre8BQDwnve8BwcPHsQHP/hB/N7v/R4WFxfxa7/2a/j4xz/+Q+1RfbdiJz3gtXBt8NcKBCUDaNxBBb59PpWLwnAqYJjEdGRkBK1WC+l0GlevXkW5XEY8HneQW71ed/Eu/k1qOzNUtFrtE47VWlXBDng9MaCtECmoaeFTUKinpAKGwkz35igcyx8lt9i9hlTkeh+VllrpvL+TBa7wGmNYvI6kh1gs5rwzwo305ljHZrPpjgShUOczuc+p0WhgYGDAHRWjKZN0zvB/O7fo+fJzxs/U09OtCLxXYzlA27vkOOkcZJ01/yLnOskbvJeKSMeOz1cokp4TDRpu3VhdXUU0GnWeHa9lvTn2GiO00DI9YN5j5yfvUWORn+l85r3qYVl4tlu85XtSXMvLy/jQhz6EhYUFpFIpHD58GI899hje/e53AwB+//d/H36/H48++iiq1Sre+9734k/+5E/c/YFAAF/5ylfwsY99DEePHkUsFsOHP/xh/MZv/Mb/3Vb9ABVCPRR6VCQUBIqFU8ArtKRxAguZ8T4KCE1wymdbT4kB7Gw2iytXruBd73oXRkdHcfToUXzhC1/AxYsXsWfPHly7ds1l515ZWUG1WvXsvQkEAhgaGsLg4KB7vgo33cOjQpoCSI8sIZSlsKRa+krK0LRZ7At9twoQwqoUmppkWCFYKmJVjpo9gvfZjbxW+anArlQqiMViLikvA/5s98bGhpsTbLdmeqhUKu5sLr+/nVWCJBL1BDQuyft1DnG8OGeo+BQ+VcaoKi1mqojFYq6uZAFqn9NLJlqg5Az+kFDC9xFeZv9QgdsUUyRlJJNJjI+Pw+/3Y3V1FXv37kWtVnOpr/x+v0c5cw7wf/avGkRULjqf1EMnBK2Kn2OlkDTHQr3vLlR44/I9Ka5Pf/rTb/h9OBzGH//xH+OP//iPb3jNjh078Pd///ffy2t/qIv1FjjJldTQCSPXvVqqgHgfBajS6HW/D9/NhaSeGeMO+XweyWQSw8PDjq595coVDAwMIBaLuXx5zASxbds2DA8Po1QqIZfLoVgsIhqNugMOVUhw4at3opRvwjxqlepCVwhRBZFCanzujSxbChgA1wlvVVy0xAnrUQhTEKuiUkhWWZasC3/4XMKF9KT0HfTMFCajcbGxsYH19XVH9OAJv5ZkwdRTGvPrpNA1KwnrrcxWazDcSOg2Gu2DK5UBqrAtvRhNSMw+ViYjiyVK6DtYZ24piEajztAIhULOi6NhooQYPleNJEsY0TnGzy18a4kffLbOc76L13Vhwjcu3VyFN3lRphjpwqq4lHxAz4nFwnz8zMJCCu9wVz+tey5syyoEgNnZWQSDQdx7771YXFzEgQMH8Prrr+OnfuqnsH37diwuLmJ9fd0lIb3rrrswOTmJ2dlZvP766zh79qwTNrqIFT4hMUeFmCoeZb0xvsZ6MgOCxtjYTnoaGqtRgU0PhIKU7yNM10nIa3JeegCae5D1pdBWUgnrBsAjnAlvtVpbp00zLqjxGR1vAB6PY3R01Hk7OtZ8Do+doQdHCE4Fr1VarHMgEHBkiVgs5jxbhcZ0XxnbzJyAvb29iMVijoTBnJH8m32tMVads7yGCodzgB6rxkRjsRgmJibQbDYxOzvr5lAmk0E4HEYul8Pm5qbLFq9sUo1zKQLAz9hOfs51x/aqV2bXoEKOHBuFk7ulc+kqrpu8cBLrhFbrTGM1XEQqWDVm1ImEAbSFuUJZClnoIiP0xQB3qVTC0NAQTpw4gaGhIZw+fdrljNP9R4VCwR3WePXqVayvryOVSrm9PKqIFNqjV6lHYPA3LXDCSxRc7APdaE1rmcLEFhskV+XOOpDWrpazFgrcVqvlWHX8nAKVCodQYqfxVsXMcdG4kCoIel7q/XGDfjAYdGdTsW/9fr9LJEuWnmYciUQiiMfjKBaLnszw6lmynjrXrBergp1GD/MY6vzjmFkmoxoAym7kfeqpqJfH59nMLFSSpVIJ2WzWjVOr1T5JQed4J6OP1+vWCtZR/+d9qkwVHbFxL13HfLY1QrvFW7qK6yYvlizQybOywW9VXFy4VE4qcNQCV3hD8XaFgPg/6fiFQgHZbBaJLoXJ4gAAnpVJREFURALz8/O45557XJ25V4gLNpvNYnV1FfV6Ha+88grq9brbi2fZVxrf4mdsOz1MtonPp+LSGIPGhChw6IEpdKhCUOEmrRPfyz1ULOwbNShYP/a1xmyazaZn/5lCjgA8SpoCmO1XiFQJLBx3bhuoVCqO2KGxFMLC6i2yXpFIBACQTCbdBl4yMumBsU+4JcC2X/tAoW2F+jhXNV5EWI+CWyFDeuv6TNaDf/O3EicYsyL1PRqNIhqNukS63MxOSFf3j7E/aTRwndCzU2hT68D/1Xiya1hjiNo/ChF+N7i1W7qK66YvivUzsap6QBoQV+VFK5hCXRWaKgoV/rxXF4zuXSFTkBb4+vo6ZmZmcOjQIZexgAmYx8fHMTo6isuXL6PZbGJhYcHt2aPiC4VCLmMC20XlocFxjS1RsHOBK5PLwohsN70Sy6ik96SbgHkNN01Taeh2APVEFRqi0lC2JJ9FyFX7WAWZnrgMtI8TYUoo9TBJONjc3HQblQG4AxDT6TT6+vo8ikrp5aVSyWXPKJfLqFQqSCaTrp5kHLI/Ce8BcMaAevpAOwM7AHeIIzcBU5FTsQJwBAsSSQC4vIoK5fL5msdRiTDsM0KGPLdtc3PTZfsnKWNgYMARhAYGBtBqtRw0ub6+7hkb9SKpZHRM9RqrtFkn9RZVaati0nWo869b3rh0FddNXii8FE5TKEaDw1aYEtZTaEy9CP6vUKR6HrSIAW/GCV3M+XwezWYTpVIJa2trGB4eRj6fdwliKfzK5TIKhQImJiYwPDzsAuRWQak3oV6LKmYLe9pjMigo1LJVa5pF2Vtq8VLZKfzKZ6h3xH5WRUnhqoqSikcZcToeFpaksvT7/Q7KY9yGioPPTCaTAIBCoeAEI2Fa1omlUqmgWCwCaMOGHAf+1Gq1jvEa20e8RgkZHCPCsZxXCsPp/LKHN6rnzPv5Pu0HQok2btdsNhEOh13OQSqw/v5+l4qsWq2iUCi4LPEcS24e13brmLLPdG3Zeanry5Ix2Be8hp9RaalHTMNQlWG3eMv/8QbkbvmnLfQqFHawsR4WCmKgLZjs4lHvigtQY11Kg+ZnamFa+GJ9fd0Jh+npaQSDQayuriIUCmHbtm2uHuVyGbOzs8hkMk6IdDrmQhWBentqhSpMRjhNIT9bR71eY0iqGBVyY+zI5uJjYJ4KVgUcY1CsMz0lHgTZarU8NH4V6BwTbT89K/WwVRHQI0kkEs4TIHOO8ROOJ5VEuVxGo9Fwx6UoNGct/U6xIo1b8R3WyLAEGkKcfL4yLfW4klKp5BQO5yW9QXqBeqK2GlWsPz0o9cbopXKTMfM/ap7DarXqyClK5LHefydyBeeUHR8WVXwKu/M+heTZBkUZuqVz6XpcN3lR644LVONQdrLzHv621jEhHnudLiINHvNejaMpVHPy5ElMTU3hx3/8x/HpT38aAwMDOHXqFMbHx7Fr1y5Eo1EXc3jttddQrVZx+PBhZ5XbgLRCUBbOA9owKJUI60nokYIIgNvUztOBVSCopwp4YzXa7xTaCsdqElT1VtnWRqPh9hgpo44WNdvFsWP7eUhkIBDA8PAwent7EY1GHV2dHooqt2q16s4Qm5iYcN4Jx4qCmt5aOBzG6OgoBgcH3XYFpn+ycTMVwlTKahjQq1OyCRWSxrZUsOvJw6VSyRPDYyyKXpkaJDoudq7Q6+fG96WlJQfXVqtVDAwMYGRkBLFYDNeuXcPCwgKmpqYwOzuLo0ePYmVlBbOzs2492f2MZJ9aj5uKWjdjc06qoUTyicYK1YikEuZzCdN2va0bl67iugWKKiz1ACxUpYtcLWGgs7cFeDF9G0Dme/VaVXbNZhMrKytYWlrC4cOH0d/fj1KphEwmg5WVFYyPj7t9M1R+mUzGtcmSSvhefm+9JK2vwjoKP6ln2EnR64ZPJSmwj/hbhTgFcicSh8J6ChkpiUJjcmwD4CUZAPBY/vSKKOj5Hu1/YMvjLRaLHQ2XVqvllAMAF8ujF0SDgoqeHgeFPiFJPtPOPRoG1jPQcWGbSbghJKgZJ7S+VLo2ZqSGl/XOOVeHhobQaDSwvr7u8TrpbTWbTWSzWeTzeXdo5NTUlGf7gBpx6rlrHfXZinKo0teYqPaLnW+6hlXJK0zbLdeXLlR4kxcKThtj4sTuBHuppcYYC6EfCgsuOku9tguNAlihH7VG5+bmcPr0aQwPD+PQoUOYn5/H6OgonnjiCTSbTezatcttLu7p6XE5CRuNhoOHmPkAgIOSAoGAE96EFtlmei9UhtVqFeVyGfl8Huvr68jn8+54+42NDccusweVUmBYgofP5z1fjP3o929loCBjUpUpBT3hQI1Jsr9JqFBvT706bg1oNBpYXV11cSvue+JmbuZ2nJ+fx7Vr11CpVNypxBT6xWIRi4uLKBaL8Pl8GBoacse20JPz+XxYWVnB6uqqU7CasJfKXQ0CjUGx3poai/NLvTCFPvlcnjzMPWbVatUpUHptHCPOYbL6aAjwWbFYDDt27MDk5CSmp6cxOzsLv9/vaO+Tk5NIpVKoVqu4cuWKO3H6TW96E970pjdheXkZa2trzqukF8g+Ua+Z9eFasAaSrrtgMOj2ICrsynZxntEj03gi+6FbOpeu4roFiiobFXq00lThqJdAxcZFodadhQb1XXwHBZdVeAqXFItFZDIZ+P1+7Ny5E9lsFtu3b8fa2hrW19cxOjrqLH0qGmYAV0HHwLuyHJniR70O1ofKU5lmfAap3BpfsgpZiRj8zAoMfs/nKbRpYz7ad/xMA/msl8acFB4C2nuolI7ONvLsMsZ61tfXsbq6ikZji8pOkka9XndZSQh7pVIpl8G+Vqs5kgjJH+rN0xPje2yf2dhip7lj+5P9RKhS80nScGB/6HvsXKMBQsPAGm2lUgmzs7PO4OA60PbncjmXUb6/v9+lL8vn865eQDtGrFni+blCzWy3fqf9pP2gBpIiDXwGv6PR041x3bh0ocKbvHAhU6Bo6iGgDTepUtIFwzgEPSz13BROtFajQmuAN9ami6parSKbzQIAxsbGkEgkMDU1hZMnT+LixYsYHx9HX18fFhYWnEBcXV31eCWsM2EpJWuox6PtuFFb2D+8ls/VeALbo2QOq/hZP/2M1ralK/O5ChsppEQDQxWZnnysYxePx9FqtZDL5RydfHNz07EB6QHkcjk0m1vHwaTTafj9fhQKBZcBgvXv6+tzHi8P+6QhQEWqylPro/vlLIzFon2k/WGhaT47EAg4D5mKsRPtXqnjCt+pZ8L61Ot1l+0ik8m4PuZYMPZVKBSwurqKwcFBt08M2Dqmp1QqXQdR2ufQcOG66GT0aP/YmJiuT0U6NIasn3XLjUtXcd3khQJGPSgNpKsgVhxeN1TqtRrLojJUWIif8Tk2RqbJY7nIL1++jIWFBQwPD+O+++7D8PAwPvjBD+JTn/oU/uN//I/IZrN49dVXXd1ff/11ZLNZ3H777R5hRSFJeLJcLrs26Z4s7jNS1h0/089Zz2KxiEql0pF1ZwkYrAeFLyEfTdHUarXcO1joVfGZGo8i6w+AY/Mx2bCmqKKiSCQSThgWCgVsbGw4EgWfk0qlEIlE0N/f7wT23NwcfD4fhoeH0dfX5wSzGgVkIvLsPCpY3adFYkmz2fQcJaJ77Qj/cWyAtpdiyRuEhUm1V9iXMBnnOfuXTED2q0Jr9ByZ1Z1Ka2NjA5lMxkHShJXT6bS7NxwO41/+y3+Jr3zlK0gmk+jp6cH8/DzW1tbcs9kfSlJhO3WOEEpU9EDXJ40Zfs4+YbupxJVww/eowu+W60tXcd0CRS16TnqFuixRQ4WLBrPVc9CigW8lTVhIxMJpJBEwg8bw8DD27NmDpaUl7Ny50+0nGhsbA9A+rp4wFD0Uvo+CWeMJbD+VsFr91sNRhasegMbklMSg0BTbq9RwPkNzGqonwnuVwKAQl3qJupfLesUKv3GcmNmBY8+M6uwXPVw1n89jbW0NPp/PQWDcvMuYGucBiQqNRsMxDbWvgLaHab0F1lc9XdvX2m/6WyFeNbY4JspQVIIOx1nHkrCtxsKazSby+byDIpnYmQdtMnZIKLbRaCCRSACAMw60/9nWTpAw+5Ofcf7YdaSxP32O9g37TN/He7pe141LV3Hd5IXBdBUQ9CYoeCkwLaxGi5MWK4kVisNzMaoAUMYXi1LWeR3f0Wg0cOXKFezYsQNHjhzBJz7xCfzrf/2v8cADD+DatWuYmprC0NCQC5bH43HUajUUi0X09/c7AUsCBSG0ZDLpFjzfz1Q+QPv4dVXWFBwKgWqfKPSjcQyNUwQCASf4bEYPEjw6wbUUYozXAHAewcbGhovbtVot50URDiUxQEkqgUAAkUjE3aOHMzIeMzMzg0KhgFarhT179rhDPLVNJGsEAgEMDg7C5/OhWCwin887gc526+ZhAI5hqBuAqchLpRJ6erYOoqRCVjiZcKgSOzSpsCbR5Vhx/KnImW+RBoJCsHwex2txcRGJRAI+n8/19/bt2xEMBp03Vq/X8a1vfQt33XUXRkZGsLy8jGvXrrkNyCxcV4yNUWHrfNNYKdvBddPb2+vmAecKjReuYY2fqWKj595VXDcuXXLGTV6oGNRSVXKCJRRobEED4Fx4urg0fsDv9HsWhUdsUJlKYnV1FblczgnZ2dlZjIyM4Pz58wgEAp6zoIrFojtOHoCzgNUzsoF+fT/rR2GqEA5JA/SCaPl2IndQaRCaVK9CrV8lL+gz+HyFelQZUllqsl+OZ61Wc3uwuDGYbdQxsHFAfs5j7hnPSiaTiMfjAOAo7jRYqAQikQjS6bS7hvAqPVx6K5b4wP5hfykcRu9H6269MK23el8U0EqwUS/Tkhqsl6rvrlQqrh8Zx+vp6cHQ0JBL+ZXP5xEIbOXY3L9/PyKRiNs7x7XG8VWiBZUl+5NtUg/Lxq20P9Rj0zmi65NGpv2uWzqXruK6yYsN9For30JiFOKqZFQY6GKw1p5VTHqtKkRa5uqZLS8vu7hNOp3G2bNnEQwGcfXqVeTzeUxOTiIWi7mgfCCwlXiXng2tZ/Xo1FJXRqUqTWXqUZjxxypneqnK6NO+6hRUt4QVKgE1BPQ+fs730DvSI08CgYCD+crlMnK5HDKZjMt1yHZpG1T4k4yQz+ddTDCVSjnhbuE6KvH+/n6kUimX0YMKnp4klZZtl467zSiihgSvtUqF3qLGW7VdZE0qgqBkISXkcHtAtVp13vvm5iYymYyLS/FdTDvGOuVyOfT39yMYDCKVSnm2ZCj0rEacwpRaX11DalDxfzt2Fi60bExrLKoC7JbrSxcqvAUKLT4VYHr8gx4XwUVH+Iff2YWgwV+N8wBe9hM9PY3B6CJkrOD8+fPYu3cvpqam8J73vAf/63/9L5w8eRK7d+/GF7/4Rbz73e/GxsYGnnrqKSeoarUa5ufnMTEx4UgK5XLZQUOEWShoCamxzipImOSVioJeHD0SWrMUnvo3M26wPfQsNI6ilj2wlUVdhXmrtUWk4NgAbcXKPVaM64VCIRw4cAD5fB6XL192imhlZQXBYNDtX9P32dgkD4vUDcM2AS1JBiSmTE1NIRwOu71Myhbk+ALwwKOalkkVCmE+NSJIZGFbdeO5klYAePYuqdHB+UcIUxMMKyIwPDyMu+++G0tLS/jc5z6HpaUl9+xSqYRQKISDBw9i165dKJVKWFhYwIULF/DRj34Ur732mvOQ1tfXkclkPOQJherU67fJhdl+QphKWrKsQYX9rMFIhc3frEO33Lh01fpNXtQS60Qk0PiADR7bvGv6P3+rlcn7LERBa1LhLxVm9XodKysrWFxcRKFQwLZt2zAxMYFLly5h3759yOVyGBgYwO7du5FMJp0XEAwGsbKygo2NDSfcWScmlWWeOsKCan2zUPDTe9PNrzcqCtGoEqSC4P1sn+6rAuDJnccYDynouvGUCkBhXoX3CPGRbUhhViwWUSwWUSgUkM/nkc1mUSwWsbGx4c7TooK1JAAWHU+eSA1sKUOdR9bb0H1SarRQkbCvO5FjaGQpWYEeCWFZu6+Qn2v8x3p+en8oFEIymXQptrgFgP3baDTQ39+PyclJJBIJ5PN5rK6uOnJKqVRyJ3arklKYkwabMke1j9Uj53rQeKwiBJxv6rlzDvMavp916Hpcb1y6HtctUJRibOnqNh6ji4OLSene6pnxestE1L1N6oXpNVzgxP4zmQzm5+eRzWbR39+PXbt24Vvf+hZGR0dd1oY9e/Zg+/btDlIMBoMoFotYWlrC6Ojodcq1UqlcdxYUvSpa6AoX+v1+t2FZY0oac+H/mtlC2X9ss5ItVEnT8yUFu9VqIZFIwO/3e3LcqUDieABtQgH7kaQG9ah9Pp8jXKgy47MoHLmxmwxEHScqG3qAJMGwz1hHlk5xKio+9bparZbzlqlsdC/XjfZ7qaeuEJoaGBwnwpbMlKF1pbeXz+exsLCAhYUFN594TygUwsjIiNv8fvXqVSwtLTnPfGFhAclkEn6/342FKl6Ojd02oXOD9VJyhsY9Odbabr1HYUG7xu0+wW65vnQV101erELiQtE9Qxpv4vUUPkoxV8tOIQ0uMFp8FHi0vrm3ReMNjHMxxlKtVnHq1Cm8/vrr+JEf+RHcc889mJ+fx9LSEj7wgQ/gmWeewQMPPIAf//Efx4kTJxCJRLC5uYlYLIaFhQXs27fPLV4eA6+xJABu4ypJBeyfQGArPZTNWE7mnSo+1pt91Gw2XWyk2Wy685lUsNJDpMdBZUnFTU9Rk+yyf3UfD9l59XodhUIBkUgEAwMDzptiyicADgaMx+MIh8MIBAKOMcfDFUOhkEtWW6lU3Ebbnp4ed4xMLBbDtm3bMDk5iUwmg9XVVRcb49xRIg8TxmouQ/Y1Y3dsczQadTR9EiAU9uJYEBoGvGiAxtTYrwrrMp6Wz+c9cdGNjQ2sra1hZWUFCwsLbvMw0FYWhw8fxsjIiDuV4MKFC7jrrrtczDUYDGJubg4XL15066JWq7mxVAKURSFUIbEPlcnK8ebcY7t1fSrUyH6l19j1tr576SquW6SoAmNsS2nvVDz2GHEuJFVYLJ3IG/o5YxYsNg7G67kAs9ksrl27BgBIJBLYvn07Lly4gF27duHVV1/Fvn37sG3bNgcXbW5uOuuaR00wVhSLxdyzuahp+atiZX2ULk/PiQqKbSaEqFa+Qjs29qB9S2VGKIoClkIHaG9TUIGlY8LrKcwZn0okEk4p893cNJtOp50RwrFQynq5XHZJdskqbDQaKBaLqFarGBkZcYSE+fl5ZDIZJ+gJu2kMVOOoOr8UolWCBseenrHCbKqk1MuictO+4ph12tKh6bbYz/Ru6TEprFmtVpFKpdBsbh2NQiU+OTmJ2dlZhMNhZzxks1mXYktju0QSOIYa11XPUdeYrlW7/tR7VzjQkj90LKxX1i3t0lVcN3mxkJMqHy4AsqNUkFAQMO7DZ/E7Cw9yYenx5IA3KzYFDfdZqaCiN/Hss8/iJ3/yJxGJRLBz5078xV/8Bfbt24d7770XX/ziF/GRj3wE9913H5599lm31yUYDOLMmTPYtWsXEokEFhcXXftVedLapzVMEobG+TSvoTK7KDDovSgEpUxKsta08DiRaDTq+pR1K5VKzrvThMTcY6YGh8bw8vk8SqUSxsbGEIvFUK/XXX5BwqCq6HjEBw0WKjqSLIC2Yrx27RparRbC4TDuuOMOd9Lx8vKy86C4gZkwI5/L/uY7qGz4HkKUnWjbCk+y/21cVWFujiONAfYh4UkaNzQU+C7GQxcWFjA/P+8S+JbLZfj9W4mQt2/fDmDLS7927RomJiYwOTmJb37zm3jggQfg9/uxtraGpaUlzzrgPNH9gpwbCnOyaAyUc1QNP1Vcus1BDU+FoZURqu/pFm/p+qS3QFGYUIWACl1VZp0webX0uQDt3xpgVuuTReNauuioPEOhENbW1pDL5VCv110A/fLly7jzzjvh9/tx9epV3HfffRgdHQXQzl6RzWYxOzuLSqWC7du3Y+fOnY6tRwuYsJLGtwC4jcuhUAixWMxBWFawUpBagonGd9QroLegv4E2zKMUfmWhqcfCa0gyoXLg6byM2fHcLSU21Go1rK+vI5vNelI/aWyPAjEYDDpqPbClxAYGBhyzcGVlxSkoC1fZ8WUb2Ed8Dz009mskEnGKjxCozjnOIWUtKiFB+9V6fUpm4bNsxozV1VVsbGx44MZarYahoSGX/Z4e2N69e513v2PHDpRKJde3rJMl/ajRoUQU9bCUdKF7+nidxlktEUr7X5/B5yo82S3e0vW4bvKiZAKg7WXZhaPCQplYvAa4/jRlFhvzYlHPTa1NTdJqF1exWEQ2m8XIyIjLyj07O4tkMompqSm8+OKLeN/73od77rkHjz32mNuPE4lEkMlkEIlEcOTIEfT19bmEvACQTqed4qHgYF49pvFhW23bFbphu9ge7Udto4VCdX+YClYAHq9B71GojNR+3kvPcXNz09Hf+/v7kc/nHUSlUJiOmXrauhl4bm4OzWbTpX0aHh5247GysgKgTfdWgwVoMzm1noBXcRGiY/8xHsi6aj9qLFHp8Posvle9FPYPY7N6Vpge2MijXlhfvqenpwfj4+NuThMduOOOO9BqtTA2Noa+vj7kcjksLi4im8169g5aokindcB6c22yrwgnKyTYab3eyGDQvWMWRuwWb+kqrpu80EKjYNDguVpwQDsuoJ6SBsp1wSiEoQFi9cRU6NtFzcWm1iOF2alTpzA6Oorh4WEMDQ3h5MmT+Hf/7t+hv7/fQT4f/OAH8fWvfx2hUAiFQgGDg4MIhUKYmZnByy+/jImJCRSLRUcCYByIVrPWkxCcxvcsBEgCAbNDUCjSC2E/8TON7VHIE6rU5MRKR6dHRS/IBuC5jyscDmNgYADlctlBvKlUCslk0u1/AnDd8SbqLTHBLIX3xsYGlpaWEIlEcN9996G/vx+NRgMzMzOeGJzf7/ck0VWSD4WrMjcJGXIsgK1EwZaoYecZ+53P4zwiBGdTRClsyO0EGttizDISiaBYLLptFDQqWA4ePIgjR464GNXFixfxkz/5kxgfH8eXv/xlvO9978P4+Dgef/xxnDp1CoVCwWPoKPmIfWTjvAoB61pSo4dt4ucKFfI5hHPtidEa8+uWzqULFd4CRUkI6jkA12fkBto5CtVypjDm/VQgwPXHm6gy4/csFGYKmwHeo9SvXr2KTCaD3t5exGIxpNNp7Ny5E9VqFUNDQ3j99dcRj8cxNjbm8S5oPZ85cwYvv/yy55gTDVwTtlLITj0ZkiTUEib7jVaxhfcUXqWS0jYpJMf/dV+SpW3rHjsqWyU5sC08W2tpaQnlctmNC+FFxm96e3uRSCSQSCSQTCaRSCTcMfdkO0ajUQwPD2NwcNA9u1wuA9hiPJJ5ybpxPxX7gDHCTnAXAM+4A/Ds5+L3HE81bvgcCm4aCIzbqSdHCJWxOB1zetWlUgnZbNbto1NPdnh42BFbSqUSLl26hMHBQczPz+Pq1asYHx93GeF5vA7nAxWSGhu6pthnim6o16rwsPUgFbLX9arGp65xfXe3XF+6HtctUggX6kIlQcHSxnXxqaekykYZURQQZKtZCFBjPxTY+g6fz+c8hWq1ihdffBHDw8PYtm0b7r77bpfVIhaL4eGHH8b//t//G5OTk/iZn/kZ/MVf/IWLVaTTaQcZZjIZ7N271wnS3t5eZ+mrsgLaiYFZL4XPent7HU2cVH8qJD2qhH1hKfLBYNApCD29mCf3UjgrGUHfxXvoQbCf2L89PT2oVCpYW1tDs9nE4OAgUqmU815isZg7WoSUeJIHNjY2cO3aNacsjhw5grGxMVSrVbenTk9k5rzR2KF6CVT6Go+iF00iDZMjs/3cDK0sPM4fKkrS8+v1uiOi8By3ZnMrEz6PYaECoxIIBAKOBZlIJDA/P4/p6WkXs+vt7UUymXSQ8r59+zA6OoqlpSU88cQTCAQCeO211/DSSy/h0UcfRSQSwYULF/DEE08gl8s571njtrr1g+0B4GBLzjH1vDr9tvkNuRZpePEz/uZ7uuW7l67iusmLWsTqEfC7Tti5Kh5VclyQVH4U9AqFdIIedeHpBmitmyq+QqGAy5cvY3FxEZOTk5icnMQLL7yA/v5+DA0NIRaL4dKlS7jzzjtx8OBBfPvb33YWuCoOvofekMKE9GRYZ4XmKFgAONq6xgo1fqX9oe3RH/ajHgGiVrdaz+qdMuOH3mMhSHoRvJ5HjSgNnjkd19fXnTCvVCrO2yH8Nzw8jHA4jIWFBRQKBQ/LUuNvVE5KyOlELKDC0/ZSGTO+SG/PxrQAeBifuhma1xCqpMETDAYxNDTkYd81Gg2sra05j3FpaQnr6+uun9SgUMV+/vx5rK2t4e1vfzvOnDmDffv24c4778TCwgJOnz6NlZUVhEIhl1JKvTtr2GkMmX2h/aYxLWsM6Dyz61rXnP7dJWV899JVXLdA0RiU5pGjoFEPw1qNgDdBrlr69Ap0cVEQq8BRRaYYP5+pGQPoFc7MzGB6ehqHDx/Gnj178OSTT7qNpIODg7h06RL+1b/6V3jzm9+Ms2fPYnl5GcVi0S1ipjoC4PYIkcatEBzgPeCPbacQUeo7v+P3liloWYbKNKPSUePBKm7tX81vqN6DKkP2GeM9pMQHg1sHXkYiEZTLZYTDYVQqFbc3i5ncAWB4eBjB4NbRH8zxyCzoPL9LPT+dTwpHKSxMga2bqzX2pId2sj1MocS2s70Kp9p5ohR8kkeCwaDLWxmJRJyHXKvVUC6X3QZkJUGUSiVXh2g0ilqthu985zsYHh7GwMAANjc3ce+99yKdTuP555/Hyy+/7I5m0fYqssB6ch7oeuNnnDe6WV7nBvuVyl8zkLCoAuT6onK3JI5uaZeu4rrJi7WMgXZci8JcM0YAXnIGPSobn2D2BYX7rMWpHobGepSirIw3ptsBgPn5eXz5y1/G/fffj927d+P222/HsWPH8M1vfhPvec978OUvfxmrq6t44IEHEAgE8Fu/9VsOUmIgfnp6Gjt27MDIyIhLMwS0N6AqA4t/A3B7lDR2wHra+AMAJ5zpfdmYH/uRfc/r1NMC4EgPQNujoHfEemvsSftX4VwV+vv378f+/ftRKpVw9uzZ6zyy3bt3o6enB8ViETMzMwDgMo+EQiGsr687Qc80R2QeMuanbVaPmzAeFSe9XhogzDRBJcqicTqNmxHyZZ7KeDzuSCbA1ubxTCbj5vv999+P8fFx7N27F5lMBisrK2g0Gi6/Y71ed4oslUrh4MGDiMViuHz5Mvbu3Yvdu3fjmWeewcc//nEXW/3MZz6DmZkZZ7ioR8VxphenniPH2/ZRp6NOdH3Sm+P3OoftuFsjq6u0bly6iusWKBTOQNt6598M+HNBqcXH79QjU4GszEO7SCwUZheVwiD8TUXKxbm4uIjV1VUkk0ls374d58+fx5kzZ/Dwww/jbW97G5599lm8613vwt69e52lTDiy1Wq5ww77+/tdjEXP2dJ9PcpQUyVNYaFKzLLoVMlr3Er3jtm+UTalUr3VC1Yol9+zXzUTOn8roQPYOtmYXsPQ0BBCoRA2NjYAtD1qnq/FtE/qjVl4yu41U8KD9peyS6lA9X7dBE4EQPtd54qSEuhhsX/VwBoaGnKeIdNdAUA8Hsfg4CAuX76MlZUVtFpbe95GR0edx1ytVpFOpzE2NobNzU1cuHABd9xxhzsqZnJyErlcDmfOnMG1a9fcyQEK/7E+Oo+0/uqtsq3qubPvFF7kc1WZ6RxVr1e98S4x47uXbg/dAsXCExQqiofb2AsXiyoljRsAbc9NoTVVYLqYVeBZ4oaNrwFbVncul8PS0hLq9Tq2bduGAwcOYHNzEysrKxgfH8fLL7+M2dlZDA0NYXx83APb0FJlHj8qRYWpFNrTNup13O9DlprCf+xbFUokB1DxWAhRlZyOCZ+rpAZV7vxOrXvdRM2isbRqtYq5uTnk83n4fD7s27cPBw4cwK5duzA4OIj+/n6niOkRMW5GIRkOhxGLxZyw1jmgylk/Y+Z7elV6YKedEzoHLPRGYoiy5UjAYPZ8KrlkMol0Oo1kMomBgQGkUim3QZiMzHw+7+DkSCTiPK9EIoGhoSEMDg5icXERp0+fRjwex+LiIoaHhwEAly9fxsmTJ6+L5Wm/c16oN21jyhaZ0HWkhg/Xif7W+cbnKsvUftctNy5dj+sWKBRkFCyEqyxdVxcThbddEIrbU9Hwc6WVA9fvC1NShwo+n6+d+JWfkUH21a9+FclkErt27XJQ0Re+8AU8+uij2LZtGz7/+c/j53/+5/HTP/3T+MpXvoKTJ0+iXC67tD4bGxu4fPkyDh486GA3CkhlN9ITaTabDm60ZAPGh1SwWpiUfcM+5gZWJVWwryjIeT2v0WexzcAWfZz1jsVijmChUC+vTyQSALa81rm5OQwNDeH973+/YxmS/h4Oh5HL5ZDNZq9jWirUpXGYer3u+oiQ28bGhutXEkparZaD+djvfDahZGVzMm7FOcY6MEbFuUzlTOOEECRJHvQiZ2dnsby8jP3792Nubg6XL192eRnX1tbcUTIk+YyPj+N//s//iampKTz//PPI5XL46Ec/ipMnT+Lv/u7v8PzzzzvKvq6XTkpDDTlFPNh/9LQ5xpwvqnRUWfF6xsQUvtY1ZA2jbulcuh7XLVDUE1IrTmEmtepU+agQUetPA9C6WFUQc4+LFmtRcjFqLEjvuXjxIi5fvgygDfswq/dtt90GADh79ix27NiBQ4cOOUiMFn+pVHLZJPSARgogTX9E74DsPB5Pz2tJIdfPVcgo7KgxD6aUuhHJg0pLLW8dG3oZVFCM4SkpQ+vPAxgp5MmsW11ddQw89vvm5qbzKBX+tIQaKl/1gNS7sJ4qvSxS+HUbARUi26QKSD1a3qOeroXhNI2UerkcA6aromJmn5FpGYvFsH37dvT397txOXLkCK5eveoyxM/OzjrPn+PBsbFryiohznH1jLk2WF9FLJT4wr7Rz+iZqtHJvtdru4rrjUvX47oFimaIUGgB8O7s1/1ctGCVbcj7uUA0CwcAd0wGF44uYi5uKjie0FsqlZyFrlapz7e1AbRQKOCxxx7DAw884OIYY2NjeOyxx/DzP//zePDBB/HVr34V/+bf/Bu87W1vQ29vL/70T//UxV5arRby+TwWFxfdhmag7UHxvUoUUTJLvV73xH7IWKN1y/O7OgXCbawCgPMwqNQp1BkLU6hQvS7m9SP8RoHHcWDhe6i8BgcH3UGJly5dwu7du5FKpdxRMs888wwWFxfh8/mwfft2p2jIVlRFotCcCtdWq+XmRqvVcrAqFQufoUegAHD9oJvdVbFpP7JenK+sn16jcGqz2UQ8Hkej0cC5c+ewurqKer2O8fFxFAoFlEolTE1NYdeuXdixYwdqtRq+9rWv4ed+7ucQiUQwPj6Ot771rQCA48ePY2FhwVNHNbC430ohOzXo1DuyMSsaFkwKTEWn81CNTva37gljXxPJ6O7n+u6l63HdAkWDxkqr1u+42NSaVg+MxeLtGpTnM2gBapBelaXF4VWpUbEB7T1U09PTuHbtGur1OhKJBHbu3OmevXPnTuzfvx9Xr15Fb28v9uzZg6GhoetO6SV7TD3ITu9Wr4seAxPTWuWkdHgWtl3bp56dvs/GDtlX9DIUuqNgovfGzzQzBn8I7fE9TFNFoyKVSjklSG+CylnP/FLvRsdX32ljNtbzpLJnHVh/fqaHdnaKC/Ld6r1p1gydl2ooEZbu6enB8vIyMpmM28TMa0dHR5FMJtHb24uVlRWsra25LBm7d+9GNBpFqVTCysqKOzJG4Xady3Zt6Fzh3zpX+BxVTqy3KkBtn3rler8+v9O93XJ96SquW6RwsgNeRp/CCmrlK3uLRZlcdmFqvEuVlQokXZwURKos6eWoQgwGgyiVSjh//jxyuRz8fj8mJycxNDSEtbU19PX14S1veQvOnj2LWq2G4eFh7Nq1C+Fw2NU9GNw6KXltba1j/E0FpcKChAQtQUKhKz3nSwWRCimFV7UPFB6zfUrlqdAb26Nej8aJ2NeEHhWKZRtDoRDi8bjLtpHP59140FvShMAqGHWO6BxSBayCnceeRCIRp0y5FSESiTjaPfvWvkshUP7wf82Wr+9VYU7Fysz47M9Wq4VUKoWhoSGX6+/q1asuC8krr7yCffv2uW0CS0tLHkNDx0tjWMooVaKJjrv+beeJKnwL+3FM+RnHWdmndi9Yt9y4dKHCW6CoAFMCBNDe1KgKiX8TutLNnlwotFyV4MBURDxoT0kHSj0nFZ1/W2+MiWpp5YbDYTz22GOIRCK45557sGPHDtx999148sknkUwmsWPHDrz22mtIJBK455578N73vhcDAwN44oknnBDd3NzEzMwMdu7ciUQi4SBAVZxUBKwz255KpTykFcanGo2GS0eltHdttyaRpbBSCJEEBjLzOEZ6ppfG2VRocWz1MEeNA+mmYcKu2WwWc3NzePHFF5HJZDA8PIxSqYRAIID5+XlPjIv9AbQ9BE1b1YkxSk+Hion1jMfjHkHL/tX9dXyesitVoavQ1vmi3hmTBjOV2eLioju6hPN++/btuP32292J0M8++yxWVlbwkY98BF/72tewtraGAwcOYGNjAxcvXkQ2m/WMD8lObBuhWyoQAJ46Wmhev+c64pzhM9SYVKIM1yXro+PVJWb840vX47oFigo1wEtBV2GgWTV08qsFqZkyLOSlnhUXktLulQSiz7cQnAa/g8EgKpUK5ufncfHiRedlDQ8PI5PJ4Nlnn8Xc3BzGxsbw+uuvY3Z2FqOjo7jjjjsQiUQcNZtxEp71xeM56FUpnMo6dMpfaBldqtAUYlSvikLHBs3VULDwmG41UKWosFInuEjHWlmetVoNhUIBS0tLuHr1KtbW1tBoNJBOp93xMer1qPKwnlcnKIrtIDxHWMt6idpfjBMqzKcxIp2nhCd1XNgf7Ad6ZHzf6uoq5ubm3HWbm5tIJpMYHx9HIpFwfXnhwgW87W1vw/j4OK5evYrt27fD59uiz/OgSBosqrR17ir03GmuW1TDKibtR7v+LAzLOWX7zRoS3XLj0vW4boGicJFSagHv0Qnq/XAhUPhwcan1yMVLRUCBrtklNHEs4N3XQlq4DWZrfII56LLZLL72ta+h2WziF37hF7Bnzx7cd999OHHiBGZmZvChD30Ijz/+OL7yla/gk5/8JO644w685z3vwQsvvICZmRn3zhMnTmD79u3Yt2+fOwaEgtnv96NYLDohpZ4h+8Qep2HbxX6j98H7lcTB9gHehMUa02JRgajHpzCbBuEw1oHjovEtCvdcLuc20BJK41gxoa0qqUZj64RmKs9IJOLeRWGpsB2VF+eSziN6jTRG+AweJKl9xr4hbAnAefHq9ZPYA7RJPlRwtVoNJ06cwMbGhnu/z7e1l23btm0IBoPY2NjA2bNn8eEPfxgHDhzAqVOnsHPnTrzzne9EJpPB888/j6efftqtC4XAdfsClYeSItgPOn5KkddxtqQkfR+3XGjsi96ZjZPSs2dh33TL9aXrcd0CRWEEFpIQ1GtQooVa2IqvW09NLUguXEv/tUwq3dME4DpFqZAdSzAYRD6fx5kzZ1CpVBCPxzE5OYk77rgDm5ubSKVSePOb3wwAjro8NTWFvXv3urOl/P6tNEI8sp1wVjAYdJ6SegzqUVKh6qnDqqhVadk9PPT6bH/zehufUvq7jp16LIz5sD42PqQCk7+pjIH2fiiFmvS8McakmP6K+7G0tFotdzSJepek5Fu2I/tEPQU+h7+pHJQ+r32lfazzlu8jhLa6uuo2G/N6blKmsjx37hyuXLmCHTt24OrVq3jyySdx1113YWBgAPPz8zh//jzm5ubc+FKpqqJRJaQxLe0j63XZ7/SZN/LIdD3pexXW5/XdGNd3L13FdQsUja3owtIFZYVIpwC8tRJ1kSl0Zhcv4E2wqwtdlZ4Gp/UeXkuG4dzcHAKBAAYHBzE5OYm+vj4Ui0Xs2LED9913H1555RWsra1hbGwMBw8exO7du927ucdrdnbWbd6NRCJOETBreTQa9SgUCgiFAtXjtPXWomQPKioLowJtoaWkCwpoGg/8nPWxRAoWVQJKdLGBf7uPjF6QshRVydl28t063rr/SucL62+hZtbR7t9SL431VYNJDQqgnb1idXUVly9fdv1bq9UQiUQwPDyMVCrlDIvLly/jrrvuckfpML2T3+/H+fPncfHiRbcxnXNQ57dCqxqz1PlvITxVKBZWZNvVe2Uf23u0PpyfHB+7361bri9dqPAWKArDqdXM/9UqJPTFRaMkASooCh96MQodWuGpipELS2Mv6lGoYLABab6v2WziC1/4At7//vdjcHAQtVoNu3fvxj/8wz/gkUcewU/91E/hN37jN3Dq1Cl85CMfwd69ezE0NIRMJuNS+JTLZeRyOTz55JM4cOAAxsbGkE6nnZWeTCaRSqUc5MQ+BHCdQCWxgm2xNHIqB6B9XAeZkhovVGKF9luz2T7vi++i92BjaRsbG574i8Kt5XLZjSf30FGRU+hpMl8VjnyezgPduMz60lMjFNlsNh3BRjdDk8yguQe5fUH3tBH60rEHcN0m583NTQepXbhwAbOzs8jn8wiFQiiXy+jt7cXU1BQOHDiAWCyGQqGAEydO4KMf/SgGBgbw6U9/GqOjo3j00UcxMjKC6elp/PVf/zXW1tYQi8UceSUQCLi4nHp87CcLG9sYqPUaOe+5HtTDZh9xPdkYIceB3yky0I1vfffS9bhugaJwCa3BTopDvSr1uNSCtIpOlY7dY2JjLizWyge8ufs6QSsKz5w9exbnzp1Ds7m1yXRkZAQzMzN4+eWXUSwW8fDDD6OnpwcXLlzA5uYm+vv7sWPHDiSTSSdg6/U6VlZW3B4xYCs7++bmJtbX11EoFDx5+BRSYx8ovVqFhlrjjIewnYQN+SyNl6n3WqlUUC6XHWvR5v9TujnjU+x7endUOkq0UA9WWXvW87Eeg3p/hAIJf2r8hRu16VXye8bClEHId6tHyg3Z6tnR2FGPjH8rPFcul7G0tOQUDd81MjKCnTt3YmRkBLVazXlSoVAIr776KpLJJO666y5s377dMQmptBTe7QTjqSfFH53/ugaUcGL3b+m64f+qrHScOq1vu1YsLNkt3tL1uG6Bop4RF4amD6LSscFkVU6q+BhL0CAy0M4goF6WLkwVmkr8sFAjrUwN8tM7qFQqmJ2dxauvvoq3ve1tSCQSGB0dRSQSwbFjxxAKhfCmN70J733ve/HYY48hEAhg79692LVrF9bX15HL5ZwyAYBcLofLly8jHo87ogO9l3g87uJfyshUhh+p+yqQtM8pdPm95i5UZc0+53MJv1EJ8nslPyizjhAnlQoFLj2cVqvlSTvVScmqB6AQlBowAJwC1X1DjAsqDGohU75XCQeazFiVqd6r/ci+1VRQfv/W9oFcLod8Pu/mGb/fu3cvJiYm0NfXhwsXLmBhYQG33347lpeX8dJLL+FHf/RHMTk5iXQ6jStXruDEiRPuxGl6gKw7x8HCpqyfrhutv01tZeNk6mHzHVw/fLd66LY+6mXbeGe3XF+6iusWKX5/O0WTClp+pnEDCmC18BSmoNChQFGBppYplRr3MlGYWYFOhaesOavcaJlTkTz55JM4evQojhw5gsnJSfzET/wEXnnlFTz55JNIp9M4evQowuEw/vqv/xovv/wyHnnkEfT19eGpp57C+vo6QqEQ+vv7sbm5iUwmg5dffhkjIyPo6+tzioAxKfUSGF+iJ6b7wdifPp8P0WjU0y+8hycwa58S6iPJwcYCeUxHOp1291cqFZdImP3NTO71eh25XA4AXAJdn8+HgYEB19fKOFMlQwOB7VVvh0JRk/1SIMfjcXcf5wHHLhAIOGXFeVatVlEsFt17OOc2NjawsbHhyQzPflIvSynhrdYWpZ2kHAAu4e6OHTtwzz33wOfzYXp6Gqurq3jf+96HZDKJz33uc7j77rtx6NAhAMDy8jL+8A//EFeuXHF9o0ey6NzXuCch2Uaj4a5Xqr+OMdBmiKpRqIYb+1ZhdUKJvEbbDsDzHDWsuqVz6SquW6DYfR66YLTwM24O1YmvRAK1FrlYuOD0O/UQ1GtQa1DZeFygCrGoxcnC+j333HNIpVLYv38/RkdHHRR1/Phx9PX14e6770a1WsVf/dVfYXV1FYODgzhw4ACuXr2KcrmMSCTi6kyYyefzuWM8KGisclfrV4WOwkLaz4R81HtRIUYFpwzBTnueKDA1QwnHl8qFgt5mjKfgUwGq9HclQWiwX+eIjoUeaNjJEKHiYp30OayDGj18L6FAn8/njBR9j9af1+fzeczPz6NYLHrSYQ0MDGB0dBSpVAr5fB7T09N45JFHEI1GcfLkSYyNjWHfvn2IRCJYWFjAa6+9hunpaSSTSeTzedc/rLvm72R/NBoNp2AtKYLjr54R77NkKf6vn3F9qSGpa0vnjkKJlv3ZLdcXX+sW9Enz+TxSqdT/62r8sxWl22pMwMagmA1CP1MrUIean+keFgpI/q3wh8JgVmBZq9PGkyig+BmFR6PRwNTUFB566CE88sgjTgH95V/+JTKZDP7tv/23SCaTyGQy+P3f/30AwCOPPOIs+0qlgkuXLmF6ehrr6+vw+XwuPhMOhzE2NuYyPlDQxmIxJ0DpAWo/RyIRRyvnPYQcLbRE4c5+yuVyLjbF57KdtOabzaY7AZjQnxoGHAPmHqxWq85zHBsbc/WmR8gN2VQ4JEUo9KRKFwAKhQLK5bLbG0WmIwB3urIV7oQCqfQ0kwo/oyeZzWbRarXQ19fn6QdCuGQnrq6uYmVlBZlMBsvLyx74uq+vDw899BBisRh2796N+fl5fOtb38JP//RP41vf+haq1So+8YlPIJFI4MyZM/jiF7+Il156yQOtav/bNcF66zzW/V3cU2ahclVIaggpuqCxRyVg6D4uPo/zitdonyqr8we55HI5JJPJ7+meLjnjFihcDBQyCnkpZk4rl/dwEWggmYuXi5R/W6sQ8AbV9TNd+LqAtT76t75D6dTxeBxXrlzBd77zHczPz6OnpwcDAwO4++67EQqF8NRTT2FxcRHpdBof+chHEA6Hsbm5ib6+PkxMTOCOO+7AnXfeiYmJCSckKLzL5TIWFhZQKpWcgtBzodQQ0L7S+B7p5Cr8ta/VU+mUxJfXRSIRRKNR9wzClyRwaAyOSo77wDRTu44l4GVI2niXJRvoRmO2T+uj40uhaan6qrjsO6kEdJO20sCz2SwymYybT5VKBTMzM1hbW0OpVHJni5H4kkqlEI/HsbGxgeeffx6vv/46wuEwnnzySaytreHo0aNua8TTTz/tNivriQhsl461zl2OjyoX9TzZH+wjGy/UmDKfTwXOey3JwsagtV78W+vULZ1LFyq8BYrCdWrZAe2JDniPA1dlxHsU3uJC0WuUTAFcr6RYOkGDvJ8Cw8KJ1ttjHYPBIC5cuIDXXnvNHb++c+dO5PN5PPXUUyiXy7j33ntx6NAhd5DgyMgIWq0WhoaGXPaMCxcuoNVquTgNsCUsQ6EQhoeHPQqdClTrqt6T/m+9SPaLFvarjW3p+KlyUMhPszfQK2k2mw5RKJfLALaUvJI+eL9a+zoWljzSKXMDYTlNSUWvUBUgx0zhagtPUqirx8LYnsYR2fZCoYDV1VWPwiOZgobJ+vo6zp496zZT9/X1YXp6Gg888AAOHTqEer2OK1eu4Nlnn0WhUHAEEyWIEIlgG2wMSZUQ287xZtvpjXIs9VlWSdEw00NcFSFRaJ11sB6hVYjdcn3pQoW3QKFg4Sm2FGAKBykEp/Ce4uqEkPSkVRVEVFz6DDs91IrUtFMKk1B5qLemC1Zp2RSgjUYD999/P+6//37ce++92NzcxIkTJ3Dy5EnMz8/jne98J0ZHR/H5z38erdZWIl+eCjwwMIDPfvazWFhYQKFQcB7B+vo6Wq0W3vSmNzkqPeuteQzZt+Fw2Hlm6qXV63X3v8I67H8et8G9Xa1Wy6VXomerBzgSLuT39XrdCWbSypmncWVlBf39/Q4y5aZrQoUkdzSbW3uu/H6/g0PpgeqeKaB9AKQyPlVZU6HRoyN1nwqQXiI393L+0FOpVCrI5XLuDC0AOHjwIHp7e3Hx4kXMzc2hUCg4EkgkEnF71fbu3YsHHngAk5OT+PSnP40HHngAU1NT+OY3v4lsNouPfexj2LNnD1qtFj7zmc/g6aefxsLCgjMCtC0Kp7PYuJLOa/4m3KpKRVGKGykYjoWSZfgu/a1QutaV81FPoP5hKN8PVNj1uG6B0kkJqeXXKQCvHpUqG4uz3+h9GvuyC1wJDvq5CkMGmPk+hT703RR6tVoNx44dQ71ex4EDB9DX1+eON7l8+TKeeuop3HvvvXjHO97hYj5f/OIX8Y1vfAPvete78Na3vhUnT57E6dOnsbGx4Y6mbzQamJ+fR6u1dSgj60ThpIUKTAWSWtRKcFFvTIUYv1evs5MFrUw7PiMSibh+oWLw+XwOZmSbFM5ksmGFKjkuFsal4WIPhFSoj3NG9/TxmbyOddb5o6QU9eD0bLGNjQ0H37L/uIGaSuy2227D6OgoACCRSKC3txfPPfccisUijh49it27d6PRaGBubg7Hjh1zSXjZRiVNKElG56GNKel97Dttr641hc0t7EdSitbFxsM0tsx7VZHq+zptR+iWrdL1uG6BopADg7kKN1kihr1PF5DuE9GFrFCfMs0s5GGhRVqmzWY784DS6nUx6wLVtnAhh8NhbGxs4B3veAcefPBB3Hfffc56feGFF/Dkk09iZGQEt912G3bv3o16vY4vfvGLOH/+PP7zf/7PCIVC+Ku/+iu8+uqruHbtmoNuarUaQqEQ9uzZg3379jmBRIVA75WZIzrt+dJ6UwHoeVvlchlra2vo7e1Ff3+/O91XDYlSqeQUh54sTONgYGDA0bKz2SzW19cRDocxMjICAJibm0MsFkMymXSCVQ9lpJJQaEvfoxuLOQcUdraFnqGOEeNzLI3GVi5H0vcDgQCy2Szy+bxLPVUul3H58mXXT7rni/3c19eH3bt3Y2BgAHNzc4jH4xgcHMS1a9ewd+9evPOd78TY2Bhee+01PPPMMzh9+jTOnz/vUAiFunVPo+5F5JpgPXV+WqIG1xi9e/WO2K8a9+P71ZC0xqJVZlSsABy8qpD+LSiav6/S9bh+QAutWIUgdNOphR40dmNjO0r0UIiRwk69CD6TC1AFnCViMBivzwXacTI904qChhAcBQjTGb300ktotVqYmprC8PAwAoEA9u/fDwD4+7//e8zNzWFhYQHvete78MADD6BcLuNb3/oW7r//fhw6dAiZTAarq6tuP5HPt5WJfH5+Hnv27HGMQdZDs3JTobLfWTe2XanKFFpk0q2trSGRSCCRSCAcDnuMA3ueGceDXl+9Xkc+n3c5Fim8CPupB8gNygrF3sh7Vq9Y5w7fr0w+jheVKecJ262emhIwbNyoVCq5/WLr6+vIZDKu7SRfBINBz/64Xbt2YXx8HBcvXkR/fz+OHDmCY8eOIRAI4N5773VQ6ZNPPoljx44hk8l4vEnbRxqr0lisZihR70tjhfxfafuqsDmGCh+qEajKiRAz55D2p3q0anBqW7qlc+kqrlugKLRBSMgGza2l10mZcZHQq1DvSotaq6qcbFFvhYtTFZcGw1U46iJXGr5mUzh27BgOHz6Mw4cPY3BwEP39/Th8+DByuRxOnDiBF154Afv370c8HsdDDz2Ez3zmM6jVanjooYdc4P/8+fOOel6v17G6uopcLodt27YhEAigUCgAgIPolGXH+mvfaZtUsJCxVyqVAAB9fX2IxWIe2EqhNT5PY5cUlFSm9HSZl5AxIMaxFJLTLQedID+tJxWNKmigvc8PaCfZ5XYB/uj+MhpOGhul98W5sbS0hHw+77w+9g9jOfSI4/E4xsfHHbnmyJEjCIfDyGazuOeeezAwMIBsNovp6Wk8//zzTmkpQ5VtVSNL14YSV9TDUkhXFZmuG76Hc9waZXymbjbWdyjaoF4X66nemq1zt3QuXajwFiiaFFfjXQq3AbjuOy46a32qotNnV6tVD1mCQl+hDaDtdVDpAN7MBKo0eZ/+VoWgQoBCmNnAq9UqBgcHsWvXLjz00EPYtWsXtm/fjkqlgnPnzuHP/uzPsH//frzjHe/Ajh078Hd/93eoVqu4//77UavV8KlPfQpXrlxx0F65XEYsFsO+ffswOTnpslTQMqYioBfAulWrVUdRJyWf7VWW32uvvYZarYZ0Oo3bbrvNA7GxP9ivrVbLA91xXAj3lUoldzzK5cuXsbi4iGZzK7ej3+9HMpl0dHmOIzdwRyIRj1Jk/UgCoTJstdqpntQbp2dBLzgYDCIWi10Hd1GBE9qsVCoOkiwUCjh+/LiDgBhnpHFTq9UwMjKCyclJDA8PI5vNoqenB29+85vx4osvYn5+Hv/pP/0nDAwM4Nvf/jaefPJJvPbaa85ro7Lmfjc7BzXOZ404jYFZRaHzk8qYClEz5lvWJg0R9hu9u06ekxqealjoPNGN2j/opQsV/gAXXYBqZSqspwtQrU8LQ6gFSKtalRMXnnpRmsJGn8X3U0Hyffp+LWpZqmBXEgSFUzAYxOLiItbX19FoNHD77bfjfe97HwYGBnD77bdj//79uHz5MoLBIA4fPoyHHnoIv/u7v4tKpYK3vvWtePDBB/GNb3wDly5dcpBhLpfDxYsXUalUcPfdd7tsCowTqXC+0f4tu6GaQisejyOfz7tks6oItb9USfBzfkdh2t/fj/7+fqysrGBjYwPFYhH9/f2ezPCWnVgqlZwiVW+E3lyz2XRJfXXuKKSsddJ9TYSBdew1LkojhJB2JpNBIBBwMTgaJHxHMBjEjh070N/fj2q1ikQigQMHDuDSpUtYWFjA3XffjfHxcWQyGbz00ks4ffq0JzWXein0+rkOaCCpgmA/aF/b+cixVo9a19eN1qIai3oN66HvVuiYz9f5pXGvbrlx6SquW6DYuJR6TCrsVFGpZWwtQi409RoIG9rFzuB3J9hFGXhaFxUOGg8AvAFnraMKDYUQqVhefvllLCwsOMhw27ZtePe7340vfvGLeOWVV3Dq1CkMDw/j/vvvx9NPP41cLocPfOADqNVqmJmZcUIP2NrfVavVMDk5iYGBAfdeuzmX/WghKPYh20BlHo/H3TEhtCLJmqO3zD7RfmNh3Kq3txejo6Po6+vD2tqaMyRIgSe9nYqB48jTgmnp67NZb3oNOo/svFHImePNeBSvofJlUmCgTbOfnZ3F7Ows/H6/2yKgyY6DwaBTzLz36NGjaDabuHDhAg4ePOhil+fPn8eZM2dQLBYRCoVcO/hM7Vud9/ycc4tzT/tfYUEtOlfZ36p02F/8XJW4xskU3egU29K6AN49dLcgEPbPWrpQ4S1QKIwUogPa1pkqDKBtxdlFp5tcVcFobMpuhlQPQTNk8/26IK1FqxCNpRbrQgeuzxig9dP4TSAQwL59+/COd7wDP/uzP4tSqYRLly7hj/7ojxAOh/GLv/iLiEQiOH78OB5//HG8/e1vR7VaxcmTJ3H27Fnk83nXnmg0irGxMRw5cgSxWMwDX7KvFFqz5Bjbn4xD5XI5bGxsIBqNuj1Y3BumfWMt61arhXQ6jZGREdx5553w+Xz4+te/jpMnT6JcLmN0dNSlTeKes1wu55SR3+9HNBrF6OioGyvdotBJUHK/mZIxKEBrtRoKhYLL3hGJRBAOh91YKJxFpb20tIRjx47B5/O5/W3K8tuxYwfGx8edkrnjjjuwfft2PP7447h27Rp+8Rd/ETt37kSr1cJf/uVfun1aSpCw81U9KF7DYlmTSrjhPZaMQyhS41l8jjIE9X1kkdrz7zQOdiNGr0Lour5+WEoXKvwBLaqECAsBXhKGxed1wfGHgXNd5LpXRC09Wqo2GSuLQh96fad4mr5P4TJLVebnFA7WKuZ358+fBwC89a1vxY4dO7Bv3z68853vxIsvvoh/+Id/wF133YXh4WHUajV8+9vfxvvf/3685S1vQSQSwTPPPONgr1KphIWFBQwODmJ4eNgl5wXacQobu+AYaB9obCIajcLv9zuIrFKpIJlMXmfVK7zE75LJJLZt24Zt27YhGo062ngwGEQoFEIkEnEKkwmGudeLZ3tFo1GkUikPnKVjrkpMBauyA5W0YWFS9fh0fhWLRczPz+Py5cueXJQAPCdTT0xMoF6vo1gs4u1vfzsGBweRyWQwMzOD++67D1NTU6hUKi4jxsLCghsD6x1yntPosetC14DGvGx7FOJT2JRjo/vX7L4w1oEeIJUTCUE6/zVzDeePKjWNW3e9rjcuXY/rFihcSKqcVNgD7c2zADxxKnvaMQVhp4WogoDP1IC6VTpcsLoAVZEpw02FPN/diXSi7VQPjsqGCrRWq2HPnj14z3veg7vvvhu33XYbstks/sf/+B84c+YMBgcH8dM//dNoNpv4sz/7M0SjUezatQu1Wg2XLl1yefIogCKRCNLpNA4dOuSSw/I70uVVYEejUdeucDjs9vWw3xYWFrC6ugqfz+eyRrCvms0mYrEYIpEIRkdHncJMJpNIJpOIRqMOon366adx+vRpFAoFJBIJz9jruNMwabW2NjKzvtqXJGdo8lhuHFZ2qMKg3Ke3vLyMVqvloE+2PZfLYXl5GRcuXHCMR83AzvG8/fbbMTg4iHw+j76+Phw4cADFYhHPPvssIpEIPvnJTyKdTuPVV1/F008/jVdeeQXLy8sOOuXhmwqT65ylwtBz0Kg0mPVDkyorzMf+pBesSIXu19JYMteOQuwWneB7+GxVZnY9qeelkOYPQ/lnT7L7u7/7u/D5fPgP/+E/uM8qlQo+/vGPY2BgAPF4HI8++iiWlpY8983MzODhhx9GNBrF8PAwfvmXf/mHzj3+XouNj1iLjPEGxkkUZ6ciU5jKMsP4DIXC7D4h9ZgIm2lcRBc966f15PP5bv7Nota+ChFVitwXwxOSv/GNb+Dxxx/H+vo6UqkU3v72t2PHjh1YXV3FuXPnEA6H8a53vQsAcOHCBYyOjuLo0aN429ve5rK+A1vzdnl5GZcuXcLc3JwTlPpDw4AQ2o0S9tbrdYRCISfYmEgW2IoZplIpTExMYHJyEiMjIxgeHsbQ0JAnPZPP53PXMoOEVf5KRqAg1ePn6QUzE70aIlRYbI8aIBwnfs89ZrlczuUE7OnpwfLyMs6ePYvp6WknmK134vf70d/fj/HxcTQaDYyMjODgwYPo6enB008/jb6+Prz73e9GX18fstksvv3tb+P48eNYXFz0KAfA66XqPNO6su38TUVCo0eVj15rkQGdr+oV62eqfLTP7Tu4nUA3FlukQY1FrVe3dC7fN1R47Ngx/Pf//t9x+PBhz+e/9Eu/hK9+9av4/Oc/j1QqhU984hP4wAc+gGeeeQbA1iJ7+OGHMTo66qCAD33oQ+jp6cFv//Zv/5+15ge06EJQMgP/p5DXRcOFrBg7FxIFroXjdPMlLViFUxT+obBQKjV/lLRhFzjrootcITOFJ237rODy+/3umPbdu3fj0KFD2LFjB+6991709vbiqaeecpk4BgcH8cILL+Cll17CnXfeiampKdx+++2Ynp7G4uKiE7pLS0vOY0gmk87L4ft6enqwsbGBQqGAWCyGdDrthA77xO/fyheYSCSQyWSwtraGZrOJbdu2IZVKIZ1OY3R01CkAKuNisYhisYh4PI5UKuViXqOjo05Zan5FKiGOXTgcdh6EjoXdMsH6KmtSDRttC7PYk3bfam1lUykUCjh37hw2Njact0ePjx6q3+/H0NAQJiYmUCwWUavV3Blrx48fx9jYGN75zndi3759WFhYwKlTp3Ds2DHkcrnrIEFVGGwHv1fFzfnBuc85S5SAY8t+UmWl5CTOPfWCaOQoO5L3qoJURUalRYOGRfua7VFP94fJ4/p+yvcFFRaLRdx11134kz/5E/zmb/4mjhw5gj/4gz9ALpfD0NAQPvvZz+InfuInAABnz57Fbbfdhueeew5vectb8LWvfQ3ve9/7MD8/71LZ/Lf/9t/wK7/yK1hZWbkuf1yn8sMGFdLa1qS29GQIg3SyDrlwuECpUChgFGLi/hs+X+FFoB3/orBTFlcn74ufcTxV0NiAOZ/NRc4AtyrWTsKBkBe/P3DgAD72sY9hcnISgUAAL7zwAp599lkEAgFHr56fn8dTTz2FlZUVvPnNb0YoFMJLL73kMs+zzdFoFPF4HOl0GoODgy7GpMlvyXpMJBKeWBc/29jYQCaTQW9vL6ampnDvvfc6iFFjRBzXtbU1+P1b524NDQ25pLq1Wg3Ly8t44oknHM0+lUp5+pvjVK/XHVOPXgb7n56cjk+5XHbkC7YxHA67fufcKxQKKBQKKBaLuHr1qlNYJGBwbAit9fX14Y477gCwRVjYuXMnxsfH8fjjj6PVauHee+/FI488gmq1iitXruAP/uAP3F4v9ouN0XGc2R5VJvQYOT9VUev/quBsfLiTt6TGEuFbrgNFDOjZKmqh/aH7Hdn/ut2Ez+R92vYf9PLPRs74+Mc/jocffhgPPfQQfvM3f9N9fvz4cZe9gOXAgQOYnJx0iuu5557DoUOHnNICgPe+97342Mc+htOnT+POO++87n3VatXD1snn899PtW/pogFh/s/FpsqFk54WJAWApUATqmPMSK10wLuYlb3FRacBZVVojHFYy1c9RWsrqQAG2oxD5hm0jMROMYBarYbz58/jmWeegc/nw44dO3D77bcDAL70pS/hqaeewtTUFO655x786I/+KM6cOYNjx45hamoK+/fvRyKRwNzcHGZmZlyCWxXuhClHRkbQ29uLWCzmvB8KKmV98v5wOIzt27djamoKfX19rt9ZWq2Wo7QHg0EkEgn09PRgdnYW165dQ71ed5ntY7EYyuWy84KoOJUWrn3FuA7nBuOEm5ubLsM780oGAlsZ4En0UAXClFbLy8vIZDLIZrNO8QLtY1r4zvHxcQwNDTmvdGRkBMlkEleuXEEwGMRDDz2EN73pTahUKjh9+jReeuklzM3NOcXAOcL/1atUj4ZzR71wNXY6oQ0av7JwIYt6Q6roVfErSqBjybnOtcC+JZKgHq6iDVq/bvnu5XtWXJ/73Odw4sQJHDt27LrvFhcX0dvbi3Q67fl8ZGQEi4uL7hpVWvye33Uqv/M7v4Nf//Vf/16r+gNTlDXFyc5jMpjdAvCmqdH/laWn1/LZGrvShU52nCo7VUAK66nHoYtbvT3N16Z15GIm9NVJMNFz04C8Ph/YUhjPPfccWq0WyuUyDh48iP379+PAgQOYnp7GK6+8gnA4jP379+Pee+/FlStXcPnyZUxMTGBwcBDJZBKVSgVra2tOQeiZUq3WVobzRCKB0dFR1wc8BFGtcBIb0uk0JiYmEI/HXYopjomtP5P+ZrNZvPDCC5ienkaj0cDOnTuRTqfR39/vGHnFYtGRSlTYKxvSvoffdUr9FA6HkUgkEIvF3Fg1GluZ9VdXVzEzM4NiseiyY3BcqLwpgBOJBMbHx92Bnzt27EBvby9efPFF5PN5PProozhy5AgikQiefvppPPfcczhz5ozHw1IGoMJ8HH/2ocKGGqfl9brJ9428Kb2Gc9FS13WriCotVT7KwGXRa7j+1Mu2xhqf3y1vXL4nxTU7O4t//+//PR5//HEHK/1zlF/91V/FJz/5Sfd/Pp/HxMTEP9v7/18XCmob4CVeT0YYJz8VDb9XmMTCL3quF3B9bkMqMRUSygyk9dpsNt05X+pBaUokxoh4nXpslUrFI1BUEOgmaPXY+LcKiunpaczOzuKb3/wmfuZnfgYHDx7Ez/7szyKbzWJhYQF/+7d/i+eeew6xWAzvf//7EYvF8J3vfAfnz59HrVbD0aNH4fP58NJLLyGTybjM5xScTOB7+fJll4Vi3759GB8fx7Zt2xwlfWBgAIlEAqlUCkNDQygWizh//jyq1arbG0aFwf67fPkyLly4gHPnzuG5557zWOuJRAJHjhzxECA4XhxzjaFwDC1tnfdoBo5isYjZ2VkHfy4tLblEvrlcDsFg0BN3VOIPf4+Pj2NwcBD1eh3RaBSHDh1COBzGiRMnsLy8jB/5kR/BgQMHEI/Hce7cObzwwgv42te+5tpB5qB6QUxfZYlCnB+6D46fWVSCa0c9UIXBqbg1nqqGkWUBqqGh7+A8pNerqbb0GhqahO1ZXzJseY165d1yffmeFNfx48exvLyMu+66y33WaDTw1FNP4Y/+6I/w2GOPYXNzE9ls1uN1LS0tuTN2RkdH8eKLL3qeS9Yhr7ElFAp5Trb9YSvWUuRnFNxqIdoFrNaxQkgMRFu4A/Du4FelxaIWrn0e36MxMH23Cha+X708XqeQj42L2foolMS6r66u4itf+QqWl5fxYz/2YxgYGEA6nUahUMCJEydw7do1HD9+HEeOHHEHF545cwZnz57Fzp07ceDAAczOzmJtbc0Jcr/f77K+l8tllEolVKtVnD9/HgsLCxgfH0c6nUZfX5+D8zY3N5FOpxGJRDA5OengJhWA5XIZq6urePLJJ3Hu3DnMzc2h2WwikUggFAqhWCy61Ec8KmRkZMTt3aL3rf1gx4vCu1qtuthZo9FwxItms4lsNotms+m8TO4jUzYjhbFCw36/H+l02hknb3rTm+D3+/HVr34VlUoF+/btw5vf/GYEAgG8+uqreOmll3Dq1KnrPHn1mmystBO8rPNMPTAA160FO+90/tnrm832SdOcm7p2tN6su4WM1Xjk+xTl0NAH32cNt67ndePyPZEzCoUCrl696vnsox/9KA4cOIBf+ZVfwcTEBIaGhvCXf/mXePTRRwEA586dw4EDB64jZywsLGB4eBgA8Kd/+qf45V/+ZSwvL/+jFNQPGzmDE57KSS1nDQZb4WItUwsbalCYz6UlahUPlYkuZoVg1HtSRcgFqfEyAB5hotYsBYSSUQA4q1+VnVXoNvbGwPj+/ftx11134cCBA7j33nvRbG5R1D/72c/iypUrmJiYwG233YbBwUFsbm5ienoaL7/8Mur1OtLpNHp6ejA3N4fl5WV36q/P5/NkS1AoiBkpKMBGRkawfft23HnnnYjH4/D5fI5afu7cOayurmJ9fR2rq6sIBLY2Fw8NDSESiaBSqaBUKqHZbDpjkMqmXq+7xMHRaNTNBcJRSthoNpsu/RJjWfyMgpRppNiHPp/PkUM4Rvy+WCxibGzMZQYZGhpy1P0nnngCwWAQP/ETP4Ht27cjHA5jdnYWJ06cwJe+9CXPnKE3xeeqV0XvnqmerLfDMVfFpXCbPtP+r8gEr9f36zM6EYQ0ga4SPuy72acsynykB8j26tr9YSr/5OSMRCLhmEIssVgMAwMD7vOf+7mfwyc/+Uk3oX/hF34BR48exVve8hYAwHve8x4cPHgQH/zgB/F7v/d7WFxcxK/92q/h4x//+A+1V/VGxQppCnEuHEKIVEwah9KiCxBoLzgNZmtgWa1LDVLzXr5DYT1dgBojsHEGXqvtUwhQYVG1ZgEv/dh6hfyMbEmfz4czZ85geXkZFy9eRF9fHyYmJtDX14cHHngA/f39eOaZZ3D58mVMTU3hwQcfxOHDhxEMBnHhwgWsrKxgYGAAQ0NDiEajuHbtGorFomPv8fBJ7d9ms+k5fuTKlSu4du0aLly4gEQi4ajvlUoFhULBCVFmfGdCYBYq4FarhUQigf7+fkeaIH2fFHXdqKsQVjQadXBcPp93HpoeFBoKhTzZH/RkZa1XpVLBtm3b8OY3vxkDAwMun2Qmk8G5c+eQTqdx9OhR7N+/H5ubm1heXsbjjz+O06dPOwjNKkMdW84vjdGqQrPMQr1fIUA1vnS+6TzlPfpsNaCscaf15fM5h7VO/EzfrwpTx1ahdAA/dIrr+yn/11M+/f7v/z78fj8effRRVKtVvPe978Wf/MmfuO8DgQC+8pWv4GMf+xiOHj2KWCyGD3/4w/iN3/iN/9tV+YEralVysZG0oMFjhRkU4lBFoAQMhUMUrtBFyGd2UnYU1kA7MG09KoWCGFPgczrBjj6fz8EpGsC2lH99jiqvVqvlLHWfz4dsNosXX3wRQ0NDuOuuuzA5OYm9e/diYGAAtVoNFy9exJUrV/D8889j586dmJqawtjYGC5duoRTp0659+3fvx+5XA4zMzMolUrY3Nx0Ap8eGIW+jdPMzMy4vmDsid6ZehWNRsMRMDTV1traGqrVKtLpNEKhkOcZVKSW7k0FUSwWPV4v+4iEEBJQuF+M/cZYHLCVxLfVauHw4cPYu3cvJiYmnAI9duwYstksBgcH8cgjj2Dbtm1YXV3F1atXceHCBbzwwgvO+1AjyMJuHFMdY01+rMaQzg2FlVWZKELRyWOzELoqNKvwVOFoVhILXWtOT44fr+mUsNfGppWo0S2dSzfl0y1QdELT+1AF0YkZaJURLUUV8JalSKJGpziUwjHWU6IXyGcCbYVpLWDWgd+pUOEz6cFQMOt9rIfGHSgkVPhoUcuZsbh4PI6f+Zmfwe7du3HbbbehVqthdXUV3/jGNzAzM4PFxUWXoZ1eVbPZxMmTJ108hyzBSqWC9fV1FxPiO23yVpJT1MjQ8VEijXpd7N9Wa4s6r1sbFJblHjFtd7Va9STJ9fv9WF9f92TPoJHg928xIXkKc7PZxMrKCpLJJHbt2oWpqSls27YN8XgcV65cwVNPPYV4PI6hoSG8733vw86dOxEMBnHmzBmcO3cO3/jGN7C2tubaqR6IjhkhNZ0jnOcKrakHpsJdFYEaVHb+8tnqQekc1HnLGB6NDB0jXqfzUu/X9aK0eD0hXKF87pWjYWmZtT/opZtk9we4WKXBzwC44DzQxvw7Yf12Qav3okJS4URdqN9NmRFmIoVevTHL3LL1UWYg0F68VKpWIfH5FAAWWqTgU2Xv97czeW9sbODrX/86pqam4PP5XHz2wQcfxOLiIp566iksLy+7LR579+7F6OgoRkdHkc/nUSwWkc/n0Ww2MTExgUQi4eC/jY0NtzeLgo/wp/aZ1pV9rZa57h1i7Mxa+Zubm57AfrO5xRLkeDEO5vf7EQqFnMLiODA7fDqd9sTF8vk8Wq2tjcKTk5MYGhpyQvbpp5/GlStXcPvtt7u0VWNjY6hUKlhdXcXXvvY1TE9PY3l52Y2XeoFq8Nh5aA0v9osqqRvFqPT5Onf1eerpKDStykcNQ53vdh8Z55X1yBSmVDTCogLW29J+6LIK37h0Pa5boKigsoJeNzWqYuBiUQ+HcQ0VArzGLigVHBQGnTYe835arrQsraDiAqUlq1R6tYjVu1QvSoUaFQAp9Op1WCIKhQDv0ewHjB319PRgfHwcExMTePe73+02zJZKJWQyGRw/fhxXr15FJpNBvV5HIpHAv/gX/wK9vb3I5/N47bXXkM1msbq66ijyfX19ALYYg4uLi25TM70css2Y05DwomYzYX05BsrcZN8rk5DED1WMysiLxWKuv3n6MpXYxsYGYrEYBgcHMTU1hXQ6jXQ6jWg0iqWlJXzpS1+Cz+fD0NAQDh486A6jLJVKyOVymJ6eRjabdZlCGB/TcbXCWA0sjhNp4bz+jbwrVdg6vzjvNGsLDRx6N9ovnFvqQWmWGgtDdoLyOJ+UXKT10mewTlzH+iyOsW7w/kEv34/H1VVct0BRmEzhMC4KCmZVEPzMUnQp0HUR6X4otQ4VWqOQsJCJDaKz6ALVRa/1Vo9KlQyFNynoFAZ8rnobtIRZb9LV7REkGj9jXQlJ8vylYDCIe++919G30+k0Go2GE8i5XA6nT5/G8vIy/P6tFFPpdBq9vb2OFr++vu7yDW7fvh2Ad2M9GYHM3cf6Nxpb53kx5RIVEhUgIT/WncaBnrvFNdFJqFIYaiYKMgx7enowMjKCAwcOYNu2bWg2m86rPH78OFZXVzE2NoaJiQl3tlg2m8Xs7Cyy2SzW19dduipNRGy9YPWyrAfEOWmPL1E4+0aEIc3Arv1pIUA1ytTrsrEszkEqPL1GYUauHdaR84keoX5n6269Sn0vjbofltKFCn9AixX0QHshWo8FuH7fl/Vm3gie4mcab9F3aLnRQlQ4ksUKI22XPoNKiwJC+4D3dVr0Fu5RT0zhIxVEqiTZ9ueffx6XL19GLpfD3r17Xfb2gYEBNJtNDA8PY2FhAU899RS+853vIBQK4R3veIc7qqNWq6FcLuOVV17BwsICenp6kM/n0dPTg127djkmHy1q3c/TaDQQjUYRi8Wc8AqHwy6GRsWg8FqxWHTtr1QqLpchPZKenh4XnyuXywgEAi7LRygUwt69e9HT04O+vj6Mjo4iFArhhRdewKlTp7C2toYdO3bg8OHDGBsbc3W8cOEC5ufnsby87Aghmt8Q2Np7yZip9eJZd01qq0YXx0/p6/TUOfb8TONl7AfLauX8UTKQzmV+p3PT3s85alM16TNUCVsIk+1j/ezWDpZOBJJuub50Pa5boND664SPA+3FoYF/tXR5DhMXrcabgLY3plkWKPR4jTIWAe/BjprIlcJHz7CicLIQIN/F7xWyAdqMSX0G360QjFXE6v1ZS5f9SQ9EvQR6lryvXq8jFovhwIEDmJqawvbt2zExMYFQKOQIGtlsFk888QQWFhZczGt0dBSHDh1ytPk9e/Zgc3MTr776qns/82/yuBHNP6gCke9Kp9OeOpMlODk5CWALkiTbcG5uDj6fD6lUym04DgaD2LlzJzY3N91ezJ6eHqytreHatWvOi0yn07jnnnsQjUbRaDSQy+WwtraG6elp5HI55PN5D0RHr5b9ZcfCJp7Vs+U439RLUiNGFQ3nCZmbNoelGkvq6fD5+jxep4aPzmf9n0Wfp+/hWlECkCpqRUeohNWz1G0BioRYr/kHuXQ9rh/QohabVVaAd/+QWqF6HwUImW8UFppCCvCSM+zzrcelC5XXMT6g77dt4bUqKJT2zbgL66ZBa/UyWQdLIOlkDXeCTTc3Nz3v4TN4LeMhx48fx/T0NIaHh/GmN70J/f39uOuuu9ym2/e85z1YXV3F8vIyVlZWcO3aNRw7dgy9vb2IRCLYu3cv0uk0Dhw4gHA4jHQ6jWAwiFKp5AQ50/zopmsKuMHBQaTTaXduFrB1pl2tVsP4+Diq1SpyuZwjX+RyOQ/JYm1tzb1nbW0Nly9fdv1UrVYxNjbmtqZEo1G0Wi0sLi5idXUVZ86ccZujW62WO4KFLERLJFAIkApLvSj+VviXY3QjFEEVgP5vkQheQ9iZ9bFKROcg4VaFwlUJaroxG0fW+aebh3XtaNF7VOGqIXYL+hH/T0pXcd0ihQpCPS8LCeqC0sWp8Sh+1gnK4LP0OhuPUAFDC1HZewA8Xp9+Z7MGKBVeYwEqQFRpavzOElYsvKnQjBYqKiV7KLVcvT2+OxKJIJ/PI5vNYmNjA6lUCvV6HVNTU+jv78fg4CAGBgawa9cu5PN5LC4u4sUXX0Qul8PS0hK+/e1vIxqNIpVKYWxsDI1GA6lUyu2RouBkjETbtrm56YRnuVx29WfS26WlJRePqtfrKJVKDj7kETGhUAiNxlbC3Egkgl27drn37tq1C6Ojo04xbmxs4MSJEzhz5gwWFhawvLzs6qDEAUKDLHYTr91PxnmhRAXte6tYOsHN9G54v7Jpea16K51IEjaupWvGohr6XL6fbbVrTuF4NbAs5Mhx0dyLqrCscdgtnUsXKrwFChcDYxU6ZJokt1O8ShUELUd6RDb4rIqDyoGxCpYbLXoVQmo5q7ekjD/CJFYBUYiTmabCSGE/Ppd9oew79bpUMdMbtQaAegy6H431IWSqQogQaSwWw5EjRzA5OYkjR45gYGAA0WgUfr8fhULBeTzVatUx75heye/fOnCSm5jD4bDra3rD+XzexZC4vyoQCGB8fByRSAQ9PT0uLhaNRt1maHpwJHfomVvc79VoNLC8vIxsNovXX3/d7V87f/68U1S6v0qNF/a7UtN1bDvFZWlccFysQGe7+Vwlz3D+6B42jrfOW5JC6E3xWZyzGsfl2tI5oEcBqdfIunciKVkCB4uNpWkbFT5le3TtdqHCNy5dj+sWKWSdAdfTiAEvDdxabzeyZvUaLkBCZVQgGl9SCO6N4J9O1qp6cvyfwks9rE7vU4XFd6iiBdpK2bZNf1RhKexjISB9NutovQbGN8rlMo4fP45Lly6hUChgz549GB0dxc6dO90Jyv39/Wg0GhgYGHAxIioW0uS5mZkwIgU0z/Dq7e3F6OgoIpEIent7MTw8jHA4jHg87sYrGo2ip6cH5XLZHfTILPDM9N5oNLC+vu5o7KdOncLc3BzOnTuHfD6PSqXiDCQqDB0r7SsrvHXMOX6WKKFIgM4fnUM6p+w1lmGr46zzrJPC0LmoBo59l/6o58c5qJAl54IqUCp8+07bfl0rfFbX4/rHla7HdYsUjScopq5WnhUOqmj0b13onbwnFVaA1yK0XgdhQRUiqlw06KyUd7bB52tnULCKTRc7vSV6KrxGBYqFRPWgR1V+vNdm21CFSCWu5I1O8Rr1MtVzOnDgAPbv349t27ZhcnISiUQCw8PDjsque9HoDSWTSQeHkR3IH2a06OnpccSXZrOJXC6H1dVVrK2tuU3DPI6F/cNNynNzc+54l0Kh4A675JlemrFBiTn0DhgPUrhP5wD7o7e31zPGVNDsJxX0HCcLhavhoGOrWxysYRYIBDwxQn6n68PuDbR5P3VtdfLY9X/reSr0bevfbDYdvErFynhwq9Vyc4Jt7Hpcb1y6HtctUNRCtKwztS4VBtEFqwvNWqQaGFbloQtO2U43soa5qPV9rC8Az6F+9h6Na1FYqEJQC14VnjLAWBcVOBp3sQKIdSARwzLi6FEplKSwp77f7oMrFos4ceIEZmZmMDAwgKmpKcc0jMfj6OnpcUedqOHAQxwpgAlNEbKlZ1Or1bC4uIhMJoOzZ89iZmYGy8vLWFtbc+9ne9i2ZrPpjmHhHrCenh4P9d7Szal8OPfYjxYG7gQP0jCw483x0Lmh81Tnrxoi6rlYA0X/5zMVgrZnzlmDTue/KshOcVvWwaIK1hPT/rLrRt/NogZd1+v67qWruG6RoosA8Cos6z3xs07WrfXAVMHowmfRALsubrXG+W4Vakrg4PsseYKLWAWC1tdCnIQxbTxOPSRNjWS9T6vAVcgpcUA9PxZVnOphNpvtRLZ8HhXYwsICFhcXcfnyZcTjcVy8eBGDg4OIx+MuQz2T5dKbjMfjLnZVr9edEmo2t87LymazKBQKeOWVV7C8vOziZjyxWQUxC707eo9qZGhMjYX9ZIUzPU5VKtqfNAL0Wp0zqnQshMZ6al/SyFA4WcfGwpZaZ4WAges9NTsP9VoLNarxxL6yXpmNb1kYUpEHNZ5UudtDQrvlxqULFd4CRRUL4PWSOjH6uCAITxAGUiteac0qGHivehv2farsGAchiUOD2qy7Chdbx07wC2M8arVSuTB7BDfSEgqzcQ8VKjYLAZ9LkgoVh/Zlq9VmrfGd9KpUiQJt4W+9NY4BE+ZqEl5gi7kYDocRCoUQi8XcIZG6f61QKDgyRz6fd2d/Mb2Ttl2NCIVpKcRJdlChzVibKjwVCZqzz3r2VNBqIPC6ZrPpyXhvYWi+X2Nhdt50In3oHkT+z1yMuoVBFZ1tE+eJ9YY06S8/0/qo8uPWA/XM2M8sbJ8qLj5LFaYqwWaz6YFsfxhKFyr8AS1q/SkEZr0Ra9VZb8ZCHArLqTfHZwcCASfUFeYB4GJOCtN0EjT8W61SS4hQZaOWLY+FsEKH1yn8aKFRC2PZ7/l8yzzTWJrWm0JLg+nWMrcxDip3WtJUlnwHWYN+/9aGYr7Tep3AlsDnESQ0IJR5R7iPCte2mWQLbb/OBQsvW0hLx06NHOv163PpAbJvVAlYb9oyXzU+pnE1C6PZ+avKQutr5yDHQ/vazlc1FFXRsG3abu0/vU7XhVWW1pPr5Ol3S+fS9bhugaLZBqxwAbw52tQaVcVFb0GtRn2+KgKg7TVwgds4g7VIVfkobVmhQ3uNQklWmXVSNlawqDdgoSGNR+k9qnh4LftFlSTrZtMSKSSo/ax9pQqR/5NUUS6XPeOnAjwWizkvSqFPXtdoNDxeM9AO5FMpsu3ab6p09LNOCp9jqdfqNgL9XoWvKiBC1LburJvWR2OgPp/PxfK0H9QLtt6KEn5YPxIedL5q+zlXbPtJSLEKSxPuAvDMb+0DVY6KKvAaHR/W226/oEFzC4rl77t8Px6X/7tf0i03S9FFodYb4M1iYaE/3qvPUQiJQtpa6Nb6VQiK19i68Z0a09A66kJXT04Vi71f4USSCggJadvs8wkT3shb6BR3IfxjvSntS+1vhdfUK9A+pTDXVElqaNiAvFX02h5S6SncNOOIHVc9XddS+rU/O0FX+pmdHzapLdtDBaKKXAWyziM1ALQ/dR6oh6Zzi+/ms23cTeFJXQvsWxojnfqc79P5rbCk1s22T+8lk1KVvbZPIU81JHhtt7xx6UKFt0Cx8QFddKo8KLDUIuRC04VDIaJCQhWJwhtWEajAoWWqngHgVWIsan3zXns+lfWkLAxn4RoKZau8bSyQ16ogVkHLz23gn/W03h/rbgWMwmHquZHirh6cVaatVguVSsXda+EjFWy6N0o3XmuMhs+xdef9qpA4plov3QJhPQpV2hYBUIVstxtov7K/1QPjeGieTTu3rKFgYUA7jtoPdlzt57o2dA2QtKRKTwkuqtT5nE5GHeCNo2n7ufb0ud1y49JVXLdA6QQD6kLlwmXCVrUyFeZRj4kKSuFBwAuxWWFvD4pksYKKv+2pyLow9dgRVQA2pqXWPiGyTl4CvRF9Hu+z5Az1OHw+n2djN5+lniC/08+1rfo/r+X72S+daPcqgNk3Cr2xveoV+/1+t8dLafhWKasCV8+u1Wq5WJptq9LitR9ZdypJCnOFwjjeVKBqRFFxazYX/Z71UFib7+EzOZc1m4rOA96n7bJesvYniT30hBUSV6ON/cv2M40WoVCFmNnuVqt9NpeFJ5mZnyQbHVuds93yxqWruG6BosJNlYd6ChozUqFsFy69MQt1qeWpSkuFmkJsNoZk94ZREGmsR4kjvE6fx7byu04bYhX+4fW2vay3QnPalxba0Ws0zsFnqfXM6+lx6TEXnWInalgAXg9L26vkCn2Peq5K36cSIDlD26F9bsdTx9163SyqSOkVqILp1Ab13PV5akSoEaUsWR0P9ZZsPJLzH/Dus9J6WG9L56I1KHQOqdLnuxRy5H22zeq1cU5QuVpFqqmhWB/t9275x5eu4roFihUEFEiaqNNa2bxWF5AKWYUoeD9/q4Cyi8xahBZuU6GmwXfuS1LPT9tGgUZKsypV1kuFiSoprWMnpa2ejAp/rbcKEd1DdCNPwLIsLTRqDQb1GtRTsd4ln6NCTttqlaJ6euqp0VDgd5qtwyo2jpMV3vpOC8uxvqoMdJ5oO9Rj7wRBq/elysoSOdiXui6sArKQn8/n8zAAeY+mFtNn2PUAtAklurY0vqbGkt0ioXUFrs+VyDpqPSxC0C3Xly6r8BYoOrkVH+ffFBqW7dbJktTFoftwVIjqQrZ7m7Qu1iJmXbmIVWioUFVhxXcxbsR3sqh1bjcW0ysAcJ13xXqrMGP9NO6kRT0UJTnY+vN/Pkc9FO5rU8Vn4TT2i8Zy1NLX56vS03HXvlFDQT0CbQvrqYJRx5lepM+3lYZK5w/Hxyo0rbPuE+T92h6dK6rwOJb0HDW2Z40mq2ipPFTp8nv10hQW5x456yXre1hnPRFcDSL1LK3Xp/XopMgVGuR8JgTLgz5/2ODCLqvwB7jYSW/hGcC7uDSrub3XCgAAHkVos1NQUNp4mVr3CqcorKRKg993+pwWtoVmWGzMiXXmjz7Hxle0f9Tr1L5lYXvVg9L7te/1nRo/4Q8FKvtDC+9RSj/bZL1WFkJQ2j8UyOqhqbDVuBLrxDbbHz6z09gSolbFYL0h7atOc1UVv7IPNUZkSS/Wi1SlZ70t/q/Gha2XGhL8X+e53XpyIwViPWy9pxNbVI07oA0rMsbWaZtKt9y4dKHCW6AozMTM036/31HCCa8pXKZEBbXMGUtR7B/wKiWb6ZvP4qK0whXw7jXjOxQa4jt4DeC1TvXvG9GVVfjwflVa6vWpcNPrbcyDkKsKRQshqQWvx64AcEeFWIufddP+r9fr2Nzc9HiKbI8qG2sc6GcqyDXZriqJTtk96HXxZGvOKxWYlqFp/2Z7+F71ihTGVQaohb1UoatHy3crUcayJBUW5TstpKhzge/gelGPVeOJ6iHzGs5xPp9jwPfqutF1wbrRk7KxYK5jXVdqTL6RsuyWdukqrlukWEiHlqNav9Zi03u4OFTxUahprKGTpWk3SepzLSymEJuFiQCvV6hWvhYrFBSqsouan6mgtvW3UJv2CeCFYq3CsvG0TqSNTv1CQUzLWo8qUSWlbaRyUxhUFZZV5j6fz0MEsEpAFbb+VqJCJ+hPvXheRzYn/9axZL8wTyTnl44r+7jTvicLv7FYYhD/Vohc4XP1qFWRdWIfqsenyonf2+ttO+xaszEw3mfhZoWw1XCya7GrvN64dKHCW6CocAHae6I0VqHKiz9q1fM6vd7CZRS0VtCp0LSC3Aa3VRBxkVrvQq1mfb+FsRRytG3X+tk+UEVk2Y58rkI5Ng2TWuOaoFaFoVVwfD4p01Ygq/JUAa6f8xka56BwtrFGegXqibOdjDVZKx/w7uGyfahjpHVlnRQCtc9XT8XOLyphOw94r8aSdOw6edgWcuRY2OdpvRTmVKWlniT7gfXUftV367xVqFT70ypZ3mv7XhWZhWe75Y1L1+O6RQoFnXoMqkhUSBA3V8uRwo/XWAuTC1ZZT7qnSqFHy0gkNKiQJpWAWsNa1BJlnfgs1onPZLECrVNR70v7SYUB66l10IA5C+vODAg3sqpbra09dDxyRD0CKlP1Uvz+rYS3bKO2jfcR+iU0pf2j7VPoTT0tra/GxKwy0+eoB6OxQet9sh16nyp361nwe85Jha11Dmt/6jvU0+xExmFd7XxnW3Ut6DzgWKuy4Dqh91iv1xEOhx3E22w2PRCgGnQKC9v+0T5XaJPPYB1tzLNbOpduL90iRYkU1gPh9xR0Ck1YuIVCQxeRCg0VJCrwrPDQfUz6LhtE1/1X6m0AuE5YqFBRy1qFjiVi2HZYJU6BqUrPwj3cVqBCRb9jbEgFuVrS6hHZILvWR8dRvZJOXgbvtR6sVRIcW+0T3ms9A+tdqKDv1NfsOwDXbajVtlj2nRow/PtG/WKhMY3vaXvYTzqGWthHGle111rlayFbxvwsUmHHg/XtlAAa8J7/ZWFOFo6lvks98W5549JVXLdAoQLQ/ShcQFxoPDqDqYV0sfIeCiZ6U1woFIL0cAg1qdBXD4wLHPCy1VTYE7Kh9c28eQqxse5UDNoutVQpJCiYrCdhhRoLhbAlKKhHoDBOq9W67ugPfY4KS+0v64nxPfa0YAp/hat4jYXYNFO8jbGwTnoPx1b7HPCeLkzhzHbX63VH8KFi1vyGOu9sTApoC2j1EHlkPecB68U5xXgO368ePp+rHozOY1W0CguzqAFjIWZdA3y2KkXuc9MzxfhjCRnqfWl9VVGqAaDXqdJTg4ReO8e+W964dBXXLVBU0FqlZOEZFrLfLBwEeAPcVF6qUHR/jPV2VADaRaqL1/5vM7lTmVEJUohToAFtWMgmvaXA4bNVaapVbZUTn6kCS+umsKvGmDpZ7PyxUJl6EJ1IAdqX1qtQIWfjXNrXHEvryamHrXW0Al2LQmOqRPhszimFbXVeWGOE77Z9rONjTyS2c13rwPmmELW+W+c1DS0bw7ReF3A94ciOcyf2LL+3sK22UWFQnRs6v9TzVTTCerTdcuPSVVy3QOHCYPYJhezUKtTFQuvRwlu60HRhd4K/9F4VqvqMTtAR0BZ4fJ4lSdDTosC0HocqVSsQVRCyXupJAd74BXMr2vstdAi0vUUKc62zejRWUXE8VMGrIrDjQ8Ohk0K2Vrq2Xfu/0z22H5UQ0AkqZXt1Lqny1Xmj85HtYlEPWOeMVYC2TTcaB+2zN4qtWfhUx1GhdYW9eR0VYqVSuc6IsMaCKh1ly3YyJLUfLVzKuU/mpUUmrJfYLZ1LV3HdIsXv97vjPDY3Nz3BXI1fAXCnEfMzLijCIdx3xGIzlltlAXgXqQoXhWv0t3p0rIt6cv+/9s49Nu+q/uOfdu1TOuZaYKzdkHEJl8llqENKNcREGnAuXpA/FrJEokaDjAR0IYJGwZg4EhMTNYZ/VPjL3wJG0MgljA2m4LjNTTbQychwxKybQnaTre3a8/tjeT99fd897TaFjoeed/KkfZ7v+Z7L55zzubzP+Z4vDYomKhfvx1vvkVFm/VVmbv1iaGgopk+fHhFRl5vK5LNnpGy4USWlVH+LtIwRTxxxSsipTrWBEY36xY914gkboqd8gwtlx99InTHqVZnKj6Bx4eYaRjR6Xo3PV0khK39tgXelzigkR5FR6be3t8fw8HA9GmNaj3ip3Jubq8+zkZ1Qm1kHrn/J6GkOsY2iTHm6CmlhN4CSsfpUGzg0Dum0+NoWGQbJshiviVEMVwOABoi0mEClKM+W3i8jAn9inwpfZfjakdNA9MDp3atcRllcP6NC93UGb6/u0XePONQelqu0gpRMrm7uubt3TTk51cSolHImNcnNIty0wrqQ/mI7SRF6pMH6kM6SPNiXvmbpGyRo6PigMNO4AVKbvW6MWMgI6Hff2efRu/qccucuSd3HiIblKz3l4vDxx/5jZJobQxprOZpURpDjwzfzKE85PZxX3ElbNmccHYrhahBokVyKipNQtCC9yYix9BK3EsvL5oYBgZGXK3lSea4INDndWHB9i2lYP153RU5vWopEz+b4xgEqFUFeM6kb0jmu+CUb0mk0Ptytx80VbB/bwTffegRBefiaH/tRabmpg4ZWfUyFrjKoeNmHAg0H84mIikGjjEjP6R6OM1J3rJePM40VbvbxtVo+jkBjRSpcBsvHslOVjAjJCvi9PKVD+TAq55hTvhxTbW1tWQfNo3OeusK+LJgYxXA1AFJK8dZbb1V+I0XBiS+FQU+5tbW1roBFf3CCStnwja0sJyLGeLBUovrOsqVY9bZepWG0IKWhuvomCU9PD5zH+MggSXHklIQv7EtpCopIuGuRdeCHmx1E3ZL+GR4eru/W07NdbBeVqSgp9g93I0pB8nBe1l2y4zN4+l0yUPtJK2vc0Agx2lT/+gYZRe1U5GQB2J9sJ9sh5U/jJuozYtQI5PJXu+gMSW4cqzRQpHZzkRjXWH29iREc+51jQbJkNEY6kUaez/PJ8dIYIMVZMDGK4Wog0OMnLUSP26kYRgz0uCOqR+GIUlI+ulffaRhYlkDF5c+mMDJyOo7RVM4r14T2iItRi7eba21OM+V2ZzKypFJV/lT+VH4yTDkD7oqbSpWePttKKphePWVJp4S0oNrLvvGdcRxDrCPvY9TB/nD50lnQ2KFxIA2m+3hGYsToBgrWTXL2/DVeaQSYhuOFxkRwijpHU7tMKH8ZXM+bzIL+8j7JgY4J+8GdJ+/zgjyK4WoQUAnTc6aS4Ev2nJKKqD6vwg0djDAUeXm5up9KLKL6gkl91z16TkiKQG9oVv7+TiTSYbrHDXNEVDxgQfnQ66WxVBp9Zxl+EkJEVYmR+mQ/aNebTsHwM/xYFtdI3AgzLalLr4O8f8pZ5SnKk5MgOTk1yvFBZ8YVuu7VhgXK2qlW1YF9qHz8dSU0VjRqGoeqI6lv7hhV3qK5Od4kA7aHhkFtYl8K6geemKHx4xEbKUv2FelzpcvJmmOcxot9VDAxiuFqEFBRcAJS2eparVarvyHZr+UmDJUKIwGnySLGnl9IOoXrQ1Ta9Dgjxh5bFFGN/hjJeZmqLxWF06Q0hlQ2jFRohPmdyptpBK5teHTC/0l38qMyfOOJe+CqN5W8U8OMWr0dbI/Sk5bUb278JV8adTorMtCSiT/+wN8of3c2GKHSuXA6lTJyY63xIwpOaTT+aFR9TcvpRNaFv0VExZFjH7L/eZIMy3fDTMOXG+uFJjw6FMPVIOCk1XoFjZnWJZwqYRQWMbpVXnDlG1E9dsc9af7PiZejFalYSJd5BKR0jGycbqOX65QKFV1OcXPNxndteXQj8H/WV2ldyZGOc6MqpU2jR6pL94tKU395BOhlRFQNh29AyDk2bC/7kxEnj3Byp8HlwGhH/UInhutrzIuGQferjjnKTGUpb7WZkZlTwRxf7miorPH6Qv3uxoZydFqaLIh+I2Pg612k/OkklajryCiGq0Hgk4BH8tD7lgLLPS/DdZqI6qGfvk5Bz3K8yIEedcQobegeLD1c95y5IM2NAGozy1F9SbV4tJHbPBAxdk2C3jajV9VXHrJveKAR1M5GvjFY5VNh63fKXgaC27CddvN76PkrEtI1bSzx57GowBkdKwKm0XRKkf3pkYVA+k4ychqbzzRRzmyr6sB1RBpl1Usy03VuzBANrrGnTUk+vunAqP3qb57NqA02dOIkA3dEDh06FCeeeGIMDQ1VnsNyx0/Pq6k9rP942/gLxqIYrgaBRz9U2vQwdV0PjurB0IgYo+DpnRI0PPTE6XXqesTY6IR0Xe7EcikmRokq140djZXTfDIQfJ+R6iNlJKXCCIzp9NcjGdXHjQkNOWk2tV31iYiKMlTb3egz+qVTwPUd1pfyIqXp0axHlhFRidIZqTskJxoX/pbbPCEjTwPJvx4B5cp3io31pJPE9UCOS8qD64cjI4e3p9MwUI4aJ6QkVRbb546NZK45NjAwUHl2Tv3LfheVKKPKvtO89EcQCsaiGK4GAakIKk8qM/eufb1EGyV8o0BujUuQF0+lT++ThoreLaMWKQ5fNGdd2Q4aVSo+KkOn0TThZTioeGis+EwV85QR9eOhlK+MJE+IcPrOd17m1lvYh/ydToVHrjRGAssRdJ3RttOXjBS49ZvyVr3ZTlKf3geu1J1GcwPBsSXHor29vb4hggaR44HjS2l4JmfOuZHh1yYTbrRoaWmJ1tbW+qMVvkGJm1zIGDQ3j576ovapTmJAJCsaS9aZjxfwfo/yC/IohquBQOXmW8mpgCNGHzLm5ggqO65ZuVGiYnB6K+cl0kBS4Tc3N4+hTajEuFbAiUuv2Y2W01aCr8noNxoTPidG+jRi7E5MXVMeqr+fHs76Ou0j+aq9VFLavSZqidQl25AzwB65eHqn5PSb01DuKDC6UZ76Thqa8iZFmJMz88mtHzH68uhKCp7y9C3lHHM5Y652Moqnc8YITONAdfMozsvx6FAODnfmSpbMR/1PJ5KGs+DIKA8NNAiodNxbb24efcsr6TfSOx7l5HZU6S8nGK/JE6ciJL0nw8OIQvUbGTl8xBTXYPyZJSl3ev8R1SN9BK9jjhqjrJwGSmn0VRvcIu3UJcsTKA8qbOWpqI5rIFRgboSd/mOfU7Y8LSPnlbuDonHhlK68fV+L5Job5U6DQ7Dved2jLyl00WM5A+Ay9r5zA+KOGCN8L5+GWOly63w0GsxLdZET4Y9ZsH91r48h1cXp71y7C46MEnE1CBg5NTWNvnfLX9RIr5ceMq+RJsspDU1o38KrD2mygwcPVhbRm5pGDyhVtEVqSpN3YGAg2tvb69do0FSGR4ua8GqP6sWDSf2Fh3yfmAyFDBZpy4ix2+zppVOGXPPwaJM0n0d/rvwHBgbq6eiFuxNBr97bkNLoOpkOA25qaqp7/FSUjMAZLdKYOn0pg0NZ0gGg0dX/dJC4RuhOE9df1QaeGsL3zzGC5DhlVM1TKEhTkxWQTHjAstKp3oy+NQ4VHdM4SW48iJgn0bAvPbJTGkbblEPBxCiGq4FA5eWK0V/j4N6gfqfHmvOUlSZHFcrgSVmQ2vMHO3WuYkRUlDLrRMUlhUElSoPJ0z+444zRh/L1Z4u4RqS8nJqREqQsGNnKQDICoSNB79/pO4F0KKNlp+a8jxgdqN5StJQDNxW48ZVjkHtezqM4OgCCU3uUB9tNZ4j3s/8oc/1VX/ghu06JO8XNaxyD/tJVpef2c455ycajbI0hrv+q/53q09jiuKKzw/q4k+byKpgYxXA1CDjJ6UFrslOh0hPmWo2vkXAC0XPlRCJdQnqHilppVT9Ndi1UR4yl8qiIGeWwHLbBjaynZXoaAiqUHAVIOlP1oseu/KjslF6/iY7jPVzvYlTCqJfeO+VIedOw5SIxYdq0aRVvXRG3ZC8j53JUeYxu2TYaNP2l46LvdEwkH/a5R6Pe33Qc1Be+RZ3jRPfK2Oial+ljjvQ2HS06ex7lsk0cb74L0o2SjxXvW9WJMmB5BeOjGK4GgQxUxKhHrJ1SfE5Fk1NeNykd5UPjJtB7ljLwDQVUtKJyPCqhMtJuL1c2+sujlmgYnMZ0SpSGVpPddxJSyTmtxWexSH/RCeCzZJKP6trW1jaGuqWSpVKSDP35Kl/f4wG/3k46JKw/I0kqbzkFTU2j70LjJhU6F7qP1DINLtcEfUzwdBZRlxEx5sR+yZEGl4cFe+RFetF3WDrFx2uK4DlXVLYYAEa2uk/RoEfSjLTJIDAKlvzVh5yramtLS0vUarU6vc+yfM6Qui4YH8VwNQg8KnJvfnh4uG646KWTQuTEbW1tra8NRVQnMtdBcpNIk5tbfRmd6ZroLI9WqPA5cX1NhFGcfnPqSKCRc8/XKSrl6ZGFytC9ra2tMW3atPpalPInHeTPBlG5q/1sA+sWUX2GiA4FlbIMmjsCWnuhUeB2dzeQyl9nK+pUe/a3jCwjPPaPjwNGKjLOjNJoxD3ao1y8/zQO6cDkIkaPlCgfX5PknHG6lnJn3uwrj+YZPSsfOgVsh7MBLItj0GVckEcxXA0CetTaJszJl3vjasToDqfm5ubKCwWlfEl1RIylwFSOFqC5zsWJW6vV6obSIzflS0XAqIDGZWSk+vC0lAEjGbWLipPRiCta1UX5c3OKU3AyTPSg6QVLManMwcHByrFajOaampoqz/V4JMMIxalO9jfrQYNHmlUOCtce1Rbvf72qXsaZ40anT8j40DmSLFkX9R2vkfqUbHjCS86J0BhnnzDKlQFjXf2MSn83mpwIGnw3+jTojHY1BilvlZWTCx0WMhCSEU/1oPxy86PgyCiGq4FAykngDihGKO79RVQPt/VJQqqRO52oSEjPcA3H1wTcM5XCodFlOv/LNrgCcO/WJz6vUcF4xCPFLIUj+coQka7MbXyhXEmjMfKVzFWu0gqsl/qA1Ku/G0xlu5LzqNKdCl/89/UWRr5OW7Gu+stoeGRkpELR+ZoP60rFTbkwynMZRYy+TJLtj6hSg059ciMPf6fTQgeEbVKfsz6aH5SPR/2cVz7mGPkqDell7mgsODKK4WoQeFTAvxFjH7bNraf4pgkqfip0Kkx/MNYNZESMURKKvhiZaV0gorrTymkstouGkl54RJVKdEqJcmG6HFxxqZ5SJNxOr7I80pNSa2lpiYGBgTGGRnXnOgmVqCs6p9nYJsknR0sxD/aRK1jSdxo3jOy4nT0XBTDS8HJdtiwzpdHdir6WpujH6TP1K8cqIzqupVHebozoHJFSpSFRfpKFj10a9lzExfZynNA54oYkl5lHjAXjoxiuBoErCD5LpY9+GxwcjFqtVl9s54G85PKpYCOqi/zKU5NMR9xwYZln39HjZ0Qm5ZB7aaTKzCkcTnif5DRKome4c07tpPJmGawD5ckoghEc5aGNGSqfdB9lN57RIfU5bdq07EkcMkiK9JQmt7vOyxovQlY6UWSMCHlNMlU5MjSKbkSj0ai7geHbjLnLzx0Iyk//M0pWu+mg8DgrGhm+RZhOEftWxzuRPtdD1+pDj9I5HvWdUR5lLMND6ld94s6O735UPTzaLMijGK4GAiOgiGoUFpE/9sjppYjqQ46M1LizjMqChkLXeEIHDZzy9+hJCoNK1BUZyyG9QkPinjrLZcRC2lB5qr0ePbpRpGHlvVyXoCdPalJ19voyMtBf5cO1Ro8c5aGzfpQrowb3/rlBRPKUfCgXN4AeyTNdLkJmVK9xpLrTALDPNAZpqCUnp+w4nnxdj86Gb7dXvnRsOO4pZ5bpY5KRKcc75wfHofc3+5r9z3Q0uAVHRjFcDQJ5uvSKefK6JjL/d6pPSsENCJWSJqEOxZX37NSR0nGiU+lERH29h/Whl8m65c6kkxfth5XKaFKB5ZQ36R3Vkzv+fNOD5CrP3pW5R3GkFZUPI05/Pot/vW2qm4wYo+Lc1nvJl7QqN4bQyRDG22jD6ECnZEg2iqoYXdN5UP48nJjGW6CBowIXLa2Ijoo895zUeAZGfUbamIad9C+jShpQyVqRGOeX/jLa5phw48sIXrIkE0BnTHOEDkzBxCiGq0FARaRJ62s6HuW4cnEqLKK6HdmpD5+0SueUGI0hn2+Rt8x8GPmRGpGR9YNwqXRYDxlyyYaKPQdGKDTcjCz4IDeNLA1irhzdSyXI9Tz3tNk/6lcpW1J73Bnq/ewOBOuZ8+x9DKhcRhO6znbnKD8+50fZ+P9ytNhuOQyqv4wF5cvxqd/8OTnKzMvV2ONYVBpS1rnomlGp+o9rjnQUndbj+NQ9uU0zyld5OqNQcGQUw9UgoEcWMarom5ubxxzPEzH2HVOaVNqY4TQO6bmIUU9Uk0nKimsrjFRoZKis+YZaKoncxGfd1UZGdVxQJ6VJOjOiqpypTFQfKRO+zoIbFJx6ZDvpsVOmSs8NMB6tMV8+kMx60yBxrcnzchl6O9V+vrpkPGpM/zPaZGQ13nhS1O99yUcVaCT4m+7hA9KMiBiJqZ5sp6J5d9I49tSvfLZLedAxEmgIGQnTkWtqqj6aobb4PGBUp3QeObOvaBCL8ToyiuFqEHBiRozSa36KAikPesz0BElZcN1G9+qVG3oGRvdrQvvpEspL0ZJoIyo7jxSVt9JowZ9bnGko/CWIUiCeVvlLcVGxDQ8Px4EDB8bIVnWUovPIlZsC9DyO5CNKS6Diy61rkUr0aMDTUzmzLjR2jDhkgJwKZJ6SDd8vxjowQpfC1/1S7JI7j4DyusjoULGTqibFyzGhcrnZJiLqa6QyaNOmTavQ2DQoMoQ0JHLwaBQYfckIq1/H29kpqlVjXHXR+FJe3BRF0DGkwaZTWHBkFMPVQPDoKCIqkVPEqGLS/zmFGFGlKDwqIlXlCo2KzWkP/sbyaHgiRp/hobFx79cXwPW/bxmmopTh5JoTvXs/KJVGm7SbR4i5qISGghQoFaP3FY2s/nItjW2mzFm2ZOOUldNXjGjYP5SlO0OM8ri+I7mzP1Uf9qEr6lzkpvKYN/OkvPQ9F7GpfPYT15UkD1KlkgVpUxp9PifpzIJHj7l6k4JWWzkmKQN9yJSoH8qzXEdGMVwNAk0MGpNcGqebOFloJHxhWb9TifkivDzunHLwMhhZuDKi502vncrHqR3eR0UjSOnS6EppuFGnV06PPKJ6PI/upeKiPHLfFbXSmVA6Pd+mrfBcG3TqSv/TENLIeJTFdubGhBtXKntFvzROTCsFzLqzXjSMKjNi9NQMrodxbLA/PRLRdd8o4waVxpePTqiera2t9W3upJpVL0L9wLML9TsdApUlGXjEyd888lNfcBOSy6/gyCiGq4FA5ejeN71d7tziTjP9zgM/NaEjok7XKS/fXsyTD2gcc5GgJjGVofKhAaaCIFWk8jWpnUKkDGT8RE2RUoqoRmBc91B9Jzr/kMaHFKR+o0KncqM3rXJJy1FRK70bCypwtY/5jxelDA8P1+uj9TdGlvque6mA6Wy4YXPHZdq00fdJyUgosqGR4kn1jGo4NlSm8uI4Iz3K8cKTXiRLyUXlyAj5bkn1nShNrpW6Q0Z5qe6sk+aLDr0mVal1VMlN5XsEWwzYsaEYrgaCJlSOTnLahZ6d4NGGn9AtJcGoiwqVa2FcW+C9uo+KMxfReHuo6Ggo/XkfrifweTTSR1JuNPSkFyPGf+6HoJJndMMIJhfleJ0ERhgeNTMCYaSbM06eL/vJvXj+zmeOPCqi0uWDv3ICdCIIDRdP5Pe1VcrJI1xGmnR4nILLyZe0rht4yodpIqK+5ZwnoVDOuX6PGHWmnJ3wsnwMMdJyB0/pWWfO1fIyySPjmEz8nXfeOWagzJ8/v3794MGDsWzZsjjllFNixowZce2118bOnTsreWzfvj0WL14c06dPj9mzZ8ett95aON2jhCbDoUOHYnBwsG4cSLfIy5PC8QlSq9Xi4MGDdY93ZOTwiQLcuszTz50208I6FS0PeFU6vTmX57DRo6SSVt24U1Desisvf1ZGi+k01Iw4JB8tzlNZcteYe/a8zz80nlwTUV6kIGmIJBtfZ1M6vtVaMtRHR0rJoPNNABFV43rCCSfEiSeeGG1tbXVD4XRhjt6i3NTWoaGh+utLNDYUrXBMHDp0qP4GYGFoaCgGBwfHRMSKfujoOH3GDQt0WujoMB0Vv4yS8lbZfOO0xg2ZBM4TRWEqJ6XDp+rXarXKBhHKjw4FHSU9FuJlMA/1UdlReHQ45ojrwgsvjMcff3w0A9BHX//61+Ohhx6K+++/Pzo6OuKmm26Kz3/+8/H0009HxOGBunjx4uju7o4//elPsWPHjvjCF74Qra2t8YMf/OBtaM57H+6Fk4dnGnpy8vI0KXxnGie5lDqVq4yc0vhif0R1i7VHEk6bcasxPVTVkZEJjedEbWWkQSOh+tAQqR6MVHOREz1meuZ0FDxKUHrm7WtLpKNYPvN0j567zyKiQoV6nZWOzzwJlBENFdeg2H/czcmIk/Qr+5fRhEd6pMd8bPh6k+rnG0AYKeXWV52K4305qtfb65G7ZOaUq9L4uOQc8IjLx0NElcb2NyAUjI9jNlwtLS3R3d095vc9e/bEL37xi/jVr34Vn/jEJyIi4p577okPfOAD8cwzz8Tll18ejz32WLz88svx+OOPR1dXV3zwgx+M73//+/HNb34z7rzzzvo23oI8XNFS0ZP7V1qlozEgrRMxduuxU1Sk55QvDQAVhkcjEdWHpPXdqRNSR/KAuQjPutDoOg1FpaTrrLO8/fGeTyIYBdKQuEFl2yh7X5T3fnNDSCMoZae+8kcSnLZ15c70dBBcPuO1j5tR1GdO5VIhu8PCiE19Q5rN28x8KBuOORp63cv+Y9toNH3MkGb3POlEMW+uUWlse8SpcnJUIClcUqQcG7m5UzA+jnk18JVXXom5c+fG2WefHUuXLo3t27dHRMT69etjaGgo+vr66mnnz58f8+bNi3Xr1kVExLp16+Liiy+Orq6uepqrr7469u7dGy+99NK4ZQ4MDMTevXsrn6kIUiMeGdHLp1LUd77+xBWgK2BNLJXF7d/6DA0NVdYLuFlE93Ci634aJNFgTCPaiQpAIHXEB3x5kjc9YKfxUkr1estYC+4VU6nSO6YypnxJnyqtfo+IbD+JaszJmjv/RkZGxpw6L9mTXvUPrzNa41hQffhQOg19zvD6hhvVS1EKFbPozxxlynrTcNOQ+hZ75UdKk3ODDof6Wt9ZnsaaG3allTzUP5IRjSrpbMnCnTKOB8qL80lgHxVMjGMyXD09PXHvvffGo48+GnfffXds27Ytrrjiiti3b1/09/dHrVaLzs7Oyj1dXV3R398fERH9/f0Vo6XrujYeVqxYER0dHfXP6aeffizVfs/AaSn99U9EVBQfJ+R4yiii+lwLvU2PwPx/1oURCevJyawJT+PG6x4NsT6kUhihOTXn0Yt/d5qI3jENicqmN801CYE0GvvIZe1to3ydNqMX77JnXv6/y5JjgsbPZaZ2sU7ccOEGdbzo2eviY4yypbw4ZjguGHnl2qd7WK73gztybjhyUTcp0dy88vZ4/l4v7+vcOlnB0eGYqMJFixbV/1+wYEH09PTEGWecEffdd1+0t7e/7ZUTbr/99vjGN75R/753794pa7wEV76cnALXW6iUPY3yy+U1Hv3o9A7rREXrNFLOoPh6E40H4cpC9Esuf62lRUQlIqCyIt3p9JcrX8mEmw9cQTl9SiOZM+jy+seTDZUmjW9OoU9UZ44L/s7rzMMNZc6YSa6sN+uSu+7GW/0subJ8p/S8DbrGKChnsNk2pyJJnXOs5uYR+yrntOQcK/aVU+asu8p0ORWMj//pwYHOzs4477zzYuvWrdHd3R2Dg4Oxe/fuSpqdO3fW18S6u7vH7DLU99y6mdDW1hYzZ86sfKYixvOw/beJ0o03KSbyFAmPuPze8cqmYcpFB7l6eF65KM6/u9HIGfhc2z3aZL6uOJ1SzXnxuba77FhXlsdIJtdON0ge+eTa523IyWS8/L0PxhsrbvD8/lzd3Njn6u5lOI15pPGTa6PK9DHsaXJ1ybVjovs8/1za3JgvGB//k+Hav39/vPrqqzFnzpxYuHBhtLa2xurVq+vXt2zZEtu3b4/e3t6IiOjt7Y1NmzbFrl276mlWrVoVM2fOjAsuuOB/qcqUR075+HWnT45mkkykzI81v7dzUh5JebiSmEgxuGKfqC3jlUuFTsPlxidXNilDpXXjl6untzdXBqM4l8ORFHWu7InkdyTF/U5jIudpIkMxnhH2353mHK/d4zkzR3tfwVEgHQOWL1+ennzyybRt27b09NNPp76+vjRr1qy0a9eulFJKN9xwQ5o3b15as2ZNeuGFF1Jvb2/q7e2t33/o0KF00UUXpauuuipt3LgxPfroo+nUU09Nt99++7FUI+3ZsydFRPmUT/mUT/k0+GfPnj3HpP9TOmzhjxpLlixJc+bMSbVaLZ122mlpyZIlaevWrfXrBw4cSDfeeGM66aST0vTp09M111yTduzYUcnjtddeS4sWLUrt7e1p1qxZafny5WloaOiYKl0MV/mUT/mUz3vj898YrqaUGi823bt3b3R0dBzvahQUFBQU/I/Ys2fPMe9baMhTHRvQ1hYUFBQUZPDf6POGNFxvvPHG8a5CQUFBQcHbgH379h3zPQ15OvzJJ58cEYcP7C2UYR561u3111+fso8PTIQin4lR5DMxinwmxtHIJ6UU+/bti7lz5x5z/g1puPTsR0dHRxk0R8BUfu7taFDkMzGKfCZGkc/EOJJ8/tvAoyGpwoKCgoKCqYtiuAoKCgoKGgoNabja2trijjvuiLa2tuNdlXctiowmRpHPxCjymRhFPhPjnZZPQz7HVVBQUFAwddGQEVdBQUFBwdRFMVwFBQUFBQ2FYrgKCgoKChoKxXAVFBQUFDQUGtJw/exnP4szzzwzTjjhhOjp6YnnnnvueFdpUvCHP/whPv3pT8fcuXOjqakpHnzwwcr1lFJ897vfjTlz5kR7e3v09fXFK6+8Uknz5ptvxtKlS2PmzJnR2dkZX/7yl2P//v2T2Ip3DitWrIiPfOQj8b73vS9mz54dn/vc52LLli2VNAcPHoxly5bFKaecEjNmzIhrr712zMtNt2/fHosXL47p06fH7Nmz49Zbb628+bhRcffdd8eCBQvqD4X29vbGI488Ur8+lWWTw1133RVNTU1xyy231H+byjK68847Ky8sbWpqivnz59evT6psjvk8+eOMlStXplqtln75y1+ml156KX3lK19JnZ2daefOnce7au84Hn744fTtb387/eY3v0kRkR544IHK9bvuuit1dHSkBx98MP3lL39Jn/nMZ9JZZ52VDhw4UE/zyU9+Ml1yySXpmWeeSX/84x/TOeeck6677rpJbsk7g6uvvjrdc889afPmzWnjxo3pU5/6VJo3b17av39/Pc0NN9yQTj/99LR69er0wgsvpMsvvzx99KMfrV/XO+P6+vrShg0b0sMPP5xmzZp1zO+Mezfid7/7XXrooYfS3//+97Rly5b0rW99K7W2tqbNmzenlKa2bBzPPfdcOvPMM9OCBQvSzTffXP99KsvojjvuSBdeeGHasWNH/fOvf/2rfn0yZdNwhuuyyy5Ly5Ytq38fHh5Oc+fOTStWrDiOtZp8uOEaGRlJ3d3d6Yc//GH9t927d6e2trb0f//3fymllF5++eUUEen555+vp3nkkUdSU1NT+uc//zlpdZ8s7Nq1K0VEWrt2bUrpsDxaW1vT/fffX0/z17/+NUVEWrduXUrpsHPQ3Nyc+vv762nuvvvuNHPmzDQwMDC5DZgEnHTSSennP/95kQ2wb9++dO6556ZVq1alj3/843XDNdVldMcdd6RLLrkke22yZdNQVOHg4GCsX78++vr66r81NzdHX19frFu37jjW7Phj27Zt0d/fX5FNR0dH9PT01GWzbt266OzsjEsvvbSepq+vL5qbm+PZZ5+d9Dq/09izZ09EjB7KvH79+hgaGqrIaP78+TFv3ryKjC6++OLo6uqqp7n66qtj79698dJLL01i7d9ZDA8Px8qVK+M///lP9Pb2FtkAy5Yti8WLF1dkEVHGT0TEK6+8EnPnzo2zzz47li5dGtu3b4+IyZdNQx2y++9//zuGh4crDY+I6Orqir/97W/HqVbvDvT390dEZGWja/39/TF79uzK9ZaWljj55JPrad4rGBkZiVtuuSU+9rGPxUUXXRQRh9tfq9Wis7OzktZllJOhrjU6Nm3aFL29vXHw4MGYMWNGPPDAA3HBBRfExo0bp7xsIiJWrlwZf/7zn+P5558fc22qj5+enp6499574/zzz48dO3bE9773vbjiiiti8+bNky6bhjJcBQVHi2XLlsXmzZvjqaeeOt5VeVfh/PPPj40bN8aePXvi17/+dVx//fWxdu3a412tdwVef/31uPnmm2PVqlVxwgknHO/qvOuwaNGi+v8LFiyInp6eOOOMM+K+++6L9vb2Sa1LQ1GFs2bNimnTpo3ZqbJz587o7u4+TrV6d0Dtn0g23d3dsWvXrsr1Q4cOxZtvvvmekt9NN90Uv//97+OJJ56I97///fXfu7u7Y3BwMHbv3l1J7zLKyVDXGh21Wi3OOeecWLhwYaxYsSIuueSS+PGPf1xkE4fprl27dsWHP/zhaGlpiZaWlli7dm385Cc/iZaWlujq6pryMiI6OzvjvPPOi61bt076+Gkow1Wr1WLhwoWxevXq+m8jIyOxevXq6O3tPY41O/4466yzoru7uyKbvXv3xrPPPluXTW9vb+zevTvWr19fT7NmzZoYGRmJnp6eSa/z242UUtx0003xwAMPxJo1a+Kss86qXF+4cGG0trZWZLRly5bYvn17RUabNm2qGPhVq1bFzJkz44ILLpichkwiRkZGYmBgoMgmIq688srYtGlTbNy4sf659NJLY+nSpfX/p7qMiP3798err74ac+bMmfzxc8xbS44zVq5cmdra2tK9996bXn755fTVr341dXZ2VnaqvFexb9++tGHDhrRhw4YUEelHP/pR2rBhQ/rHP/6RUjq8Hb6zszP99re/TS+++GL67Gc/m90O/6EPfSg9++yz6amnnkrnnnvue2Y7/Ne+9rXU0dGRnnzyycqW3bfeeque5oYbbkjz5s1La9asSS+88ELq7e1Nvb299evasnvVVVeljRs3pkcffTSdeuqp74ntzLfddltau3Zt2rZtW3rxxRfTbbfdlpqamtJjjz2WUprashkP3FWY0tSW0fLly9OTTz6Ztm3blp5++unU19eXZs2alXbt2pVSmlzZNJzhSimln/70p2nevHmpVqulyy67LD3zzDPHu0qTgieeeCJFxJjP9ddfn1I6vCX+O9/5Turq6kptbW3pyiuvTFu2bKnk8cYbb6TrrrsuzZgxI82cOTN98YtfTPv27TsOrXn7kZNNRKR77rmnnubAgQPpxhtvTCeddFKaPn16uuaaa9KOHTsq+bz22mtp0aJFqb29Pc2aNSstX748DQ0NTXJr3n586UtfSmeccUaq1Wrp1FNPTVdeeWXdaKU0tWUzHtxwTWUZLVmyJM2ZMyfVarV02mmnpSVLlqStW7fWr0+mbMprTQoKCgoKGgoNtcZVUFBQUFBQDFdBQUFBQUOhGK6CgoKCgoZCMVwFBQUFBQ2FYrgKCgoKChoKxXAVFBQUFDQUiuEqKCgoKGgoFMNVUFBQUNBQKIaroKCgoKChUAxXQUFBQUFDoRiugoKCgoKGQjFcBQUFBQUNhf8HMD4T9DwD2KUAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d4yl53kdfm6Z2/v02dm+y11yWUWRIkVKpGlKtKTEkSXHBfklthPYiCEZcAQksRInjpPAAlIdJ44DpLgkcWwYgR3LMmQVW5WkRFJiE3dJbp+dXm6vc8vvj8l553zPfENKtiJxpO9ZLGbm3q+89SnnKW9oNBqNEFBAAQUUUEAHhMLf7gYEFFBAAQUU0DdCgeAKKKCAAgroQFEguAIKKKCAAjpQFAiugAIKKKCADhQFgiuggAIKKKADRYHgCiiggAIK6EBRILgCCiiggAI6UBQIroACCiiggA4UBYIroIACCiigA0WB4AoooIACCuhA0bdNcP3qr/4qjh07hkQigbe85S348pe//O1qSkABBRRQQAeIvi2C63d/93fxoQ99CL/wC7+Ar3zlK7jjjjvw2GOPYW1t7dvRnIACCiiggA4Qhb4dRXbf8pa34J577sF/+A//AQAwHA5x+PBh/MzP/Ax+7ud+7lvdnIACCiiggA4QRb/VL+z1enjmmWfw4Q9/2H0WDofx6KOP4oknnvC9p9vtotvtur+HwyG2trYwPj6OUCj0/7zNAQUUUEABfXNpNBqhXq9jbm4O4fA3Bv59ywXXxsYGBoMBpqenPZ9PT0/jwoULvvd85CMfwS/+4i9+K5oXUEABBRTQt5AWFhYwPz//Dd1zIKIKP/zhD6Narbr/169f/3Y3KaCAAgoooG8CZbPZb/ieb7nFNTExgUgkgtXVVc/nq6urmJmZ8b0nHo8jHo9/K5oXUEABBRTQt5D+PO6eb7nFFYvFcPfdd+PTn/60+2w4HOLTn/407r///m91cwIKKKCAAjpg9C23uADgQx/6EH7sx34Mb37zm3Hvvffil3/5l9FsNvETP/ET347mBPQGoVAoBA1y9dPEbBBsKBRCKBTCcDj03DMajdx3o9HIOX95/2g0cp/be/VdoVAI4XDYXW/b5heUq9/xGQDcu/brg22zttXvnfYeO0Z2PO1zOG76HP2e42Lf5TdG9v38fL/xsZ9zjG1b/ei1xj6g7w76tgiuH/7hH8b6+jr+8T/+x1hZWcGdd96Jj3/843sCNgL6i9F+gkAZPRn6cDj0MGg/ocFrB4OB53kA9rzHMjTLZOzfkUhkX8Zl22IFlfbLrw/hcNj3GbwmEom4/lOw6PWvxay1ncro/e6jkFCBYcfotRi9Mnf+1Gis/e5VQaRjo+Nlx5HP1rFQYc+/I5GI59l8phXQdk3oGGg79X1+68w+y86JjovfeFpFRu/VPWC/8/v9tSgQrv9v6duSx/UXpVqthnw+/+1uxrecLJN7LQbOn/1+f4/Gr5t2MBg4ZmNJmaSfkNLnkVGFw+E9jEsZjR8j0faHw2EMBgPP9aPRCNFoFKPRyMN82QYriHmfnxWm71IGyueSEWtb/Ri2vUbfQeZn28afOk4cfz9Li/dawRKJRLC9ve35m8J3e3sb0WjUM/6RSAShUAjb29t75tiODds1Go0wGAzceLD9w+EQ0WjUtZvEOdc+WEXCrlU7H0qcC+2HFZQ6tnZ96XVsm37Gz7Ut2n6/sdHfVdHieGg7+Wz9XBUkXSe6xgH4ztN3MlWrVeRyuW/onm+LxRXQn4/sRvKzYqyQsBokAA9jslYYmYNl3MokLGO0G93PmhgMBnsEp75bBagyI9tuauFWOO6nDVvriAxHf9c26ff8WxUAjl2/3/dYbCpUlSkqQ1SmboUfGZcfM7bXUVBxLJThqnXJd3BsrWJhBYa1zHSt6HP9LEtdExR4qoDos+w6VCHFdut/VRj2s6D8LFfepwLKWtR83nA4RCwWw3A4xGAw2DNnts16P+fhtRQaJbu+ua7tuAa0PwWC64CR3Ryq+XHz+/lReK8KDWU4FCwAPEya//ezjPhcK+yAXagnEom451DrVUavjLjf77vvddOrRecH6VBb5XUUAuwX3xMOh9Hv9z1jZS1Q+86xsTH3Xt5LgaVatQo2+2w79nw+LUkVhjpO29vbHsvNCmy2jfOm96jQ4TNpeVAY8/2cOx0vXsO2WiGn99FKGAwGiMfjnmuj0ajrG+AVJHynCm+10CKRiGc9Wis6Go1ie3vbrSFanPruwWDg1gPvZX/GxsY8QkOtRV5jBacqEZwT/mf/OP/8Wy1OXQdW+Qno66NAcB0g8tModfH3+32PoLEMic9QRs3NqUyYDF6JDEzfr+1Spq3P1d8VMrOwWDQadW3YL2BAhYPVclWg22tU0wZ2GSf7NDY25oQ3GZxq/JbpWs3YPletWWXgqmCQWavlZudYYUtrNfL5FiKl4KFSQqbP51IQ8J0qqK2Vo9/7WRF8t7bHCm7OKZ+vc2MFEZm3tQ7telYLne9XRUEFjFq91jfHe7g2+v2+Z93aufYL8LGWsB0jXeP6PBVeOgcBfX10IBKQA9qhsbExRKNRz4ZWbZVMwVpH/J0CaTAYeBi/apZWCFnhYxmYMhJti/5XpqFCTBlBv9/3hZbC4bDToNl+teD4frX4LCRk263v1XFRhmShSz/mQ01dhYBakjqmFs5Si0j9dmpd6TN0HKywpiWoc8Q+kTH3+313jVq6fKfOqVoPbKsVrNo3K6CoBKiSZBm29oECWturQkjnlvMfjUYdWmDXup/CZi07YCc1R4WljjnfaVECq/hZxcQKTb97dcz99ldAr0+BxXVAyGpwXPQ2aIFWhDL1WCzm2bgKeylTUl8IN5Leo9/pxiZ8Zi0cZTaquVori5YO+0WrT/sF7EJrZIyRSMT1TRmhCuLRaOQCGWKxGAaDAba3tz0Ms9PpuHazLWSOwE59TT6T42uF0mi0Aykq3Ge1eGXaatmqcGU/2ZaxsTHP3HFsFaKiALUWn1rg/N1CYjr/Fu7S9uh8clzImHVu1QrUdpAs1KcKha4NVRj0mtFohF6v5xHkyux1barlx/fGYjGMjY2h0+nsseb4XlVk+LxIJIJOp+MRNvydcC3njPshHA575k8/V9jXKgmBBfb6FAiuA0Kh0G5UGBkumZFqiQpb8D7+p1WjQscyfbW4IpEIut2uh2HqM9XXYyEnfR6wNydIrRAyVj/LTPtkGbhaRn5wEAD3bDIV66the5QocKyFpM+0AlKhQTJEa3moEFZ4TQU8+x6Px/dYrn7MnIJSrScNktCgCT+hAOwqLCQ7DyokdQ3YtvD9foqK9lP7ys/GxsY8a1Xnza4b2zZ7TTgc9vi9tD/63l6v51nrKvx1bnTf2XG0igPbzP6rj1CtLW277qXA4vr6KBBcB4R04TP6SYUPmaTVUOmoV+bDjWhxdlo91tqxTJv3+TnNyQAI5Wxvb3ues5+FR82V7xkbG3MnAtDprmOhlpdtl1pofC7fp/3mtXofr6VFaufA729VJDjOyhT5zuFw6PGncez5HeeKvinrJ2Qb1UJhe3WudTxVcGp4OZkr55wKDdvH91OgWItN1x/nx0Kwur60n9ayVKudVgoFhkJ5fJ76p/xC3DneXJ8a0q/wId+j82lRC7uWVJGhwIrFYgB2TrFQa2y/+3XNc+8BcOhBQK9PgeA6IGQtJG5qfsefdqOQrENfmYC1qMi4rN9In60bU6E9qzVaocVn6AbnTwpLYFcIEA6y1oafD0WtDj6DDNzey77rWFl/oR1TZTxqPVirQ61aPsdapep7sVCZWpJ2DSjT1/GyjNLOg1qr2j9+R2GpVrSOma5BtUzUmlOITeeISpGFpvkeFXjWGlS4Tq1svk+Fn47NfsE7anVrJK3Oqa5dnUedE90zqtRREaDCpnPCdaCWl0L9XPMBvT4FguuAkcJPgNfnRQbNxW9Dm3m9asq6WRV61A1nYaBer+cJ9ODGtv4LTb7Ua1RjtkKOP5Vp8H6L/9vkWNXslSmxD8DeZFF9tgo1wAsJquAl0+R7+TcFpRUOyoxsAIoKB/rIlOlaLd/2x1oZfj4SbTOtJ17PcfK7l31X6NH2R+eX19ogElUKdD3ymf1+H7FYzF1nFSNey+f7rX8VXKq8+OVHqX+J16vvSduuz7aC3Cp0up7s3Og69tsvui8D4fX6FAiuA0aEQHQzkWlbZswAAwYjEBpRTVA3DCFI9c8A8FgyKmxUABIas1qqasXaNisMFZZT7dcyHhUy2n4+3/pFqP0C2BPqTgZLPx77yvvI1JURq6at7yEz9YOu2F5+x6ALjjHfsV/iK+9VKJLf0RemwRh8B/torQ6ORTgcdnBsr9fD2NiYg/0sDMd26HpgsIutzqJBIcPhjr+OfbOKztjYGMbGxtButz2KgvqTEomEC6phuxUaZzsUQrZKB61ghWh5rSYes7+E/7a3t917UqmUg3StQFVlTeedY8f2bG9ve+7v9XpuH9hAl4D2pyAc/gCRwhJqbVBb3N7e9jA3a9koHGeTLlWztv4DfX+/3/f4Vfa7VjVn1fYBL0SkTFWhPyu0yIRV27UCTYWYwjd+gk19ZKrpq9ZrhauF3+yc6O/aJv6uyoJaCLb9SgqNcU7VQlAhbuFaZag6r+yvCjrL6K2FwHazn34Wgx0D9f1plKa1xFRYK3ToJ9DpO9X5sGvBKlc6HopQ2LWqChefqeOpltR+lpPOp91zOldUEnTO/azDgPwpsLgOCOlGJClDo1apTA3YZdR2g+lzNCFVv1OtUgUQGbv6o2hBqKVkGYq2X9tLpqEJyJaxq1Dh3xY6s33XgAFrodGyUCZmf1q/msKJqhQwfF79GsrklGGqBaDauBXa1oK2lUHUitM+qMDS91hGroEL/FutBR1PYDcgQt/FdaNWKNulQtFCbBbW4zxwTbO9+0GbKvzV8vKDxfnTWj8qfGj1qnLB7xQiZi4cLTfr79PnqMKl65JtsetM+xbQ61MguA4I+S1yYJdR9ft9d9jmcDh00B3vtUIlFNr1qVj/Dj/3K/czGu3k0bAtZNzKeJTJs63MvaGPjNozmRbbrlCStk3/1nepJadWhY6bCmOOl46PRlEq8yFpnygMNWfLBj3wp0Zd8j3K4K1vycJOFOb9ft8Dk5GJ8lmcN86DlqiiUsD1QWiQPiX+rZGXVviokmC/t8nBai1x/Dm+yux1jSizttaeKlXaH8voVUhSiaB1Zufa+j8VxtP5sKgA17pab3ym/dtWROHzCddrm1S5DATX10eB4DogZK0J1SJ1Y1noyDIJq536wUN+4cAk3YhWo7VMzm5GFWZkDioQyNzYbhs8Yi0s9RmxDRrOToY+GAz25Flpv1RgqIBXstYIk1HJpJQZqnavz1c4jm1mCoAVEtpeMn72i/fZaiPW4tje3nYKgVpkOpd8v1pD6rPSMdT7tT8qrC28pn3aT6Gw1oxaQiSuB2v1AfCsAx0jHXd+HovFPAnlun75LCpnajVxTgjXalv8LNXRaOTgaO4nClJrIfNnILi+fgqONTkgpOVtuHmAXaaszv5QKIREIuH8XZxiPsNqjMDeoqnKWNRC0E0K7FpjWp2DpJCPChdrVej71YJReAzYW/eNn+m9ti/q8Nbv7XiRySlZS8IPBuR1Fn7z07h5nWXKHGNq88okVRAoU4zH4xgOh64qiNX6uUZsjUkdG72PcC/v0QogCpepgOIzVTnSNaVpCBrIYedKmTfJKgGcK7WONZSc/aUVT4tGBag+21rm9KXxGQyaoHISCoWccqX7z6IZqpxpLp5eo+2yY0El7ruJgmNNvoNJhcV+GfxqASl8xQ2qVgiZlm5GtdT0OQpP8V6SatUkbYsVhNaaUEtFNWW7yRWq0r5rFXhrAZI5WStBn0mBoz4PHQP9nMxIfRUWCtTxtlF5OldspwomtTZ5bSSyW72E0W+W+fN3ji19btpGzoXtpx9jtwqNtdR1jPUa9pmKlM6BwrCq4FhBq8JZgzt4jb7PKg5+/bOCTpPvOd66TtlOhbEVGdBxZPu179oHtaD0dyplCpv7Cf6A9qcgqvCAkC5oWlkqiJR5AdgTeEDS+m7K0FQQ7MfwyBS46QDsETp+2jMAD4TnJ4Ctn4h9ei14ic/jM7XyB//zc2XMypyoTavgtlqxjq9fu/zC2Cmg2A4dKzu+JGt1WguQz9BxUwhY50AtCv5kkWYdS2XqvE+VAGsZaN91HuxYWytW14+Oj46xtkvXFd9FoWiVFF5HS8vvWBeF7PhTFQuNNtW+8jO1hnmP9s+uWzt+r/Wf97BvAb0+BRbXASG1VNTKiMVinkAKy4D5tzJ4dfqrj4Ph9LxfI6gsgwmFdksp8d1WMwV2hZOG6as/gM/S3xUCslYi+05fhTI/LXk0HA6df8f67Eaj3cK7FGAKG46NjXmc59pWCjpN9iaTVHiQjDwU2nHE22LIHCPNLdO5UkZGBsvnWA3dWi3aDv7UMVDLmZYc26n9VBiMxDXHZ+p1vFfni+/QtcE+0E+oFifvUyhQLTdbyFivV8VK+08LR/vG+2hB655SX5aud4VdmecFwLNO9WRqKlGa16ZrxVbK0OCdgF6bAsF1gEi1WNU4uditH0KZoX6mQQ/KKFWAkIloEVe15tT/orAO22Qd5AA8tQgVdiOj369v+mwyFBUqCp9xnAiDAvAIbNXWVQO3MB3fz+fpGNuoNB1DP8jNwmP6nZKtjah9Zj+UkasfxVo51uJQRUTrE7ItOtYqLLXNCiGzXRYC00hLKjZ+FtZ+QkTH9LXgMysM/SwYtdZ07FSY6hrVftm51Xnk56occn7YHhVWurYVcbDrSoV3QK9NgeA6IDQajTyJv2ox6MamBdHv9z3Jm8ButQSGCuuGVgbHzacMV4Wiao4KLVnNOBLZOQrCVm/QDa4WFeAtXmrhPYYSd7tdpyVrVJ2SMmXLFNgXMnGtHs93WT+Uto3Xqvas16qFFInsFq7V+3U89Fnqp6JAtoyTAlktZiuELFPl/bZvViiyL1xfapWoZaQCSJk7hb+OC+dD4UxVdvgMLQociUSchWlRA2BXOeE64jrQSFodD/6u46jjoO/VMVZFRcPj7ZplQIcN1VeLTtNI9BmB0PrGKRBcB4S4uVVYcZPZoADCLOqgB7zHV2g+Djc0N7wf9m/L+AC7cBLgr42qH0c1WjIoZSjKRPRzFZTK+NTCtNo0mZyF05RBKLPSZFm1PrQf/GnDwjVHSSFChfv0fj/Gr3Om46HPUGWC1wB7c4DsvaqcECK2JYusALP9s1aMKgrqXySzt1a8KhXW+uBz/cbJ5r1pm3Qtc2z4LBVeqmRYGNbPCuN7NQBG17Yqgmr169zqc1VAK2yuY6r9COjro0BwHRBShqdhwRZGYTQXsGt1qIChNm8tFf3JjamWALC7QZm0qkJLmZAKFP1MmYnCVdS2lYFp+9lPWiF8jjIRtQj0p7bFMotQaPesJR1HFXqAVzjwe71H4SrVpC3T1nB5+wwrONlPZdJW2bDCw/bNtmG/dqmFpnAj1w7JCjcNtlDB7hfpqW21wp/PtmvQKho61tp2nR8/QW7bzjmyY6hwOO/XyEY/K1KFoX7OtikKwblUJcWSKkcB7U+B4DogpAxFmR61Q8uICBXyb2AvJKFaK7+zlg3gPfZDKzYQBlTGqdqp+pgI+fAZ7FMoFHIBJmwr263t06AEQobql9LTirUd9MdZBsU20gLRZytDej3N3U8YKdES0XvUCtRoSwabWI1fhYe+gzAnlRX2nf2y1qKGeFuLj31T3xSFjM0H41yq/1P9apxHFRy6fjUUXO/TZGy1wKyFoxCbtoNjp/PHeyh4NLhGFRdrxanyplaYCiD2W61/v7HX5HIdPzuXoVDIM4cB7U+B4DqAZCEFtWC4kVRQqF8B2Js4a+vgWQtCmb3VoPV6a/3xexVqgBem5H/VNNVnpgJD26dwmzIgvofaswpJtfq0vyrI1PKwcCO/570WUgV2fTxWMLANfhaWhWyt1aYCTMeG42LPLLOQqQofnXtVJLSclI6rzg/boUENnC8dO4X67NrjelIhwmfTR2THzO8n17m1Ni2EyGtjsZhHWFir2ipz+gw9Y8siHiSdLxWm1qrTfRMOhz2BTtYSDmh/CgTXASGF8NT5S4am3wN7y9/o78qE7LN1A1nGy3erJQLsVh3w23RkUPa5CnepoCXz0c9sO7QffszL+oEsLMc+69gpU1ahQCvAMmD6ixQus8EGfoLLCgL9Wz/TObLCTqFDhmXbwAUdK96j463PtlCwQrA2EtI+w8JyOq98pp/yowJOA1GU4Vv4TklhY0tWCbDvVQjcbzx0vCmELKKha02VKr3Gbz/4KT46P359DWgvBYLrgJCfxs3PFSpRaEM3tm4IZczK+FUL5QnLqpmrBUZNn3/bja0WCzcpf7faO60CZXyA1zK0BX81wkuFGN/P97DaBNuqVTIUclQYh2PNfitsxfZw3KxgV4uQ97McloVIlXkrk1QLhkqB9ovPIKypSoFaf2p5jUa7lTdU0IxG3rqHnHs/4WnbzfYR4rICHPDCeioUuL447zqvvEdr+2m/dMy5DnVOYrGYO0dL54WQHfvLzzX3Si0szj3HmUqMrjUruO1aUCtQlSCFZfluTekI6LUpEO8HhNTKYcSgZvOTWaqmR8ZiKzeQ2VmhZjVnrTihCbUqwGwUlR+zU4uFz1MGqs+3Gi8ZjgpGtRC1HVbgqX+H1yqTHI124Cm9V/14Vmj5jY2f1sz+kPZjaOwHE7/5HedW0wgAeKA+Ql/WGrT+MB1Pm+vG/+yjCk1rqat1wnt0ndn+6Xq1+V/2Pio2mu6hz9I5UQGjihAtYF6rc61zpsqUFRR8Bkn3ld1/tg+6D63Q99uf1rqycxXQa1NgcR0g4gbXzQd4I6v8LAULManFEY1G0e12PQxGAzDUKW8Fgp8vR+GmSCTitF8/S0A3vQ351g3Pe/VvhUutcOWYWEtEr1eGxjYpg2b7ydDValP4SJ+n77fVKdg+a3Eq7ETBEwrtFnQlM9XK6YPBAO12282Zrdag48h+MI/IQrAaIcrTlO2J0eyHbYtagCRdbzY8XiE7La2kvjbtg58iYC22WCzm+sC2aoAOq3zoGtLzv1Qp8vOHqqVt54xCjGOsFivXvc6Frg3tM79jsE0gvF6fAsF1gEgZvD24EfDmk1h/kfX7EH4j47GRYxaW0t/9tEg/a4nCgu1RssJD26jCBtgV2GTofLdq4Wotat+V8epPvYbvoKBQ/6EKMx0bbYO1EPkchWL9og6VGav16jff9t0W3lUrTn1l1g+npIzYWrwcGwshq0/QDy5Vy9uGdetasLAiI0vV8vUTWlZw2PH0s6B0Pdl1YK9nu+w46n7Qn+w/A1xUSdK2A7vClu+1cxKEwX/9FAiuA0KqbZOp+Glm1mnOvy0DVgGnG5M+gP1gDYV3lAlYK0QjsWx+jEYAWuaqkKJCPXq97QMAj4OfDEwFomVY7IsVuPrc/QSSCjUVsDoHmqdjYSsKBP2Ov1v/odYdVOVBBT/vUz+iPsv6EPVd2gaNjFOIzAoyHTsKKD/fmSorusZUyNp59fOP2bartRcK7aZTcK3pO1QpUEXOWnCcY78kYV0XnF8btKN95P0q+Pid5g1qnUoV0nY9BbSXAsF1AMhaILS4wuGw89Eoo7VaO/8TigB2fQeqlfJzPepELTJ+pptWgya4EW0RVMKWqs3SsonH4wiHw+h0Op5ABv5u+2ctLD25lxqw9p+WJK0FQjnMf1LYcTgcunJSFA72pGNlNDoH9FVxDHUMVNu3DFXbqgKWliXH3TJUK1h1PAjNquBhmS9CiwA886hWgrWgOF/sh4UmVQGwignXoAYL8Z3qw+t0Oh5BwZJhLPukCo3OmV3j+gwNxLFj5TcXXBtqWYZCu4EnFhFQ5YH9U+iPe4FC0i9C0voK/ZTRgPZSILgOCKl/yWrNujF1A1tflDI4FR72PpIfFKWCgG2wVhsAj8ap1gBJ+2BL4JC52tJEZC5Wkwe8eTR6nWrqftYVhbfVcum7UGGlTE/hRD+IRy1SZdT7+eDUotH28lr7nUKcylRtVRO1brTdAPaML8dMc4vYDr+Te+3647OUwWv7+bu2xX6m79D+aoKwWs/aJ/u7rllVamgx6f3aVo4vBZjfgaZq1ek8qECzv6t1ZhEMtlOh6oD2p0BwHRDSDUgNWhkcGY5aSNws1Fh5bAW1VbUqwuEw2u22ex6APYyVQkYj7bjZ1BHtp+Uqc1emxTbZoBLtt7X8+PloNPKtNKCwk19ItJ7MC8DTH9XsCT8pJKZBMJwHZdSW4VDjtv4uex2taDvnANxpxypkCefqezV0nv3RtbC9ve3mWgN1SFbgK3PlOFtrTNvPn2oRqYXEdimcTeGgglmtds6PMnVVXHTOeA0/o0XJz/luq3yxXRwTvm80GqHb7e7JA9O+2/5xHPeDNdkeDZ5iH61iEdD+FITDHyAiU7EbRUOAAez5qZqmMhheo9/5adoUfPbZdjPzfgupKNSk9/IaG2Gm2ry+wwoXP0e3BhmocFJr0LZLoR0+h/AQv2f7lRG9ljVnoS3+Tu2dz1U/h5/Voc+y48G+WL+RtR7UClJBpRaMWmEWwrTP1rBxa2GpssP3WUteLTy7BgeDgWuDClENXLHog6IJKuB1Lei7bZ9sO9XPZgWQku4lu9f4/Nfad/ou9lWtzID2p8DiOgDkp+UBXt/BYLB7FIYVMhrhpLCNda7bGoGWKVnIjBtUYTM/bZECxcIlfKdqtH6aKpmY1XytVadaPDVaHTsrGCwkx35yDOxp0SqAtU6f38GF9NXRytO28j47r9S42V8+Uw/I5HXW16XzZX1Q6mexwSt2DO0c8X2cZ7/1oD/tePFZDEvn2NLnZgMnVPj5rSNVGBQ+VKvGKi52/O1c2znQ8aDlrUoP38/1q5CnrglVsJiO4Lc/7DMDi+v1KRBcB4CUCQB7K4lzo2q9PF7vt5mJ71uLRPNbyPxsoV5CWsq89b8GASiT5P2qzVorwB40qVq/Fbq60dlfHRcKAX6mUKQyNPV/qNDzEzz6bIUheY/V8BVO5XjpMfCDwcAV1lWYUK1WG1mnY6V9Y9BEOBz2BLioMNDz2bhu2DctYqwM3Vo3FKocLw0h17XE5/I+tk2FvK4xrilauqHQbo6Z1t3U8bbCUosIs41+fjG/9WGVCf2ce0BTMXQ+OA5+ha057ypg96ts4idcA/KnQHAdEFLmoBsW2AvlkJmrX4EbiExSoQyS+tBsvo6fxaJwj8XmVaAq/Md2qEWl/VNBZIWdjZ5U5qJQnbUOrSWokJPNX+K91jdmIS913vN5Fq611/o5+1VYECLjM61VpsxQ26J907QJZdpUWHj/cDj0WCL6LGsVE3azUKVahhrgwN81apBCRNeKrkPbBrZT28v55LyrQqEWp03+tj9VSOk4815dV2wzx07HQi12Ci/tnyouDNXXcdP+sn1WYQvInwIf1wEhKxQUUlHNlt9bP5C11vz8P9TW+TzVbHUza2UFK+ispUfrywovtVwUilKYUwWXwnkk3egqdF5vDFVbt1ajhWrUEqNAsIna1Kit/0i1cbaXfdUyT9YaVn+gDSDg5xxjzfNieyi0rK+GfdPKGfpc3qv9V2ue8KlGI+pc23boNTouVpHg862Vpn3VABptm/bDpiCogNL5tYJDFTzdH7p+OYa6dthWXZ/W8tTxt0JWx8ZCwQG9NgUW1wEgu+gpMCwMZyEm9QuRkXFza4CHQif8TqP11MrxgzZGox0fhgaJWGZCKMhq2KpJsy3KYGiJ8Ds/QZxIJJwfwm5+ZR7KGEcjb4kjwljab+tU13ZbS02FrLW2dLw0XD0UCjlYj22w0XRsr/VhktnzWYQCOUZanorP4zs4T8rgNVdJGbtCjZaBq0Wo86LJ05HITg1CQqJqmWkbdBzsWlPLMZFIOKGvyhL7rYEZXBMKbfPdzNdT5YvKhvZLx1/9hHb9W2XRKkC6N/k9y1UpAqD9CWh/CgTXASBuNnVmq+9AYTEAHoeywlTWH2RzgyzjtwIL2GW4mmhJRqiwnzI7P63Sz/9GIhNRa0N9Sn5CyU/A6Hf8W09/1merIFAmo+21lqV+z3eoxeh3jfqH9DoyWvssKwgtQ1PtnmOtibd+VrmG8NtAHb6fglnbxGdTIdJ1o/O+37qx+W5+46VKGJ+tz1SLylp51l+nsJuuCW2nvlND5tWn5+db1jlSwcWx0TmxypiG2tsxsXshIH8KBNcBID8mS9KK1+rXUBhFtX9uOtU2AW8ei0IV6pjWja1aNbDXKuNPZRz8qVALNXKNbOS18XgcAJw1QItImaYKM81xIoNTZqsCkX6H0chb8FWtHR0jvV+tRMtM9XoLi6nwpABRIWPhokgk4iwR1cqtpcjrNSJRx0IFmM6P33zxHVxLWqTW+sz8lBkVksr01QLk/NHasIoUx8wP5tP1pmOm40xfIf/WI1e4h7g/bO1LFS7aX11vqlDpGOve0nFknxm8oZafX38Den0KBNcBIvWtAF6NVR3BSqoRqgaq1pbVmK2DX7/j9cqs99Om+dMKBoWLlBlZjV+tRWsd8tn8r9Fq7B/7ZUPxrf9HrQ6OoQoFC2eqT8f2V605Cxfxex1zhf+0jVrZQftqfXocL32fjqe1onWs7Hf6XF1L1n+nc+sHbXEMFFpkH9VnZIU/SZUEfY++m8/VNW0F/36/8zkU8jqf9l1+VqWOi1ph6g+07dVx9dtz/J2CTcc7oL0UBGccECIjsFCEH1kNkRtBGZp1OvN5FmpRR7+FaCyjs4xWmbFq8foutpHX61EYer3tl36mVpAyKLUwFXJSAa0RZTrWamXwJ+fA5p35WRk6NgxdV4E2GAz2VMpgX+mj4vjzWeyD9dWpNeYH/bINfmNoI//4DPVx+UG01sJQyzocDnvOC9NAFT5PkQG+21pYfKfOjTJ5Xdu83g/utM/Q9akKmA3O0PGycKF+ZxUxnRO7RxVy1v2nFnpAr0+BxXUAyMJi+rkyMA2ztpDeaLQTjBAKeU+r5WblZlJnNYWYMhNlVsq4yXiA3RwwtXTUac428qcKNwAOUiGUA3gLwqrwpCC3Qorjo32hz4bMX/0ZZEgamWZD4vVYCs6HWoI6Hoy+43UcX71O87oAuPJCbJfCTITWrCDXdaDv51gzr04tG42kpBKjY6eJ6BwH+gbD4bALttA5UGXGziPhNLZdc7W4bvU+XWdcV3Ytq6Wja4nv0VOnqaQNBgMHD1OQ89wshcL12RQkbAOFsFpEyWTS7SvAm36i0DGfqQJPfY2j0WjfJOWAvBQIrgNAirmr05zMiUxJmYmfds/Nwdp3fIb6YlTrV8avWq0KD8AL7fhp0Vb7VWagzNcKS7UgKDiU+E6F0Pi5WnR8l32/FcjaJtWi2T59r37GtjKU3c83Yn9yfFSTV+vRKgb2/epPsjlWfgJZ/UeMAKWFq/OoAm4w2Kneb61kKjgUAuy79sWelUbhoX4tXRtk9FwzepKBtfLZHwpYFQoaNavrSudX4Vrtm7X0dC37wZ+8zx7TYxORFSa1Sp6ueYswBLQ/BYLrABA3CZ3y+4W0K6PTREoyRF6n8IpGiakA04RJ1QCVUZK4Ka1jWwWXQpUUIrQGQqGQxzJgAIZahPo8fb8yKRsCzv98tx9cZJmmPULDzoGOhQauAN6akTZCzTIkBj0wQIPMS0OtqcUrtKTlm/i5zi3bagWOziNDwe086vW0xDQMn+/l/OiRL3yvwqLsXygUcseWqEJh4UVl7Naq4lpVi10tcLXM1G+lljQ/03qRPJJG9wjnh2Oili/voxLJNct1q3Af76HlyzXN+yKRiBsXq+QEVtdrUyC4DgipxqkLXWEZ9W8o/EfN0lpa9tn632L93IQUONxYjPzTenrKyCzEqAyFG5kCw8IqfL99hhVMOh4Kg2kVeLVYgN2gERUCvM72wT7DWmQ6F9p+DX6xzIj363vUwrB5VvzPOVAlw1pM/F2tZB1rFegqVK21ofOva0qFhT5L/VS6tnQt6Pir5asWojL+cDjsct90fVtlTNsIeKtq8DkU/LQQ9XprPftZ5wpd+1nBaj35IQC9Xm/f0l68LhBaXx8FwRkHhFhZYD9GYi0N/R7wBiuor0ktJQ2+sAydDBPYm1ujzNVuPAoahYwIQ6ng5X1kRtT0tQivXqMCVX1CbLMyXn0O36VMTfuhzFGZlvZPfVXaTx0TnSN9nloB9BexXeFwGPF43PnzrA9NtX593tjYmLNW2BaFIRWa43u4pvy0fWW4Oo467laRUAgPgAc6BLywsI6N+vhsBKtNdeD6URhP504DWdhGFa4WcmTYPD/nXFBAqYWma1jfZ/9zH2pbtB9+bdI9qusloP0psLgOAI1GI08+jQoZCiHmOCmT8ouEi0ajDp4g09A8J92YfrCMMi4AHguH36mQ00MJKTxU6Oi9hJVUeKqQI3NRy8paaCpk2Ua2m32zfjPtFxkOx1sZC/uhNf4sJKjC1fo6/CwZbY8e56Hh8Np+FTaao6Vtp49Jx4BrQwNw9Hn83OZSafFbrgP1qZGsn0mjFUkq8NU6UwSA/eJa0BOp2Q6Oj1p/fpatFTZcR/aYHoVode1bn6oV6Fw/RDJUOCvszH6pgqeBHOyLrcgR0P4UCK4DQFzIanGRWar2ZsnCSHyW+gCUuQO7uWLq0+Cz+FOFnLZFmYc+X5mUWgHq01Jrjn0iRKSObTsm7I+N3NMQezJaZRxqJSh8Se2YAkffZ/1tZPw2yISfc5wUVrRWHEnD42ndqLbPPmg0JN+j7+V82MhB/V0jMFXbV2vQD/bUwAaFjP36qUqMPkd9YrpGOXcUnFTELHyo12vf7Typlcz54X0U0Foyi3PAtUfrq9/vu8AmrmtrwfmlXWgbdB/4oSA6v4HA+vooEFwHgHThK4PiZtINrCHDyqit09o67q2As0KR99vgBVsCSDeyQny66f0gIxVq7IsyP76PWjCfpVac+s1sH/lTha61/hgpp8zXQmC0Uulst4qEwj1+lpiFuQgx0cqzFoj6fnTu7drQv5Vx6lhRuKiVt18Fd7tONCrTBpCwrbxW0QAVEir8eD3bYt+v/VBlQd+j69sKYLtv9B38jmT7rMLarkcN5tE51nbQatS/LYzPzygcOWaB8Pr6KDQ6gKNUq9WQz+e/3c34lpFlYoDXh6BCRIUE4LWwFHLz28jcmKoFKoNW2EsFDZkU29npdAB4jzVX60f7o1FYbINGfSkz1L9VyPFvZUZWeKtgVmZJZs7vVGu2FqcKQIWqFMqjIGWEGT8bDAZIJBIAsMdKUu1ehSufq5+rwLaKiZ+VoeNihVkoFHKJwoTkdDzVv6ZKhwp2FV5qiXKMAC9czFxCCkUVRhwnfSbbZqE2jgHvZdu0FqWuJ6v4qSKnwlkVIPbRKhwWmtZ+8B3ad17nt5703DcKaGuVfqdTtVpFLpf7hu4JLK4DQFaTVxhMmT6vBby+E36vG5ZMyWqguvHIjPr9PuLxuNt4fnAPj71QwWAZjZ8A1msA/6M79DoVWPtZirbPtq1+Wrd1iltrz7aDfdY2WIuGjFUhKYXUOFbdbtcDjfF+9QmRUVOQ6TstU9e+2GRiHQsLSbJt1ldDUoXHWgc2lN4qNxxjvY5CZWxsDO122z2fbVJLW5/Be22unVVWdF5VmVPhrWtRx11TN7QvCj3zGRRmaoXRavZbo9o/P4UgoNenQHAdANLNQwGglpAyAb1GoTUL0WlQh2rXZAwURMq4+Zkf3KWatmqWfJ4GTPj5WNSnpJafhbsUllKmQfKDjZQpWGGugSQqjGy0pbadjInt1HwmK2Cj0SjS6bSHeYZCoT2FX3WsVTlRy4/PpM+FjHJsbMwdkWG1eiuk+WwrFNl3vkfhYI1G5HU6Xzq2/K9rSitX6Dq0FhnHVedR13YoFHLWlz5P88wI46rw1GR9FeDWSleyKAH72e/391RQUQGuVUr0BAUVVLQKdc3xd77nu8ni+vNQILgOAGn0lTIbbkJgb8FP3QTKhJQBK9kNrIxUN7nCVQD25ErpprPWkUJyqn3zM2VWNk9JGa1f21VT1/4TgtpP27fjxeepgFRhpJYO28RoQFI0GkUqlXJ9IiPN5/NIJpOIxWJIpVKIxWLI5/NubhkKPxgMUKvV0Gw2UalU0Ol00G63Ua/XfQWvQsR2LRCKGgwGniRYzUfysyatAkKrjM9XAWR/WgiQwpLzzPHTa9X3qFAilTEKH1VS+Dy+iwLA+sCsELLtt35hXSOqnPn1V9ce28CxYnSkWnoUtDpv1qoP6PUpEFwHgJSxKpPhBrA18fyEiAYM0Dqw0W76uyULNSk0x3v94EEL4SmDVSvN+roU8lKBoUJLAwb8YFPVxPdrh2Uq1venDFUFuVZ5UOiH7el2u0gkEkin0zhy5AgmJiYwOTmJeDyOWCyGdDqNRCKBUqmEwWCAVqvl+tTv91Gr1dDpdLC1tYVOp4NOp4OFhQVUKhU0m01Uq1VPpKUNdFCITMfLMm9tv64zKiQqtC1zt+tF4TP9XOfSri+FTG1wBGsIklTA8V6rXKklzH6owqJjojUaOZdWsJK07xSWCrFS0KtfUq083Sv6bN5HZSKwtr4+CoIzDgApFKPMaTQaeTRq/V03sG5Kbjgbbm3hPhVCdjNxozNUmBvWj8moz4xtU42YREjKWmlWoKqQUo3XWjccG1s+SrVoWxRV28336VlhaqUpk43H40gkEhgfH0ehUMDU1BTOnDmDYrGIdDrtyi+REVMw9ft9TExMIJVKYTgcolarodVquZ+pVAq5XA75fB6FQgGRSATVahWNRgPXrl3D2toaLly4gEqlgl6v54SfCjR7FA7XiX5vmTL7p9YKn6tQsd6ngt/O4XC4W6lC1weFy/b2tqeWprVq9adGrKolx3vUCtb2W+uLz1eoXNc2+6EQNZU+LTLsd7+18KylBcCzLnVdc199N1EQnPEdTFYT9NOAyWA1vFYtJW4a3Yiau6KOd4VrFB5URsBrlcggtHwT20mhpYJRmRS/18gwCjRbJV5DrNXCUytKQ9g1uVcFMsdWrQU/C5LPUYYbi8WQSCQwOzuL8fFxHD9+HNlsFtlsFlNTU0gmkxgbG0Or1UK73XYWWLfbxebmJtrtNjY2NlAoFJBKpRCJ7NSuazQaaLfbThHpdDrOgovFYpiamsLk5CQqlQpCoRCWlpZQq9WwtrbmCecHdkpyUVhqX9XnSCIkp0JGBbSFY5WpqzDQ9aOFnNUfaYNGeK+uQQqfWCzmsRIVxtOgCPuf7bekfia/vWJ9dHbPWcvQ9tkKVF2T+lxep1aun6IY0F4KLK4DQAqH8W9lQCQyfQ3HVitDNz81U2qOGgCgwQb8nFZDr9dzBUhHo5EnVBnwJgZzk2t0HSEo1dyVCZCGw528JlqO6uhWgahjolGPbIsdO8v41HpQ6FQtVQBuXNPpNLLZLM6cOYOJiQlkMhlMTEw43xWZYaPRQCQSQSaTcQL53LlzSKfT6HQ6WFtbQ7vdRqVSQTi8Wymj0+mg1+shm80imUyiWq06y6/ZbLo2njhxAolEAv1+H+VyGdVqFc899xyWl5extLSEdrvtqQrCwBpaYyzeG4vFXEQjhQwZM8fI+oyswFeIzA8WpK+H64rP8gsA8YOMdW3peqGQVv8Z25xMJp3Q5zXaN1I0GkUsFsNwOES73fYoKTpWts8qyKlU8TOOpwpD3V/cbzbNQQWW9eN+J1NgcX2HEzetWk66aVQAkEkBe/01ZKTKuJVJqNZrK6ArIwH8z8nS3/20eo1Is0LE+gC0z5Yp6vcAnGWmzFCFj2UW2m+Oj8I7tEri8Tji8TjS6TROnjyJiYkJHDlyBJlMxlk0esSHRrjp+LdaLbRaLVQqFZTLZc8YDAY7lTOy2SwikQjy+bxTNNrtNsbGxlAsFtFqtbC9vY21tTUUCgXkcjmUSiUkk0k0Gg2k02kAO8yg2Wxia2vL8x4dG22vWig28s6OtSpInGO1nNQiUfhPrVm/9aekwss+z89a369PflYYsOvfUr+Y9ZfagAyLTqhixnWtY6xjpu/X4BVeo3mZ301C689LgeA6AKROXt38Fj7RTUcNXgWOHu2gQR4W/lBGzs/UslLGpsxfBY5qpWQk+jmfbyFPy0S14oJ1zitzUhiSpGccaRuV4SmD5E8tsxSPxzE5OYnx8XFMTEzgpptuQiaT2aP5t9ttJ6woZHQ+IpEI2u022u02Go2GqxSeyWQcBEntPxQKOXgsmUw6AZpIJJDL5dDpdFCtVlGr1VxCbzQaxfT0NJLJJABgY2MD5XIZvV4PnU5nj5+H9fk4xlxnOlYktQisH1LXKMfE+s00OEHHmc/md7qe1CInKUO3c2nbqute0Qb1lXEtsQ4j9wyfo74maxGpBU+FiIKV0KWuexV27L8Gblg/a0CvTd+w4Prc5z6Hf/kv/yWeeeYZLC8v4/d///fx3ve+130/Go3wC7/wC/jP//k/o1Kp4IEHHsCv/dqv4fTp0+6ara0t/MzP/Aw++tGPIhwO4/3vfz/+3b/7d8hkMt+UTn2nkTJdCiAN1FDmzw1LOE81S16veTyao6KMg0xfi5zaCCkAHh+GZXi8h89TgWmhQcAbhcZ3qFOcfacg57W8XuFNDVTh+9hGFZ7q6wPggk2mp6cxMTGB8fFxnD59GsVi0VlXrVYLy8vLGAwGSKVSKJVKToBQWKuAIENqNpsA4ELl2+02lpaW0O12PaHvnU7H5YdNTExgZmbGwZIq3Or1Oq5evYpsNotMJoNMJoN0Oo18Po+trS3U63VMT0+jXC6j0WhgeXnZnXvG8e10Os7ao6JD5ksFCNhNj1BlRv2Gal0pNKwWPK+ldaHBMTo3akFbREDD4ikYksnknvwqfs8TjhVNsEJNv+M7NOJQ1xjn1O4nbY/CyxwPO15UQvksPZfrAHpvvuX0DQuuZrOJO+64A3/zb/5NvO9979vz/b/4F/8Cv/Irv4Lf/M3fxPHjx/GP/tE/wmOPPYaXXnrJlbz5a3/tr2F5eRmf/OQnsb29jZ/4iZ/AT/3UT+G3f/u3/+I9+g4law2pQ1yFgEZbKXPndRbS0O/1XfxcIRMVDPSZ8Llsn250q2EqtBIOhz0Vx/W4Cgsn2X5abVbbrRalRkpaCJTv1KTfSCSCiYkJ5HI5nDp1CpOTk8hkMpiengaww7zX19cdA6IQicfjnmcDO35YjmGlUkG320W323Vj1m63Ua1WsbGx4Y6sabfb6HQ6ngM28/k8Dh8+jOPHj7tgkLGxMcTjcbTbbfR6PWftUchEo1FkMhkHnaZSKVSrVZcPxpJcqlBosAYj3ng/f7cChc/QnCRgb9URa+X6+bGs8ND1p5aXhRz5mW2P9WXpmlKFz65/tfzZTyvEVYlkf9VSVChar1Vfs/af1i8psLhen75hwfWud70L73rXu3y/G41G+OVf/mX8/M//PP7KX/krAIDf+q3fwvT0NP7gD/4AP/IjP4Lz58/j4x//OJ566im8+c1vBgD8+3//7/Hud78b/+pf/SvMzc39BbrznUsqCCwGbqMFdbNZx68GdPhpktS2LeNSvwEhJt3ctHIA7PH36LtUoFq4UvvKz+0m1r7YcdAxUpgRgMcasMwxEokglUohlUrh5MmTmJubw/Hjx12S8Gi04+Sv1+vodrsYjUZIp9NIpVKefCfty+bmJprNJtrtNhYXF53AoGBipCEZfiKRQCgUchXx9b29Xg/NZhPJZBKlUgn5fB7FYhHJZBLb29vodrsu8IFjy8CQcDiMTCaDfD6PwWAnsXl1ddUFIqi1zn5QIKsVoXNiBYZGgfLdXCd2Tq3VxLXld7yO9VMp4gB4IxN1Xej8cq3aZ1rLjutF+8Dn6HpVAWitMdtORSd03ev46Hiqwhf4uV6bvqk+ritXrmBlZQWPPvqo+yyfz+Mtb3kLnnjiCfzIj/wInnjiCRQKBSe0AODRRx9FOBzGl770JfzAD/zAnudSWyVRm/1uIm4adRwrMyAUoZAON6PVhFWYaEVyfqbWjl5PYcaIKwYOdDod3yM5FE4BdoWH5sDwXSrE1ALQkGW/I1eoxfo5yLUQLe9RgT4zM4NisYhTp06hWCwik8ngyJEjLlqPvqvV1VXHwOg/YfBEt9tFuVx2Pqh+v496vY4LFy6gVquh2+2i3W4D2GG03W4XrVbLXQ/sQmpaaUH9RWtra9jc3MTy8jKKxSLm5+fx7ne/G9Fo1AnCTqfjoEQ+KxaLYXJyErOzsxiNRjh16hQ6nY7bp7VaDRsbG2g2m2i1Wm7uOYa0/BilaitTUNio/9PPIqL/SPvKtaYWnVolanmrQNaoVK4zTaNQ/xrXk7aFEYR6yoBa4ySdayoFKuzYRg1UYZQj36FtYLttTU9dj4TcA6H1+vRNFVwrKysA4KAV0vT0tPtuZWUFU1NT3kZEoyiVSu4aSx/5yEfwi7/4i9/Mph4oss5tu8m4QXTjAvsXGFX/jgpB1fhUq7b3WSiHG5ACSP1m/KnaJRkUfTUKR6qllkgkPDlAKlBVsKm1YK0uC2HG43GkUimk02ncdtttmJubw9zcnGM+FB6VSsUxVioD/K7X6znLS8eiXq+j2Wxic3PTVbywUYz0hXU6HSSTSTSbTWehdrvdPVYKx5ACrFqtolwu49SpUyiVSm7srOJA+JHjFI1GUSwWXV8mJibQaDSwvr6OWq2Gra0tJ6zr9Tra7TZarZYnt0l9Nfyca07TMthf9e8pk9d5ppKi8Cj7oWOgQTqWrAKn48326prR6/kuG3SiSpfClVYg6j7QPWp9vhpdqYqivZ7jGgiv16YDEVX44Q9/GB/60Ifc37VaDYcPH/42tuhbT4qFqzDRQAVuUGA39JsWlWqLCltoXo3mnqhmaeES3YRkagCcg7/b7XqsBt7PDa5nFfF57A+wW6iUFcOVWVhfCxmOClb2g8yLwQ0TExM4deoUMpkMUqkU5ufnEQ6H0Ww2XZCCQqUMJGi3277ClOMdi8VQLpdx8eJF1Ot1NBoNlMtl1y8yZlpZFKC5XA7VahXdbhfZbNYJfr53NBp54EqOx/b2Nh5//HEUi0WcOHECExMTyGazbhzI5JPJpEuCpl9sNBphZmYGY2NjCIfDqNVqaDQaTki1222srKyg2Ww6Iby9ve0qfYRCITQaDQd7sloH14qGyFvri3NJi51KQCgUcmH8jIBU6JhrXy0l/UwFiKZaqNChpa9BF6rYcd2TuAc0p1HXqBXIGpDBZ9NXyOdqMrjfeHQ6HQ96EPi69qdvquCamZkBAKyurmJ2dtZ9vrq6ijvvvNNds7a25rmv3+9ja2vL3W+JeTTfraS4uVoPCq8A3o1qHc8UZCQVFhb+0M2uG1X9ZZp3wnsBb6VshXk0vFm1an0XP9d2q5BSbdm211qM4XAYhw4dwuzsLG6++Wbk83mX86QQJZmn9oFtY+SbllLi8S6DwcAxmsFggM3NTcfw6b9iu8mIKBiHw6FrRyqVQqvVcnCrtoFtJOOk34kKzObmphNaiUTCMx9cA71ez4Xes5/armw2i1gs5qy3Xq+H8fFxdLtd1/fhcIiVlRUX9bi8vOzy0Sjs2C8V+roOmeislpBC31zLCgnr/Kv1w8/1O/60SpJCjypsVOHSdaf+J/XfWgGs7yWxf8BuHqUNDtKgED5DlTfbnoD86ZsquI4fP46ZmRl8+tOfdoKqVqvhS1/6En76p38aAHD//fejUqngmWeewd133w0A+NM//VMMh0O85S1v+WY25zuG1GIioyY0xAoIwN6qFYBXkPAahUV0M1uYBtjNhWI7BoMB4vG4x5ltQ3ztJrUWm/rrqKXb+mwWKlLmz89VcKVSKTcW6XQaMzMzeMtb3oLx8XHMzc0hmUw65YdMWbVktosVJ/g94T7L5AaDgWPqvV4PW1tbKJfLznJjGxlarRAXAyYAIJlMIpPJOObP6yjou92uiwLM5XKOKa+vryMcDjvBY9cBoU0KD/W9xONxV+mD0CWL/vJzFULRaBQ333wzGo0GGo0GXnrpJayurmJhYcHBnQxEUR8d5wzAHqvFWjucc/XP0hrjelH0wIa9a7QeIV5dw7rGVQhaBMDuOc6l3sexVX+U3mv3nJ17VRQ5Nup/tvmIAe2lb1hwNRoNXLx40f195coVPPvssyiVSjhy5Ah+9md/Fv/8n/9znD592oXDz83NuVyvm2++Gd/3fd+Hn/zJn8R/+k//Cdvb2/jgBz+IH/mRHwkiCvchZazq8wC8VoJqmRQWyvAphHTTAt6iuXwfN6TmwJD5kSFTQFEgaJv8rDg+26/GIIUpBZ467JlPRliFmzyZTLrAAOZbve1tb8Pk5KTL7el0Op4oOY4DtWMVkPwO2IGsKMgUDmMbmXtFIVetVh3cpsKW1yrMSauC706n084nReGvz+F7acUBu7AsmW6hUMDExAQGgwFWVlYwNjbmhMpgMEA6ncb4+Lh7D3PJaO31+30nuMbHx52FlMvlkEwmUSwWMT09jaNHj+LcuXOIRqNoNBpYXV3F4uIiPv3pT7uAD5apYkCVWijsU7/f91iAKuT8UiMojFQQUoFS2I/f6bpT6JtrlykM2h4tMabv5zvVSvTzOxMapGC1Pj32VxELFaLWSg1of/qGBdfTTz+N7/me73F/0/f0Yz/2Y/iN3/gN/L2/9/fQbDbxUz/1U6hUKnjwwQfx8Y9/3EVQAcD//J//Ex/84Afxvd/7vQiHdxKQf+VXfuWb0J3vXLKChp/5wYIqCGzFdj9YTe/1EzgWb1cGpBaIhRjJvGk5WC1b76dA0qoDfO5wuJuoyWekUimXtDkzM4Mf+IEfwOzsLKamplxfGo2Gh0lrRQyODS0QwnJkkGToLHqrYevxeNyFqfd6Pd/wfz5PLVwd/83NTYyPjyOTybjyT2rlcGy0qLAKMgquSCTiKmkcOnQIkUgECwsLAHYEolomFJiEOAnBx2IxtFotFxGpY7K0tIRwOIxcLodUKoVMJoOpqSkUCgVXDX9ychKRSATXrl3D9evX8fTTT7vcMqsUsd20Qik0mfjNwzAthM15Y2CI+qRUqeN9fnChPkvXKMfWRupyHhXx0Ln1E466T7T/um/8BJRaxgG9PgVFdg8AsWCoFkp9LQ2P19Li4n0axcfPrA+JpIEF6luwyaMKAfJaFvglpDIcDh1DYrFeMmkb7WXhE/p9NA+L9/3QD/0Qbr31Vsc4u90u1tfX3XXFYtGjofN79psRZ81m0wkgCjOeh8VxY+Ivx2Bzc9Ml9TLKUNM0tHgxGViv10M4HEYqlcL29jbGx8fRbrf31C3UeUilUh5mRuuTCsnc3JyD9s6cOYPDhw9jfX0d5XIZp0+fxt133+38ZNevX0etVnMMs9/vY319Hf1+H8eOHXPMPp1Ou+CJarXqgkX4buaUnTlzBtPT00in05iennbBB5/97Gdx4cIFfOlLX8LGxoYThAzbV+bNoBWWyqJl7Qchco75tzJ7/k34Tn2umu8F7FbqUETCwoR+EKCuVUKz3HcUjqq8sV/cK4peaPUS9Z/x2u8muDAosvsdSqpRqq/FOqt5rd0E+p1qpvosbkJaHNRMlcmrNmo1SYVXtJ2EVSxUBng1Ut3A/FzziUajkYOGisUibr31VjzwwAMoFosufJ2wYCKRcNF/zWYTy8vLaLfbrnKF+igYZNBqtZwioGdDUXjG43GnMDQaDSfsKLQ02k1hJsssFa7sdruo1+seJ76Fw9gnMnpN/ubfnDe2a25uDpVKBS+//DLuuOMOpFIptNttF1Rx6NAhAHAWa6PRwPnz593ZYcVi0RMIwndrNOBgMHCCMJvNAgBKpRJSqRRuu+02jI+Pu+eurq66fCj2z4b9q++Kf/tZVlYwWPRBn6lWEWm/AAl+p5/zd1Ws9DPCrnbN2zbrszXZmZ+rMFOL/btFcP15KBBcB4C42W3UmQ1qUHgK2BUoGjxhN73CjLrJFJtXv5lCL7rJNBCDz9D71ZIiaTuU8Sg8SAsomUxiOBzi0KFDuP/++3H27FlkMhkncHg9z6waDoe4ePEiyuWyB/5KJpNO26UFoOHgtAjVKtzc3HQHO/I8LfrA2A87V8pg9ToyVA2AALxJumRmTPxlVKAKQrXkOFesVzg3N4fBYIAXX3wRjz/+OM6ePYtIJIJKpeL63Ov1XK5aIpFwOWKRSATr6+sOEp2ZmXGJ1bS8Jicnnb+t0Wg4ob21tYVSqYRsNov5+Xm87W1vQzqdxoULF/Dqq68iEom4o1+slWMtfg3+0XWtiALhRqIH1h+l68kqFCo8VUj4weAaaajrX4OcrCClYqGBSLTwuA9sEIfdawHtTwFUeACIWqgGMFBrt8ETwG5wBe+zBVQpZLixNDJrNNqN3up2u05g+FW7UL+DX3gzAM9x5ISDGCUHeJm0hhJTGIZCOwEh3W4XJ0+exN/+238bpVIJnU7HVUePxWKo1Wpot9u4ceOGg8PGxsaQz+c9wSZMEma5pVwuh3K5jEql4vGznT592oWQ8ygR5lGVy2UsLS05C42+o1qt5rEgVbhovTsKVwoQnSvCiTzeRIM2dK7Zv3Q6jWQyiUKhgMceewxTU1MeofiFL3wB6+vryGazrp25XM7lm9XrdU/hXfaJaymTyWBychLZbBbb29uIxWIuiEqFCtfAcLiT6zYxMYF77rkHo9EIKysr+K3f+i288sor2Nzc9My7BuTwmVbwK7yoJbsoMBUmtMiDWjq0pDUX0sKI+n4bWKTjauE+te40wIP9UN+awpeqjJC+25KPA6jwO5gorADvqbHqwNZNx82hG0+1Tb1OoQ5aG8pMqc1an4BCjBRsClFaaFGDMxSa5DX8XWFRwktHjhzBgw8+iFwu5wInGOI+GAywsLCAdruNra0tJBIJZDIZFxnHskiEC1khgj6bzc1NJ+Tq9Tr6/T4WFxdRKBQ8Pimr9atFy+ATtURVWHGO6BMhxKdBKLyfDJrCX2EzQngUFBRs6uuhoE4kErjzzjvxwgsv4Pr1684q09wwPndychLhcNidvByJRDz1FROJhEs4Zi5boVBw1hh9YfF4HOvr66hUKpiensb8/DwOHTqEBx98ELFYDH/6p3/q3qmRdQqtcpyomOl68gtP14AeDT3nuFpLi0RFQYvn8qetg6j7Ty1pfZ76pTi3+m4V0Bo0pYqnCtuA9qdAcB0Asrk9FErcYDZgQjVhbmzdDKpRqn9F7+OzFeoCsGczao6TNd4trEkmoEJQnekKrWjfut0uHn74Ydxyyy0u+i0cDrsjK5j8q1AnQ57ZLjJ3BjvQR5NIJFyYcrlcRj6fRyaTcaWQIpEI5ubmHHOMxWJIp9NIp9OuvcwLo6XKsSWj5TiOjY250PxkMumqa2gkIZk2AI+1xbGjcFLYkdUYCHkyR4z+wJtuugmhUAivvvqqm7tKpQIAmJqawnA4dPUMm82miyLc3t7G1atXnbXCY1kY7h6LxVAsFpFKpbCxseHyuOg3e+aZZ9But3Hs2DHcddddSCQS+MpXvoLV1VUPrMb5oDWj6QpcB+oHVcVNIWZFEjSSU+sk2j1FKFqVMVrKuubVB2sFlvrQVEHje7TNCqkrgmEjCgMf12tTABUeAFLtTaEihSsAr0OaEYRaU4+bEtgNv1XfiUYialAF7ycsRuakyaK00FTwKRRpqwhYIaoMSDXaw4cP46GHHsIjjzzi/FDpdBqdTgeXLl3CxsYGqtUqhsOdZOHp6WlkMhnkcjmPINnc3MTVq1exvLzsAjcY2LG0tIRSqeR8adFoFIVCwUUcsm8UKqFQCLVazQm3zc1NtNttT8g+4HXu9/t95PN5dDodFAoFvPWtb8Xzzz+ParWKwWDgIEMKunQ67arCU9PnXJOhEwLudDqYmprCsWPHkEqlcO+997oyVPV6HRMTE4jH47h27RpWVlawsrLiTnM+deoUWq2WmzfWLWQo/cLCAqLRKA4dOuT8Y8PhEJVKBb1eD8eOHcOxY8eQzWbR7XZRrVaxtbWFXq/nBPPExAR+9Ed/FIlEAp/5zGfwiU98AhcuXEC5XHbCnNGCWpKJ8HYsFnPrlHCtHw0GA+cH5pocjUauqgiVD4XdeZ8KSFXWdM9owA7nlRa/Fu1VhU1heBV4di/qnqClqVbZdzIFUOF3MClGDsCz6dTxTMaqkYGqzamw0/Oh1OFMopVk4UbNs1F4kM/QsHG+W3+3GqZqoPwukUggGo3izW9+M2655Rb0ej3U63XH/FdXV3Hjxg2X+Nvv9zE9PY1z5865/CAmCF++fBnXr19HpVLB5OSkq0ARDoedIDl06BDq9TrC4TDS6bTzhyQSCRfsUK1WnT+IgoqCziZ7W+ZKX+HY2Bjq9TpCoRByuRy2trZciL8GdnDOFcK1wSA6L4x25LElzA9bXV3FYDBwpyOPj487oX3o0CFX5V4r1hP61eARjpf6eQgJLi4u4vDhw4jFYi48vtlsOqFcLpfxyiuv4NixYzh37pyDIz/zmc94/FxcC3ZtaMI6+63ReBw3CiO1iqwSoc+wuYMKnWs1Dd07ADxKGOFJVfSskmlhSrXI9Rr2U5PTA/KnQHAdAFLcnBuR/gFaP9xU/JxBE2pQ8zv+p6BSZzUAF7rMzQTswn5WGDGYgBtdS/uQAQDePC9agcqMIpGIS1IfjXYCQ37yJ38Sd955JyKRCBYXF5HJZFCpVHDp0iUXBceDFk+cOIGxsTFcuXLFVWa/cuUKWq0WJicnMTU1hampKdTrdWxtbWE4HGJychKVSgUnTpzAYDBAs9lEqVTC4uKiqyI/HA6Ry+UwMTEBANjY2HAJyRxjQoVUFnhOFqPoNOqxXq8jFothYWHBwY6E2ZiEC+xE6wG79e8YIMN5ILwZi8UwMTHhivH2ej2srKzg1ltvxeHDh3Hx4kWXEsCTkm+++WYXNVir1dBqtZw1S+bZ6/VcEA3TBnRN0CpkbhXTA/r9PjKZDCYmJpDP57GxsYHV1VV86lOfQj6fxw//8A/jPe95D+666y5cuXIF169fd4oKhQ3hO1pjuu78ACIV8Cykq4iErnfOEQUMIzy5di1Ep1C2rmuuaVpbqvD5KXQqwDjP6iMNhXaS2/Vd321BGt8IBYLrgJBq8ropVOAoZKdaqGpwqqnq75ZoWdHy0DBk60hm+/h8CjUArhq6tUL4frZbyyMNBgNMTU3h1KlTiEajzrcCAMvLy6hWq+j1epiZmcGpU6dQKBSwvr6OxcVFXL582cGGrVYLuVwOuVzOadb1et2NEQMd4vG462ej0UAotFOZg0yzVqshk8m4/LB2u41kMul8OdonXqPBKhTYlUoFs7OzOHz4MIbDIdLpNM6ePYtLly45H50mXCtcReWAc0bfl2ruiUQCqVQKiUQC09PTyGazmJ2dxerqquv3aDRCLpdzvkMGX+hp1ISp1PfWbDY94xQKhdxhmqymsb29jeXlZSwtLTkrdnp6GqlUCl/60pfQarVw8eJF3H777ZicnMSZM2ewtbXlmROuJQ20UL8hGT3Xmo6RBnlwrela158aXWitoWg06ubP7gcKMl7HNlBh0yCM4XDowv/VcuX7bbAS7wsE1utTILgOCKn2Buxubl38AByzAXZ9IgpdqKBR60mhSI1Y5Oa0wR264bgR7QZUyEc1SH2PRoXRzxMKhXDmzBmUSiWXbwTsCJByueysoHPnzjlB8vnPfx4bGxuOIUejUUxMTDg/FpN5LcMh0eILh8MuhF770Wg03N+h0M65WhqZx+RoPoOnEvd6PSe83/zmN7uTlV988UWk02kH6TWbTYxGIwd76sGDOmZUIMjgWN1iOBxifn4esVjMVXsfHx/HiRMnMBqNsLy87HxmrPBBqFTPAeNcarFcAO70ZwpmvieZTLoah7S6L126hHQ6jeFwiKmpKYyPj6NYLGJtbQ0vvPACisUi5ubmcPvtt2NxcREvvfSSJ3hBq2KwTWoJqc9VYUH7vVWq1C9IxU59T5peonuOv6vg1HerFczxU6HL+7U/1ooD4Cy3Axh28C2nQHAdAOIm4ELXyCluCA2s0OKl6tNShzWtHFpkqonypx/MqMEUGjKv0YVk6PQFKcMHsKfsE+AtMfX2t78dDz/8MFqtFhqNBuLxOBqNBq5du4ZIJILTp09jenoa165dw1e/+lVcvXrVRQDm83lPGaTRaOTqGjYaDQ/MeePGDYRCIaytrWFiYsKdCUWLjdZapVJBuVxGLpfD+Pi4ExrNZhMbGxvO+gDg/F5TU1OO0U9PTzs/1tLSEsrlMhYWFhxsuL6+jm63i0wmg3g87spHEYZTyFHDw2OxmBtP5qYxyGQwGCCTyeD222/H+Pg4Ll++jAsXLjgBznmixah+RvW9cH5brZazuo4cOeKSuXlvtVrF2NgYcrmcq9zxsY99DLFYDLfeeiseeughbG1t4cknn8RnP/tZvPnNb8bb3/52B1l+7WtfcykFKniYzmA/V1+SWu/8XfPKdM/QylarS8/cIrStgRPA7mnN+k5V3NS/qUqRlrDiHur1ek7RUfhTq5IEwuu1KRBcB4SUsVAQAF48XbVmAB5hwtByy6DIHLgxAa+gpDVEgUYYks+xuV4AnM+AxGgvfqZQiwaZMNGY8B99SWTMvV4PpVLJ+ZueffZZXLlyBc1m08GhU1NTKBaLLuCAfjM9W0qj/yjo6cOh5cMzrgCg3W4jnU57ErO17iCtlkOHDjnLo9FoYHNz01XeCIfDqNfrLt+JApBRehRsypjJqNVHwxp5jBpVyIvfjY2NYXl52Vk9Y2NjyGQyHp+RRr5ZuM2uA16jwQPhcBiFQsFZL8BOAAoToldXV/Hyyy9jeXkZjUYDd999NwqFAgqFAlqtFhYXF3H69GkcPnwYN910E55//nn3frXebVAP4K0Io/lu7JdFEEhUsHR9M/Q+FAo5AalBSnwXSVMRrAWlAp/jpOgE32mfZ1NFAnp9CgTXASArsBSuUOcxISkVKhaSUL+WbjTAK+h0o41GO/k9ZJaENKipcpPr+U98N9uhGipznrRPfO7c3BzOnDnjklqZMNtsNpHP53HmzBl0Oh0899xzeOWVV5xmPTExgXA4jFKp5JJi4/E4er0ebty44QTb3NwccrmcExS0CIvFIrLZLFZWVhCNRnHkyBHUajUsLS3hvvvuQ7FYRKvVwjPPPIPhcCfviVU3AODw4cPOqmMEJC1gjmupVEKpVEKj0cC5c+dw7tw5VKtVbG5uOgFEnw9hTcKN9GFxzDXptt1uuz5tbm7i+PHjuHTpEi5cuIAjR464uZqennZJxeovs4JCISsqQ2qx8oiUdDrt1mOhUEA2m0UqlcKRI0fQarVw7do1vPTSS2i1Wvjd3/1dPPjgg7j77rtx/vx5XL16FZubm5iZmcHb3vY2fPrTn3bJ31Y4WNjND2Kza1tRBp4ArZX82VdarSTuLVpEtsoLn80jW6hEALuoAeeFyhnXvlpYWvJJ94n1zwXkT4HgOgBk83i4oAkJqdVCjV03P69VnB3Ym+SoAoTfU+gog+O1apEp/KiFYNWXpRqvQpTqZyOjbbVa7jpGik1OTiIUCmF1dRVXr1517YxGozh16pQTcDxSQ4MkGO2Xy+Vc8jBhmXQ6jWw2i3g87kLhWamc0BchvOFwN9eLEXNzc3PY3t52sCEDKTguhPto9W5vb3uqzRN6ZEV7Rvt1u13E43FnBZFpaoIsBbfCtnxftVrF2toa8vm888sNBgNPnUWr5FBY2nknEx+NRr6+wna77SDF6elpl5xcKBScRXvhwgWcOnXKwa9UhvL5vBPo2haiCNbnxahGjp+WFVO/lK43P78r71UIks+wZZsY8q4+R91TCoUDXstMrTPrk+Z1tnqH7tOA9lIguA4AKfxhrSX9W31LgBcCUiGhjECdx9QOicsrKRMDdsOEdeOq9qiRUXy3JiarpUgBzCjBSGSnqnsmk0EotBO5l81mMT09jdXVVVy8eBHLy8tu02cyGRw9ehT9fh9XrlzxaNmsrk64jFYCsFt7TmFBwkdkhuPj467OHxlMoVBAtVrF4uKie/7W1hYAeJgksGst87RhBo5QsKyurjo/EwMdGIpvUxHYZs7naDRyAkOhKqYzJBIJVCoV97tWHNEwbFbz4LM4XnyvPdNNy1/xGgpEAK4UFE9VJjS7srLicvGYtxaJRJyVxjqGPHiT644/leFTSbJQIAWQtX5USVOhQetVx5ljqHC27jW/vvN+9VdZH6+SCjL+VFg0oNemQHAdAKJgoHXDRa4biNf4+QRCoZDLLQKwJ0FYYSe7ySjoVCOnIKXWTyZITV1zuTQQQ6EzFZqMyrvvvvtwxx13eLTd9fV1NBoN3HbbbYhGo/iTP/kTXL16Fa1WC7FYDNlsFjMzM84hz1ylcDjsQttLpRLi8Tiy2awL5wbgIuRSqZQToowobDQayGQyOHHihGPqi4uLOHToEEajEZ588klcu3bNHWtC+I2Mrt1uexge/UGMdkwmk7hx4wauXr2KQqGAeDzufGnRaBSzs7MoFotYWFjYUweRDDUSiSCTyWB7exvJZNJFMzKpenx8HOfPn3fCodlsotlsYmpqymNVKOzLM8iYfK2VLIAdJYQnPrfbbeTzeZePRqskHo8jkUhgamoKuVzOJW4DwLVr11AqlTAajVweXjwexzvf+U4Ui0V89KMfdRGbat2rv4hrkRXqtewZFQddc6rA6VoG4PleBZCWO1P4XPcASfPAqERwLXB/KirBtcbxZHs0pD6ACV+bwq9/SUDfbqKFBOwWaiWRgakmCuxqlap52s1jNVDAG75rndQqrNSXxjYyGdeSasuq6WtAyfj4OGZnZ13pIA2aoJWwtraGxcVFdLtdVwYok8k4h3+lUnHMWJNps9msq7bu5ydRa1IhITLkZDKJXq+HRqPhGHWj0XCQGYUGYUBW16CVpYdU8h0MzOB76FNhIjD7R2bJOWaxYK30z/9klpVKBY1Gw0Gbg8HARQWyvJO1qgA4y4zto6JhGa8mHFN54pllqVTKMV6FNGnt8t5ms+kq9Q8GO2WhaDVrRJ/9z/5wDVrrx65therUMtUgDPZR95oNkOGaUajP+q20zXooqUKFqlDqPmJb1B8c0P4UWFwHgFRDBLCvVqY+KMugucEAeKARFWgkG6BhLS0/v1kikfAwU73GWlfaB/ZvcnISk5OTroJCOBx2vqpisYh+v4/Lly+jUqm4Qx15fEaxWHRMlAEXKtzVZ0MtnNCZFVaEsJhSQGbOtmezWdcHChxgJ8+JVhUjKNkmVqsvFovOuuQ5WxRwhO86nY5L9FXojkKXbYvFYq79KnQ5v9vb284/RmuY1fEZzKERgmNjYy7IgEJHc8Y0yIC+LFbdp7VLQcsDLRmo0u/3USwWnTXKe+v1uksJyGQymJ2d9QhI6+dRYaTr10bKWvhQ/U8UbAoh2mfp3xxzOwYqYGw0oPbBKoeKkOg+5p7h74GP67UpEFwHgNRK0hJPuvmsT4AbgMeCKHynz/Szqrix1TmuUBUAlw9DJkpLy0IziuGT0WquDKHF22+/HUePHkUsFnPCCwAmJydRKpXwpS99CZ/85CedcNre3sbRo0dx9OhRTExMoNPpIJVKYX19HQCc70p9OMCOv4YHQrKWIceMyb8AnJUFwAVsMGGY72Ih3PX1deTzeU+FDw30KBaLLul2MBi4E5fj8TgymYwbB/q4OLb0+/GwTNY45HxxPdCfUiqV3LieO3cOR48edaWebr75ZiwtLXnysQgP0l9EZYA+Pc4v88ry+byrlrG9vY1areZSD7a2tlwwyfr6OqrVKl599VVPkEkul8PGxgZyuRz6/T6azSZWV1cRj8cxPj6Om266CbfddhueffZZJ3Q1kERhQq5bBtHQatLEYq5prQ6vJcg4hqpAaRQliYKI698KKlXK/HxzvJfC3QZycE3r/gmgwtemACo8QMSNy8VPwURtjVoyiZvTarA8b0k/tw5skoVQ+LuF/NSpT4FFLdXWi9Pf2S8WZyWExv7Q2llYWECz2UQoFHLWCp3/fE8ul3OQYCi0U34pl8u5k4EZrq3wGwWqrR5Bhthutz15ZxzXbrfrjhFh4VrmAbEEEvujcJVGUNKHREgvlUq5s64Ij/IzRkUyT0wjN6PRqIPpKHSKxaKzYOLxOA4dOoSZmRn0+33nj9K1oD4kjoEKfQ22YB+YZwfAoxxx7DY3N50wD4fDLh+P48+xUcvtxIkTLv+MwpykVo5dq1Z50/9a/oxzybZyrAHsgR0txKdE61zXkd0jqkSqlaewpYUeOQcBVPjaFFhcB4CU4XMzEcZhBKBNwqSW1+l0HANSbB/wHpinPiw60vk9n0dYSaOxCIsp/s+NrJuPznYVmMAOwyuVSjhz5gzC4TCuXr2KlZUVd2AkYa5r166hXC4jk8m4/h49ehTT09PuOZHIzuGGwE6RWj2yhcET6XTaMS0yReZRMUwd2LGyrl27hpdffhkzMzMuh+mVV15BrVbDysqKC2EvFAq4du0ajh8/7qwlCitaUMVi0UU5UsOOx+MoFotOEDBnjZArBVS9XsdoNMLU1BSAHVjy8uXLDl5stVpIp9PY3t5GOp3G6uoqtra23EGa1WoVpVIJ7373uwHARUpubm66CEC1PofDoacwcCgUcpVFGo0GNjY2MBqNcO3aNYyNjTlLkSclU8B1Oh3EYjGX88XqImfOnEGj0cCNGzeQSCSwsbHhxvGd73wnRqMRPv7xj6PT6SCTybgoQ2uNKDTNgBL6CoFdWFqPt1GhoJGtgDfhWoUr72E7+BnHRo/50b2q/ke2maH8RDJ4rw2sCiyu16ZAcB0Ashi4EpknNwP/VmuIzIibSAu0qqanUVVqoelGInxI6JIQnOL6FGh8jvrnVCPl9YwE7HQ6qFQqjmEy1JynGfPd7AcjAvv9PlqtlvNHqE+CPhb2lYEUwC4EyOPrKTR0vDVknUelMKjC+iH4Xo4JrRUycw2E6PV6zn+noddkYBTOtAb5vNFo5GA+RlE2Gg1X9T6RSKDb7WJ5ednBe9evX0ej0cCRI0dw22234cKFC85KpLAfGxtzydScFyY+x+NxxONxt1YYBNPpdFydRZblAnb8gq1WC8Vi0Y0x89bC4TCmpqYwNzeHr33ta0gmkw4SHY1G7mia8+fP45VXXnHWqM69DaBQRYyfafqHpgrwOq3awmf4+Zv4LkUZFH6kMOS7VAhx3fM+tcL8fqqiFwiv16YAKjwApNoiN5WGw+siV4cvN6Y6rxVzt+HstKr0Gn6mjmyFWQBvxKLVhtWRbtvCjVwsFl3IOZNSeYovobfx8XEX+q2WJ8eCUW6E/BjlxvBtWogabJBMJlEoFJDL5VwducFg96gWlnNaX19HuVx2Fec1EIBjonCoKgF8D30cfC7HkTX/GIDBIAmOKZkg54AWDttMmLDZbKJcLqPRaCASiWBpaQkrKyuYmppCp9PBtWvXkMlkcPz4cXcApsKMbKNfUAAjHJPJpINcaZmy/NVgMMD6+jqee+45rKysoFarYXp6GocOHcL8/Lyrtt/v95HL5XD8+HG0Wi1sbm6iUql4rPXZ2VmcOnXKrT36u7RiCOFcVQZUeHBuLHROq0atIQvLUQGye0sFJtujFpOF5HXPkGzUIJVK9cvZMlYB7aXA4joAxI1LqEK1TWAX8lDNlMcp6AYg0we8VTIohKxGSB8aLRENJyccyAAG1To1Ao4RgBpFxTbQ33T77bej3+9jY2MDtVoNhw4dcpbWcDh0pYGOHj2Kr371qy5CbmtrC8Vi0bWHUBwFE3PIyPQ1z4s+m3A4jLm5Odf+ZDKJcrmMUqmEZDKJq1evYm1tzZVKKpVKCId3DpusVqvO6puamnLRi7T6KAApmDgvoVAI+Xzew/TYPiYgs7r8xMSEOxsrn897fHgMgiDDYzpCJpPBxsYGnn32WTzwwAPodDp46qmncPLkSecHW1paQjS6c6YWy1PpeW0qFOPxOKamplxiNn1SrBQSiUQwNzeHXq+HL33pS8hkMuj1eh4/Ied7c3MTtVoN586dQzabRbVadRZzPB7HxYsXkc1m8dBDD+ETn/iEGzfOpRUmhPS0XBmFFoUchZcqXnomFv8rVGpPTab1ye+5h3TfUDGysLhGKFoFU4NkdB1zPgPyp0BwHQCyC54CBdiFp8gkLJZvow5tlr+FOCz0ofdrMAWwq8GqEFVrQ53SJBW6w+FO+aTJyUk0m013HPxoNEKlUsHKyorzczGcnAyA2i7hSkJktVrNA9PE43FPUi3HUXN3GN3HUknsMyPoeD2P7wDgohIJgdF3RkZJYa0BH+yz+lW0UrtGYLJ96XQak5OTaLfbnhwrQqs8okSZIJlpq9VCoVBwpw4vLS0hl8uhUChgc3PT5XTxeVQk+J+Jy2NjY56DKpnwm0wmXQDFcDh0R6dwnWliLddWt9vF5cuXcfPNN2NmZsadBUYhXy6XXXWSubk5LCwsOGhO/UmEvK2Cpeuac62WMIWNRvipT1eFk+ZA8nvdK3Yv6P1UBlWhtNC7RofSCqQgDui1KRBcB4BsKScAnsVNhqbHQmgWvzqfLd5PBqtRT4A3cVP/VojPOrtVQClkqIJNteXt7W13Um61WkW9XnfQGI/+CIfDrmYgAy/YLyb2Mix9bW3NYwHSt7K1teUEF5OXqVHTJ5jJZNBsNh0DqdfrLnG52+06gUXNmhYbE271aAz1r/nBR+q7UD+Ifq7QGS1ErgUKx0wm4w601FqGCjXF43HMzs46iJDQLJOU2V6W16IfjRGd4+Pj7nMyffofeU2pVMLGxgYuXrzo8uN6vZ7z7TEKczTaKUj70ksv4Y477sC5c+cAADdu3HDRm/3+TqHhyclJvOlNb8LGxoaDItXi17WqSoiuMV6jkJ0iDVQC1IJSIaNQsAZcaMCSzq3uE/W/WQHIvUghZeFN+8yA9lIguA4AcRHTGiB0R6IwsptMNwQ1cmqqalnxGQppqGCkxqzhzlrORv1tNrKKUXYMMFArMBwO49y5czh27BhefPFFbG5uuoMhGb2XTCaxsbGB+++/H9lsFsViEdVqFaFQCC+//DIikQhOnDiBxcVFtNttFAoFJ+ApjBh2zuoaZLrxeNwV8x0Ohw6iKxQKePbZZ3H27FmXG0UBdeHCBRfEUCwWna+JfiYqGMlk0oWak8nZiEqOB+eMcBXni9GQZPgabEAIMpfLOWG6urrqwuD5bobZ33LLLbh48aJr4+zsLFKpFK5cueLGg21jEWKWp2KwBa2UEydOuIAPWqQvvPACxsfHEY/HnT+NidXATo5cq9XCI488gk996lP4whe+gJ/7uZ/Dm970JnziE5/A+fPnAQD5fN6d2Pzwww9jenoa/+W//BckEok9Z4dxHNXnSqtZ8wkJM1JJUXiQwtj6hPkM3VeqcGlAlAYDaaI79xXnVwNvdB8AuwW0GW2oOWUB7aUgOOMAkFo1qmVyY9HyUGtGiYJEN6xaVNYKU23R4vlaa1AZMDebBmyo9s93KZafy+Vw6NAhpFIpp1WPRjtVGdrttkvupbUzGo1w+vRpzM3NIRqNYnV1FdevX8f6+ro7doNwHq0q+nHy+TxyuZwbLya2soQSGR4AFx6+vLzsGH8ymXSwY71e9/g/mCvGd+dyOeTzeeTzeQe/sf0cN9W0ydQorFTh4N8Mj0+lUsjn8y6fi7lzbBvrM9Ivo762w4cPI5FIYHV1FalUCocOHUKhUEA4HMbGxgYqlYoHbtYEZ1I0GkU+n3f9HQwGLqw+Ho+7UHkKjk6n46mSMT4+jomJCayvr6NYLDrfZbPZxKVLl1z9yGq1CgA4cuSIey+tObaP88W1yXWueVVcw7xe/VIcd3tOmULjfpGAnEMbVGH3KhUMDbBR/5vCiyS1KAPanwKL6wAQFz5hMGrmGhlFpsgNbEOGVaNUJ7xW1FAfgVp33Gi66QlHqnZq/WbqL7J+rn6/j9tuuw2nT59Gu912FS/i8TjW1tYAALfeeitefPFFzM/PIxQKoVar4Y477sCJEydw4cIFPP/887h06ZJrY6vVcicH0/cyOTmJVqsFYEcgbW5uOmuVFRxUsDebTRcUsbCwgEKhgLe//e0OZqTPhxaA1k08cuSIgwfpB+p2u6hWq670k44Drdh4PI5YLOb8XYwspKXFCEBCc6PRyDH47e1tl/NWLpfR6/WQy+WwvLyMlZUVj6VbKBRw+fJlrK2t4fjx48jlcrjzzjuxubmJ8+fPO2tkY2MD2WwWuVzOBW7QL0TFhdDl0tKSs/4uX76M4XDozi6LxWJujBlCPz8/jzNnzuCpp55Ct9vFxMQEbr31Vrzyyit46aWXsLa2hkKhgHa7jevXr+PIkSN43/veh//zf/6Py0vTtAAmfquVr8KKa43wHsdjOBy6aFPm+6kiQShRgy5UAdF0CItsqEBSQUho0MLrbJfNAQxofwosrgNAfhUpAO+ZPRpRxQ2jmiDJCjPdIGpFMLpJIQ0Vftx8WgeQz6BlptGO4XDY1fUjzc/Pu5JBegYY6/6dPHnS40/hc9PpNCYmJpw1p0d2sDAvQ76t0GRbaHVZyJQh9YwqbDQabrz6/b4L62ZoeDQadblM1m9B0mLB1O5pLbTbbWeF0srRNlFpYZg/20fhyAMcecKxQmLdbtcx4GQyiWaziYWFBWd5DgYD5PN5TE9PO4uJCctsL8csn887GJZ5bCz2m06nsb6+7mogDgYDFzSSSqVQKBSQz+cRiUSwubnpFKe1tTVEo1FMT09jZmYGs7OzuHjxIhqNhjs6plar4ezZszh79qyzwhQx4FqlMAHgsVpJhPQYUq/P0b2ha1vJCiDuSVpqGr2rwksr26hg03eo1RYIrq+PAsF1QMjPatHIJus30cgr9Vepn4R/W0GmxVv9hKXCGdRkFT5RIkSiG5jvmpycdD4aJusyMpAnFbPyh/ojxsbGkM1mXUg5qzLQz0Co7+rVq66GnuZ30WrQ5Fb2kcIhGo0im81ie3vbFYXt9XpOQNAnFg6H0Wq1XKAD+wzspgzwXQqd8p29Xs9zBIodX2WI1rfDNrKkFYVKr9dzFSTK5bILra9UKrh48aKLSGTtQ+bJ5XI5pFIpVKtVVymEIfHM32LgSrvdRqPRcP0pl8vuWZ1OxwlkWqdHjhxBPp/H+vq68yMywZinT2cyGZTLZaysrDhhtLq6iqmpKdx2223usE8KJq5TFQQUyFRydO2q1cR1pAJDFTDNt/KDDK3VpJC73TNcu34Kpe5FtdSC4IzXpgAqPACkJWW0qoIVZIQ8NEyYTFqDA3g9Q8nVV8bNr1CICkhCltz0eg/gxf+tJUaBwA18/PhxhEIhXLp0yRWlbTQamJycxFvf+lZ8+ctfBgCcPXsWGxsbaLfb7lwxnve0traG69evu6NNVlZWMDk5ifn5eXzsYx9z1gaLvLJeHwM1WEFCFQFgR0NnVfqVlRV3ThcZ5tWrV50/q1gsOl8WGSJrKFKwkcHSitVjTFjNXksQqcWq92jFd0LHrNPIc8WGwyEKhQK2trbwxBNP4KabbsJoNMJnP/tZfOUrX8H3f//3Y3l5Gdvb2zhx4gQSiQSmp6cxGu2Eqz/11FOIxWIuDy8cDmNtbQ1ra2tYXV3F+vo61tfX3dhubW2h3+9jdnYWR48exauvvurawZyviYkJlEolfPKTn8T29jZOnz6Nf/Nv/g0ajQb+8l/+y7j11luxubmJF154AS+//DL6/T4mJyfdQZgPP/wwUqkUfu3Xfs2F4bMosvoOFTYHvPUGab2qsGLEIyuD8BmAF1JXmA/Yter0PeoXVgue65+CNBQKeXzS/Knwf0CvTcEIHQCiJqZYu0J3WtlCN5fF5jU6UXONbMCGapPW0rLapn6nmqV9J59F7TKVSiGTybjE48Fg4GC42dlZjI+PY2Njw+US0Y/B6DQN/9ZowdXVVSwvL6PVamFiYsIj8Fn9gnCRWqOWcZD5MNkZ2BHcm5ubLrye8CZr9ZEp0UriM+iP4mdq5em7mZdm83gUtuX1WgmE488gElUY1tfXsbW1ha2tLVy/ft2VWGJuG/2CAFyhXlpu9XrdBXxcvnwZi4uLqNVqLtAilUohEomgXq+7WoUTExM4dOgQxsfHna+Iz2HADMekXq/j8ccfx8rKCo4fP47Tp0+7cSWkSOgxk8ng5MmTTuArw7cBLtb60t85j6qc8T6FcBXmVtL1b1EPzg3/pgLCdcE9qe+0VplCkgHtT4HFdQCIDJoMjpohhRb9P7R+ALgKEgBcjhGTlqkFEsYiwwZ2GCvDmPmdtoHXkemrgCMTZai8Rh+q1sscpPHxcRfxViqVMDY2hsXFRTz22GMol8t46qmn3OGC4XDYhVjbY1r4HgZMrK6uolwuY35+HhMTE845PxwOsbCwgEgk4irF6zgQIqOTnFF87XbbheBvbGyg2WwilUqhVCphfHzcBWfouGn7OO4cX2r9WmuRfilgl4nxb0YGqlCLRCKuNBbLXXEOLl26BADY2trCysoKhsMhqtUqVlZWcPbsWZcKEAqFXO7axMSEC344fvw4arUalpaWcOTIEbTbbVy9etVFab766qvOumMQyKFDh5DNZl0U4cTEhLO4wuGwC1CZn5931T3Onj2LL3zhCxgfH8cv/dIv4Qd+4Afwv//3/8b169dRqVSwtraG6elpXLp0CZubm8jn87jvvvvw9NNPuzGyypyf0CISQWHFNUyLUi0tWrr8nvdTKVSLzUYVWgGlwUm6l+09ui5UKAe0PwWC6wCQ4uD8W2u2WS1PN4cWjeUG1koBurHsBqTlQStCN6YKSzqhAeyxFjSwgc8AdvNWtAhuuVxGuVxGMpnE8vIyotEoJicnMRgMXFUIheO0KC2tGh5RPxjs1C+k8GWIPP0VetQ9x5RtCYVCrjo6LQQyYBXgtLRo4YyNjbkACdY05JiQKWm6AADP+UzqmOd8AXBWIgMt9D+DBFSJKJfLjmmWy2UsLi66SMDJyUkA8FiAbA/bS0uVUZCs0cjfI5EI8vk8tra2XPHhfr/viiQz+pCVOyhkR6OROwmZR84kEglcuHABKysrmJubw9mzZ7G2tobBYKf2IYNf1tfXcfr0aZw7dw7Xr1/HjRs3XLvV2lFrVv2DGi6vPmG1qAjDcx5I+rtaSPxbBZHeo7A+IXv93gZh6D4O6LUpEFwHhLRsjtUQ1R8FeA/EU/hQoUD9HfBi9Nx01megzNGS+t2YE0UhQ8EF7DIKPYSRwmpzc9NVhN/Y2HBMjsyp39854oPCUZNAKUiy2SySySSq1aoTPpqbpH4LBmfUajUPY+H3ehIy4TUqDSQGL9gcIb6Tz9OgDx1jJRUeKrxYCV4hWQvFhsNhJxz4mUbvdbtdzMzMuGs4LyoMVSmIx+NOaeC5WoR1JyYmnFJD4dZut115Lo4PQ7xjsZgLXkmlUm7dRiIRV1fx/PnzGB8fx1133YXLly/jypUr7kyvtbU1ZDIZlEolnD59Gi+//DIuX77syS/TMaRyoUEc6t9VYaG5VhZm5BzwGk35UMHE/xSUCgfadvH91u+mgR7avoD8KRBcB4C4WRiYoExPQ4CBXSZpNfzRaOS0ZgC+wkvv5zUsCssq4HYD+vm8FKtXLVctwdnZWVQqFbz44otYWFjAXXfdhQsXLuDw4cOIRCK4dOmSO7+JASTr6+tYXFx0jJV+Cfpm6P9IpVKudqGG0odCIZcTxSTisbEx1Go1d/Ivx47vZvWOWq2GjY0NrK+vY2Njw72PgpL3UdgwQpLQqfpUCC2yfRwjVsSn9aL19whBqlXNuSIjzGQyLuxck9J5bEs4HMbq6ioAuGuZF0aINB6PO2s3Fovh8ccfR71ed8e/sC7hpUuXMD8/7xSNZrOJjY0NzM7Oot1uu2eePHkS4+PjWFlZAQBnwbLSCINXfvd3fxfNZhMPPPAAxsbG8Ju/+ZvuOZubmwCA69ev401vehMeeeQRLCwsYGFhwZU543okfGhTMayAtvUJuea1sgb3HQUWBRXXjaYf2IhAohtWGeT+ULKBHQG9PgXBGW9wUqtFNwYXu1am0HvIPBmOzk0HwPM8FTwa6KGJxhRE/K9QlYU8/LRaK7zYJwYkxGIxlEoljEY7hyXWajVcvnzZ+X+Gw6Er91QqlVAoFJDJZFxbyGQBOIZN5hiLxZwlxkoPFAz0DdEnxfqCjUbDMc1ms4mVlRWsrKxgdXUVtVrNBRpo6Svrx1PIVv1dAJyA0Nw8WjpaPNlWNFGfivobbSUInpycTqcxNTWFqakp539iYIsyagBoNpvOaiL8t7S0hPX1dReyPxqNXFV8hUJpYTIvjn7F4XCIlZUVZy2SyXe7XRfQQT/j9evX8eKLL2JsbAynTp3Cbbfdhs3NTZfeQMWp3+9jfHwcx48fd4JcSa1YC6WrtURSIaVz5qeccS7ZXyqRJPVtco1zv3IPaBssVM95DOj1KbC4DgApo1eYgUxPNTkufDJFhcnIZPW5JCsQdUPzc9smhUc0LJjaJQWk+h30+RSQPMiw0+ngxIkTuHjxIm7cuIGTJ086Yap1+RiSz0RghULJIMjIaa2R1GptNBqOkbKfkUjEMXFgRxASdiTjB+DgQftePodtogWgia+0yng9gD0My1rCo9Fu1KP1qVDoEdZU3xfnhnOowTMkBlEQDmS19mq16oGJWXqLFT7a7bazyinstre3USgU3InKKysrmJmZcWejsZ1M5p6ensZwOMTGxgZeeeUVl6Jw//334/d+7/dQLpcxMzPj5qBcLiOXy3mCdnRPqGDStcn+WmWAEaecU7XYOAcK5anVRiFlFUoLO/JzjVi086zC008gB+SlQHC9wUl9He122yVgMjGXDJwQh0KEGiZP5gbAnesVjUYdM9SoRBU81q/FDc9n6um8vJbvtJYY30ELiAmsR44cwdNPP43Z2Vnce++9+PEf/3Hccccdro5ep9PBxsaGY/5kpEyKZTsikYirZg7AWUbRaNSVZ2L0IiMMq9UqMpmMywHjeVXUrkOhkCsDlcvlAMDDWDT0nPliKrjUD8dn8vRjDcDodrtYX19HOp128KfCTQA8fi5WIWHhW64LCmXN6RsbG8P09LTzR9ESjUQiLmKSlsT29razRCnk+v0+Tp8+7dYD4b5Go4FsNovZ2Vl3Fti1a9fQ7XaRzWZd+Hur1XIwrELVnU4HyWQSJ06cQK1Ww3PPPYc//MM/xH333Ye7774bf/Wv/lV89KMfxeTkpIN3b9y4gRMnTuDmm2/GxMQEVldXXb/YXlrVGlxk1yPXpK5VG0SjEbQKLTKCU4Wa+loJIdr+qgJIhZNWmcLJsVjMraHA3+VPgeB6g5Nqihr5phF+uiG5GcjkFM7jJqNQU7iI8JP6pSho+By1LqzWqj4AtdLU6qC/JplMolQqoVwuO9/M2toa7r33XpdYOjc35ywmRhzSP0SNlZGBHA9aGdR4tU6fRjEqEyOTp/DjcSXs12g0Qi6Xc2OkTMyOg0KhNvGb0K119uuYN5tNdxox26h5QJoAzTninHJeAW9YNi0RRlISRuZY1Wo1ZzkRjqPlpOOkRWi17Qwnp+AkDDg2NoazZ886wa2WDudKA3WKxSLW1tbwta99zaUavOlNb8JLL72EV1991RPdORzuJFgXi0WXA8i+KlzLOVHrlG1QXyGtQSpx6pfUudX1bq1qhesVLlQrzELm2kYKQdvOgPwpEFxvcKJjWRcxj99QiIzQBaEMzSMBvPXbNJKKwpCbiwwJ8B7jQMZhQ+m5Ye1R5/qTG5QnED/00EM4e/Ysnn/+eVflHABuuukm/Nmf/RnuvPNOz72sbMA8IvrG2B7mIik0xvcRPgPgQuX5GUsY5fN5F0WoR9QD8FhIfBewG8bOXCD62Dg+rBXI0kcUurxOrTH+X1tbQ7PZdAIOgCuhRGiN+VytVsvdx3lkxCCwy1w1opH9ZsmsTCbjKuMzwKJWqzmFRkPm6TdrNpvuqJjJyUmXrMwgDwq5XC6HY8eOuahGXqPCVdfY9PQ02u02nnrqKTzxxBN4+eWX8bM/+7OIRqP46Z/+aZeTVy6XXRHgW2+9FdevX3fh95wPCmd9PueE65+WKAM1KKy4nlXpUShWrTQbZKHpJrp+rfBneofuG22rWsxBsIY/BYLrDU4WWgB2Q3gB75ElFBx+92ughWp8eh8ZlgoeAB4YRP00qlXqpuQ9NjCEjOOmm25CJpPBaDRCNptFNLpzVMba2ho++clP4vDhw+j1ek6g8Nh6Ht1BgaTWBH1OOkYatk7NmtCVQqxk+AwEYJAE/TfKZMkQ1U9EaEejwqjBq39L/Ri0eOycqRWnQR16LyFBJi2rT0/hYp1b1eqr1aoLLiDkrLAYTztm5B8AFz1JwUwrlffwMzJ1DZhJpVLON8j1oqHqhHHT6TQymQxu3LiBZ599Fv1+H2fPnnXBHoVCwR0wWigUnDBbXV3FaDRy1jjHgO/TeaEw55irhUUB5mcRWetH17f1n+l+s2R9zFbJGwwGnty+gPwpEFxvcLJOW2WACgeReSkjVGhGBZMKLw0KsM/T53JT87kKgZBRceOqb0aZBAXD0aNHndVULBbdtV/5yldw4cIF3HTTTS50nwxO/Sq0QAjDaSg7D0rkewllAbulmVhuiAJPQ81tThMFGsdCK9xTeOg4UnjaSE6OqyoD6si3vkP2XYUQv6fw0gRXzpOGbCtsyYK8FFaEJlUQDYdD56ejdcTnZTIZxONxtNttJ7QIWw8GO+W61Lrb2tpCrVZzpyDznRwHKl+j0cidfsxgjXg8josXL+L69es4d+4c7rrrLjzxxBOIx+NoNBro9/uYnp7GkSNHcPLkSayvr7uoUCpZGlyh/leF8RTaVjiZe4SCS8Pq9W9VKhSmtLCuzr/uTf1dFRYK3gAq3J8CwfUGJ2VCCt1QI1ftUI8hIVTkh82rAGIwgSbf6r1q6QF7IR5uNEYvkjmoIB0Od85oajQauPXWW3H48GE8/fTTSKfTSCaTuHbtGhYXF3HlyhW8613vAgAXOTga7Zw9pX4IQjdsFw9ybLfb6HQ6HutLI7/IdGOxGMbHxx30yFBuZSQM7VaoZjgcuuCP1dVVdLtdbGxsOIanhzuqxcU56vV6TmCqFaCCi9YY+0AINBaLuaKyhIE5Nxz7XC6HeDyOer3ugaoo6CcmJpzgpuDjvNM6oqBn+4rFIgaDgatgzwocbBvH98iRIwiFQqhUKi5X7HOf+xwikQiOHDmCQqGwx+eYy+Vc+oIWzGXh4n/4D/8h3vOe9+BHf/RH0e128corr6BQKGBhYQFPP/00fvRHfxSPPPIIvvCFLyAejzsrmhYwIV72UcticV1qEIRaYVw/6mfVkmoWwqMCoBC8Kp1c09wbDJDy2+fWdxrQXgryuN7gpBozISzCVOovULydTEk3mUIn3CSMTiT8po533qdBFRaCAbxnCZGZklFrRCOwwxRvu+029Ho9rK6uIplMotVqYWlpCdVq1VVZZ3kltU7shqY/g9ovv+MYUcg3m03U63Xn42E5KI6pWoO0sBRuok+J/aOvh8eIqObO8dDoRz/4lmOrGjoFPi1bO89khpw3DUhQX54G0bBfvIe1GNWfyTZzHPlMChRChq1WC/V63aUOUOlJp9MulUEVoXa7jampKcTjcdy4cQNra2su6Zvv55hrdOXW1hY6nQ4ymQxWVlbwe7/3ewiHw7jnnnvQbrcxPz/vLK9arYaJiQkUCgVPDU/ti4XjLOyr1rTOhc4P20yIlmShWIXv7R62z7f5f37tDWh/CiyuNzipBaVaMpmvwoMaAag/CXcRbmTRXd3MFGZ+0JUyd9VOdcMq7KIQDQViq9XCww8/jO/7vu/DZz7zGTz33HO48847sb6+7oTY2bNnHWNIp9OeaEEKWPqnyOB5ACKFhdZMZF6O+rE0YIFVNShgCJfp2VnsI6uu0wcxMzPj8pko8GwCKQMWFKJl4jIAd0YYLTQ+j0JP/TH0w6iQIzMlQ6WFQegzHA5jYmLCBXhQyDGKcHt7G9Vq1VnqnHPNMaOCwLYwsIOpGYwm3NjYcFXmY7GYqyQ/NzeHZDKJV155BblcDvPz8w4mJVzJklupVArXr18HsOMXe8c73oGrV6/i85//PN761rfiB3/wB7GysoJ3vOMdePLJJ/Hkk0/ivvvuw4MPPojPf/7zaDQanlPCVZmz6IOiEH57jPtFFUD9qYgEhSDHazQaeY4zUX+jRlMSTeB+VkUzEFyvTYHgeoOTWkfq86Cmb8PUgd3ES25E3QjW16XWGLVw1fC1zBCZuUbqkXmqZq8bXjXaEydOIJvN4uLFi9ja2kIikUCtVkM4HMaZM2dcZBmFnfWDaHRlOBxGOp1GoVBwPitNBaAQ0IRjkgo5G32mliTfY31fGnigARTK7PRZfAf9PwpF8VpNTwDgeQbH3yaXq5BU61h9NWSqGkDA88Ho46LvkX1hDlk4HHZWkjJfVunnAZC0mDjOzEVbXV1FpVJBqVRCPp9HrVbz1LGkMOa4MTCGvrNIJIITJ07g6aefxpkzZ3Du3Dl84QtfwPd8z/dgZmYG6+vruHHjBk6fPo0rV67glVde8fhmuSfUV6fWjI63KmMWxtXEZB1vrg/+rSgB32uRCc6bhtLbNaPvD8ifAsF1QMji4X74OK/T76yvixvQWlZ8DoUFNxiZEZ9DBqqWAACPQFMHMzf25OQkjhw5gn6/j6WlJbRaLedPSSQSmJubQzQaRa1Wc0xTtVAtU0QhOj4+jmw26ywJFaBaJ5AavaYK6JjRkiQDVie59pOpAgwUUSe9JqyqgqFzoJAQmbW+h8JH4S5ayxrZaedZmSEtQoU9eY1aVBxTJgEzIXkwGDjfn7ZLlRKW2zp06JCDTHm2WiQSceeiDYdDV9md4d+Li4solUruffF4HIVCwfUzm82iUqlgOBy6EPobN27gC1/4At773vfi6tWrWFpawszMDG7cuIGVlRW8+c1vxtmzZ3Hjxg2Pxcw205LWeeX8qWKmMKIKDlUcNN2BioLdo/Y9ClVyHfF6FYD6O68P/Fz+FAiuNzgRXlInstbcI1NR7Y73MbiBTIzXclMrPEgLjpq/hcoAeNrAjU8Gp85pAJ4j1sfGxvCOd7wDt9xyC5aWllzoM7DjgyoUCuj3++6YeYY/0ypSxq25VFNTU0477/V6jhkyeAOAO2ojEtmpRG415Xq97grTqmNdxwXYVRYYuVgqlVx9RVUIut0uWq2Ws0AoUMPhncRrhnwnk0kXGALsWsedTscV9uW4MnkY2E2FUH+LClLmlfFaWogAXIAFIT4mG7N/HBe2hQEEyWTSJS+zrmQqlUI+n3dKBtdHMpnE7Ows0uk0NjY2sLi4iOeeew4f+9jHXMJ4qVTC1NSUO3jy8OHD6Pd3TpoeHx9HoVBArVbD6uoqcrkc7r33Xjz55JN44YUX8J73vAcf//jHcc8996DT6bjTqR955BFsbW3h8ccfx2AwcKHxnANaniQqWtwfsVjMk2Khid+EYS3URyWH46e5jBqpaq0wzqGfpUVoWa3pgPZSILje4KQQhjrkgV0tzQZD6GeqlSvcxM+5gfh8P61T363aI6+hZq+5KwqBAcDhw4edD6Pf7yOfz7v30ofF6DgKSAoiFap6iCQZAxOHtVo328q2hUIhT/QgmehwuHOqMiPl6M9h2+x4qEVEps0+sv+j0chFoikjYtShBs9wPliaShmgTVWw2jv7qWNPa1SDani/ClG2kWHuquWr34xJ0+yr+ug0qIf3VCoVd8/Ro0edILp8+TIuXLjg5pn5YuqH5XqLxWIoFArodDro9XqIx+O4++678bnPfQ6JRAKzs7NYXFxEPp9Ht9vF4uIi5ufncebMGXz2s5/1PFOtFoU7OSZqWallrME6tAbpQ6SPmPNlUQ1rqfPdfKbuY71OLXCFoAPaS4HgeoOTbjy1CMiA/HK3LBRIK4QMUaPglGEpXEKyDm1ufG5IhRb1OgoeMuKJiQmMRiNsbW2h3+9jamrK4ysitEdNmZAV38VaeNRmydjZJlpmrH6uvj2OCbDXGW/Hmu9Wa5TjoBVFyNSt1mzni2PPvnL89YBP/iSkxfmzc2HhJPWpKLNU/5sGEWgwD4V+Npv1JFyTKAz5na41WoEcJ1rEHJerV6+iXC7jzJkzyGQyOH36NN797ncjkUjg8uXLGI1GnrJW9LWp0hEKhZDL5VzB46mpKdx33324fPkypqen8eyzz+L+++/H008/jfPnz6NUKuHo0aMe61ehWfaJz+bc8rr9rCOdU44DhZjNCdPx4/1aGUO/t8qmCimFswPyp0BwHQCyRVnD4d08ECaCWuuKDIzfadi4Mjd1WisGr3AisHuQpYUO1W9E5q5WYrFYRLlcRqlUQqVSwdbWFu644w7cdNNNqNVqDjq7fv26q6BBoUe4jUeNsMICE4kpSEKhkKeEDoUUQ7Xz+TwAuBqJhMo4Bix7BOzAbsPhzuGSZE7lchmxWAz5fB5Hjx515aBarZZHsCmjIQSnDJDWgyobKlQzmQzK5TLq9bo750rz0jRyjSHozWbTzQH9O1raiQIB2C10zChMDcLh55w/QoVMH2DABYsQa01H67ep1WpYWVnB//pf/wvJZBLHjh3Do48+ire97W341//6X+PZZ5/F6uoqYrEYjh8/7qIvx8bGXAQkgzhSqRRWV1cxGAwwPz+P3/md38HZs2cRCoVwxx13YHNzE1tbW3jyySfx4IMP4qabbsKLL764r7XKOeK+4PypgOFY0Vem+0ctbLWW1DLjZ7xeI4B5rU145/lsXBOqGAS0lwLB9QYnP1jIQiDqc7KwIu8BvBq7MjP9Tq0MbQPgLdiqvh21DpigqpubeVX1eh39fh+zs7OIx+MuspCWCzexCj4Ky1arha2tLdf/7e1tTE5OIpVKOWiMzJhCjX0qFouu/mChUHBMhIKvVqs54Uurhz91bOr1OjY3N1EqlRyzHQwGHv8Tk4cbjYYnqEG1f/Uj6Tgmk0nn52MyrR+sSNI8LP5kWD2tOzt3vE+ZtkLCCh3TP0TfFaHCQqHgfHTDobfwMyHCfD6Pra0tVKtVvPzyy5ifn8fJkyfx0EMPod/v45lnnsHLL7+MWCzmKtezwDDnhwE8yWQS3W7XVeK4cuWK2xcnT57ECy+84ATYiRMncPnyZY/PVRUw3qdQud1XFh7eD1bnNXa9KnTKvzUqlYqZRruqIqPtC8ifAsH1BieF5cgouREVpuJipxZNphOPx90m5mYBvPg6NyotNN5PPw43lQoW3qtWDzco8f9QKIRGo4HTp08jFAphcXERGxsbuPfeex3TI+MjTKgwIK9pt9t4+eWXnaXIE4+pqSaTSScUyQCBncCPaHTn2BSGWmsJKDIO+pcAOBiPVkUsFsPMzIxLXt7Y2HDHebDfwG6SNMdNhQqFabFY3MPAVOiz7d1u151IzAAO9o1zB8BV1OAYamSgBtgotExrnaQ+QI281HqQXGcMo6cg0fnh2Wb0m6VSKbz1rW9Fq9XC4uIi/vAP/xDj4+N45JFH8IM/+IM4evQofuM3fgOLi4s4evQo7r33Xgdd8jiUUGjn6JNDhw4B2LFiDx8+7Pykzz//PE6ePOnO/PrUpz6FRx55BK1WywVp6P7hutK1z/njuuX+oRKi1pr6DHUOda8SRlVFkHuG406rjc+k9aW5hnxeYHH5UyC4DgBZZ7KGKtsAAg2YsM5n4vkWTyfGr4movI8MULVNQlF8PjevtktzyAqFgjvvqtlsurp2tBCondIPxPdFIjuHOlYqFRQKBVdklYdKkgGodm2hGjIrtkUFB99P5qx+HPYnGo26cO1sNusqR7B8FP1FZFSaQ6bBKgz+sNGfwN4ahv1+38GXtPwGg4ETyGoBMHrN5gXxuXq9zivvt4nbuubC4bAH2mT05o0bN1wlF8KTWq2/0WggHo/j7NmzSCQSyOVySKfT2NrawsWLFzE5OYmjR4+iVCphZWUFCwsLrvCyrie1MBnBF4/HXXmvS5cuudw/RmQmk0mcPHkSn/vc51yf2VeFC/38tXq99euq0sg1pX5WPeSTiovOA+eYa4DPpqKoc+Xn9wrIS4HgeoMTN5f+VAFF345aZbTGlHFSG6SW6bcxbCQUP+Nzgd0Qa7uZ+Q79nhu2UCigXq+jUqk4K7DT6bhrWQmDbdaIPkJEU1NTiMViqFarHiatbaPFYNuiTn/6tZjrpBozP+dz2Q5gh4mm02nk83lXW491/0gKseo4qgbuN7ccZ1p/vEfDs1V713arsNa2+gUCcJzUiuacM7iF7aJQVH8Lhcrm5qb7noKL1la328WNGzcA7PgOWRNycnISKysrePXVVzEYDJDL5XDTTTdha2sLjUYDa2tryOfzaLfbTpmisGEkqPpnO52Oq7oyPT2NSqXiqq3Mzc05YWyhP107NpDGCjAde/2c48Fxt3tU51NzElW46bNUsdC9FdD+FAiuA0K0tNRZzAWvjl4NFrCRhXyObi7dOITrNBqN79S8IWBXgyW8QsiD3wE7UNyJEydwyy23OL/RzMwMut0utra2POHQPBiQAnZsbAyLi4u4ePGie97m5qYTfgBcOSO2Q6MbaYWMRiOPz0uLylIIseI4rUvCiiTCOpFIBFNTU6jX6y6qkO0nHEgtul6vu7O4UqmUs6LYFvVdqT+Op0OnUinP/A8GAw8cyMALFWjKFGkptVqtPUECOs4asKEwMN/DsaQAsAoLmS37R6iMRXGBHWvzyJEjAIDr169jfX0dJ0+exMMPP4zJyUk888wzLlR+e3vbQY201lTpGQ6HzuLKZDL4yle+gne96134zGc+g06ng2eeeQZvfetbMTs7i9XVVTcuGozBtahWshKDLBSFAOBKmHHNq7XO73TvcU+oILZ+U37OfWf9mAH5UyC4DgAp07CQgkIQ1pls87L8YBJubIUR1XGsWqpq7rzWwpVkCnw+mRCwU38uFNqJOqPWTguiVCq5pFuGYLMCe7FYxObmJjY2NjzaL4Uq4C2rxPFihKCGgXMsgF0oTw/tY5v0UEqNBiN8ppYo4UEtxUQGZCEqhS4JvfHZrMeokKnCgmSyCjlRAFoFhMxUw/t5j4WwBoOBi06MRqMu2IT94/PU6uFYk8ioe72es97UAmESeDQaRaPRwOXLl1EqlXDkyBF0Oh188YtfdAEWrVYL+XweU1NTHoWAgoTJ7Xqa9ZEjR/DUU085a/7YsWNYW1vz9FsVOF0HJLVSeT3TMlTI6JrXQAzOrebQUairckHFUyFrVRB03ALyp0BwHQAi4wR2mRIj91hrjkyMCa7qfNbIKhtMoJuXWqP1lWhwh4UHuRnJ/MkY+JyZmRmMjY1hbW0N8Xgc+XwerVYLrVYL6XQa5XIZq6urLsqQzv3t7W2srq6i2WyiWq2iWq1iOByiVCphfn4es7OzLok5HA4jlUohHN45rwvYEWS5XM5jBWhdPK2hyDOo1GJkoAhzdliNnOPKo0LISAkDsXp8p9NBOp325A6pT4lVK1jNgsEPlUoFnU4HjUYDc3NzDgpWYajWJZmf5lJRKFIYci40MIUWNPvMwrsU2BQ+alXyWs712tqaC9JIp9OeiE4bKMOCxqVSCa1WCwsLC3j88cdx++2347bbbsO1a9dQqVSwvLyMaDSKzc1NJJNJ5PN5Nz+RSAT1eh2JRAL5fB6f//znMT8/jxdffBG33HILNjY20G638cILL+CBBx7A8vIyFhcXPQJG1ygrZ2gQBuCtgqHWu0LBmv5ByJRzqzCsBv3ontQgEbXCALi1aP3RAe1SILgOEHGjAN7zf9TyUUHFjaD1+0gUYrxfNxQ1WdXQdSOpH0ujsGhtKZMrFouIx+OoVqse5s4ag+vr61haWkK73UYqlUIul8P4+LgTWPV6Ha1Wyx15Mj09jampKWehkcGyH2Tkw+HQMSYKKgp4WlUkjg81YQB7GIoyLY4fGRoFD9vB6DtgV+nQd/J6Mk1eOz4+jnA4jK2trT2Qrvqv1PemCoO22eYAqe9TI+PYP/rqrB/VKj1aLYRCsd/vu3B52z62nQIY2MlXm56exurqKtbX15FIJHDq1Clcv37dCW0K53Q6jUQigXa77Up9UUFLJBJYXl5GLpfDaDTC0aNHcf78eayuruLkyZMolUq4evWq64Nazmqh6tjRAlflzO4znbd+v++J5lT/FcdSlSSOiV6j1pX6pgOhtT99Q+dxfeQjH8E999yDbDaLqakpvPe978XLL7/suabT6eADH/gAxsfHkclk8P73v98dLEe6fv063vOe9yCVSmFqagp/9+/+XQ/sENAu+S1uwhEAPBq0atEWQydDoeDjdxReZPbKtBRmIrPS9lgGxes19DqXyyGRSLhyS2oxbm5u4tq1a1hZWcH58+fx1a9+FV/96ldx/vx5vPLKK9ja2nJVFaampnD8+HHMzs664rqFQgHj4+OYnJx04essX0QBohqwWosUrppOwHaToROO0hwlPpsWHAB33IoKGA2sUIYHYM98UGufnZ3F0aNHMTMz46mVx2foveq7pMBVXw3ng+3UOVNhz2vZDn0vn0GlhWuPPiwG2Oh6srAk282xYmg/10WlUkG1WsWRI0dw+vRpDAYDNBoNlMtlJxBpdelaJzxIxaZWq2F8fBzb29susf3YsWMeYcV2AruKnyIPnH8KZ+s3VqheLVyN6tR9y59qiXHerDVFiF7nySpLAe3SN2Rxffazn8UHPvAB3HPPPej3+/gH/+Af4J3vfCdeeukll0X/d/7O38HHPvYx/N7v/R7y+Tw++MEP4n3vex+++MUvAthZdO95z3swMzODxx9/HMvLy/gbf+NvYGxsDL/0S7/0ze/hAScVKJpoS5xfywOFw2FPnpZGZekG1ag0Zuur74w+DjIibQs3IODdyOqDCYVCSKfTjgloMVJgJ79qYWEBn/vc57C+vo5wOIzJyUlEIjvFTtfW1tzZStPT0zh8+DD+0l/6S+5Aw8nJSZRKJQ8z5JEZvJdQHqMBCf/YE5RHo53yQ+xrNpt10B8PkeTYJRIJ99xMJuOBnIbDnUroHFs/64qMWAWs+rtYLWQ4HO453JPE39vtthvTdrvtiXLUJGoeUQLA5aVxHBQaVQHDQAH2i/POz7a2ttwxMmTgHFdgB+pi+L9G8dEK5rwUCgU0Gg1cuHABd955J06dOoVut4vnn38eq6ureOaZZ5BIJHDrrbd6BCHbdeLECZcUfunSJTz44IPuQNJ0Oo3v+Z7vweXLl51yzfs1kEKDeLj+OFecHxU8KrgBuIoXHDvdexRCnEcqflQUrNLIvUM/plp8AXnpGxJcH//4xz1//8Zv/AampqbwzDPP4O1vfzuq1Sr+63/9r/jt3/5tPPLIIwCAX//1X8fNN9/sDn37xCc+gZdeegmf+tSnMD09jTvvvBP/7J/9M/z9v//38U/+yT9x4cAB7ZI6eskMyMBUkKgjnzX/9HMyIDJDJrcC8DAGbhq1ylTwaDssrKTOZxsIwu8YVdhqtZyWWalUXJQho9x6vR4mJydx7tw5nDp1Cs1mE6PR7hH1LHlUq9WwvLzsmCotAX2eBjJwTAklqk+COUHWWlVoTueDY0c/B8eH42/hRtWoNUGYUYjquNf26hxZK0whQgCuWDGVEPWDcQ1QeKlCQ0WDbVBfGv189Xrdwb4WBaDgVAauQguAB2LjPHe7XSwsLODo0aM4evQo6vU66vU6rl69itnZWczOznqsYS3IPD09jXK57PLeWLaq0+lgenoac3NzuHr1qhNYFJwcP0KI/F0hXlpb6u/SPeDnG1Mlg1Yc1w0Fkvom2ZZIZPfIFAb/BFDh/vQXskWr1SoAoFQqAQCeeeYZbG9v49FHH3XXnD17FkeOHMETTzwBAHjiiSdw2223YXp62l3z2GOPoVar4Wtf+5rve6hR6//vFuIGsbCCMkWF9gAvw7BOZWW2NsqMTEoLnirk4efzUSaqAlIrLzCMmc+s1WquJBKZIrVRVo3gUfDhcNhZQWwDr1laWsK1a9dw+fJlrKysYGNjwxXZpQbN6hJMmFWITMeSWjVDr/U0XQZqsD4f6/apX43t43hRIPMd+j6OBX0/tIQ02IbCg3NAgUc/Ey0rhRBVmVHImILVzpNVNiyUzPf3+31sbW1hc3MTtVrNQYeMpmSb9QBKmxjOZ6rwZe3DZDLpAjOmpqZw++234/Tp0yiXy7hy5QrK5bIL7sjlch4/qlrIW1tbyOVy7vdoNOoseVXq2C8LldPSooVkhRX74Cf49ptra2XptQA8+5jf+b03IC/9uYMzhsMhfvZnfxYPPPAAbr31VgDAysqKq2WmND09jZWVFXeNCi1+z+/86CMf+Qh+8Rd/8c/b1ANNKqQUOlIGR8uAWqxqcsAuFEToiH4GZYoUGtZxDew6w8kI+UxCLhrcQGaoDJWKB7BTmPby5cuoVCrO4qF/qF6vO62fwm5rawuLi4s4f/48yuUyALjCrwsLC2g2m+j1es6JryWuKLQAuCRZhfA0uouk/iL6HVTAa3FbVqzXseCcqbVGC8H6UlTA8zmECynMZ2dn3fgyETca3SlG3Ov13LjSQhsOd8/bYhShtaYpyNQvxmsI56ny0ul0cO3aNQyHOzlUhw8fRqPRwJUrVzAajdBoNNz6Yf6VBrswN46wm/rpwuGwq6Ry48YNzM7O4ty5c7jlllvQbDaxtLSES5cu4fDhw8jlcu4csPX1dWxtbbnak5lMBi+88ALOnDmDp59+Gs8//zyOHj2KY8eOOQuc1h7frT4nHUNdB5xPtZT4NxUbCnsqmOpr1OAlv4AZ/Z3joSeMB+RPf26L6wMf+ABefPFF/M7v/M43sz2+9OEPf9iFRFerVSwsLPw/f+cbhVRTBLxHhhCCsVAhiRtBmRc3EZmrbl6FdRQy4XO5MTUiz2qbyghGo5Enj4ttJtPXNvKn5h6Fw2EUCgWk02nHHCm0WUGd/WYlDA2c0DQBawHYNvNzWlcaes5zoRS+4XW0MvYbBwoa+5+aNcPiaSERwtMx4Tv4PY+A4bP1LDItx0WNX/1KwO5p0lwXtOAYUapBFzaQhPOhvrN+f+dwTVq7rCWp1ht9Z+qPVb8o1+XLL7+MhYUFRKNR3HPPPSiVSrhx4wbq9foe/5iW18pkMhiNRk6QVSoV1Ot1lEolV1aJ86ERhOoL1qAI/Uytayp8ajmqQFLL1z5TrTtVOP0CcazyGJCX/lwW1wc/+EH80R/9ET73uc9hfn7efc5ipKwtR1pdXcXMzIy75stf/rLneYw65DWWqD1+NxIXOBmR+pfIEFST5qYgnMOkXmrSFu7j39xE3IAKUao1p0VdeY/+5LMZUk8ojOHWFDpra2vOekmlUqhWq46ZskL46dOn8dBDD2F+ft4x5aWlJSwuLnrKCSlDoq9F1wwDB2hR2IATWn3MqaKw4EnTbBMFJJ9NpsvnkxkOBjsJvbRgSbSmaHnwWl5DoZNKpTA7O4srV67gxo0bmJ+f91QZYWAGLTYGYlC4MRy/3+87H2Y8Hsf4+DgikYgnsEP9NJ1OxykEXEu0vg4dOoREIoFkMonl5WV0u113XhYtcj2vSiMzuQ4AOEh2ONwtqtztdp0ScPXqVfzxH/8xTpw4gXe/+92YnZ3Ff//v/x2tVgtnz57F9PS050QAjlmlUsHU1JQ7aPL69et4/vnncd9997n3t1ottw5UEdHgDApQ7jn1SWpdQfUVU5Cpla37UtNLdI9Q8CtSQT9cQK9N35DFNRqN8MEPfhC///u/jz/90z/F8ePHPd/ffffdGBsbw6c//Wn32csvv4zr16/j/vvvBwDcf//9eOGFF7C2tuau+eQnP4lcLodbbrnlL9KX70iyDmENftCoLjILDWlWZqrBFnyuPk8tOvWp8P1agFdD8dVPAnhPZR6NRq4aArAjHGu1mrNg+Aw+n2c9sXzQqVOnXI4OyyhdunQJS0tLLoKPDJZ918RhauRknhQYFDYkheKazaYTOgq3qo+P7yIUSd+ZWnzqO6QVQ6atpYH401pr9POtrq5ibW0N7XbbU8Vex5oMU8sYqYDmnFExoODVZ3FOtG2j0QjtdtspF0zyppLB9hCqo5+Pz/KzNvhe9Q/SX5dOp115LOZ0nThxAqVSCbVaDYuLix4rhOM2OzvrYObNzU3k83kMh0Osra05K5FWplqSCv3ZCD7r39Vwd7sndc/oZ/oezgH3hlYX4VzZsP3Az7U/fUOC6wMf+AD+x//4H/jt3/5tZLNZrKysYGVlBe12GwCQz+fxt/7W38KHPvQh/Nmf/RmeeeYZ/MRP/ATuv/9+3HfffQCAd77znbjlllvw1//6X8dzzz2HP/mTP8HP//zP4wMf+MB3rVX1emShQAvH2b81uk1JoUP9DNjF6dXq4nNVEOmxDfoM1U5Ho5FjUFtbW64iRjQadblVKuAGg4FjXowIm5qactFkrK6xsLCA5eVlp+Wzreq30UoFrVbLwZLsE31KmjwMwCMAVAhREKmywHFSAWahQgoS1e6pqdPa0HqIZGLdbtdFGFIQMCDJT1DbzxTG5RrgXHEcFN5k31WYK5TJZ1DYaLSoWmu0kgeDgfMncpw4HwAcLKnBK6r45PN5RCIRNBoNXLt2DfF4HKdPn0Y8HkelUnHPoBAMh8OYnp5Gq9VCvV7H0tKS61e5XEar1cLExISnmj/POuN1KiDU0tL54trgeGiul4XxNfdNFUUNBtH3cb3wb/08IH/6hqDCX/u1XwMAPPzww57Pf/3Xfx0//uM/DgD4t//23yIcDuP9738/ut0uHnvsMfzH//gf3bWRSAR/9Ed/hJ/+6Z/G/fffj3Q6jR/7sR/DP/2n//Qv1pPvYFJHMiEm9VfoNRo2TEc9fSLULoFdZqXMSf0A3GjKjFSoUQPltQy0iER2Tq2NxWKo1WqYnp5GKBRyUXNra2tOO2Zdu2az6Ym0O3XqFN70pjdhNBrhwoULqNVqrpwPE1LD4d2jRRT2ZHUFhherD42QIBkxc3bW19ddqaj5+XkHPwK7fi8KRFUS+L1GAfZ6PQc5qrOfVh39OYlEAq1Wy5VM4t+MaEylUrjrrrsQjUZx+fJlZ/lQIFLIFwoFx2BpgfN3zdMaDocuCIbwMefLQlyaaJ5KpTw5T8whpJXV7/dRq9WcRci+co1wzHjUCdcbAzIYIMJnp9NpHD9+HBsbG/j93/99bG5u4t3vfjdKpRK+9KUvYWFhAbfccosbAxblPXPmDM6fP49Dhw45JIiBQPfccw8uX76MTCbjfGU2ctAKZYU6VTCpj4r7iHM7Go08fj9+T2IJMI0etX5qa3kF5E/fkOD6egYzkUjgV3/1V/Grv/qr+15z9OhR/PEf//E38urvaiIDpANeGQKwN4AD2N1wmj/DDcnv1Nejx4r4aYbArjaq1Sj0eWwDf49EdmrThUI7hXWbzSbW19edtk1LRH0KnU4H586dw+TkJJaXl7G2tuapt8ezscisNQ9Jk2r5TAoWjpdGB1Lg1mo1D3RKZqT90SAFAJ4xUM2bWreOh44fLRUrWEKhkPMFUkDx9F8K/X6/77HueA8ZLoNK1JepzJhrRw805H+uLQun6Xpi+1ksORKJIJvNesZeI/cs0QKh4qCRhda6KxaLePnll/HSSy/hbW97G44cOYKLFy9ibW0Nhw8fxvj4uIODWRJsYmICU1NTKBaLLhBkcXERx44dc75ZrgdaRGpZc11Z1MIPvlOI0e4T9Uvr/Zw39clqCgvHToVoQP4U1Co8IESBQS0tHA57LCZuVG4KwjUMawb2nvdDyEMxfAoiMiNg95wrTZbkxiXsws3G/+12G9PT08jn886Jvrq6isXFReTzeWdlkckWCgW0220UCgXce++92Nrawvnz5zE2NoZCoYCpqSnHXDc2NgDsWptkkmR6DOFuNpuuj2S2wG4U3MbGhusz87No1abTaSckOLY6F2RsDCpg9KFaRBxzJuUmEgknkMioeHgix5Hlq1588UVsbGygWCw6X5q+F4BHANM6YvAFgzbUOtAAFWW6tJK5xhhIw7HgfRRsrKlIq4Glm+r1ugsUKRQKSKVSe/xHGq2aTCbd85nXpwE26XQar776Kp577jnMzs7ijjvuwB/8wR/g6aefxi233IKZmRmsra2hWq1ibGwMhw4dcpYlg0du3LiBt771rbjnnnvw6U9/2lnQXO98H9eFogOqjNgx0z2jyowqBRqxOBqN3Hqkdc4x5pwoJOnnTwtolwLB9QYn9Tep8CIpjMEoNoUzLARoo+oAb71D3aTAbk023qdaowZmqHOa7WEoPAUej+1Ip9MukZXvZFIp+8b8JAZspFIpBytSY6ZwVp8UBRcZ0vb2NlZWVpDJZBCLxVygBH1t8XjcCQf2jYJCyzIBuxq3tbKsM14ZEfuggotCzUaxcTzp6202mxgbG0OpVEI2m3XX2gAPhW35mVpTannrOmCflMHSMlerQfP0OEfJZNIThKFj1Gw2XUi8ws523anVRYVHj6/PZDLo9XrY3NzE9PQ0SqUSwuEwlpaWkMvlcPToUWSzWVQqFbcPtra2kM1mkc1msbm56VIx5ufnkc1m0ev1HKzNsbLBFjp+OmZqZWmAEsfX+qrUR8zP2G+ueYVl1dIKBNdrUyC43uCkG4xar80j0Q3CTaTfqW9LBY46ofmdBizo9zYAg9eTIelGJwPMZDLI5XIuQo8HKzJpWPsF7CQJj4+PY2trCysrK4hGo64yAt/LYAhg91iKUGi32gfzeqix12o1rK6uolKpOMuJzJ7HrKhPS/1HFkayjAjwBjZwXAlhsW2sYq/P0/GzDnwAzhLjYYpaT5GWkK4PjqWOP+CtxqB+GQsXM3BBtX1tK6E1fk//WrvddkqIWuG1Ws0T5UgrTqFdZdAUvhSS3W4XiUQCxWLRWc8s7v3qq6/ixo0b7pSBWq3mxpyQ9Fve8ha8+OKL6Ha7aLVaKBQKmJmZQblcdn4u9W3pGFmYUKE+jgXHh9dpEIq1zvV+TXDW//Qvcj1YX2pAXgoE1wEgyzitrwrYG0GoGjm1ZeuIVwjJT7AB2GMNAHBWHzVHwFvUNxzeqZaRz+dRLBaxtbWF9fV1pxn3+313TDtrA1arVYTDYVf7stls4sSJE85i09D0XC6HVquF9fV1AHDJs4D3XKnZ2VnnB6JAYsg1hYnCYbFYDLlczo03/X4aWKE+CjJxwnIcVz6L1pFaVppfRXiRjJJjMxgMUCgUXC4ZrUjOD+eLEZKRSMQJHkJ1Coty7nn0CIM0+L1Ws1ALjf449pEwW6PRQLvdxtzcHFKplDurjOMeDofdsTTJZBKZTMZzbArfQ0iv3W67PnS7XQc79no9JBIJvPrqq1hfX8fZs2fxwAMPoN/v48aNG6hUKs4apz/w8uXL2Nrawo//+I/jLW95C5588kl0Oh1MTk7irrvuwp/8yZ945kctVg0qsaHq9MnyXgpyXsM+cf9wzXCf0VLVYAytBWlhYL+cw4B2KRBcB4AUh7cL2s9iUuaj1pHi6SqEVPjpRtYNqRaEFaB8L9uqTJyMiYxeoahcLudgl06ng8OHDyOTybgIv0QisUcz1Yoh9I91Oh1XeLdQKDg/AxnN5OSkqy9IBqXPIaPhgYV27DW02QZHKIykYwDs+qAslKpWmg3Q0GsI/2pCMMfalhtSa1mtWPX/Kcyl2rz62CxMZYMnuGboSyIztsJPQ8JpJfNzXqf94/ObzaaLyuTcNhoNNBoNjI2N4f7778exY8fQaDSc4GK/FGZutVquPNRgsFP1/9ChQ2i1Wh541yp/7D+fRb+ljokVJgqt2z3JnyrYFBbkfrMWsCpqAe2lQHC9wUkZpFaC2N7e9mjZ1tcCeHNHyIAsAyWpM9mSCkYVXmRWupHVvwQA9XrdI4jS6bRLDNaj7sPhMGZmZpwlpoxlNNo9q0iTi2OxmLPYWBlibGzMBSeQqTJ5NhqNuiAADeumtq9JucpQ1J+huVLWQe/ny+Fz+DmZuQaycIz5XwUlowDZPp0ztXCs8qCKAt9Pga6Ci2OkR5ho+9VqYJ9Z3YFHqejRNVyPvG+/clgWbta/OcfhcNhBv+12G2tra+5stpmZGSwvL7uoVT2uptVqYXV1FVNTU8jlciiXy0ilUq4yD6t1WHhSUQdtK4OCuL5tH1TJ47jbivK6PhQF0b3K9ti9GdBeCgTXASEVPLR0NCSbG0cZmIUPmYvF77gpaQGQyXGjMi9HE4atP4Yb31pz3LDtdtsxucFggHQ6jfHxcXQ6HVy9etUxgsOHD+Pmm29GqVRCtVp1SbJsRyKRcEEJDK6Ym5tzkAshvm636+AcnhGnQkEDTQh9Me+MApFjSUHDvjHUnEKTjn7CpsCuX4iCgNYkABflqZ/zO4Ui1fkPwL1HBa1axhqmz/eo5c11wHfxfYPBwFm1tCx0/dDvwt85DjzTi/MA7JwQQaiVBZRp2aqQY8ALn8Uka0Lb09PTrv30WakFff78eczPz+PEiRP48pe/jGQyiaNHj7oixpOTk1hcXMS1a9dw7Ngx3HTTTfjoRz/q/GHZbNZFXrIf6rui8NMADhUo3CNWIOk+1P2naSkcf46p7iUATsjbYs0B7aVAcL3BSbVYMlF17iupz0rxd42AA7yRiIrlc9OoBqoh1NomhcMU4lLhpRYVNzEZIwMvqFVns1lX/ZttpbDSjc4ADAoPhV1YZd0GQfBvhYB0zHi4o/qYCI2qH4Jt0Bwly1hUaKufiVo4285iubxOhZUqCGrBaIg2g10YOk7BooKSc6cWkTr/qQhwHWhwAN9jx5Dto8LA/xRopVIJiUQC9XrdU1bLPoPr2qZjcD0yAEmFSzgcRrlcdgE7sVgM6+vrOHbsmFtrk5OTWFtbw/r6OjqdjjtpezAY4OTJk5iensa1a9cAwHPUi90n6hu0iIZaUtyPOmY6bzaAg++ykKGuG1VQA/KnQHC9wUmhKc3NUUZD4kZQP4dqi7QENDiDDILP4jX6PsDr5PdjpkycDYVCDtpiAEW323VBGpVKBe122+VxUcAdOXIER44c8ZQEYkg1AKfZRyI7ZzJFIhHcuHEDw+FOJQi1Shh8oX4shTRtlfJsNutOfaamXavVPAyF46jCmNCtCp3RaOTqI9K6UNiI0B+VEAZfDIdDV4FCAyx4D4+zpzLBdk5OTjohr9Am55xQIi10C3+yXJv69qhYqK9UhaMqB7SWWONxfX3dnVC9tLTkhA7Xmv5N31coFPIUluWaY+AFq6Gk02m0Wi0sLCy4HEFC0YlEAu122wUEfe1rX0MsFsM999yDhYUFLC0tIZPJ4NFHH8V/+2//zcGLXOecW3tUDdcEoXk/NEPzG0kapMG6jtp/vzwu/tTAj4D86S90kGRA/+/J+i5sIIWfU5jXW8tM4UQyBy2sSqbGTaNan1oP1ofDZytcwueRiWYyGRfRp9o6n1UoFFx1A2rTADwWg5Z3oqBRPxDhImWMZLwazk1Si0KvoQJgLQSFHHkdQ/UZjq8CXSEvCjMyRO0jr2+322i1Wi6oxE9JYBtZrZ4nE7MoL+FQKiMqNHQMWIzY+p4IFdsyVzomVJq4/hixCMAdPeQ3DhqIon4vte74O38SJtajWxiCz5JTnU7HtWc4HCKdTqPf7+PKlSvY2NjAaDRCpVLBjRs3nB+V91JxUytIfZAWBlRkQfeizqMGyah1yrmxVhkAj6XJ91moP6BdCiyuNzhp9JEKKf1cYTvdMIrRA7s+C1pS3JSKwyvcwQ2tzISMz8Ie+jwydPoUCPdls1kAOwEbZJRsey6Xc2HxhIjUcmRiquZLJZNJZzH0ej1PZJZG7KkgUBiRDFSFjkJnGqyg8JpaqVawqTDUwxhVqJHIUDkWFDwWmqKwo4JBS6RarXrOpLLQrPrB+D4KGj7f+nJoKTJdQI9I4XOtZQHs5J1xzDc3Nz3+NIWoNQhGrWH6WpVx61hzrmhZNRoNd4wJ6z0yTJ0QdKVSwebmpvO7ra+vo1gsYmZmBtevX3ft19QFttNPiOg+VDjPQqy0qLh/+J8WOJU57heOq7oCrL8xIC8FgusNTtzghJXIQNSq4eJXyIJM3pZrAnbzhbjByOzJ+NT5rIJNo+nsJiN8RWisWCzi0KFDmJ2ddbBboVDA+Pg4XnjhBY8jPJlMugrfly9fRr1eRzQaRa1Ww/b2tssBImMinMZQ5//v8v+3a9ltZhCOhBEOhV0x2X6/jz++548dc6N2Tr8WaxUOh7uRd6oMqJXKfquFyUrvaqEyx4rtZk09CthWq4VOp+MCZDQvjsESFPg8vLFYLLrrm80mwuHdiEmFAhV+JOylvkgVxCw6zLECdqI/+UzmfGnpMApSKhvsUz6fR6fTQaVSceMYjUY9bWRuGlMlOD7hcNgdRMkxZ5AH54ypDZVKxa3JyclJrKysIJ/Po1AooN/vY3p6Gs888wy63S6ee+453H333VheXkaj0UChUMBjjz2GX/mVXwEAlztmYTn1MXLNc/1x/lWwUZHhd1odQ6NH+/2d8meaUK4IhxWQAflTILje4MRFrVFi6q8BdgWJQhrUcrVChUYxKQxBAaQ5Xdx8/F0ZOLCrRXMj29B8RgXyXel02iNI1KpIpVLIZDKOSaoAUTiKDI9t/6ELP7RjEYxMySOEEAp7qx58/1e/H9FoFJ/7ns85fwb7piHOHFdaN7QQ1P9AAaGCgEJdYSaOE79T4UZ4jf44wo2bm5sAdg5G3N7eRjKZdBGTFLQMaEkkEhgfH3eRexoMYa2+4XDogf/UQiZ0qYEbXCtULrRvhBj1aBR9FgW1QoH6u8KuJM1T03dpqSxeR6uL495oNLCxseEUnF6vh/HxcSwtLTlIcWJiwgm8mZkZtNvtPVU8bBvUmrYKjELR3Hu6B2jJWxiRz+WcALvKp7W0A8G1PwWC6w1OZIIKO3DR6yJXfwiwG0zBkHAbaKHwDTcIIRMLlSikptAJLYLRaOQgOxVu29vbWF9fR6vVcqcYr6+vu4gzavrT09OIRCJoNpvo9/soFArO6qBVwn6EQiG897n3YjgcohfuIRKOACMgNhbz+IXYT7YJ2GEej3z+EcewPvXAp9wzVWgpDKoWJZ+peVCEJTlH/E79Rxx7JjiTyWmggw0OYHsIC7LWIv0+09PTrj0alk9YjcyT9fBCoZCrJFIul11fWdUiHo97QvUZsUiLktezlJcyWlrNmluoqRX0TXKsFfaj0sBoy3A47M4kazabKBQKSCQSHoWGik+9XnfWJQ+QTCQSKJfLuP32293vDNJ48skncfHiRZw6dcrVLaRflP5G7i36YrU6iea6aV+4H1RQqQWlApFzofA8r2eADOs/8vOA9lIQnHEASPNpVHvVCCf1TVFDVFItUYWgasD7WXPqd/GzupQZkegzqNfrrloBYUQ9diOVSmFiYsJVj282m56IQLaBfXj3U+920WiuSCv+r3YaAkbwVoTQja+QDAB87xe+18Mg1AJgv9gX+m8Ik/H9KvgV9rHMjf/JyCnYNKRcgxISiYQTKslk0lOtXvtC5YLBHoR/KUC5NjSggsyf7yGcxf5by4vChe2n5WaDVNg3WsaEBlWIU0ATXmV72SYdc513DfbgM7jmGHnKIA1gRwlj2azBYIBisYhMJoOFhQX0ej1MTk46KF0tLlVQrKBi+1VJpLBXeE/9ZTp+nAsVaroe1drTfR7QXgoE1xuc1JmuDEWhCgt5qBanFgI3EJmYMl1eD+wyYGU26uey7wC8YftkyLSWbPQe20L/zfT0NBqNBtbW1lCpVPYwezKIR7/4qOuvBhiMhiMHlTnLIBLFCLtVx63Q4nPe8fg7PAEbylQ4Tv3+Tm1BtVp1rPUdKgB4jUbjqdDiWHH8GEFHq4Y1+LSSBOeZdR4pTLLZLDKZjCesXRUaBrfo6cSWUVvBpb/reGi/9F3sJ6FVvpcClUyfQl/XrE301qhICyuyLRzjdDqNWCyGVqvlhGG/30cymXRIQTKZRDKZxPLyMmq1mkteZ/t0LgBvtK2uCV2Xul4Unuca49qxChHn0cL/3KsBVPj6FECFb3AiM1S/kAoDMgM6yJXhEG5TxzFhCMsw1a+k0V70ddGvww2lm1mhIW5Iat1kxCy9A+zCbalUCseOHcPc3ByuXbuG69evo9froVqtOmZAhve+F96HYXToGJ6zNsP/l5lEwoiNxXZ+/l9mtN3YxnZ/GyOMEI1EPcxf/VMPfeYhfPbhzwKAE7bxeNxFv3Fc1MHOoAe1EKzPRv1E1k/GQBZ7KCOrwqvVy1OVOTe0XFkdhJ9NTk5iOBxidXXVBbCQ+aqSwgRezSeiH4vBCuwXLSsVcvQPsfQTmbxaQ2ybFsEltEwGr8nYvJfHzoxGI2cNKvzL6ENeyxMF+v2+OwqHsCdrFW5tbSGTyWBqagpPPPEEXnzxRdx55534yle+4oQqLT7Nx6NVRyGpCAf7QmtVA6B0X1o4UCF+Km+KdqiAtAIvoF0KLK43OOlC5t8KRVmNn5+rgPNzfCuUpFaIMmO9nqSQiLW8aM3F43EcPnwYxWIRjUbDFWMdDAaeaDlWrOCZWfycR1EoVENGqUyMGz4WiyGXzSGTyexYWhyjcAj8R1Kfi0JQD33moT1ave27ZUj8jExdfTlUCGwOmj5TFQi1YBSapMKi4fR6P5+n45TNZl2ABJ/Vbred741CSsP1+TzOH8eZwRbWuvJbf6zEwQAOC/lScFNY9Xq9PQpRt9t1x94QjuM7OdYKqeq6GwwGnlQLzgEPcCwWiwiFQtjY2PAoCWoVqSXMudb9Y/eHwoNa+kthTd0fdv5VUKoSoShFQHspsLje4KRaGEmFE7VjdRRrxJsKI4ufU4PWoAT1efG9KhCt/8aPkZdKJczPz6NUKrmoLmrIrJjBMGlgJ4KOp9iydp4NNVamBewGn0QjOxo8gx76g90ox2gkilF0N3CFQo5wJ/vt58cD4Kwi9WuoBq7wEJmRBkYow2b/1ZJS5s82kJHT16i+H43g4/Vk8LSKNeScFS0A7KlgQaWA7aRlRsHGeaewUXhR16WFs3Qc9UgWhcMYfMI26Jri4ZR8t4Xp+Dy+Q5PGaXVZBYKRtRMTEwiHdyIyWXT31Vdfdd8rREzhqnPKNcP3qfWkaAifxflQSFmfx/ZbpUDHMSB/CgTXASBlslzw1HIJnZH5kNlraRlqimodcYNoJJS+T608MhHVjJWBAbuVBOLxOE6cOIH5+Xnnm5mdncVgMMDy8jJWV1ddu1OplMtn0gMTKWASiQTe98L7dtoQ9kZTaiQbGXy700a71XaFVEnaVnWQkwHx+0e/+Cg++dZPeoqdDoc7J/ECu1GKOjY6Rn7WrfoFgb2FVBkxR/hQgyB4NhWj5Uqlkgeuo2BSq4DCn4EJk5OTHktBI+nYTrV6CPPaPqqA0gARwsG6BhkdSt8RAAe9tlotZxVx/Nm2brfrqvenUimk0+k9VjDXNiMQAbgxAIByueyOuBmNRkilUtja2kKn08HMzAyGw6E7hfuhhx7C8vKySz1QaJdWnFq5Cudxn2hCvEKBvEdPJedzVXDxOWphqXITkD8FgusNTipklHmoJaQWmEYwkRRa0eeoj8pCJWSGxO/tPfyp0V8MDJiZmXHh68ViEVNTU9jY2HCnzyqMQ000l8t5Ct3a/B3V7lX7JuTZ6XbQ7XYxHO1qvpp0TdKqITbIQMdRozgZ2ECmqb4jnQuOmzImPotWph1H5k+xvcpA2S6GyFM7txa0Mkl+z/Gl8kAYrdFouDB19RWqNce+WZhMrQ4VsPpujWrUMWSQSbPZdOPOewkRskoHrT4/a1fHkfPBtrLUExUjKkDAriXHShvtdhuFQgFzc3MuIMgKFb6L+0yFre4tCyFaK5LjYv3Pun50vepBoIEQ86cARH2Dk25AhXAIpZGpscQON4kLFR/thudyQ+kmI8Miw1VNE9jdOBQ2mqiqcBKZYa1Ww7333oupqSkAcA76GzduYGFhAZubm47J5fN5jEYjVzGBDJFRZ+95+j1uHJRZa38IlxHWi8Vi6HQ6KFfKHh+FhoJrOL4ViHy3Vmug/0rLTlGg0V9EIoNl9QkGT7CdjE7U8eb46/M4nuPj4x6hrrBSOBx2CczhcBjVahXlctmNryY2dzodVKtVNBoNT+4XhSUhstFo5Kw5zoX66gi1ci1xDLVUFvPCKLg0OIg1JTl/rCjS7XYxHO7UGUyn066/1kc4NjaGTCaDfD7vGa9YLIZ8Pu9J4lbloFKpoNVq4cEHH0Q6ncaVK1fc4aUKqbO4M99HX6PCubpeFG7XKES7vzSyVRUrXQdsh/ocA/KnwOI6IKQaNhmHWktc+OoXsNdazJzPVIjDL0RaLSz9rzCh4veZTMYlG09OTqLT6WBzcxONRsNFoDH/RoVQp9NBLBZz0Bywax2qpcHPXX9CAEY7P8Oh/5s83fce8Gh9ByoAlGk8+sVH8cVHv+iYLdtHHwrDya3/hY55DdVXBqXMiPdSgLBdqVQKhULB+aAikQgymQwymYyrHagpB2TkfBfnin4vtX4oCAF44C31YVkLmsx4v3eqH1LXCAWWzhnbpwyca2F7e9sJOrZT/ZocH7U+dF7VAmako84Rla16ve6xsIAdxYpzrWXMdE1oAIUiABbtsMekqFWvELuOnR+SwbG3/sOAdikQXG9wUuaogQp2Y+x3L3+q9kZnuUJFtCD4PS0bvU/fZX1E1E6Zo7S+vo61tTVkMpkdC6hcRrvddlomK8WTydAKov9BoweBXSZoYbJQKLQjrDBCCP+XQY680A6vI5NTx7cKMf2eEB+tBB0X9p8MjWHRjMZT5qOaOKFUdegrA6Pg6vV6KJfLTglgdJ7OqYZq0yKkoNKoRJ0zRnG2Wi1PwAfHSaPrOP+dTscFvig8SAGpY6gQJy1cN0fhsMeXpv3n2FAA6VyrD1HXsvaL7eBYWP8v/V31eh2HDh3CyZMnsbS05PyqzPPinCkMT2Fj4T0NXOHvulZ13VEQ2n1q15tVAgLanwLB9QYnLnhqqmQ0unm5wbUAr1oq/EwhQOvXUiGmOWMk3WRWKNCf0W63cdddd2E0GuH69evY2NjALbfcglarhWaz6UKdx8fHcfr0aYTDOxW8h8Mhpqen0Ww20W630e128f4X34/w2K6/Ri0tP19CJBxBdGwHVh30B248yLio5Wpwi46x5mHRClDNmZ9p7g79UeFw2FVUVwGgApnQlzJgW7g2FouhWCx6hNHU1JSzQBUOZm4UI/cI0Wk0HBm4tVapMGjpKrbJ1qvkOBBypFDSaxRethYySYsO+530q1Y8oUES/7YQNU9tZtpAMpl0lhNLYPF+q5BsbW0hkUi4RGTCw5qCoHtDoVRgN4BDg6ba7bZHwBMy1mASFdZqpZKsrzkgfwoE1xucyBQIVSkEotaHDdSwwk03iEI6irNrQV7702qACnmwTalUCocOHfJYMBRowG4ZnYmJCWQyGVeTjoIrmUx6/AkAPAyXfiIme+q1kWjE1dQbjUbO6lK4yZKFWgG4sSbD5nipBcprFEJj/2wEGrB7MKMyLT/ole9PJpMuhYBBDRQqnGcyWo6LJr/yc1u1QXPBeC3br23VPrDNCl/q2iNpBB7Hjda3jhMDcvRdlknr2Fk4Thk7/YIaQMFrVEHRvRGN7pw6UK1Wkc1mXS1Ehcw1aIT9JYTuh3KoAFIoUedc957tl1plANz6Dqyu/SkQXG9wsptaFzs3mMI+fptErQZuQGrWCnmRySumT8aulhyvs5vzzW9+M+655x50u13E43HcdNNN2NzcxLPPPoulpSXU63W0220XcMDk5OFwiEql4pz/733uva7dypDUb6SMhoIhmUjuFOYddhAa7kajaYK2Rs/5MQx+32q13O/WMtJnaRACq1UMh7uHYaZSKddOtZj/f/beNEjS6yoTfjKzKvfKzNqrq7p631tqyWptjTZbyBLehkUQJobABAHzgzEwwARBEDExMcAMEPxh5ovBDDPBMMPEYBsz8hAY27JkGcmWui2ppZa6pd67umvr2iv3zMrK5ftRPLee99RbbRsG6JLyRlRUVea73PWc8zzn3HOJKFToKSVFX1qpVPLkAGSd9egSPacrEol4wuqVUlbqkHWikuM9qqyB9Qg3HQvWVZWBGlZsWzKZ9EQWqrGk12qEoypljg39dMwgon4znjjA41n4PmCdfuS40ADg0StDQ0Po7e1Ff38/rl+/7p6pyaZ1G4hm1lAfnNZd52iz2XR5Ovkc1p1zi+/iM9RvrIiuXbylrbhu86IWs1r+zC4OeENyNVTZUjhq7fNHheVmyEyFu1rmwPoCjsVi2LNnDwYHBzE5OYm5uTnEYjEsLi5iamoKuVzOna1EIaeHGHK/C6PWtKglqxSVo02DAeBv1zd9Xay/1lWRm7V4VZjofjU+h+2k8APgyTtIC599ptSjIlbbDk9+RQ3v/9t0SNls1qEwjXRksYrYbxwVYelYa/YU9YmRyrOUoD7fIjNrUCn9rHOT9Kr1j+pcssmEqbgYAakGhp33zBhi/V5KazMakcZFLBZzc5Nto+Jhn/EdynIovakUpiJrnYc69n5+LUWUel+7bCxtxXWbF53M6vgHvJterTWtGQuUTlSfBwsXjWZt0MXIBanoTy3Mzs5OdHd3Y3h4GOl0GidPnsSNGzfQ2dnpDhtUVMh9NJqZQAWk0i3qxwPgSa7q0EtHJ1rNv/VHNb0CW5WJKmSiNEvdWGqHdabPiQKMvi4eG2LpMw3A0M907DRM3CIjjrnmKdRksNr3SnfqcyzVqwaAIllFpexjRRSkgi1ysHVh37KftC02G4UfRch3EMEx6lARor6T84rzUetVKBRQq9VcVn22v16vO38k+57BJ6wXlaMNJtE5p2vHRmLqXFBDRuei7snj3FDk344qvHVpK64tUKzjG1g/6FB5dyIYUiZ2wXJBccGqI54CWmktLmalxqjglIoKhUI4evQoRkZGUCqVcPXqVSwtLSEYDKJSqaBarWJ+fh7AmmAoFou4efOmEzbM3K2h2yoItTDjNylSCkZ32GHrb+nAv5WJStEp/aIKkO1n2/VvBl6wz+nnSafTHrqPCEDz1en+Mn7ONrP/9BRhHklfKpU8yYmJfPgZFR7nhW661c+pMNgO9hX3UbHuAFzePkUZdiMyhbEesqnIgu8KhUIuI4huqPab11S8Oi/Zpnw+7xSN0oAM96/X6x4KlXUKBAKYnZ1FT08P4vG4y0LCPXRdXV1IpVKOMuzq6vLMZctgsO+oaIjaiCBpQOgxKRxrpUe1bSw0CgCvP7ettG5d2orrNi9KV6mQBdZpIp3snPxKlagQVsVk6TClgpRy4nPsvp1ms+ki1Hbs2IFQKITFxUUX0VWv15HL5Vy0IC3pjo4Oz8GBRDkaCKBoQNsdDAbR0dmBANYOyVT6yZXA2inIzWZz7Xyu1sasI6oYVVgB3tx0vJ5CmNY4haha5LZvgHX/ooZO6zgpLUaBzO+VDuMzdDuE3a7AYq+xbfZDFxT+emIylbzdx2VpMApqzjUKePWFKXLWPlGFCHgzm1jKTpkBfq+oUjdT0wigocHnBgIBRydy4z7pXr5LzydT+s8yF7qGLFNhtwzo+uQcU0TOflYjs628Ni9txXWbF052PyWj3L5+rotdFw6L+rooYClIAK8iZFHUp8IyEokgl8theHjYnXhcKpVcRnLSgmpV8uRbRXW6WNUxrnX00JvBALp7up0A4JEWgcB6NnhHLQUDHqFyKyX29Ye/7vaD8Z3sZ+vXU2qOiIH9a40MbRv70xoSHR0dLqcf7yEK1aADFZwMs1dlxGeHQiFUq1WP0UIqz1LH9C0Snahy0vFW/51uzdD2U2Gp0lO/oc4jRTEAPH5P9j/vZf1UsVFZAeupsRgUkc/nUalUkE6nN/iViHDV78r1ooYGP1N0aX2wWj9FpRxXFl1j/J/10j5pK63vXNqK6zYv1qELYIPQoKWm2QNUkKnPQ5WWPkP3ePnRhepMp1Xbaq0FEezbtw+Dg4O4efMm3n33XUxMTDjru1AoIJFIIJlMolAoOOsegEuvk0gkPO3g+1jXRqPhaDKins7OTgxtG0IqlUKmkMH01LQTfvV6HY1mA2h5Ny5rUcGpPiK+X/08TNVUq9Xc/in2jwomCm4VpurXUOWhdJwqax4GWa2u5V7s7OxEIpFw0XOKetk3aqk3m03Xr9pmKoBms+kiISnASRtTMRB16f4p3RfFOnPDNcdL/VlKuwLeY0mUVmW9uSeL1xLVal/yM90Tx/yGkUgEhUIB2WwWAFAsFjE7O4vBwUFs27bNnUrAvmCaMWaK51pgLkO+gwEbpAM1QlVpaD5X1yCRKPtZDRWON5kMttuuzc1o1vd7aSuuLVDU96A0E+ClHICNmTYU2TCDgFqevAeA4/EpCDXiUIMm+F7eOzQ0hI6ODmSzWczMzDjFkkgknJOcQqjZXAtPpvBUJatFBTzrpr4s9gsAdHZ0OoHDMGr1JdjnK+202XfaNxSeFETquAfWFRb7yvarH5Xkh+BInTKjA0/01dx9SjFqP3CMrN9FDR9LV6ri5eZmPUGZ99AHZ+utbeTn9LWpT4rjx3ZqAAbHic9RelQjLjkfOA/0WWrA6bt1IznbwDlOo6FWq7nowmq16qHL2Tecu+obVkqdP2qYKMXN3370vEXm7Pc24rp1aSuu27xoYIEuHgorXbz8rUIC8AoD3Xel1rFa3JrrThcyr6MVGolE0NfXh/vuuw/NZhPXrl3DtWvX0Gq1MDIyglarhYmJCQQCAcTjcY+i0o2jTBWlC55IQtEkAzmANfqP3zExLpUDqTCrMCyq03fwf/a3tpmCjZZ9Z2enyzYOwGW20FBt3RTL5+imZlWcaomzvzOZjOuraDTqFBefr5uS1c/GqE0qJaW42A+a0Fizp/NZmUzGKUYiE/Xxcd4oJUqFru1S5cLC51J5EM2yvkS2DLzp6Ohwp0Tz2awDkwjzWiJWYE1RlstlT35MKvV4PI5kMolisYj5+Xm34dsiKI4Z14giTWUdqOA0O//Kyoprv6JkHWNlQNgfnM98rh/V3y5txXXbF53Qas1TOKiTWOk8wKuoqKwoRNVaZOHiVIXmZwmqv2BgYAA9PT0uke7Kyoo7IJLnJFnL2PprqGCsP8D6ogKBwFqwBdaS6bKdFOTAugDW4mfV8nMVVMC6/4/OdbZX36W+DH02/9cMFzqGqmAUaarw12dSGUSjUU8AAfvNUoZUCtaPxOutb0mDOKg0ACCdTm+IuiTyYv/YOcc+oJKyNCr7QWk1TTulgpr5K1Wp23HmuKliVpqXfjPr4+PYRKNRR8eSqlalq5GASiWz7hrRyc+sb04/owJTRK/UpaI1v7XZLt7SVly3eaFyUmrOBR2YBWUnPBWQ0n4aTMBnK+2hPhMVfFQsaj23Wi309/cjmUwin89jZmbGhTivrq5iYWEBANz/9L/4USoaYg9s3GhMgVetrFFaHR1rWcCDgaBDQmqtsl23CvDQdgDAC4+8gEDTe4aSCk1VcBRy2v+srwpdfmbvYx8rxcuxUgqSCE83x/KZ1pjZjF5SxaBIyNJZjcZaUl0eda8+UPXvkIpU40J9XfytCoP1tGjY+ov4LPVNKhXKcdC2UGErNUwkxkwb0WgU2WzWHaKpKJuKjsouFFrLiGL9iUptagSlKic1VqzxxWdwbDVXo9KIXO9t/9bmpa24bvOiwhzwHiynyEIXuqIXjeyyi73V8u79IoXHZ+uiY7LQQGDd0Vwul3H33XdjcHAQX/va1zAzM+OEyuLiIqrVqhPI5XIZXV1d2Lt3L7q7u53Q0gg9WrpK52nCX1riFPz16fo6AgqtPUP3rmkbSSUxoIB0HgXEc9/3nAtcoGVP1MV2A/AIG0tjWn/drSxwRb96LYUfT3dWRaPPo7CjIcBxAbzh7izsWzV62KfBYBA9PT3umY1GA8Vi0fUDFVhHR4dL08X223rre4jgiNb4XvaX/YzUJYW4pWy1LRw/1lEzjnCer66uolAouGCgzs5OFAoF9Pf3e3x2DLhJp9PI5XLuHDXmMCwWi5732y0GWl/1n7HtvM4ZW2aNcjzVeFQatl02lvZBkrd5UWvM0j9qpatvCIDz+wDYIEzVArcUEuDd/a+Wo1rFjcbaSbUDAwMIBAKYnJx0YdT1eh2lUskpQfp+KJg0dZH6eVjnZ+58xiPQ7buVanE/jfUoRPVpKTXG3/bvlz70EgBvaiT+qILTPlSqTYuiW0VOOmYqtOz4Umj5+YgUrWk/6Gc63pZ6UkWthYiEvh5u8tZn8Do904t78RR1st42QpTfMdCFxgSfa+e8+istJap10nFUVkI3K9PwUZqS1wFwPkQaO1TWTAel46yGJOupY0d/myJqu850nWofK2JrU4W3Lm3FdZsXteTsYlV0YhEKr1NeX6kozTSvvhWl1fh+pbT4Wau1fn5UR0cHJicn0Wq1HFKg1UtBxf1Bmq3DCiFgTciVy2V8/tDnPZ/51QtYVzKKJv0Qir1PiwpOKwTZj6ogtM/1WkvbWhqOCksVmg1osEhEFZLWz+8dtj1W4atg5PVWmDJiDlgP61c/qqJ6+oj8fKc6xqqoVTnr52pM6PxWH5y2h3W1hhcVD++t1WouYpJ9yn5Xha4HSvKzcDjstmGoIaFKXelEzndgnVq2hpcqI/Uj2vXdVly3Lm2qcAsUpWRUYNJypXIjDWEDAXTB8Fp+ppF1pDg0dJ2LWIVoOBxGrVZDb28vEokEZmdnMTY2hkQi4d7NYAIuTh5ICHgT9LJOfLf+/ae7/xSfvPhJhILrSVKZCaGjowM9PT2eKEtShRR6VNrMDq6Chv0AwHM8OxEhn6nCIxAIuM3TpKS0r7VfFZFR+CuC0qPhVSGoYKfQq1arLiLTKkpmRbcKgIKdRelgVWCrq6solUqe8P6uri5Xh2Qy6fFLEZ01m2vnYWl0IhPXKqq0fcQ6MXsKkRWf75fKinu82MdWubN9nGvMkVkoFNZOC6hWkUwm3Ynbqtg531OpFEqlEoLBoNs3x7p3dXW55yhSZj+qwaJGjRpSHC/6ezVNFdumNCLnaLv4lzbius2LUgcqsJSisYjB+omUHrL0BbBuFfM+XmdRmAqXZrOJ3t5eFItF3LhxwwkhpQs1iqparbpoNbV0VSCrlcvw/88f/Lxrs59Q12AFFdYUsAxuUCSlguXlJ172PB9Y37tlIzZVOTAIRfdTaTYMi1KUGlUayaIPHWeLqCyVyLGz1J/2jyJEDX7g/ZVKBZVKxdWTNJmlCnV8bNYPKn4WDU9nP6kBwPZZupjjwDZb2lTrpGtD/y6VSp7UWco26AGgjF5kCHsikUAkEkEymXTzj3M0nU57fI5sg6Votb/0h+OhY8w62DHX57TL5qWNuG7zokrHWnhK21CAq+Wvysr6HJRqoyJRlGYtR92jUiqVMDAwgAMHDuDcuXN44YUX3MGQXISkZyjA4vG4O823r68P2WwW2WzWJZHVxK2sH8+z+uoDX8XHXv+Yh64hEtEAAEWIbBvPp2Lb9btXPvyKE8ZK5fBvIl2iIr6DyE7pJtbBZkBXZUAUwbapM1+Fmo6L0mAqqK2BwXeRHuPYq5Jh8AbDxAuFAubm5hAIBDAwMOCMCJ0zq6uryOfziMViLh1VMpl00Yc0EFT50oghCmN9OeeY7Jaf873q99I5r8pU+1e3CLAPGBDE75i0uK+vDx0dHS4NFNNDUan29vZienraoUvOX2Yy0Y3Z7B/WU9cbx4BKjqcHaCQijTI+g3OYa1Az/rOt7eItbcV1mxdFPZzQ6sdSjp3CQWkUtdysr0q/14WoyIT/K/Kr1+su8iqfz7ss3kRtpBIVwZBmGxgYwPDwMBqNBqamppx1q1FUfBajumyElfrP+HwKSAoHRSvWL6QKwF6jCluVPa+1CJSK0voxFB3TWc9n8Dql/vgsfs9rKeD0mfyb72If6UZsRWgcP/ZrNptFpVJxm4vV2lcfnFV4/IyBHBbFsm6qZNX3qGidz9K/2f8WMbIQLQHrCo+f892qfPkuIkoqPt1ETyWjaFiVCr+vVquubmyPGoY6l/g3+0X9mEopaoCGjmvbx/WdS5sq3ALF0ga6UHSBkMbhdzbIgNdb2kZ9DBatWcqLJZlMIplMolwuY3l52Z17REFlhS2wFr3V39+P4eFhxONxl9lA6T5ap7TgSef8+eE/39RJr456S2tSWLKP2Jf6LPaJpVxtP+sPqR61iPU5qihtwAzfb8OqVXFpW1QRKVqmYUGkooEp+h7171UqFczPz2NhYQGFQsFDA2rhZ2r5k1ak8qKipILgs/i50resP5ULs5HYiEsr4JWy1qAWvZ/zlGNtA47YN8wK32q1PNk4LIUaCKylR+vq6kIikXAIlXXX+a1KVulf7XsdM7aDz9Ix07mgY9guG0sbcd3mRYWr5khTy42Lg9+rBa8WLQCPpUmEpAvMUjJURtwLw/ORRkdHMTAwgG9+85suiS4VTalUcgqPyV5JJzGfIWkmZtzo6+tz1rVmgKAvr9Fo4HMHP4doNIqnzz0NAB5nOTcgq/BiP9DP9Y1Hv+GOUg8GgwgHw04A6WnGpDepFIlKiBr4nc2aoFSmIk6b9QKA25OmgpAKu16vO1+hWt52g636OoF1I0MREz+vVqvI5/OO4uOzU6kUEomEQ42skyotDS3X1FBdXV2uXouLi8hkMo5WU8qVY8kSCq3tI8xkMk6p0TfFfuM8Y1+TMlQUw/WhYej0ZfF6Gg3JZBIdHR2OlmNaK56rxuwkTOdFf2wwGHRBHgyuYHt0Tqhhp9dpsmW2i9dYv5aiaKX/22VjaSuuLVBUMHLRKsoAvJSizSMHbEwRRIHA75RS0qg/pXN0sTLarFKpOLqP+7YY+ccs6rVaDX19fVhdXcXU1BRmZ2exurrqNoJSOfB+todCTTchNxoNPHPnM+jo6MAPvfVD7nNFUhahtlotnHzyJAIrXioGWKeZmFFdlYU61HmfniGmfWfzLSpFtNlGWv2fQs0GWigSU8WoCEQVlFr07ENGDhYKBayurrrIPwpsGieK7pS25XtZPypLGjP0GVHxaHJcS3mpQlOkoZGDlp4G4AkMUUNOEbeimlAohHg8jnA47KJKtQ7sN56EzByYFrHSx6c+ZEVxHDudEzp/LKPBz9SwtOyEHYN22Vjaius2L8qnq6BSeoOFFqdftJMKJVq8wHrma0Zckf/nwuVZWgwbJo3S19fnQoZbrRZWVlZQKpUAAIODgwDWFNjc3BxCoRC2b9+OUCiE69evY2pqCjt27MDx48dRKpUwNTXlMsarj6herzthSBSlkWFfPPZF1w+0kBlJSOTowqfLG4+iYOJcDQCwmURIe1HY2GMr+Jn6vpQ20+85bqr0GEyglJ2lodTXyLFlcAHr4ufDazabuHr1qjtzKhQKuQz6FNh8jm55UKRuD85UActABlJ3GoBh6S/Aq1jZHr6XWfCpIC01zbYrNVgsFp3Pin3PAySptCKRCMbHxzE3N+cCgYC16EMeidLZ2YnBwUEUCgVHIZJxyOVymJ+f3xAso8pVFZCOvaWD1a+pWVFUSdognnbxL23FdZsXRRSb0X+c4Lp3yV4LeDckqzPdz7nO5yvnToEZi8VcCigesre8vOzQl7Uc1e+hyEXRTrPpTRHE35bKpBJQq5bPU8FAZazKRBU6BauGllv/hKWkWGcVYn7IVkP2WSfSlRRsfj4oCjt9p461WuJEGyo0+T5eT/8j/SnpdNpTP44Rx8dSV6osdb5pf/AZ3BrAPtZAoUZjfaO73SbBvqNiVaSt48x5ToVOalCDV5RWJ5IHgEKhgHK57IwaFu2veDyOYrGI/v5+zziSwlSkq+hfjQpLF1oErP3C9/M79jP7Rt/VLhtLW3Hd5kUpIT8LTCe3CjxVRCy6yNS/xe+UgiIyo3DRhcuoMmbYzmQyWF5eRiQSQSaTcYKDtBr9DsCagOruXju5uFgsIhBYizYsl8uOfqGC4AF/HR0dqFQqzknOQp+HHvFBS5YCVJWCRoKpbwKAR9moJa1K2Ebb0TJWnxj7H4BDjBYFq2GgRokiMYaMM6yc9K+loBTNUOATuTKnIDNDxGIx1Ot1l3tPgxaIRGwwgQ1gUKpP6S8NWND7VLErnaxIBFhPUaZKnYVjxXfSl8r2Kvrl9YpcS6WSC4nXdE6aFi0cDqNYLDo6lPOXORtZZ+17NUJoLPG9uoGfdfObc2pwWPTWLpuXtuLaAkUFKBeaHpDHxcKd9zrplZ5S/p6LE1jfi6ICiouJ+1BIyZCO6+7uRiKRcLQPM1kkk0lMTEw4pdRqtdDV1YVAIOBoqj179mB1dRXLy8su+0apVPLkNKzVai6HHKlLRsWpwKJvgn4bppVSxWMj19iX5XLZtd0iJ1VeRCz0B1G50qrmyc6JRAIAnO+I47S6uopyueyCHjQUWoMgqOjY9wxciUajbhMs+0cRDvuG++jq9Tqy2SxyuRz279+PeDyOlZUVF2QQj8ddPzCsnQaB0tDsJ/UxkspTRKtKUzNwsI6snwYf6FxUZch3KNLj/fzNceR37GcG/Gzfvt0ZSnNzc8jn85ifn0dvb6+bz6QR6ddMpVJYWlrC7Oys54ic5eVlj39P+0DnixotnHNcGxYNqxJj4ZygEuaz2ojLv7QV121elA7kRLYoSukuTnpFCvY6i64AL0qzliHfrcEGVKCxWMzRhfl8HsC64KYgJSLSo006OjpcqiGmWaIgYwSiUlNqHbNdTOdEJaYIkYrchkZr36ngsMjLUqjsU+0XFZoqdEihabAFBWtXV5eH0lWLXFEFP6eyoZLh54pm2U9U8CsrK6hUKgiHw+jp6QGwdpQ9jQndFKy+TSILm9lc55P2lc41rQe/UzRCvyQVswYo6D1KoWp/atQgx9T5LxvrWzZCoZDrY56yTcOBe7G0TlT4DH9fXFxEd3e35x6dO5b1UGNPUSvbr8raolF9pvqnlcpvF//SVly3eVHBpnQUv1Nqwfq81OejfDwXryoHuzCtQCE/z0LBE4/Hkc1mcffdd2NiYgJLS0tIp9NOSBGpqJKkpU7/QSwWQyaTcVa/BoewXnZjsPqcKKiJhlg08tI69/mZ/m19XX5CStuhlJFGuOmYKULI5/MeRWpDnq11zQAElr6+Pk84NSM3lW4LhULI5XLu+1Zr7ViO5eVlZzSwL3k954Hfhl72i2678NvzxWcpUqJvS8fSzlWtp/axog0qL/rS2IeKTjQYh4EifA+pV+bLZE5FAC6bBunUXC7ntg5UKhVnlFGh2PXi92PbotdbY5AGmyorbXe7+Je24rrNiwoP3eyqk1ypNEVOqrTUb6HCktSJdcBT6Si1RiHHfUBdXV1OwDz55JOoVqu4cOECzp4968LDM5kM+vv7nUJR30NnZydqtRrK5TIymQyCwfU9M/TTUGmyqIOd7dKIrnK57NoViURcxBw/U8W1WVGhaH1e+lmr1XJKd2VlBfPz845+JA2lCKxcLrvznvbs2YNwOIxCoeDQjtaNPi4md2XgACPvNGqPx92TwpqamkK9XkcymcSbb77p+nNkZMTNCYaXqzGkwSG6H03nnNZT95XRj0nfkfrBFEVqdCjD6NUoUl8gn8/ruRb0e1Kjus+Q76YfjHQyI2N17vMQ1GAwiG3btmFychLNZtODTpXWpTGiho4yFErbq/9NjUyOsQYRMTWZKvY2Vbh5aSuu27zQz2SpA10ItGwtoqGyU+exWr+qENQaVivZFvqRVldXnU8nmUwiEAi4bBrK/8diMRc1yN98PinElZUVtFrr+fsozFjUylWLVa17FhvJpZ8pZaOUmSpyCkb1USgNZg0Aos5oNOr2C9nIR45hNBpFoVDA8vIycrkcent7PXu/VBjys3A47JAo+04zLtAvxvaWy2UUCgX3bt6rm7ItrapzTZWYRvnxfWog6b2q1JReVIrMfkZEzPoB60pKfW1KbZMi1THjczWKlNSkDZigv5ah9Hxmq9VCMpl0yloDapjrUjOEKBVqA2cUcVnmgnOW7bB+Vd7XLrcubcV1mxdab9aRrb+5+DjhLZ3EhU/h4OdU1kXERcjQd42QCgaDWFxcxJUrV/CBD3wAweDa6bnLy8vYsWMH4vE4CoUCgDUkoAqINA8zIgDr/qFms+lSQi0tLQFYPwSws7PT7a9Ra1czs6t/hH/TYiWdRsuYwoN1IIJkf2u0HxWRpYH4bAq9zs5ODAwMIJPJeDZVd3Z2oqury+19KxQKuHr1Kt555x3s3LkTO3fudBkdVIEFg2sZy4eHh91xMSpMbXANAywWFxedIVOtVhGNRpFIJBxS04AE9qUqMSpjziEaTUyxxKCRYHA9mpPtp+FhAxc4Vvp8NcjYXn6nSoJ9XK1WHZq1aZ6UkuVxITY6sFAooFAoOOW0vLzsxpXPjkajSKVSLqBGFYgqdQ0k0TmjUaBUvDYXpO5boxLkNhDtB92M3y4bS1txbYFiaSrrAwC8eQv5m2G/GiRA5MW/LTWhz1LlCKw77ZvNJiYmJrC8vOzez8S7yWTSPVsFigooIj9d/NVq1VGevEb38+g+MGA9tJr+JfWF8Z2KMBWhsF7aNv5NYaj7ffwCYqg8gsGgC+WnQKISoWDi/iXSVkNDQ8jn81heXsbg4OCGQBqlZ2OxmKsrr7E0FfuaYd+8rl6vI51OIxKJuOwmupdIfZcMnFGFrnODKE37UlGpKj+dO6ocrS9R0yfRR6iIhsqV/lI1oDhWHA/OA1J7esClFraD40X/qwZYtFotRznrnGJ/sf7WaFQWg3OWxgXnAcdGr+Nvi9DaZfPSTrJ7mxcudmvB+vHm+rler8pOlR+vobBSSoaLkMJChS8A3Lx5E7Ozs25xMoqNyEh9WlRI/GHOOxVU1WoVlUrF1UePXGc/KAXDevoJPLZZ/QnqD1OBqH4aAC5SUYWiVVraV+x/zRmo48XftVoNCwsLqNVqSKfTbqPrwsKCQxJqkKh/j1GXiiL5Hs3qkcvlHHLTjBgMS7dRofycCoTP1WNYFKFqn7IuqqhUoHP8tS3AutJTtML6arAQx4c/OldtUfoSgENo9j4N8FGKkgiPSo0oTTc407BT41CNCZ1rRNo0ENQPq9drP/Fevk836LfLxtJGXLd5UQqHFJvSV+rEVeHBBVOpVDxoR4sf9aFJQa2yZGhxMpnE1atX8fbbb2PXrl04c+YM8vm8c37T2lWURMuTFi6wHuxB/xctZbsxlPVRIc3NyJYiUuFJlAGsnwvG77QoKrXBFTYLiaJGKkDSYCyqWNj33GRdq9WQTCaxd+9eLC0tYW5uDsVi0Z3Qq8iGApTv1aSzpCOp8Hm2Vr1ed6iLClKfyb5iGzjeimy5laFSqbioUEUd9KtRAVG5UgFqAAWFPQ0RKggaMKSliZQovBkFqIpRT6bmeOqcZTtyuZwHMRUKBZdgmGNAKrVcLnsMLmAt04YacLo9gGtFla8iLqIpXUdq3LBOvE4ZCKVI2ymfbl3aius2L0rXKfVhHcBcOFwoXOy6V0jP8+JnGiFmrWAV8BogAawJ1dnZWQwPDzshpYqQ93DBqs9A6UwKAU37FAqFEI1GPXt+9OBF1lF9VXrKsVJWANy+MRXeflSbCtlCoeDxIVJJEa1YGlTRAuuj76ECYOYKVbD6mVVe6kdTAUnhSwVTLBY9dBrDu5WO07nCz9gGvo8IjN+xn7WwrxTBaT8qmuE4aKonZRHUoGK7dJ4rq6B/sw5EJ2y3BsZoUAYVlioDKmMq5lKphJWVFed/U3Srhzuy7Rwfu15s3a0CYp0smmU/KbXaRl3+pa24bvOie2GURlKenoJSqRHl0K2g4oJS6oSLhg583f+kTnOik3A4jImJCezcuRPhcBjlctmdkgys00WsGxcrUZn601gPhnV3d3d72hMIBBza0Hqzndo+RWUUDNzXo8KPCI5/NxrrWTlWV1cxPT2NTCaDvr4+AGsbeCuVCuLxuIcGIuqhf4UUXDwed32hCIXW+MTEhEONHDNmaSAiYoQgKatSqeQyXRC5lMtlVCoVF+mp1GetVsPk5KQ7doZ1ZoYJRS6JRMKjoIkSaXQoxUqlwHatrq669nIeEUXpvFXKWmlgAO40a2Y+0Wv4v/UxUVERIZHmo7BXtEp0zg3ZS0tLLiR/9+7d6OjowNzcHEqlkodK5Bzj+y1aV4OH7AD70S+Ag/VWGlGZE9bbT+G1y3ppK67bvHDyUnnoYldhTCuRi0YpFj5Hgx1U8ALr1iEd7vxMKSUqIr6PAQzNZtMTMkzLWRGI/s0Fa31FaqkC6xa7Lapsqcj0mURn+j4bJafIQ/0PVJ6k4Jj9gz4TCntFqNpXNjiGCkYTCBNhrq6uuhB6NU5Ic/E7IrBisegQaSKRQDAYdCiBbaTxQeFLui8Wi7nxpg+GhTQ0+4LP06K+RO0rRsA1Gg2H3jWrhSJfHVv7fCpIvkfpP0UeVqBbdMNISgAePxcNDKU7V1fXjizhWGiiZraZY2aNP2U+uJ7UyGP77dzWNWmZAZ1HbaV16/I9BWf84R/+IY4dO4ZUKoVUKoUTJ07gK1/5ivu+Wq3i05/+NHp7e5FMJvH0009jdnbW84zx8XF87GMfQzwex8DAAH71V3/VY920y8Zi6QT+T+ueVJVSTGodU4jaxaD0kS4+pV54nfrReE0ymXQUH/e+cOMwo9oYEUYfF9+h0WXARr8Q4A2M0NOGVeGoJa7h4vRbaJokizJVQFAJFYtFl+qnWCwim806Go71B9bD+IH1ABTdf8T+B9aoSo3q6+joQDKZdPvgmA6KARWVSsWhOLaXBgS/Y58yw4MGn3AvlApGKjUNVFEqVxERhTj9UhTWVCrse/YBf5Sio+BWilADLzjenF/an1aY8399nn7Gn1qthlwuh1KphFar5YkspL+XVCA3hzNNmfW5KQ2twSVqSGqgivpS9To1Xji3dX4rxWq/s+iuXdbL94S4tm/fjt/93d/F/v370Wq18D//5//ED/7gD+LNN9/E0aNH8cu//Mv467/+a3zhC19AOp3Gz//8z+NHfuRH8PLLLwNYG+yPfexjGBoawiuvvIKbN2/iU5/6FDo7O/Hbv/3b/yAN3OpF0QH3I6lQBLz7ltQq1t98Fn/zflJw3KhKC9VashowEI/HUalUsG3bNnR1dSEYDCKbzQKAUxS08El3cQHTsqdQUeUIrG+eVud7s9l0Gc25J4l0IwU46TUV1Orj0ROOSUepj4Yokft7FFlRwejeGj3KnQKJaJVok4gxkUi4sdOAiK6uLvT392N6etodvQGsKYVkMolIJOIUCBEDhX+5XHaHQ/I04a6uLoeAFHFSwXV1dXkCURigoGHmqlAUfen2BM4RKmJmX7GoSA0e9QspOtZn29B51p//a99RibN/1EcaDoeRTqedb1Pnb6u1drpBX18fpqam3HObzSby+fyGumkAEf/ncyxzQSSra4/PYT5EXa+kNvVZmyHLdvGW70lxfeITn/D8/x/+w3/AH/7hH+LUqVPYvn07/viP/xh/9md/hscffxwA8Cd/8ic4fPgwTp06hQcffBBf+9rX8O677+L555/H4OAg7r77bvzWb/0Wfu3Xfg3/7t/9u/amO59CYee36JU+pKOe96jiUXrOWnW0YlVZ8dkAPEqPAprCQxEfUxPRl8LC+0m/qJLRKDO+Q4Ue28X60J9Bh7rOF1XkVOxUHHbjtfVBsC4MbmB/0GfFfqrVaiiVSp4gEbaR9WU/M/u4to3faX8SjdGXpYpX/UU69rTqNa1QMBh0fiYiJWaNUEVjsz9QYXDuULCrb0qpMfYDAI/fUeerReo691Qp8Vq2gXVShcc+VQTPNaGBKJoKjPXS42CU1aFRQWXKMWa+S9Ledq3o+tA2a+SsnVOK1qzfyxqH6utSA6JdNpa/8z6uRqOBz33ucyiVSjhx4gROnz6N1dVVPPHEE+6aQ4cOYceOHTh58iQA4OTJk7jzzjvdCbkA8NRTTyGfz+Odd97Z9F0rKyvI5/Oen/dTUYGu4cM64bmQdCGqNchFqrSEdaYDXkWlQRQspAlpHapgoD9FfVMqXAE4ZMfnc48S0Y8Kd61PLBZDPB536Xoo6NlmXqsh1aQXVUhrsRQQ28F7AbikrMFgECsrK8hms8jn824MVEFRODOkPBaLeU4GVjqN7SUKpdLhGBE90KfV3d2NTCbjCcnu6OhAKpVyNKRSkqoE2B4GlSgKYh+QplTlbX2lfjSpzgsiMPatKmJVYH40IOlFpVnVH6XGAed7LBZDOp1GV1cXUqkUuru7MTg4iEQi4RgKjguRpdZdN4WTKrQJnjmmWmdF9rZOwLqCYr+qEWLnm65vG03ZLpuX7zk44+zZszhx4oSzrr/4xS/iyJEjOHPmjEuqqmVwcBAzMzMAgJmZGY/S4vf8brPyO7/zO/iN3/iN77Wq74mi/g0tXASM7rJRWrxX9xiRflMFYYM9aAXTKtUILy42Hvs+MzODe+65x6GoXC6H3bt3I5FIIJvNOupndnYWmUzGCQo68ylMaUErvQLAKY9gMIhMJoNIJILu7m5UKhVUKhXMz8871EchpXuJdM8QhYhuvNWAESogRvoRrZTLZZdvsV6ve3wizEjB88b4LLX2aYlTMWjYPPsjlUq5NhBRpFIprKysYGFhAZ2dnUilUti/fz9yuRymp6cd9ZfJZDyh+kReyWQSnZ2dWFpawurqKiKRCNLpNAKBtXyGGvbOutFIYGg+FZEaEow2pE9PlS/HgPQt6VSNrNOktYosKNjZ9/V63aEo+vCIBIm+U6mUC1ABvH4nKvWenh7Mz887hcx5lc1m3bOSyaRnbtMoIwWq/ir2F9ujSJsh9DZHIu/l2NL4VMXFZytdaJV8u6yX71lxHTx4EGfOnEEul8Nf/MVf4Kd+6qfw4osv/kPUzZVf//Vfx6/8yq+4//P5PEZHR/9B33k7FQ0CUIc0v9PgA8Cb88yPetMwYaVClEqkxaxWsI3yo/FCizWXy3mQGoU0fT4aRah1t/XW63gtkVomk0E8Hnfh0+pbAeA5XNGiVBugomi1o6PDs4eKypRHW1AgMs8fBawe3UIKVC12tb5ZNHiFysZSvcFg0CGKQCCAfD6P/v5+xONxdHd3Y3l52V1PpaenTNOntrS05NpH1Ks0nFKHWk8N6LGIiXkLWTSSk3VX5OiHTtif6tPknNC5yucplUifH7cgcI4o4ua2hXg87urI6MqOjrUTtXmKt76f60gpYq23H72nCXPtOHM+cS5on+gcVYXGerSV1uble1Zc4XAY+/btAwAcP34cr732Gv7Tf/pP+OQnP+ksGUVds7OzGBoaAgAMDQ3h1Vdf9TyPUYe8xq/Qmnu/Fo3QUpSkSkf3CCn1Z30OujdKFQOVll083E9F1BcMBh0lWCqV0N3djT179mB+fh6XL1/Ggw8+6DksUQUB/UikLaPRKOLxuAsSUB8MAKRSKY8CoVAiBbdv3z5H/5TLZQSD6/uR+Ay2hwjIz9dHn0YsFkMymfRY1NVqFXNzc07wa8JeCp18Pu8JKafA0VBsqxQsSgLW1kC5XHYn9jLogrThlStXkE6n3TsUsTEEnIqUaIi5DhlgokK6Xq+7KFBGNapgVtqPSll9rbxOKWeONxEd5yL7igYIAE/whCpzpWstdUbly7nLjdZEOvwuHo+7uaLKsaurC/F4HI3G2qnHnCe67UEpUioaHTc17tRQUWSq/WfZBPVPc32RftcgFs7fdtlY/t65Crmojh8/js7OTnz961933128eBHj4+M4ceIEAODEiRM4e/Ys5ubm3DXPPfccUqkUjhw58vetynuyqBDWYAFFLtaPpftOgI1ZJqxQUmGu1/B7tS71OaSCMpkMksmkO4+KNBXrx0Wpfjn1t+jGWQ2XV7qNtBH9FVSeyWQS3d3dTqGotc5CX5ofIqBi5PsphFkXRRv6OX1utOw5BhRCdq+PBjmoIFTjIRRaO723p6cHzWbTKTEqe6ZBIuXJPiL6oZDjPCHVa8PVSdMq4lPFSsqO2SZYX6WSqZC0DzW/n/aBzlX1rbFe7HsaBtbIUFQaDoeRSCSQTqeRTCY9ab3Yp1qskaL9EgisRZgSaSs74ec/5VpSQ5H9oYEkFgGq4cJ5ohvl9bn60y6bl+8Jcf36r/86PvKRj2DHjh0oFAr4sz/7M/zN3/wNnn32WaTTafzMz/wMfuVXfgU9PT1IpVL4hV/4BZw4cQIPPvggAODJJ5/EkSNH8JM/+ZP4vd/7PczMzODf/Jt/g09/+tPva0T1nQoXH7Ae0aTUoCoftWDVl6WCwNIguij93quITelHRhIODg5ieXnZnbSbSqVcNo1Wq+UCDGj96zNo5QeDQeczUvqOAoYCWh33pHuolEghKYqxipzPVWpH20eFq/1r+z0YDG6gqBSt0ldh99T5+RR1XNQvl06nsby8jEKh4BQTFT/bS/8M/UY0EJhdo16vO78aKTE1UlRZa7AIgzQ06k6VgxW2qnzZH0pn+9GQvE59tzRu9Dv2ifY9FQfbpBumLSWs/a4BIKVSCclkEtVq1W3m1nFmm7herPFiUZcaexwbe732jR64qRQk4E2/1i7+5XtSXHNzc/jUpz6FmzdvIp1O49ixY3j22Wfx4Q9/GADw+7//+wgGg3j66aexsrKCp556Cp/5zGfc/aFQCF/60pfwcz/3czhx4gQSiQR+6qd+Cr/5m7/5/7ZV76HCRWGTofKHiUdt5BIXHxcQKSRg/WgMtfwVTZC24zUUghT4FAb5fB6dnZ04evQoLl68iG3btuFb3/oWduzYgXPnzmFpaQnBYNAJwkgkgmq1iunpaXc+lHXsE8kBcPQgkQHby4VeKpVcVnpuKFV/nIZDa6AH20uKUH0Ovb29KJVKyGazng3N1h+ogp3h13yGRXZMy0SFB8C1idGERDmsy969e7GysoLp6WlH4xF5MiCk1Wo5KnFxcRHA2t6wer3uNk/zs0wm4/qVe540KIP9SuFOZRGLxTwRgmybbjmgf82iSaWHNRqWfcj5rAwAlbJu5laFo+dY8XuLjvjuQqGAbDaLlZUVdHd3o7u721Hd2WwWw8PDmJubQ2dnJ0qlknu+Ur0cMw38UKXCPqPBxDVoKVVtK6+n8cD5ZTcvK/XYLt7yPSmuP/7jP77l99FoFH/wB3+AP/iDP9j0mp07d+LLX/7y9/La93WhguKioNAA4BG41pHs970KC138ej2wLgCsRa1Ijwu0Wq0ik8lgfn4e3d3dmJ2dxR133IF4PO6pN8OOGalnhb3SddyIS0uYyIvPUyXCezSiTakb6w9kXdSCVyTA56iiZrFIgWND/w+vUYGqVOhmrAKVAQU8I9oSiQQGBgZQLBZRLBY9KIbnnmkkXnd3N6LRKJaWlrCwsIBms4l0Ou38PFTU7AcN1VafGWk+DXRhn1n6VPuDz7VUswbqqG9Po+5UMfA9RKPsT24zILrke3U9MCckjQ8eaqqRpzrP+bdmolcFZdeNRehqLCnTwTrbSF3ON11/lk3xC+hpF29p5yrcAoW0E6PI1JdFdMTFTkGh/gdVHixqPVtahZScIh36U1TglctlTExM4P7778fS0hJGR0cxPj6OHTt24K677sLExIQTJvPz88hkMhgYGHDokbn6lOaigAkEAi7ggIjJUpr0JwHrTnvAewSKpXFUeFCQMSuHvY59rQjWKm8/+ojfsQ8ZLKD/6ynELGyD7reLRqPOl8d9RtFoFN3d3QCA+fl5d45ZOp1GvV7H+Pg4QqEQ+vr60N3d7ZAVT+Ylrcq5on4c68cE4E5RZn0Z1k2FVi6XHcJVv2axWPQoRmAdaaoiBLAhEIPIhP3BfmIAEhVXsVhEqVTy+PkCgQCuXbuGubk5LCwsuD6j4ZTNZpFOp5FKpTA/P49QKOQMA9KORPBU5moAKvXItvLdrVbLg8B0MzOVt84hGiwcF44B29xGXf6lrbhu86IWqQpLjWgilWJDepUGU65eF5A60FWJqQCjEFa6MhBYCwNeWlpydBNRRTgcxtDQELq7uzE/P49Wq4VsNuv23kQiEU/SWRVitLLpONfgAmDNMuY1Stepn4wbg2nRqxJSK5r9o74eu9eKwsMPvVqLnEWv43PZX6Q7bYSj+nJUYGnwAnNDamg7kRGPTOG+rXg87jYsUzDqnjnOBQpMDfrRecB6qR+Nddb+1Y3nulVD90Gpn0jroQjFryjlzVyN/J/jxcK1kM1mkcvl0Gyuh+/TCMjlcujp6fFQ3/THsg56crH2iaWDFbVrsJEqKK4n3V6gz2Pb1UC6VX+0S1tx3fZFaSlgI2euisxGPvEa+7lVWpaO1JBftTAtHdRsNjE3N4dCoeA2HafTadRqNXckyOzsLAKBAIrFosvcHY/H3YGNemgkKSpVRhT2FDL0l7HO9LEQpVA4qZ9J6UK1/pXeAdbQQKlU8mS2Z734HD3fClhHRxZpaZCHHQc7jiwaAKFCXoUdFQZRFJVGLBZDoVDA8vKy23wbi8U8vj0NWmCfs86quFg/vksNGBvkQ6WnARQU0kRHSq0p5Us0Q8VIY4TPYOE4agZ5O4aWwmOyZM6laDSKZDKJYDCIYrGInp4epzxXVlYcpWjniPYV54FeZ5WxUvqK4rX/rSHEtaRzqE0V3rq0FddtXjQ4g051XShUKIqolFtX3p3XW8WkAk0XkS4g7skBvBtYz58/jzvuuAOf+MQn8IUvfAEPP/wwXn/9ddxxxx04ePAg3nrrLXR0dCCfz2NychKjo6M4ePAgkskkrl275ixoIkEALqt7V1eXowt5Qi2tbbaXWRxYH/XLqH+GgpTtI93FKDwKUmYXV/pMs0ro2V4URkrtKV2kgTPcLAus558MBAIbwvh1vNWar9VqWFpacuNOv9bAwIBTUNeuXUMkEsGxY8fcfjZSYMD6Jm6OP9vB+cPvlLZl0AYT/Go4uSo3a/QwO79GrrIveA2NkHA47HJcci7w/RpizxB+9lG5XHZGQqPRQKFQcAbZ/Py8JylxKpVCf38/VldXMTY2hh07dmBiYgLpdBrxeNwpLlUWapQQhSudx7aokcXCOWoNHVVYusb1XXx+u2xe2jGXW6BQgGkoOAUzv9OIKhXONjRcUYFVaH5WnqIRPkPfkc/nsby8jOHhYWc5z8zMoLOzEwMDA24B0h9RqVRc2Lv6Jagc4/G4J30Tr6MgI2JLJBLOp6I+PyIEXfjWwrXWuQoORUgWrbKuKujZl9qf1j+milSDOCxaY9FrqYyVhqLlHw6HXboo9i2DOqgkdHwVSejnm9WX404Bre2mMLdBFewj9UnpnGP6K76LqaE0h6AaVMFg0KWQ0vdZ44Morre3F+Fw2PmWSB8nEglEo1Fks1ksLCwgFAphYWEBfX19jsa1rIUahzpvLBq2fWkpYl5n54gqMG2vUozt4l/aiOs2L7TsgXUhC3gjnigcSB1RqFCQU+iotQvAI1CUplCajIuLoc8AHC3EI+4ZSciw4uXlZQSDQQwODnoyaFSrVXfwIZUqhUYwGHQpeFhPXqNCWAUwBVmr1XIh8WrhWlqVqE6VFS1cGyhhgxb4PvpUVNlrFBqFjwp09TPqNdq/am2rgNPcixTe7CvmMCyXyy5AIpFIbEAnVPAcd6WziFa1n6xxwjYAcAjJj7LmnFL0rIaAGl1sE5FKtVr17GvSQoVpDQ67NmKxGPr6+jzH1tTrdefvi8VimJiYQKlUwuzsLObm5vDwww+jVCp5EncrGlX2QalcP4bCGj6su64pnSs6j9WPxz5sK6/NS1tx3eZFF7IuaD3eW1M88Tr1CfE5agWr0lBLm/QGlRXfA3g3RvKzhYUFXLx4ET/+4z+OD3zgA3jzzTcRiURw4cIFHDp0CD09PVhcXHT7mbLZLBYXFzE5OelC5LWelk5iVgN7JHurtR5x19nZ6TYia9CCpgAiJaZ9qYit1fIePMiURaQKNWiD72YhZUk6U3017DfeSwqRip8+HrZL0QfrR3puZGRkAzIul8vOUNi/fz8ikYhLzEsKlP1AQa8CVtvAazgHNB+hIgw1npTa5HNJ19Jwos+QSFoNGT6HGffVaGLhmKhPln0UCATcSQEDAwNoNpu4efMm4vE4otEo8vk8+vr6sGPHDqRSKZw9exbFYhHnz5/H/fffj+PHj+PSpUu4fPmyMwJo9JGGJ9pnv9PHSOXGsbUBPErfU4nyf85FfkYDUw2hdtm8tKnC27woZQF4c5cpYrKLG/BahUpN0OLWU33VmtRn+CEERWn1et0df37gwAFUq1X09/fj6tWriEajLkks31culx31x025lmLiMR/cbMtNulzQFCSJRALJZNIpDAoEtdBtXyqyVN+gBolY/576svR+7QelxGhsKHKhcFKkbOtCpcXUTlR+mk6JqHV5eRm5XM5Fa1IxsM3c1K3KUPfKUUnUajVP5gmOg/a1Xx8CXgpWIw5VsREJc+5okALbSMWuR6qQUtSAIIvy+JtrIhgMYn5+HnNzc4jH4w4ZMgdlq9XC7OwsotEoent7sWvXLqTTaXfCtSpmRb1cD6yPfq50u/7NvmI/+fkxWWe2l/3dRlvfubQR121e1ApttVpu4y4XGqkkYD3TNq1R9dvo4gHWFaDl6imoNOEq36PWIO9vNpsYHx/HysoK7r33Xnz1q1/F8ePH8dWvfhUzMzM4duwYlpeXMTMzg1arhRs3buDhhx/GyMgIZmdnUalUkE6n3RlKioSIHNXa1Qzuus9LD0vkc0hp6kZX7o9ZWVlxx3sw0S8VJX0kqrz4HAAeJUMlzIAFpZc4dpqGS4WjKjJFWAwSqdfr6OvrQ2dnpzvihM/gydOKPNhG9svS0hIWFxcRjUbR09Pj9ucRNWh6JaUPbYYV1pWF/UKlQlSiBgifSQXC6D2lQLmXrdlsOsFtUbAaNpzbWudgMOhSzEWjUXzzm9/EzMwMgsEgCoUCWq0WDhw4gNHRUcTjcczMzOCpp57C+fPnXdqlmZkZF/WqNLjOF6VCdd2p31kjM1XZEc1b6plKyu6z1PXeLv6lrbhu86JKR4WTKhu18FRwAut7YHQxWOc5P7coQJ/tlxmBvqVisYjFxUXs2rULu3btcpb2jRs3sH37dvT09GB2dhatVguFQgG1Ws2hqGq1ilQq5dm/pcKd7aegIDJSBMbPFVlauoVK2S/sm0o+FAq5qEEVoMzkQSHGPuVnGpVo36kIy1J02s9EkRTq1oejUYq8lsqA/c1n8rwyZsznBmKLEjXKUZUV5432vUasqoLmtaw7+1TnlNZP0Z0Kf5vuSClDNR4U5dGASafT7kSKYrGIlZUV5+uLRCLo6elBIpFAtVp1frDV1VXXrnw+j1Kp5PG/KSWqSktRFNGjjrUdW6XWqdDsM/m/9e+1FdfmpU0VboGiqIgLlz+WJtQgBnX28jmAdyOupa70OgoHFVpqlXNR1ut1TE9PY2VlBXv27EEkEsHevXvxzjvvYGBgAL29ve5dlUrFc4IwKSKL+lQ5aigy66UWP4W6HuTHSDQiK57fReGg1J2mDWLEI5WDZlpnW1XQatSjpQCJVNgeVbqKbrW/VRlYfwcTDXd0dLiDNAuFgkNrwFrI++zsLJaXl91GZIaa28AGnVPAxmg+FaJKb2mEoSohm6BYowg5TjRQ1LdqlZVSs0Rj1o+ra4OUMelnInP2eXd3t8uQ0t3djWQyiUBg7bDOUCjktkDYeaV9on2kc0bpT71HDQ81sizdqYpQ79X12C4bSxtx3eZFJ6+1BtWK796QJwAAkypJREFUVyGgk19pJKINCgEb/usXfKGbb1WwsB60oF999VUMDQ3hyJEj+OIXv4gHH3wQFy5cwMDAAO6//36cPHnSKZXTp0/j0KFD6O3txdLSEgqFgjvwT1GGhn6TItU9Q6RXSN1pQAbrqShMfS6xWMyDHHhUyNDQkKM/GVQQi8Vc3ajgKKi7uroArEePsV9UkNuoPdJKDJxg3XiUCPugVqvhypUrHqRIhcyABB5dHwqFMD4+jnK5jGg06g6dZAAL72Pd2Q8MemFwDMdeKUIV3EoJ6jE7FOQqrLmZmwEuKqTtvEwkEh4DiX3HseV8pr9sdXXV7bfr7e1FMpnE0tISisWiJzUZM7isrq5icnISe/fuRbPZRCaTcRn4L126hPn5eQ+dzHryvUofq0G1mXFIxasbrNk3Ok+0Xdp/OsfbZWNpK67bvCh9oMiL/6vCUgueik3DzlWosCjFwUWoG5KVWuJnXIxcYPV6HdlsFsViEb29vbh69SoeeeQRHDx4EPV6Hdu3b0c4HMbKygo6Oztd3kLm29PIRQ2ZpoJttdaz21skRou+WCwC8G4aZdt5jheRApWgpZwCgYBDKFpsxBj7kAqFUWZK/9h6qiFBhRkKradj4ljzfeFw2JPFw1rsRBh60CSj9IaGhlxuQRsVCsBtG1CaSwUklZANo+e1um9KjQz9XlGspbsBuLHke3VjM5+j71VErKHqjJ4MBNays7C9zIxPdFWtVp2B1NHR4Q6UrNVqyOfzrh4aIago1RqKbJf6wCxdyHZZipbt0z5VNkV9ZO3iX9qK6zYvlsbTTZcaIGGDMNTZbp3B1nqmstCIJhX+fgLYUkyzs7OYmJjA7t27USgU8OKLL+KBBx7AN77xDTzxxBPYt28fbty4gVarhcXFRVSrVTz66KPo6upCuVz25K0jjUQUZJUk0U25XPYEonR0dLjMC2yXUqGNRsPtdwLgFKMGnsTjcfT19bn9QNpOS9mqL46K1lJcvE+d+IoK6VvRLQgAXJsymYxDo8A6NUkBv7q6isXFReRyOSSTSfT19SEej7tgAwpuLYqSbJotRYGKJPQezhuli/k/kYmOqfaBFhXk3NunwS7lctkhQVWupIJDoRBSqZQ7puTChQvundVqFel0Grt27UKj0cDc3BwuXLiA++67zwUS9ff3Y3x8HIVCwSlx9gUjNDm+ug6sYcLfitQ0wwfnGov6bJVybbVajvK1NHG7eEvbx7UFijp6KTQ0LJdKS+kX3QulVJOGvhOFWOtZkYRy9LqQ1L/R0bGWcXtubg7lchl79+7FlStXAABXrlzB9PQ0+vr6nG8GWHOiB4NBRxFls1lUKhWHngqFgnuHFaoMGafvA1g/ZJFBCXS+K1qhMucz1BeomebVl2TRlVrc7C/d7Mt62vBwtahJcSoKpKKhcqPSSyaTzofDE391PLi/LBKJIJ1Oe7JoUBFTSHK/GREn32XnAamtzfx2ihrsd8A6xcs5SUGudKKff1bZBBou1vhgQIqmoOLeQCogrpVYLIaenh40GmvpoJaWlhAIBDA2NobBwUGsrq5ibm7OoVq+h/NFUbb6/3Q9qeGiBqYyCJwrnAdqyGg/6jvbaOvWpa24tkDhYtHFBWw8sVgtQAoHLm4VniqsLIVji1qNSpOppcnIrIWFBRQKBezZswfZbBb5fB6RSASXL1/G6OgoEomEE8i09hmOzjOk8vm8izy0wpN+HyoK7qtpNNZOQy4UCp5s4ZqFnfSbhh6r4qJgJbVoc8xZpEV0QWXqJ/y0f9lmRV2k4+grrFQqHkRpURh9PpVKxZ3RVSqVAMBFNvI5bDMDTdh++ryAdXShCob3WSoU8KIAOw8VvWtqKN7He+x85XM0UrTRaGwIpuEYUKkrpVcsFpHP5z3h7K3W2iGbvb29aDQayOVy7oTud955B319fSiVSpiamvIgY0vFs58U8alBpcrLrhvtP916oL48fqZIe7N9iO2yXtpU4RYoNkQZgG+kn1p+XCBK91A4WWEErOeeU7TG7xkebv1dunDL5bI7/+jOO+/EpUuX8OUvfxmPP/44XnzxRTz99NMoFAqYm5tzQufChQs4cOAAotGoo4oYus1TfgF4lFSz2XQKo9lsuv1UpI4ymYxHYbVaLbehWY86IQogNcmACf7Qd0TfGREAhSyDBmq1mku/ZBUAERGFmAoojiNPMl5eXsbc3JxTiIODg4hEIp4oTFVi9GFNTEygo6MDvb29HkqL2dBVmbBPGACi+f9YJ1UySnsSwel3vIfPUFpMFQ7HBYCjcrUPaCzQoKDiKpfLHgqPbWHOSh6rUy6XsbCw4Da3F4tF9Pf34+jRoxgdHcXc3Bzeeust1Ot1nDp1yuW5HB8fx40bNzwUuVLq6hPUtcgsF5wX6pvjerH9qnu0tN28Xse2rbC+c2kjrtu8KEpSWlAnN4MLrCWodBCwca8JP9N7gPUgDSss9R7rd2q1Wi6sOJPJ4MiRI6hWq9i2bZvbLLtt2zb09PQAWFu0MzMzWFpacoqCylQjyqgISA+pNazHXFA50emuee+YRcIeGw9ggzCmwCI9x1RSNty52Vzb30V6Sk90tmhDEQjHQJGBRqAROTKnoyJDKlVSmTpWisiVEiRCoeBUepD/N5tNdz3nElHCdxMooDSXUoA6HzmuSsFyHDmHg0HvlgEr0DUohJGSGlXKhL30b2UyGXR2diKXy2F+ft4ZSP39/S4DiQYv6frQ8aLRomOqjIb2AdEn28Z2aHv4OduigTJtpfXdlTbi2gKFSkQViC5mVTBUcJq+yDp5iapIefF5KvwogNQfpnXxKwsLC1haWkIsFsPIyAgCgQC6urpw/Phx5PN5DA0NuYwZTMg7NzeHgYEBxONxJ3yIEPRYCm07F3epVHJIglnS1U/HDBJ6Mq/SQRqAQKHKPmTEGRVmIBBwilOFDAM4aIUr6qIg1Mg+/lYB2dnZiXQ6jbm5ORcZyHB3hrRTUWnQDKmxRCKBdDqNjo4OrKysOMUVCoWcgKa/i/faoAEqds4X9qUGbrDNGuyjgtn68dgfSkHyHfSBca76+c20DkpRaz2o8HU7RDAYdNlYQqEQlpeXUalUcODAAUxNTTnKmsEfGt2pc8L6qZQ61Plk2QlL2eu6UUZE26FzU9mCtiLzL23FdZsXiw5oUVMYqqCgACGNaBO48hla9OwlVXwUNBQ+FDhUelSUtNCj0ShmZ2dx9uxZPPHEExgcHMQdd9yBy5cv4wMf+AD+v//v/8OP//iP46Mf/SjefPNNAGtWNlNB3XPPPQgGg5icnMTi4iLS6TSAdSsdgMvppo77SCSCrq4uR52trKw4Pw6RV6u1npdR94upEmGbGTxChUBFQNRE6jCVSjlhury8jHQ67dl2oMKWCk99gxrhybPHAoEAbt686QI1eOaWnqhLJLq4uOiQ4bZt2xCLxTA/P4/V1VXs3r0bkUgE9Xod165dQ6PRcDkf+U6OJ6P2lFbmGWFqLHAM7N46zlFFcFRm3LtFqoy0Kvs+Go16jCxeR2OBddR5rRGc3I936dIl3Lx50/kMQ6EQDh48iP7+flQqFUxOTqK7uxvf933fhy9+8Ytu39vS0hJu3rzpxkn9Ziw6XnYtWCTNeaWGAf/mHLKBPhrEo8/ZzDhsl7XSVly3eVGEo5aZWt5UKGrx6sRXK5VCQBeK3muVmEUqWiiIKUybzSZyuZwTINu2bcOlS5dw1113Of/WwMAAotGox3+RzWYdqigWi7h586Z7Li1zIhoVZPS9RaNR124e065Kwi8qUuk6VYYqqBg4wvdGo1FPDkMATsjyzCc+V6kytd7V72P9XplMxim5XC4HAJ5Es8lk0ikYFr6Lvj5G03EsisWiU95zc3MIBAJuczINIfUVUuGrotTABP5mHynC1Hli6WcaUqrEFSFr36ji13lPwU8FR1pxbm4OuVzOGWwMzCBdXC6X3RluwWAQqVQKjUYD2WwW2WzWM9ftWLHtisT4nSJAbbt+R2OGyFCpaUWl9hlttHXr0lZct3nhIqBy0Cg/YG1fj9IV1tGsjnIKGlvUf8Z32h9FYhSEuiAZBXj9+nXkcjl0d3djdHQUzz77LK5fv44HHngAL774Ij71qU/hzjvvxMmTJwGsU1VjY2MYHR3FyMiI8xsVCgWHFDOZjBM6pLVoXVPJBAIBl6yX6IsIQv1IrLtusFU0q33b2dnp2ZNESlMzXFAAMwCEG56pDCjsOBbsZ2auYDLY7u5u7N69G93d3Th9+rQTcrTOGQTCdnJbwNLSElZXV9Hd3Y0dO3YgmUzi+vXrGB8fx+rqKtLpNNLpNGZnZwEA/f39bs5oTkb2ifaBBmdwbmheSM4pRjJyzimtptFzivAsFcyxIorXe3mNBupQ0c/OzrrPgTU0PDIy4pRWsVjE7t27HQV8+PBh5HI53Lx5E8vLyy7gh0yCGkmcG5wzRO+6Nqik2Y/sW64PVfzqHwPWE2Nre62ftF02lnZwxhYpdhFZi5bX6MJQhab8vS4qLSp4LA3CBQh4w6J1/1c4HHZHbdA/AwDnzp3DoUOHnJD5wAc+gIGBAYd4VlZWcPXqVUxMTKBer2PPnj3YuXMnAHisYbXQ+TmtdyIt7QsKXQ2RV8Wtz2AfqUVv0RLv0QgxGhR6DIntIxsQQURBJKmGCA+HpH+GARnqg2LbSD+RNuURLxplmUgknJ8slUohHA4jm81idnYWMzMzTpEw4INnhXF+8fncN0e/J/s2GAy6PJEaYKEBBzZAhePA5+pvNdTUN6Z9rXOaWfQ12GVwcBDxeBytVsv5sZj8mYi/VCq5/X6cx6ynhqbrWlG0qXNGkSnXIJWvIlXr57KZYNrK6rsvbcV1mxcVtEqdWEe4X/AB71HLUPcnqSXJa7l4+Ux9B7AxA71GIPKZi4uLaLXWk5+eP38eo6Oj2LdvH06fPo3Dhw/j6NGj7j2tVgvZbBZXr15FNpvF0NAQBgYGXJ2SySQymQxSqZQ7goT9QCGhe9WUrtF9P7Rseb2ludg+wLvHSe9RH49Gc/Jz+x4N56YCUqRHupMBAvR5jYyMoL+/33M/FR6FK3+3Wi3n6wsEAi47SDqdRn9/P1KpFGKxGLq7u5FOp50fiQqOyJR10v7Ud9ltA5xHKoSJftkm9Ump8iMiVv+OBoIoDanzmmPCzBrz8/POx8ow+eHhYQBwm9lHR0cxPDyMYrGI4eFhF2mYy+U2UKBsK/9Xg03XkzIfqlh1XHVN6Hpk29TI1He2y3cubapwixRujlVBQKvVRt7pplsuGlql/K2ISRcVf6ufgZa1UooU1nof6/LGG29geHgYe/bswV133YWXX34ZX/7yl9Hd3Y033ngD0WgUTz/9NF566SXE43GXwzCbzeL11193+7fC4TD6+vpc4ttms+ksadKmqhyU7mT9LYWqPjL2oVVMvJ6ClMEK1WrVc/IxhY8iKvYrEVKj0XCn6jLknH41FdTBYBDT09MubdPDDz+MZrOJd955B9evX0ehUHB0ISnPRqOBwcFBl2S20VjLEAGs0YEM+2abu7q60NXV5UEU8/PzTnlRoYbDYTe+RJGst4bJN5vrmduVCVBkTgTGU6QrlYrbumDRM/ueZ3WRbuW843uIrs6fP48bN264CMrV1VXs378fd955p0Nb165dwyOPPIJ6vY6vfe1r+OVf/mUkk0mMj49jdnbWtYPIUw1AznnOG2U8FJ1z3DlnOBf5GZWzomU+R9evdQnYbSjtsl7aimsLFLUG1dqzFimwMdiCRReCojIV6IrkrBNeaTkuSLUYaWEGg0HMzs4il8s5v09XVxdeeeUVhEIhDAwM4MqVKzh27BgSiYTHWd3RsXb0xNzcnKOfksmkSzjL+mjdrHPfRoXZoAhFWOwrWsGKILV9DJMH4A6bzOfzTmgrzaSCyAZiaDAL+5v1odCuVqvI5/NoNpvo7u7G0aNHEQqFMDs7i2Aw6CImGUgxMjLiwtzn5+cdYuvs7HQZ1HVfl0XY8XjctYEUHwWtzjdSiNZPapG/okJLgTYaDbeRmXOGc5jvtOH5/J/zlYqw2Ww6/xT3Z9Xrawmd6cMrl8uYmppCLBbDzZs3sbKygkwm446Eoe+SbVZkpUhMlY2Oq7Zf15ulDVVh2X5Rup59oSi7XfxLW3FtgUKhp/tF+LmlNOxCUiHFRcjFqpSfBmBYJUfhqk57e9yJIrvLly/jjTfewNDQELZv345Dhw4hnU7jpZdewsGDB/HCCy9geHgYn/jEJ/ClL33J4whnlFgmk3ECqFAoOPqJTvRWq+Xy9rVa3hNmWW/Wib4x9hfRjvrFqLCIZHTfFLOGMHqQdJxuN6hWq1heXka9vnbUiFrrFFQ82JGIRrNIBAIBT/aLM2fOYPv27fjwhz+MEydOOPTAtFCkBlutFmZmZtx5aKToyuUySqUSKpWKo1d1rxmVwMDAgOsj9TlyLHj8i0ZTcq+Z3TirtCIVPvuG/jaOValUckEznNMcH1VijUbDRUkqdbuwsIBsNuvqzDG79957sWfPHly5cgUvv/wyisUirl69ijNnzuD7v//70Wq1cP36dXzzm99ErVZzY6Hh6n7I3CpavtNG3ioS5Wf8rRGhnB9+tL5+1i7+pe3j2gKFQkHpGP2Ovy1Vo5ahLjxgPW+e3msXlkVulg7Sd2nJ5XK4fv06pqamMDg4iMHBQWSzWYTDYWzfvh3pdBoXL17EgQMHsGPHjg1+Be5jYj31HCTWTQMAKOzUX6LtotLSSDhFQYoc+Q7tY6JBRrwpqlO6y1JCFh1bNMv7KPx4iCXTGS0sLGBhYQHhcBj9/f0YHBx0EYIjIyPo6elBpVLB4uKiC3uPRCKOlgsE1jaAazolAI6qY+AGUyApZaW0tF/Qj0VafnOSc0YLn2l9XJxPms/RRsTS2CqVSpifn3fCn8e/sC3NZhPXrl3DtWvXcPjwYVy+fBkjIyNuW8bU1JSH9rUIXdfJZu1Vow2AM2B0nqm/i0V9ZupX5P9+a7ddNpa24toCZTMlontPNEjCWm26gPwEr9JvuhGVC9gKcwoTCg61OvmsiYkJjI+PI5PJYPv27Zienka9Xkc4HMbIyAiuXLmC4eFhHDp0CIlEAuVyGYHAWjg2Q5i1nRoGDazTb/RxUbiyDuq3UkHMNtuoNxVQNiyZ7SUFR0XEd+kzVGnZ+mnQgio1VRIcA4a7X7hwARMTE6hUKi6whvVvtVqYmppye5FIrxJRMpKQgR/sPwaEEPGoANY5pH4nS8nqfNT5oLkg6SNj0IlV2jRK+A5roGk9iFxbrZZL4cT7qLjo6yoWizh16pSbX5VKBceOHcPg4CDGxsbw7rvvOoRFg0mRMcdAFbauEVXoagjpeHLcVYGxqN9M56S+o11uXdpU4RYoduJzv4k6kFko6CnkNMTY71BCRV0a5m2DGdQ3pEqK3yt12NnZienpabzwwgt4/PHHMTIygt7eXkxOTuLb3/42nnzySTzzzDPo7e3FD//wD6PRaOCLX/wiVldX3flKCwsLqFQqSKVSHgtdM8Zz7xg3L9vjRRiOr4qNtBWFtgpFvof9oBm9NVqO32nwCv/W8HYKWpuslUI5FoshFot5nPJ8TldXF2q1Gt59913Mzs5i3759OHr0KGKxGHK5HPL5PPL5PGZmZtyzODe0LpVKxYWMd3d3e5SLCmoaPkqDUTGQUqWg18wpfJ6OC4U9s7urUcC2B4NBlMtl9z83V7N/lHbjxulgMIhCoYDx8XEsLi66ZMyVSgXpdNrt1bp69Sqi0Sg+8YlPYHFxEd///d+Pe++9F9PT0/jMZz6DsbExj19LjRD9W9eD1p9rTv3M7BPNCanGIylYUp1KzVtDwG5TaZeNpY24tkixzmJ18PNzDTIA/Pd+2ev8BAufx3dpYIYubr1PfQNc1JOTk47SodN8amoK4XAYBw4cwPT0NLq7u3HXXXc5uo/O+5WVFXeirfpCdD8QlQIVFgUIrXiN9lOajr+1XZay0X5Uy1xRE5UU+1NRjKJejSDTs6rUALCWO7+PRCIupyMAR1fy3DEq4Wg06vqAClePStH6qF+K40jlyz7RevFvYF2I34o2ZDt4P1Eq+9WivNXVVZTLZTf2NFLotxwYGHCnUjMbPOvC+TE4OIjR0VGsrq5ibGwMd955J8LhMC5fvozDhw8jEAhgamoKExMT6Orq8qRMU0VufbwWXauy52d+fWANIvazfQ8L722X7660FdcWKCpQVXFZikmpDEu3cBH58e8aUs7nqB9Ln2XpEqW+dBHH43EUCgXMzMyg2Wyir68P27Ztc+dIHT58GM899xzm5uawc+dO9PT0oNlsOkEbDAbdURW6oCnY2B8MN2c2dVJTDPFWq5/1tmdtaR9aWtHSYfF43JPdQfuRe4msk519y3qRsuOP/g+sR5qRXmw0GlheXkapVEKr1XKppxh8oUodgMtor2PEAAc+37ZZ55nSzuxznT9+xpEaCXbOal9ohngGhBCxMzJQ/ZqpVAr33nsvjhw5gp6eHiwtLbmQemAt4CUWi2FoaAiDg4PI5XJ49913sX//fmSzWSwtLWFgYADFYhE3btxwbdFEttYgswZcMBj0bG6316iSVgrRoim9V6/Rz9WX2C6blzZVuAWKWoeqTHTTrSo1/q1UhAppWuAURBRUjCAjTUSBzOv9BJ1FcgCcAz0ej+OVV17B4OAgdu7c6Z73l3/5l/jn//yfY3h4GP/tv/03/NiP/RiefvppPPvssxgfH3fXTU1NOfTGDcnqkwDWFjvPrAqFQojFYh7qiopKTwG2/aFUEIWpZg/RFEd8bnd3t1M4DIzQCEVuuOWG3UBg/RwvIkUqLaIQtlWzV4RCaxneK5UKrl+/jj179qCvrw9zc3OYm5vD4uIiOjs73dExrVbLHe3SbDZdSjCOOwDPMS2sixoujH7U+cG/uTWAioWKh88G1k+jppLmXNU9dRqxx+hMRTrMRhIKhXDkyBGMj4/j+vXrWFxcRDQaxcjIiEtCvGvXLhw4cADd3d3467/+azSbTSQSCXz961/Hnj17sLq6itOnT+Oll15yaJVzlVsLrKLielMjhvOF7VUaXqMSlcbn2tFAIDUMGLGqhktbaX3n0lZcW6DYBcRFpjy70j5q7SqFpxadHmdCBcd7AO9BlarkuKj0HvX1KNWyurqK8fFxTE5OYnh42OXSe/PNN3Hjxg3ceeedOHPmDC5evIg9e/Zg//79WF5edr6PVqvl0JT2Bd/JevJ/CmpeR8Gv1I0iB/VhsW95Pa/Vflehk0wmN9CUrIdmmaCi0q0E/F/HikWzlnA8GFzBY0y4b4mCm0qE/V6pVDzjSUXOdqkxw7qzX/V/KjM77n715rWaVYOKnHOCiJPCn9eREg0EAp5Q+0KhgMXFRVy5csUF+9AI4XtSqRR27tyJdDqNRqOBqakp3HHHHcjn8yiVShgZGUGlUsH09DQWFhY8G/AtHa5I164fu4YsUuP9nD82yESfo2vJBq2oQaEorV28pa24tkChRaeBA6Q6NOqLAk6FlG6oVeexWnVcRBR4XHzqu1KqTYWwbhBVRcZnXLp0CV//+tdx/Phx9PX1odFoYGhoCF/60pfw8z//8/jYxz6Gv/iLv8DP/uzP4vHHH0ckEsGzzz6LVquFcDjsjqUYHh5GLBZz+2Os/4lISP1hvI5ZEVRY0o9GlEUFpaHyujlYUS3rRp8WEQb7h9F0alGrIKLS1M8p/FQJBQJrQRfMfl8qlZyCnJ2dRaFQQDgcRj6fR6VSQV9fH1qtlkMq3IelilrrxmspWEmtsq/oLwuHwy5hMJ9LFEqhSyMAgEOaRGiakYRGE/tbA4tWV1ddSD/HLZfL4YUXXsCVK1cwNjaGYHB903QymcT27dtx7NgxRCIRTExM4Pjx43jiiSfw53/+59i9ezfuvfdeTE1NYWxsDMvLy06BWgpTI2gVfdFAs0pOP2O7GNCkvlSr4PWkbACe/Jaq+JRVaJeNpa24tkixC0w3C6svwjqPAW8iXD5LrWjLyatV6RcyDmyMdFTERZ8Fle3U1BRyuRwGBgZc5u7l5WV0dnZidHQUO3bswOLiIjKZDHbv3u0sYqKPfD7vfBlaLypmRjRynw/bRF+UKl2ts0bOsdzKAW+v0d82ywHHgtY3laJ+T0HIdrC9fJ9m4aAC5cGQuVzOBSYQjS0vL7t26zOUluK4UIFzvDgvOF/YNjUE1H+j7eF4UPEqbch7GLwCrEdraiSq7uNjvzGasVarIZ/PY2VlxZMqanBwEENDQy5v4fnz5/GRj3zEKfMnn3wSqVQKr7/+Oubm5tzz6Ttkv/vR7GpMaLCNUuZ+a1JZEZ03GvSi/aZ+MGD96JZ2uXVp99AWKBTiqqyscqHi0IVDYa57UtQvAXgzbmz2bl2cGn2mvg8VxOqvSCQSWFhYcEEa8Xgcw8PDTthkMhkcPHgQ169fBwAMDw+jt7fXRd/V63VPeLwKCUaf8YynQCDgnPxaN/YHBasm3VUaEYBnY6yNpuRzgI1CnN/x82ZzLXtCpVLxZCLn+3SzNJWSji+fqRQnoy6z2Szy+TwajQZSqZTLILKysuL2wPEgSp45lc1mkcvlPBF5flGMm+0x6+jo2JA9XvvBzlOdW7yf55tpVCYRHZUUFUqtVnOIUZEgfXYAsGPHDmzbtg2tVgtjY2MYHx/HwMAApqamsG/fPuzevRuhUAhXr17F3NycM3a0WPrdtkvbZilCto1tUZRkmQvex7+5JhWp6xy0hlC7eEsbcW2BQkFIK5kbedVCV2FCpUSqx6IltW7Jxaug1AUFeNGUpUeUwyfyIKXUarXcxtmvfe1riEaj2L9/P/bu3YulpSV89atfxUc/+lHcf//9+Lf/9t8CAE6cOIEf+7Efw1e+8hVcvXrVKaBLly4hm83irrvucnQcj0/RooKWglQDMHj2VTgcRiKR8CSM1ewbNnKQ92sou96ngkZ9X/wbAPL5vOtPKgIVxFZp2Q3FzL23urqKfD7v6hiPx92etUqlgpWVFRQKBTSbTc9xJVQGrLNGaBJd0aDQuQMAiUQCwJpgJ9XG/1k3PscqAd6j86zZXMupyD6koNezznp6ehAKhXDp0iUsLS0hFAqhp6cHnZ2d6OnpQV9fHzo7O/GNb3wD4+Pj+NEf/VGcOXMGr732Gn7pl34JmUwGCwsLeOWVV1x7aNxoNhbu0VP/HQ0wDQLSsWHQBceN/2/Geih1qAYKP1OEbk/tbpeNpY24tkDh5KbCUT4egCfCSSkn3ksrWD/jglVqjJagbqK1FqpVkrxPeXm15Pk9LeJisYh0Oo2dO3fiwoULuHDhAoLBIHbs2IHz589jcXER+/fvx8GDBz3ZwoG1PTw8NFEFEJWvpU8t9anBI6yXOthVEWu7gHWEYulF9VfoZ/TVRKNRl1qJY6GUX6VScfW2fUZKSy36QqGA5eVlRKNRd8ovrw+Hwy4DPH1LsVgMyWTSJdklYmJ/KfLya7cdYxXs/NwiLRuMYPfXaQYU9h/HkAqVQRhErLwulUphz5492LdvH+r1OkqlEq5cuYKHHnoIhw8fxltvveWOb2k2m+505FgstmGPGgsVkioi1k3nvbZV55E+l2tGUaz2oa4hv7WjQSPtsnlpI64tUNQCt5NcUZAGTlC4qlNcF5MKbKW3iFCU9uPzuVgpoNTXpCHzRCUUiM1mE2NjY3j22WcRCoXw5JNP4sCBAzh69Ciee+45tFotfPKTn8Rzzz2Hz372s/iFX/gFfPzjH8ebb76JyclJrKysIJVKoVar4a233kIymcSuXbuQyWScJa/1odBknWi50rLWUGx1iKuSVhRFha73quDTEHs+M5FIOMqHvh1FV6VSCdVq1R1XoqH8VJB8B8PdA4EAlpaWkMvl0NfXh56eHhQKBRdUw/uZMkoVHueP394/ImMqDfYJfWVUNpodg/MF8B7aSSVEWlb9kFRI9n49KZp+u3g8jmvXrmFsbAwdHR3o6+sDAGzfvh379u1DLBbD+Pg4Ll68iB/5kR/Bvffei5mZGYTDYTz55JNotVp455133JxjP+s2D7afiof1U2NEUaOlSDnf+DfHjuHyapBo/yj9rgEd1rfbLpuXNuLaAkUnt6UzAG+knyo2y8fbxaAIxFI8ytGrYNJ3q8D3c1jru2OxGCYnJ3H+/Hm0WmuO96GhIcRiMVy6dAnBYBAPPPAAdu/ejbGxMfT19eHo0aPuyA4V5IVCAXNzc+7YE+Y6zGazrg7cB8STiam4re+CQovCVX80xJ2+NI6HCjw1Ajge7F9FY1ScisZoCOj7LPVqI+/4P2k1vpP+TL5L0bP6r3Qe8N3sJwYjqN9SiyIP/Yyl1Wq5ejEbBvtON18rVcm+1FD5ZrOJK1euuByX3d3dGB4eRiqVcuMxOTmJsbExHD58GNlsFt/+9rdx7NgxbNu2DdlsFpcvX8bFixddO7Vfda5bhkHnGvtSEan1AaofTPtEaWbb/+pbtHPS9mm7bCxtxbUFiiIdRVeAN+0SAE/SUr9nsKg/TJ3wGtasNA6w7r9QhGHpFEvPKfVWLBZx6dIl5HI5BAIBDAwMYHR0FEtLSygUChgaGsKjjz6KU6dOIZvN4vjx49i3b58HyTA7xvLyMnK5nGsDgxbUL6B7nVg/9pkKGUUFdl8T20NhSWtY262+Dy32Ov1faUA7jvqjKaJIpfFZmlldBbIqO46pbo5WZKTprHi9CmN+xney76xS4zs1c4n2sRpUisjYBqUugTVaeH5+HsAaOg2FQhgaGkJPT48bi6tXr6K/vx9dXV04e/YspqencfjwYXR3d+P69es4c+aMO+6FKFYzirCNugYUDWr7bLi8zhO7BvVeu+YUmanytPOjjbhuXQKtLdhD+Xwe6XT6n7oa/2iF1rNa8JrFXR28FBZqNTcaDQ9lpEWRmSpD3e+kQpzCR1Ge+jSUdlHhQGd8pVLBv/yX/xJPPPEEQqEQJicnce7cOUxMTDjEdfXqVXz961/Hj//4j2N1dRWnTp3C5z//eeecp+BqtVro7+/H6OgoUqkUFhcXEQ6H0dvb67KAtFrr2TDYB7rfS5Wz0p2tVsulSqLiYtAGKTftawAexELk0Wg03F4qRjs2Gg23f4rKMBgMunOzVBHxexYKd2YSKZfLWF5ednu64vG4Q3IdHR3o6upyiIKRebon0Pr9ALhjUPRa0pHqG2X0HyM5Oc61Ws31Mf9nQAcNMBtUw/dVq1WMj49jbGzME+By8OBB3HfffRgeHsbi4iKmp6dRqVTw8Y9/HCdPnsT09DQefvhhfOhDH8LS0hJ+4zd+AxcvXnR11TXA+cvNyKy3pd01CpBjbdkJv6AlPx+w7WMGvmhSZFWk/O79UHK5HFKp1Pd0TxtxbYFiKUEVpLpYKJyV2rCLyVqSFoXQx8HPqIgo/BRVqVNaLX2lFrUutVoNyWQSb775JsbGxhCLxZBKpdDX14d8Po/z589jfHwc9913Hx599FG89dZbiMfjuOOOO1y2dGBdka+srLhQ+3A4jKGhIYRCa8daMGGrVdY2zFtpMlJYFMbMd2jDu4l2FLFYv4SiCBuMYClZUoe6z4ttVAqW/a1CkCiMtCgAT75ERViWvvKjw7QOwDqS0vfyR99rKWreS6XFvuVWA+0noulIJIJcLueUUjAYdKHymUwGkUgE2WwW169fx7lz5/DYY4+ho6MD4+PjuOOOO7Bnzx7U63XnG7OoWBGPKgtrgFh/FPtafaeWLrW0PP++VaAQ/7bGiq7LdvEvbcW1BYpVQH6LQOkKuyABr3NZERTgPdxOKSf1VwHrwljP9NKIMVrwFLoUFup4Xl1dxcWLF/HWW2+h0Vg7M6qrqwvRaBQzMzO4cOECYrEYTpw4gdOnT+PKlStIpVLYu3cvIpGIyxjP+lcqFczNzblTkhnWnM1mndKx9BwREwUr/TB+eRApuPUzKipVCrovS/uu2WyiUCggm8169lcRnakiUIWiSoRCTcdXx10teVVAVsmqwqYRpJGMLKqM2UYdU+0bDTRQI4iomNQuFZft61qt5s5iCwQCmJ6eRi6X80Ts9fT0YHBwEF1dXahWq5icnERHRwcymQxu3LiBnTt34tixYy6H47lz57CysuKymrD+DL5gYT/S6LN0uSpipby17br29Hs7D3gP+5G+Shvhag2KdvEv7ajCLVCUV6dColXNot9znxcFilrRzJ7ABaooic/RZ+reFxZLHQJrAlMThvL5XNAarp/P5/EXf/EXuOeee3Dw4EEcPHgQy8vLuH79Oqanp/HOO+/g0KFDePrpp/GXf/mX6OzsxA/+4A/igQcewJ//+Z87WiyZTDpFwGS+d911F+r1ugsMIAVBocH2MBxdqU22WYW09g0RH4NCVJCvrq66wy8pxPm7VCq5qLxGo+GUbyaTQU9PjztfK5VKIZPJeO6lguG7WAcqg87OTnR3d6PZbGJhYcEdf6Lom0pBfZNUYur7otC0gSJEQ8B68ludTww1pz+RCkD9bJw3uoF5YmICgcBaxn2eLXb16lXXbir3O++8E/v27UMmk8GZM2cQDAbx8Y9/HM888wyKxSJ+67d+C/F4HMvLy/jTP/1TvP76654cllRQSs9xTZAyZP0swuTYU9lwXmv0ra4ZzX/Jtaq+YRpw7GvtL/5tn9kuG0sbcW2BYpUJAI+160c/qW9KU/wAcMKJPhi1qikw7CZlS2MoWqPvQPl/ho8r/UghHIvFUCqVcO7cOZfte9euXRgZGUE8HsfFixcxOzuLvXv34iMf+QgCgQByuRxGR0fdNYqeWOf5+XkXWag0G3+rlUyUREXFepMeVMRBVKkblK1S0PBqRaoU7LFYzG3wpfIMBoNIJBJIJpNotVpu461a3EpjcUMy0YMiQgq+arXq6DilMxUdaB9YVABszKqh7WKdLApVA0YVOvuGc5B9oPRpKBTC3NwcJicnPZuqW621ZMYjIyPo6OjAwsICZmdncejQIXR2dmJhYQGPPfaYm09XrlzBmTNnXKQl66oshKJkzgFFqOq/Yj/4UcV2vXHNsV22X23/UoHeijlpl81LOzhjCxSlOXQRqMCkclGFpQsWWE/wqU5fXSREBGoVEinR4ia9pgud7+fzVADQ8g6Hwx6BSSv+vvvuw+OPP4577rkH5XIZ8/PzeOaZZ9DZ2YmPfvSj2LlzJ2KxGH7v934PgUAADz30EK5cuYJ3330XExMTKBQKAOACP0KhEPr6+tz5TBSizFShCYiJLLgJWP1fyWRygzAjAo1Go+ju7nYWM9uuCY+VotT+VlRcr9cxMDCAYDCIpaUlLC4uIp1Oe8444xEjzHpPq5wZNUg7VqtVFItFN248k0uVZSQS8QTVcLx0HtAgALzRrJpXsFgsbtjUrjQm+5iKWNFiPp93xgHfk8/nMTY25ijnYHDtdOTBwUHcc8896O3txbvvvotqtYoPfehDmJmZwcWLF/GLv/iLGBkZwYULF/D888/j5MmTWF5e3qCQ1d+k20k0klCRlhoyup44tooodb1QeVEZ8Tv1exFRrayseK5Xal/f934of5fgjDZVuAWKWtfqr6EQUv5cFwPgPZRQhZP+psJjsX4uwOukV9+AWrRaN13wKsh5H63Ss2fPIhKJ4MiRIwiHwxgYGMBdd92Fc+fO4ZVXXkG5XMahQ4fw0Y9+FH/yJ3+Cbdu2OSVaLBZdfr5AIODSYJFKHBwcRCgU8lj37E/Wk/4wUlaZTMYpBkVRLH50j30m/1dFbfNDxmIx5PN5FAoFp2Q6Ojo8e5kUxbIeinrYt/yO99CwCIXWz1KjEaJCnM9RBM1nKVq3QQrq22TRLQfsO0XZfC6pVybLzWazWFxcREdHBwqFgguuqdVq2LNnD9LpNM6cOYN0Oo0HHngAi4uLuH79OkZHR7F9+3bU63W8/vrreP311zE7O+v6TiNElVLXcVImQOuma47jpZ+TolUjTYvSrur7sv4yi8J0PbZR161LmyrcIsVOdD8+3qIr6wNTKoKf8dnqr9J3KF2iwtKPztKiypM0llrCrF8ul8Orr76KS5cuYWVlBR0dHTh27BjuuecezMzM4Jvf/CbOnDmDAwcOYO/evS6rfF9fH44cOYKdO3cimUyi0WggHo873xODADRaz0b+tVprGSNImZLW02NKWH9FY0o5qeBiH9uIT/YxUR9/RyIRh2D5Hv7ejOpk/+l4MOiBQg/YGJXI6zbLyqBBG2ookTZmOzWAQANzlIbVMHt+xkjNUGgtq0gikUAul8Pc3ByazaYLyCCCjMViGB0dRbFYRCaTwUc/+lEcOHAAb7/9Nnp6evChD30IgUAAU1NTeO211zA5OelJZ6V1VSNC28F5qvOXc8VvXZHhoBHgp2R0Gwr73gbyaP5MP8NDqdZ28S9tqnALFO6HAeBBPQDcJKdQANYWCvcf2Uzoal3rcxTR0WGvDmg/dKGKTi1X9Yn5+QMikQhWVlbQbK7vi+ro6MADDzyAe++9F4899hharRYuXLiAS5cu4dy5c7j77ruRSqVw5coVhEIh5HI53HHHHUgkErh8+TJOnz6Nnp4eNJtNLC0tYW5uDrFYDAcPHsSePXtcNgcNUrh58yaWl5fd3q+enh5Eo1FPeHswGHQUWyCwfj6WFvadKmdFGtxzRqWoilxz9K2uriIajTr/DsP6mSSXhfWv1+vIZrNYXl5GrVZDT08PYrGYu0b3mrH+mg6KykdpNdKnVshyjxmvabXWjptZWlpCtVpFT08Purq6AMDt+VIBz7nDkPeJiQlMTU25EPdAYG3PWqVSwbFjx/Dggw9iYWEB58+fx4/+6I+iUCjgzTffxIMPPoj7778fiUQCzz//PJ577jmcO3cOoVDIoVV9n46Rzn9Nr0R0SERq0ZYaW/xbaT0+U2llXQNkQ3g9x0X3kCljwaNquDfuvV7aVOH7oHBhqUXGRaN+Jj13iUKI11pqUJERfRTWEtWi9KQfXaJWq987bV5DWuSvvvoqCoUC9u3bh/7+fpePsK+vD3/1V3+FkZERPPTQQ+jt7cXExATeeust3H///dizZ4/zU928eRPVahXN5loYOo+6iEajiEajmJ+fd/XK5XJoNptOGbEPLe1n6VkWRT+KOCz9yj1h2n9qhWu4up4AwGdZAat+KApU0o8UroA3ez/HxQYf6LuU2tR5ZKlFDbwgNZnL5VzgjRpZagwFAmtBNteuXcPNmzfR1dXlTiqmMB8cHMT999+P7du346233sL+/ftx4cIFXL16FZ2dnbjrrrsQiUSQz+fx0ksv4fz58y7zvaXaSNnpfNY+JYLSKFBtJ8dKlbgqP/VNqULS/rdziP2mtCHHnYqqTRN+59JGXFugWGexCh61DBnAAXjz5Pk5gP18HVzoXJx8Jt+pfhMKWB4PYQWmIjvew+8pSIg8NAtIvV7H4OAgDh8+jI9//OPOz3H+/Hl8/etfx8TEBB577DEcOXIE3/72t/Htb38bO3fuxMc//nEsLy/ji1/8IsbHx1EoFFx7k8kk+vv7sXv3brRaLczMzKBQKLiQ9B07drg+SSQSTpFS8WuGdk0ZxEKU4heJ12w2XRb4ZrPpFKgGSGh0GxEZEZiODZUTAy5qtRoWFhZctJ6e6Mx6Ef3wLCy+wy8/H+uhyIX3E/HpvCCNyK0M0WgUPT09DvnS10ahvLy8jEuXLrnjXG7cuOFBfcFgED/90z+NUCiE119/HZ/61KeQy+XwzDPP4JFHHsEdd9yBZDKJM2fO4NSpU3jxxRddUA7nkipVGg/0fSoCsv5XzksaU1aB6Zrju7Q/LBWvW1D8/Fh+NLIiPks1v5dLG3G9RwutOcDr/OeiATZGsvEevxN+uVDUKlUOn1QHsE4n0nGt1qytjyo8iwypVKmcKECANQGrGdRnZmaQzWYRi8WQzWaxd+9ebN++HQ899BD+6I/+CM8//zwajQZOnDiBarWKt99+G0tLSxgeHsYdd9yBYrGIXC7n6r66uorZ2VnUajXs378ffX19CIVCWFxc9Pj3VGCwD9Qnotewz4F1ZKH9qP3BiMpCoYByuYx6vY5UKuXZV6XpiNSHxfRN3KhLP5sKT1WYFNTcV1WtVl3dGdTCvlbBqCH/vEeFLPtS30MlS3qVYeg6J4lYrl+/jmw26zaJl0olJ6w5Z44cOYJCoYCxsTFEIhGUy2V885vfxJEjR7B//36k02mcPXsW3/jGN3D27Fk3v9UXyPepL0rRMOc328/PlLFQpMR5an1S1hhUI1AVsVKF+j/nBvtAc1C+XxTW36e0PYBbpFh6Rzl1DawgslFhyvutf4vChxa47lNR4cP30BGvz1daTAWc1kmjtRSpWP8X689Tb19++WV89atfxbe+9S00m02Mjo7i4YcfRq1Ww8svv4xIJILHHnsMJ06cwPPPP49yuYyHH34YBw8eRCqV8iDQer2OmzdvYnFxEbFYDCMjI4hEIht8MH4KmW21hgEpPg1K0JRRuv+H9VhZWXFHmtjsFNZ3QoFIPyD7X09oVmVpg0dYH6XJVOCq34d9VK/XXcYLNV40szvrSIXJn2aziXw+j/n5eUfDlkolLCwsYHFx0Y37wsIClpeXnbJotVo4duwYjh49iosXLyKdTuPRRx/F1772NczNzeG+++5DT08PSqUSTp48ibffftvRwTSOVNloIdpXBKPX8X6NHFSDwlLqauzZAA81cnTMbYCHzn+lfbU9fm1pl/XSpgq3QFFnrvqUlPLQYn0yXLR+vitNvqtUonL3uohosarQZP00swDvp7C3J8yynvq3RWwAHNr4mZ/5GZw4cQLbt2/HjRs38NJLL+HatWt46KGHcODAAUxMTOD//t//i1/8xV9EIpHAxYsX8d//+3/H8vIy4vG4y5nXarUwNDSEQ4cOIRaLuRBq7p/SdFY2pJunJgNwglMDYlR529yDwWDQHfVBKk43I3ODMfuUSkeVBylBDdP3SzXFNFb1et3RgwDcic/0NwHrSJkbl4nSeB3fQeqU72eIP7+/dOkSFhYWUKlUMDo6ilgshomJCZTLZYTDYaTTaRSLRczOziKVSmF1dRXz8/OIRqM4evQoHnnkEbz++ut44oknkEgk8MILL2Dfvn340Ic+hGKxiLNnz+Lb3/42Xn75ZYco6deyyXMtWiTyom/R+rL86Ds77/kcrg3+z+fZdci+Y2Z6K2Y55na7Ao3GNlV469JGXFugqFWpwpHfqeJRa5qf6WJWRzQFAK+lFa8/+lwNi7cCQn08qoBY6OuwUVtsg90ro4gxGo3ipZdewquvvopAIIAdO3bgoYceQrFYxIsvvoizZ8/ivvvuwz/7Z/8MX/jCFzA3N4fdu3fj6NGjiEajqNVqTil1dHRgbm4O58+fR0dHB/r7+xEIBByK0U3HalX70YQaQm77Q9tGxBmJRBCLxdweJo1eVMTHkHD2ux7kaDdRW6XVbDY9qZcSiQSi0ahrvwZ1aLv0MzsOSr3x+URkOpbMRs/owtXVVaRSKSSTSSwuLmJ2dhaJRAL1eh35fB4dHR04dOgQjh07hrfeegvB4NrG6RdeeAGXL1/Ggw8+iM7OTrzzzjs4efIkzp4969ItWcOJ/W5ZCA3N1/10OkZKhyoNrspIn20P1NQ1xP6jv5Bjqn2t6019yhaRtcvmpa24tkCxPqPN0At/2wWgi5iLiEJcKRG76FUIq3BWOpAUGa9RQWuFqlrA+nyiD1UafC/Pdbp+/Tq+8Y1vYGxsDKFQCLt378bDDz+Mer3uNiofP34chUIBf/VXf4X5+Xncd9992L17N0qlEsrlsss20Wq1MDs7i2w2644CUQGkbdUISWY3Z4QgFYEqLSIBCnYNLVe/Bq/1C0evVCqoVCoA4CIeNesJ+5d9Y/uXc4Z7xai0LMqywlbnEtvBd/A7ZulQdMeNw5lMBtu3b0ez2cT8/Dz6+/uRSqVc2H4gsJa3keH7+/btw9GjR924PPjggzh16hSuXbuG++67D4ODgygWizh16hQuXLiAfD7vUQg2YElZAjV8bMozfk+lZsfB9gfHTNeSXVuqyNTHqZ/bfXXA+sZtRfjt8p1LmyrcAkX9FlyIXGRcDERLKvhJPyhlyIXD/wFvYIX1RalSs4qFKIvvVb8ZBYIKaS2sO9/PdlI483MqalKlu3fvxuOPP467774bu3fvxuTkJN5++208//zzOHbsGJ5++mmcPXsWX/rSl/DII4+gq6sLf/VXf4Vz586hWq2iu7vb01cDAwO4++67PZa8HnFP69r6KJh5nGNRr9dRKpWcfygQCLjnKAXJtmvKH+5py2Qy7jomzuVhigBc8IOfElJ0QDrP7tVifXQM1MCgf6tQKPj6g/getiebzbo6MeNILpfDpUuXkMlkUCqV3EGOsVjMUZLpdBpHjhzBrl27MDExgVarhfvuuw9nzpxBb28vfuAHfgAjIyM4c+YMvvzlL+Pb3/62R1npPNH5pwpDr9UMHzpX2T6lGnWMVTGqcaL+QqUceU2j0XBzVg1KO+fVkNPxez/RhEA7qvA9W1Q4UtioQlCrTqkswOsYBrxnDVlF5ec41t/WAa28P59hKUqlWAB4nqHohnXivfo8RZeXL19GIBBAPp/H8PAwRkdHkUwmce7cObz99tv4vu/7PuzZswdPPfUUvvzlL+OBBx7Afffdh1qthsuXL6NcLiOZTLps7tPT0xgaGsLQ0BA6OjpQrVZRqVScP6fVarm9STajAdGm0p+h0FoORo3o4730MXF8QqEQSqWSyyo/PDyMTCbjssQvLCzgxo0bHsSgwTKsgxoewWDQhcsD8BwhQn+a9in9Khxz7X87F5Q6pa+OuRsBYHJyEvPz8y40f2JiwhkvzIqSTCbxwAMPYNeuXXj77beRSqVw6NAhnDp1CqVSCU8//TT6+/tRKpXwrW99y2WD17miqJ19YKNulXq19C7bZI01Ne7U76XMgCot/V7pSM4LXTO6RvRdLOqz1ra1i39pI64tUNSZDGykK/Q4BH7PxWwXlzr/VbEAXmXF/yksbGJeDZ6w1r9+Tmtf/Vt8LxUwn+/3bm2nbdNTTz2FD3/4w9i/fz8A4MqVK/jsZz+LdDqNo0ePYufOnTh16hQajQb27NmDmzdv4otf/CJKpZLb18S9T93d3RgYGMDw8LDzPSWTSXR3d7tsFKrIFaGpMGQ/5/N5jzLj+xiKns1mPft/UqkUvu/7vg/pdBqJRAKxWAwXLlzAN77xDUf3URFSyCk1RR8i68n+or+r2Wy6xMGa4YOGjGbwYOJiu/9OoyZDoRC6urpQr9cxMzODfD7v9qdNTk56Do1k/46MjLgjbLLZLB599FG38fzw4cP44Ac/iHQ6jYsXL+LUqVP40pe+5OaOzhdreKmSYR9YhG99SZxzGnmr/cYtDIq6OOaqxJQm1/nqR4vreiDdz2vtMzZLzfVeLP/owRm/+7u/i0AggF/6pV9yn1WrVXz6059Gb28vkskknn76aczOznruGx8fx8c+9jHE43EMDAzgV3/1Vz2CsV28RXl8dZRrgIAV6n5oR/1XSrno/4BXMarCZFGEoULTBljwWrUmtR38XJWrtkvrzmfpZuxTp07hueeew+nTpxGLxbBv3z4cOHAA8/PzeO211xCPx/GhD30Ik5OTOH36NFqtFnbu3IlEIuHa3NXVhWAw6JK3MgNEV1eXZ78TaUPtQ/WPaLvq9brbZEv/FH1U9E+RohscHMS+fftw5MgRpNNpJ9xUuOoR9haVMus70ZQiDd5DIegXfq/jpc9XY6ler2NxcRGLi4suSjAej6NcLmNsbAzZbBbd3d2IRqPuHDTdqN5qtXD06FEcOnQI169fx9LSEo4cOYLV1VX8zd/8DWq1Gk6cOIFMJoPz58/j5ZdfdmdqcW74UaJqHPnRfIpOFU2pv5HzV+e0IlL2pX6mCsUafYr4VOltNrd17fEzXUft4l/+zlTha6+9hj/6oz/CsWPHPJ//8i//Mv76r/8aX/jCF5BOp/HzP//z+JEf+RG8/PLLANYmwcc+9jEMDQ3hlVdewc2bN/GpT30KnZ2d+O3f/u2/X2veo8UiKH6mioOC0CIgLhpaeX4L3Pq6+DkFl9KRfKbSkxSKwMYNy1bIWwpSP1eEwvqon4Jt5buLxSK+9a1vIZ/P4+jRo+jp6cEDDzyAarWKsbExnDp1CnfddZc7Tfny5cvYtm0bQqG185+KxSJCobVsFIVCAcViEZOTkwgEAti+fbvbsMsjOCytyX5Ti58KgHVlMAHbSgWfyWTQ1dWF/fv3I5lMIh6PA4BDSPQJqeXN92lQDd+v40ghS9RDZaT5DllffTb/VjqT2fer1aoLRonH46hUKhgfHwcApNNpNBoNzMzMYGlpySE3zp2hoSFs27YNS0tL6OjocIEX/+f//B/09vbioYceQiqVwvz8PL7+9a/jjTfecPQp22KVBeeI+vFUaatCsahdlYn6xRTB8TO/vYp8B/8nCtTvda3abRHaBs4NvzXeLpuXvxNVWCwWcc899+Azn/kM/v2///e4++678R//439ELpdDf38//uzP/gw/+qM/CgC4cOECDh8+jJMnT+LBBx/EV77yFXz84x/H9PQ0BgcHAQD/5b/8F/zar/0a5ufnPYtrs/J+pAp1EWjQBRcNF5kuDF1kei2fEwgEPFmuabVr0AVDxJWiUQsS8FJ4qtRUUVGZ0cq0Fqr+by1rUjSstypkXv/QQw/hwQcfxGOPPYZSqYTZ2Vl861vfwo0bN/ChD30I+/btw+LiIj7/+c+jUqkgGo2iVCohn897NiETDR06dAg7d+5EX1+f2//DQIpGo4FyuewCLOgfU4HK5zUaa/kTmcpqYGAAPT092LFjBxKJhKO2QqEQqtUq8vk8AKC/vx+zs7M4deqUizDkGKpFzrHTHIe6OZc5HDs61g5nJPpjZCBzNPKeRmPthGb+tFotxONxpNNptFprKaAuXbrk0mgVCgVMT0+7k5eVrjt48CD279+PaDSKixcv4oEHHkA4HMabb76Jubk5/MRP/IQzfJ955hm8+uqruHLlipvfNFgUuQDejBxEtywWGdEQomIA1o9q0f7j2KkBpfS6FZN+BpymgeK9TJBtQ+zVILNrws7/93r5R6MKP/3pT+NjH/sYnnjiCc/np0+fxurqqufzQ4cOYceOHTh58iQA4OTJk7jzzjud0gKAp556Cvl8Hu+8847v+1ZWVpDP5z0/77diEQqwbnmrEvFbYFyUinQUPfA6XTykmpRS5EK1Wa31bCIKDk2kq0pM66jRekrB6f/AelJewLsvTS3Z06dP42tf+xquXbuGaDSKffv24bHHHsPx48fxwgsv4Fvf+hZWVlZw7NgxJJNJLC0tIRaLobe31yOYSE/duHEDV69exc2bN53QZ3AFfTlEI0tLS8hmsy5MnqiQCCWZTKKvrw979+7F/v37sWPHDnR1dTmhxp9yuezGtrOzE6lUCjt27MDAwADC4TCKxaLb42VpYKUFVTiyvtFo1DM2HE+dT4rUgLXoxL6+PvT29qLRaGBqagoXL15EJBJBJpPB/Pw8rl69isXFRQ+yD4fD2LZtG0ZHR1EqlXDx4kU88sgj2L17N15++WXMz8/j6NGjOHr0KOr1Oi5evIgXX3wRFy9eRKvVcpudFS0pE8D5ZANLVODrPLHrSOl2fba+T+eiGljciL4ZorN0oWZW0fpzzPiZ0uB6Tbv4l++ZKvzc5z6HN954A6+99tqG72ZmZhAOh5HJZDyfDw4OYmZmxl2jSovf8zu/8ju/8zv4jd/4je+1qu+ZwoWmjnWli6y1pr4rwJvDDVgXUID3IEIqKqVF1NmtPhHNFqB/U0nqQlVqhotY6US+n79VIfEeqwBpNRMZrqys4J133sHzzz+PD37wg9i7dy/27NmDeDyOa9eu4Y033sD169fx5JNPYnh4GBcvXsTrr7+OeDyOSCSyoW65XM5FHlLB0bejkXS5XM4pA6Iwm40kmUyip6cH+/btQzKZ9NBzmtGDvxOJhMvkceTIESwsLGBsbMwhNw30sAEBrD+LKlHdl8XxpfBX1M3gEPZvrVbD+fPnUSqVXN9fv34dhULBHZvDozgCgQD27NmDnp4ezM7OupOMt23bhrGxMQSDQTz66KO4++67UavVcOHCBbz22msYHx/3sAaKlnSe6Zyyc1r7wfqYtLBdyhj40YW6eVkNO6vc1DdMpaMGoTW6dP7rOtEkwe1y6/I9Ka6JiQn8q3/1r/Dcc89tOJPoH7L8+q//On7lV37F/Z/P5zE6OvqP9v5/6mIVDZWM+pVUOXGRKaKiUNTPA4GAJw2UCg7l4CmIVclRwWk9gsG1UGytl7WUW62Wx4fC4AYWXdBMm6MKE1i3ZNV6plJ/7rnn8Nxzz+HYsWP4iZ/4CQwODuJf/It/gZmZGbz77rv43//7f+Pee+/Ffffdh/3792NychIvvPACSqUSMpmMh9YslUoolUqYn593tF40GkUymcTg4CDC4TC6urrQ09Pj+soGPkSjUdxzzz3o7u7GysoKbt686T5n/kH6vkZGRty+sRs3bqBUKiEWi6G7uxsdHR3I5/PI5XIu4S59dKR4qZg0JLtWq7kDNpVa5VjTAKJvrVarYWpqCqVSyfnIAoGA87lxc3QwGHT3BAIBJBIJ7N27F9FoFNPT0yiVSnj44YcxNDSESqWCP/3TP8V9992Hf/2v/zWq1SomJibwh3/4h7h48aLLIEEUy3FV6pv15DzmfFKFyfbo3FQlw3EFvKcUM9EtPyc1rAqM9+vfuilclRrrqgFniqI0KInRiyy6dtpl8/I9Ka7Tp09jbm4O99xzj/us0WjgpZdewn/+z/8Zzz77LGq1GrLZrAd1zc7OYmhoCAAwNDSEV1991fNcRh3yGlsikYhzlL8fCxcvQ2itPwhY94NxAW9GHSqVYT9ToWZ9ZBQswWDQk02B12saHEUU+nyNoqLgtBtCWWdd3OwDS8tQSNhQ8FqthjfffBP9/f3uUMJ9+/ZhYGAAN27cwNtvv40rV67gqaeewt13341AIIDXX38di4uLSCaTSKVSiEQiKBQK7nBD3fwbDodx48YNh3wOHDiArq4upFIpJBIJxONxd6hjKpXC4cOHEQgEcPXqVQ99SEWoSn1hYQFzc3N4+eWXkcvlnH+JpyXrQZbc7Kz9QeRmIxApJNlXFJDct3blyhWUSiV3H31hoVAIKysrmJ+f9/jHWNiGoaEh1Ot1TE1N4Y477sCOHTuQTCZx4cIFnD9/Hk899RSOHz+OpaUlXLp0CadPn8bZs2dd29W3qqjFBmZwLujGYg1KUgNPkY72kSIirhOLXK2SIfLT9aYGn1LNqiC1ztZIVAZB5/L7KRT+71q+p+CMQqGAGzdueD776Z/+aRw6dAi/9mu/htHRUfT39+Ozn/0snn76aQDAxYsXcejQoQ3BGTdv3sTAwAAA4L/+1/+KX/3VX8Xc3Nx3paDeb8EZRCga4QSsIw8KQ1I/forLUniqELiQyN0zio5CSgWA0jeqBP22Myjtw6g89Z2pg12zF6jDmwqZKMKPSmLKIPaVWruhUAg/8AM/gAceeAD79+/H4OAgpqamMDY2hs997nNoNBr44R/+YSSTSVSrVXzlK1/B5OSkx3KfnZ3dgCLVnxePxxGLxZxwYrRgf38/uru7ceDAASQSCSSTSecnozLM5/MoFAqYm5vDc889h6tXr6JYLKKjo8M9U/057JO9e/eiq6sL0WjUGXa03omWGo31vIdUcq1WC8vLy6hWq85o6OzsRH9/P4C1wKubN2+i1VrbeJ1MJlGv11EoFDxGUzQadWPZaDRw11134a677sKuXbsQi8Vw8uRJLCws4K677nKRk+fPn8f/+l//C7Ozs466ZD9yLqj/lPXTEH1lE+xYUPADcMEdlkpU6plIXWlyvlsNOTXsVCkptWypZjW8lBFg0Wu4Vjjv32+K6+8SnPH33oD8wQ9+0EUVAsDP/dzP4ctf/jL+x//4H0ilUviFX/gFAMArr7wCYG2A7r77bgwPD+P3fu/3MDMzg5/8yZ/Ez/7sz37X4fDvN8Wl1IP1QQHejYsU8FyQaolqZB8Aj6DQayk0uPCVWmR9bFQVN6VqvVTAaB0Bb5b5RqPhlKYGC1C5+fliVGBRcbEueoRIIBBAV1cXDh8+jOPHj+OHfuiHEAgEUKlU8Pzzz+PcuXOYnZ3Frl27cODAAQSDQVy+fBlvvvkmVlZWXFLYxcVFh0QAuHRPjUbDRe5ROWumi0AggMHBQfT39+Po0aMOaRWLRXdC8/LyMpaWlnDz5k3X7v7+frc/i2NFHxrpQO4VI91FSpFBHLqHi0oMgPPpse+4J4tRhJxnzMBRKpWcYVCv1x2lWiwW0d3djf7+fnzkIx9BX18fms0mPvvZz6JWq+EnfuInMDw8DAB49dVX8corr+DNN9/cENWnPlmNXmVRhKTIXf2jqozUqNH7NciHqE2fwXmuLACpQ9YNWDcgdX1yjur60LVmlaimalMfGuvTjiq8dfl/nvLp93//9xEMBvH0009jZWUFTz31FD7zmc+470OhEL70pS/h537u53DixAkkEgn81E/9FH7zN3/z/3VV3jNFFYcuUL+gBUVkLHax83kMbLAbMLngbQivXwCGBgPos/m/WqnqZFffgF5LIWwTyFr6RQWO7hnjeyiYKLBPnz7tKOtdu3YhlUrh4Ycfxp49e/DCCy/g2rVruHTpEn74h38Yhw4dQjgcxtjYGBYXFxEMBpFKpZyCoqBUJEmFoj4f1m9iYgITExM4c+aMJ2ydfUrkwug/+lIsBdrb2+uQNZPWBoNBt89qamoKANyxKbFYzG1qrtfrLpCEgpW0PgCH3Do6OhxFSn8SAJf2iu2lD2t0dBTpdBrRaBRjY2N4++230dXVhQcffBBDQ0MolUq4ceMGnn32WVy7ds0pLQ1GUKNM59RmBhDXgUVgVuGpccO+0jWlfikaVlpspC3/tsaf1lENN/ssXmefadeIBie1i39pp3zaAoVoxG4yppDngqUiszQEFxkFvAYFqDBQhzSFMi1CtQa1qMWsUYKAVxlZRzefqQpArVyiQRVeOlVt9JYqZtZHw7p5Xb1eR29vL3bt2oVPfvKTGB0dxcDAALLZLCYmJvDMM89gdnYWw8PD2LVrF4LBIKampjAzM4NcLueO44jH4y7rPNtKnxDfw88ZuKGbajlOHNtQKIR4PL4BRWvQB481AeBC55Wq1XB8nQM8CkUzpGtAARUf5wgjF4nmeE5XKpXC4OAgDh48iJ6eHgwPD2N2dhZvv/02stks9uzZg927d+PIkSOoVqt4/vnn8e6772J6etrNJZ0zauBosBD7QAOGVHGoT9Ai+M0MMM4Pa3CpstQoRTuX+Q41upTa4/fWiFKqUY00NeLsXLYK+L1e/kmown+K8n5TXBo1BnjDgQGv70sFHxesKiYNoNBoQCsI+F7dIMmiC3ozFKQWMj/jYrZ7dKxTXvPB6X2sK/1aum9Jz6iyG05ZLwp/CsNHHnkEhw4dwgc/+EFkMhk0m01cvHgR165dw4svvoiVlRWXkqlYLCKbzbpov66uLudPoh+J/a2WOreHUEGwPtqHqlTYTj2KhP4oXqfUrwpp3U9Hn0qhUHD+L9Ky6vNihKBmJNFN58ViEZlMBj09PRgZGcHw8DASiQRyuRwuXryI2dlZpNNp3HXXXchkMohGoy4DyUsvvYRyuYxYLObSQHGMNFJV/UGKxBR5qYLR9vn5oXQeAOvBG8B6/kWdFxa1+fmzeJ/2v46jVUw2p6GtH9eEzmlFa++nFHhtxfUeLSrU/BaLpRLtglNaIhqNetCWcut07qtAsP4zFYysk9aBRWku9UGoEmJRBcs28p2WnuSBigxw4PP9NqyqP4PPYbg+kUi9Xsfo6Cj27t2L3bt344EHHkAmk0Gj0UA2m8Xs7Cy+8pWvYGZmBqurq7j33nvR1dWFbDaLSqWCfD6PGzduOGqOCXmvX7/usfQVJRPFKPVG6o5t1/5XhMY+0b5WlG0d+3qdhp3zPibeXV5eRqPRQCKRwMjICPr6+hCLxbBr1y6Ew2GcO3cOMzMzTnj39/e7jCGhUAjz8/OYnZ3F0tISpqenPb5VzRChFKj1ZyqFpkJe5xefoWicn+na4Hu1D/hs64Pyo7atUrS+WvalRfwaZKSGko6J0rVEaTpeanS9H8pt4eNql3+4oumdlF7QhaEUon6uFAgXtQoKAJ5MGRoIwmItRb5LlaN+b61XpQt5nVXEfihLqSQKE83xxjYpbcn+UsGn0XlK94yNjWF2dhbvvvsucrkc9u3bhzvvvNPl2AuHw7h+/Tqmp6fx5ptvYnBw0CXFDYVCGBwcdGHsweDaic19fX0olUoOOfHUYLX8rSJifTQoRS107WdeTyWuSIWFgp5Rp6QaQ6G19FIMyIhEIti/fz8GBgZcDkUaKjyqZG5uDplMBt3d3di9ezei0ajL8l4sFjE+Pu6UeSQSQTC4ts9LBbcqYjWsVHgrYtK5wftVCbH4+Xe131SZ2O/UuLCIiHXQ+a5/c6zIhPB5uv7UQGThc9Tfx3tt29rFv7QR1xYotJCV5toMXVD482/6FZTTb7VanvB5VQDcL0QloFw9F6pat+ok12AORTvWmmYbLLVoBYh1wOtz1SdhqSC1du092p+sn0ZEptNp7Ny5E48//jhGR0fR09ODcDjs0jv9zd/8Da5cuYJWay3j+dDQEKLRKCqVCs6dO4epqSl3LevQ1dXl6DkiFAY/EH00Gg2n6PSQSu65YmYOFbSrq6suJB6AO4mYWS8Ycs9rmJeRyC6RSLh8jLt370Y8Hkej0cDExATm5uYceuru7saRI0dc2qhYLIZqtYpz585hcXHRIU+lvBT1a4QqBboqLkXa1jjhuPK3JjDmmKqisdshdLwtUlVFp6if/3MtcR5qm/Rd9A/qHNT8lhbx0QBR2lKV+vsJbQFtqvA9W2g1qxBmAAPDpVWw66LRM4SsBWv5dlVMzFqhSXgDgYBH4QHrKBDYuK9FrWClsayPjkrKWt0UyPV63b2P7+czLDXmRxlaZcg+Yj9a4Qms0WrRaBSZTAZ333039u3bh5GREezYsQO1Wg1XrlzBjRs3MDk5iVwuh8HBQezdu9c9s7+/H6urq1hYWMD58+ddfRhgs7q66ihLDSwA1lEIx56KZmhoyENThUIhFAoFh9SSyaRTiLVaDdVqFbt27XKIpqenB5lMBul02nNNs9nElStXMDExgVqt5hIAE6U1m2snMS8sLKBYLDq/HpWGzi+On+1vi3aUYlNErnS0NXZU4JPq5byxyEz3AmpEK+cIx0LpQypUDbKg0qKSUb8bi0Vrul6UftdrOY7cD6e0JANk3i+lTRW+R4sKBEU7ilAA71EkdnHptcrx64JTmk3Dvjej+RRJKaLj96yXCmL1ifH9lraksLMIzlJmKgT4LJvcVwWln4XNv60gZTDDzZs3UavVMD4+juHhYTz00EPo7+/HkSNHMDo6isXFRbzyyiuYnJzE3Nwcuru70d3djZ6eHnR2drpDLRnmDqwrVyoA0ouJRML5vtLpNCqVCqamptxzqIQ0EGR5edltLK5UKigUCpiamnLoOZFIuKhK7t/KZrOYnp7G7Owsbt686SjM4eFhbNu2DV1dXe6E46mpKeTzeczNzbnPSFGy3zWSUlEDIyY5Z3T/lh0jjrNlEZSao2+IheNmFYcNhlCERmNB14+uM7uWVLEqDavzUtcoixpPqtCs380qVa1Du2xe2oprixQKKr/FpQuEi0QRCa/VBU4KRIUF4F1QXGh+Qt9ax9ZiVPTG92tUGd/Fa6w/TP1sNmqQn1nFZZUpi0WAqiAB75lO2ga+K5fLuYwS9Xodhw4dwqOPPoqenh6XfHdubg5nz551fh8eYQ/AbSZm8tquri63sZcZNUjvlUold0+5XMbo6KjrDz2Vt1gsOsTEcPYbN264vVfsr/Pnz7swe6aH4rj39vbi+PHjaDQaLs3VysoKlpeXsby8jFwuh4mJCVQqFadgKXg5t/zmIsdHKW3SnlRkHBM+S8eTn6mhpXNS560ljJQ2VARrvwPWN/bTR6rzxPqQ9Tu291bv5ZxU44trlEFGNpsG39Pex/WdS5sq3AJF/Qb8nwuDAl/5d2Dd18UILCYS9UNZfo5x9YWpULfCn/epYgC8iE8tVl3MSsUA6wqR72SCX60XFzypRApCpRJVsWp2BL5DlZ+fANL28JmkeyhE7733XuzduxcjIyM4fPgwotGo813xPDCe7TUxMYFisYhcLodCoeCo3HA4jL6+PqTTaXR0dCCbzTpk1NnZiVwu58aAZ3Xx+76+PnR2drrchV1dXdizZ4+rBxGRRZtEv1Sq4+PjmJ6expkzZzA9PY3FxUXMzc15DqBUQ4L9zuALRdWWllNU46fULHJW/50aSpZF8KOmrXJRBK1oiZuzOdaat5Gf8TnsK/qwNErWKjGlfdVIVBTKNGJqUKohqs9tU4W3Lm3EtQUKF5HSYYqEVHhwMak1TIFv0ZUNnFCahd9zIakfQa1RS9VQWAFe57e1RFWpWbQF+CNMvZ5Fo+vsgtfAB20X66YGgAostbr1WRrG/MYbb2BsbAy9vb2oVCoYGBjA8PAwkskkIpEIuru7XVDFtm3bUKlUUCqVkMvlsLy87PxWS0tLmJycRCgUcv4OClf6QRqNBqLRKPbv3+8UVX9/v8tOH4vFEA6HkUqlEAwGUalUXOAH+ygQCLjAm0Kh4JTomTNnMD4+jrfeessdU7KysuLpO9ZFN99aWphzBIAzkmz/6hyyiNeOuc5VjZb0C+rRsVPUbNGL+tssqtE9i3Zd6dzje3UOqiGm/WTfy2s5j7SeFsG2y61LG3FtgUJBqoEQ3INkFZG1VlUZWUux1Wp5zqJihKFGLwJriy0Wi3mQjaUcLeLSd7Fe9HmopW4VBIUGFTPfxfbxHn2XoioKMBV2ijr4PrvHTB322u+A9wRmvkOd/4wW7O/vx/DwMEZHR3HHHXc4CpCRiRpwwXcxpyDbwo3BTMFEIRuLxdDX1+ehvahMicauXbuGUqmExcVFl+m9WCx6MlaUy2XMzc255L7FYhH1eh2RSMQJT+5106g+HQ8aIZrtXOsEYAONqPdq1J2OIxUl+9UG8+i46D4uPtcaJ35F0aM+zzIQdl4SIVMhs085D2w9b2UQ2v5k/bkHkEj9/VLaiOs9WqzlT5TBcGtgY0Zr/qj1xwWvi9wiDRUwgJe7VytUlQL/1zpouDOFkN1nZH1j2l4bQmx9DLxOlZJarwA8VJf2AZWyCielqdQpr1SW+ma0jVTq4+PjuHnzJi5evIirV68inU4jk8ngzjvvRCaTQSqVchnX0+m0MxaKxSLK5TLC4bDzh0WjUdcuhsaTBl1dXcXs7Czy+Tympqbc5t8LFy44nxcDOPSMMEarMQ8kAM9xNOwDDdzR/tG+sZSqoiaOGz+zVDC3BHD/k6WdbdCDjp0aPHwX14DOKzt/FckRCeo1bJuic/5WdKb14nM1KpDPs3Odf/O5SlmrolbfX7tsXtqKawsVLi7N56YCxIbwAt5kruTY7cJWq5m+JRv2awM06HtiyiAW/dsqJKWGSIOxPqr4KKCVFmLRz/wO8vOL0tK+4mfaHvooFEWqkNToR6V12McMq04kEmg2m8hms3jrrbfcnqwbN26gp6cHfX196O3tRV9fH0ZHRxGJRBAKhZDNZlEoFJDJZBCPx92pzNxzVa/XsbKygoWFBRQKBeTzebz99tuYm5vD2NgYstksSqUS8vm8x2jRfm211nxTmk+x2VzL1qGRekpZ6VzTrB58nkUtHFu7d9APXVt/rBX2Gq2oFKL6xVRpfCcjSOeAGm469haRc8uCKms7N2w/W+Rv2Q+2V5/H74jm2uU7lzZVuEWKzQjBheVH06nw10g+G4QBrDuodQGrY5t8PIWG0k68htaiWuhcmKQfbZCEoiW2QYUQ68OFbC1tFVaKQllXFqVp+DmVuDrO2WcMR2cJBNZP2VVBzGfw+RTyRLQMMVfLnv6nQGDtROHOzk709vYiGAy6k5VjsRgikYij8DRycHFxEbVaze3/4bMVJQHeMHHmKQwEAp4wemvYsK/4naUAdSz4t90czjFWxMJnKsIj8tO5ovXi8/idpRm1KCWtBpzOLyIy1lu/143RXE+KQJXS03dw3ilCs2uHv9nHGgjF9+i2DH6u6+v9UNpU4Xu0qDCwdKDdF8IJTxSgn6mFys83+1FBr0pEgwZUWbLo/2r9ah1Icyp9YsOR1dLVKDTtE/aLFRzqd1DFxUg7KiGlGP3oINaX11rL2YY6awAM+4rfUyiTIgwG16Lyrl+/7pSevpcoUutJhGZRC3/TJ2YpUqIlClD6rzaj4+wJ12yzImadJ4octK80EtEqADUY9F2KfPX5tp76nZ9C02dY6pF0JWlURe06XlpXnSu2vXpUjTIbHAMdC0X5anj4tbFdNi9txLUFilIRapVqxJcKObUmdQGqILcRX7zGRqJxIVlFw++ZBshm51DqTi14RXiWLtL3KloE1rNzW0rGWvZ+C1/ro5lErNWtfaCWuCpIzZ6gaFNRDNth/YhaP1UCFk3atmhd1U/E73jUCfeAad/4zSW+S/sG8CppnXP8TucQP7P9rf/bFGUaWOJHZ6thZuuovjPdD2bbqDS0ImfbHwxG0ZOSde5rJg01Rvi9Im2dP7pOG42GB63rSeYWrXJ+8Htb9/dyaSOu92hRZWWpss2oMCvggY3pcPhsdcpb6pHKSK1Ci+BUEOtz/a7Xay2yU6tWLW7rV+C92kZ7PZ9nc+P5IUTNJKJohT4gRl7afqCQVMG7GWr1GyftC/XDqBDj2BMJ8T1ErTQcdMwVzfiNvyIKpa+sglE/jFXsiuBs4TspoJnr0RoxRCpqxOj4UYBTMbOP/Aw2vlOVI+cN/9f7NGzeUnk6l7U//RSszi1V7n50qxpqFr2xj23gSLv4l7bi2gLFT3Hwfw0LVstNLV0+wyoVpbqUarMKS7/TBUaL1VrcfCb/t4pUrVP60CytZgWstfZtn1gh7UdF6fdaD1t/VVLcV2URoZ9C5PWqjAB4kJhto6IGrYcKcr8MFbqnz6Ii7WvtB75bUZy+V4WoReZaB92DxDpag0DnSCDg9Y9aekz7yM/Y0rYQfdnn63vVX2aVpT6DCoa/NTWVzjXbt9YQs4hV+1TXgRoTaiy2AzK+99JWXFugcDGqoNB9R5z4TAnEH0u1qfC3VJUuOubpU8RCnwj3s1CYUfhx0W+2ydTP+a5CR53cFDSWPlE6jrQd22ARC/uA53f50Xwsqnx1e4EKUUZAss5qPVMYap1UcLIf7b47tbrZX1aJqTVP4a+UrbZFDQR7P5+pglb7XOui9WQUotKrukFZn6WKUuvBecLEzawv55RStqqoOObqj9Nk01bBqXJjRKDOd7tPTFGYpUdV8XBd6TttTkzWQecr2xgKhTwUta5NHUtVyu1y69JWXFuk6GRXoa8pkaxSUiGlAtPve7Uk1SqnQKHlyr1BtmgdlO7he2xiX7tglYZh/fwyvbMfNCKLgoObsllUcWu9WA99vhX02i8WqVlrnO9SRadoxhoSfIalVxUR2P5UdKbKWwWqoluLqtUXoxSWTeml9JXOBX2OpWP9xsevXjof/IS+Klm9VqlEv/5jUcpN79d5rcaRKks7xn7KHFhXtnaM1HhSJKZjQcWpc9GuJTuv2sW/tBXXFimBQMBZbQwnViGmCo3X24Wpik0tfUUR1m9FgWGj5Hgf4PVRcKFaYcOFbUPelSa0aalUyXDh203Aak0rHQWsC2Uml/Wrm9JiqsS0rRZFsi5qsfMZSkXZvqWhwferH0uVnj5fhapVSjqW2h+alV0VlTVUtE+031lUYFtBrQhM68ffSgfaHz7P+oRUgfoZBna+aQCPn1ESCKz7Bf36WYsqV0U/anjo9gfrS6NhwEAMNTJ1jOxaU7Tuh7jbxb+0owq3QFEKRIWEClEuUuXL1YdEQaaWLYWc9YMoxcLvmXUc8J5aa6k+1lfrZzeSWjTAZ6oi0nspMCiIVVjY/UC6Z4fvVKFkaUKldlQZ2PZpH9OIaLVaLhGwRVB2nJQCbTabHqVqrwfgkuAyZFsRqkXROg9UQfGdOq62sC/96DetD9/De5TqUsSs++54jUacWorVGioWsfB9fLdGwyrzwGtV4ev7VUFz3tiITmuQ2Xlrx1dRtRon+kydT9oOyzr4+UbfL6UdVfgeLmqtWUFH+sJa6NbStRSKoivAGxBgaTQN07abKNXitUKW72JRhaBIxSIOS+/wXhZVVq3Welok68NQJar0ULPZdMls9TBOfbbSXLpZWX8sRWeRmyp2bZuOhdKf9nMVllZRaVtsffku3TjMa7SPVKmqUPUbB35nEbter32vxoBeryhDFScVOvvLGlSqyNh2P3rR+sj0fju2+m41iPzWgho8Op/8FJf2lypMVXZspx8CbJdbl7bi2gLFb3FYgQXAE0ihR36QLtHgDS5o3sOwZVrOFHpciKoUKJTsviUVymrhsr68DlhbsJqR2/oIeI0KQFV6KpxJ0TBLPKlUi64UdQYCARdmTdTDPiHlyA3LDN5gndWK9tsDRlpJEQHbyOs0SSv7SYNELOWpqFfRDulWUshaFxWaOodUeKrgZh/pGPA3+17pOf62SLpWqyEcDrsAImbssPNA36NUoSp7vUepTyo4biS2iIrzTo0rtkfnsfr6lJb225ulflpF2Zp4Wt+r88/SjuxPa+C0y3dX2oprixROevpIdFFppnN+ZlGNWsebCS4uSouibAQVFyYXKVMtWetRkZZ+bpGLRZHqH9D7Lb2iKI1KkAJQrWhFCJYuslSR0nmKMvVdgcB6PkcViipktZ0qKAGvr0qVG+tBheiHsLRflWKiUvXzVWm9NTzcjzLV67U/+Jk1SBShKF2n79RQc/s+9rVmp1eDwLbdoj1Fc+pX07opurNKS5GT9n9nZ6ejae0c1Pml/aUshZ//Stuh9/FvXdftcuvSVlxbpHBRUjDbYxVUUNsfwJvjTxe4+gooMPg+Xaj6LH2npT8UuShnr+iJCEKTm2rd9cRbPtcKAmD9YD8VdpqKSpWUChetjwpl1lWpJj7H0lQ2Gk/70/pElBZS4a5BBqq4dbzYPkuNWvrNjpH+r2Oov7W9OqY28MDPIPKj4ixCoaHlN4/9nsH3qeJSY0iVkqUI/ea7+kF1Tti+9jviRNGk1pXf6ZzXfraUo9LcnJva1zo+2tftcuvSVlxboNjFxMluz5BSqkuFKiPuVEHpggHWqUEbBEABodSX1onf2dyI+i5gnRqyIcH6HFVivE/pOo0OVMFDi55CT63qVqvlzlFSgcJ+swpRBavdfqDKXSklCkaLOlXg+gls/Zv9qIEoikCpNKwBo8KY9VCfnY6hBrqo0OS+PesfJAVr54vOQbbTBjpY35GiGmssAOv7oki9KfrnPer30ghTFlU0VFg2GIRUsiIbuyYajYZLtqzGlqUEdc5qv+gYaFQmEbEqNL1PI2bbCuzWJfidL2mX26GogFdLXC01CqRbURMUvCr4KGgURSiSsItSF6pFM7opVReohp9TEFshyM+opDb7nvXXKEO2nUJPEaMKaWZXV5RgHfi2L7U9KrQsumLd/JCvHUO/RKysjypevUf9SNr3qpjstXwvf2v/aztVwFvBrkfj8Lf2r1KefK6iHKv0FFGpctXr7bYHbTs/o+GmSo3ts++1bdM1oMpMUb6uGX7GumwWFML3a79tpuh0XSoab5fvXNqIawsUpSEAb/ZqYCOFQ+Gv99F6VWRkBY+lZrRQ2NlTcak8lRKidUqhoCHjuv+sXl8/ebfZbHosaNZRBRqtaOuMpyWrAQTaP7pplPSVBkWwTymMeY0Vjq1WywVtWIqVCED9Zxwb1kV9hWyDhtVr4Igqd+u3UmGvCpjoUoMoVIjzGRwPVf6K6m1biebUWKFPkcZKrVbzZNmwNCj7gs/S/3UMNDOGKl5LkbIfVGGxcC7ourBjbN+jp4vznayjrgF+pzki9XrOcxpeOic1YpLzRtkFv7FuF//SVlxbqNiFoojALm6lxazDVyk5e3gf4M36QIHMQmFgw6eV/uMeJNJMFGxaR32PCk8KPj0kkspAQ5T5DAoo/V79Tfq/IkWLKPQ7/qbA4TspYGhVq0+HykqNCovi1LBgndTfxmdxbClgVXFY5aLPB7BB6FtLnopGFZEaKoqCFOnwO/a5Gj+sA6+xfiSlb9WnpQrEpnXS+WgRpqXTdO5ocI1ea9tg55UqEotAOU722ZbRsHNOx0vbwz6xqEsjG9vl1qWtuLZIsSjCUlCAV+jwf6IDVWgqdFXxAV6hxMVFoax0j9ZBFzLrSqVHJad0Et/LZyiFZIWeCgZa5FYxWQtVEaQqV1Va+rmlubRe/Fvvoa/N0lD2Hvu/jdBjX2n/2XpqWL9VeGqc8G+GavN7a7To/zqnVElZRa4KVsdR66jjbsdX/1YqTY0CVYqqZNhvvE6FOueXjrc1Gjgf9B06Ppv9bfvbBtwoo6FUsWUgWCdreLE+Wl87Vu2yeWkrri1S7Mm+qnj0N+CNBrMBGiqUuPB5D5+j9IqeskyhxgMLlcPXiERasyqgeI8eaqj14bWknJTu4jOpSDVwQQMWWBdVvKqYVThrf2kQBtMl2az36ufwo99USVFIKTJQ/4w1HlgfW1+OhyoUVbit1np0I8ea40flpb5MIhtu1rb0n0UANviH7SbNyfmjPlfONRXMOlZEX+wzbgLn2OicYPtVgWhgjCp5paqbzSZisRhWVlZcfXUMWD/tQ17HuayIm+/XRMt8hvrM2EbOUX22NTpVwek6aqOt7660FdcWKSpcrKUHeJPk+iEHP4t9swAMRQmKKuyipmCyiEvfoYLLPk8FmEa7WRSi0WQq1LjfBvCmqbL9pUJKAxNYVz8qR++zgpKKyfpEtA903CzC4+f8bdGeKkn1panvjNdaoaxCXA2WRqPh2aSs80fpQP2e9VW0YMdFr9Gx0vHWPtKx5HxSpaVRm3oMCtvGKFOL6nU8VRmr35Lf6980UrTf7dxkexQJso8tfch2ar/q+y0DoHSl7et22by0FdcWKUq3KEWkdIpa5IDXmaxC0NIbKmyttW+VjmZp4LO1XqoclL5Ry5xlM0pQfQ4qOCjo9HsVkhZhWNqHik/pUH2vtXgtOqKgVMFp22ARjKWYNLyb9xC9aH00spDX8lgQ9THa6xTt6PMtQlFBb+vD3xY1sig16WewqFBWpbtZAMRmc5LX6zxUhaLvtkib6MlmfKGhY+csx1UNIDX4FO3p+PPd2k41cCw1q6hcFZei/nb5zqWtuLZQUSe0hkBbhaW0hlJPijb4v/qdlPKjkFcFZPdqqQBTwWeParCRitYSV8vfz0GuKJP3sz9UGdv2UZDbzB+sn035pEJd02OpIGZ7FNloHkPW3+6lsn4bHunO9lGQaYi/tdotLWW/53xQ6351ddWTy5Lt0Geo4lMFwzoryrPPYb/ruNjweRZGM/JaRT4afWfniFW27C+WSCTixpCKRSMb2f9qUGlwBp/HlFo6lzgm7EuNsvRbC34+xEAg4DE6/IwLVZbt8p1LW3FtkeIXSaaCQy1dPwQAbKTmtKhwsEhNr1eEp99rDj8t1gfnVzf+qIJTIQV4M16oklF6RUOg2Wf2ndpetXjtZxaxWf8aKbhWq+WOsmBR5WmpKY6DUoA6lhpIo3W1lJgaJBbpWWNE22aNGW2zn1LTAAi//uF12tfql7QIQ5Wk1s2iGJ0zujfQT5mpb8yOqSoDPp+GBRW6+l4tfWqVk9aLf6tSsmuAhhMVqR4maZGq9km73Lq0FdcWKRTMKuApSAGvj0Wd7prbUMNtrTXJham+ChUClnpiscqSAl4VHH+rlWqFpiomfu/nH1D60I+O0Swi7DeiJw27b7Va7iRftXZ1vxqf4ydUqGQUbfEdlrZSWlEFcyQScXXSwABa/9qvGiig/aOUGoANSMDvsEyl5DjmKpRVqOomd76DaFIzSbCo0qCxxX7Suiv6YUCOVWbaZ9o+W6rVqmdcms213IfWV8q5qXNK28r/ObY6/uxLHUu+zy87Br9nu/U+nTO6bqzibpfNS1txbZFiEYb929IMKjQAL+JRSgXwplCigtH3qjLjs9RiB+D5ztJ1gHevFIsqQ92YrAvYIhL94QZYRQzW+a+0jj6T9SBaYPvUx6X+DRXyKti0Par8tU8UCfF/vcdPQFtEqu+y9yilqwpI66ljaX1GNGq0H9WY0THXsbJ9aa/XvuP7FX2qIaJzSZW+0rUWhfJ/pWzZRr7DD4Xa/tWgDNtu65fdzL8VDK5vJuc9RFvaB5shQV2PbT/Xdy7tlE9bqFghoD/0TXDyK5XFe63Aa7XWw6lZrMWu79UIMBVKKnS5cFXgWFQEeCPn+DzWmZtk2U5ep/Qaiw2SoCAhOlHhB3iVtD1l2ApO2/faHwxQ0X7V/rfoUMeC9SbKUkpKo+kA/4MctU4aEemHHPU+vot+TO0Li4QVfbP/dHytErAJZG0fah/ofLHjYuerHTP9n3VUA023ZSiFaI0KfTYL550aNRrtZ9ePzjntC78+1OeoYrVtayut7660EdcWKdZyZOJYtdB1U6TmegPWzxsiSqHwVd/UZgtU0zwB6z4XpVtU6FjlwHcq1aSKhe1S4ag+CEWJREgqXNh+vltRH4WpChRFS5Yq5LO4n4vvtBSV1p1t1/PQSH/6KcHNKFBrAChNqwiTVCafrb5O+lF03FUZKFWsxgPH2FJc/KFCCAQCzqfH4BadB/yhwtCzxKx/ktdFo1FPYISf8lIDiPXXeWORoX6u42opbAAbEJIiT5sayo9mZxtXVlY2KCuiWWvQaR9zLCwt3y6bl7bi2iLFWsQs+r8uYN6jgkDpHi4Qmx/PvtMGYVAg2+9VealVq+9TIe6nrIB1qlIFp7ZF28Hi59RWBaW+DVVsuheNddI22RBley2RRzQadQJV26uCy95r6TMqAhXWdtwp4HiPRQ1+1rsKcPWR2X1QrKvuT7Io3SJoNRo0f6NScBTkutndb0wBeOpilYPWRe9VJbEZClKFYw0dvZZIV0870LmrLIJlO5T65FzgGKkBZteB/m3ncLtsXgItP5PwNi/5fB7pdPqfuhr/qEWtQetcV7qFyoeh1oA33ZAtihgsUlGBaBetXXBWCOlzNW2RCg6lTawgtAs8HA4jGAw6R7wiFmDdH6JCjtYwBQjRCOvXaDQ8G5g1VZLWS/vbolHtHy1+lJk9tkLHz7bZKicqNjU+eL9mH9HoR30Wi0WC1hfF9+o+MY6JVRaWzvPbi8Rn6dzRzebA5tsl9NkMI9c6sx62/coqaPu1ryxKVgVJJeyH4nR+a9aScDiMUqnkxojvVYWnUa9+TIGul/dTyeVySKVS39M9bcS1RYpfaLcKf11cdmHqfcDGhW+RjaIr/rYCC/BapqSN+Az7Lou+LNWndaTlqpGUFpVpXfX5Filofe0+KKv4VSmoYNE6q7/Eokx15NtsDuqXoXBstVrOwLCh/NYwUKGrvhteqwaFKh0VvlYZ6XhapeCHWiziVcVglQz/1nG1SFcpXM0wr8hMlQ6vtQrA7iPT/rd9Aqyfls1xsQmH9T3aJ7oh2q9tnDfa71qIDHWNWiQL+EdOtou3tBXXFik6sVWZAN7UNTYoQfl1i2KoHPyUB//2E4bWL0QqSH1sfCefwwUNbEQxRAEqZFWJKZpTy5RtoEJhUYWlocr6W9Glvo/PtQqLv/mj/iQ+x1KO2g/8XpGAn7Wt/QqsB5DY6EDexz6g8tENzH4ISiPd7Dho3W00Kn1+2h47R3Q8LYpThab9of4qjShVlG8VCPvLIhmL2nVucf5ZxoDUpG7qV0PGKm+LlNnXrLemqVKFag01XVcAnD/Q7q9sF//Spgq3SCE1AXjDx3VRWBQGeA+zU+EIeNMPWcTC72mdcnGrsKNi1D1fVCIaocUFrQpPiz7TFhUcWpTmUf+FVQKaDFX7yL5flZJVvKyH9pda/ZoAuNVay4pRqVRcfaxy0L+j0ah7hu65s74p69uy6FTpMYuYOZYU4lS2FoHxeo2sU4TAOWV9h7xX56r2s9ZJEbQKaT/aT5kEndt8po3UpGKmEUcWoFqtblgnGnnot+mb3+mz/a5R48MPtercViSvwUp2XrzfEFebKnwPFyuw/OwNtfK5CGzYuQpN+g0Ueeiz1JK0liKfQb8Cj/rQ71gsnaLP0e8t4lI6SZGAKmZ9hx96U1qw2Wx60izpZmNFBxZFqPXONmq/aH0sbabCVRWrtdipQHRcOQaKdqxCUuFPA8Jeo/NFo+ZU+ev7mJrJ+sKs4aG/VThbQcw6aR+pAtJ2UcHqnPPzu+p9/NyOmx44yv61m6epxKjsFB3asWVRpav1pEGgc10VtSJFa1ipMdou37m0FdcWKUrT2c+BjRQEP9tsc6Wl3CxdqIoLWLcQdcGpEFOhbhWhojFeY+tio8J0U7CfIKRlapGkKm2/JK22z2w/AOsKXRUMsDGLhn5ux0kpslqt5pszkUqTyl+PkNFjaKy1b9GfFfSKxixKsEpY/1aKT/eSqYLSPrNoTJWxHWvtZ/6vSNX6eVQZqc9MFYONUqSyYvGjLPUzvsdvTenc0TnO5+h71VDRNlkjkvdwvtv720rruy9txbVFii48wJtaSQWqLggroLQoN6+UoFJLqoT4fvVTcGFreiQuerUg7bttAIVa8/oe0i/BYNAhOgCee6zQ08+430gFuApGRhyy7pbWoyDyS5vEv1VIAfC1mhUJ8n7rb1HfIa/nGBElEnnp+GmfqbDnNSqANVSbRQ0TTY1F5aUUrPqftD/8lB/HTuupdQDWU0fpHFajhv2sc98iJT5Hw+j9gmR0Huj7eI36KW1gB++xeRttAI7erwYZ+1e3HJAOVAbAGlDtsnlpK64tUqxFqxashsnbxQN4fRFWqfkhB124isS0LnyGKkq9Xy1VuxitFWwtWv7Ne9ViV2VI65bvVMGkwkaRG4WnDZ+3QoM0ov1MEYVVOlbgWhqLAQB6nTU0bJ+oErQCWcdcqWG/OvAa26/av1YZ2THX53Cs/TZZa330x6Iqi8oA76ZcCnc/RKTUoH5ux0nnm/7N9ig1SZSt80rrrfW1CFjXkN8eOG2LRaC6FjZbc+3iLW3FtUUKhQUtN92PZC1VcvkWYdhADWtR0nKlU1stys3oJivgLYJRRz7fZWkSzU5gLVhg3Vq1Sk3RIAWQBoGoRU+0wqg7tf43U0ist6JMW3c1HvSQQ+0rHSMbSMI6sm68PhwOuxBxvqNWq3kQi/YPha/6aVTRU6DaSFK2Qf18/Fz7lv4be26YUoUqyPkepfZ0vEiT6vsU7apBYpW4KloAG5SCrbsaMexj9e9yXKmEVYEpMubcYr0YBbiysuLWjTUkuNeLa5bjGIlENpwsbX2c7bJ5aSuuLVJU6Knw4f+W81dKkX8r5WU/28xfo4KFv7nYNfJLFZMNstDPleLRVFLWx8bfbLfd/2Kd4KoMrF/Czx+kbVUhz/81Ma916Gvxo3csqtWMEPZ6225Fk9ba93uXtse2k58pFXYrdGgFPftC+1fbp7Skzg3bHioppXf1vZYmpgFC40cjOBVV2z6xileDIbQP2RZrAOp8YR/aDeyqRLXtnDOsM58biUQ8a473qd9uM9TfLpuXtuLaQkUFjy1qraqS04VuFx6wrrjItVvkoYuK91HYqMJUZWnpDq0DsK5MVQmrwOPz1VLlc5jDkHVVAWKRm7aZSEspQqVdleJRZaDtVsFnKSeljjge2g9WWfr1Na/zE46Kcv3ez6IGhNJdgJde1HfpVgGl83TM7Lgq+rK0nI6NIm5tr46XfY/WTd+p4+aneGlkcDz5XDVotI4APBue7buVDg0Gg55z1yyy1j5WJWwRoypURYDsI7azXW5d2oprCxVLJ6llroqECxeAS/wJwHPmkyo4pYNUGbVaLUd/UMBYqioYDCIajXrSGSmttLq66tmjxDpxcVOhqECnMLH7WUKhkEfYsQ6sfzC4lhKKEXlWUKpVrMJLAz8ikYh7Dp+r9WXf6VEiGhxg0aCiTPaXjgfvD4fDHsRcqVQ29LdSbfzO+jr1Hv5PSkvHVZWVPlvHVTeVs16qSDQiUoW0HRs1uLSPNJBGUZciPFXO/M4qTL2Hofycz6y3nf/qC7QojbQv+0iZAWtgsV66jrQ9qmytgWMZBKtg22Xz0lZcW6jQSlNLFvBaylwYytOr4ORz1IrlZxQwirA0qk5pN2sR6wJWP4hFCuozUktTBZP1v1glq8LWhphbusUKEEsf2XdovdUyvlX4sgpXRcMUrOonoYLT51jkw7apotFgBD5Pv9O5YGkyvsdm4VDlvRli0qL9TgqU1/KZ+hx9lv5WJKRGhQpx/Uz7SZWdHQvWSxWeGgx+lJzWW7/X//0OkLQKSD/j2KhB5rf+/BSYzt122by0FdcWKnbhUXhwMelGSgo3BmkomuLfdCxboW0tXOaQU8VERMRr1X+mKNAvxZBazeqgBrx7cZSmUz+R9kckEnFtVkGpPhEKMAAbjlm3VrBa6WwLhY8GOqhFbpPnWjTk559TC5tIgYV9zGAMjovSbqqQrbJQhaDvV3TDucD5QxpM6Vwb2MExq1arngSzfCavt2Hjtn+tUuX/6hsC4JlzquxVgSstCKzTj4rodFw5P+ya4r2ck7afrEHA56hBw894ndbfnsytY6b90UZb311pK64tUqxFzsIFpotHFZzdpKuLRIU93wF4jxFX35k+m39b/4PNtcZ324gvtd75bqWUFCXp8/l3Z2enZw8VFakKAhY62CnAlUbTOrIeNkDB1pV1AOAJdrD+DV5nKTAKeTUWms0mksnkBpRlkYAiBRWm1tjQPtXxt2hdfWzqH+M8UIW3WT5IRQkazKFzxF5n0ZxtMz9j3ew80XZZoa9jyGLpcdZV57CONQ0PRfV+46/PsfsWNSiGz9TPea8alW3E9d2VtuLaQkWpCiIKawGqoOQ91qlN65mIAvCGGKszWhebdbiroKTSolCm74pWp6V41KIF1v0PKtCs8FPho/4Aq3z5PitIqBS0LYqcKBCt1WspMrtPSO+xFr6l+fR6DSCwCESVj/aXVQCqvC3i02fr3/qjwlWRj1V+mwX7sOg80jHRvta2qVKyReccDSEbDMHP/BSo3zgqsuR7FZ1xLehYUxmxTlapKHLWsdexUGWvyteuXz8qul02L23FtUUKhbFGKen+D2DdklPaTU84tla+tcS5oBiM4KfYVHCrNUwEZ30M+r+ta6u1HjhAukyVoypptZZVeVoFpYEPpAUrlYpHUKtyVhoqFAohEomgXq+jVqt5BJMKJQpUTZSqPh8VsDayj20Ih8OeI00CgYBLBmvHQ40TVV4WlaphYJErv2+11pIAcz6wvyxatD4YVRwaYKL9qvPKoh87X7TOWndFI7FYDKFQCKVSCR0dHZ7sLpwv+i6LULXN1ufEdnEu8H9+ZveGaXCJjqvS5TpX9d3aZvazZlhRP5xFtu3iX9qKawsVa51y0alVa6kitcLtAuIziYp075JFCPq/WuUUBqwH/WHc+0QL1+bcU4Gp71YKxfq1VJDyGhWGWh8VqFZY8jqlWPle+noUyVgqTAW4IhyrsK0FznrY6D+LglToWivc9oG2TZUGDRhtvxW6Nn8i71cKmc/T9Fisu85DO0dt9Cnr7EdHqkC3bbU+JO1zHWdLyVp2QtGOKjD1NdIgoQJTpae+ZPaH3q/vtejPr6gRqte2fVzfXWkrri1SrMBXa1qj3pTWsYgH8CInoji1Wq3g0fBp8v5+gkoXrI1a6+zsdArBIgjASycBXr+ddZhru/iuer2OSCSyYR8Mn2kpGotANapRhbtVaipsrZ9IFZcVYuqQtxTUrcaXfc/nhkIhzwGU1tJXIWgtf1Ve7G8dJ7/oS9s3et1mwpZ/c65YH50tSvlaRWoT/W6mEPzQnTU2+ExL3alxY5UM68a9YWowsR91TikK1d/82wb+APCtT7t859JWXFukWCRlI7is1UzlRetZqT/7LC460mT22Vy4+p2+T+mvQGB9D5JFVbrPTKkhVX4qgNUfoZSnWvwq+NhPfLYqchZVPrzfChhLd2k/qQHg5//QPtP+Zr1VKWsotipUVSCKiEnHsn5U6vV6HSsrK64eanSwrmrMMJWRFeiqsKzSU7rXIhrWj4pGWQDtH4uKrYFh94zpNRZ1c5zYJv1efbUAPAhSx13nPq/3OwjSRoXSqFBqeDNlZbcJKFLV93GcAaBSqaBdbl3aimsLFUUc+P/bO/fYqIovjn+L7S5taneB0m6LlEd4VB5FLbKshpjIBqyND+SPhjSRqNEgJQFtiKBRMCaWxMREjeEfFf7y14ARNPIIpYUqWF61lRa0UlIsMd1WIX0pfdCe3x9kLmdP7y5UYcuy55PcdHtn7twzZ+bOmXNm7i6CF6FliIjPjPkDZODehPHK+BoTf+lSPozy/vweZoMGf9j5OoAZIPhslQ+sBj6Acs+PD1iy7tKYcMPIDyO7XJ8y9zcbS4yXaaczg/Q+uVGSgz8P6/Ft7txDkMae34d7a2bGzych0uPj4TCTLvuJ3QvGJq+5L28fcz031jJcLNvFzthwufhExM5r5H1Xhg253DwEyNuen5Pb23mbmbK4YTWyScPEJ0Q83MgnPLxeZuegXFPk/Uv2JyU0o26c5TqbN28eMghkZ2db6T09PSgqKsK4ceOQnJyM5cuXo7W1NaiM5uZm5OfnIykpCWlpaVi/fr0uRt4EfHbJQzd8UDDIrefmJWLzLRjmszQgBjOo8QeYGyLpxfAfo+zt7R3ixQDXF76lN2DqZLa3S4+DD+By+7upN9cD/xVhc87hcMDpdMLhcAQN+tz7kgOdKZ/vDuR6luFYoxdj/LlXxGfV/HqjF+nJSUPHd2ka+U0ZfA2Qy8f1b67h75bxOnAd2nkWfOchDyXyDQZ9fX2WrniIz7QVN3S8//K+wvuCMdA8r7kvfw6MTky/lhMAu/95/czmnt7eXsuImz7EJxq87tLz5N6neU54u/KJG+97Mozf29trbdhRwjNsj2v27Nk4ePDg9QLYezuvvfYa9uzZg507d8LlcmHNmjV47rnncPToUQDXGjU/Px8ejwc//vgjWlpa8PzzzyMhIQHvv//+LajO3Q1/gPkAAwTPVOUMVw6GdrN8XqYMPZo8dgvKBul5mHN8IOVl8/rwRXFTjt1LvXxGza8Hhm5W4IaIG1qpQ15HKb9JN2svXOc8RGU3OHMPk3spcrLB28PUW9aLe4TSE+LyyPPSIErvxxgHPlHhugaGhv142Wbg50ZYejgGvj7EZea6l/eW4V/ejnwNjV9rkOFoGfblfcsYMe5Byv7A+5KdjvkERvZ5HiWR7SANqnJzDNtwxcfHw+PxDDnf0dGBzz//HF9++SUef/xxAMC2bdtw//3349ixY1i4cCEOHDiAs2fP4uDBg0hPT8cDDzyA9957D2+88QY2b95s/ZyGYg+fBcqYv/krQ2Mmr11Mnx92D3aoh1EOLLzMwcHrW/B5+M9uMDN5zOBsNzhyz8FOZmmUuWGUxpbrkcvCPQvpKUrjYOcJSkPGvQiud7MzjeuUl2vyy4GUe7Ry4wvvF9II8vbihpPr2Wwx5zo3adLIyxCp3WYd3k527WJnZOVgbjeI2/UDXobUSygDYmdo+HW8vU05vL3sJkCyDD5xkn2NlyvrZpem2DOsUCEAnDt3DpmZmZg6dSoKCwvR3NwMAKiurkZ/fz/8fr+VNzs7G1lZWaiqqgIAVFVVYe7cuUhPT7fyLF26FJ2dnThz5kzIe/b29qKzszPoiEX6+/utr3OSs1v54PGZpnng5OyUGygzyMsZM19XMfcOtc5myjdfrAvA2vUnt7Xzh5QbYimPDP2Z/HIdjYe0jOzAdQ+Gv8hqwkumbL7uJMOYfNYuN1XwtTBTf+7J8F2L/J07PrOXM29uyHioqb+/3wrDyhm/9Db5u3FmzZG3lTE4POzIN32YepoQGl/r4/kHBgbQ09NjbaLhoUg+kbEzInxgl169uV5ujjDX8x2Q0miYOg4MDFiyc8+aPw88emDaUoZuTd/kbcLva+7N+4Api8PrzBkYGLB0qV7XzTMsw+X1erF9+3bs378fW7duRVNTExYtWoSuri4EAgE4HA643e6ga9LT0xEIBAAAgUAgyGiZdJMWipKSErhcLuuYOHHicMS+a7ALB5kOz42CnSfFZ8tyoDXXSY9HGj8ZluN5+eyZh8RkuI8P3NLgGewGEHmNHLDs6i6v47N7XhZfl+JGRcomB2FZfym3LI/LaK6V+TnSe+JGVmLyyq9lMoMo9yR420tPh/+184yklyh1Harudv2SGzcjO3+XMJQc0iDyuvF0M/GRRo3rVRpru3bl52Rf47o3epGeE29vbqh5/bjnptyYYYUK8/LyrM85OTnwer2YNGkSduzYgcTExFsunGHjxo14/fXXrf87Oztj0njZDXB8VxIfjDjyIZWGRN5DriPxsuVhN2jZzXC5zHYPrF06D9/xMB03xjK0w0NtxlOQs1kZnjPwcBavO1/H4nWVg1SoAYp7aHaGh2+SkIMXr5+dkeC7R03d5ZcUc71Ib9Lkk+FNeT0f7O28PrkZgqfLupiDG1k7L43LICcdQPC7jLyOpn5EZOmCy8knWtKQ2Blx2VfkM8Tbkd+f6zsUst8oN8ewQ4Uct9uNGTNmoLGxER6PB319fWhvbw/K09raaq2JeTyeIbsMzf9262YGp9OJlJSUoCMWCTUrt3vghluu3d9/K59cr5LIwVvOxqXxkAbSID1CWZ6cQdvJypEGWc7M5f3tdG83u5czc37YeQ2hyraT185j4vW1k5fLIrGbRMjBVbYT9+LsDI+dcbe7L/fMQunBGBs+ueJ1tuuD8no5MZHtF877sSvHTn+hJmOh2tXuGiU0/8lwdXd34/z588jIyEBubi4SEhJQXl5upTc0NKC5uRk+nw8A4PP5UFdXh7a2NitPWVkZUlJSMGvWrP8iSkxg16nlIBjuMGWECw/JPHYDgN09Q8kXThaeHur6UHUPVbdQxt3u/3DnpSGV5dqduxHS47Crj5TLfJZGxs6g2xlnOxnChbzsjOON6hSuXjfDvxm4wxkHmY8j+z7v53aySINq8sgNTxIzqQrXP9VI/QdoGBQXF9Phw4epqamJjh49Sn6/n1JTU6mtrY2IiFatWkVZWVlUUVFBp06dIp/PRz6fz7r+6tWrNGfOHFqyZAnV1tbS/v37afz48bRx48bhiEEdHR0EQA899NBDjyg/Ojo6hjX+E12z/jdNQUEBZWRkkMPhoAkTJlBBQQE1NjZa6VeuXKHVq1fTmDFjKCkpiZYtW0YtLS1BZVy4cIHy8vIoMTGRUlNTqbi4mPr7+4cltBouPfTQQ4+74/g3hiuOKPr81c7OTrhcrpEWQ1EURfmPdHR0DHvfwn9a4xopotDWKoqiKDb8m/E8Kg3XpUuXRloERVEU5RbQ1dU17Gui8tvhx44dC+DaF/ZqyNAe867bxYsXY/b1gXCofsKj+gmP6ic8N6MfIkJXVxcyMzOHXX5UGi7zDofL5dJOcwNi+b23m0H1Ex7VT3hUP+G5kX7+reMRlaFCRVEUJXZRw6UoiqJEFVFpuJxOJzZt2gSn0znSotyxqI7Co/oJj+onPKqf8Nxu/UTle1yKoihK7BKVHpeiKIoSu6jhUhRFUaIKNVyKoihKVKGGS1EURYkqotJwffrpp5g8eTJGjx4Nr9eLEydOjLRIEeH777/HU089hczMTMTFxWH37t1B6USEd955BxkZGUhMTITf78e5c+eC8ly+fBmFhYVISUmB2+3GSy+9hO7u7gjW4vZRUlKChx9+GPfeey/S0tLw7LPPoqGhIShPT08PioqKMG7cOCQnJ2P58uVDfty0ubkZ+fn5SEpKQlpaGtavXx/0a73RytatW5GTk2O9FOrz+bBv3z4rPZZ1Y8eWLVsQFxeHdevWWediWUebN28e8gvo2dnZVnpEdTPs75MfYUpLS8nhcNAXX3xBZ86coZdffpncbje1traOtGi3nb1799Jbb71FX3/9NQGgXbt2BaVv2bKFXC4X7d69m37++Wd6+umnacqUKXTlyhUrzxNPPEHz5s2jY8eO0Q8//EDTpk2jFStWRLgmt4elS5fStm3bqL6+nmpra+nJJ5+krKws6u7utvKsWrWKJk6cSOXl5XTq1ClauHAhPfLII1a6+c04v99PNTU1tHfvXkpNTR32b8bdiXz77be0Z88e+u2336ihoYHefPNNSkhIoPr6eiKKbd1ITpw4QZMnT6acnBxau3atdT6WdbRp0yaaPXs2tbS0WMeff/5ppUdSN1FnuBYsWEBFRUXW/wMDA5SZmUklJSUjKFXkkYZrcHCQPB4PffDBB9a59vZ2cjqd9L///Y+IiM6ePUsA6OTJk1aeffv2UVxcHP3xxx8Rkz1StLW1EQCqrKwkomv6SEhIoJ07d1p5fvnlFwJAVVVVRHRtcjBq1CgKBAJWnq1bt1JKSgr19vZGtgIRYMyYMfTZZ5+pbhhdXV00ffp0Kisro8cee8wyXLGuo02bNtG8efNs0yKtm6gKFfb19aG6uhp+v986N2rUKPj9flRVVY2gZCNPU1MTAoFAkG5cLhe8Xq+lm6qqKrjdbsyfP9/K4/f7MWrUKBw/fjziMt9uOjo6AFz/Uubq6mr09/cH6Sg7OxtZWVlBOpo7dy7S09OtPEuXLkVnZyfOnDkTQelvLwMDAygtLcXff/8Nn8+numEUFRUhPz8/SBeA9h8AOHfuHDIzMzF16lQUFhaiubkZQOR1E1VfsvvXX39hYGAgqOIAkJ6ejl9//XWEpLozCAQCAGCrG5MWCASQlpYWlB4fH4+xY8daee4WBgcHsW7dOjz66KOYM2cOgGv1dzgccLvdQXmljux0aNKinbq6Ovh8PvT09CA5ORm7du3CrFmzUFtbG/O6AYDS0lL89NNPOHny5JC0WO8/Xq8X27dvx8yZM9HS0oJ3330XixYtQn19fcR1E1WGS1FulqKiItTX1+PIkSMjLcodxcyZM1FbW4uOjg589dVXWLlyJSorK0darDuCixcvYu3atSgrK8Po0aNHWpw7jry8POtzTk4OvF4vJk2ahB07diAxMTGiskRVqDA1NRX33HPPkJ0qra2t8Hg8IyTVnYGpfzjdeDwetLW1BaVfvXoVly9fvqv0t2bNGnz33Xc4dOgQ7rvvPuu8x+NBX18f2tvbg/JLHdnp0KRFOw6HA9OmTUNubi5KSkowb948fPTRR6obXAt3tbW14aGHHkJ8fDzi4+NRWVmJjz/+GPHx8UhPT495HXHcbjdmzJiBxsbGiPefqDJcDocDubm5KC8vt84NDg6ivLwcPp9vBCUbeaZMmQKPxxOkm87OThw/ftzSjc/nQ3t7O6qrq608FRUVGBwchNfrjbjMtxoiwpo1a7Br1y5UVFRgypQpQem5ublISEgI0lFDQwOam5uDdFRXVxdk4MvKypCSkoJZs2ZFpiIRZHBwEL29vaobAIsXL0ZdXR1qa2utY/78+SgsLLQ+x7qOON3d3Th//jwyMjIi33+GvbVkhCktLSWn00nbt2+ns2fP0iuvvEJutztop8rdSldXF9XU1FBNTQ0BoA8//JBqamro999/J6Jr2+Hdbjd98803dPr0aXrmmWdst8M/+OCDdPz4cTpy5AhNnz79rtkO/+qrr5LL5aLDhw8Hbdn9559/rDyrVq2irKwsqqiooFOnTpHP5yOfz2elmy27S5YsodraWtq/fz+NHz/+rtjOvGHDBqqsrKSmpiY6ffo0bdiwgeLi4ujAgQNEFNu6CQXfVUgU2zoqLi6mw4cPU1NTEx09epT8fj+lpqZSW1sbEUVWN1FnuIiIPvnkE8rKyiKHw0ELFiygY8eOjbRIEeHQoUMEYMixcuVKIrq2Jf7tt9+m9PR0cjqdtHjxYmpoaAgq49KlS7RixQpKTk6mlJQUeuGFF6irq2sEanPrsdMNANq2bZuV58qVK7R69WoaM2YMJSUl0bJly6ilpSWonAsXLlBeXh4lJiZSamoqFRcXU39/f4Rrc+t58cUXadKkSeRwOGj8+PG0ePFiy2gRxbZuQiENVyzrqKCggDIyMsjhcNCECROooKCAGhsbrfRI6kZ/1kRRFEWJKqJqjUtRFEVR1HApiqIoUYUaLkVRFCWqUMOlKIqiRBVquBRFUZSoQg2XoiiKElWo4VIURVGiCjVciqIoSlShhktRFEWJKtRwKYqiKFGFGi5FURQlqlDDpSiKokQV/wft1COsceLaqgAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eWyl53Ue/tyFd19JXm7D4QxHGs1otIysxZKs2IniRXUcp26WX4M2TZC2MNDaARqnaes2TZoW+LlN0S1okjZBkQWoASNAg6B2YcdbYivyIo+tXRqNZoazcCcv734v7/r7g7/n5fMdfhzZSWqL9ncAguS93/Ku55znOed939BoNBohkEACCSSQQI6IhL/TBQgkkEACCSSQb0UCwxVIIIEEEsiRksBwBRJIIIEEcqQkMFyBBBJIIIEcKQkMVyCBBBJIIEdKAsMVSCCBBBLIkZLAcAUSSCCBBHKkJDBcgQQSSCCBHCkJDFcggQQSSCBHSgLDFUgggQQSyJGS75jh+o3f+A2cPHkSiUQCDz/8ML761a9+p4oSSCCBBBLIEZLviOH62Mc+hg996EP4lV/5FXz961/H+fPn8cQTT2BjY+M7UZxAAgkkkECOkIS+E5vsPvzww3jooYfwX//rfwUADIdDHD9+HD/3cz+Hf/bP/tm3uziBBBJIIIEcIYl+u1/Y7XZx4cIFfPjDH3afhcNhvOMd78CXvvQl33t2d3exu7vr/h8OhyiXy5iYmEAoFPq/XuZAAgkkkED+amU0GqFer2Nubg7h8LdG/n3bDdfW1hYGgwGmp6c9n09PT+OVV17xvecjH/kIfvVXf/XbUbxAAgkkkEC+jXLjxg3Mz89/S/cciazCD3/4w6hWq+7n+vXr3+kiBRJIIIEE8lcg2Wz2W77n2464JicnEYlEsL6+7vl8fX0dMzMzvvfE43HE4/FvR/ECCSSQQAL5NspfJNzzbUdcsVgMDzzwAD772c+6z4bDIT772c/i0Ucf/XYXJ5BAAgkkkCMm33bEBQAf+tCH8DM/8zN48MEH8eY3vxn/+T//ZzSbTfzsz/7sd6I4gXwbJBQKgQms+rd+/3r3jkYj3+fovfZafsfPeI1ep+8Ph8MYDocIh8Pue/1sMBh4njscDhEKhdw1h5WNz/FL4vW7R69j4NqvzFpXv+fatmE5WW6/99lr7fO07nq91lPrZevoVz4th36mz/8OJEAH8gaV74jh+pt/829ic3MTv/zLv4y1tTXcd999+OQnP3kgYSOQv7zcSjH4KQiVb8ZA3Oo+XheJRDAajQ4odvuOw95t32mvVYPAvweDgafe9lrbLvrscDjsq5xtG1qlr8bLKvnDFLZ+F4lE3P1+Rs4aCnudGlqWJxQKeQyV9oHfWNDn2vLadrL9YOtxq3bj9dZRsGVhvQ8bJ4cZOd5nnReKdUzsmDjMmbiVQ2TLFRja/3vyHVnH9ZeVWq2GfD7/nS7Gt11oAKxXOxqNPMrCzzjoROV3VGQUq8wB7wS3xkHFT2nzcy2TvsdPSbNMfkhBn61ogIovHA6j3++7a/luLZctu1XY2qb8LhqNOsOr71HFaA2Ytq0q5sOUo21XvkOfz3rYtrV9qP/bvj6svtqefugtGo1iMBg41GlF+1THqd/7bBuzTflcliMSiQAA+v2+px52LPgZj1Ao5PrNltfOBz6DdbRto+0aiUQO9IVtNy3nYDA4MJ4PQ8hsN7/2/W6WarWKXC73Ld1zJLIKA9kXVWxUkH6IgaKKUukhfqaGRSdcJBLxKFs/lEPFAuwrZ05sVa6qXPhOq3y1rFpPlkNRgxoUfb4+j+1j20kVUSQSOYAGrfLh34c9z6/dtS30Hj8vXuusBscqbz9jxHbRPrPPZD3D4TCi0SjGxsZ8lbL+tmiJ9wNwStWvPW3f+dXdOkF8zmAwOBQBWgTpV06tL9tNxxlFnQprOK1jZpGV3qc/dszY9verk/3Rtgnk9eU7QhUG8q2LHej0ximDwcCjYDQmA8DjUaqxoleqXq8aGioHVQL8Xic/P+N1qnBHoxHi8bi7ptfrYTQaYWxszJWdz41EIuj3+4hGo4hGo+j3+57vtU76OYX1ppJRb5j38nulqdgm/X7ftYu2LduAiE6NKA1or9fzUHKWolMjwvezLYiY1WGg9+1nILX9I5GI69vBYIB4PO4x9nwG7xsbG/OlUmn4er2eaxO2H8upY8C2/3A4dG2hStiOKeskWWNEI9zr9Q4YFnV4+LO7u+sMs32X1lHHiaJC7Rstr0WynCt+qJfjim2utK++U8eDls3GEwO5tQSG6wiJTgQN2FN0wkajUY/CVCWq3qXSdQA8k52fk+4YGxtDOBxGt9v1TDh9Lz1nfa71cPX5Wt7DkgbUCKuiU+Vr0YY1qhYxULlo22o72jLqd2qktd3tM/SHiljpP75D+wmAh+5Uo6LevqWnaLRsn+j3fuVXg65tQuPBz7U9aNQVLasxV7SsfWQdJB1zLLu2J8sWi8UwGo3Q7/dd21j0a42idUbsMy2tbg2dfa4dU1YUFaqzp/3JtrfODN9nqdFADpfAcB0hUcNzKxpjOBwiFosd8OBUMakBo5FTbl0nLL1TGgc1CEQINGZ8tr5DEaIaNVXEwD5FQyXf6/UOIANVgFp/1s+PlmKdeZ9fTEh/K6qzBojlVkNpkwdsG1nDBHhRnBonlk8NnBpvGnd9n42hUfFpjE3rS+eCylINjB/1qP2jCl+Rn9/9akyUDeB4U2eCxskPCVojY+vth1Z0zI2Njbk21Wv5fCJ7NRjqlPBza9y0vhYZ8hoaZJ13OnesAQvkm5PAcB0RUUVhaSLAO5E5EUkL6bWKXjh5NIidTCbdJOe7YrEYotGo2y+SRtF6+WoYdBJaRatKluUB9ugoABgbG0MsFvMgO2DfgFqvXQ0h62sTEXhtNBp172GZotGoU96sN5VKv9/3oB2lQNW4qTevdVFKSu/ndWNjY+j1eg7FqHeuYuvD3yw33z02NubazQ/lKKWstJrG+khhsn76DpbTLguwaElRB+lf3qe/eZ0aDW1X62yNjY05+pgojPSkjjONmZHiZXzPjj2dGxT2vUVS+j9FKW0bO+NzdbzouOCzdCwH8voSGK4jJoq2qCCUuqHC9VPswEFOfTQaOSXr9z2AA7Ea9UCtEeLnnOT0elUxAnDUIIXf0/NVhWpjSuqlqoK31A6vU4NOhab1JeqgsrKerzUArIe+29JWSoMR1Vo0oV4232tpLlWG1ttnu7GP9Bp1RixC1zZQ5W3jRNp22ndqoG3yiCJQjkGL6NUpso6MGhx1WjQ7j+/QMaRzQZ073qt9RWOi19Lo03mhsVYnxjpkfK81xsCec6fjSftU66UI7bBEnEAOSpAOf0SE3qYahVBoP5BuqSkAnglM5c/J4ZdqbBWjKh41HkpZWeMD7KMDnfRKT/nF1SzK0Dr6LfpludTrVgWlylZjWao0+Mx+v49YLIZwOIxOp+NRJrzOpkmrh25pHlW6SisqMrLevfaT/V6RMutvjbMqYRVrdG2ZLZJTpyAajaLb7XraTWlFNXjsD6Je9ot1MnTMaH/r2GbZiA51jJBG5j3WEYnH4xgOhx7qmm1HJ+hWqFSRIcvMtgXgxpoaOT7bGl+bsWodJr1P+/R7zXAF6fDfxaJoggOdSlGRgPWyLVJRJWs/P8yzHAwG6Ha7vhNQvW+/4Lk1nHqfpcO0/H6TV71xq3gtAtLPFDFa4w54U6SJOtSwsm0UUdn7VPmpgVFjy/awVJhV5ERofKfSuXq99qP9X8eBKlU17HRIiDjZhzoOFI3ye9tudnzq/5FIxKEPRVi2z5WaVFHqTR0RNRCKrDh2/Ohpv/HhZ1RZbqVvdTySdeD77XjQMcLy0NhxDNisWb+2CeRwCajCIyRW0XNCKEI4zFgBXkXDVGOdMEQt6imrIuYz1MukV6zUlDUswD4as+jJeqEaG1FDrZ4xn6PeOO+xtBDbSZWdjVPY+I4fQmN7aF0ounDUKh5VsFTgLI8qZPX4te5q/BXpqFJlHdU4quK0tKMiCW0vRaO8XpGQjgGl+nivohK+g/Wi46PjVY2x9rG+x1KQaiitAWdsjt9rH2gZmdpv+0/Hlzoq3W7X00/WuaIh0/jlYDDwlMUPFbMNtL0tYg7EXwLDdUREjQKwPzk0HpRIJDyD31JAmvKsypj0Cb1eeoKh0H5GlsY9/Ggx9cR1YnOik9JUykspQiodG49hXVXpxGIxJBIJT2yOCQA0pjbeoIqWSp4nDvB6vrvdbjsKUdudity2gxpqfqYeO+k2VdBsX0V1qog1eYFKj23BsrDs/FyNJtvPxsD4fKbm23JZo8lr1Dhbakv7XesWCoU8RsL2K8vW7XaRyWQwHA7RarXcOGEihjoMdu0Yx6vWm3OD7cK+tQ6ZOlOK7NS503Lyb4uw+b/GMPludQx3d3c9aJaoS2l363QF4i8BLj0iQmWlCoveq6XllFJSdKHxLaUzKEqV8Hp6k6Q5eL+lIilU7JbSs8FppbzUe9XrNKstEol4qBYiBkUuSnupAaTh1RidDeJb717LwnaydJ0aAjWU2rZqFPxQsNZBy6ztq9fwfXZsKCVpjRDrYo0tRRfGav+okfdLEiGFqll/tt1oeLR/eV2323VGne+1a+v8UKSOZW1P7UM/Q+S3/ozvVfRrxyHHk0VLvM4iT79nq4HVz+gs+qH9QA6XAHEdIdEA82g08gSZ1bu1SkoNh/LyNp5hs96sIuDP2NiYx/Ok+E1efaYiCotSVBmqIdOsRFUmSnUqarF0l9Kdej0RlSorpXoUndn38l1Kh2o56N2zfZW24/d8rj6DywzUCdGy2xikOiD6o+vu1KgSPdsxRSfAogZF2dY4WEfET7SsfihaHQVNllBHQhEm20DHhyZOKI3HsqlzpM6NGiutB8tJg6sOhKWQ+dtvblmEzPco6rPo9FZtGYhXAsN1hMSuQ7FKyW7LQyOjlKLN+FKlqsZD6UH+aDo5n0mqg8qAHrR63RqPsspU66KfW7TW6/UOzc4jKlGFA+wrNaVjlB5SY8r24vekS1XBsPzW4PBzNfJch6bUbCKRAOBNfefaOMaBFKlFIhEkk0lPn2r7jEZ7W2nZupA21UQZKn2Nx6jjo0ZEaUZey2f0ej0kEgnXV2po2J92jZIiX5ZJDQ7gdQjUILO/bd+zv7UcNj6o79D+4nhRREejomvc+Gxr7NVokd62iJ5UtM49S4XbuarPDuTWElCFR0TUo1YvkqKTRr1xfm7XUamCZGaTKjk1VmogaBysN64eODOoaCQtXWhpLcC7i7x6wZZ+8vNMtXz2fqWFVImpFzw2NuaJk1hkyDr50bJqSGKxmEME1jHQeMhhcSLtE/7f7/fdHoh8pt15QpGWtpsf/adUsmbhaQo3y6uoWpW8vtvSvVpnHbN+CFv7wfaN37jX8UBDYGOF2tb2HexHGmRFdkqN8n06F9jmwD4y13GvZfYbR37MA8Uar0BeX4J1XEdEdBLpWhb1bpXast4qPUxFW/QUeS9FPVUiHZ3gtjycjEqH0KvWXSpU6Skl44fsFL2xfErBKGpR71mz1ng/N/PV8quRZ/lYL7arTYPW9ystpHXidUovsV66lu0wdKnv4rW6YNYiR01+4Fo0i178DLGK3RtRF/bauBbfQ8PB56sTdVgGqXVGtO1tG2k8UREb36cxIXUCNNOVZRkOh575YnffOGx86WeRSMQlV7BfLCtxGGrltborim6Srb91XHyvyF9kHVdAFR4RUW9Y6Qj+Dxzc6NNOSjUiodA+bajvoOHhc2ysQb1wTmo7cQGvkdDPqBj5PkULWg47edUgA17lqBmBFonxWjUE/NxSjnwvlaaiMls/fYciYd3cWI25Xq+UnSo5vZZlU+Wtz/QrgzWMiorUwPJ/zR616MHShxpb8ouZaZm03paa1Tqq0VUDz88UBdoYpSJBi9D0e0WldNTUQOrYUiTNz1kONZTaD/q/ZnDasX5YeTUxRmNlgdxaAsN1REQpNz3EUGlBq2xv5U2qUlEKRye0euGW5lLloO9kWf0MK7BPTVqajNdQmdlYDhGcVbT0XlUxqGdPJaVxDE01p/JhubUd+Jl+bxfqamxEFZMaEHUEABwwMNp3tg5+SJafAzigLG29LFrSstAY+qEDNchKH9p72LZKCzNxRsvg58To+OD/lrJj/+k8sOjW/hAxclxYVsEuolbkZ8ekdYY0q9ciSI3DsQ3sOjn72469QL45CajCIyI0OkRKnBC6t556jDZIze17iArshLIKhr9JC1llr16+NZb83E+xc8LHYjHP+VUUNYTWQ1XkopQl28XSZBQ1zNYgqJHQ5BOtJ5Vyr9dzf6sx9EMIfkqP1JomFtjNZVX5aXtoPfi3IkZFFGqwVElaw6NLAizVx+fwWXqGmlKLitJYFsb4rDFWR4t9oPE6lkOXQbBd1LgrDW1ZAoqORTXG6vzY8WapW845JlUofczM2lBoP8FG77UUs01K8jOY6hR9L0mw5dN3sVj05Ech8TpOVE4su+O5KmtL3/gpI32floF/W0NJpc732fgYvWBbZrteRr12VdSKrmwA3NJcADx0pkWi/K3KVOuoMRZgb+2RbjLMe6jUtU0pNlbGZ6vzYN9DsTFMq5B1ayheo2jU1lN/WD9r4PyQj9LQduywLkQ5mvightrWVd+niRY6rtTgqgNj46WWKrYOkCJEOnNcF6iOhhpXllszDbVeHJN8fjwed9TfrcqoY8Y6YEcQR3xHJEBcR0RUYaiyVmWvE0NPsdVAM9Pm+Z1FKJyoVtlS9H2q9FS5KEXEdOtYLOZ5pioiRQtUxlSCWiYNkDNBhdfv7u465cGkDDW6VFaxWMyTWKHKiO3MNtb6UJlrdqGlPdV48DOl2ZSGZXnUybDoh+2mdaCS5FIEYD/5hBsEW2eDZdOTjymaGs9yc7wMBgPP4aEsqyJTaxysIxWLxQB4d6vnO6j8dfyxTDqOdCkE4E2M4Zi0RkvnCdtfv+fxPawXr1fHzSaX2DHBMsTjcezu7ro2JBLk+/h8TWTRWDGNKOdKgLheX4IY1xERjRlRSdCIaPyJ3/tdbw2O9Qz99snzo+Q0RsMJrjQX4FUCNgPPUmgWSVDxqaLUeBzgzYRT5EJDwnvozbMdAO9OHdoG6plrfalkSaHxWdZoK1KxVBSVvSpJ27Z+R6poLFDRLOths+9YHh0jfAYVIg0Y665oVvvJij6PYukuilKMRCgae7NLAnSNotad99o60tj7xfgsArNsgY4BbVM/JErHz9Kstn3ZhoqcdG0ly6jtw2ezndSBCuTWEhiuIyJWofJvnZx+BkUVqSodndx+Xi+VhX7Ge5TS0ettejGvV0NklRNwcMsdDcyrYVaUYmk2bQtroP1oOz7TUoJqbPX92ga6kJTXqwLVNuBv9b6VKrN9xmeoIdZ2tNmXipJsxqeOGTo2uvckxSp1VeaKVOwYsZSzvUaNud3VxV5rEyh0PGisy9LeOr782t22Fe9h/zLmpe/RZ1mHjL+t06gOnW0L7QtFbCwH3xMYrm9eAsN1REQ9fcC7r6BOBF6jFCC9WV0XxUW3rVbLKRQbuKbyUkWotJYmI/A3n8PMKqsU+VzNYFOKSZUPvVbr5fJd1ssGvOuvNNYGeM+PUkXO9tR2tbEu3q+ogcaa+80pRaqGzaZeaxtqNh53IR8Ohx5aTxGDTbxg9poiR15n66CHWbKsLJN1KhQFhkJ7FCydFusQqROkRknfxev5DNZbKWVSbXyHrudTI6zjUNdWsd5qRGic9H6iT45Bdbo4ftX4qIHRsc5y6PZjlu7WMaEMiGaIsg15llggry+B4ToiYr02fsbfqlStV68TRuk1iqX37L2WklN6hMpO1y9pRhmw751qXVShq9FV42XpQ2s89f18Lg0RlYFSdMxEY939Dp+0Hr0i0l6v5xSSltcuDKbyVePG9rJtrApNFaaNh+nnWlalULVeLJsqWtbXr59tf+gzbVq90su2Dnqd9o86Noq6bPah0rh8htKFFB3rilj5OWODuvxBDbw1NIpWrSG2ySba1nyfIjcKqUK2izp8Fo1rfQJ5fQkM1xERnUz6GXBwOySdoDYhQifkrdKO+VxFD3bC2Wdq3IKiXiWwn5SgylwVlqUvbSahGhSKKgVVghQqJ0VS+r22oSpd/V8Rkyo8vZaxPquM+L8qVlsO6zxovfi3NQKHJTeocVPKz/aDGlpFHPosSrfb9TgLdAT0fdq+KuowaTsqErOOkKIidSCUprXjTJ02TbPXtWvafnQw/IwyhXVSh0nHlLaVUtoWLY9G+wlK1tjzGX4xzkD8JcgqPCJi06ItmjoMtSiloRNQjQ0nqyp3NRyk63So0EDwGZoKroZCt5rS+63x4YakSnHqc+LxuOfZihDUWLENbCyF7aIIRWk5pnEzhqaZlzY5IBKJuAw+pZpYT5ZBDT3RoCI6pc14vTXQrAtpQRvz47OtgWPdqCzpMNAgAPAYHh1fahhsvxNZ2Dpq3MgaQKukbbzOr830vYqMldZTdKgZfYoyWValghWJW9TPd1oKmXWw9J4+k22n/chr+TztQ50vrFso5F0X9r0gwTqu72JRKkGVMwe8pTrsvYwZKDpTBUnFaBfEqhLjhNc4ivX4LQ2ohtAqNaXI/KgnNbJaFz+FqopEPXRVHhr38SsHUQSNih7fwja0tA4NAQ2THwJSI6/KTg2rH/JS5KCITXdOUQVoEasaHx0HWm8+Vyk69p9SrCyf7pLP8qoB53vVCHB86nhhe6uzpe/WNtOxpgpe284mm1gDzrZhXTQuacez1l+TONSBY5/rc3WM8DN1ALW82i96jV4XyOESUIVHRFQhcd0SlaWlwKz3R49PvTtV1oB3jYpOPKIgerpU5Lquip4uRY+oV5pIPV3Au7bHxpZYJtZJ13TxN/+ORqMOsem5TroeTD1zPtsG0nu9nktg0RiJIi1dO6aePHcm4bN1s1/WQVEGsO8YaNKM1pHvs8ac/cb/mcjBPtK1aorQ/BJ87CGV/JyGm8qUSEsTGohWAbhxoGWzded3/LGJQH6UNttVj6jRTEvOAX0n25nPVFpQx4oaVjVG1gkCvGvL+E41jnacKDLkZ3yGtpuiSOuMBXK4BIbriIhFHcB+LEvjRfzeet7qqR6284PuZajxL9It1iO0sRRLwymVyM+VjrRxG0WSVoHYDEd9r6Wl1ANXBWepMI3N+CUm+FGzFhHxOfpsNbQ2rqVevUUm+pvKWBGwRaTadhZlq8OgY0froIpb669IQteuWQpR21uRn+07e8SLZjPasvq1sToQimIUNev9Oja1HFo/i2y0n/R7a6QU+fI6Nf4sK9tO+0/HoI4BZUosvR2IvwSG6wiJUj6cNJZL528/5cZjLwD/PfDU+Kny0AmlygbY306Jim443N+NwE9hqFeqFA6v03iLogX1ilUR8zk8two4eJy6Ij8+y88Q21iIto0qc5ZDnQGbuGKVq9aHCk1jeLyP9SfasvE1Fba7RahqSFkuVe5aNi2HXmvHlt5n45lsB323toVfFqqiMCJtvY7PUlSmqIX1sVSubSM1/vb9fsZC20jHjGYfKuPh1/eMkdL5sO3HuunfOtYDeX0JDNcRESIiDn5NzbYK3xogTkZVDH7nWqlSVwoM8D/kTp9JBc7JzXt0g11VBCwbr9O6kB6zNGY4HEYikXCJFHw/2+OwmIw9RkWVn7aPIlVV3HbRs5ZHkYT9zTbhOiSLjNlvrIcae65PUqeA9/g5BPxf0YCly9SgUfhc2ybaXqwr77exPn2v0oBKLyYSCUfl6knPFp2zTBYVa2KJImiLDik2xmrpXa0P659IJBwjQSSlDIWlyvl83YlEx7pfoolSg4q6dK4Gxuv1JTBcR0Ssx20nMT9Tykqv9fNKVSGqAdR7VbFaA6B0Cr/js/SZGj9TmklpMy0rRWkbNRh+8TlgP+NNqRqrhBXx8X/NUlPFpsJyKXqjorHKxiplfRaVoVVq2mZK8/I5tgxW6bE9NXakxlbbVO9XZW+NI+tpkxj8dle3qEbbxLYH36VKXvuH91tKkcL+IvLjO2wWp+0fdUYUCVukp46VGio6SzYeq8iLdVPngWXWMad9rQ5CIN+cBIbriIj1vCmqtBUt0cvXw/6YZmsnL5/Pv3X/O04+XVNDA6HvtzEBKheWiyjKZkBqPfgZKZZer4dYLObu1zqoguT9SnVp/bRsSllqPXn0C3f70HvsKdCWYlJFp32kbUClqdfq9ktWucdiMacweRwNn6uUGcvFsmrMj8/R9UF8Jp/D5ys9Zw2JHiGixkAdJTXmRFtsQ1J+FDUklj7jfTY2pPXVvg2Hw25MqJHgsTk6tvV9yiRwPGsfsR5kDZQOVcdNY2Mav9WxrgaS9SOitlt6BWjrm5MgHf4IiKVv7EBXRcPrqcxIoR1Gb+kz+HzdXUKVCK9VxMQd11VZWuOhHr7GRPxotsPoKksv8js1rto2oVDIUw8/1KFKgnXhb1sXKiE1WlScwL4yJlJQxa5LCPjeSCRyIH1ekx+63a7HoPG92rbsH0U9iuBUgarDo32uu0LQePu1tSJua9jVeeG6NJtswR++g4ZEy2vLbQ2YNSw2E5Gf2SQhRfxqdNl22m7sS0WX2v46xtgWvE/Rq52PLJtfmS1dGCCv15cAcR0B4UAmN66ePIADE0+9XyZK0Kuk4rATCIDH2HHy2kQITkilcfxiDmoUVAlYatMqAzUMSkFpvEERhqV8FEGyfPoOpWuUyqJnbZUKgAOGn3ENLaeltTRGowuArUG3dJq2MdtMPXw/J0b7wFJ0ikz8EKCiUjXCqlQ1CUIzMa2iV1rZvt+PRtO2UCOjSFz7kvfzHdaw2yQHdQTUMGj76vvYH5YyZXva3fUVuWodtY/s8zQ7UulS7dNAXl+CnTOOgNBT5UTViandx0mmCyXV27WUB+ANyqvSVQWua2dI56gRUrpEqThNNgC8NBWfrUZBkQ1jVQA8FIsVqzxJ6wH7BocbxALwrLXivbqezG6wapEf24nnTGlWHp9LR8GPctN3a1spItDv1FmxCEgVLsUepcFrWW7r7FB5qtHRMtklFNrH3AnkMIOqouvsbFyQZVOkpP2rba/GifTzYcZcHQ1tS44XW0aLotkO1lH0cwi0TQB4jimxc0Apao3DapbrEVTLf2EJds74LhU1BIA3U9AiG53ciqT0fk0dVwWrihTYV470Lm1CAv/mgmNVpH40oI3PKdJS+orKQq+nEbI0jyouKhCiSr5T4zaKGvhuRVqKboiWVMnznaTyrJLlbhvqEPBd6ukrjaTKy66xs33Pz8LhsFtfpNmmGs9iW+jzLSXFfqXDwL62+xAqildHxyJ9io3VsP9U+fO3Kn6KRbzsSx2nOh/s+NFnWaeC7abfKWugCE3HmH5vx6xNWNE+U3pTkbYaV1LH6pAEcrgEVOEREYtWVOnrBNEJpmm3wL7y1LVPdkshwLu9DhW9jSEpDWNF77cK3CIM+50aKPXKNQuPykIVGq+hIbJtRYWuz/TLOlQDoZ67tgfbQI2rto1SXhapWeWulKO9XpW6GhXrFOh71SjTkCpisnW3Bo3P1DbQPtc0cy0rhahVjQiTa0ajvdOCeZ3er+NWkZ+9xq9PtP8p6uDQkVHUpONWkZ8+w9ZPUZa2kzIfer+OVxtjZH+NRvt7UFrjHcjhEhiuIyBUXH7/+6XY2mu5bsZ6mqr8qGyUr/ejaCKRiFt8SZ5+d3fXGQQ1crxHFTDfp6hAlZFuqKr3s24sD+lKVZDA/oasuhgZOLhOSRWNUl2qdNV46jq1UGjv7CSNV/B5emAi36/11vpbD962BZEb+4MKOBQKodls+tLFFpmph896q8JnedlnrDP/1liYOhXWiKvhV2XNZ+iaNkWMpNQsta1LGizboIaL9eT/iUTCGQNLe2p9dVxyHNh5QdpPz0mzKIlzkPWy41CdPJspycxHOhfcNiswYK8vgeE6AmK9WuBgZpyNTzGArFli1ktXA2LT1HUzUmB/I1z1tpXi8SuLrQPLzd9aBovgdMskog2NpfE7fb8fwmOdWAZVyvq3Pk/LZmksGjFVUloeq4SJAFW58jl+CJOiFB3LqPvhaX10PNh+ZUxPUR/HhKU/VVnqM6xhZBsoralp3fpM7WvbRjZmSWOt71VU65chqu1AQ6Jtwrbm33yG3cZJ20CdJh1frJtSq0ola301rsi//ZJJ1PBrOwVyawkM1xEQS0uFQvub5qpCs5NCMxA5CVWRa5o2j+kAvGvD7Ea7+j3L5ucd0otXg6rGRCeyGg71alXZKCLi89U4aNxAlSc9eqXbdM2WesUAnOesx6gA8CQCsD2s4tUYG/tFEYYmB/D9RB5+BlF3Hen3+y7BwToMqiS1jxWZE+3o+FD61zpHt3IGiBAUtWpMLBwOu/VjWr+xsTG0220PYlYDoPcrGmNbqkOhRo5G0I4HRXask41l+TlN9hkAXH10nGliETc25meavGSRGp/JOqkDwHixblodyEEJDNcREPX2gX16Kxzez17TyQbsB+ZVAWnmmNJgFonpMSOkSRRx0ZBa48L3sizAwd0trHJUekwXOauSV2WlSoZKQhcHU1hf9YL5ThoCKkVFSPyMSlPvtWiF7ZZIJFwbKF2q+zha1KvBfLaTOiFU6NZgqkHidzYzVI2RIlW+X9uJ5VHHwiID7U9Fzn60HYWfs838qGL9Xo8F0fFix5SOCTV82lc2fqVI2rIMt6JZta8BeBwSNZiM2yktrcjUsg38jvVRp1AThQI5XIKswiMglspRSk737VMEpeiEz1DlxHupoO0CW8CrwDhJNVlAjYIqjlgs5tmORyksWyfeo96zJiCowlGP1y9zUhUsn0vjbtGFzQgkStBYHQAP1aroxc8Qs66WBlPDw3epM8F25nloRCd6PIz2hyI4PypL36vogu/mZxa56ed+CIxtoAaaZYnFYp6F2zQq6mAoM6DjVVEw29DSoCzDaLSfualjmX2lZdfnW6OvqE3lMPRpx5vf93bM6riksBz6Pj5DmYNAbi3BOq4jIFS+up5Kg89+WwoBXuPFCaLZdcDBhaT8TJGPIhPujGDfpcPIptHreh8+SxGF9YBVyarnrl6/H1KgWKSlGWr0jkmb0XhonEEzGNXbZ3nVkNED5/d+2wNRiduF39pPanT5PBoAGt52u+2eaTf+5RhRxEUqkn2hZ5Gp8WD5qPR5FpntC5aTCpp0FtuVCJ1JB3q/dSqUXuR447P4N9d8KWJRWjQc3jvLjPFcLafODzX+NK5sG7a3UnQ6HvmZOoGWDWD5tZ+5TZeWV4VUv99ZbBYVf7fLX2QdV0AVHhGxFAcnk992NUrzqOKiUInoM2nkqBDI2VsPUycW71EkAHhjUhbhUFlwoutz1IiwLtZYWQXPsvilOVt6S4P3zATTOASwv65NlZOmgLO8+rlFfopUtf80PqcKXVGt9p2l5ZQu0+QN3mup4MOSGSwS4nMUKWh9db9L1lvrRQOr93GMWrGI3qImbQe7VMPWVdfqaYan9pG2pfa1OgZ6nTpploa2RsiiM0Xr6jDZ+lM0+YP/a78HcrgEhuuIiNJ0FBvcpWJWmounxwL+E5jevCplXVtEj5ZKSAPphyliwEsP6gm2NEy6hkzLRoXHOJNeYw0h60EFwXpwrzyltHg/Y3ZqvFXUE7cxQ258S4OnClRpOT9kOBwO3WawaoTVEKuiVKPJ++hMsGyj0QjJZBKDwcAtiOY97D/2EY8V0Tgif7RPOa5YD0UaSt1puyvtyb4h2ma97Hoym1Ci9KClCTXxQ50Vjn9r5DiW/YyEZj9qHXR8Kw2rhkwTRyz1qfeyj61h0/LoTiQ6jzhGA7m1BIbrCAgVjFI8/JwTX71E/q+/eb1OHn2mvscmDpC6Uo/QGhP7fv1eFTHFxsz8vGFddMv3W2PiFz+jHOa9HvYZkabGDW1bAV5UZpGKX9ls6jUAR1kqEut2ux6nQFGkIiQ1oiyHbvWk5aZhVUWthk0XBCtSsVShUs50KtRYW5TEa9Vw62eKLAHvsgUazE6n47lGjZyiHN6vZbdxOutUqAHjWNOxZJGXvkPbSse+dV4sE6LzSp1Q/m3nXSCHS5CccYTE0mA0COrpafwI8C52tZNLJzInKL1IGzPg/Rqk5v38sbSipUB0olPB2XLy+eqxW2OtdQXguY6KzS9rj/daQ6jJG2wLS/9RYdEQ0bD4pZQrWrDKVPtOy6TGxdK62l98nsbX6LVrJqN1dizyVIWros/X9xLt2BiqGiBLj/F/jXnyWkVY/KFh0H5R6lVROetMqtrSs9Yo6VjRvrWOG4XltUaYY4tl1/KqUeMzFNUrGrOOiUXCgdxaAsR1BEQVHr1rrg9S+kwRiT2KhPcpwtEYRigU8pzXxffpjhqAdy89zdZSj54TmN49FT2vpULi+/l8u5GwpnIrFUVh3f0SPBQtMDlE0Y+uEdJNiUlhqsdNA8D6aIo630kKkkF+ogW2maUl2+22h0pjfamQSf/xHaQJ2X5UnoPBAJ1Ox9OnNhZDo6UJGOwrpQgVVWufK4pXWo1tpgZLkZemefP5/K2OlCp0NW58rq7F0+w9to9mMKpBpJHSnV7YB7pUwTplWh6OM7t3IzdZ5phRdoB9rnWzySJ+CJ1tFsjrS2C4jogoyuHk0e2AaCCUy1dPTxW/neDWi/bL7lMqx6YtKx2ok93SY/ycCth60Krc1VAA+7E1m3Bg42X6LmvA/BIGeD+Nh1/AXNvQxsC0nkynVwSmcSYacCouKkrN4OR71eD3ej2PsWDdFFVonyeTSfd8zZ60VG44vJeVp8ZF6cTDnCFFG3y2OlBq+NSYsQ0UharB0HKqEbhVkoNFKPq5HY9sPzXuauAVuWtZtC/V4B9G3fPv0Wj/UFVLcdv71BkJENfrS2C4joAoJQH4nxukWYCcXICXS1fqQhWget18n6VQqEwsvWiNk528NAy687XeZ2lFvY/vo7KzhkKNmkWEanw0kUMVrhoxG/vgO9SYah35HCr0aDTq0JyldK3iJfJjGyr60/dpOrs1yEoR6phgu6gBtcbOz1nQOmqcSlGbTaiw9KrSpWq4+D59j95rnSQ+R+leHc+2LSxlzrFqDYAd09qPFKJpvpPj19ZB24DlVRSnfcd6aVuqU6BGX521QA6XwHAdAbHxLFITakAAeLw23qPJBvo8nbSK3NSg8HlESEqf8TMNiltaiDSkKkzAuw5J6UK7yagiResNU/hsIgtN9bZUn6VpWHabkGHjFoD3EEHN5lRFzf8VwfE9pF256Jt1SiQSnjJpuw6HQ7RaLUdn6vo5m6ofjUbdNlV2UTnbzq5d0wQGi7K1PBxbiiAVfSi9p2OVjoEyBYpeFGXp2KCxpxHhujIAjoolUuRc0HVR2nfaDoo41cHh92owNdtQDTnHgD33LRzeT1gZDoeunJw/GsejYQP2sj1JZep8COTWEhiuIyDqjapiVS8d8G6ia+NJipqULuIzlB7S7/gMVSjWuyfiAw5msakxVEpGg9isAxU+DYmuh7Hv0diERZT2b4peZxGiVdh6jUUvFv1prIVtx3bSuJAaukQicUBRcfeJ0WjkdtwvlUouJV7TpNX4KsqycSpeoyjWj+ZT5MXr9Ht9no4p9oX2t0XMfu1J46n/A/so2LIMOjb1M4smdb7wGho+Ogssh27hNBzuZVjSGFrKl89SJ4hGUkXLRmTNdyi60jGkTpk6h4EcLoHhOgLCgayLK3Xxrk4Cq4B0ka3+BvbpHaXcOMHpkVpuXpUhJ5kqEwAehEdFrMFqRT9qBPkOvY7PI+rQzDZ9hipDKgwbg9N38DcVkE3j5nET1pNW+ojX0rum0R4bG0M8Hnd1azQaLmbFNuU9sVjMGSzWUdHc7u4uOp0O+v2+25VC96ckuuK1SnP6KXmlLtWhIOoIh8Mu2UN31VBaVbel0uewPYiGbFxU12D5oeFoNOqOJbFrwihqSLQvLaJTpKiJSkrr6XwIh8Ou/QA4pMW6K2rWZ/O5tiyWYtQYraLZdrvtaTvdBSSQwyUwXEdALDdOsYZKPTelKGxcQCeapV6UKqHh4zPVW1Q6z3qHGmwHvNmJli7is60yHY32zw/Tba74Ti6uprDuNi6kcRkaf76L9yttSWWrRlyNo7YFhcaEFGCv10Oz2UQ8Hkcmk8G9996LbDaLQqHglHMmk8FotJdIkUqlXP2Y4FGr1ZxCbbVaaDQauH79OnZ2dtBqtbC1tYVms+n6UBMG2Adsbxpl6/ErUtN2VGPH+irC9KMXdXzZvlcHQt9py2IRmVKeHLdKR9tkBls+PkuRuRoXdQJ1fOv80rGq45z1UOOlc4L3K1K0DAmv0UzWQL45CQzXERClW3Sy8zONO6n3xr8tQtHJqXSd0m4an+F1VGqaDq7v1utUeWgcjGWza2T8KClL0enEVnpJn6vKkUZK0QaNly0PY1RadlW4Gvhn2yhl1ul0EI/HMT4+jmQyiZMnT2J8fByJRAJzc3PI5XJOycViMRQKBezu7mJsbAzpdBr9fh/VahXxeBzhcBibm5uIRCLI5XIOAd97772o1WpoNBpYWVnB1tYWLl26hEqlgk6n49pHkSLjKao4rSGxbWTHg8YY2cdUwPaZRI0WRStC9etrHRNqVCz9qcia5VZUr2yC9q+WUZ/Nv22MD9g/VgaAe58aQF0OYkUdBYtIrRNpaVf9PhB/CTbZPQJiPWKlbmgoqBw4AfkZUYWNg1nDBxzcTYATmlSaog9dE2NjKUrFUKHaQDav0VgcJ7huD6VGhGXTeAEnPg0nKTqlaawRojBeplQSlZMubiVtyGft7u4in8+jVCphfHwc586dw8TEBObm5pxRZEp6p9NBtVrFaDTCzZs3HQ03Pz+Per2OwWCATCaDbreLer2ObDaLcDiM1157DaFQCPl8HuFwGKlUCmfPnkU6nXb9FovF0Gq1UKvV0Gq1cP36dWxubuKll15CpVJBs9lEq9Vy/cR2oxPA/tWxpePB7oepxkrpLqUESUVqe/NHNyDm2OT/6lzxPZb2UyfCOig6DonWLM2thlpRjo5pdcK0LBrHU0Olxl4ZAr7H7uWpaEzHnrIOaui/FyTYZPe7XOjlAV6qg8qDE9OiCVU2lpazz9ffNvCsE1mz7BRZAfDECqxnDRzcPkhjH3oPy6eITQ2rXbB8KzqTykrrYuNraiwBuLhSOp12a6Ly+TyOHTuGBx98EHNzcygWi8jlcohEIojFYuh2u2i329jc3EQikUAikUA2m8VwuJch2Gw2XbuxrWhAU6kUstksACCfz7usQ9K+jJXt7u5iMBggnU47CnJychKTk5OoVCqYnp7Gzs4Otre3cfHiRezs7LgDHLX/1fgrqlUjoijGOg6awWn7WpG97Q97vY419ociQo4ZGjt+R+rYJiDpGNYxSoeGdbOUoo4NO+Y5HvTZvF+pVXUMh8OhZ29MHeNK6+v4PYI44jsiAeI6AqL0Db1Cm7qtg14nArCP0jiJqHSU7uB9qmx4jxornagUS2UC+54oDQbpK52omjiik9qiOaUrmSGmu2WEQiHPzhKWDtMyqidvqTVtT1JsiUQCd911FxYXF1EqlXDq1CkX06LhvHjxIur1OpLJJIbDoUNOi4uLGB8fd6jppZdews7ODsLhMGZmZhxaikQiLh5GoTGs1+sO8c3Pz7vPLl686NLAieKKxaKrWyKRQCwWQ61WQ7lcxubmJr7yla+gVqthfX3d7dxBtKpOkaW+NN7HsaT9Y40f21npWhpBinV2NBlIjZ/GH/m5fm/niFKWRFF8nzoqOqaUYfAri75f55eOK62noi412pY1sPOURliZku8FCRDXd7FonEW9Zk1v18+AvYnALCWlwfg89Wp14ur3lh6x9KCl/GisAG+cRD1i0jiKpHSvNj6X79LYh6ZLs65WsfF+rpFqtVqubWj4Lb3JMiUSCXS7XRSLRczNzeHYsWO49957kc/nXRJEp9NxyROj0cihmWQyiVgshmKxiHw+j2w2676PRCKYmJhwiRiRSATJZBLpdNodGqnoKp/Pu34myqByTKVSSKVSrp+oCOv1umfpQDgcRiaTQSqVwvj4OACgXC7j2WefxebmJtrttnOCaIiJoHRc6JolRe78X+NQpLG1T9gvTGBR5Ke0MMuuY0fZBC2bJjnYd9gttvQeFY2XhUL7maj6nY51P6TlxwpYB0j/17bTcWxRfyC3lsBwHQHR1GpLh1hPTikg/miixWE0ELDvJev/9AwtnWEnvX5GBcYYlyokNS468VURqXK0tKHGFBRx+VFAur2SvkPXhPFvLt4dDAY4ceIE3vrWt2J6ehrZbNZl+nW7XVQqFTQaDYxG+1srpdNpJBIJt0VTPB5HoVBw/9PgjY+Pu/JxL0MqetJKPICw2Ww6I5XNZg9khlLh04g1m03Prg/VahWNRsMZxkgkgtOnTzuq8tq1a6jValhZWfEsiKbiZ7tr7JH9RUOmyJWGTRU2/9f+0+91TOv4U0dqNBod2EOT12o8V5dwqAOm99gy6HjhtYrY7Pf6W8etpu7r53yOOo46vv3ax2Z5BuIv3zJV+IUvfAH//t//e1y4cAGrq6v4oz/6I7zvfe9z349GI/zKr/wKfud3fgeVSgWPPfYYfuu3fgunT59215TLZfzcz/0c/vf//t8Ih8P4sR/7MfyX//JfPFTJreR7jSrUCao0iSY5AN6Tc6nMOWH0Pp0sitISiYRToNypYXd31xOYpiiFwt+MJXDRpxpJTl6/Ce8X3NYya9BaKT1gX9kkEgkA+7tD0CDQsJNyovT7feRyOVfGs2fP4vTp07jrrruQTCaRTCbR6XSwtbWFpaUldx3b6fTp005Z5vN5xONxR4nGYjGUy2U0Gg3U63VcuXLF0aK8h+2ws7ODWq3mdk/QLLVQKITp6WnMzc1henoax48fR6FQQCqVQjwed7FEIqX19XVnWBgHi8ViyGQyzngyttbpdNDpdLC2tobl5WW88soraLVa2N3dRaVScX2gm+Xq2kGKRdThcNizn6PNSuX40Pbk+jyiPqXaWF51fNShYZ16vZ5nU2Ld3cM6eGwz2946NjUGpYbHPofX2LHNvtZjYxT56Tt1Lunc/V6RbwtV2Gw2cf78efzdv/t38aM/+qMHvv+1X/s1/Pqv/zp+//d/H4uLi/iX//Jf4oknnsBLL73klMvf/tt/G6urq/j0pz+NXq+Hn/3Zn8X73/9+fPSjH/1Wi/M9IdYLtopbBz+AA3sD6mTRLDG9nxPSep+KoKznCexTmPo8pUQ0PqdxFL2fZaPhtYkWKurZa7aW0ll+CM0G0HneUzwex4/8yI9gcXER+Xweg8EAlUoFy8vL6PV6aLVaHmMfjUYxMTHhyh2NRpFOpz0KdGNjA0899RRu3ryJSqWCarUKAJ74HI0O6TrWTREpAGxubuK1117D+Pg47r77bkxNTWF8fBwLCwser571ZZnZ15OTk86JoHGMxWJIpVJIp9MoFAouyWRnZwfVatWl2DOOaBMm9LgRivY7+4DUJsekzRZlvyh9qO/itZY+5N+KcHT3dR3TNG46pulg2XGsqEjHFr+39+h9LJOOOz5HjboK38f5EyCtb17+UskZoVDIg7hGoxHm5ubwC7/wC/jH//gfA9izptPT0/i93/s9/ORP/iRefvllnDt3Dk8//TQefPBBAMAnP/lJ/NAP/RBu3ryJubm5133v9xriSqVSHiqEA15pCMv5U6kyLsDPYrGY75EbSl1QrLFRg6nCyavIS9cG8V4qIpu+D+wrChoA68Gy7szAY9ltTEI91Xg87srGepIe7Pf7eOihh3DnnXfivvvucwjtpZdeQrVaRSKRQDKZBLCPBLvdLnK5HLLZrGuXcDiMyclJhEIhrKysYHNzE1evXsWXv/xltFot9Pt9t8ibaGw4HLokDY3XcNcIvottS6U/Pz/vkj3OnDnjkCEpUe5YwoXJiUQC4+Pj7p3aN2yzdDqN0WjkUuprtRpefPFFbG5uolqtYnl52UND8l5F+Tq+dKcKorzRaOQ5xoXfa8zWxmCtg0ZRVKJ9b6k43fCWhlaPN1EaXN9nnTAdW+rcJRIJh0Y5Dq1DqXFcjkFrAElDK8om6/GXUM1HSr7jyRlXr17F2toa3vGOd7jP8vk8Hn74YXzpS1/CT/7kT+JLX/oSCoWCM1oA8I53vAPhcBhf+cpX8Df+xt848Nzd3V3HcwN7hut7Sai4dKLpljWKuJSKUY+ZE1I39OREtTw7sH+Gk+7K4Mf104um0mUKuU5aKj0aDt24lBNWkyb0XYB3rZCe8ms9at1miu3F8jFd/ZFHHsGZM2cwPT2NqakpDIdDXLx4EeVyGcPhEMlkEvPz8wDgYk+Tk5MHkADLVa/X8dJLL+HmzZt47rnnPLtfkGGgkmQbcJ/CTqfj6HEd38B+unwoFHLGem1tDaurqxgbG8O1a9eQTCYxNzeHiYkJpNNpJJNJ9Pt9tNttJBIJRCIRrK2tOWdgenoa8XjcGTt1dObm5pwCPXv2rBtLm5ub2NjYwJe//GWsrq6iWq1ic3PTkxLPcqqR5fhRx2k43MsKZcyW1FkotLc2TtfLsT+VmqTh5d9KPeoOMBa1auIPx5DWXdGijVMp48CxSSeH5fCj35VGt2sV9bm6TZca3u8Vo/UXlb9Sw7W2tgYAmJ6e9nw+PT3tvltbW8PU1JS3ENEoxsfH3TVWPvKRj+BXf/VX/yqLeqRE171YBMTJT0PAScJJrpOdYqkfpRiVwrF0ISeX8vU2fmAVAd+liph1UpTHH5tp5lc21l1RJrAfW6CSYtwpnU7j9OnTOH36NN785jcjk8m4mNDm5ia2trYQDodRKBQwPT3tkjCIsBjvarVaqNfryGQySCQSaDQaKJfLeO6557C2tobRaOS2cmq32579/WwMcDgcIpPJONqQ+xCq0lQHwVKq29vbLjZUr9cxMTGBqakp9Pt9t+hbUV4mk/F48wA8dDL7lG3OOk5MTGB+fh7pdBqbm5uo1+t47rnncO3aNVSrVdfONLwcA3yXRS12YTfpRFXwfI5S5Dpuiey0fTk26WTxHTY2xrLp+NOkIB1LvI+/LWKyTpRd0Ky0pe6uzzJxnKqTxbEeGK9by5HIKvzwhz+MD33oQ+7/Wq2G48ePfwdL9O0VnWia+aW7BlhPV7cXUk/Spjrr5Oa7bExIM73orSq9yDgF4N3yiUkeTPrgxKdSscqB5VGExvfq+iFVjFTONJaamn/69Gncfffd+L7v+z4UCgVH5126dAm1Wg2dTgfJZBJnzpxxyvfy5cuoVqsYGxvDxMQEYrEYrly5gnK5jG63i0QigZ2dHSwvL2NjY8PtHUhvmeuuWBYVjdWEQiHMzMzg6tWrbr1Yp9NxDghT7Jnt6Efl9vt9rK+vo1qtYmdnx7WtUrWhUMhlQnL381wu5znjjCiQRoTGl2ggmUzi3LlziET2FkS/973vxebmJp5//nm8+uqruHTpEm7cuOGcBlLRVPKKPlqtltvWSseRUnpWwSsiUQeJJ4Fr0os6QXZrL21HNQqWliSdzDHHjXDVyOu80vizOm/sA4018+QDolOlz0n12kSoQA7KX6nhmpmZAQCsr69jdnbWfb6+vo777rvPXbOxseG5r9/vo1wuu/utxONxl53zvSg6IQB4FIH1+DQYrOiGEwTw0iw2mMxn6QT0oyFt+aiEOCl1wloUqChP6RW7swXrqvScUk/6fTgcdskRuVwOp06dwnve8x5MT08jnU6jXq9jZ2cHN27cQDQaRSqVwrFjxzAajdBoNLC9vY1ms4nd3V1ks1lEIhGHsKrVqsco7uzs4MqVK6hWq9jd3UUymXQGF/DSZvS2VcmxrTSLTpG0Gm3bP7peiAp/d3cXjUYDW1tbSKfTKJVKzmhWq1VnGEnJ7e7uOhqTTgF3qSctyftJM2pcKBwOY3p6GplMBqdOncLZs2fxsY99DNvb2x50YdGRXSfG8aFLLlgndZYssuaY1jFu2QjOA84VjkN1kvR+Xqfr2TS9XulHv7isjmXtM72WbaHLQ9Sw2thaIIfLX6nhWlxcxMzMDD772c86Q1Wr1fCVr3wF/+Af/AMAwKOPPopKpYILFy7ggQceAAB87nOfw3A4xMMPP/xXWZzvGuGE4oRW5UVRVEUjQzoD8D8aRak3RU16n07aw7xVTRaxHi4nrCI9inqqfBd/05ApTWR3I9DMLdJm9957Lx544AEsLCxgYWEBw+EQS0tLbjf1dDqNmZkZJBIJtNtt1Ot11Ot1R9eVSiVks1lsbW1hZ2fHE9CPRqOo1WpYXV1FuVx2Z2YpjcR21rbizvuk6Vg3ptbXajWP0iJy8TNcmoSiCrPVauHGjRvIZrPIZrNIJpMIh8Oo1+tIJBLI5/PI5/MOofGolEhkb9cOLn8YGxtDs9n0KPxIJOKJoxH1T05OIpvNYmpqCrVaDRcuXMDS0hIajYYH+bIOducVdYIUadl4j1LP2ha65ZOOS6WrbeKDXmNZA72G99kdWtQ4KU3vRynqtbxeHTstmxpz/h+grsPlW84qbDQaeO211wAAb3rTm/Af/+N/xOOPP+5SdP/dv/t3+Lf/9t960uGfe+45Tzr8u9/9bqyvr+O//bf/5tLhH3zwwW86Hf57LatQFRkNFwc6qQdFZZyQ9mh6nYCkQXTtC0URlBo+uzjSUkGaag54N9RVulNP8tX7+W5SXVTupGb43G63i8Fg4HZVHw6HeOKJJ3Du3Dncf//9APbWKb388svodDpIJBIoFAouKaDX6zmEEo1Gcdttt7kNa7e3t9Hr9RxVFwqFsLW1hbW1NWxvbztkpll2NPQawNc4B9GK7rDR7XZx5swZAMDFixddm7A99DgZ9pseokmKLJvNOpqP1F4qlUKhUHD0Y7FYxPz8PPL5PJrNpttNvt1uI5lMuj0VgT00USqVkMvlEI/H0Ww2Ua/X3UbL0WgUpVIJU1NTmJmZQSqVctTa+vo6lpeX8dGPfhSvvPKKG7e6sFoNssZ6NNuT9+nmvn4UMf9n/FQXoXN82rFFxw3Y3/+Qi+Q5ZgE4I87xxh1o9ORi0qmaHWkTMdQ5pOi84HsVFfM93yvI69uSVfi1r30Njz/+uPufsaef+Zmfwe/93u/hn/yTf4Jms4n3v//9qFQq+L7v+z588pOfdBMDAP7n//yf+OAHP4i3v/3tCIf3FiD/+q//+rdalO8ZUe9N+X1g/8RYKk31Q6yHqZNeRRWseriWVlGFQsOmXrJFZIqKlJaxdVLlrEF6pYtYLo1r7e7uIhqN4u6778Y73vEOFItF9Ho91Go11Ot1xGIx5HI5lEolhEIhT9LFaDRCqVRCIpFw2zANh3uHPjYaDUcXcpHu9evX3U7rbAvWgQpWs+c0GYXKydYbgDM6fpStKmgqOaXDtO8YD+v3+2i1Wp4MvUajgWq16rZ9IqoiwiQdSEdlaWnJbeA7NTWFYrHojE+328WVK1ewurqKVquF2dlZjI+PI51OY3p6GqlUCm9/+9sxMTGBP/3TP0U8HnftS4dDF+KyrqrkldLmZ2wfdeAs6tT5YRkFuxZMx64iOY252fmkba1H++h7bAKHH0uhfaiHi1pkGcjhEmyyewREvURV8JYG0YGvNJtORlUYwMEFyDabkBvH0pu/lYFU48ayakKGGjmWi+9Saonrr3QtC8vHVPPBYICf+ImfwEMPPYRSqYRWq4VWq4V2u+3aLB6Po9frYXNzE5VKxR0jkk6nkUqlcOLECedJ12o1rK2t4cqVK0gmk5icnMTa2hquXr2Kzc1NpyyZEMCFyap8le5TxGXRK2nN06dPY3Z2FhcvXsTa2tqBZA5FbozhaZuyDenxZzIZh9w6nQ5GoxHOnz/vYlQ06mxXXRs4MTGBYrHo0uaTyaRbo0RqkOvBaMC1re+8807Mzs5icnIS4+PjqFar+MQnPoEvfOELePXVV52yVrpMx7WOTU0Y0nHLewB4jJulm3Vsss103FnqUNcNcnxbo6mMgdLrLEs0GvUkIWnGoZ1vbDOl0pXRsOX9bpfv+DquQP7viHqbdiID3v37+L9SH/o/DYQqWmsE7WfciUPjVHyfKmlObj9jaj/j36yfIjg+V71opUuHwyHm5+fx2GOP4fjx4+h2u269Ui6XczTLysoKKpUKNjc30Ww2MRwO3fZMyWTSJYrUajW3UwSPI+Hf5XLZ067qQNg+UGRKmtMPlSpFFo/HPYtQVYFZtKY7LChaoKInncfnqQPDjMJ2u41Wq+Wu43ovJpr0+33UajXMz88jHo+7NWeM5/H6er2Odrvt+vurX/0qSqUSFhcX8Za3vAXpdBpvetObXHzsM5/5DDKZjCfmqTtm0MBw7Glba99rHNYaMV1YzbGqSRyWKte+UJRl556OQ52Pdh4qu+Fn+PS9ei/fyToG8voSGK4jIFYp+iVfWOFk0kmrk0YnInDwQDt+p5y9zfSyz6DYrX7Ugz7sPmZcAXDxEK1LOLy3eLndbuPUqVN46KGHcOzYMQyHQ9RqNYRCIbfR7WAwQKvVwurqKur1ukvPTiaTOHv2rMu6oyHQnUS4ELlWq3nWYvV6PYditPxUknaDV6VTlX4l1ap9oXFLra/2NY0xx4JdM0S6st/vI5FIIJfLIZVKoVgsujVZzPrTNj9x4gQKhQI2NzddIsr6+rqjWicnJ3Hs2DG3aTDjUYlEAvV63e2zOBwO0W63Ua1WkclkMDMzg+npadxzzz3I5XJ4/vnnsbGx4VAw68vxoJQ3qWBNjFB0o+PPJrHYOaBzRxGVZQW4jICi1/A6NVDapywbxy3v1d8sA8tuKXtLcwZyawkM1xEQDnZ7wqp6qkqj6eayui+b3msnkM3iAg4eLaJGx36nitRuEKpxCyp0KmwAjn6jh8qYS6fT8aQc7+7u4id/8idx3333YXp6GrVaDc1mE4PBAKlUCu12GxcvXnQGJhqNYmFhAadPn3aLe7kj+tbWFsrlMjKZjDu0kYprZWUFN27c8CRMsL24pofKTtubnwNwgXYaE00w0HTr7e1tt9OF7hhPpaeIhIkANHRsV3U02u22SyYoFotIp9MuGYMIj9mB2WwWJ0+edIkc3PXjxIkTLvljbW0NzzzzDAC441FOnDiBWCyGBx54wCWMfOYzn8H6+jpWVlZw8+ZNJJNJ/PiP/ziOHTuG2dlZRKNRfPGLX8SnP/1pNyZ1oS0NNN+r1OBgMHDxTD/Km86KjlnSmhybdmzb9YuMCbJcdtkBUbSiXvaNxl9ZHo2B6fjXMa5jW1GixvEC8ZfAcB0R4YTkBDmMAuHfVHTqJSrnzmdx8nPCWgqQE4vPYJxHn2U9SFXgOvn5ncaFOIktzcbv6X23220sLCzg3nvvxdzcnMtWo4LiYYmrq6vOCJVKJRw/fhypVArVahUrKyv46le/6naAiET2jho5c+aMZysqG8NIpVIe5cS2o+JVRaaKjferYiLtSqlWq57MTk2T1mw129YcA2wjjT3yrLBcLoeVlRVsb29jcnISuVzOjY9MJoNcLuey4/zKCwBzc3MoFArY2NhAuVzGjRs3UK1WUSwWsb29jYmJCRQKBbz5zW92McErV64glUrh6aefxnA4xMzMDM6ePYtQKIRvfOMb2NjYQDqd9iBYHQ/qGKmRsnXlONUxbJ0iPpf9aZ/Pe5RW5PjV62kwaTztvPJD1+rksXz6v/Yxr7eZu4H4S2C4joDQcDBF2i/OoYhJFZDSURpz0sluA9xKSVGoFDlx1fDp3xp3UPpGn8+Jrt6v0iQ0onp/sVjE+fPnsbCw4NZgsc7NZhNXrlzBzs4Out2ui83Mzs4iFovhpZdewqVLl3D58mW8+uqrTqkx03V9fd1lELbbbUdLsj7cVYNp+awbvXZVNKoE1WtWj5zljsViqFarB6hYGm81lGrwtd/4PCKfwWDg1lp1Oh1sbGwgn89jamrKxf9Go5FLgdfsPH0X6TuOrYWFBRSLRaytreGVV15BNBrFsWPHkMlkUCgUcNddd+HUqVOYn59HuVzGzs4OLl26hMFggPvuuw/33nsvotEoHnzwQXzxi190a72sw2PpM9bVLuTVJAptE6I0Gh79W8e9RdIWaWn78tnqnCjrwX5XdKcIy8Z0tax+GacaJw7EX4KswiMgPLBQOX8NXKvoxLSTW+NMFI012NiXpTP8vFtFfhrX0sQBNUoaQKdy0GsjkYirLz3yeDyOn//5n8ddd92FRCKBZrPpkgzW19dx+fJlt+XRqVOncNtttyGdTuPll1/Gs88+i6997WvodDoIh/d2Q2f9kskkUqkUMpkMut2u210jGo065Q/s029Ef91u1xNbVNpJaR6tNxVaIpFwCRlvetObsLS05BJAuGeiOh7ctFiNvj6TMS2uURuNRshms+59k5OTmJ2dRSaTwbFjx5BOp3H9+nXXztzbUM8z43jhmV26pyHjU91uFxcuXHBHw0xOTmJ+fh533XUXHnzwQZTLZfzO7/wO+v0+MpkM3v/+92NmZgbr6+u4cOECnnzySbzyyisA4JwCYH+7JXWw1JiqEWd9b5USr4aBfWUNotKtino0Xsn36LU2OYNoOhLZPwtO45Z8n17PucqxpXT79wpVGGQVfpeK3UECOHhGl3rLSvWox+eHDNSTpCGy3j0nm14HwONhahlskoFFgSr8nJOY76f3OxgMXJwqk8mgXC47o3Xz5k13ku/Y2JjbUy+TyWBnZwdPPvkkrl27BgDI5XIuHqXxI2bjUYHz2kQi4dKaWRfWkfEQi4jYP8Ph0O3HR8MTCu0tFmfsbnFx0Z1ezAQRxmoYm7Q0FVGgKlKWkYZFNyMeDodu4TX7iicqa9xQD9/sdDqes82YVcg1XKSK4/E4zp07h8uXL6PVamFrawvdbhfNZhPz8/OYmZnBQw89hKeffhr1eh3PP/88RqMRxsfHcccdd6DRaODZZ59FJpPxoGtlDpTSs86AKnUaN/aTxmgtK6DzR8co383+pKgDaFkOjacpS6DPUEfQMhAcj0pZ6veBHC4B4joCwslMZTgajRylpcbGL8OKk0ORkv1RekKREK/XDCsqe+X/aWQs5aTGU1Gceqp6j6Iu0nVvectb8Mgjj+DcuXOoVqu4efMmBoMBOp0Onn/+eYTDeynab3rTmzA/P4+VlRV8/etfx4svvuj2JYzH406pplIpT4xpMBjg5MmTGI1G2NnZcciF37FtuaaJCRJci+WHhKwSHQz2T8IdjfaOEMnlclhfX0e5XEYymXTfMyGFCr1Wq3l2kNA+Jr1I4RjgBsGj0Qj33nsvxsfHMTY2hmPHjiGRSKBcLrutrnZ2dlyW4Gi0tz0VU9+5FRR3sGf877XXXsNgMEA+n3cLnpmNyXVyi4uL+If/8B+iUqngK1/5CpaWljA7O4v3vve9SCaTqFQq+A//4T/gxRdfRDQadbuKKNLSOKkyCRoDDIVCnl1GuD5Kk5bUkbJoinNEkRvjl9aYKBrW44FISdLgKzvC8aDziu/i/0z0iUT2d7e3ySPfzRIgru9ysUZFJ5UaK40V2QwswBtTosKyilENmyoLS6tolqD1gRRpsbycqNa7pCIhZRIOh3HmzBncf//9OHbsGMrlslO4Y2NjqFar7iTfQqGAhYUFdLtdfPnLX8aLL77o1nXFYjHs7u66rDqeB8WjPhqNhkNP3N+Pu3QrOtP0eYrSnlSymmLPduS2SIy/RaNRXL9+3dGSbA+uMaPh4Dup+OwxGkRm2v82vkmnhMiJRr/ZbKJWqx0wtmwbIjzd9ojjg8+bnp52SjoSiWB7exu7u7totVq4du0arly5gtOnT+ORRx7BtWvX3CLwTCaD8fFxnD9/HhsbG1hfXz+A5mkIOC402cH+cKyxHkSEw+HQpepbJ8/GprRddSwqWtJ4nP1c6XFFyurAcfyrM8jv7REugdxaAsN1hISTSzfq5ATRnSls5pRVCjrZNQlAlR3gXYSslCPvVQNKg0avl9coAtPYgz6fwnpEInsLZe+66y53qCPT14kKqtUqstksCoUCTp8+jcFggFdeeQXPP/88VldXXTmovIC9+AnjWqlUClNTU6hUKq4NADg6jeu4WHa7c72lk9Q71v7gM5mKzo16+/0+ZmZmMDk56Qwr7+t2u25XCrafOhvAwSNSbHsyTtfv7x8sSTqUR7oAcGVS5MCxxd0gQqGQW8DN+pVKJdx+++2efgb20sqZvv7kk0+6raDY1ltbWxgfH0cikcAdd9zhdg3Ruli6WhkBvl/HP42an3Gy7AMRpCZaKFJSRKYxNn6n7a51Ztl06YO+g3NN0TjrRoaBcypIznh9CQzXERFOMDsZ1atWb89P0elk1MnNiaPratTIaCwM8Hr39nr1KEOhkKOYWAZOaK6ZIfWm93e7XZw4cQLnz59Hr9fD1tYWbty4gcFggEKhgEqlgng8jmw2i/PnzyOfz+O3f/u38fzzzyMSieDUqVOoVqvY2tpyR3jk83kUCgUcO3YMqVQKiUQCmUzGrXMCvHHDXC6HaDTq9vnj8SXZbNbtrm7RpBooLkdgpmIikUA6nXYJInfeeSfuvPNOzM3N4erVq3jmmWdw5coVFAoFjEYjtx6Nz9I2V6+fO7mPjY0hl8s5tMdtq0qlEsLhsItlcS9GUrTZbNbVgQZMsw0Z42PbDAYDTE9PY2ZmBoVCwSnvTCaD48eP4/r16/jyl7+M3d1dfP7zn8elS5fwzne+E+9973vx9NNP49lnn0Wn08Ftt92GO++809F8Tz31lCcBwp5SrHSfxhg1PkSj2+/vHa7Je/kcRY3WSdO4GI2PGhAd6zToADyo3MbnhsOhu45GScupdDnRpRrVIxjF+bZJYLiOgFBR6d51AByFxQnG6zQGpcbE0ht8hiI19WoZ26H4GU2LooB9ilCfZxEJFQRjMmrUYrEYTp06hXQ67ZIxmBSgiQMLCwuIx+NYXl7Gyy+/jHq9jnvuuQeRSMQdFZJMJjE+Po7JyUlMTU1hfn7es0ceAIyPjzvarVwuo9fruS2hwuEwOp2OOxaEMRVdLEwlyFOGw+Ewms2mO4mYiSGkyBKJBIrFIkqlkqMnufiX54dVKhW3Uz3fYxNCLCXFtqXRUfTL8UPDRDRJJaoIgnsb0rHg+/l87n6xvb2NTCbjUGoymUQsFsMLL7zg1pJtbGzgwoULePzxx3H69GksLy+jXC5jfHwcpVIJCwsLOHPmDP78z//clUeXBvhl5VmGQJGKOk06NtVAsf/VQFiHTx0pbWedR6SULcNhy8a5o44lr9E+VUcokFtLYLiOiFCxWrTDyaOThKIBYj4D8O6pxkW3fLau3VFjqF6k7iSuWYVqMIH9rEM+j4iOBpc7PKhxDIVCuPPOO/H444+j0WigXC6j0WggEokglUqh0+kgm81iYWEBuVwOX//61/HUU0+hXq/jtttuQ7FYdDuXJ5NJlEolvPnNb8b09DTGx8dRLBbd0R67u7su9sR6ce9DItBoNIpcLufa+caNG24NEo0W+6FSqTglyCSQcHhvIXAul8Pdd9+NRqOB69evuxT1zc1NXLp0CeVyGdls1sWVTp8+jWKxiKtXr7qsRCr0Xq+HVqvl1pWxjxnP6ff7WFtbQ6/XQyqVcolM169fd9QgKcBUKgXg4DEedIaoyLlAm/23u7uL7e1tRCJ7i7h57Eyv10OxWHRJGvV6Hc888ww+85nP4NFHH8UDDzyAlZUVrK+v49SpU5iZmcHDDz+Mj3/846jX664feEwLx7oyBjqGNbaqxpUGym9Ma0IQsI80NU6m8TyNy9JwMTmKTpcaTd6vhpf1UlZD1wCqoWQWaEAXHi6BiT8CQiqPnrTSF/RQgYO7Y9Bo8FpOBk5qenwa4+C7+FuRFBUkDY/d201jD5zUtrzWy6ViYdlGoxHm5+cdJchTiJngUCwWcfz4cUxOTmJpaQnPPvssbty4gWKxiEKh4HaJD4fDKBQKmJiYcLs/ZDIZ5wnHYjGk02m3ozfrzLR6KsFcLodOp4Pl5WVcvXoVOzs7ni21qNQ0y4xUWzQadTtUTE5OIhKJoFKpoFwuIxKJOOTTarUQiextENxqtbCysoJms+koTvaRpVk1hqLrx9immpWnWXY2fqN9AMDVh6nxipa73a6rz/j4OPL5vEvwYV24uJkZneFwGC+//DLW19cxPj7ujFKj0UC320U+n8fExIQzlDaWZJONWCeOTZ0DStfZZ9jEDMC7lZkyFzrX6EzwXsZzFf1ZtGTXi2nskX2m8TzeY1FdIP4SIK4jIOoJ6qSziReaGQV4DQUAz0TXoL+lEvm5jXWReqKhs7sDULHYZBAtFz1bTn71VGlEGIdqNBoOWTBlfG5uDvl8Ht1uF1/72tfw2muvoVKp4PTp04jH46hWqwiFQshmsygWi5iamnIGazjcW4NFw5NKpVwMSbP5iMJYvu3tbezs7DhjZBNVdnd3MTk56RAHjSJRCA3QcDh0hzIy27FcLrs1XKTgSENGo1EUCgX0+300Gg2PASGa07HA9uVzRqORM86sP40eFbYqSyJfGg6rlFnv6elpR4uqc8L1cNlsFp1OB5VKxSG5druN7e1t5PN5F3NrNpsYGxtDKpXC9PQ0lpaWPJl1Oq75vx3/Ot5JjyoDQaSqY1qNoc4LfQ8dEssY6HVK21rkZceIvlMTh6z4rSUL5KAEhusICCcQhZOAg18nKCeMetvqher9anAYGCeFp8ei2+CzrjPRZ+lk48JbpWGICmggqEg0C5HbB+kapkKhgPHxcRerWllZwZNPPonPfe5zKJVKuP/++zE7O+vKwO2PTp48idtuuw2j0Qj1eh2NRgOZTMZRUMD+ybPFYtEp3Uwmg6tXr2J7exsrKyuIxWKYn593ypeUHXetSKfTaDabSKfTbsNeJo+k02kcO3YMU1NTKJfLzmBeu3YN5XIZq6urrj0ikb3dLPL5vNu1gv2VSCTQarUAwCWTKP3F/mN/8uwt9gN3pCBy7ff7SKfTzphx3RjP2uJO+4wVsq+YbFCr1VwckAkhTBA5ceIEIpGIO2PszJkzuPPOO9Fut7G0tORifzRs09PT+IEf+AG0221cuHDBZUTy7DA1tLp5LsczMzIputaNc0EdMKUF6Zyw/fm5GiId58A+xQ7sIyg6QxrDIjrmfGB5dN4qLcl36E4pgfhLYLiOgFgOHoBnJ3jAmyihEwzw7pumSEljUH5UinqkGh9Tz58eppZBP1MFo89WT16R4fz8PGKxGDY3Nz3H0+dyOUxMTGBrawsXL17ExYsXUSwWcfvtt+PYsWNOQTMbsNvtOtTFLZtoGLimiSnnpLY043J7exvr6+vY2dlBNptFOBxGq9XyxBnj8Tji8bhT7kzCYP/kcjlHpVG501ATxTHZgVl7RFLxeNy1NWlZHutCZcv3qMNC5EpkNRzuHwJKNDI1NYVareaQNwDPbxp+HUd0jMLhMNbX1zEajXDs2DFks1lnhFg3ticdrmw263bv39nZcTQpD+TsdruYnp7G/Pw8vv71rztnQpMjlKbjb8b3LH2oGYCWTdC66DN1jOrfjHUqVWljwKHQ/rlnWlZFqlo2jW/RYNm5YtFlIF4JDNcREF0TpPEhwHuCsSovXqsBYz/eXKlETfRQulERlU5epQOVt1dPUikSNWi6+JKKZGxsDIuLixiNRm7NFhMqeLrvxYsX8dxzz2FlZQUnT550W0EtLS0BAPL5PJLJJNrtNpLJpDvCg+04PT3tFN61a9fcPn9ED0wIqdfrzosuFosYDoduT0G2UTwed8h2enratUMikcDExIQnpb7T6aBarXoMEdshmUx6FhuzXVhOYH/rJWB/Pz8aJ46PTqeDbreLYrHo2p3GlX3Bo0nW1tYwGOzv0KFxL3WCdByoM0KniSn+r732mqNJaWSJ4Jniv76+jmaziUwmg4mJCedstNtt5PN5zM/Pu/HLmCHHlcbi1KASyfN/nQM6Dyism1LlnEc2tkSjQqeH37PvOM51HNu2s4ubeZ0aXa2PpdcD8ZfAcB0BocesFAS9d05OjRXR4+QEUxqD9Bafp+uolDrhpOFE0tiDUh2aNODH69sFtKpkqMCJfB577DE88cQTuHnzJra2tnDy5EksLCy4jK7r16/jYx/7GNbW1pDP5/H2t78dk5OT7oBEKkmWmQiIG+nyYESigStXriAa3dvlnFlzGxsbqFarbod53YWByG59fd3RgwBciv3k5KRL7AiFQqhUKhgMBi5ZhOvHmBnJoz1IR/HAR3VKSHWNjY2557OsoVAIjUbDk3Ch20Btbm4iHA6jVCq5Pjx9+jTy+bxDpeznQqFwIJMtFAq5eCINBNdQRaNRbGxsYGdnx7NxMQDU63Vsbm46BH3mzBm89tpreO2111z5Jicn0W63USgU0Ov1kMlkcP/997ttu5rNplPuigwHg4FD4sok0EiosWcd2JYAHE3K9tBr7XpCdbp0txcaMjveLaqz1DzfyflJYT9zA+dAXl8Cw3XExHq+1rvTbCWdOHYiKl1hJ5x6jRoDA/ZpQ30ORT+3CzLVm+QzNH6WyWRw1113oVQq4YUXXnDp7HzG7u4url27hq2tLQyHQ7cmigqY3j3fB+wpiWaz6bIFR6MRqtUqms0mWq0WlpaWMDY2hnQ67dLZy+UyWq2Wx/Pf2toCsBdLYWo+256JCpqAwb5RLzsej7s1XLVazVG8fgtpafBp0GikiAxzuRwymYwzemxLOgLlchnFYhHZbBbb29sYHx936624m8bu7q7bVYPjhn1hHRvNiGPyCJNLrl275uJ6XJO2sbGBjY0NdwIz27fX6yGXyzljzt04SJPm83mcOHECq6urnrGlyE8z+mh4FNlYSs/ShxzvbDedE4rQ2A8UfSbHmFJ/dM4sYtLvbewN2D9wlMZY17AFcrgEhusIiEU6un5KkzaUL2cMgRvM0qARdQHe7WY4Uexx6VzzoqiMXqEaSzWSLItFb3wnr2OCw+TkJB5++GE8/PDDqNfrbk+7fr+P5eVl5PN57Ozs4E/+5E8wHO6lJ588edLtYdjpdJwnyx0twuEwtre3sbW1hUKh4NqOKdgbGxsIh8M4f/48nn76aWxvb6PT6XiO2AD2vOtarYbBYOC+j0aj6HQ6mJubw/z8PCYmJlwSAak5xqhYZ1J/iUTCxap4nEgymcRgMHBJI6QvtR35ORMpBoOBy3TU03aJhra3tzE9PY1Op4Pr16875JNMJvHqq6/i2rVr7iwtZvkxhZ5ljMViWFtbw+7uLtLptMsQZKr71tYWdnZ2sLy8jGg0iuPHj6Pf7+PZZ59FrVbDI4884rbsKhaL6HQ6+OEf/mF86UtfwrPPPovFxUUkk0nMzMy4JQ8//MM/jGaziWeeecbjiJGyA/azXpXaY/xNx6/OHf7NfuJziWY1O1ANnNJ8uizFOnhqlPT5uoZMkzw4PhS9kVlRliMQfwkM1xESTgwOdDspOaE5aTjRaIA4oZVioSiFR++UE9hSGzaTTWkcjZdpbIwogt/xenrpp0+fRjKZxM2bN102HZMestksWq0Wtre3HaUyOzvr4lJMJtBMRlJG3W7XISYqeW4jdfbsWXQ6Hdy4cQOj0cjRSFxoy3JTYUejUWcsmGbOZAqWgRmFunu8HvJIA8sYkKVkVekB8KwfYn8y3Z4ohchLUVw8Hsf29rajFrvdLlKpFEKhEDY3N91uIIpS+R4mVdCYKpoYGxtDsVh0Y6HX62FnZwerq6uo1+suDT4cDrsYX7/fR6lUQii0d15avV53WZs3b97EqVOnEArtbV+1sLCAe+65B6+++qobB5pAYVPF1SmgoWA7qoFRJ4JtqahJ24Cf6xhgf+j1Or5tEokaXEuTa4yNddO6KNILxF+CFjpCwgHOScnPlM6zQWZdQKoTX4PuGqSmIdJFybzXrvlS+lBpQWtE1YCqpzocDpFKpdDtdjE7O4ter4fV1VU0m01ks1kXg8lms67OTOPm+iYqUz5Pd33QdT12N/TBYOCSBrhzPNuT65FUWfOAQLaZ7ozBazTBgu0SDocdguHnNG6KSEOhkDO4NGoazPfLlIvH4y5rUR2I0WiETCbjHBZSmexz7oGYzWadwdOlCXQAms2mx8kgItPxQnQ4Go3QbDaxsbHhDLsih3w+j5mZGcRiMRw/fhzFYhG1Wg3Ly8tYWVlBMplEt9tFJpPBHXfcgdtvv/3AzhU22YLP17HF7+2YZLvwf4376rywDh4dJRp4bSuKH9VOmpffq5OnLAnLr4lNWpdA/CVAXEdA1FhoGjS9NSo6vwQNKkT1pJXPt8ZM30FFrMkh+r0NfGvMSvdQBPYpSHqgzMhrNBqIxWJYWFjA+vo6bt68iUqlgkcffdRlz/G6XC6Hzc1NxGIxt6uGKtxQKORZ/8RYDAA0Gg3s7u6iVCphNBohmUwimUyi2Wy6QxLpMWt6MqlBuzB0amoKxWIRuVwO6XQakUjErU8KhUJIp9Ou/lx7pLQREx4U1ZFKVJqR9J8aC5aT21GxDeLxuEMuNGqvvvqqO/6FaCQcDmNmZga5XM4h0NXVVRSLRYyNjaFer7sFwowPkiKcmJjA2tqa26JqOBzi5ZdfRrFYxMrKCpaWltzatVgs5oxjt9vFW9/6Vnz+85/HO9/5Tvz4j/84PvrRj6LRaODJJ5/E6dOnAeydAnDbbbfhR37kR/CNb3wD6XTaGYtQKOQ54FPRkG0bpe2Ag4c4amIRxwidHkVxijY1rqtjn86G7hLvt3aSa8MYYwTgWRzOMgcxrteXAHEdIWHwVoO7mrXHNTiklzR4rB4fr+fnfLZNptDv9X9VCnqsu6UVSd1Y6oSTmF76sWPHEIlEXPypUCigUCggFothZ2cHL7zwAsrlslPSjUYDKysrLj4Qj8cddcezpnhQYq1WcwkZGpujgubO7TRWNCD08klnavo6DQyPR2G7MTlC11EpotFYofaZIjoqYi5NsN8TCeteiXwv24D3j0Z7C6+Xl5cdlUejREeGjk2n00G9XsdgMEC73Uaz2fRQpqxXPB53WzvVajWsra25o2E2NzfRaDQQj8ddmj2NPzMIn3/+eYRCIdx3330olUous5L9wEXT8/PzyGazDvHpkhD2oSIojmGOVU3KUPSi6MwmdCjNrsaJ9VAnj2hbHQwtE5/NPtU5p9fTodFEq0BeXwLEdQREJxOwP2l1KxsbUNbdApQGVLrKTiLAm8GlSM/SLbzPxr+AfYpFn89Jb+s1Go0wMzODfr/vMgZ5XEa1WsXq6irW1tacF//ss8+i2Wzi5s2b7kRjLlDW/fVYftJbqgCJTqvVKobDoYsT8ZpweG+xscaj1FEgzad75LGezMqj4aOxpPEh4lSUapNfVMnpQZEaR2EdaEiV2h0Oh2i3286z5/lki4uL7ngT0og0sL1eD/V63SWKkKZVxc4My0ql4lBquVx2u3pwnRrbvtFouLO/uCB7c3MTOzs7OH/+PBYXF7G8vIxqtYqdnR2cOHEC6+vrbv/CU6dO4aWXXnLtznR8dYx0bLL9FRmp86Vzxy+bFvDGXzl3lIK0tDx/1NgpctI4l+5xyes4Pug4smyBAbu1BIbrCAjRCRWecv86Ccira2KFZvwBexNTqUU1MoqaOFnt2h5VmpyMisoAb/q90m+cmExc4K7rDz74IK5evYpXX30V7XYb99xzj9vHDwCSySROnjyJsbExZLNZNJtNbG9v46WXXnKHGbKsVNikRWOxGBqNhjNAW1tb7phwZsxR4QyHQ5c52Gq1Dmzjw10hiHh0g2LWnUkCpCw1Tsb9EHnmkqIvlmMwGDjDZx0D9d51pw/G9vTwyVAo5LaYYtLEn/3ZnyEWi7mzyZrNpkt3p8OQzWadEaPRJ7K9efMm1tfXnSHf3d11yRpXrlxxCSC5XA47OzsA4PY03NnZQSqVwsLCAv7wD/8QZ86cwbvf/W63SfKf/dmf4b3vfS+GwyGWlpZw4sQJ/K2/9bfwqU99Cl/96lcdXa0L5DV21Ov1HK0bi8U8x84o86B0uhoJ9hP7hXXj39Zp0FOq1fgo28H5ockWamw5rhQxcvwEcmsJDNcREDUqKsrrKwfPGAoAj9Gh0KvUtGKu0SGS47t0sad6gUpB6sSz3qkmNFBBMh7AXR5mZmawsrLilD0R2OrqKobDoTs2YzgcurhMNBrF5cuXnQHZ3Nx0O473+32XgED6kMiER2cw3ZzKmQqOtBY9exohtpfuzK6Kjm1I46wo16Jlvz5kO3J9EttNk2u4rk3jWYxxMvYD7GcVsl+4c8jNmzcRjUaxuLjoSQAB4NkYmHEvnjvGZRVEqGwLbpI7Gu3tDM8Y1PHjxx31xy22SNUuLi7iC1/4Ap566imXLt/tdnHhwgVcvnwZMzMzaDQa2Nrawvz8PO655x489dRTjqLU8aY7hzB2pAbfD5EpulKHQ2OIOsZ5rc3kVaRtER0RLL/T721M2SaHBPLNSWC4joBQEVIZ0YjYJAz1GnmfKllFS5pwoXw9KS6lVKLRvYMCNVNPkR7fQ4WrMTWdkFQsajTuvvtuzMzM4MKFCxiNRu6U4U9/+tPo9/t48cUXcf/99yMajaJcLmNqagoAsLOzgwsXLuCVV15xiR40NuHw3pqf9fV1hMNhTExMAIA77bfdbrvjS5jMQANE45NMJl27c+0P11DxWr2etCEVKLAfoOdnStOyv1SJUhSd0piPRiOXyUjnhIuAubktkWQ0GkWr1cLu7q5baEx0xRR40ndTU1OOFozH42g0Grh8+bJLNGk0Gmg2m3j22WcRj8cxOTnpHIObN2+65AYmlCQSCbc7PBFnPp9Hr9dzGxjfcccd+P3f/3088MADWFxcRCi0t8PGZz7zGbz//e9HJBLB9evXcfLkSTz00EP46Ec/6vaJ1D7meFdaU9sQ2Ke7+Rnv4/wA4Nb+MY7G71utlod6B7yxNT3UVJGzPts6mxxHjJupo6cLqgMjdmsJkjOOgKiXC8BjnJSnt1y6xid4jXr8NCr0rvk8RQcaP9MYmnqJqpD1PRorswqH3nmhUHCLpEkfrq2tYW1tDalUCvV63WWvEa1xB4ipqSm3RokKls/VhAoiCIs02Zaa6q6bxOrmu2qc+EOFrVQiY0csLxWUtre2FeutMUQqW02WIf1JI8ikDbYH6xCJ7O1CQiPH7MDd3V3XLnQQCoWC551UvMx4JNqs1+sA4PaMJMLj2CG9yT0X2+22i23R6DJhhbvoc01cKpVyZ3sNBgO3KLvT6aDVarlDQ1kmmzXI9rBLPnQ5g24ZpXNGKUT+rXEmjmH2vb5XY1d8r9848aMGLdWpxkppzEAOlwBxHREJh8OeHRIURQFeD08Nh05woi1eB/hvx6R0VygUcicVU1HxPlX2fK+fZ0oaUsukhos7MTBRgxvmrq6uIh6PuwMWdfIz3qMLfcPhMMbHx10MgrtvMB6hiJDPikajDi2wTna/O6WQmDqtyoeiyQNqvHTHE5aVKe52r0EqYr+1WXwGDU88HndIGIB7Nw+ybLVamJiYwGi0t9UVUVuj0UA+n3fJAbp7BI9Ase8+duwYSqWSqyOzDAE4Q8SYH7MEdf0TfzP2FY/HcfHiRUxPT2NqagoTExNIp9PudOlQKIRarYZisYg777wTN27cwMbGhgfh2DGvtJ9Sufq99pvOAba5zYpVh4SG0MbHbAyXbAPng0VRShUqpazJUECwc8atJDBcR0BIhWniheXcmYygx68D3mPPFbFpDIVCJctJpL8VxdEIAt7dMlQBa4Ye4N0Nnko4n88jk8mgVqshFArhjjvuwAMPPID//t//O971rne5371eD9vb244q6vf7LostHo+74024GzwAR4tVq1W3vyCPy+DhhSxLJpNxtBzr2e/33d6ATNOPRCJIpVKOKqvX645WZKo4qVAmrzDLkA6AxmeYqMEAPtGQxqqIqhh/Y7/SsGl6PJ9NQ0y0RURUqVSwsbEBAO7QxlKphGKxiFQqhWq1in6/76GFuXnwzMyMi51yv8JUKoVCoYBisYhqterGAw0k093ZdhwjhUIBb3vb2/Cbv/mbWF9fx8/+7M/i7W9/OwaDAb7xjW/g/PnzOH78OG7evIlYLIa3vvWtAIDPf/7zrvwUGlz+UGyGrRoLvYZUJ8eMUuTKVDC+yTGuMSwaR10nZ5eBsG14D+DdhUPnD6n0YD3X4RJQhUdAdL2J5c4VwehkoygiU4qEE1oz1TSRQL1KKlYqSHrE9r1qzCgaY1AabDgcOuOxsbGBdrvtFvImk0m3i/vU1JSLuQFwMRuWLZ1O4/jx47jjjjtw/PhxT/1TqRQmJiYwOTmJbDbrdoWgktO1NsC+EdfUcjoDrKMe2aFUEn905wv2k9afhp+p+zYhwCpbPo9KU8unHrr+0FjSILOO3CU/kUg448PkCyI0bkDMdVqsQ7fbRb1ex/b2NprNJtrttmsbIiul0zKZDJLJJHZ3d902WUyuGR8fR6lUwuTkJL7+9a/j8uXLOH78OO69916sra2hWq26ndI3NjZQLBZx6tQpd+wJx5WOXYug2L8c43YROdkDNUAWPfMejlelmC1NrrSkpTP95qK+j/NC57vGRAM5KAHieoNLKBRySuJWMSa/yaKLNi3aGY1GLpmAdAiVrZ4QrNmFlMOoSGvAlHIhEtH1VFNTU8hkMmg0GpiamsLi4iKuXLmChx9+GK+99hp+6Id+CJFIBMvLy44GazQaCIVCyGQyuPfeezE3N4dCoeCO0rh586YrdzQaRTqdRqlUcmndTLFntqTGwXioIbPy/HbqpsJMpVJIp9PIZrPuWqV5aGDZFrqEgPScOiGkYun10/iFw2FHYbFf1JmYnp5GPp9HrVbD1taWB+GOj4871NXtdjExMeESVKrVqkPG1WrVlb3f7zuDpZRuuVzGxsYGOp2O2xWDFG+/3/cci0JUxRT9aDTqjlZhTHBnZwenT5/Gyy+/jI985CP47d/+bXzf930ffvu3fxvPP/88HnnkEXQ6HWxsbODee+/FXXfdhU6ng2effdaD4NSpYRtzXKpzocaC7apJSOxXSyUrC8EkDk2x53U6V3TcKwXInWD4PdcJcl7a5JBADpcAcR0B0YmiytEv0YJeISeNUh+6bktjYerBKwLRGJqdlDa2xglnKRny+Bp0Hg6H7oBHUlzz8/NIJBK4cuUKEokEnnvuOWSzWbfzRavVQr1edwYpk8lgenra7Wm4tLSE1dVVhMNhl7DAHTWYFp9Op13Kt7Ybs9IYn2k0Gq6cRCVaL439sI6KhvkZFaT+8DmkIRm34j1MlFFKmIiG7+h2u84wcscMoldFf6FQyJ3CzGNN1KDzHlKfjE1p5qgqaorSrYqyiL44zlgnXg/A0Z2kGo8fP45KpYLXXnsNyWQSt99+OyqVijO29XodzWYTyWQS8/PzLiuSba7bMbF/LBJVJ0/nj84B9qciKI510qO8h22ifcq66fIFnXMUzi81WIoWiepZx0D8JTBcR0CUeuLk0swjTdbgRPGjGXQyKz2ha2A00KwIipPITigqLkVsliJRpEcPnfvnDQYD1Go1JBIJNBoNXLlyBb1eD5cuXcJotHcSMie+rlniVkvczaFcLrvNXCcmJlwGHJMCWA8mNfB5uoiau8PzxGJuH6V7ELKtSTUNBoMDhp/etaXPKFReuiBZKSvtQ81y5DvYXxr4Z/+znroNFI0XUR2zMrkcgG1B+lCRE2OrjJMVCgXX9kx9B+ChPUkzso7cCWU43NvRg8ky2WwWc3NzmJ6exle/+lXUajX8wA/8AGKxGK5duwYAbrF5OLy3v+LExIQbg7reUKk2tiP7w29OqMFiu9kMRc4Fto+2sbaNxo4V7Ski00QMzQK1Y0rnXiCHS0AVHgFRD5iTQr1ONWbAvoHSXc8BeGI8fI7Gb+htq1IgrQV4FxErRakTj+iKniMz0DQbjnRYJpNx9F48HselS5ewu7uLL33pS8hkMu6MrIWFBQB7CQWMIzHoT4qQ65i4lonZhJq1BezvbEFKUMvIffO49x7rnMlk3DOpjNk+LE8kEkGr1UK73XYIjkam1+u5DECKZjAOBntna1Eh8l3aF6SquDUVqc92u+2oxlwu5xSlGjbAG0dhedPptDs6Rg1epVJx7+l0Oo46zGQyOHHiBMbHx7Gzs4NsNouxsTFsbGxga2vLLUFoNBqoVquYnZ1FPp93u3Go0eW4SyQSOHfuHH73d38XW1tb+K3f+i2cPXsWv/zLv+z2KnzxxReRz+exuLiIe+65B41GAzdu3HD9Q9qUxoHOCg2WGge7vEN3vmC/0KjR2FmkzWfwMxowokqieEV3Wg6lN2mguKg+FAqh1Wq5PgvEXwLD9QYXKjPy9+q9Kx+vBo10EuA9ZsRSeDqR+DxFcvS6lcrgpOOkt7QS09PVE6aXT+VFimw02j9SpNvtYnl52W3Eet999zm0RcqQCCeZTCKTyThaiv9zbZFVNNouigo1hZkGaWJiwn1m436sF5GU9Y7ZDlwMrUk1RJvA/q7zvV4PqVTK7QjRarWcUeEzmDhBR0AdDxoCUoP5fN7d50cjK1qmQcxkMs45YfZjpVJx97IsRFfZbNYdRcMYF49ImZycdCcsE6Uq6iGqVaTLbMrjx4/jk5/8JCqVCs6ePYu3v/3tePrpp5FOp1GpVLC8vIz5+XmcPn0aS0tLWFlZ8STp6DxQitMmUyjd7kdnK2ri/2po2ObsT0Vkmsyhc5dCwwbsb4vGccP3KSVpUWQg+xLg0Te46ASycS4aHSoIjXEA3oxDNXL6HSeheqeqCChU2KrUqYgtLajrWfQ7TUlXNJDL5VCtVlGr1VAoFLC7u4uZmRn0ej23yLdaraLT6bhdPBjrIHLgmiLdkUAz8jRpgT+KaljubDaLQqHgYnC60JY7JfB5inxJJenu/Gx7jVmw/2hgiN5o8NSLZ+ahpsFrbMTuFsKkEk2j1509WB+lw7R9eD83ESZFmUwmMT4+jkKh4A7+5A/LFIvF3K4nk5OT7hgVu7hakzrUsN97772IRqP41Kc+hWazibe97W1YW1tDNptFu93G9evXsby8jFOnTuHMmTOOBlYKl3/ruNMYL8ug9KEaNJ0/Sr+yz+x81Dmi12k/6z0sj6I5irInGu8KxF8CxHUEhIqTXrIiB03XBfZT59UTVAREA6ReuXqpADyTT3e1UJQBeLOnNFuQKIATVo0J38Mth0j7/cmf/Inb+PXxxx93inZubg7RaBQbGxvo9/vuDCxua8R3UelzfRNjCDQIejgkvX16tzR6mhTRarWc0lfUw/pqPIltzPowyYMUZC6X88TVKOFw2CU4cB2UZrxp1psqTG4iy8MeOS5YHsYO+UNkzLKSHuTzaQC5u4bGxJhpOTMzg0wmg0gkgnK57GJYiUQC+Xwe3W4XlUoFw+EQOzs7jg6mTE1NuXJy8TI3r+33+8hms3jf+96HX/iFX8Bb3/pW/It/8S/w0EMP4Stf+Qre9KY34cqVK/j4xz+On/iJn8Db3/52VCoVfOpTn/JFkcowcEzTyeI4VbqPRkd3VtE5pUwEkZAyEzoHtK94L/9XlKwbZ/NaXUcWGK1bS4C43uDil/iga0o4ueh9Wg5faT41SDR4RE783y+IrZlWVNJU/Brv0nsUwWlgm0qAdCEVPPeFu3r1KiYnJ12dGNthYgaVsO7YTeXAeBTpLCIInpvFzWbZfhTe73cEChMSmEpOpMN+0EXF2j8amyLioWHTxA2iIyoyvp/XU4GyrrrGTJWhIgzSd6Qd+SyWh8hLj0zp9XrunC0bGyP1x70Pd3Z23Nld3PORz+IeiXSuOp2OW/ul40KRKzMre70e7r33Xjz55JP49Kc/jXe+852IRqOYn59HPB5HrVbD+vo6isUi7r77bk9syyp6xg9tG7LNNLNP1yayT3Te8HmWzdA5ZelHnZt8J8eesh1+LAjncRDjOlwCxPUGF6U4NBCt66YY2LWxMGB/sapud8S4EpUSJ4rGBRQt8TlK//F7jb1oBp9eY2my4XCIBx980B1Y2Gq10Gg0sLq6ivn5efR6PVQqFSQSCWxvb2NnZ8cpF90pnu/UmJ/ugsDEBdJf3Pmcu0nwPt1JnQkkhULBKTA+k4kKfDcVM1PsqYC5Px/bgf8rzUZR1KcGKBaLIRwOOwMdieztQch60IArUuACbqWHSUXyXapg+XyuLaPxYcwtFAq5LEDuIRgKhbC1teXiXsD+0SUs98LCgjsaptVqoVKpIBKJYGZmxqFRUplEetw95dFHH8Vb3vIW/MEf/AF+7dd+Db/0S7+E3/zN38TCwgKefvppfPWrX0U2m8XDDz+MUqnktvVSI8A5QaOt7apxLnW4WN/d3V0Po0ADQ0On6x41EYbtq0kbdp7omKDBVqPK+c779cigQLwSIK43uHAQU/lomroqQU4uv7iWJgjwGZxsli7UALdNzFDUpLSfPkNpSX6m7+SO5HNzc04p8xyl6elpnDt3znMiLNdV8RlMwlBDYekWbgfFE3/L5bJn6yMiDiIQUlf8TONDbFsALj6jMS67xontpG2iSRt0FOzSARvXsIha6VzGzDSLjX0FwFGjzG4kquB9tp8ZS9QMUz5XUbWt59bWFtbW1rCxseEoxeFw6OJdbB8qfKXi+DcAl4lJRV0oFPDEE0/gE5/4BJLJJK5fv45yuYzp6WlUq1Vcu3YNoVAIp06dcvWmk6Fl1USVwxAR219pYj+0o/XXflG0xL7XNHddzO7HTPihskBeXwLD9QYXSwVpwFgXrirNYPl35d6pNEnZkbqxmVn6fhvMBvZpPKtolYpUw8r7xsbGcOLECUxMTDhj0uv1MDExgdtvvx0zMzMeapE0FpMTNJOL5SOqIlok7cSfRqOBRqPhqC1SSEoV2c9UWCdSh7qrBdteFZA6EOwz9aw1GUCVqSpvjX+oweD/ahRsmWlwmAnJ/mc92a6DwcAZDe1HGyME9tBcJpNBLpdDoVBAJpNBp9PB+vo6bty44bIItU+4uwiPX+GuJ9YR0kW6lUoF9Xodk5OT+OM//mN84xvfwMmTJ7G1tYXbb78d7XYbS0tL2NnZwZkzZzxIVVEU20djitoX1gFUapXtYA2Nzg2/pQYa/9X3+Tmaarh13PB5wZZPt5aAKnyDC71B5dSHw6EnoYCeHQ0ZkZYiEb2X2x2RjqCnbe+nUhmNRm7HdDVQqihszAXYn7SkN7kN0AMPPODx9LvdLmZnZzE/P+92c2DchEdy0JgxfjIajdyiXKZjW++bO6KzbXhMRjqd9njE3NyWhoNeejgc9iz+1Q1xqVh0rRVFt3QiTUrvX50Dfg/AxZjYtjwo0rarPeqd76bSVRTFHSqovLmLezKZ9DgiRL28n8hMU/1nZ2edIeDvSqXi1mzxZGUAnh1OUqkUQqEQ1tbWsL29jUgk4mhYGkkeHDocDlEul7G5uYlisYj3ve99+MhHPoJf/MVfxCc+8QnU63UUCgXcuHEDn/vc5/D2t78dy8vLeO6557CxseHaQpU++1gTVWjkNL6mhlupVBpBjmkuUme7qaHT9uEzuNha56DSz+pU8ntLLwZyUALEdQTExoyowOm1qYemXrz1yFUJ6rP5W/+27wfgmaxKFbIMSldpmj0z3ZrNJubm5pBOp1EulzEajVziBCdyq9VydJjWS4/RUGOpdB3rq+dFMSOQa6fUWHE3eaI4GxhXuk+fr+3qZ7QttUYngmntVrGyLdVQaDnUsyei1IQQ239+tK+eZgzsIw81ekzcSKVSjlItlUoolUoIhUKed4dCIYyPj7sNjHXbKBpKUpYAXHxPt5TSzM6JiQl3PlgoFEKj0cDs7CweeeQR3LhxA4uLi7h48SKmpqbQ6/Xcgufz589jd3fX7YGo/aGMgFKW2s9+DIWOYZ0TOu40KUgTmyzdyjLRoPL9lsE4jKkIxF8CxPUGF6WhGNdRZWZjI6oQmZquKfJET/QO7Roi3q8ZX/ytn+u1egilJo4Mh0NngDqdDo4fP46///f/PjY2NnDhwgXMzs6iVCp51iIxcB+NRrG9vY1yuYx2u42pqSnnvVPpaPYcE1RYLzXwjLcMBgM0Gg2X5MC204MmWT9ewzZlXCydTqPX67ndJOz2UVRGuhZI+0k9bCpvRVKsX7vddsaEZaIToFmmRHE09kRrFN2RQReAh0IhZ8yY9MI+o9Hl8SiaOalKOhqNui2lNjY2UKlU0Ov1MDMz49aLhcNh5HI5TE9P4/r169ja2kI0GsXs7CzGxsZc8sf09LRrY9apVqvhLW95C37zN38Td911FyYnJ90JypcvX8aLL77o1n/RMeI86HQ6brwqmmTZlVpUFMQ2isfj7m9NuNBjZdheTBJSw8T/GYdkP+qxORxb7E9+pw5hIP4StM4REI1J2c/VgFi6wQaa9W9eQ0pH06wVxahHyGs4WXWBqR9iswji9OnTmJ+fx+rqKlqtllvQGovF3BohjcEx45AoSRWreqsU1kl3JVdKispBFx0DcGnew+HwQDo0FQ6NaTabddsYMd6lCFc9baXzNJWaiMQvAUAzzNTLV/pPFZv2BfuBWZSM+9Go2XczdT0cDjvkqenzVLB0RIhUGbfSuJ/WT2Op3OS41WphZ2cH6+vrWFpaQrlc9sSVWHaOxUQi4TZXPnfuHK5cuYLRaITNzU2USiWkUim88soraLVaOH78uNuFRMcqETsdNvaLxgeVkrOJHayDzh+KojSlxvkcTUQh2lZGQlPwde7Q6QoowltLYLje4EKlrR4dJ4oaIqWmeJ9Se8q7a4abIjU1NEyRVuVJUYNhF9SqwlfjWCgUcPbsWaRSKZTLZUQiEUxMTBxYU6RGhWnkVIB8n76figHY34+Qu6czA5GxK032sPEjZr1ReasBoSFTbzqbzSKXyznPW2lEKn7NQNT32YQKNXqqbPXcL9vflvrVLaZoZKy3z/Zl37bbbQD7h1LSECntZg0Klxww65I7m9CYEeUTmRDprq+vY3V1Ff1+H9vb27h48eIBmo1okLuW9Ho9bG5u4vz58xgbG8OlS5dw+fJlAMD09DQ2NzexsrKCe++990AcSR0vpXmtQVAjoZmGZAsUMWv7W8fNrk3TZ2pGpSI9dS7pHGhs0VL2gexLQBW+wUWVFrBvYJR6UMXtZ2h4j04WXQNkkzjovWtcgMoF2N+FAPCuM+P3fC5T4DOZDN75znfi/vvvR7vdRqPRwNzcHEqlkqOqNHNwOByi2Wyi2Wy6xAs9/JBKmQuKuWaHZWVbML19aWnJPYs7l1cqFbc9knq9TF+mEmZ7cpeOwWBvb8Risegx+opkNWZEmlTpQbYh+4J1to4H6T3Wj/eybpoQwOQTzdDjczQuMxjs75wxHO6dm5XP552hpJHiIm8aXyIsPWGb54MNBgOUSiWXEt/r9dzuJv3+3mnVw+EQ2WwWKysrOH78OJrNJl566SUcO3bM9QspPyrzRqOBnZ0dnDx5Ej/1Uz+FT33qU7hx4waWlpawuLiI1157Dc899xz++l//6wiFQviDP/gDZ0h5OjXHB4XjXiltXYhtlxiwDbV/2Bd0hjTJwy++pdS19jnRMe+lw0QHyDIKgexLgLje4MIJQo9NkwJscBc4eC4Xn2GTBfT5vJ/XqDL1mzz6LhWNh2l8q9Vq4cSJE8jlcu4cJm7l1Ol0HGXFuEkotLdDtnq+SpPxh54sFRM/V+9b07rV2+V6r0aj4dlOC/AaPRpsGgcuxrXp0GwX69UrwiKaUm9dUZKuK1MkqHEY1pvPpFFRRKXxKLsWTXfz4PEwigoVgShNymvZLooMwuGwO/MM2D+XivUdDAbu/LRIJIL19XUMh0NsbGy4uBRjbryXa/6YWRqLxVw8i1mL3JIqFAphcXERJ06ccMZeHQSOSaWHFQH79ZXS7BxTlg7WucC56Tev+KPxT17DflG6UhmSQPwlQFxvcCFasmubNGtPJ6HNaNPrrTdIRMT7NfGDE55eJHDQuCnHr3w9n89J2O/3MTMzg9FohGazifHxcczOzjoDMhwO3W+mLnc6HYRCIZf9p+nlfKeeCExlYGMG4XDYZRZ2Oh2XuKA0KdGhXYPDpAnSQErR6uJevtdP/JSlJnHwN71vrY/GQ5iGrW1uEwfUaNOoaH3VOLIuTM7R8ll6kOhWDYwqXD6PSJNomcaU9w+HQ8zOzmJtbQ3r6+vodrvY3NxEKpVCNpt1zgHryDgdd97I5/MoFouuL7k58/b2NorFIu644w5sbW25sUNHiAwA66X11bGsBkX7lG3pN7c4HpTytE4kn6GLodXJU9qY7w/Q1q0lMFxvcNFJ5GfA1JujUuLnVJKkgDSrSp+v9wDeALaiGEVT6sEyAYITkmuzWOZ4PI6pqSk0m02X2jwxMYGVlRXPImp696ScCoUCjh07hmw269LnWf5wOOw8fN5HxUNlHQqFHOXFLaDm5+cRiUTcER3D4dAd46FGnmuqiMz4Hsa0qtWqSyLIZrPO06exVspJjTjbikZEPe1EIuHSxWlodLsqGm0ad93lXdGq9guTLojY+VyWh23Ed9FA8Xvd45AGl2NDY4o81p5ndDHphuvg2u22MzDhcBhra2vOyKytreHxxx9HsVh0KfSa8EBDODExgbNnz2JjYwMbGxs4f/48nnrqKXzuc5/DQw89hO///u/HZz/7WTcuuLiaz+EYUwOjNKzSrJaiZ73p2JE6tffY+WcpdN6vR5zQ8eM16tQE4i+B4ToCQqOgwWEALjakFBgADzKhUtQ9/VQs7aFZe3y3ZlxR9F1Kq1ARasr9+Pg4EokEyuUyOp0Ojh07BgCOJtLkhlBob3887qeoipjUE5EZF+lqUokmSFD5pVIpp/xZL91Zg59pNiHrQk/ZUq+aIahJEtqmmtxgUReNF5c4aBzR0qHavjQYRBJEP4qW/Sg/RdGaFKHOCK/VZQCsGw0lDSyRtCYM8d5EIuEyGvneiYkJjI2NYWtrC81m0xOz3NrawsbGhusn2wbqnGWzWdTrdQBAoVDA+Pg4rl27htXVVZw9exbZbBatVsuddM1lBRzbLCfrpmNHnTd9ry5atm2tqFsROftV0ZrGG3mdon5lEwLEdWsJDNcbXDhxQqGQW5tChares04kNSqkSUj70ZioUlKlxecBXu9ckYFOWBt34QQn6ur3+zh//jxGo5HbGmhqagqNRgORyN4uCqPRCOvr6x6UqIkH9Og19kGjranbNJo01IwlnT59Gtls1rOurdvtYmtry6ExAG4n+Egk4rx+jSMSdaphouK2CFWNnNJV7BtNl1YlyXpzwS6vsQ4KERXrTENKo04lyDiRUr52Z/1+v++QXq/Xc7QejZXte6JF3U2faJL14xlpRCcnT55EJLK31+TS0hIuXbqEV155Bf1+H41GA1/5ylewtbWFBx980CUsqCPE67gwmv1z77334uWXX8ZLL72EXC6Hd7/73fijP/ojR1VqmzJerLErzifrbLAebOdoNOrirqHQ/o4YiszYLvq5pSJ1bLBunOMADmRj+jmbgQSG60iIpQaV1tAYg3LyRBx+2YiAd9GwNXi6BZQmhWg8jYpPjaCWg58nk0nMzs5ie3sbGxsbnvgD4I2x0AgxtqLJAKSQrJesxoTPpRJhGUjv0YgQFXS7XbRaLbfPHhcVc2891pWZavzxi2cpcrRp6yybLiBnG/Ld6umrIVPRlG5NSOF3fK81cGrU9Vo9moYKWncsobFUdMl+UOpQKTAacmaTkk5lH8zNzbl7l5aWUK1WEQ6HsbOzg6tXr+LMmTNuBw32wXA4dA4J30+kNjk56cbH0tISbrvtNiwsLODq1aueBb3sH4syOSYU4eg9+m6LghSV6zPtPKAjpYaSc4kIU9uRzw6M1uESGK4jIJaSUKVPNMaYkg3sq6GjMtfPNa6lBkQnlyY+qBGlwtDkBn1PKBTC1NQUSqUStra2UKlUPOnUREB8Fg0EFSDXeCmtxWQB3U9Pv2dbDQaDAwdNMv7GOvOk4263i3q97jIXbdC9UCgcSI9nOym9aI0P24xCh0JRoW13m3TDZ/Fd2t9aVy2zUpYWGdNAaYxsMBi488p0lxFFH4pUicQ5LhRp8tparYbx8XE3Rtku2WzW3Xfp0iWMRiO30Lzb7WJtbQ3JZNK1BeNSGmNl9uHNmzcxOTmJiYkJ1Ot1VCoVjI+P48yZM1hbW0OtVnMxRbYvDQuFhon1YJ2VItX+4HzU+7V9OacsauM7lTK2RlTHcEAV3loCw/UGl9Fof5Nd3dmb3rCuUVHkpFvTkGpS9ESFwvvVqJE6UySgWWmkvHQyE6FRSfV6e8fSP/jggzh9+jSWlpZcQsRLL72ESqWCyclJZyzUSDWbTdTrdZeJOBqNkMlkPEaSCkJT2OndMxGjXC5jbGwMExMT7t5UKuXuJ/K67bbbXFo+KTU99JHrxaxS4vf8Tg2bbsWkyRC6OTLgXQDL3dQZ+2N8jWXS9XNse8btWD/2NZGhGlC2L09Qbjabjn5mfMkiAyKcdrvt6k2UqMZuNNrPEO319s4841q5ZDKJO+64AxMTEw5Fnzp1Cj/+4z+O1157Da+88gq+/vWvY3d3FxcuXMDm5iZmZmYwNzfn1vCx/fTsrq2tLdy8eROPP/44PvvZz7r6PPjgg/jEJz6BYrHo0uV1rZ+OZ503folP6oyRhmW/MC6ljiWfo8kWw+HeFl6cv5xbbCu/jF/2cYC6/CUwXG9w4QTiYKbo2iSlJ3iPKlmlkCjq4el9Ovn0eg1wA/t0B4UKeGxszMUfRqORQyvh8N7+f7FYDFtbW07xKq1lY3ZUmIoegf3dH4hAbOKDpRJZXwCeXSE0fsUMPN3UlwkGNEhK+dDw8NmW4vGj+lgeOg3qGPCdiUTCtY29n32p670U9fL5bEub3MKd92lkibxYR8C7byOVqo3LaDyN39ukBj5vd3cX1WrVGYDjx4+7ZxUKBZw8eRKj0QiXLl1y9azVas4oEF2zPETqxWIROzs7WFlZweLiIk6ePIkLFy5ge3sbJ0+e9CQnMb7INtExBuwvBmcbWjSkdKCdGzRAiqosOqNR4t6FugzFj7pU5iAQfwkM1xtcNGONdI3SCMzkCofDnsWcun5HFaEqGGZc6eQC9ikybjRq0RqwHzPj5xRVmMPhEJOTkxgO946rGA6HSKfTLquQKIfJA/V6HcPhENvb26jX627hKZGUjVFwRwYqBH5OFJnP5931mUzGEw/TPfK4kwSvYz1pYKanp137Ev3oQY1sQ95HOlSTF4jiaHgY7+I9NMSM7/C4mVQq5aGEKWrkuDCaFBvbhgiPFJ8iR6assz78jveSEmT72n6m48IkBe4TqP0RjUad83H58mXnsPBYEwAYHx9HqVTCzs4OLl265NiFer2Or3/966hUKjh37pyLa7G9GDe7du0ajh07hhMnTuD69et44YUXkMlk8Nhjj+HJJ59ELpdzi8bJCPR6PYfi2B+a7q70H5G57l2oywvsHFUnh21L46vzl2NRk2Y4ZxkHDuRwCQzXERA1NhzwnDhKH6kCtbEmKhHNtFJPGTi4AakG9tX7tMkQFOt9kuLTdT5UxoPBAOVy2YNcuD1QvV53u2kAcEqKXrjGOlgOjXVp0B2A28SXO3WwTalk0um0y6rL5XLOMAH7iSpaR7aVesWKiv0C7IoCVVnaNmbaPo8H0f61yJtK1qaPs/5sa16jyTXqBOjziGq4k4mOLSINXSyuyp7twnZlujvjVO12G8vLy+h2u86RyGaziMViuP3221Gr1fDyyy+7fu50OiiXy57dP+gMRCJ753htbGxge3sb6XQa09PTWFpawvr6Ou644w587Wtfc3FNji+OEaVy6YAoSlL0znvo6Gl/KAuhbUUjx3Y/jBEhctb5qNcG4i/f0pZPH/nIR/DQQw8hm81iamoK73vf+3Dx4kXPNZ1OBx/4wAcwMTGBTCaDH/uxH8P6+rrnmuvXr+M973kPUqkUpqam8Iu/+IsHPLpADooqJg0Ic3JQ6MnpmiddnKrKlqJKks8l5UclT2WtHqYiORpKpTuY1k0EoeuW6NXr5A6FQk5pqkIh6mICB//WRA0qZE3a4Gd60CLgNSpEH/l8Hrlczh1iqWuluBURy0oUZA2A7Q++n+8E9lEyKVRdw8b/eWoz0Q7bQvtNkwbYxjwTi+e1qXLU9mD7aFINF1sz1qfKk32gWalKI7J92J7RaNRzZhwXJG9sbOD69eu4fv06bty4gRs3bmBjYwP5fN7t8r6xsYFGo+ESN4jq+O5+f+/sr/HxcUxNTbnMxFKphH6/j62tLRw/fhyLi4vY2dlxZWJsyhpyS4nbnfQ1vqjX+yUFcbyybZTSJ9ImaiNaV2Nv52gg/vItIa4/+7M/wwc+8AE89NBD6Pf7+Of//J/jXe96F1566SW3e/fP//zP4xOf+AT+8A//EPl8Hh/84Afxoz/6o/jzP/9zAHuD4T3veQ9mZmbw1FNPYXV1FT/90z+NsbEx/L//7//7V1/D7wIhTci/FfVoTMlmMgF79APPI9JMKSIJIhAAnsmmC3MpRDr8nDEfKi6LeMLhsDttOJ/Po1QqIRqN4tq1a4hGo8hkMi6jjEqWxgzYW6BcrVbR7/edZ06lyvJoEgMNDI1tLpc7kFDAGAmwvzkvFYn1vvmj6ItKnuNds9SovKnUNQFGUdZgMPAYLpabZ1OxnIwRAt6TrjWzkMgsFNpf56c0KDclZmIGxxAdBk0WabfbjmLUa5l1qQaaZec79JRupdvUYLZaLZTLZayvr7s2Zrnm5+cxNTWFBx98EF/72tewsrKCmZkZVCoVXLx4EfPz864tSDHn83mcOnUKly9fRrfbxeLiIj772c+iXC6jUCjgHe94B27evOnKThpVKT+LgnTusA7qPOkSAWUc+LcyABr/U2qdKJDfs695ynjgxL++fEuG65Of/KTn/9/7vd/D1NQULly4gLe97W2oVqv4H//jf+CjH/0ofvAHfxAA8Lu/+7u488478eUvfxmPPPII/uRP/gQvvfQSPvOZz2B6ehr33Xcf/s2/+Tf4p//0n+Jf/at/5WB9IHtC5aBJFMB+AFiDvfY7/VwpRD5XKQ1Lh2k8jIFl9UZtnE2D1XwWr+cO7+l02tGcVASdTgc7OztOAVcqFae89WRkKn414nwf0RxRmiJSVcKsC9vDBueZncf7/JI9FFEqklL0o142r2cGoqIl7QdVatr23IKJhlfpXUVijC3xO5ZZz+limVg+HTN6Tplu2MtYHuOJqsRZP92p3yJlOkg0ihxvpDLpdFy8eBGDwQALCwtu891ms4lMJoNyuYzJyUk3FtjuPPk4Ho+j2+06FD4ajdzho9PT0y6OyXrpGKTjx79tkob2L/9mzJJtyrGnY0LHqCYCqWNokRvfqwvLAyPmL3+p3eGr1SqAvQArAFy4cAG9Xg/veMc73DVnz57FwsICvvSlLwEAvvSlL+Gee+7B9PS0u+aJJ55ArVbDiy++6PsepsDqz/eS+MWjVFlRNMFCU8bV6NmMKE384P/0xu271RBwktpgs42f8IeevSpP9muj0cDW1pbbUaHZbGI0GiGXy7k0be5OftjBjRpvsDSLloNtZ+NTLJtfLIjtxzbUfuDf2g5q3DWWwb377KnJimI11sIMRzoAVpFqPfijyTg0hqo07UJe3fpKFSeVO1EgkWSr1UKlUnHJM0zk4DhiG+k4GQ6HjjbkwvJisYh8Pu+QZ7lcxpUrV5BOp3HHHXdgZmbGJZ0wzZ3IkUaz1+u55QqMh5ZKJQyHe8ficK9LjVPa7FUbt9U+0LHEuuk1HFscBxoPo7Oi3/G3ZVDUKOrfgRwuf+HkjOFwiH/0j/4RHnvsMdx9990AgLW1NcRiMQfpKdPT01hbW3PXqNHi9/zOTz7ykY/gV3/1V/+iRT3SQjrOpscqtaUUoMaaQqH9dT6q3PQMIMC7hZSmapNWU0pEU33V8NHgkQ4D4IxVp9Nx+8sRYSQSCayvr7uMvldeecWdzUWjNTs7i3w+j3w+jzNnzmAw2FvYqsaAZWF7UMmz3r1ez20vRQVKhEDKUNelsa2YyML1UFT+upMHr9f21aQZNarAngPGOIcu5AW8p1z3+32Xmr+9ve2y8FgvLXMqlXJKlvcSOTImRTShyACAZzNbCtuM7cGF2UwcYZICjQMzCDVxRvudzyNdTOqNdeWz5+fnsb29jZs3b+LYsWP4/u//fnz84x93GyDncjnMz89jZmYG4+PjGA6H7pTrSGTvqJSrV6/i/vvvxyc+8Qlcu3YNCwsLeOCBB/C1r33NjT2NB9I4K0WnRkvpVhoidWwYl+V9KnyexsCUguRCe51P1uEIjNfh8hc2XB/4wAfwwgsv4Mknn/yrLI+vfPjDH8aHPvQh93+tVsPx48f/r7/3jSCa6GCRkaIojS+pB6lrqhR9aXq7IghOTEUoyuerAVO6ROMfgHc9j16nRkeVRKvVcokb09PTmJycRCqVwuzsLObn5zE+Po7NzU1UKhWXqcY4hRoJjeWxnkyDZh2osNTIKlUI7O+yoJ41kzwOyzLk/XQOdL0TEYLSvkpn8owvKq+FhQXXLuqh8x16r9adZeE9erq0xu6IDHU88Ro1XOwnJhcww3M0GmF7e9uhonq97qg6Kl6iILYnHSa+U8c4kdKNGzfcicqTk5MuSaVcLmNzcxPj4+POgO/s7KBWqzkqktmE8Xgc1WrV7SjPBdmKimmUNB6l6EqzV237KAOhKNzPcVH2QuOG1vlj7FLRcWC4Dpe/kOH64Ac/iI9//OP4whe+gPn5eff5zMwMut0uKpWKB3Wtr69jZmbGXfPVr37V8zxmHfIaK+SxvxdFJ5OdXIp2dDKpZ6eKlTscqPJW6kIpqd3dXaewGEugIaD3Dng34iUSoWJg0kWhUHAZX1yrtbu7646xuHr1KmKxGHK5HE6cOIHJyUmEw2GcP38et99+O8LhML74xS9ieXkZa2trB2g3rrOh0aAyJapR9ESlSkPR7/cP7IfIawE4OorxGE2xVwTCZ/F7KndN1FDURwVKCo7oNx6PO3q0VquhXq9jNBq5jW+ZUMIdJTTBgAt22Vfsc30PnRkAB4wekw9qtZpToLo5MYXjbGFhwUMdck1ePp93BpaGXhdNcxwzu5Ltdvz4cbzyyit44YUXMDs76w6OfPbZZ3H16lUAezE/LmRvNBq4cuUKFhYWkEgksL29jbGxMSwsLGBlZQVXrlzBPffcg+Fwb/3gzs6OG9OkF20CEsVm6vIzGiYdHxrXtVS9ZgzyWnVE1ICxjTg/A8N1uHxLMa7RaIQPfvCD+KM/+iN87nOfw+Liouf7Bx54AGNjY/jsZz/rPrt48SKuX7+ORx99FADw6KOP4vnnn8fGxoa75tOf/jRyuRzOnTv3l6nLd6Vo0JYKQ40TEYZy6Po/7yMy4WRS71zRFSeWogIbD+LE0x3LAS/vz3IzHklFwSSDXq/ntgyiIpuamsLk5KQLtM/Ozjov/Nq1a6hWq57EBY3zMQ2cBkTjVRrP4T3838/DpfHThAW2GduCbU3vnwiGhpTKStGZokG2NQ2W9ttwOMS1a9dw48YNzyJnnlasyE7jjexjLYMdS6yb0l2aLEPHRccM66UZgnQemC1KupBH0lBJa8zLL2GG5SYzMDExgWg0imq1ikQigYWFBZdaX6lUXHtQydMY53I5t1aMTtLy8jJGoxEWFxdRq9U8C7RpvGmU1UjoHLEoiW3I/3UfRR0nOq5YT91fk/3BZ5MZCBDXNyffEuL6wAc+gI9+9KP44z/+Y2SzWReTyufzbh3M3/t7fw8f+tCHMD4+jlwuh5/7uZ/Do48+ikceeQQA8K53vQvnzp3D3/k7fwe/9mu/hrW1NfzSL/0SPvCBD3zPoqpbCdEUFaDugWZFaQtLDypi4w+VlBofXmPpPH0OsD+5lX5R+ovSaDTchKRBYR2oFAEgk8kgk8k4YzMxMYF4PI7NzU1cunQJoVAI2WzWPVcVCtGVKgmiRhpYxizU41f6UL1gGhRdW2MzLylUvHowINuMSlITA9g/msJPI8Tr+v2+W380NTXldr/QbYyo6PhMpcA07dsmEWjfEmWybTROSWWsY0DbQI1yKpVCoVBwxr7dbnuMqSIuZQYUdRBJktqjE1IqlTA1NYW1tTW3cwnrlM1m3buy2SwqlQoqlYrLcNze3sbOzg7Onj2L1157DbFYzDkKlg5nf2mChKInm8ih2bk699jGNquQ/auxaL1HE3SU6g/EX74lxPVbv/VbqFar+IEf+AHMzs66n4997GPumv/0n/4TfviHfxg/9mM/hre97W2YmZnB//pf/8t9H4lE8PGPfxyRSASPPvoofuqnfgo//dM/jX/9r//1X12tvouEk4teMSeQGgMqZmbcESkoVTEa7S/mJH3F1GXNLOMzVaFRcXKy68JfVYiK5Dj5GJPY3NxEu912uzkw2D8zM4PFxUUkk0lsbW3hypUruOuuu/CWt7wFW1tbePHFF9HpdLC4uIhisei262FSAuuvafBMHFhdXcXm5qYn4YQxBz1+nuvFarWaaw8mtmgGINud64iIHhXN0ljwXWwX9qGuU+v3986Y4rO0bcbGxnD69Gncfvvt6Ha7uHHjBpaXl13Mi/er06F9ZWMtLDupT9KsSr3RieGYYQq/LidQlMeNend3d1EqlbC4uIjx8XHXvoxPEd0oAmFdieQ0njc+Po5wOIyXXnoJAPDX/tpfw+23345Go4GlpSWXoDM7O4t4PI7t7W1nVJaWlhwlvbu7i6effhoPP/wwZmZmnIOifco4HMvDMc06KLJVtEXURkOvTqK2FZ09zjtdc6kbNCv64tzSdg/EK98S4vpmoGsikcBv/MZv4Dd+4zcOvebEiRP4P//n/3wrr/6eFaUnlMYD9uNLOpEALxqzhoTCvzWrSZ9tDZFOWBo2VciKBvhc7myQTCZdvItrZYbDoaPZcrmcM4yFQgFnz57F5OQklpeXPfEyru8hFUbkYanMXq/nFiqTjlTEybbQzEC2CctGREJDqNmGNOqj0f4R7prwou1OY0p0o94436VIlbRnu93Gzs4OIpGI2xqLhgeA292D79F+Zlk1SUURr5YN8CYS0AizPWikNHVfk4NojHlwZKlUcgujmUZPB0b7gOhXt77iuBobG0M2m0W5XEa9Xsfdd9+N1dVVLC8vY3l5GceOHXNLIxgjY3YtY5bhcNjRi7FYDFNTU87AEXkp26DLBKye03V5/F/bl+2uc0aTlzjeWD72t9/YVSQWUIWHS7BX4RtcVKnqBCLlRUWlHpx63FbRaFIHPTs1JLoQFvCueVKPUykSqwjS6TTq9ToWFhYwOTmJwWDgTq1leXu9Hr7xjW9ge3sbS0tLaLfbuP322/HWt74VpVIJN2/edPRQtVp1qKrT6WBjYwO9Xs9log0GAzSbTQBwsa7BYIBSqeSJrfV6Pc95UNztA9hPTuAPDR4TFpRispQiUQmRg3rovIdGUY2l7vIRDodRrVZRLpextbWFzc1N7OzsYHZ2Ful0GnNzcyiVSk75s5zsaz2RV7MONbansTFNXGFcTFGHxgnVSdHFs6T/ms0m1tbWUCqVkM/nMTY2hkqlgtXVVfd+LnXQrEIiRMbQNIGEKerLy8t49NFH8eijj6Lb7eKTn/ykW/81OTnpUHiv10M+n0exWMTc3Bwee+wxtx1dr9fDuXPncPHiRcTjcXfiAOcEDTfRlyY7qaOh1DHb0Ro6HVPsc9KgarT1HXqt0rdKJQbilcBwvcGFxgrwxin4WwP9nGQ2K8lODlWiSj/ymfqjdJR62Xyu9UI1dqC7l2cyGdRqNbRaLTQaDVQqFTz//PNYXl5Gs9lEsVjExMQEpqamsLKygldffdXRPc1m0xkcZusxBmJRBRfE6jla9XrdodFOp+MUC2khRSnJZNIhOl7HNrUeMBECAKeAaQw05sT2ZRsratUYFetAxRaNRpHP5zE+Po50Ou3amOWis6B9oahPEY6WQfue3x1GL3OsaNyFWYqKMDqdjkuPJxrK5/NotVoA9ujYaDTq+lFjSWrkSatxyQNRUy6Xw6lTpzAcDrGysoL5+XkUi0X3LGYwTk5OIpFIuGzURqOBcDiMiYkJHD9+3CVssF81+cg6hxob1vnH/tKxB8BDR1vDxH7VOWZjfTqXNH4cyEEJDNcbXNQLA7zrhazHpmiAyIkTm6KoyaIpVZ58t53kWi7eNxgM3NEk9Eq55kd3XqhUKtjY2EClUsHm5iZWV1cRDocduikWi0gmk3jmmWfwyiuvOMXBPfiy2SwymYxDPxsbG46qY5lpjPibClkNlComPQ4FgGcjVODgWVv8rbEsGmqiBP1cM8z03fytbTw2NuYSVLheiklOLIsmmJBWI7WnSk7ra9O69d267sqWTaliogaOLRo7GtJer4ednR00m01MTk56lksQZcbjcRSLRU8Kv5ZX+6HVarl6ra+vI5lMYm5uDrlcDltbW7h+/TpOnz7tEJMa58FggNnZWaRSKSwvL2NsbAyTk5M4efIkrl+/7qFuWUbWS5OM1OnQMa9ozCZQ6JpHtqE6kTqO6AToPFbHJJDDJTBcb3BRJaJxEs1W404FzWbTg6aAPYWge8dxoijdB8BjuOgJ8v12ous9NsU+HA6jUqmgWCwik8ng6tWrWFtbw+c+9zm89tprKJfLHq+dx42Mj4+7zLBnnnkG/X4fi4uLzmgRfRWLRXeW0tLSkqO6Tp48iXQ6jWw26zkHKxKJYGpqyuPtsl4AXKICqUJSZaSDSHUp+tJMtFAo5FLANVDP75UuarfbTtmzT3hcC+8tFAoIh8PY3t52W13xeyLBWCyGZrPpSWXXGCcpPBp9pfWUiuK1pA01IxHYT/aIxWJurRppPzXoPA9Od6XPZDIuVmcX4Gqm5nDoXdemyxeI2l944QXU63XcddddeOc734lPfOITeP755/Hoo4+iWCyi3W4D2DN2ly9fxtTUFB566CHk83mXMj81NYW77roLf/qnf4p0Ou2cH+0rpVIVSbG/SYnrujw+gwaTGaZEWEoR8lk09HZuk/q3xiyQgxIYriMianCUxrC0C0WDzrzeTiCdtBa98RmKrKznqO+xKeU0mIxRvfLKK6jVakgkEuh2u06hUCkzPseMsVwu52hBYN8DVyNCb9bWh0LlqNmP6gFzc16uebLohZlluq0W24HxLH6uykvv18xPzSgE4OJUzHBkf9r9GPkMJqRoBigVpEWDVILsP/1fRRfQKu3ItqJzwlioroVTBMb1eFTeoVAImUzGIfHhcOg5DFTjPJo0o89mG9RqNVy/ft3RfaVSCTdu3EC73XYHlVL5c3sxjnkmBiWTSbejfywWO0Az67v90KDOB+u4cCzQGdG+sEZb68f+VvSmNGxAEx4ugeF6gwsVh90fT7l9v7RoKgMby1AFDOwbRE0qAPazCm18hvfwGr/YGLCnEOv1ukuKaLVaDinRQ+dE73Q6bmeIZrOJZDLp9qNjmVKplHu2BsapsDQWyDbQuA/b0C5+peLhj96jqfOsMxNYaKzD4bBLr6ZiZ7+xPfgsKnC+m2XR5Bl9HoVxEypCmwnpF3vRPmJfa5IFhfQlMyj5DJtpSuWs7afjgVsqkb7kPXQ2+v0+ksmkp1/4LpaRW36NRiOXCcqswY2NDVy5cgV333035ubmsLGxgWq1ioWFBWcI0+k0Go2GQ4SpVAq5XA5ra2su81EpZUuh0rjb9H+NRamBZX/QOWLf2zmhSxL4HG1HdUh1N3/rZASyL4HheoOLxhg07VypK2AfXajnzpRbPw+axoif6VHmNEhU5GoQVMkCcOiA99E4KCXCI9tDob3ThvUodMbFaKh2d3dx/PhxRKNRt/UQjTa3nmLQvtFoIBqNolQqOYXI99JQMYGByRM0NkQ2+ptKOhQKodVqebLfKDREuoYnl8thNBq5ezS5gXXUdWPAfvYZt2Ri+dlmXLjNU3dpWKhE9YgP9gmfw7VgumxBx5ONk7IcpDBJv9K5UJoxlUq5MjLphadb6xoyIm1FajR+bFeuxwP2kTZjY+yD4XCIubk5LC0t4dlnn8X8/DzuvPNOd1ry3Nyco4dTqRSy2Sy2trZQr9cxOzuLcDiMZ555BvPz85ibm8PExIRbL8adNtQJUYSkRpUMAR0ddUTYhnq+GuOdTE5SlKl0LNtLqUe7xVYgB+UvdaxJIP/3RY2GpfIAeJQar1fjY6k+zWLiRKVRtO9RalENg3rzfvw9JzEzyLgrOj1xnrVEJEGqjkZBqS+d0Ewh5+f8TeWn6CIUCrmYEDMFiQB0aySWSek0GkrGbA7LfgPguU63Z7L0oU2b1nVRtp6aek9qVHcw1zHBz7ScahzYH0oFWkqM1xwWU2E/sV11myP+UDGzLYfDoYtx8bfuqBGJRFwMj8abY8iyArlcziV1cCuoUqnklg0QqZESDIfD2NraQqVSQblcxuXLl3Hp0iX0+33Mzc2h3W47ulrLQwdA0ZjOGzs3WF5FYHRa9Dt9hn7GMUfnwyZFBYjrcAkQ1xtcdHBbKpBGQeM7VAA0AFQoTFlm3EgzyHT9F7CfvWaTNJSi1AXH/E49TiqXTCaDiYkJ56nztF9dLD09PY3BYOCOPuE7aZD4/lAo5Gg7Kj0aH1XUSuvZDMFUKuXZr45Kg+1qg/RaR0o0GnUxHaIvGiy+n0d/sBzxeNwlmoTD+7vMU9lxR/OtrS20Wi1MTk4C2Evfz2azDh0oYgTg2kAXDmvZmdav68aUXk4mk+6YFSpL0qHabjo+2EdEsWw39u1gsL9uTzP3uIsGKUPeOzY2hvHxcdc+SoUSvZw4cQLxeBxra2s4deoUbr/9drz88st45plncO7cOaRSKZTLZeRyOaTTabzwwgsIh/e2glpeXka328WpU6fw+OOP4+LFi2g0Gi4xqN1uu3ZiXXXeqKEhfaxr9vQ7HTO8j06ZGje+h7S5pZIDw3VrCQzXG1w07qRensYhdIGkxoU4ITgBFG1pVqIaPQ0+ky6019OA6QTk8/l9KpVyxoqTk0qxUqm4v2OxmGchLT1WxkgAuOQNesekMFUhc80Wy68erq2jJrpoXCMUCrmkB2YbMsGFhpE/NBSkLbX9dD89Kmb2j5+DwfLU63VsbW25+ijy1La1nrmWX8cLhW1h1+SxLZQ2BOD6hO+joVTFq5/xb0VeyWTSoWodO0TfADwxISZucKcNOkdKvZEGbDabSKfTSCaTqNVq6HQ6SKVS7mDbeDyOZrOJ7e1tjI+PY3JyEv1+H+VyGefOnUOxWHRxMAAuPkX2wtJ0ts2UKtd4FPve0va87/XixDZZRMdtIF4JqMI3uCjqUUQAeDfVtRSgvYcIzFJNSg+pJ0+hJ6iTlp6ppmJTqDh101zGpriFD40ZsH8ApEU+RCVK55FOY5mZGk4FqDSM1ssG2FWBU9nQMGnqeSqVQjqd9tCJVMR+Hjn7hNSres8sH/+n0bRJIPS6+Zm2rzoO1pDyeXQ2dAE121nbWhNaNO3fxsRYDtuWesaXHXNjY2POsLCdaOQVeTCGxziTOkNkAhg3A/a2uer1em4LLKa1V6tVZyyJ6HZ3d7G+vo5er4eFhQUAQKVSQT6fx/T0NGKxmMfhoJOn/+t40FifpTOtYdc+tnUmO6GOi64jsw5dIP4StMwbXJQGJKVH71A9Wf6tioTUmd9KfqULVVmpcmRgXfl4YH/dGBW+xnWYNZjP55FKpVCv11Gr1fCud70Lq6uruHz5slujtLGx4RBJKpU6EEthbIqJI9x5g6hrenraKblOp4N0Ou0UJADPWVh6dhYzCJk+TQTJ9mE8iXSfUjhsm1ar5aFNqcSo6BU58mwzUmfqgasSGx8fRyqVcmdcxWIxTExMAIBbq8Rysk75fN69h/3A5AwaOEWqOjZYFt0+yi8pQMcPNznmFk10iDgmSNumUink83l3/hrfl0wmHc3K06jVAVNjkUqlkEgksLGxgcFg4CjRjY0NjEYjzM3NuaUW4+PjGB8fx9LSkhtLV65cQSwWw/3334/V1VVsb2+jWCzirW99Ky5duuQyXZvN5oEYol+mKh0JjhEiczogasSUPrWoXlEY556lo0ndBuIvgeF6g4tmN1kFyu/tWi163boglgoKgGfHA04kRQOaTchJyInF6wHvxqIWkdBjZMxjc3PTnXKsHi0NFDMA+Vw1wszcGwwGaDQazohyMXKn03FH7GjsgWVJp9MHUCbrqxmQaryZLadUl3rWNuOM37MNqdw0FVoXcfM5aij0sEpV3BqPI9rhzho0UvTo/ZCVfb4aKHV+WHdFFKSftT/4uaVjiRRIEWYyGcTjcezu7jpnQulJjkF7xph1AmhM9PN6ve7iWdyxI5vNukSVbDaLTqeDSqWCO++8E9ls1rXhiRMnnCNg2QuWiWn9FHXgNPmF99I4WcSlc4Zjhe2gba/XKH0cGC9/CQzXG1yYxDAajTzHbBB5APt0IJXS2NiYUxacHDq5NC1XD+YD9mkopQY1Zqb741kKhB41ty4iZZNOp/Hcc885RZ1KpdBoNBAKhVAqlTA/P+8MczQadQtFgf39+BKJhDtZl4tM2+028vk8YrEYLl68iHq97gwj2yIajSKTyTiFoUdGjEb7R1yw7jSeANyz6E3TidDYH59pM/+A/UxBPSqj0Wh4MsmorDQuw/Vv7XYbhUIB+XzeIRoaI8aE1OByjHCBrY2f6C75rAcTKriHo992TBwrfJfu8cgysEzxeNwdPTI/P49er+fO0Wq1Wg7lAHBx0Gg0inK57IwF+4ExK5aZO/4TDZdKJUxPT+PKlSu4ePEi7r//fuRyOdTrddx2223uaJWJiQnceeedePbZZ3Hjxg0sLCxgNBo5RoCoic4GsE+Rso7sM6V52YZEXnYzY20/pcI579iWZC4415T+DsRfAsP1BheN1QA41KNTlEJlCOwH1+2WMrzOoikNKKvwXpZJYz1KQfJ5RCyk1I4fP45Op4P19XVEo1H3OXdXoELX2Ikis3a77XbPSCQSqNVqWFtb8wTxdfcL1kXjZrrWhgqGdaUCosKgk0A6UVGpPo/vVUTLd6uHDuwbHYpV/tzPsdFoANhzWmq1mtu0Vr13jW0pwmJfsS62/5VK1tgTnQYaar5L20ONlsZztG7sPy48j8ViqNVqHgoWgOtHrgNUI2D7jffRYWDZOp2Oa5dyuYxWq4VcLodarYZIZG9Bsp7d9fzzz2NtbQ3T09MOgdGh0YXTOsb9kih07ilNrIkqGnfV+J/GPjVbWBE4n2MdiED2JTBcR0CIHobDoVu4ao0HKQZgn/ZQtGVX79vdNvQeP3rCGkT9X2kOIq9Op+PSu3u9HhYXF1Eul7G5uemu4w7ukUjEITAqztFo5NbkMDbVarU86GZrawurq6uOkkun0w5dMdlBlSHRD+uvO5wTKVnFrgkO1nCRltNFs7xOjaKmhPNe7Re+X9PJ6fnrLvhKIbFd2G80LHyPGimWTRccs9+YQEElbu9T5akI3I4ddWpo7EkZsp2VVtUkG322XdTLtmR5GXft9/tuXRiXEpTLZdxxxx0ol8sYDAbOOI1GI0xMTCCTyWBjYwO7u7vI5/NYXV11lDrlMMqP7/drF7IFSuvrGGC76P/8rXS9GjRlQAI5KIHheoMLJyvXQAH76eg6wDnZqQjpQdPTJuWmCoDP5/2A98RcxsjoNdp96hgLoEGgAigUChgfH0e73ca1a9cQiURw5swZd8QFg/qlUsntOhGPx91JvNwtguULh/d2kKfiDYf3Dibc2dlBpVJBv99HLpdDPp937fPur757v06Xou45F374gocCJHVJZUolTA+Y76Q3rIuXWT5STVputiOpLxpR9daVdiKNqNsydTodt4URKTylctmH9NyZxalnbFHxRSIRjxHU8UUaltlzwD7C0IXRFF6jiQmtVgvtdts5ELVaDY1Gwy0wrlQqnhge72WducaMZVQlz/FOI8Wx32g0kEwmMT09je3tbbzwwgs4c+YMxsfHAQCTk5PodDpYWVnBzMwMzpw5g8uXL6NcLuPMmTNYWVlBJpPB1taWQ0mKdLgG0K7300QYHaNsb841G29lP6hRo0Oq40bX2QXiL0E6/BEQTddWqo+/FfUA+4sn1SO3FBPgTWHWeAuAA56hBv9tYgKwH8+JxWJup3ciL2AvJseDBUmF8VmkVXTNmEV2XMdjkwTUEHS7XTzx5SfwxJefcAZO07CHwyHe8um3uEwvpdf4PKaS27igUjq6QFe9cEVxmrSg/UNFz62VVEEzJZ00a7vddrvih8Nht+DXIi0iTiZHKM1pkwmU4lM0pDuLUFhW/c1njUYj11aMt1Fp09nhqde8hmiJ40gXgtuYDtuPfUhjx7pxF38ALouQTgz3tWR/bm1todvtOmeqXC5jZmbG9SnbU+OFwL6RUYdP+1XngdLtHDs6NtRJoVHy+6FTYKn6QLwSIK4jIGp8qDTUYFmaT2kNS39RrEcLeHfB4HP4ncY1LEdv0drCwgKy2Syq1Sp2d3fdGUo0XJpYQiTCWIUaHJaJ3m0ikUC9XnceKWMeY2NjyOVy+KnLP4VBfOBRMLq+hmXXlHulXAE4hW93MaDRooHWxcTWIaAStP2i72c70xBSael7eYQIUUgul/Osq1M0ruNAkZjSoZpQoG0yNjbmaFnSXmwjHRPq6ADeuKHGr2hIW60WUqmUK6cdrzRw6kipg6AGQo0Y+5Vp9TS4zWYTtVrN7V3I9zI7lJmG6+vrLiNVUQ37Qw27Oi2KVtUBYPtrSrzOVY0F6xxkndgGisoCtHVrCQzXG1w4QVRpcGAr4gDg2diTk5B0j9JTGtPRhAKbVGDX9vD7cHh/Z3e+g7sZVKtVPPLIIxiNRrh48SJ2dnYwNjaGmzdvolKpeBaUTkxMIJ/Pu3cpLUgqSZUWy8DfPB04k8ng/3n5/8Eg7c3mAuBR1FQuj33mMYRCIXzurZ/zXKdGmp+xD2hgGHtSJcTkDWbLqVdOYUo/08NJm+ZyOUQiEYdOFCGGw3tbR21sbHjahSnyGoNjjEoNobYr62H7mOusCoWCQ0VcPjAYDNy5X9o+NJashzow3Ox2YmIC6+vrDgHRwUin0278cOyRHuP93GCYDoKuJ+R4HBsbQzabRb1eRygUQi6XQ6vVwrVr13DXXXe59XncXYNbPI1GI6ytreFtb3sb7rnnHvz5n/+5Q/Q8S4xjgO9iO+omwUqNa3xO55GOHWU2aHhZd/YFnUxFZIH4S0AVvsGFqMJSFZwMGri2GVk6eYCDm/Sq4VNUps+jt2jRllJlLE+323XnaO3s7GBnZ8chhEqlcoCGoeFh4FzXILHuFCZn8N5oNOqOQnnP197jycZinf0QKL8bjUb4wS/+oOd5TE3WDWsBOKqLlJhFTmw7lp9tq4aEiSjpdNqlgCsVpQ6HplOPRiOXnWmTHJRO0/Gh/U00pD9q/Bmbq9frnncoRWfLx/+5oJpUNpGaxleJyNLptNtNg9l7mqzC8UrqkJvzckd2TTyhwdRxnkgkEI1GsbOz44y4xpdIt3JtYTwex8mTJz3GUxEQRdta25efa/9rzEr7RRkSzhXb7zre9F2B+EuAuN7gQkWpsRbNCKRnqNSa32can+JnmozAe1QJ8v2KAEh58HtmwHFt1mOPPYbhcIivfe1r2N3dRaFQQC6Xw40bN1AoFJxXzTgFEyW4uwS9X5ad31erVYciiTif+PITqNaq2OpsIZFIIJfdW5BKao31UsSpwvfpzhBMsdZdJtLptCuT7kVHsUrSOg58jhp9u7Ex4118PmM6uoMC24ntpzEpdTJ4raV31ajzvYznMdmBCSZESETx2pZMygG8yTw8rZnjhwksig5VoZMmVkqXDoImmGgCktKNTARpt9vIZDKYnp7G5uYmlpeXUSqVPHOg3W4jkUigWCxic3MTjUYDJ0+exKlTp3Dp0iVP+3G8cMyrA8RYI42jXffGNuK8aLfbbkyznzUmpiiN92m/BVmF/hIYrje4aDowB7JOKGAfOfFvwHviqvLtwMFdvvW3BqmtkVSDppw90Uo4HMaxY8cwHA4dLdZoNJzx0YWxLBvPRlKDyRR53UlDFd87n3rnnpEJdRAOhYGRF53ZOA7FthFR1+ff9nmn1BUpaHzH7imnsRptOz5X4xpsJ1KVSjHpWiuua7IGVttdkY8m5+j7eY+iQ5uKzTZX9EMUqX1MJc7yK2VNg8O2VuSkrEC32/UswmYbEuFqFh2TL7hFF9tMnRqOfd2dJRKJoFAoYH19HZVKBdPT0x7ngmNpcnISq6uraDabLjbKDYHZhjpm2KZc56Vtx+vo5NidbXT8KQNgWQxFcXynzulADkpguN7gokrE0nmcQFS6VBjAfsYeJxgnsSpSeq00jPxeDRfTuXViWeVF5TI5OYlSqeQ2Ng2HwyiXy55dGRjgJlogLac7WigKsPX6a1/5axhgP0FlhBEQ2qcuLc2mikPbU/9XBadoS5Eo62833GXbakBeqS2Ndyhy4PvZHjTYRFm6jZcmKmg/aSq10luKrnRsaBKEGiE+Uw2IpY8VhajC1Wdr2TS2akUVPttW1+5xs1xugqtxS1KCir5Zj1QqhXg8jlqt5mlvYM+o9Ho9zMzM4PLly27PxXw+76Fd2QbquCjr4Rfv1ZgznRVSqWx/pXk1tsz2UHpcHYVA/CUwXG9w4SBX48JBT29XN0tV5akH4ul6FE2pVgWktFMotL9rArCvbDRjjgqMmW+PPPIIbrvtNjz//PNuvc3x48fx/PPPu0MlqTBmZ2dRKpXcBOf7SS+NRiO3aa7SJqqwlZaLje0hlXqjjnBon9JimTXDi3Wh0tOdGXStmMasNO5DRaY0kbb/cDh09WcaOctBQ5dIJNBut13sRZU+y0RUMTExgUKh4K5TRMhEARpt9fi1nVhGYH+zZgAeuo714kGLVMTcG1FRP9tE43JsbyIPKmNuokwkxbLoLhLM/ut0Os6A8+RsojAdk+rYqKMyGAywvb2NXq+HXC7nrm+329jc3MTCwgLK5bJrhxMnTuBP//RP3aJptrsuH2AbKIpOJpMunsdEEI5VllkXfLOOvI5l1vHO8aWnMQRUob8EyRlvcKEy0UwkS/kA3p0vbFBalbEqPA2+q2FUVKLv0qwnlk3jaVNTU4hG9/Zhq1ar6HQ6LouOio/nMRUKBQ+3T5qMRppKm/vfKT1HZRKNRhGN/P91CP//lNJwhFB4P/2abaIK9jD6UKk9jafwe/aFIhPbZvocRUQAPP1AhKletcY+FGERreqYYOxH0Y72PdeDMXamxsummqsBUQSvNCO/U4fAoimlsBVZcyGvoiNrHPid7hySTqc9xn8wGHh2W1ejzL+5GJoIR2m9ZrOJVCqFUqnkrk+n055F3zpHWCZ1XjgOeD/rpYuRtX0UCet4Afazg207alsF4i8B4nqDi3LgOkn1M/X0OBF0Y1gbqKd3Ts+OE5ABca5vUaPJ5AlV5sPh0MUvTpw4gZMnT7rnFotF3HnnnVhaWnK7P/T7+7t6l0olDy3D9T5aL2aVcWK/86l3ohfqeWiwUCgEjIBOu4NwJIxkIolUMnWAtlM6R9t2OBzibZ9/G774g188sCZKKTFVxsBeCjzbV+MxbLNWq+VBK8yG07aLxWLI5/PuXYVCAdvb224hLUVPJ+b93KqJfUcjBuyfGMCUco4BtgeRoqJE/nD3BxoW3ThW6UU1ymNjYy7jU2M/zCBk+di3pO1Yb45bXQIxGAwwMTGBbDaLtbU15/BocgepOqUO/z/23jRIzus6D366p6f37unZBzMDECB2gAR3kaDIUJQpySJlxaGcqKyyJTn2j7hkJ7YrjkuOf8ROYrtcqXLsiuXEFZWiqEqRIseObS0GaZEUN0BcQBIgQIAg9tmXnt636eX7Md9z+3kPXlCSEzscsW/V1Mx0v8tdz3POc849NxwOo1QqoVwuO6uYFjX9WiMjI1hcXMTw8DBGR0fdmFPpIh2sFDIpaPal5q/UkHnOK/6vEZbM3cgxUuD281n3fFzXLz3geocX+n9Uu2Sxznm1pqzz14KCOr7VD6YCToWcaujqXwM2KL6RkREMDAw4YZ1IJBCJRJDL5TybaEkVquAFugEjFJ4AXNYNAC50Xf1HDqRbTTRbTYT7wwglu/uWeD0BRvuK/aBaL/ua96nApaClkLN+DfaJvlOpRfXTqWAjqHHPEf17qm3zfQz/9wuFt+PBsVJrgEUtKY6nblrW+UNhrdlN9J2qHHHuUegr9az7ywgCOqf4TtLQBPlgcGP/Gr+/3jlVfAcBgtdRcahUKs5aYzb8QCDgKGz2gd14zT5gu9QytVYslUgG3aiSwut0/G2Ajc4PS/v2irf0gOsdXlQgAt6INRUWungs5aWanQpsFRwqBDWzBAAPuGmdFPympqaQSqUAwFFEjUbDWQ/tdjf0l7SgtsUGDti28n8LSsFgEMFAEM1WcyNQA94D/7QdCtyqIbNu7D/WQ4FLBbp+rkJb+0T7U+k2rZdavxScPNWZY6IAyNRGChhqoXB8lPZieywFyXbTMldQ0b7Va5nLj5Su9WMxQpDPY9u1HZwL/FzpTS2tVstZSEox1mo1T9s4P0gjcj4yVRYpWU0izLyKrVbL7anT+c32KtsBwLOtQuct62jbYteitt/SiPpODWrp+bj8Sw+4NkFREAKuFSrUNu3GWRvWrdYHF5RSRdQuVdhRuCq4AXAUSCwWQ7FYxG233QYAmJ2dBbBxmi8d3rQ46G9TrZiObt0Yy8VLS0eLWpXA/w8woT6E+kMuc4VSYlYgWZC0/ho+l4KX72f7NR0SqSkKS4ZlU0B1Ot3IMoK5VSAo9NbX150/iCCg1DDfx35RS059eOqTZGHIvbaLQlz7uV6vo9FouDPOaGkQGNh20m8aZGABWKMvOWfov2I9GdTAerAd3PDN+cJ9azrvm80mCoWCo94YScjMLHNzc5iamkI0Gr0mTL/VamFpaQlzc3MYHh52R6GwHZwnvEeTFWuAjIKUn1LHdaZKjz5Dx1WVK2UCesW/9IDrHV6sI5ifWbDhhOfiVrrHL7DBTyPXEGz17QDXWlkUnPTxDA0NodVqYWVlxQleptphaLPmJQS8lpE+22/BWqBmndudrnO/L9jtH7XcVGColcBrvvO+76APfZ7+UKrVUoJ8twor+vs0RZGOhw3XZxs0QpTWFrcJKH2rzyfYaN/wPSpM1QL361e1GDn21kJnUbqR9KGNuNR2so/5Dha1YlRJop/KWo465vQtsa6VSgXJZBJA92BVBV3b/wz6GBgYQLVaRT6fR6PRQCKRQDab9Yyv+gyV2lOaVxUgrSfnmFJ+SgNyDVDhUZ+d33zvlWtLD7g2QaEAs5kvlJLRSCvVTFXgqtanwMbnKRVnrTo6/LnoVPPlkSKzs7MuZyGzExQKBU9m8U6n4ywsCiNq/LRglHrT9wP+50NZKtH6fuy1VihYweNHMfL39SLqCCysq4KjCi0dExXinU7HpYWKRqNuQ6zuK9PgAL3PjrmOH8dd6SeltCwAE8TsGCglyuIHXAragPfEaQZ6sA42OpXzgADGgA/SlK1WyyXMJfDRCqxUKs5Soy9Qg1XYX6FQCAMDAwgGg06ZYmQhr2F9OD/tpnkqCH50qs4nMiEcb6XodewtXc57ez6u65cecL3Di2r7gHdzqd1oy42bap0BuGYBc+ERLCgQuc+Ev6mhWm2T0VFc0HfccQf6+/tx+vRprK6u4tChQ5ibm8PS0hLi8ThGRkawsrLisg8wEzk1YbaHgpt1DgQCTjN95v3P4IGnHvD4cyKRCAb7BpGIJ5yQU6GpPjzbnx5rK9ClUymYeI1atKTIVCgyCIDUqUZxAt2Nqurgp5+o2Ww6C4J9GYlEXLLidrvthLHNYKHWAIWcHseiygr7wi/wgn4h+tB4JIhaehoFaK1VzksG1Kifi1sZ+vv7XUAEhblaZvyb7SPQZbNZdzI2lZrh4WFX/9XVVfce7nPjFoqFhQVcvnwZg4ODHiuMyXaZVLdWq2H79u04ceKELyuh4fgKVKoQNRoNT0YPVSp1vvJZOo4KiNZv2CvXLz3g2iRFF5Vq2qoN6nXqX1Bhp/4yy6uzqGbNRUgfjGqN/JmYmMDa2hpmZ2dRr9cxNDTkFnk8HnegpYBiM0PYPT76nbZNKU4KXFJi6811T7Sa9SUovWYtDdvH2odss2rLrINqxswGon5FG+zgp6VbgUgBrGcz6eZm3dhKSksBTNuulhYFsG7qtnuOSKmxvVRcNHM6n8Frge7eI1pVSn1aBUJBne8G4I68SaVSiEajGBkZQTAYRKFQcHkJaR01m01Xt0Qi4akjgzHW1tZQqVQwNDTkLL9areZYCibzTafTDtjU4tQ6KtDwGrabdeffulmZfcn+1r7wo57VEuuV65cecL3DiwKKgo0eushCwaTWgzrMlcIAvHSgaubUrrmvRUPAKYy5kNPpNG666SY8/fTTOHfunBM6zJaQTCaRTqfxxhtvuIVKYcachBTGpIIITjZzxYsPv4h7jtzjsWIYkBIMBtEf6h7rzghDDeagNk/B8M27von+6kY9CQJ6UrGCs/qo2J8UlNZyJKiQytJktbReKNjZ5xwPJglmYl9ShaTA+HyOcyKRcIoFA0E0WpLPZV2U0gS6kXJMBmsDXPr6+pzFV61WXdZ2/Zxh5izsDxXMweDGpmndEE0AouVHi2h1dRXJZBKDg4NIp9Pu9OtAIIByuew5RoZjH4/HUavVUC6XkUwm0d/fj1wuh1wuh23btiEej6NSqSCbzXqCipaWljA+Po5UKoVCoeBRVFQhsXvwbLSp0uw6D5QBID2uSqGCv257sT7GXvGWnk36Di9qLSknzsVvBSYXkAoSBRsVkqrtq09Do7B4rT6f9F1fXx9uuOEGjI2NYWFhwQn0SqWCfD7vCX/nZlRublY6kyBkrUECFwWxZp7Qc7H4w/7qoINWs+WJpgOupV31c7WGrEVJS8parXyfauPsa6VW2YfW8lA/FQC3/40h2pqhnfQZAZb1oeDn+Oo4EcS136iYWKpRfS18voI20zVpNJ21mGw71YpQq1Dfr6ClSg3P5dKAF7WIAXj6AOj64RjtWK1WUSqVPEpSpVJxWTkYuUi/IpUcpYlJ4Wn6NL8x5RylJafzShkS2xb2i843VQx7xb/0LK5NUggKFEYa8s0F4Ef9cSGqg1qpKuXqNdsGha++n4uM/oFgMIj9+/djcHAQq6uriEQiSKfTnswMvCcWi6FUKiESiWB9fR3VatUT0m0FnApqoHvsh18QggqaYDCIYDuIJrpZOZQuU/AiIOjzKDCUuuTnQNdpzt/sU+1/bYdVFti3VrjrGPPgRQo6BRK+Uy1JtZaV5rRgyqKHNGq9eA/nGd+nwMD6W7Cij1R9p9p23Uag7aYSEAwG3bEjlUrFRVUSiKhAAN1Tva2fiMDKeUcFipZtJBJxdeBeQmAjw0cymUShUPBserfjqG1WWlZpYNZP16hfQI+uT30f+9lPweqVbukB1zu8qDC0i4O0jwoua1Hxf3uuExebWlV8Np9J60s1ZwIc333//fcjEAigUCggkUjgwIEDbnNno9HAzMwMAoEAMpmMo2SAjawYqVTKY+1xMasmrRqwWgBKmVLAMhuC+jDU0qS2/q33fAuhUAipeOoaX5UGsPBv9p3WiWPCftZ72W9qUTJlEetMy4Lv6XQ6rv4UqtxDxIwaVFr4DLZV6Sa1SFSwq+WlwEZLQ+eHAp0CdiAQcIqHPocKAKlK0o2abkn7lLSmnstG65yWEFMvkabTunAMCLCaqkwt1XK57NJFcTxo3WlwRjKZxNatW5HNZpHL5dyc4jxkXe2Brpwz3JeoQKP9pts+uC9Qs4pwbbGellLslWtLD7je4cVaT/xMBbFeq5SEascKYnq/pQP5HqthAl1HdK1Wc3thmF+P0XBDQ0MuzVOxWMRbb72FVmvjhFo619W5rQChAhXobpyl0AkEAnjuoedw/xP3e6wXtVr4TAVltTa06P431oPttH4aFf78jv2vIOUHGgrKvIb/6xiqxcw2cF+XKhvqs1Nt3yagVYuPPjftc1pJ1s+iWxeUFiVQct5orkulvVSZIGgxiIQ+Pgpwgp6lzWhlEuiYtUMtZj5T6WRGxUYiEdRqNZe9XbeN2HRT4XAYY2NjbuxVeSFVSEtXlSvez/sU7Dn26qPld5x7BEadrz3f1vdXesD1Di9+wRkakaSanQIC4N28rM9S+kuFmWqG+qO0EReZarbz8/PodDoYHR1FOp3GxYsX0Wg0UCqVMDs7i2Zz46yucDiMVCqFRCLhcUCzPgpCrJdaKcAGmD3/gecRiURw4GsHnLXCooK81Wpt+LukXY/f+7hrkx4foeBufWHqp1BfIwVNNBr19KX1Z2kbKaA13JzgR02bgEpwtlYg68o6af+xDUrZqVBXkFYQBLyRgQpcarWq9WoVAwVLDXSxbWefapv4TH6nVCoBj8/llgTez3kIbBxfwhO5K5XKNQE/nHeam7G/vx+ZTMbDauha0bmgvkC211LqgNcf6zdebLNSzNqHVhnrFW/pAdc7vHCRKWWlIeLWv0VtV+kc9XEB3kVF/p/CFOhaeRTK9pTeQCCAYrGIm266Caurq3j22WcRDAaxbds2p+FWKhXkcjlHsVy+fNltEp2YmEC9XkepVPJsdqXA1sg9WhzxeNwtdO4HOvnoSQDAnd+40wknFZSRSAQIAP/rpv/lnhVpd4+Tj8fjniAPtXxI7yktROEZDAYdfaTRino/BZoCMEGB+7c8fjmxgijUeK21cAhy9D/p8SjW/6V1ouWg6Zg0izrvIdXLflFBz2LzFbI+pAF1jyF/E8i4N42UHylD7vlin+uYcp5wPtbrdVSrVdcuzu9KpYJEIoHh4WEUi0VUq1VUKhVkMhnPScfBYBClUsmN7cTEBNbX15FMJpHP591RLKQq2UcM/NBUZDoHrOVofc38W32d1keq+Qx7xb/0ogrf4YUaIH80nNs69jXiTbU7pbaAa2kOjYLj5yqw6dugcKavYNu2bVhaWsLq6qqLhCsUCmg0GigWix5/QaezEdSRTCY9Vo0tBDACL6POCFYKCiwvfPiFa8CZoNwf6ndCn4JSneCkyrS/KfjVn8W+0mAODfyw7dFxUIqMz2Eb1TrTtFi6P43+Qn0Gv9d6W0Gn9KbdR6eWKetrozsprAlSqtD4zVOl7Ow1lnpVsOamdPqo1ErRelFR4Gc2ctZaiARLKmUEHQ3B5/6tRCLhNpEr6Kp1pGPF8dfvCOKa/1Pbr2PE51grlm1Rq7NXri09i+sdXmhlcNFrSC4XDoUN/RN6ZLguCAUvfsd9WjzSwYbC0woC4KypZDKJqakpHDp0CC+99BKi0Sj27NmDZrOJK1eu4Pz585ifn3eHSVIrnp6exvT0NHK5nNOYbWbtdruNYrGIQCCAsbExB9TLy8uIxWKeo9YpyBuNBp55/zMIBoMuKzgFW71eR7vYpbDYRlpuDPVWi08pHBUgFMwcD24LsIAPXBsWTsFLilUtGY0MVXBhn5P+8ovCtEfCW2DheOpzNfUS7yW4su6cW5pglm0jGBBkOU+UxqTgbrfbnj7mdohWq+U5KJRAQvAmSNE6ZZ/rCcicVzpfubeL41+pVFAoFFygC8PkGUASj8dRr9cxODjo+ZwKwvr6OhKJhDuUk3PIvl/nI/vbBuiokqnsgkYfquLlpyD0ykbpAdc7vHBSc6FbHwgApyUqRcHPgW74s2rXFJZcWFyMCiAEM1o+wAb9ViqVcPDgQQwMDGBtbQ31eh2RSASVSgVLS0tYWFjA2traNRRmKpVCMpl0FFA+n0dfXx8SiYSrZ6vVcsDFqEPWj1qz+pwopAgAeqYS+0BpLo1UZJ9ZP5kGP9jgBP6vFgP7XcFOLQYKOd1uoHknWawfhcKc/aKOfj5bn6mWOb+n9m/vUXDhnFCrUvuCc8MeMaLKkfp8bAkEAo6S5bv0iJRgMOg2NlerVc/4KaASNDQ8n4DBerKP1MIrlUpOaWAhQLGNkUjEU39dDwry6pO0/kurDLCtqgzZz/i3Wqr2vb1ybekB1zu8qEbP/1UwcQEwJNfu17ICGfAmTFUtUIWPpTqazabbxMlADNIrTHxaLpdRLBaRz+edNUXhlkwmMTAwgGg06iIPaZUpeNI/0ulsZHNg/j1q+EqPaWF/aDAC26oWjkYFsk/UsvJzxFuKUa1dFUAKRFYBsLSc9r8eM29PB67X6549TUqf2Xmh0ZBKDXI+aEojbbdSy6yntlXbrv2kIKGKhB+dxnrwWoIx6bxKpYJareb2BxIYCNx2Ezppc84NWqv6Llqp5XLZWUtsq6XmGGCj9CCtNF0jCjZsL9vpt3a0TyzAqaLJ+7SfexbX9UsPuN7hRReBcu9cKPSTKPCogOS1XEDU9DW8mMDH4A/uq6Gmq9o8nes7d+5EKpVCJBLByMiIo3H6+/uRz+edhs60SLt370YikUCxWESrtXEs+/z8vMtuQEqIbSRlmEgkXLbvarWKpaUlJ7BIO6kw7HQ6zvpSrZk0lPpt1HcEdA/ApJUCdFMiacQgwZFWFAGVe5zYjxRMDPlWYcfvCPpK15ZKJdRqNZdLj6mzeMK0Usa6lcDPp0mQonWpe6vUkiYQ2SNntK3qZ1VQ5Nzk+zU1lbVAFfRzuRyKxaILW1ffGucD97/phmEAzufKfiI4MEUUAy3K5TLK5TLW19fdWV1K+bHeTFOmYeqcS9rXyiLwGnuiAfuN/UIL1tKouqVBx49927O4rl96wPUOL6rd8QRcdQQrRWU1euub0N9K9ahAVWuOQoZgx+eS9ms2m+6UWgZQqNVDodpsNhGPxwHA5YdjHj5thz6fwRTlctn5lYLBICqViufZrD9BTHPhUUsnLaQatu53UuFqAxd0/xOFu1oV1hrh93qP/vAeq70TECKRiIuWU8tQs0XYPUPqH+N3GqpuaUwFbRXKvI5FLW4/q1/nqPoHVXlSi00BtN1uo16ve5LyAnAgRIWAoML5wjHhHLHW6ujoKFKpFJaXl68JSlJ/H61T+nlZZ85dG+Kv9dc+Z7+pxcQfsiAs6i9WSl8tK9ZJA4N65drSA65NULj4GOiggpcLQKOWLGDxb12ELErxUCCpJgp0Q+V5/w033IDJyUkkk0nkcjls2bIFc3NzWF1dRaFQcM+gEO50OhgfH0c6nUYul3PHnYyNjTlNF4BH0DSbTeTzedTrdSwtLaGvr8+Fr9PfpZQVaUz1XWmACTNEaAAKgUaPpLAUEO8H4AFMvZ5bCiw9R+Dk+zRrgtaB72MgALNJFItFFItFZDIZDAwMeMaUcyEej7tAE0udAV7fFYW7BpUoyLBwLtGfSGtak/haJUAtVWuNETwp5Gu1mrOyNDuG+mk53nwfAYXjDMBtV2CWjFqthlAohJGREc/mZKUlae0RaFKplMtYQUuS/lpaRX4Rmbr/UdcX+06DZvi99g3nD9/J51BB61GFb196wPUOLxQuOuFVYwe6wkkj4Hi9PT9KhS41Xz9nMq/V4AMATqCQ++dmz3w+j3w+j9XVVZeChxQdaT0695lMVs+astp9OBzG0NCQ833QmmIkoA0g4Oc2TNxqs3r0iPWH+fn97FioJWX7TvffWP8g66JRZrxW/ZUUxMlk0n3HBMUEJBVqau1ZP5zWRy1a7U9SY9onOk90nrHOunmX0ZLc98R2WyXEBhRdb46rRaVBM6ybnhys3xFkqRSpNcnoUj3ok3vV+EzdRE6w9FszmiBX5w2vu55SaP3N1t+lY9gDrO9desD1Di+60C0wqRNcFwkAT7CGdfzSSuh0Oo6W0vdZwcv3cQFrOikmhM1msy78nXVQCkb9E9SyCZ4UOnwPhSnpofX1daytrQGAowpbrZY7yRbwavUUfvzOJtKl054CT/tF26/audKn6qOwQsn2G6PilIZkO1lnVSysP5ECV7Pqa/t0XJSi9Nu/xedTqLNe+r0f7aXt0rrqfju9X+cJi4K3gq5VnghYBFPru2Of6p5Fjmmz2UQ2m0V/f7+LTiQlyiNZbCQi5weVCo1o1Llgx0+pVT/qVOeTWvJst85Hjp3Sz3ZbSq94Sw+4NkFR34r6bzRKSjl7XVDlctkJEZviSGkfjUZUXwmFA89EovUUi8XQam1kHGDwxMDAABKJBGZmZtx+GQU4ACgUCtfQTdpGoEupMdsFBUC1WnW0D7MnKIgSEFVj1+9pYeg1BEH2KQMLVIDR2lE/jvqcKLR0PxipMCZyBeBOF6bTnwExmiHDUpS0jqhs0Eqgv5NBNoA3Yzmzl7D+LDquamGpsqIBAzwhWQNe1G+jVoLS10rLaUAIAy5Yd22bZn/XEHz26fr6OorFoquvzndapYxWZSBOvV5HoVBAsVh0JxdQ6aDiUC6XEYvFMDIygitXrrh6UBHg2tLQfH6vVhrnqYKSUpa6tUUBScGR69RS+r3iLT3geocXdfYC3tREADwAxuu5ONQ6UHDj/6SdAK92qcJHgxT4P4MIVLu/8cYbnR9kdXXV5Ymj0Gu326hUKi4lDwEiEol4rELuuyKwUDARVOwCZ5+wHaR81IJj23UTr1/f+llelsqxY6Bgr3SdHSfep0599SeqRcJx5QnCpOH83quClOOriWyVNiV4a/ZzKhB65pelF60VysAJLUotan/akG/bF7zXArYCpCpV6gOiFc/s8Zw//E5Bz9Jv+j99XOl02mMB8jq221q3/JxBJKoQanCUtWrVCuO80ohGHdNe8S894NoExQrQ69E4Cla6cLjYKaiUJtHFSIvMbqTldfxbw6ar1Srq9TruvPNOABtRg6dPn0axWHSLmMfQc8/X8PCw08A1GwTbotYS38lcdhRENgrOCgYKB1oWms+PAl+zz6uVocBHX5AdD76HGrcKPLaL1yoYaR3oe1GaUNvQ17exOdtSneqDtDRbMBhEuVz2ZA/R6Dn+zTbzt1KnFMQ65jon+CzAm5JMrU+do34/7C9ep1s99GDJTqfj/LQcG30fowu132nBaTSp9QnSCrKKAhUL3djNZ6h/Wdtof/M9Ok9stKalBdnvOhesBd4r3dIDrk1QLGjppCZNYaObFGR04ahvhoUAoeDFZ+qmVevnicViWFtbQ6lUwmc+8xmEw2FcvHjRLXBSRczUzdQ9aq2xaCQVBaoGQjC5L9vOOut7AG/YuJ7aq34tavP0xxFcCaIqsEh5UkiyH2kFsW80sSxBhAJOKVC+T6PdAO+mcEYJKiXI8WLfcIzYH61Wy23+LhQKiEQiCAQC7jj6YDDoTlfmpm6gq9RoiiVVbAh+FPSk9EKhkEtSS2uFNKSCG+dKs9l0ab4YBq/z1vrArOXI+nE8+cOxYP9yjHkSQTAYdL5Xpejy+bxLNzU0NORoda43KlPsX7VELX3IOaOKIkHZj9qnhUsLS6NCaW31qMK3Lz3g2gRFncNWs6OQpBVBYUAA4qKxVIdSXLq/xFpZmk6KhYKSFCDzuLVaLZdtXDVi1Zh5PwFHNVTr1LbUEgUS0AVbFRwsFBYa9m2d6H19fQ5AFcRVo2ddKCQZtq00D+9hfdhOApn1izFoYGBg4JqM66w3KT32D6kw0qrqV9I2Li0tYWVlBeFw2NGqvDccDrswew2aUOvU0pA6LkpzWouS/fl2wpb3q1KkARx8rkYLqqLEd9h+p4LCeqpfM5FIIBQKoVKpeOZ4u912B5/qFgurTGkf2TnGtrPv2H4b0cr1yb2OfJ7SiLoWuU575e1LD7g2QVFqgdqr0iiAN/qIixmAo4wU0Hi9FeS674XvouBW6qRSqaDRaCCdTjvtnBkx5ufnnaZts5/rnimCkEZ58R20rtRXZ4U8gZwWZbVaBdAV7oFA9xgY7v2xdB77wFKFFJTqX9NoP7USaG21Wi1P2iACnIL12toastks1tbWsL6+jnQ6jW3btrkjPtRXx2hCAmAwGMTIyIjT2mkFslQqFczMzGB9fR233HILQqEQlpaWUKvVkMlkMDIygkwm4/HxqcVDoapWqVrzBNPV1VVHA3NuaOg+98xxnDmuANy4WlDX+WstUc5N7unSuavWmf2b98RiMaysrKBUKrkkun19fVhcXMTu3bsRCARcpg2OKWk7zj/WyfqDVdnifZxXmlkFgOd0As4H9Ympv1J9pb3iX3rA9Q4vXBxqbdmFwwWmdAapKgpkq6XzOv2cz1Hns1o0FBalUsk5tDUBrAoQpcsIosFg0ENV8UcBlMU6ydU35Oc7UP8c36V+BBY+09Kp1gql8FOaVH1GWg9NV8T38f0EsfX1dVQqFSec1tfXkcvlMDAw4BQQUlCWgrTWjwpt1okRhPF4HIlEwmVFp+XhRzmqYsDffA+BhRaR+ipzuZyzGjUqkfOTbaCywMJ5qCmVrDVF/6aCGq/X+to1QlDQtuhYlctlVCoVTExMIJFIOEDJ5XKuXWQYNCcm2+QXlq7159zXfuDfVhG0/WXbpHOzV/xLD7g2QaGg0gVkBYby8uqbUuqC11CAUHMFulRcu912FgAFtvrAWq0WSqWSE5QauOAHXNFoFOl02i1EWllad22nPoPPJADps/V/6xdRWlEtVApHfbZfISCooFG/oAYVWGWC96pvkYKTfqtYLOasjmw2i0Ag4I7OYMQm/U3U/CkAlQImKNZqNaytraHT6SCdTiMYDKJQKKBQKCCTybgcfQqoADzZMFRYUuhru1OplLOYmFNycHDQ45dT/5v2l6UjSb2qwNZ0Tgp42o9WobDzmn/rHOGcYvb5eDzusShXV1cRi8U8fcEtE1bBUUBS6l3fpUqFzm2lAHVvoF8b2O+9cv3SA653eKGg4WLm4uBisamZAHgCEKxPiwuGPhtqmroIKVAU9LjwKGxnZmawfft2965KpYJYLOYJsmi3N/Z2jYyMuJQ+dgHrfprr+VvoM6JgA7qOeBVmoVDIky8xnU474GKb2WeBQADJZNJ9r5YmCzV5BU7WWwUk66Gh7eoToXZPnxrfs7KygsuXL2N5eRkDAwOIx+OOZiuVSigWiy71EOnUVCqFWCzmgIwHdpbLZezbtw/bt2/HysoKZmdnAQDT09OO6iLdStAkAOlhmgpaCkoMXmGhHw3YiCxtt9vOkmYghI6p+l319GSOFedCtVp1c5PUKxMkAxsWJZ+pAR9KNXPrBIM5dD+dAkYwGEQ2m8Xg4CBKpRKy2aznLDsFTF1Hui5UAWRIu7UidU0olag+Q65xa631LC//0gOud3ih4NagCQAegcpC4WupB/VvqUBVy4aLRXl5pcR4LfO40U/DxdpoNJBKpTw+LAqW9fV1FyzA96oFxPfbdhNQrOOb4KAbRSkESF3qvhg6x+mr0zapU9wWjVDUvmRfAV0NnwDMuuheJM1RyPtisRiSySRKpZLzWXU6G6HgkUjEWWg6FoVCwWU5p7WVz+ed9Ts2NoZ4PI4rV644YE4kEs5643hSgAPwWEjsY7UqFHQajQay2SwikQgSiYRrJ5+je9MU2DnW1mJWIOD36qPS/uXc1LFgPbmpmeNOcFCKl7/Vv9put90mdipWLGrZqaXKOmuEKNugPi5dM2yH7itj3dhO69PTaNFeubb0gOsdXlTDU/+GXUjKtVutktaJCm6ltIBuVJcCnlp4XGQ87nx5eRmNRgPJZBKDg4PI5/MYHx9HIpFAILARYEF/SLlcxvT0tKMVlQay1BC1ewoHLnI+Vw9W1OepELEBK7QE1Gei1JIKcfYzBQyfy88VAPlDoccAEVJTDLCgFahKQiKRQDKZxNDQEGq1GsrlMgqFgnsngxE0sKXd3oiGy2azrm3NZhPhcBiTk5NIp9MuJD6RSGBoaMgT6KDCnO0gICn9xv7UIKCVlRVUKhXU63VMTU0hGo1ibm7O0ZO0ttnftAgVdNjvpP/UwmCmC97L8H6OJxUiAJ6s8lQOtI1M4kvfXyAQQKVSQblcdpu6qdBwPfDgU533Ov8JXgqArCvZABadRxastd02rZXOYV3TvXJt6QHXO7xwwajGqdq+CmDL+yvtpnSH0mFAN6Tez8JQzZF5Awk0tGSi0SgqlYpLmKsAS8Gt0Wn8XqOoWPz8F0AXTHTjq7aT7eA+I91/o+3g9X193WzgaolqfymVA3STtVLoUbhr7j/2JfuamjgFM+upfjgKec3fSGuRwozCjpYdSzAYRCqVwujoKJrNJpaXlx3w0VfJ6/gM/t3X1002qwEqvJ5zTc8y0y0JHEe2QalqpbPZd9aKUTpRLTeOF6ll9pk+jxanUsgcSz6LfaV0NoHargU9sNMWjpcqd+ovtfNa16sqRsqS8DsNQtJ+8WMAeqVb/L3T1yl//Md/jEOHDiGdTiOdTuPw4cP41re+5b6v1Wr4zGc+g+HhYSSTSXzsYx/D4uKi5xlXrlzBI4884o61+NVf/dXr7p/oFW/whU5wwHtWEIWdZoNQaorX+y1CwLt3ys/HxELhQeqDmvDq6qonxZBuEFbfggY2KLUGXAta2gdsH4WG7q0iUFGo0pJjfTVST4Wzfq51ov+HiVlVKJVKJddWXkuLS/0gweDGHrZ4PI7BwUEMDg4ik8kgk8kgkUgAgOcennE2NDSEgYEBR2MpSOleIwJNMBhELBZDPB5HoVDA6uqq23xLy4bbELiXi1aHH8BonzFtEscgGAy6bBSWhtUQd6VsVfFQ/4+lWHWOs18VkKggqBWnh3YCXWtLLSeuBSod9HXZtmm2Dn5m56POVaWD9R7tK6C7x08pQdtW/V/Xp1Uwe6VbfiCLa3p6Gr/7u7+L3bt3o9Pp4Itf/CL+4T/8h3jllVdw8OBB/PIv/zK+8Y1v4Gtf+xoGBgbwC7/wC3j00Ufx3HPPAdgYtEceeQQTExN4/vnnMT8/j09+8pPo7+/Hb//2b/+dNHCzF2pzStuoX4bfA/5ZMjQYwlIRQFez1fuoiSpdEY1G3bHqDOWuVCoYGhrC0tISLl26hHq9jmQy6eqSTCYdNcVMFayXCnkWvp/vpJDV72hRUeNmGykoWUcKVX7PzzTlFQWbpZkajQaWl5dRKpXQaDQ8+6CCwSBWVlbc2VmNRgOlUgnBYNCz1wiAB0iZToh1obVA4Vkul5HNZpFMJhGLxXD+/Hmn9KXTaUQiEZRKJWeZMRClr6/P7aN68803USwWsWvXLmddxWIxF+SgVhP7mWPEPtFQdlKiui+Lc6NWqyEajbofPk8tL1JtSmurj1H9nJyHSqtyzxXHhPQa57IqM6oAkD7lvOV8IoDYACINguEY2YAM0tRaVw3O0XVo/bJ8rvrf/JgUZQ56vq23Lz8QcP3Yj/2Y5/9//+//Pf74j/8Yx44dw/T0ND7/+c/jy1/+Mt7//vcDAL7whS9g//79OHbsGO655x489thjOH36NP7mb/4G4+PjuPXWW/Fv/+2/xa/92q/h3/ybf+M5+qJXNor6rpRK8KPe1L+lFpNdILr4VQvm9Vx0+m7AG01XKpVQKpWQSCTcHqVAIIB0Og2gS4uor02Fmmqn+m7WUwWe9Q9p36gP0E9rVa2bVqIKD/U/6DMBePZe0dIhNab0J/uSEWnWulNgYF9oEAvfRz9LLBbDtm3bXPAFLSb2i9aXQE5KloVAzqz81rpWYU5BScGvQRAWLDhnCNTaDl6vYKQgxRB4tbD5Lg2gYB/pc5Te1CS0mv+RwESfXX9/PzKZDGZmZjyArNY4AA/1qXORc8cqWFonzjXtQ30WP9N1ademVUh7Pq7vXX4gqlBLq9XCV77yFZTLZRw+fBgvv/wy1tfX8dBDD7lr9u3bh23btuHo0aMAgKNHj+Lmm2/G+Pi4u+ZDH/oQCoUCTp06dd138WgC/Xk3FRV4umgAeDRYjWwDrt1se70Fw3dYCk01YqVkGBKfzWYxMjLishI0m02n/TPMnkJfF7Rf/RSolKLRulutlFaV+mc0y4XSp6SwrJavtCP7mDQn6alCoYCFhQVcvnwZpVLJWQY8MJNplPSIEgUuDR5h37LebB/fyX7cunUrtm3b5vHVaY4+9gdD4+l7Y/Sm9c2R2iNFyOeR6uOPWkc69zgWSlfa/I76w+er39ACmh8Q2+94n2bJ13kBdI+/YRv4/lgs5tkkrYoX71M/pK4FpfY0EMj6SUlD0gKzc9uuS46bKqJKo7M+ukWhV64tP3BwxsmTJ3H48GHUajUkk0n8+Z//OQ4cOIBXX30V4XAYmUzGc/34+DgWFhYAAAsLCx7Q4vf87nrld37nd/Cbv/mbP2hVfyiKLmQKRD3VmAvHWiZAV2tU6sP6GXidghmDDFRIAN29U0ym++yzz+LHfuzH8PWvfx3tdhuXLl3CXXfdhXg8jlKp5KgmRoeR9uEC5TPV6tDvFKS4kFXQUdtn4EhfX58L/1bLjoKBkX/WmlTA7nQ2NgtfvHgRq6uraDabmJ6eRjgcRj6fRy6Xc9Fq/f39GBwcxMTEhCe7gwpdDWKhoA+Hw46W5EGeoVAIqVQKi4uLeOuttzA1NYW9e/diZWXF9d3g4KBLxspz1sLhsAuTTyaTDkTpX2u3u+mhuGFYLXZ7nhdTVVF5YOCJ9VfpHFOhC8ApCWpxaQi49pFSq5r/UJUlteYYrck6sf7sa/Y7z4LjM/msVqvlMr9QCVCFie3gvjGb5UMVKlLsVplUhcQqXJyLPMPOjzGxbEWvXFt+YODau3cvXn31VeTzefzpn/4pPvWpT+E73/nO30XdXPnsZz+LX/mVX3H/FwoFbN269e/0ne+UopaQfgZ4gxkYGaY+LT8/Ep/Ha1Sjtt+xqCaoz5qbm0MqlcLw8DCazSbm5uYAAMlkEsvLyx6hRY25WCx63m01XT5faSsFb22XUprUuBn5CMADFtYPof2mbVpfX0e5XEY+n0epVEKn08Hg4CAGBgbQarUwMzPjAid4fEins+FLSqfTLvMFfS0cF7aDQp5tph+n3W4jkUggGo2iWq1ibm7OnVvG/uc+uU6n42EdGPVHoCJA0DJif9NHo/NCA2QY7MBoPlUUNAKQfcjnKl3H8bHttDSYjrf1C7LwnRxn1k/P6fJjE4AueLIPbD3om+x0Oi4JL+cFKWW9T7dssNj1QrDRvlJrVNuj/afWrSpwParw+uUHBq5wOIxdu3YBAO644w68+OKL+IM/+AN8/OMfd/t21OpaXFzExMQEAGBiYgIvvPCC53l0QPMav6JO+ndbUae2pqGxQoC/SX/o5lV1OPN7LiTN3E5rTI/kaLfbLvsA/+cm2KtXr6Kvrw+HDx/G1atX8corr+Dw4cOYmprCpUuXXBYEZoxPJBIoFApOEKuAZCg9rQj6MnQxW18HHe+sD4WLRhha+pHWBv0t7DNgA7RKpRJyuZwLDqDwiMViCIVCmJubcxpxX18f6vU6rl69ikAg4IBmfHwc+/btcwCnVoEKalqS7Nd0Oo1EIoH5+XkcP34cyWQSkUjEJduNRqMYHBxEIBDA0tKSqzNPW1aAps+LlFkoFEI+n3e+KSo5fL4e/aHUXjKZ9CgInH9Kd6lCY32OLLQq1S9kx9OCC8eMPqhgMOiyZHQ6HZf5hHNAQ9rpf+P3pGb1PfPz884aBrp7COv1ukvMzKhRvp9t4dhpVCHnngV6BWaCm+4RpFUOeCNN1efXK97yt/ZxsXBx3nHHHejv78e3v/1t993Zs2dx5coVHD58GABw+PBhnDx50i06AHj88ceRTqdx4MCB/9Oq/FAW5cTVUlHwAa7dqKxcvFIZpE7UWlNtWSlHWgsUOAQDarKky7Zt24ZgMIhKpeKsMIIs60OhyDqqb0H9Lfo/68J2MDpPLTH1jQHw0FGkktTHxecRwPRd6ndQAKQ/j5upeW6T+oyAjeCKhYUFzMzMOMtS/SEahk4LlP4TBlaEw2Ekk0kXAMPNyWtra6jVaojFYhgbG3ORfErhqd9FfXTsK9Jl1s+j+8e0rywYqO9Kx8aP0tL+tLSg1pd9rf/bYBjWLRAIeHxZkUgEsVjMc1I2x5VgzT5Vny0jQglOHA+tm84bPletdq4ftu16vj7eS/pd1zUBVfuSxbIsveItP5DF9dnPfhYf/vCHsW3bNhSLRXz5y1/GU089hSNHjmBgYAA/+7M/i1/5lV/B0NAQ0uk0fvEXfxGHDx/GPffcAwD44Ac/iAMHDuCnf/qn8Xu/93tYWFjAb/zGb+Azn/nMu9ai+l5FfTHU0JRis5aX+ndUoPNepRGVhgO8R7/r93yW5eGr1arLuL22toZoNIorV65gdHTUhc9T8DDBKetAIaIau7ZBhZwCtWqi6p9RPxbrS6BiKDqL+hSUxgPgQFE1X1oqiUTC+ejYX1on+nFCoZDLgcd2UeDrvf39/S7Ig4EetHQ4dgpsnU4HmUwGW7duxenTp10YPq1H9Zex7aQf2+02yuWyx4qwgR5+Gj5PAbDUl7WOrGXMOcaiFB7/VyvOjhn9loFAwGPxaAQgLWr64dTXxr6u1WqeuUwreXR01GWA4fXKAvBZum5UIVSfngK0pfaVSuTf9nmc82ybpTd75dryAwHX0tISPvnJT2J+fh4DAwM4dOgQjhw5gg984AMAgN///d9HMBjExz72MdTrdXzoQx/C5z73OXd/X18fvv71r+Pnf/7ncfjwYSQSCXzqU5/Cb/3Wb/3fbdUPWVFBrtop0BXCXOB2EVEhYHi0+jUU4CjwVGgToHgfaUJSh81mE2fOnME999yDt956C4cOHcKZM2fwoQ99CK+99hpeeOEFJJNJ1Go1lEolpNNpRKNRd3KuWlK0COh/UKsB6IYsK/2j7SSgMvpLBSrbqdaIUq56ZlksFnOnB2uarOXlZWSzWdfHCpLqZ6MFkM/nEQgEXFZ1jVzjO/V+9i3rOj097QR2Mpl09GUqlcL27dsxNTWFYrHoOaiTNCxBLhKJ4MCBAwgGg1hcXESpVEJfXx/K5TICgY3N1LRgdW+YgqcCrVqo6ldUilZpQLUiNEhCfWPKJqgiRh8n0BXktHroy2Mf5vN5N0c5v+v1OkqlEubn51Gv192m73Q6jbm5OUxMTODq1asuUXClUnHt1qAnBWmCmibupSKg0by0pHRvnBb2o463KnK6ybpX/MsPBFyf//zn3/b7aDSKP/qjP8If/dEfXfeaG264Ad/85jd/kNe+64tqu1zcdlGpZaU8vkYo8Rncb8TPKXA0W4E+S60VPpca4sLCgie/3uLiIjKZDCYnJ91CpGWhXL5qptZi0dxvGgGnfhG2nZ9p3ji1CvkMfZ9qxFbztfQjBYyGgavPAugGCVBz5z4vZmhQIOS7aLlZ/x1BUJMSE6xXV1exvLyM1dVVj3+Mf6u1xcTGsVgMlUoF+Xze0V7sM1qs6ve07dIxIp1LitP6uPh+GxpuLR62U+lqtdKsta9psTQsvVwuOx8f26GKCseMCgu/z+Vy6O/vR7FYxPDwsNsvB8D5rVQhtGuMY2X/ViuSfax74BSI2G+6VcQvJVSv+JdersJ3eFEhrD4MhpHrXhk9x0m1X9VG6a9QK0R9TwzgALqn0fJzvZ558L773e/i4MGDiEajWFhYQCQSQSqVwq233orvfve7WF5eRigUwltvvYV0Oo2hoSFHCSl1WCgUPH4eAC6CTNup9KBSNwSFSqXihBgFqRWQ7EMKJwUt0nKMrrN+IbVEbKoyCp5AIIByuYxwOOyOj+90Ou7kaFqgBKRqtepOlKYlwQMh+/r6kEql3H6yixcvuv5Sa5NWXV9fnxPMtAyy2SxmZ2edj5DWB8FAtz8QdNknDFBhgBQTFjPzB9C1FgjaQJeyVqVDtyioFa9KBsdf90Zpgl1annyG0pSdTje9GH2AmjV+YmICpVIJb775Jm699VYsLCzgrrvucmm8FEg4R9UK03VoFSi2S/102j5Lh9Ky4n18tj6zB1zXL//HwRm98ndf1NHtt8GY16hlpNYFwU+1Y37n5yDnItUNuwoWfGe9XsfS0hIWFxexd+9evPXWWwgGNyK/0um0y7nXarWQy+UcVaVhzdwgTKBot9se5z81avoxWAe9jtYi72c7otEoIpHINXtxbCACi1KjGhln/WH0tahPQq1FRgAmk0mkUinnO6lUKq4tfLbmOWRdCUDxeBypVMr95vli5XLZjZH6C7k3TPc/MVSeQEugUt8KKS0N1LDHsZAWVKuQ46BCnVadWnB+wQoKTFQw2Cd6D8eb1/O3+spUmWi1Wi7oolarOWWBPspKpeI2eTebTWQyGTdu2jZdQ6yXApQFK/tj22IpfF3Xumb54xfw0ivd0gOuTVA44UkBUoCrBkth4+co18Xkt8isP0gXD30Y1sqh8MnlclhcXMRdd93lIumWlpYQiUQwPDzsBBJ9DqyzaptKwVHrVf8AtVMCnIKeBi+o5UCLIxKJXLNvBoB7h+1DWhIa8cgfXse6asYNPp/WCvMb8ph4Plc3gPPdtIQIDjanHgBnvSntqkDNPtUDOzXkn/dbQLbWvIaGK8DZjCQKTmrd0+Kxe7tUaaLg5w+pTqVStY/5bLaX/adzsdFooFgsoq+vDyMjI1hfX0ehUHA+tXA4fM3G+Gg0ikwmg3q9jmKx6FGEuFa4JghqLOqj1TorxahFrXXOcbX4Fdh0zfeKf+lRhZuk2GAA3ZPCRUMOXylCauK8D+hmiNA9KHyHLjre60eP8Nm1Wg2nT5/Gww8/jAMHDqC/vx/f/e538fDDD+Ouu+7CCy+84HwjuVzOZZ6o1WrYtm0bAHiSv/I7AG7DLdClnnTTry7yTCbjhLM69+ljYvut70RpoFarhWw266IIAXhAFYBH2HMceLJxuVxGNBrF2NgY9uzZ4yiv1dVVZ13ZqL1EIuG+W19fRzgcxtDQkLu2UCigXq+7MHkGIjCHIikxBQ0eUplMJl3uSD6bEYasP+cP6UYAjga2VryNduORNjyLS6k9BTMqGCwKRjo31cqjdcc+p6KiSggPtiwUCk6J2L59OxKJBF599VVcunQJrVYL4+PjmJ6exsTEBI4fP45QKITXXnsNo6OjGB4exptvvomrV6+iv7/fWadM4cX6MnCF4K7JnNUna1kQ9e1pH6oSwOvU98dre3Shf+kB1zu8XM9prZYSJ77SRhoSzefQOtAkpSxcOCz8mwtZQ395Lf1EKysrLqEpfRD9/f2Ynp52wpFRVrRIeFQ6fSpcrBQCaulpEAAPsrQUDYUyhS3voRZtfQakp/R6pQpt0IZaDAxwAbrHt7RaLXeo5tTUlCdSkv1PesoGRDAKrtVqIZ1OO0GpkXZAN0M/x5nAwX4D4CwXPTAxEom4vlErTpMCA95MGKwbBbKmN9I9UWqNs58U2DkvSfWqJaEWlypm1iepCgoVDR0XYCNJATPrNxoNrKysuKCNeDyOgYEBpNNpFAoFVCoVLC0t4YEHHkAkEkGxWHQb9pWOVpZD62qpUkujq5Kn4E9GgMBt968p/dgrb196wLVJii4iwHtOF4WFBipQ+HBvD9CN0FM/kI2Oss5kvZaFC5Lv5F6YiYkJXLx40dEvY2NjHqdzvV5HpVJBKpVCIBBwmQtarZbLtqJZC3QbAIUrfUs2r50KaRvm7yd0VEP2a5NSPwpuqjzwWgLSli1bMDU1hZGREedHUd+cjiWfzfOhuCeLFgv7gFQn/WrxeNxRmclk0vUfLapUKuWCESy9aYU95wrD6dXnp2DEMdQgGYKvRs2xbUqD8TOlHnmfn3BX0LTRoAq8fAeziWQyGUxNTaG/vx8LCwsoFArOegmFQkin04jH426uJhIJ7Nu3D8lk0vkMVYFRQNctIXZ7CK/l+rL9rXNKFSkNjrLKgfZ7r/iXHnBtgkJBpBuDNT0TKRcNQmASVvVbaRYF/qhw4EKnIFaBYa0VPq+/vx+rq6uoVqu4++678fjjj2PXrl34zne+g5/4iZ/A2NgYstmsy/6wvr6OT37yk7jjjjswNzeH+fl5lzNOgy6UKgLgBBAFJYGc9SMtyGzpCtLce0ZKTwMiAC9oM4xdw6jVguDzWQcCVzqdxu23345oNIpGo+FSQ7FvSe0CG5p3tVp1beXzeLx8p9NxNJ9aVBT6GrEHwPlytm7dimAw6CIOGdrN/WAEfQIWrZFgMOgs4U6n4yhOtT6ADWsuFot5KEFtl7XSaTWSBtVnqpXH+anpr2y9WcgkcLw47hMTE7j55ptx5coVnD9/Htls1rU/mUxix44diMfjyGazeOihh3D16lXs2rUL4XAYq6urKBaLHkBX4OWxMaq0aGSqzkeuJ12Xuo4516jMqUWn65X16BX/0gOuTVAo+JSasA5qK4R5ny4cLjxqfKrN8nM+2zqG/ehJRggGg0Gsra0hlUohmUxiYmICp06dQqVSwdTUlDsxuN1uu1DtyclJtFotz5Eo6oxXbZwaODV1jZrTnHu6gdqvDdpO22cEJw1IUDrS+nu0DA4OYnx83CXE1SARu6eImr3SrRxfu/9Jo/QULIGuds+UTLSUGMCilon2LceXfcV5RYtOLW62X8eAgpU/BCD+1uAetUh1Hqp/1fqDdMzs+1ioqLCPGo0GqtUqcrkc5ubmMDc350Cj0+kgnU5jZGQEkUgEg4ODGBoawsLCgnsnIw21PnadqcJI0OJ4EXx07fBzjic/t/SgWrgEZd3P1QMv/9IDrnd44eLX/UStVjc5rmreQHefCDe9+iV4tX4bLg4bLUbtW535vI6Li4LqwoULuPfee/HII48gHo/j8uXL+Pa3v40f+ZEfweXLl5HP55FOp1Gr1XD+/Hm0Wi0cP34cMzMzADYyRSSTSSfAmZJIgSAUCrkTfQOBgMt64BfKr8KZwrxcLrt7tB8UoJR6ZL9TqAeDQU9dKMRuvfVWjI+Po1qtugAJ7pWilVitVl2QRn9/vwttV/BMp9Oe0G7+Jtix3xm80mw2neXGa5vNpjtuZWBgAPl8HsVi0X2ukZQa+MK60i+nFBaBlkEh9KepX00BT31zOp8Y/UfBziS51lcEbAAhg0TK5bLH58Si/+fzeZw8eRKvvvoqlpeXHcXabrdx55134oYbbsDs7Cxuv/12dDodjI2NIZVKodlsYnFx0WUT4XsUaCz1rEqfWpxclwro6m+1tL4df3vKs6WYe6VbeuHw7/DCiczFQsFmqRwCGjU4CjHVlq0goVCnlcFrdI+Q3q8+McDrq8nn8+h0OrjppptQKBSwa9cuXLx4EZOTk9i6dSsCgY19SvF4HLlcziWu5ZESPB6eG1xtYAIDGDS4wfoHGHSiVoKfo5+fa1v5uRUmNuxcAwxoBQ4MDLis4nwe4PXJxGIxDA8PO0BRK1IDKrj3TM/u0sMy7fhQs1cQ51YAWqca7s52qRVHzV8tI7XQdA6waGAGhbGOl72e84Sf29/W36rPU4vFz4rmdao48NpQKITx8XG0223Mzc1heHgYjUYDmUzGATmPiNH1ojQ655m+XxUd3YZCFuB6gT3WguV3nI/s0+u1tVc2Sg+43uHFLhTAG46swluFEQWRan6WclLhqc/Qd6oQsD9A168xOzuLfD6P0dFRnD9/Hlu3bkWn08HAwAB27tzpWbA8RXhgYMCFbVNDtlFqLPSVVKtVJ1DUClQhp/fQ16In6KoQsUJctV3tC416Y/2azabznVmrlP3HoAQGBNBvxWeo4PITWpaq4jjqeNMi5FYC9c0x84jmFbzeGNr+07bzOioNfJZGWupz7TNZZ0Z/qpVCZcD6mFShUtqQAMv26/4+vocKWTAYxPDwMOLxOBYWFhAOhz0BQrVazQVysC9ZX7uZWqlEpUtZL/Vp6XxheyxN7DfGSlX2aMLrlx5V+A4vKgxUmJJvV00c6FoJTu19TwAAlf1JREFUKriAa6kxq91y0SjQMWUQP+M16o+hf+m1117Dzp07cd999+Gll17CAw884DYl33777fjTP/1TLC0toa+vDxcvXsTw8DC2b9/u3kV/EIUsQYolHo8D2PDpcC8SBRP31pDaY//oKba6uZb9odo1+yaTySCfz7vUUUx5RNDguWGlUgnRaBRTU1Mu6EN9N4xuZFShWlekHAmq7FelXinUyuWye8by8rInSpRUHUFrYWEB7XYb09PTro60wNR/AnR9UqQ+Cb4qmG1wgVoAFvB17rGotcr26Z46bjLnGKm/Vmk6/rA+GuDBcVPQ57sDgQBGRkYwODiIXC6HK1euIJlM4s0338TevXtRqVQwOzuLlZUVxGIxlEolz/NoPZGa5bxhIJTSofxOfZJq1VN5IjOgypm1+u33vXJt6QHXO7yocNCFyugypfdUY7OaPwuFtWp/lm9XitBqhtYPQc2Sh4hyka6srGBychJra2sYHx93gqnVarkThoeGhtz96rtQIUshxfOV9DoWBWQNjKBg5GZRPZ2Ywl416mAw6MKmqRAA3qM41GGfTCZdGwhaBJNEIuEsAfYTLQIVTtanwvZQMNZqNXdc/erqqqNV2W96Hli73Xb76bjnTSlO9r+eZ6bUJ+tApUcBQi0kzklVkHTOWf+WbkbWuWaFs52z7CcFOJ17nMcapq/znWHwDApaXV1FMBhEsVhEIpFAq7WxObxerztAtf3iN8903Pi/fbcqhHq/+mN1LunzlAnoFf/Sg/VNUJTvVyqEgkCpFt24q4sQ6GYZ15OFbQYOPpdBAEqR6N/0wXCxFYtFzM7OolAo4M4778Rf//VfIxwO4+jRo4hEIrjlllucAKvX61hZWXHh6wA8VgGDMLTeBBygS4NSK280Gi6UnGeEFYtFFy1WKpVQKBRc2DitRqUXqSmPjY1hYmLC4x/jD8G3VqthYGAAN9xwA6amplCpVLCwsOAiJFlYf/r2EomE8z0x4wQB0oIDT2JeXFxENpt1SXlTqRRisRiq1So6nY0gEAZZRCIRjI6OYmJiwvlvNKiBFh/pOs4VHUdaCtzcnEgkXL5FWju6QVqzXahfkRYmM9RzfBW0WBdVyNS3xHFX3x/nJTPD8z0K3lQ0YrEYpqenUSqV8PLLL7vchblczh0bc+HCBYRCIbdlQuvJseb2DI6N9UVxbgDXp/bp/1QGhcqOrvNeQMb3V3rA9Q4vCkAUKlzoFLy6ECgAbMScOtApyPx8Y8rnKzDyOwowRqdRq6agLZVK2LVrF0qlEpaWltDpdDA/P4+9e/cik8m4OlYqFYRCIQwMDDgwZdEIM1KH/F8FHy2cSqWCSqXihAM/1xNs2U7NcaifEwyZgUH3Jqn1xb5iEt3+/n4HmFQECOoUtlYzZ//rOOkYM9CgWCx6cjbG43EP1aZgqhuQOU603AhC6udSsLTCVv1cbLdawNYSVwpP+5XPpA9O80bq9TpenHOcA1p3DU5h0AnnCAFL/XTJZBKjo6Mol8u4evUqBgcHsba2hlAohEQi4VgCWt/sRypF+iz1xamPSvvK0u5qcan1pj4vjqEFdR2XXrm29KjCTVBUuAHe1De6OBS8/OiL7wVyGorNz/2ex2v4Oa8pFosoFovYvn07Wq0W3nzzTaTTabz55pvYtm0bxsbG3PER1WrVCVomjk0mkx6AojWoWTLUQmDiWm6eVSFLrdgCt578aykrBQg9CFAFJotm7+A4UDAzXJ/+LPXLsGhdbaQogywqlYprBy1EtXAIAvSbJJNJJBIJpxhobj0NBlHBqrSf9jv7Q+cVr1Hlh/8rhXi9uaX/awopbn9Qn6MCK31D7CsFKp1/VD4I2MPDw24D/NzcHA4cOIDl5WV3akEul8PKyoobX93gr+PEMfGjqTl/uFZ4L9enshWW8ldFVN9prbJeubb0gOsdXpSWoHBQqk8FIAVyp9PxbNJV5z/pNaCbnsdGHtpNlqp9qiXCBbi+vo5QKIRCoYDl5WXceOON+MhHPoI/+7M/w7/8l/8SX/nKV/Dggw9iaWkJly5dQqfTwdraGhqNBoaHh1GtVnH58mWEQiEkk0kPxaaBCBRiFMwMjyd4qWMe2DjtVulTAoAKIPaRCsBMJoPBwUEsLi6iUqm4/UR69AXTNDUaDQwMDHgCPwBvXrpwOOzR5IEu8NnouHK5jEql4k7u1ROGdQMzoyTZ/51OB+Pj427v1tLSEur1ujv/TC0YJmPmHLIh/mqJc8w1gIZUK9/P7zjXeJSKPhfo7hOjlWHroOd7BQIBR7uSToxGoxgYGHDjQcWFABEMBl0S4unpadxyyy3Yv38/nn32WVQqFezYsQMvvfQS7r//fly+fBnf/e53cfbsWQf8CjBKEXOuK63HoCUqR2rZK1vAvuIaUovKnk7A+xlo1CvXLz2q8B1eVAPmgrCTWgWO+sGAa8PEreZnNUMN+OC7LfWhC5rvCAa7uQiDwSAmJycRj8ddpoL+/n5s3boVY2NjjhokKAwPDwMAqtWqAwYNK9aoMqZLYrQdtWwGQmhAgfr96L+IRCJuE7P6M9gOAG6DMFMG6fN4DY9p4SnHVhvXeitgaGQhhb/60ACgVqu5jcMEZZtZXnPe8R3Mpq8Ckc9Vv5IqKhxj7h3jMzUwxoag6xywForOSe0HFq2Dfa5af/V6HeVy2TPOaqVoolo+E4Cbf5lMBqOjo0gkEsjn845mrdfr2LJlizs8UjdU67zX+aCWuaXReZ0Cj7WUFKjZH2yL3qf3+1l3vdItPYtrExROZNX4FKQUQCxwEYhYdMEp766LVZ9nhZIubOvPYARcIBBw51GFQiHs27cP1WoVW7ZswbZt27C0tIRgMIiVlRVMTEwgkUi4CDLd+6L1ZRQl8wjS+mHh3xr6zjx/Kuh0z5RG9FmhkclkkEwm3RlPFJKsH89/KpVKjiK0YczUxFknBlGo79D2L4UcQVgpMPVdUZAyLyCDIBhQoAKegKtCVyk1tlmBQ/0v1spX60ojBrU96g9VS0T7h4Ckign7hycJ0D+mbIOl0VgfHqIZDAYxMDCAVCoFAFhcXHT+1f7+fgwNDTnlh2OqvjddX2wX+5P10zlq/aWWktd+t33CPrfKYM+/9falB1zv8GIFOGkGwOtr4jX6uQoJwBsAQCFAhz0FFYUfNXwKJvWL6aJSH1A+n8fCwgJisRhGRkZw8OBBnDt3Dvfeey++8IUv4NFHH8X999+P73znOwiFQnjuueeQz+dxyy23YMuWLVhbW8PCwgIGBwcdjabCkMCl/g1GyCWTSU//aEJY3UjKvIi6N4eRjRSAwWAQ4+PjLnN7uVx2IEDgajabWF1dxcWLFzEyMoJkMun6g8Lu7fZKESA0KKVeryMQCLhs5zz2he9leHun03G+rFqthtHRUbcnbm5uDrlczllQSmH5af20Oglk6psjzcW6qtWuvh3dr8R52Ol0UK1WXcAFrRWNIuTY0rKlpajbCgKBgMuuwjFjwAlD+9vtNrLZLC5evOiAYseOHRgaGsLq6iqy2Sxuv/12vPTSS3jwwQcxOjqKN954A9lsFvV63aOYKNiwjja9GvuGYE8wYgJj9onu7VM6MxQKed7LNcz7NRl2r/iXHlW4CYpaVuozUP8Mf/Nzq+WqJqd+LwtC9B3wWhuBp0KLwpwCbX19Hdls1vH/4+PjuHjxIvr7+3HlyhUUCgVMTEw4QCkUCrh8+TKWlpZcYAb9VkofsQ9s9JqCtjrvKVAJWnpqMn+UUtS+4zsYkq+BASwEzE6n46wu+mBIg1laUCPWOp2OJ7hDqSEKtuHhYZdLTz9XwdnpdNxxHuPj445WVF+N1p0ApAJRLXRVjtRfqj4sKjzsQwUspQc1mwXnFC0itYw02tCPpiQ4qzXOucbxa7U2tg8Ui0UAcGm4IpEIqtWqC8efm5vDtm3bEA6HXXooSw1aNsGyFboGlCZVS9bSf+xX7R8NglIGwFp5veJfesD1Di8UFCqgAW/CT+sXIrBoQIY6xdXhzCMngK6Q0KAP0lzW0uO7KdQajQZCoRAuX76MQqGAWCyG7du348SJE5idncXw8DBeeOEF7Nq1CzfffLN73sLCAl555RUEAhtZDniEBBc/60uHfz6fd1o0BSB9IaTq2F62jf40+ox4xD3gTZvFAAG2JZVKYXR01Dc0nu8pFAo4ceIEzp07BwDuzCzdcK2aNftWM4+wfzUv4eTkJG688Ua0222sra15jiphlvOtW7fiPe95D2644QZntQwNDWHnzp1IJpOOuuWcoIXHOcSxVa2f9CF9ge32Rmg+LVWdW1YJ0EAabhGgkkFgWVtbw+rqKtbW1hxIra+vo7+/H4lEwtO/pGMLhQLy+bzbU0UAZd8tLCzg8uXLLrnu2NgYpqamEAwGkc1mcejQIUxPTyMWi7ngDm6hUOWHQSuWBqW1xDHlWlJLlKDLNctnsi/JIKjyorS1+rEtU9Ir15YeVbgJilJ8FHKM5KMw5GK2/Lv1efE7LjI9iVdpDwAeActr1M+i7+ZCLpVKLhNBKpVCvV7H4uIi9u/fj5dffhkrKyvYt28fzp07h3K5jGazibW1NZTLZYTDYaTTaZepW9tDgGabWHdmgdDDCdlmG81GAcRnEbyo7Wp/kTYdHBx0oKCRdeqLy+VyDnh1D5gGtLA/OU6kg9QJrwpBrVZDPB7H1q1bkcvlUKvVXI6//v5+3HDDDRgdHUUsFkO5XEY2m0W73XYbkovForN8bOYJCmEdN7VYtaiVC2xkBOEZXuq/4bW0OmgxWAHPuWTHkv+rgqQKFZ+nVCJ9gQsLCw4Io9EoUqmU2x+Yy+UwMDCAeDzuLN12u+2UGK2/0nuc48o0KG2tn9vr/Oh0BUSuX9vP9IfyGrXye8VbesD1Di/fK2hCaSP+r0LfRj6pJsnn6zX8nsKK/oTrBXRwQZNaYjonBgyEQiHMzMzgvvvuw6lTp3Ds2DFs374d27Ztw+uvvw4A7siPyclJpFIpLC8vo1QqAYATJPRZUWiSmtPMEwq0Wtfr+QBJV2nmB+1rCkEbXUhBz76u1WrI5XIoFAouG4iCPOlGOzYKXDpeDBwYGBjA7bff7iwOtWz27t2LwcFBZLNZLC8vuyASpaA0UwpBV+eLgry11q2FRh+MZkzRIAReQwvKtlcLLQydkyroOZfs2WitVstZf1Q+yuUylpeX3cGpkUgEIyMjyGQyLnLwxhtvRKvVQrFYdJvGV1dXPVsoNNBDKUELvFYp0X5ke+0Y83l2TbMNSgvqO/yUzl7ZKD3geocXu7i5OCjkOLEpXBXEVMCQAqJw4bNJUWhRfl+DCdR3ZAWOJvw9deoUtm/fjvHxcUxNTeHo0aMIh8MYGRnBkSNH8Eu/9Ev48Ic/jBMnTrjNxy+//DLK5TL27NmDcDiMQqGA4eFhByzBYND5Lmhl8QBBWkfW2iKQFQoFdz9BWKPlGBShJwSzDxOJBJLJpAsWUJ+eAmOxWMT58+fRaDTcIZm8ngEJKqD4Huu30T10AHDw4EFMTk6ir68Pq6urzkolGF66dAn5fB79/f1uD1yxWEQoFMLg4KDb70aKkfUm2ChtqNsG1FprNpsuPZMqKip02fekYgE40OQePFqLBD/6mDSdEseWzybFFo/H0Wq1MDs76yyrxcVFXLx40VGIzWYTU1NTuO222zAwMIBTp07h+PHjuOuuu3Dy5Ek0m02XP/PSpUuoVquIRCJuozY3QXNc1AepbIcCjp0HvN6CjoKV3kfAC4fDTpGyrEmvXFt6wLUJih91oA5eLjDV7BRs+L+CnVpLCoaqJSuw6T4aPletL4JAIBBwG3cZenz+/HkcOXLERYUVi0VMTEygr2/jHCn6oGZnZ7FlyxakUilUq1WXMonCC4DHWlSLkgJULSO9RvPNKS1D2o5t4V4mbX8ymbwmD6FSWxybcrmMQqGATCbjoXF5xphq4kq36vgAcDn5Go0GlpeXXaAG28CsHtlsFmtrax6qVIUnn0sAUOWH3+n80n196rvRH1UOtH91DrFfqBTQh+VHs/EZFgQ0uIHjwnczndbi4iKKxaID5Gaz6fYNVioVnDt3zo3xlStXsGXLFrTbG5vX8/m8hw70AwkboKFjzrpZxsNv/5UqUbr2+KN+O17XK29fesC1CYo60K12p9QFf5PLB7xHqXMBUltXCo3PUYqHRQNAAHiAxPq/Op0OXnnlFRw4cABbtmzBoUOHUC6XMTw8jFdeeQXJZBLPPvssPv3pT+PgwYM4efKkE2pXr15FX18f3vve96JareLcuXNuP5iGaPPd0WjU0VmVSsWBJzV7+nZSqZQLD9c+ZWomTe1ErZsCJZlM4sCBA4hGo7h06RLq9TpisZjbt0VfY39/PyqVCpaXl5FOpzE5OQnAq43TP6MUm1KPfGcoFEI8HketVsNbb72FSCSCiYkJt+8oHA5jdXUVly5dckJcLVMN2yfwq2BUSo8JbLklAICL4lP/GOk9ApuCjeZLrNVqjoJTBoDKAd+r80mfpdQkn8kAmna77ai+ZrOJmZkZz0nffX192LNnD8bGxnDkyBG89tpr+Imf+AkcOXIErVYLn/jEJ1Aul3H69Gl3xA6tQwtQllKl0qG+O4KirlGtC8dZ98XpvewffqeKR8/aevvSC1/ZBEWj2DjBKSwtH87FovSNfZbf/6oJqtasC1qpSg0G0Ws6nQ4WFhbw1ltvYWlpCRMTExgfH8fCwgKi0Sjuu+8+zM/Pu/1bPL6dC315eRnr6+surU+xWHSClCCsdCXfSe1ehR6v1+SuSolpFB+FsloJBOWBgQFMTExgZGTE9Zf6k1Q5YBoiWot0+PO5DAvXjbdqxaplRMuLEZOk6trttnsPgUkVGbUA2Fa1ljSnnwa6WGHtF77P5/P9Ou/U6tUsJhTeVJB0vHTMNAuKHQOgSyXyMEjWuV6vO+uYWVpee+017Nq1y214v+mmm7B161YsLy/jypUrLoLQBmeowmbZCbsOrKWmFr8+R/9WKpKKivadtWh7xb/0gGsTFI10A649KVULF5/df6U0h1IWSgPpdXyPXVDqvGadFCgZUn758mXMzMxgfHwc27dvRy6XQzKZxM6dOzEyMoIXXngB+/fvxw033OCyP9DvQR+NCnHr5NeNxawr20FwomBQ+o//8/lKkamApHVE62FgYADj4+PodDouNNzPh8F+4vtphVAYa/oipeR0nLSt1WoVKysryOfzro30JWk2fKVSWejXs8EPVG5U8VG/F+tKgCWI2jRTOvf4TPWrEvhsJndVxKy/Vseb1jSfQ99eu72xRUDBmH4wZshYWVnB/v37nUW5f/9+pFIpzM7O4uLFix7/klK4lgK1TIal3+2cUatWrWqdf6SsNavJ9aIue8W/9KjCTVA06o2LmVFX1ldC+kLByWqFuj9FqRAFCBWkDJPW/S28h4tPBVMgEMDJkyeRTqfxnve8B7fffjtefPFFnDx5EidOnMDP/MzP4HOf+xweeeQR/PRP/zQ+//nPY2ZmBlu2bEG9Xsdrr72GgwcPYmJiwmVfIC1IgGM9A4GAO/aC7dHcgRRcGhkHdDfJart1Tw3BodFouNyG27Ztw+XLl7G4uOgyH2gi4FBo47gMHl7IDO/sR7VQWAcADlzUh8l0R/V6HefOnUMul8NDDz2EkZERFItFXLlyxR1Fz/cxUCUajbo5o74jWihsI/uJ/cnoTm7kBeBy/OkGWVqYpExZKGyZLJjApxvB+WxGhKqVRYqX/cPcl81m09GhjUYDc3NzmJmZcZR1u72xDeDAgQNIJBK4fPkytm/fjqmpKZw8eRIPPfQQdu3ahXw+jyNHjuD48eOoVCqIx+POSlZfqfUFck5rRgsLLErlawCHjrNVODViFujS9Lp9o1f8Sw+4NlFRMFELSJ3MfpFOBCLl5Pm9pYz8NlGqX0MXrNJEVmNuNpu4cOECisUi0uk0tmzZgnPnzuGNN97Aj/7oj+LWW29FrVbD7t27cccdd+DSpUtOMCwtLWF4eBjT09NOsBGUWAduegbgLAJaCnqN0lTaThUSpMBsqDMLrZNwOIypqSmsr6+jUCgA6EZuUvASREmBsU9pISldx75Wi1B9jKQGaYVGo1EMDg66vUvcQkDQ5jsJhJo6iQJVfVUKWjxPrVAoeCwR9g8FsVpKKog5BzlfmBGD4FSpVFxACQBPfkeCrGYZ4ZwDgOHhYcRiMdTrdVy9ehULCwueyL5Wq4VkMonJyUk0m028+eabuO222xAIBHD27Fl8/OMfR6fTQTabxZUrV1CtVp3CpfSltcAsbX69Dci8nvOHip6uSypGnHvqG6MSyjXVA6zvXXr26CYoKih0wehvpYKAayO3VKNXClE1wOs5p6mt8zpdjKSqCIx8Rn9/PxYXF7GysuIyQUxNTWF+fh7r6+s4ePAgzpw5g2g0iltuuQXBYBCFQsGFe8/NzbkTeClAFFgUaLSPLP3G//mZUowqhLTNtrDNfX19nvRKtKAogIPBIJLJ5DU5Arkvi/Qb8x9yTxKtSqXE2OfRaNQdlqn06fLyssumoQqEBosQbHX/FQWl0n6NRgMrKysuW7oWCmzN8qD0mF9iZGaLiMfjSKVSSCaTHutMKWX1owFdK2ttbc2d2UZKOZVKYW5uzkUEKnU+NDSE0dFRlEolvPHGG9i1axdqtZpL5BwMBrG0tITFxUUHkOxr9d2yX5R6VoBSWpFrxoI5QUrXnlKIqgBSybDg1itvX3oW1yYotCbUiuDeI2qm6jsgpUIBT2HHFDfUgv04faVHADgHuXVQU0tl4cJWYdhsNvHCCy+4NESdTgcvvPACTpw4gbvvvhtf/OIXMTc3h4cffhiHDx/Gd7/7XbeRdnV11fnFGKTADc0E1Hg87oQ1owrj8bgLutA9TxTw3FNkfXPsA00FRUHDUPhYLIbR0VGEQiEsLS25jdZs+9DQEMbGxtzpuiyk8MLhsKPQmNeQlhX3szH6jmAFbCTObTQaLqiA/p3BwUF3UjIADA4Oehz/PJ5F/UAMcOD45vN55HI5zM7OeoBcr9E5pICvdDT7j1Ql20Zgj0ajGBkZwcjIiMf65ZzmGPCYkWKxiGw2i3g8jltuuQWrq6uYm5vDwsIC4vE4gK6yMj09jZtvvhlTU1N44oknsLa2hlQqhSeeeAKpVAqxWAynT5/G0aNHnWVMhUuVMs4z7qUjaCl48XoFa64z9o1V6FhPjV5lH5IhoJUOwMOM9Ip/6QHXJijKqatDXEFE/V+Wb9cFBXijBXXPiBVAftqkBnUAXaqRfwNwmynD4TAuXrzotN7h4WGMjo7i4sWLOHToEG699Va89tpr2LdvH/bt24fz5887Id9qtbC0tOSi/lSzp+WkwRUUBKSobEBCp9PN+ajBGxqcwb6xIM530ipKJBLYvn07FhYWkMvlUK1W0W63nbVlaVa1fGjt8rwvhntrpgjWW8Gv2Wy6UHtuL+DmWWYZ0Y246su0lib35jHQRDPl61xRYWwpLzunrKDVOas0om78Zt8wdVO73XZWdjwed6c4Ly4uYnV1FfPz80gkEm68a7UaWq0WtmzZgpGREQDAG2+8gT179jjrau/eve4Zs7OzDiCUOifQ2781YIXrwyo7fmvE7sNSv5euH12PSvFbv3SvXFt6wLUJitJ8anV1Ot39MVw06tymc18XCJ9HbVPT79BK05x/urmZ9eBzeT8tBKWQKOCefPJJjI+P4+d+7uewc+dONJtNfOlLX0KtVsNP/uRP4qabbsJXv/pVfOxjH0MwGMS3vvUtXLlyBeFwGOfPn0elUsGuXbtcpnRSZgxGoLVC4Wh9dqFQCNVq1fl/1LeiNBqFlt6r1BcpMwq2/fv3Y9u2bZidncWZM2cQi8Wwbds2dwaYCjKeN0aLMZVKuet48GEwuBF2z/7M5/POyoxGoygWi1hYWHBANTAw4OrebG5kX19eXkY2m8W2bducFcGxVwsjEom48WWCYgaD6ByhEsAgDgpdPXlZrS+lsoGNAAyOCbczELy1fznnms0mqtWq85H19/cjn8/jySefRKFQwOnTp53yQPAaGBjA4cOHMTIygrm5ORw6dAg/9mM/hq985Su4+eab8cEPfhBXrlzB888/j1dffdX5ANXfqCyFKjtUHMhoqP/J+sKUemSbrOLE9cn/1X/G9cLjWiz13yve0gOuTVD8NDxq63qNClx1xhN0NJgDuHZjMa0Oy80DXa3Qati08HRBUgAwYOD06dOo1+tIp9MYHx9HMpnE+fPnsb6+jm3btmFsbAypVAoHDx7ExYsXMTs767G6IpEIDhw44Cge1kHBl/2igQ+0pEjBAXB5BAHvpmAKXxVM2jfsC34fiUSQTCYxPj6OcrmMaDTqKCw/fwbHkP1kE98C8PhXGBnY6XQ8YJvNZp2FR6uKkX+M4ltbW3NHeVjfkgYcqJClBatKETdCa1owtb7YTyqANeBB5xT/VqqX77ZZUTiGzIhRKBSwsLDgwJzKWSwWw8TEBAYHB1Gr1fDqq6/iwx/+sKPyDh06hOHhYbzxxhuYmZlxypaOp1o/+lv7l/5RnTca1Wu3NPgFcdg5wXVo930po9Ir1y+94IxNUJQrp7ClULZBGPRjWIevUmcataQasTrfKWT0efx5OyqRdSEdFAqF8NZbb2F5edlZH6OjowgGg1hdXUUoFMLY2Jg7q+vmm292zwoGg6jVarh69arLwG6pKxZ9P/tIgwAsJar9x++VHtI6qDDnuymsYrGYC9gAukpGq9VygRg2CwUAZ4FolB/HhtfRMg4EulGTpMeU7otGo0in0xgYGHDW2traGrLZLAqFggM6gjQjHDk+VkFRAcyM9Npu5h/UazT5ru1D638loCYSCc8ZZupb63Q6SCaTLvx/dnbWRSSyDul0Glu3bkUgEMD58+dx/vx5bNmyBbOzs9i9ezemp6fR19eHq1evYn5+3kMp2zlrx55F55i2Qf2k12NElA7ks3Tt6LziGuN49yyuty89i2sTFKUZNHyYAo1CV/cr8UdpP+XuNeO7OtzpRObzdWGqcAPg0ZRp/ViwBIBsNounnnoK4XAYyWQS+/btQ6PRcHu9HnroIfzO7/wObrrpJtx88804fPiwS8zLc6WOHz+O0dFR7Nmzx9WV+Qy13fRvUbvVAA3uBQM29ifxFGGCNikxgoqlkthm+mRIlaVSKQQCAUc/dTobB0xqtCAAd7gh+5S+NgVYFZSsG4Uh0PUpagJY1ov0ISmrWq2Gc+fOeQAhHA5jcHDQnbelGUTUatbzsVSwqtAl4Kq/027MZn/wGZVK5RofKa12ziX+PTg4iGazieeee87Ro/39/SgWi2i1Wrjzzjuxa9cuHDt2DMePH8dP/dRP4ezZs3jqqafwG7/xG0in05iZmcFjjz2G5eVlpFIpty+M81hpTg3BVyVIrTT+kIIn/cngGgVH/s3nqOWq76F1qxZ6z/J6+9KzuDZB4SKyqYnsmT5qWalFoRq0apaWHtN7AXisFqV0WNT5zqI0CK25/v5+nDt3DisrK+jr68OOHTuwdetWXL16FdlsFslkEnfddRfOnz+PhYUFHD58GNu2bXNHVcRiMReyncvlXD0ajQbW1tawsrLinPvMJqEWEjfbaq5Cv8I2UpjqqclKF1HwqmWqlJgGZqhlxL4maOm1vMZP42ddFEw1gAKAA6p2e2MzLiP4NDqQY8p7rW+UcyYajbpoTqWgWTSNlAZ+WKVJtyJovXkKcqlUctnr+R2fwTnFgyRDoY1ToScnJzE0NITh4WGMj48jFArhtddewx133IFdu3bh5ZdfxsDAgAOpq1ev4urVq4hEIh6/lg04UXC21Kr+cC0R8P2Cl/gcnS92ntn1pEFOumZ7xb/0LK5NULiAKpWKh17g5KfmqM5k9QVpVBMAF3arVhjfo9qn7k9Sga28PAWMHgeiYMf3Pv3004jFYvjgBz+IAwcOAABefPFF/Pmf/zn+wT/4B/jwhz+MLVu24C/+4i/wW7/1WxgdHcUv/dIvYWVlxUWS1et1vPnmmxgZGcHk5CSi0aizamKxmAM4XfjBYNBRWQoo7XbbbQ9gn5FGI3XIiDcqAApQqhhQ6NCxTquMY5VMJrG+vu4sBZ7xxfHUfIN8Nx31QFeoaeQjfU8UxkrnkQKMRqPYunWrq6uCFj/juCYSCRf9ODk5iWQy6bEsOYd0HvBcLEtb0wKnz81SjAp2VHLYDmbJiMfjuHDhAi5cuOAZo+HhYWzfvt2N/9NPP42f/MmfxL59+zA/P4/+/n58/OMfR71ex0svvYQjR454aFnOA85b/U59f2yrKkH8UZBiW9gn1h9taXa1yKyiosmvexbX25eexbUJCgWWprhRvl15el7H/6n5+WmadjGqE1l9ZAA82iCL9Tdp3XShMlrs9OnTOHPmDJrNJlKpFG644QYUCgWcOnUK/f39uOOOO3D48GFcvXoVO3bswJYtW9BsNl3uQmAj5DubzWJpaQnxeByjo6MYHBy8hmrSCDACAiMfKWjVMlDQUvBSS0Cj4dhWoOtzUX+OjgkBAYDL7qHPUs3f9jWtE96j1pYCBak+9hPrq1YhrU69lgKX35M+VHrZ+mx047HdzM75Yy1Q+tTY1+pztAE1pLHn5uZQKBTcRuxoNIrx8XHs3LkTU1NTeOutt3Dp0iXs3bsXq6ureO6553DnnXdiamoKq6urOHv2rKNKNXDEUuSMSmWxvi/A699i/9qADfVz+T1L5xC/07XEz3rA9b1LD7g2QVFBqAtKJ7s6iC1wWSc5C4URhYwuFgoY1coVBPV/pTk0y4IKskQigStXruD1119Hp7Nx1Mju3buRTCZx+fJlFAoFDAwM4P7778cTTzyBRqOBu+++G6lUCkD3oEpaSqurq2g0GojH4xgaGkKrtXEeFt+nfaTBFH6+GbUIGIGowpTUoYZ/K3CpAqEBCKqBExgAONpP0w6phax+K1JqzLxBQFUKk4X/W8VB60arg0EXqmzweBMFc97D/2lRqp9IrQ/tF32/n4VhFS8AzueXy+WwvLyMWq3mfJ0jIyPYvXs3xsfHEQwGcfr0aezbtw/NZhNHjx7FhQsXsGfPHsTjcVy8eBEnT57E0tKS5/manYTjybmia0DHxNKEdv3wfgtu+kx9hu0D9pMe6dKjCt++9KjCTVAYxmt36/Nvar3WeqLAoHDT/U4APAKN2r06qMPhsNvvBMBZLAQQfZbSPppDkPWo1+uO2nnkkUdw6NAh7Nu3DwMDAzh58iT+5//8n3jf+96H7du3Y2RkBH/0R3+ET3/60zhw4AC+8Y1v4PXXX0c4HHZZKYrFIl599VXs2LEDU1NTiEQiyOVyngwb7C8mdAW6uQW1D0lTKZ0Xj8cdzcl2alqmYDDoOdmYfcBnkp4kmIRCIQwMDLjMEOvr60gmk84iBbqWtfYrrR+r7TOghPWu1WoucnNwcNCT3sn64Sg4ac319fVhfHwcmUzGbR5Xq7zZbLqoTp60zL7ks7lXTvNFcs5xSwLbpgKdSk6xWHT1mpmZwblz59DpbAQcMXfl7t27MTo6irNnz+L555/Ho48+igMHDuCLX/wi+vv78TM/8zOYmprCzMwMvvjFL+L06dOIx+NuU3sgEHB0skaRsq209Ej9cc7YYCWuMbudxI+xYMBQKBRCuVy+RmHSd2qQRg+43r70gGsTFLWSuGjIh+tn1Nq0WD5eLRKgm+CVWjQXpFpaFJLWoa8+LwVIRvnR36SaeKezcdDkyMgIBgcHMTg4iN27d+Mb3/gGTp48iWg0ivvvvx8LCwtYW1vDrl27cPjwYbz++utoNBpIpVIOHHO5nNusvHXrVieUlOKi/8fmoAO6FgrvoTUBwGOpUJgA3b1vBEBaRewzHQ9ew/5RbVstGtW+GVauVFosFnPApf4ubqRVn6al6fRzTSXE8SB9yEhDP+HLuikNqJY2+1CtGdbR0m5qnWvQSb1eRyQSQT6fx5UrV7CysoKhoSEEAgEXLBKLxZDNZnH27FnMzMzgpptucrQuA3qYTf/ixYsepcAyFLqetL+0vqrg6VoklWf9nNdbuwpKOod0HKwy2itvX3pU4SYoqoHp4uPkt9m+G42GE9RcEOrT4b3q49E9PcrJa9Qa66IUmgplS6HZfTP1eh3xeBzf/e538cYbbyAcDiOTyWBsbAzpdBoXL17Em2++ieHhYTz44IN46qmnUCqVsH//foyOjjqHP9sPwIFXq9XyHL+hAGOFFvuN+5kIsny27iti8aO4gK7wtYKL12j0oApCZrsgeCrNS8qOfij+z/EhaCnV1ul0HAVI8GMdeZ0GE7AuAwMDztLiOCvVx7mTSCRcHfhOgoYeCKnzgj/2wEk+kxuL5+bmHMAuLS1hZWXF1RMAtm7dip07dyKVSiGfz2N+fh6ZTAYA8Oqrr2Lfvn3Ys2cPMpkMLl++jBdffNFZkjr2GtVJALYgxv7l/7YvdP7ofSw6b9hOWsXKQKhio3PGUom94l8CnU0I7/SHvFuKOsUBb5g1aUIuBIIHF5+e5aU+LPWj8HlcXCroNOKK9OD1nNCsiwpNtSoIqv39/YjH4/iDP/gDl3z35MmTOHbsGN566y3cddddeM973oOVlRV89atfxdTUFPbv34/nn38eTz31FFqtjUSxAwMDDnS3bt2KHTt2IJPJOIGpWdHZb7Rems2Nk4UpaOk/SiQSSCQSzhKlT4jCJBKJOIDkvRokoVYK/+YmZAptFebsUwZGaKBFvV53oeDRaNRtaO7r68PAwIDr83K5jFKphGaz6fL8cRxJZ6qVp5GA7Bu1ui0NqvND54PmOCR4EYwJ6FYJaLfbbn68+OKLKBQKLjNKpVLBsWPHXF8wV+UnPvEJTExMoFar4dixY1heXsahQ4dw6dIlRKNR/Pqv/zoikQhWV1fx67/+6zhz5gyCwaBnfxgLlTwN0VdaHYDLvKFWka5FXQd+FhvQBUH1s2rkLZ+lG//Vr/xuCtDI5/NIp9M/0D09qnATFLsJVDVBpb90oqtlpRq9Wl+qdfKHNJVSWPo+1UD1/bpQNXBDAw64KAcGBrCysoKXXnoJ8XgcW7ZswbZt21yeuhdeeAGNRgOPPvooPvKRj+DrX/86brnlFtxzzz04ceKEC8zQti4vLyMcDrtNqkAXtGlNKAWkfWKj49RK1ES+Srtqn9BPoZqyZr/w0+5pTTBHIOupWr9arhper+OgAlj7g4XfqTavz9GtDSosNciDUZlqdfNZvJdt1ITIpVLJ7T1kMAgVAgJ5PB7H1NQUOp0OZmdnUS6XkclkHIgzK8j6+rr7/uDBg4jFYqhUKnjooYcQiURQqVRw4cIFnDt3DolEwiUeZv1UUVMGwyoa9GWy79j/ei/nvVJ+HH/tG41e5T2qOLDwOq67no/re5eexbUJikYJqiVDocDTeJWyU7pCs2CzWOqMi04jDK3TmZqzOqtpwTCtEBeggof65Lio6Y/asWMHPvCBD+DRRx91J+e+9NJLeOaZZ7B//37cd999GBgYwB/8wR8glUrh5ptvxtGjR3H8+HEXiNHpdFAqlRAIBLB9+3YcOHAAU1NTyGazWF1dRTKZRDKZ9Jw0zPY0m02srq66SEBmiyDlpudYWVqJwkqtFo5NqVRy48AchhTWCpw8uoTvosALh8OoVqvI5/NuXxOtnGAwiFQq5axNBmfwuBQmt7XAq8BoQUcFpio19JvqOV3W90MhTn8b67O2tuaxMPr6+lzW92KxiP7+fpf+67HHHnPZRoaGhpzvc8uWLejr68Pp06fRbrfx8MMP49y5c3jttdfwr//1v8bWrVtx6tQpfPvb38YzzzyD5eVllyuTPlsVcWyn+qeoEHJ+83u2hdlO6I9j3+m61Kz3vJ9ApRShjcpl3/lZaj2L6/qlZ3FtgqILDfDmVaOQ4d8sKkRVc+dCtUEWSuGopQR4fR12MakFpnVQcNBFSCFSr9eRSqXw5ptvot1uu/OUYrEYdu3ahUajgW9/+9tot9t43/veh0984hP4whe+gHg8jptuuglra2s4ffq0Axy2a3Z21h1emMlkUKlUUC6X0W63Hb2mznJSdgDcfiv+Vj+gBiXoj5/PQy04S92y8H8eSa/PViGn9B77WftbBR79lOxv3m/9nSo4dQ5xrPR5GoDBoicWcw7YjbOhUAiJROKajBpXr15FvV5Hf38/duzYgWaziZmZGVSrVZePsVQqIZVKucTKzz//PILBIG699Vbk83mcOnXKWemBQACvvPIKjh49itnZWTf37X4pXUMEdF0PGpCk81QtXI63H7tg77HMhH7PuacWnCqclj3plWtLLzhjkxTV1DSqTcPQtSiPboWvHyjxWlpmSp2pgKOlx/u46C0wqRC279NnMUPCk08+ibNnzyKXy2F4eBh79+7F8PAwXnzxRTz55JPYvn077rvvPmSzWWzZsgW333474vG4CxBg5F+5XMalS5dw7tw5ABvHvtMaYAopgna5XEaxWESn03Eh8wRC9dPZwAL1K6plq0DDPmR4uI4Tnx0MBt35U8xaz3eoP8mOmdYJ6O73UjpP66vjopQgr2F4vSo5bCefy3G2gEzrSsPLad0lk0mXE5KZPnK5HMrlMmKxGOLxOLLZLE6fPu2JiOW5YoODg8jlcqjX69i1axeGhoZw/PhxJBIJPPjggwCAq1ev4umnn8bFixc942EVKh1364vkeCtAc8y0v+xz1Gepe9vUp2jnvNKI9ggitQI3IRH291p6VOEmKBSmXEhA9wgM0oSkG1TjVbpEfVKaxkk3GWvEl0bNaT2UHuFvKwxVm9eFqZaOWhUUWqlUCtPT0/jkJz+JAwcOuKCNp59+GhMTE7jzzjvxZ3/2Z+7vS5cu4ZVXXsGVK1ewuLjozrNaWlpCu93GHXfcgZtvvhnJZBJLS0uo1WoYHR11e3vOnj2LQGDjBN10Ou18NJqBAugerx4IdBMQ02fjBwQESdJGrVYLsVgMmUzG0yedTsdFBxJcWRhsQToY6O6jY/Qg65PP51EqlVwOQd7DLOw6fsAGMAQCARcEQuHLuipYMkkxLVMVuLohWcFelZVKpeJoxmaziYWFBYyOjiKdTuPFF1/E1atX3bMCgQBKpRK2bNmChx9+GHNzc5idncXhw4fx1ltvYWlpCe95z3vw0Y9+FOPj4zhy5Aj++q//Gi+88ILHQrX+PL5b+0BZANZbs5/oPbzPWkV8h+5btDQsi1rSnFNqwan/UFOHvRtKjyr8IS1+FIRq/UrLWceuUonqmNZgAuXkeb0VQHy//q1apT5TrRHrN2HddG9Uo9FALBZDPp9HuVzGE088gWazicOHD2P//v2IRqP40pe+hOnpaezatQtvvvkmXnrpJezbtw+33HILBgYGUCgUPIK11Wq5sOmbbroJAwMDLilvtVpFuVxGpVJxx2qwTbpJm4KGAksd6+qvU58PaSgmoWV0Xa1WQ7FYdIDA9xAIKXBtRJmGUzcaDUct8nv2Of1gHBP2v2rwfgLVz8/D8VSlg++koqPfsVD48ln9/f3OIuYzx8bGEA6Hsbq6isXFRZdvMhAIoFqtIhQK4T3veQ927dqFp59+Gg8//DCq1ao7/fi9730vxsfHUa/X8dxzz+HEiROuzTqn2Ea1etSatFaQ9qfV5XWe27XAfrZUPfvAT4nT8eD7LDXZK29fehbXJigMKdagCOXxCTr0HQSDQQ99ZqlAghzQBTZmyNDNrBo6TI2YVheFKZ/DaEQV6LQS9Z20vHi6Lqk0BYxGo4FIJIJ/9s/+Ge69914MDAzgr/7qr/Dkk0/i4x//ODKZDNbW1vDkk08ik8lg9+7dWFpawrlz53Du3DkXuVitVrG2tobdu3djx44d7pgMHuteq9Vwww03YGJiwmm6iUQCgHdvDv0RFMwajMH+UMuJViUBiLkGaUW1221HoxEEgsEgksmkG4u1tTUA3cSrFP4MvmBReksDYgiEjKgkLcn+V7AlJcgx57hpairuoWPkm/XD8DvOT9aLfZBIJBAIBHD27FnMzs6673midTabRV9fH375l38ZY2NjeOqpp/DBD34QmUwGn/vc57Bjxw7cc889OHDgAE6dOoWnnnoKf/VXf+XqbDdhWx+X+qr4mfX3WdBTRYx9pd+pxc166LxR3xmVHe13jgX/VytM/Zo/7KVncf2QFmrOCh4APPtRdMHYRaoapf1cLSR+RoBT6471oGBVDRXANaBlBZu1TPT4dbUaSZ81mxv550ZGRnDzzTfj3nvvxdraGp544gncc8892LVrF+655x4cO3YMJ0+exK233opEIuEAIhwOu4wWMzMzaLVa2LFjB7Zt2+Z8SjMzMx7LhgLD0p0aXGB9hvYodr/7STXqZmNGBxKECNgWWFSAKYWrlhTroAEgqqRYy0LHhddQKWK7FHR0Luj84/Wsu1paOpe4J2x1ddXtvYrFYlhZWUEkEkG5XAYA7N27FxMTE3j++edx9epVTE9P44knnsD4+DjuvPNOTE9P48yZMzhy5Aief/55Vx/WVS1BFq6RdrvtoTIV3JQJ0GLXBtsEdPeDUWFUBULXnw2CUibDvp/9zPnSK9cvPeDaBEW5dRal+lTb5CK10YF2ESq1opqlghmv47X6vy5CS0XZsHM/oUBLhO0jtcZAgf7+fpw5cwYjIyPo6+vDPffcg4ceegh/+Id/iMcffxzlchkPPvgg4vE4nn/+eeRyOWzduhW33XYb3nrrLaytrTnLrdVqYWFhAdVqFcPDw5iensbw8LDbeNxsNj3v10231qnO/zXYwm4BUIsV6PoGadHyGrafgMNjTnQMrJ+Ffad7i0iP8h49RZjX67N4jx0/zSxB+lDfqW3SMeW12jbOA1obV65cwYULF9y2hHw+j1gshnK5jFqthu3bt+Pee+/Fyy+/jEuXLuH9738/Tpw4gWPHjuFTn/oUtm7dik6ng2eeeQbPP/+8C7ThtgH63TjvOCYsSs0qkOgaYR9butXS39p+HSuuO6Cbt9Lvfl27Wrh2NTCqV/xLjyrcBIWTn5YI4LVgdMFQiOk5TaR6lPahBkrnsmqGqmHzuer8VnqL1/O5fCeFId+hGTxsIAkFqAYh8P9Wq4XBwUF89rOfxb59+1CpVHDmzBk8//zzGB8fx4MPPoiBgQF8/vOfR6VSwaOPPopms4krV67g8ccfd3t6VlZWUCqVEI/HceONN+LQoUO48cYbsbS0hJmZGU+6JLaDWTKs/4EBGOxv0muao5EnDCslS5Bstzcy3PPgRwZJaIYO9otaeBo0QSHHZxBAmZVEcynqIZRA90DSTqfjrJ1qtYparYZOZyNzPy2KZDKJTqeDQqHgxlytNtaVAMR28fkzMzPIZrNot9sYHx/HwsICCoUCYrEY1tbW0Gw2kclk8K/+1b/C7Oys83GdPHkSr7/+Oj7ykY9gx44duHjxIp577jl89atfdYdCcn5oUIvtH6XgWNgOna9W0dNAKH5nc1bq+tC5rnNcqUAboKH/q2/57RS+H8byt6EKe+Hwm6AojQB0o6BUk1MLQYuGXitHrxaW1bxVUOvi6evrc4JcLb12u+05YkM1R9ZfhYJqp1oPe6ozhXE2m8UTTzyBU6dOIZlM4tChQ/jABz6A1157DU8//TRWV1fx0EMPIZlM4rXXXkM4HMbu3buxe/duDA0NeUC2v78fly9fxjPPPINKpYJMJuNSR3ETtYb7W9pPLRHry6EviwlnGZ7O8bEgF41GXbsJaOrP0kwT1qptNBouYq9SqaBUKl0TfMN2Kw1KYc0wds14T+WGFqJGVlqlRp+tQj8ejyOVSiEcDuPMmTNYWFhw4FQul1Eul5FIJFwo/ejoKO69914sLS3h2Wefxe23346ZmRl8+9vfxiOPPIIdO3bgypUrePXVV/HSSy+5gA9mJtF5olY+Pwe6fkAFGY4F79V5ybapMqfPUapd1wvXg907yX7TbQ18p1p9+tMrb196VOEmKRQ8b0dvWH+M8uh8hv5WLU+pDAtiFLx8jz3mgQvTLxJR0+dYuk2pLKVB+b1amM8//zyazSZ2797t9nlNT0/jlVdeQaPRwEc/+lH8yI/8CP73//7fKJfLuPvuu3H77bfj9OnTyOVyjlYicKyuruLMmTM4cOAAtmzZgoWFBXekCWk39Yfwh6CiQpDX6X4otosWkLZPLR+CSL1ed5YKLSeNCrR7hAqFgud0Yt6nWVL4uQJuIBBwPhkVsHr8CkHW+tso2DUlGP1b9NnRKlleXkalUsHExAQymQwuXbqEpaUlpFIp54ccGhrC4cOHsWfPHjz++OMYGxvD/Pw8/uIv/gLRaBS7d+9Gs9nESy+9hGPHjuHChQsOeNm/tHQ004WuCwUipfd0XtvIPqtQ8ToNTLHRitZi43ecwxqkpMqgnfd2/fSKf+lRhZug6KKjFqyavC4IDYqw0VVWO1ZfB59Hyo80jNIqgDeJqH0+Bb49j4v1tqHU1rrT661lSArvgQcewEc+8hHs378fwWAQr7/+Op599lm0Wi3ce++9GBsbw3e+8x2cOnUKP/7jP44bbrgBjz/+OJ599lnMzs4664qBG8PDw/jxH/9xDA0NoVKpYGZmxoWzs3/11GBSfqRiVdgRHNS/EQqFHGXI1E8U9OyTarWKVqvlju9Ip9NIJpNYXV11qaPYX+122x0syboR6NLpNCKRiMcCjkajnk3QfKdag/yfdGUmk/H4hGhpqH8T2PDJaRg/0zwdP34c0WgU27dvR7lcxsLCgssdSMtwdHQUn/70p1EqlfDcc8/hp37qp1Cr1fDYY4/h0UcfxU033YRsNosnn3wSn//85z20HYv641R5ooKh/wNdBYnjpPOSn+sa4f82Y8r15ijXla4nrhF9hlpV6pu0DMUmFM1/q9KLKvwhLmqpqIZpF6IKFqu9qW+CWqWlHNWBrxSlHj1v6TMFQz8NknWxn1vtVEFAfSkE2f7+fhw/fhypVArtdhuHDx/GgQMHEAwG8YUvfAFra2v4p//0n+LBBx/EyMgIvvnNb+KjH/0obrjhBpw5cwZLS0vuaBWCaLFYxGuvvYZbbrnFBQ7YjahsMy0opVyBbuSfFarsc/YlD+pkm7hZuNncyOrOwxwzmQw6nQ7y+TxyuZzLn0jAY/487kFTC4kCjyBTKpXc0SOkJrVetKiotHDbhfXDqDCllUWwY97Jq1evYmZmBoODgxgfH0c+n8fs7KwDBgZUbNmyBbfccguWl5fx4osvIpPJYH19Hd/5znfw8MMP4/bbb0c4HMZjjz2GZ555xmPt6NlwWi/93wKLziO7BngdfYjah2pB0Rq1z1AKUNeGzg0FKipuqhjyt4Jer7x96Vlcm6Bw4lPoUbAz+o6CRjVPpUgUZFT7Ixhwwy4XpS42K5B1YdqpY+sIdBeuH1XoR6+odamfM1MEgwmGhobw2c9+FgcPHnR+qzNnzuDYsWM4ePAgJicnMTs7ixdeeAG33HILIpEIXn/9dbz88ssIBDY27CqgDA4O4sYbb8R73vMeNJtNrK2tOYtF902xqKZcrVZdZCLQ9fFxnGgla5uBjdON+Z5UKoXbbrsNExMTGB8fR7FYxFNPPYWjR48inU678H7ufyOY0dqiVagRhJVKBZcvX3YWMDNWhEIhlEolZzH19fV5wvKDwY0wfQJrILCR0SKXy7ln9ff3Y3BwEACwvLyMV199FdFoFKOjoygWiy7BcSQSQbPZRDabRTQaxYc//GHE43G8/PLLuPnmm3HbbbehXC7jO9/5Dt7//vfj3nvvxdzcHI4fP47/+l//q+tPniatwGQBi33LOcg5pICjUYU2OpPZUBjwoX48nb8KmHwX1xCDQajMENg0uMNSk8p0vJssLZa/9+CM3/3d30UgEMAv/dIvuc9qtRo+85nPYHh4GMlkEh/72MewuLjoue/KlSt45JFHEI/HMTY2hl/91V/taRlvU9SfoNo04PVTqTC11o9q/gpm1LoBb0JevsvSd7qXiJ8pkFkNXakaaqZ8jj5PneuqnfJvtWoCgQByuRyOHDmC1157DcViEbt378bdd9+NaDSK48eP49vf/jYymQweeughHD9+HIuLixgfH3cCularuU3AgUAA+XweZ86cwaVLl5xCoCCjVo3Wi4KJwlEDMDSi0Gr/HMd4PI7BwUGMjIx43se+qFarqFarzi8FbACeHiSpgQYUgprVnoWBGBpgoMEJbI+dMzwXjPfGYjFEo1GsrKzg+PHjeOWVV1xWk/7+fszMzGBpaQmBQMBlDIlGo9i7dy86nQ6ee+45RCIRvPe970U2m8Wzzz6LD3zgA7jjjjtw9epVHD16FE8++aRnnvrNQWUNdEysX9eP4tPnaqQg57xa1ko56r1KXyqNauc+68gx1Khcfq+WWK987/K37qUXX3wR/+W//BccOnTI8/kv//Iv4xvf+Aa+9rWvYWBgAL/wC7+ARx99FM899xyAjcnxyCOPuI2G8/Pz+OQnP4n+/n789m//9v9Za36Ii2qRChAUVCrwlcJT/l7pEtVQeY1y7BYsGWWmGzp5He9RAcNn6YJUR7jSMhpibxc/n2O3AfT1bWQNJx32kY98BJOTk7jjjjvw6quvYnl5GRcvXsS9996LyclJvPLKK9i2bRvGx8cxPz/vfCCJRMITAXjs2DEcOnQIO3bscGHXmvBWN4dS0ClAKHWqARC6x6vdbjtLbnx8HKlUymXRYPh6KBRylOb6+ro7k0qBEehuhFXKiePBwza516ler7u8gRpcwHFi0Q3E2WzWhZv39/cjlUoBALLZLE6ePOkoz3Q6jUqlgoWFBZf1Q6nIgwcPYmpqCi+++CK2bt2KD3zgA7h06RKeffZZTExM4Pbbb0d/fz9eeOEFPPPMMzh//rwDbz7LT0kCvJQfi/UbWWVI564Clx+tRxCyYMfruP64zugX1DWk1DPfp+tG66Y0Yq/4l78VVVgqlXD77bfjc5/7HP7dv/t3uPXWW/Ef/+N/RD6fx+joKL785S/jJ37iJwAAZ86cwf79+3H06FHcc889+Na3voWPfOQjmJubw/j4OADgP//n/4xf+7Vfc4cBfq/ybqMKOeFJBflZp7oQde8UPydYWJ+A9XlZipHP1oWokWusG8GPlAm/0/0wFmQ51gq6pD15rwVIrQefGQgE8OlPfxp33HEH9u3bh3w+j4WFBXz5y1/G+vo6fvZnfxYrKys4duwYnn32WRSLRQdYCuYECQB48MEHsWvXLgwPD2Ntbc3lQrTzkwBDIUnLjOPWarWwvLzsAI6JcHfv3o2JiQkMDw+7fgM2aBMA2L59Oy5cuIA//MM/RL1eRyaTwcjIiHsOw+QJpEp58d0co1qthkKhgLW1NYRCIWQyGU8SZgCe0HwCJwCXjmtkZATlchkXL17E1atXEY1GsWPHDkdZnz59Gtls1pMpPhQKuZRaFy5cQCQSwSc+8Qk0m0288MIL2LZtGz7wgQ9gbGwML7/8Mp566ik89thjblxJr1lAoVLAeajzVYMiOGd43AvvVfrOWkC8Rp+jAUzax6yT+n/VYuY4qJ+WY2WBSevLZ71bgOvvjSr8zGc+g0ceeQQPPfSQ5/OXX34Z6+vrns/37duHbdu24ejRowCAo0eP4uabb3agBQAf+tCHUCgUcOrUKd/3karQn3dbsUCjlBt9HCzWQWz39/Aa9b/o9fpOpb+UztN7dIH5gQzgBUbWgdSVRmypFagWnDrBldKhcD5y5Ai+9a1vIZ/PI5PJ4MYbb8QDDzyAZDKJp556Cn19fTh8+DAOHTqEdDqNtbU155OqVCoufyIPxjx16hTefPNNLCwsuCM6mEuQfUpQ4P4kWmcKUolEwu1r2rJlC/bv349bbrkFO3fuxNjYmGsPrbJ2u+18ZkNDQ5icnERfX5/bIMx+JTWlfhjWy9J97H+lixUEms2mA7ZcLudReGKxGMLhMK5cuYIXX3wRs7Oz2LlzJ3bu3IlKpYLFxUVcunQJ2WzW+b8o4Ldv346JiQmUSiWk02k89NBDKBaLePLJJ9FsNvHwww+77xmIwfmop1Yr7e3XNqW9lV1gUUpO14IqTPpMyyQo9e33XA1kArqb0vlOzZyvdfYLCPEbw165tvzAVOFXvvIVHD9+HC+++OI133GRZzIZz+fcMc9rFLT4Pb/zK7/zO7+D3/zN3/xBq/pDU3RCW4cyBTrQTTOjVolaXLoglJ/3W+y8XvcBqQarwkKtH93rohac0lksWn91dvf19blsHqyLWpO6V4fa6+zsLHK5HPbt24c777wTo6OjuOOOO5BIJPDVr34VCwsLeO9734t/9I/+EaampvDMM88gm80iHo87KrDT6SCTySCfz2NpaQnr6+tYXV3FwYMHEY/HEQ6HHaVXKpUcwDC7ObXyZnPjZGYF7ng8jm3btmFqagrJZNKTQkutaP4fCAQwNDSEO++8E+FwGIuLi+7oFma2sBaBgpIqOvyMwKcpoag46NEtKkxnZmZQLBZdYMiuXbuQyWSwuLiI8+fPo1KpoNFouM3bnU7HbUKOxWK4cOECOp0O/sk/+ScYGBjAX/7lX2JsbAwPPPAAhoaGsLS0hFOnTuHYsWNOCVE61iphlqazARN+ipgqTPZz4Fp/rvVP6TtVmeL3ZAmsosaiVKZVvHTt6frrlbcvPxBwXb16Ff/iX/wLPP74476RVn9X5bOf/Sx+5Vd+xf1fKBSwdevWv7f3vxOK1aw1ao8CyQ+glILgAga6wQbVatW9Q8OhrRWlyWM1ZRDPaeI1rAN/a73po9EQbNVoKUit8FRqRykjpXN473/4D/8B27Ztw2233YZPfvKTuOuuu7Bt2zYcO3YMjz32GG6++WbceuutOHToEP76r/8aJ06ccOdkMZs8BSCt+zfeeMMdG7Jjxw6MjIx4KD7u1QK6508Vi0XX53v27MHk5KQ7tp45CUOhkIsYpE9qcnISQDfp7vve9z7cfvvtmJ2dxde+9jUUi0WXiYIASkuPkYDsa1ogPM5laWkJADxUoG52DgaDqNVqePHFF10f7Nu3D7t27UK73XZWGffNccMvxyeRSCCdTqPZbCKfzyOZTOK+++5DKpXCM888g2AwiH/+z/85xsfHUavV8N//+3/HSy+9hEuXLrnnkXokGKiSwvpyvDlPaOlRqVGFh5Qir6WCoMqQ+o913qq1b/1rHCP7PdeY+mbVd8w5wX2JmnaK0ZNclz0gu375gYDr5ZdfxtLSEm6//Xb3WavVwtNPP43/9J/+E44cOYJGo4FcLuexuhYXFzExMQEAmJiYwAsvvOB5LqMOeY0tzBn3bi26UIEuVaTao1/Eky48oBs4oD4yfSZ/2yAQpccUTHQxq3aqC9tquOp/42ZZC7SqHWvdQ6GQJ0cg60bfUq1WQzQaxezsLLLZLKanp7Fnzx4cOHAADz30ECYnJ/GlL30Jb7zxBm699Vbcc889GBgYwLe+9S33DL5THemk0vL5PIrFIlKpFEZHRxGLxRCJRDA0NISBgQGk02lH92UyGUcv3nXXXRgeHkY+n8fq6qrzlYXDYQwPD7s9WqQf6/U6zp496yhxBkRMT09jdXXVs5eJiovNUMK+VKGcSCScj41jt76+jnK5jJWVFTemsVjMRQWn02m0222cOHHCgXq1WvUoOJ1OByMjIy7cOxgM4tZbb8X999+PTqeDt956C8PDw7j//vsxNDSEbDaLN954A0888QTm5uY8fU4AVbpYGQa/qFNLI/pZUrzfgo72GcHDWqz6bD5fIxVVyWLhPNBgIxYyGXyWBvb4va9Xri0/UHBGsVjE5cuXPZ/9zM/8DPbt24df+7Vfw9atWzE6Oor/8T/+Bz72sY8BAM6ePYt9+/ZdE5wxPz+PsbExAMCf/Mmf4Fd/9VextLT0fQHUuy04w2bkZlQaNWS1vlQTVb+Q+pHsNSro+B4/bZOCSf1PpHX03RZoVQCoc5oBAbrnRYFR6RbWT60um82D1/A6Zo34xV/8Rdx1113YsmULarUazp49i5MnT+L5559HKBTC/v370el0UCwW8eyzz6JarSKTyXj2OfE9tGDY79zPpFZLOBzGvn37sGPHDoyPj2Pv3r1IJpMuoIKZNCqVijvQcmlpCX/zN3+Ds2fPuqhHBR5aQAzM2L9/v9uTBXQtaE0DBWwkvy2VSigUCs7i4hwCNgRsMpnE1q1bXf3m5+exsrLiMnqoiCgWi47SJahxHLZu3Yr9+/fjtttuQ71ex9e+9jVkMhnce++9eN/73odqtYrPf/7zeP311zE3N+c5R8taF5xv+j8tfJ17/M4qXAoWSlNr9KTeq8qKUncaSarWmlpXfK8Gi/AzWtNkBGykoQVWVUjeLeVvE5zxf7wB+X3ve5+LKgSAn//5n8c3v/lN/Lf/9t+QTqfxi7/4iwDgzs9ptVq49dZbMTk5id/7vd/DwsICfvqnfxo/93M/932Hw7/bgCsWi3kWAye4WidKb1hOXX1RytdTMPI+G5GltCMDOQKBgBMe6jjXxa6UorXkVJvlURRK0/A7aqV8P6MV9Rn8m795PRMBc/Pr9u3bceedd2L//v245557EAhs7Ns6cuQIzp8/j3K5jAMHDmBgYABvvPEGXnnlFaytrSEQ6Oaaox+LtGK5XHYaNf26Gj4PwFk3w8PDGBwcxJ49e5DJZJBIJNDX14dyuYylpSUsLy9jbm4OJ0+edG3hHjMev5LL5VAsFp2wLpfLSCaTSCQSniwa3CtEvxMBltf09fW5jcUEDfrtKpWKC9CgVcY5xqCNdruNSCSCZDKJQCCAbDaLwcFB3H333S6P5OzsLF5++WVMTk7ive99L2644QaUSiWcOHECf/Inf4JiseiZexoJSaoY6Cps6rNVGk5paRbOJ2shKRvAZ2nAhtLRFgCpFKjFpyDHZ1KpUTBiHbUdWi9tC8ee4/huKe+IlE+///u/j2AwiI997GOo1+v40Ic+hM997nPu+76+Pnz961/Hz//8z+Pw4cNIJBL41Kc+hd/6rd/6v12VH5qioc0smltQLSRdkAQZ/q9AAnQ3TupC1ueo5soFzegopWz8dB/rhOZnSi9SwFh/FwFHNea34/u13uyn/v5+50s6e/YsstksTp8+jXA4jD179mB4eBgf/ehHceXKFXzpS1/CsWPHsGvXLhw8eBCJRALPP/88lpeX0Ww2kUwmXW5DghKjD9vtjdyF+Xze9TET67bbG5kaLl++jPPnz+PYsWPOD8WMJ/l83o0lAYGWKDX9SCSC0dFRjI6OuvG+ePGi8y+2WhsnCVerVQcI/JmYmHDgOj4+7rEYyaBQWLLQIqzX61haWvIIZh7XwncfPHgQ+/fvx/79+9FqbZx79pd/+ZeYnp52oe7VahWPP/44XnrpJdRqNY/Q13lM4LIKmc4zBRsCiG6hUB+utZzUegX8zyWz7+Fa4zzj/Xy/9acpMNk2KJj5vdPS9r1y/dJL+bQJChelJm/loYRK+VF740LVhQN495QA3o2mvNZGp6nfR4UCFx5Bgpqyn4+C96rfiMEJ1jdD+o3UivXXsa2Ad/8XnwF48zrq9Twva/v27di1axf+8T/+x9iyZYs7Dfn06dP4X//rfyGdTuOuu+5ygvv111/HysoKarUaUqkUqtWqpw7RaNTReNovSuECcMeeWJ9MOBxGKpXyZKVn/ySTSbRaGxk0NKiDvjDuUWq1Wg4U6DuMRCKeVElK+dKCDoVCqFarKJVKDoR5LheViHA4jHw+7/xyN954I2666SbccMMNaLVaWFxcxNGjRxGJRDA5OYm7774b8XgcFy9exOnTp3H+/HnMz8+7+UfLXWlI9S1ZwGJ7mOuRc4h9ZYGFf7Molcc5RP+ezildP1xful4UGPX9VP60DVZB03mp46AnR6sofjeB1/8TqvD/RXm3AZdaQxwuOn91gVjtFPCmv+HnXKgKerxWv2fRQAheR+6eG1T1qBP1qym9o5YR0M04YCkapU0ALxCTstFrtN3aD7yeQkX7LRwO40d/9Eexf/9+3HfffUgmk2g2m/j617+OEydOoFwuY+vWrYhEIlhfX8fc3BwuXryIxcVFrK+vY2RkxJ2JRWHaaDQQi8UQj8edVcXPOU4EGwIQhaMKYFKMfAYT2iqQsF68t91ue87k0uNUVKun1cj+YBtKpZIbO6WFmQl/165d2Lp1K5LJJEZGRjA2Noa5uTm88sorWF1dxd69e7FlyxZkMhkEg0Fks1kcPXoUs7Ozbix0bKmkqFKjlowqLBz7VqvlycfI59mxtds+7DvZRt0ozb5gnfyCK/w2DnMeq/JnGQauW7XQuK40mlLrbNftD3PpAdcPaaEVw4lOwaTC3vqx7D4hanj8XhcKr2FINxchKRgucloEGuihGifrofQfi4KLRolZSpLf05IBvDkUVbCxT0iJ6r2skwXRaDTq0jsRcHfu3In9+/dj9+7deOCBBxAKhXD8+HFcuHDB+Z8YeNTX14dLly7h9OnTjiIEgMHBQdTrddeOSqXi+oh1oVXFdvA3gUKPn7dbHNh3BHoqDTqu7GceeaL9QiuN1/DvTCbjEvhS+Wg0Gi7Z7969e5FOpzE5OYlarYaZmRmXR/C2227DyMgI2u02lpaWkMvlkMvlcOHCBVSrVcRiMTcWDP9Wi0r9Vjrv2G5ts7IEGkKugRUEHACu/zgntH8UAHV+Xg9UdV7pPFc/rAU164O2gVCqlClVz/7ahGL5b13eET6uXvm/XxQM7IJSas86gpVTt8DAa+w7FGystqgCxkZo6SK1i9L6DlTosD4KiLyOz/WjfbT9pBd1/5m1QtkWW+9UKoULFy5gZmYGr7/+OgKBAHbs2IFdu3bhxhtvRLVaxV/91V/h/PnzuHr1Ku644w5kMhkMDg5ifX0dmUwGKysrKBQKLrQ9Eom4vVwM6uh0Oi4dUiAQ8Pxmn0UiESe4KFx5jbaVFBP9NuVy2RNYo8JQM5IzgIM+RB53UqlUEI1GMTg4iFAohMnJSRcRGY1GUS6X8eqrr2J+fh5LS0u46aabXCRlrVZDLpfDqVOnkM/nXVZ1pSip+KgFTrqbAEwaV+fQ9cbS+mZVmdFIU0sd+/mU9DNdN7SidDxUEbJWkvqhLbXu9x5dN5zfquS8myyuv03pWVyboITDYY+Fw6KRf6p9arQVDw8MBoPOZ0TN3ibgVZqEn6lAVG1ZhaMCmxUY1ERZLI2i/geljfi9bhoF4CwIfQd9NaqtWt8E4AU7CjluHuZR9nv27MHevXvx0EMPYXp6GvF43IHaW2+9haWlJdfXDFSIRqOYmZnB4uKis+TS6bTLrsHDK1dWVhzIsu084JHaO8eX1pRm/GfdGZBAS4aZ4HWMOGYcU93UqyDKo07279+PZDLpxpUbo8+dO4dLly65c8EmJyedb4v75VZWVjA3N+fJV8mzurg3TceefxO4Go2Gy2CilJuOMecYfU8EdqCbJ5OAwrlPQNP+5vdkJNQKVIVGqULro1Kg4W+tl1pYqpSp5Wj9XVYZtRuvf5hLjyr8IS0aMaWLnxtydXFoIIel8RSkCHYq1FXwaWABtUWl+Pge/m9BwTrPdYFaClF9dXqdAozVbC0lo6cu6w8FHPtPNzCzHbZ/m80mhoeHsWvXLuzcuRMPPPCA890sLy9jcXERr7/+OgqFgtuQPDQ0hHQ6jWBw48DE+fl5RCIRNBoNzM/PI5VKIZfLOdChxdPpdNzZWqurq4jFYg70Go0GotGoU1yAbn5HnqPGLBixWMxZeMwIr8l4mfWDbWd2+sHBQQSDG3u3lpeXMTMzg/Pnz7tx279/P4aGhhAOh1EsFpHL5TAzM4NcLofl5WXPnFNRYmkzggwtMmUDVLmx0aqq0Fi/lSpe6rdS0NLPOc814lCT+LIt6nvkWmId1QrWOebHduhcZnuYaUX7QVkBDRB5t5QeVfhDWghM6qOylAr/psDQxcSFocKEoMDPrcNbFxt/q+ZpA0P8+HzAa+XwOSokVFO2TnN9Nv9XPx+LWm+WVmJfKFgCXv+a7qVpNBoIh8NYXl5GLpfDxYsX0el0sHv3bkxNTWF6ehoTExNIJBLIZrPI5/M4ceIElpaWkEqlXCLeUCjk6LSZmRmsr6/jwIEDGB4eBrDhgyGluLy8jGKx6DYUBwIB7Ny5E6FQCEtLSwgGgxgYGMDOnTtRq9WQz+cxMzPjGc92u42RkREMDg46X2U0GkW7vZGqKZFIYGJiwmXaaDabKBaLrp3nz59HoVBAq9XCxMQEBgcH3Sb3er2OhYUFLC4uYmVlxe3p0n1WFO46fhwbBR4dN7UI1Sekv1Xp8rNa7Pzkc3Re6DxWCtXOCypillmwLIKuDy2kZZXq5vzSExW0TroGdE29m4Drb1N6wLUJilovgPekYavpqtamVAWFsn7GBWKDPHTh6iJUnxS/U6pPwZH3KSCyTkodqRDRhctnKIBRQ1aLTOvp59dgsWBo/WyaHLjVajnhPz8/j7/5m7/B5cuXsW/fPrzvfe9DKpXCrl27HF134403YnZ2FidOnMDCwoLLQbe6uuqCIhhJyAwaPC04k8lgdXUVuVzO7eFikt5gMIirV68C2AiiGBsbQz6fd6cJ1+t1hMNhBAIb0X+00IrFoguPr1aryGazaLfbuHLlikvxRAu1VCoB2DhRevv27Uin0y7jCADMzs66PIelUsmTqYX9yPFXhYrfqeWuhePO66y/UwFP55ayATre1jelwEGrTgM+rGWu64rzUbefWKWIv9XvpmuIdVLrjuvKntel/anrrFeuX3pU4SYoXFAWSLgPisJLN2+qBgpsCATrH7Kao3L8XGSkRgh6ulCV5rECxAKYghGjBenH0fu0LmyTFSwEZr5HtWC+T7VZpQRt1g/2B/9WCoj9x77rdDqYnp522c2np6cxMDCARCLhsmcwSSoTzZK+q9frOHHiBFZWVlAul7G4uIhgMIiJiQnE43HP0TS6J4tZO7jXivQfaclKpeLoRkY9Tk5OOnoxHo+7jBnJZBKRSMTj97py5QqKxaLLAF8sFnHq1CksLCy4VFEAPBGPepaXFe4q5NVqUsraKjaci3wmx1bHwPqA7BxWelCpX96v81jrQ0VKaUZV3HifjfSLxWLOP8n60uKyIfQ2SCMQCHiiglWBtJThu6H0qMIf8sIJTqe8ggG/t9aN+rX0OXrf9XQXpSwUWCiAVBjpYlXO3lJD/FyFj9V+FaiuRxtpJJnWV3+z0K+kZzyxzvyebaRAUcFHqicUCmFmZgbz8/MoFAqOUhsbG8Pg4KDLH0hgGRkZwdDQkAv+2LJlizsG5NKlS1haWsLs7CxWV1ev6T/6pliXdDqNgwcPYnBwEIlEAoODg+h0NkLfQ6EQEomE80UxhRN/ms0mKpWKC5ao1+tuP1elUnEHb+ZyOayuruLcuXMol8ueCEylclURUCGvfWvHVgFM55I90FLvUetKLWqlm1WR41gSjKxVTmtH94UpeHEOELD0qBmdJ1SoOF/saQp+c1y/Y1+oZaplE9oSf++lZ3FtgqJaJNClIAA4SkcXg/q0NDpKBQ2LCib9jAKAi9Ivk4AKJz2mQSkZChXWk/QQQ7qVBrUU0fU+o0Cwvi5aBWwD9/JYILR+LWrGKtD8glUUKDWKk0JSgyLGxsaQyWSQSqVc+DiBjr4sDScvl8seoCZFpj/hcNgFZTAij+1vtVrufDDmNSyVSrhw4QIWFhacVVWpVJDL5Vw7C4WCy8LRbDZdSL5ViPhb95Ex9ZMNQVdq2SojOl7aRlrfqqgw6tMWnTO8VgMsNJRdE0OzD3UDeCAQQKlU8rAYfjS5rjG2VyluC9R+dD2LKl28V31zrO+7pfQsrh/yohSZLcqj8xq1tjSKzlpoKoz5LP7owreL00/nsVqmfZd1vut31jq0AKZ1o3BXTVz30CjQs++spm7fyx8bZaaf8fQCFZ48NDKXy7n3LS0tuQiyCxcuYHBwEDfeeCO2bNmC0dFR7N271x2HwiAKJrZlxGEgEHDppGg5sZ2MOiSNWK1WcfXqVVQqFczPz2N1dRVra2u4ePEiyuWyi2TU8HT2Pa13PctLN0pbi53Cm6ClwKERrtrHOn6WTtT62PmjY6AMgc4R/VwZALaPv/kupaDVorPzhOOudJ8+i4qXKpRKpfI7BW6/KF8bnNHzcX3v0gOuTVSsIFXrQzl6oAtcSnP4BT+wqEWh2mIwuBEhV6vVPAvQgpOlZmzElgokBQn1VViLkdfqHicFLQpKfRafwag39oG2if3De1VI8Tv+1vopeOj+qkqlAgAuCk8FT6PRwJtvvolIJILz588jkUggk8ng8OHD7rywRCKBWCzmLLZOp+PJBMI28DyvbDaLy5cvo1KpOJ9ZpVLBpUuXUCqVHKitr6+jWq267QDctMyM88wkz/YyiEStPp0H6vNjf+kYamCD7T++R8dKc2XqfNU+t/ORxY+Ks/NJn6vKDdkDWl58ngKbBUugC4ZKe+p7VTnTOcP1wGstNc17dH30ytuXHlW4CQoXHmkcFSr6vXUCqxDlnh8KAhUqSudwoVlrjclhVau1NIiljJQO8XufbhbVCDMFYj7HRoWpUNXMEjbiUa+39WGxn/u9Q7VzBVn2JaMHg8GNDOpKP7HetMBarZbLDZhIJBCPx5FOpzE2NuZyEcbjcQBweQR5BEqhUHCZ6oGNwyEpcHW/mt88iUajaLVaLkCBfhwKcLU6lBbTeWT7jb+tFWUtJY6NzitrDalCxnuUmlSA0PlE+k/nL9uhyolaPdpPZBX8lDJdVwo6Cja0uPmMZrPpMvxT4dO5qcBu2QQCZy844+1Lz+LaBIWLlCBByoffqVVlQUxpL+BabU4FkS5G1RCVggO8wRkUFgpaat2pdsk6WGtJn6XWj1pg6l/TNqplp/4Hax2qL0/pGaWGeK0FWPaLttsKM7aHVJxaA5rhgf3KyMpGo4FSqYSlpSVcuXLFvdMv5VC73UYikcDAwIDL4K7jaNvC+UA/paZU0n63PjwNZrBzReeBWhmqLNhNvzrP/KJAtT9ZD2UTrOWjioWCqrUQlZK2dfNrnz0fjsX2KceSY66prdTCVOBk4RzSwA8NotmEdsT/k9KzuDZBUYuIC4TaMy0hLlJuBKUAYlg0BSad10AXlFSL5Pss7ULtXL+zQEOrQp3hfnQIqRoKUvVHBQLd4yb83mW1bxVSgYD3/DE/qlKFkgoZvk9pJV6jlq4KdhvooSHOfv5CtTAIZprmSBUPtVqBaxMSM0JQLWv2pW52te1VSxboZrXQdmg71aenbVNLU/vK0tGWCeC8UP8j54vOA6UhddzVotN3W8tMgV8VIIKEXq8WO+/nuuH/qjTq+zRIRsGbz9M5qMEm9kgVpR51Tr4bSs/i+iEuXDxcHPSBWJ+WLgQFPF5rrQu931IlGhKu77D7tvgd/6ewoJDgMy0IWYuMddHnqWBW0NBnKnDrcxVgVLAo1al1sNaGaufafhb2BT/jPXrOGK9j3TRlkNJTKsh1HFXgAl2BzvHX8dFsEGqxsE9sWiztBxX4bJedE2p56hjo9UrB6d4vFm2HAhzfa617BXu+348C5jOpLKlSoVS1goqChbaV1yqgKb2oQKYsABUCVVzUmmV/ab+p1cnnvJtA629besC1iYoKVhUUuklXF4YCDxeQFba6GO3iVcGnG3NZFOD8gMn64Xi9Ulask+6F4TN4D/1Hfouez6OGba1T7QML1NpOSwVqNJilglTrVyClwFJQUOGmtJCOqaUk/SgmP8uTYeT2PdezLLW9HBMNXFHgoQWkB33qPUp58R7bLrtdgZ9bK4bvDQa7G8T5Lo4H60hw0jpZ5cbPJ6frw8/Hq3OO7edz2T6do6y79q0N7mE7bZonO668R7cG9Mrblx5wbYKiGr0uZhVQ1krqdLonCCtFpMBD4cK/deHzHf39/QgGg87JrAJMgcDSZ1on+5n6pVQjVsGnlqMudHW++4X4q0BV34daZfyMv1V7t74eBVCgm51e9/soSGof63h1Ot3DCRluru+yfjNrWeqYqUWg/7NP+DwCoFpEqmBwDqkVaGla9qlmhbBtU8WB92p99f2kCdkPFvy5SdxaR29nkSg4qYJjrSreq/PGbjNgCQaDjiLWgCU/xYD1VXBif+h2EmuRke5U65onIvfK25cecG2SolohFzAFFIUQF4FaQApwCjYqbC31poIH8A/DV2GqAtfP4lJLwPqFbJ14j/pv9G+1eJSO4fvVd2RpHV6j/aeaubab2jX35FhHv44DBZ6f4NbPVEnQjeN6raV+WQ9bPwp4AimL+nR0TNgWLarYWD+ntVr85hF/LLXJ+601r8+/HhgrRWujRa3vEIAHeKySoWPM9ystbCk8Pe5HLWfmZ9QgJG27XTM612lB6tj6zUcqM7pWeuX6pQdcm6AoFQJ4jyvXBaD0hRU8unCt0FD6wlIoFG4UXipo+V5Lu/FzrZ/1D2hbLNXD+zXEnO9RwWzpTwu89rc+X4WaRmXaSDiGmds2q4/GCi0FRKXl1CrVaD6lzvQYeSsYtd0END2l2q9uatHqWKvg1jljhSz7VTOicGwVHDWi0foH/a6zc8KOqQU4bb9ti563xb5Wq16jXNkmXq/tttcp6Oo4+c17HXsL9HpCNQCXZYb1VOWjB1jfX+kB1yYoXACWUlKtXBO08refBs/vlDpSX5KlQayws5+phqgLXg+vpCCjRsuziAB4Dje0oKl0FJ9r26i0IetDAcn3qUBVeouZItiv3LRMcLRaMetlaTMFLxXyCqiqVLTbbc9px2wb+8uOmd0KwD4MBoNOCKrAZT2sJa2+Ou1TKijWUmcdbMQehbwCpAIK28rTn/k9GQG19PzoabUyWX/WxUZuss/4PEb56bYIbadS2wQM3sP68rkcY0sLAnBRnRw39pHOHW0D28026jzjb56tpuPYK/6lB1ybpPhNZhVMfhSO7g9RDVMXs3Uy298qgHUx6iK1dVLhzUXPI0CULlG/hQZEsJ5MgUQBYeuuYfYUFhpib++x1ib71YKb7V9NBOunCCjwaog1fUNqjbC+BHQ+RwGKz1dgY5vVYiR9BXiDJNQisQLc1lnfR0Cwc87OPdsHflSyvdYvulT7mO/W+ls2QO8nqKiPSPvQAp9tgwVLrgUFbh1TnRtWuVPlieNGBYd+Q9aT20CsVcc+7O3l+v5KD7g2QeHisXs/mKiW/9vjvi1lE4lEPMJMaTFrRQDewyFVUFLDZWZsvZ+aNd+vgpJtUcqP7eG7+VwV/kolKaCqEFRBos50oGuhtdttl5ev1Wp5kvAq2PlZeapZ8x38XOkmTQlFIaVt5xjQ96HWA69RQWb9VbZoEAoFsHX4K+BpPkQqNyqsOcZspwaUKMi+nSWj9JodA41S5FizPpyrfhYa+0bXAIFdKUS19lkX3Tem1pkNglAw92uX+toUcLTeqiBYq5UWciAQcH4zVQg1kKZX3r70gGuTFF0QKrD1cytErdCy2rdaUAQO619Q2kMXotVi/Sw2Lkath7U+rMWj9A99Pu1222UPt7QN38fnEjSVBqXlqUCiVpj1V6klYUGRRcFIwYNt1oABBSYVphwTBSpeY/eQAfAoBNbyIAhwjLT/+b+11vTdtk8tUFvrh/XzG3P7Pj/AVeXA0oZa2JcKGqr0WAtOLXa+h0oQ6WreZxNH2/Zpvdgetej5fLX4ea8qHqyvBpuodW77rWdxfe8S/N6X9Mr/60LQ4D4PFQi6MAHvXhxLB5Gu08Wv2qNqyFzkuigthcI6WGGhDnjAGwjht0C1rhQO6iuwAlxBg7+DwaDL1afPV/BRQcT7/KgoC6bU7PkMBUG1DFS4ap/xb3uPRiz60ZSWgtI+1x8KQD6L9JRSsbyf3zFbvN7nR4lxLFhXCzI6bhxL9Q2p0Ld14VxRi5HP5/vtHFLr0AKuAp/ey/5RBUWLrhPtDz6Tc6Xd7u7v0vlBC4/v9bOUVRFQH6jOZSpqtn69cm3pWVyboFiBq1w6BaAKVw3npbNfgYeLV31c/J9hubRSKITsguZ3dGyrhqtAo8KGi1nDna3fht9rRno/nwnvp6XBfTKWwmq3207LVj+MClPr+7JAp9FvfLYFNi0UUPqOQCCAWCzmBJfNts9+UypMs0hYQa8BBOrD5L3W8mE/AfD41/hMq6SoZWiDUDgGnFucQzaMnfXRDeS6XYN9xDRdKuz5Lvo+1bKk5akgaIFFrWZlEvguVVC4jvwYCqUBdewthazzX31auv7UGtb5xM/Y35rTslf8Sw+4NlFRLVB5fE509Wuo5gp4Hex6ndWYVYvmwrXWkQo2q+XqdXwXhZnuI7KgoUCnNJ3VwK1wUyGi1oelPO1WAWsBUiDqe61Gr74f1ZT9gi+0nwF4wEXHR/tOLV8/WlepKGZEVxrSJhjmuwgumiaMAKLv1r6380dBjfephWQjMbWwTTovtO1+1o3OFVUSrPWkVgsFv1p6Os/1uda60/fo83Xs2G5bJ+u/4z3Wx2fXLwGTxa9OveJfesC1CYpOdBVkLOoXCgaDLleeH/2j9KAKQl2sNphBF6i13Phbgwv4fACuLuoToaXV6XQ3DHPfEgAXLq/+PD7bHpVO+staZix6bpa1gtSaArybUFVT9gMw+5mlzdQS4nMUOLQe1qJRC0gFsPYFlRW1aPmdKiY8pFKtWxupaAM51HrQQB4FT60rr1NrXAU7x8gmYNb7LW3N59j9Y359pc9g33LuA3DzjwwE71fLzFq+qlAkk0m0221UKhUP6HOeqN+Mz1briuuAyqXOAV6jFqGdW71ybekB1yYp1nrigrU0FtAVHJqhHYCj1DSzuKXW+C4ViHwmr9P71JJRa4TvUKGj+d8sRajvZhsViBS0eY8KbH2PUkt6rdKT/Jzv1LZaak4tQOs3tJaqDcf2889p3a1fy/a1Wol6rQZWaD9asFOQ0swMOpZaPytw+UwLLqRz1ddkBTfrzTlo81Hqu61SYTeC09q19dW+I5BQ4bJ9pmyAbRfrqe9kX/ltGVErl9eqwqdzVylWBXRazdrPfhZrr1xbesEZm6RwUqtApYC2ixyAZyFyoVlfhFJKvMfuBdIFZ2kZPpfv4d+8zgobSxNpnfyEu7aH99lIMP5WClP9HNSy1crjs6wgsRabBWm1SvR/BRfep8+yQGffo2PR39/vjtRg8Qu3tvdez2pQAFEq0IIrADd2OuYcH/t+nSOW+rRWhs5P7Vt9hs4JVXT0Xp3Hej37VwNo+HzOBVX0VJnjvTqnrBXbaDQ8m4N1Tmh/8n6tE9tqQVfXmio3PeD6/krP4tpExdJ8lntX35T1uwBd66FerzsBQT8WaRmgm5IG6Pob9NwoCjhdnOFw2AkqntBr93Op0AO8x6botUAXWLRtfvt2KKTUKc4MIDya3g94ga5PSH03fpQbr2HRPmGdFby0TgA8FJlG2+mY6fvZDj960fqzNEhDlQ2l4TgXlEpWy4mWgloMnBO0nv1yJioYcC6oYsN+4tjwuVYR6HQ611CHesyJWpdqYfuNIf9uNpsuEEMDkEjDqlVnfcSsO8eINLaCip77xn5TS1nHRKl8tsseS2OVn155+9LrpU1W1BJRi4jCkcLEj/azPioWtSTUElLqRbV+voM/NkRYHdKss1pd1tKj8LT19rOsLFWkwK1tsUJW+8yv/yhQ2HbV/NUCUQtFlQJL9WjwA7+3wMJ3aKANQcaCglqI6ufRNqvFZ6Pr1ArWdvv5/dQCsJGf1kLnfaow8F7N/g7AY40r0Oi7tV0M6begZdvENus8VqDROct5qfOU60eVJG2bBhixrXyPUqV+PjpeYzP5W6pU50mvfO/Ss7g2SaHA0NQxakVYAascvnXAA929YeobUiHAdwLdCCkVCBb41JrQxaiavZ8/zg9gtR42CES1cm2/hsLbfUdAF1i03sxiQI0fgMsBaP0NKjT5Di3sW7UoAoEN6o/ZTewePLV2+BkAz/hqH3EOqMDT32qR8nq7v4/jqX1yPRpSx0lBmGPD+qh1RtDU53U63SAcu5lYwUPpUd6nAGcB1vaDApy1/FgI1nwurS+1lqxPT8fAUoCqqLAOrVbL+diUIuTc1XYqOPbSPX3/pQdcm6QwnFkpJaX7dAEA3j02Cm5cbFzYKjz17CDL+1tKQy0HwBt1pvScAqUFVwU8G3Wo9+ii5v8KWEqbUXCw7lpnAE6zViHC53Q6HUSjUQBAtVp1/af7xaz2TmtNaTnNoagZMljHdtu7/42gzL7SyDdaA6Q++b9avH193c3iKuytxWtBUkFY55XuC1Qfl75Xqcd2u+2h0/wsOL5Hf7fb7Wsi8vi91k8BSuvKsdFgI17PPrBRhHqNWp0KZlxT7FfODVqUjUbDjYmOnSqJnFs613T9qYLB5/Q2H3//pQdcm6SokLBamfqTdHFaB7tq1ypo9T5L2yhY6LuVUvIDMi2quWob1DIgGGl9KDQA78GSVgPnc1nUulSQ9tPSbTi3Ult+1BT70VpOfIZ+phuN2U62ncLNRmuqpq997KepWytFFQZtP3/rHiY+Q8HGjq8CGHMc6hjpmGvf+VnUWmcqG9rvalXrnLDWvoKL7Sutk92MbqlGtVBZrLKj81e/Uwvfz/rTdlnrT325quj1AOsHKz3g2iRFFyGLWhM2slA1bi5WFZq66EOhkHPAK7VkF50KRX6mFp4V0FpvCmr9ztJarVb3SAu+S49a6XQ67vgWzWXIvzVwQyPP7GZeC+RqGbIdCix6HS0LtrvVankOC+QzFIRU6+czedItLS8dU7aD9/J9ekwL4E2DpElwdQ+YtVpU0CpQaHu0bxWQ6HNisb4wPlfpPz5TwdNPYLP+VoiHw2HPHj/2Y19f39sqc9bCUmvGznFa4fV63XNCM8eCFh3pP1pcFjAZDaonXKtlqgme+R2VM31nr3zv0gOuTVIoPNWasMDCxWKd6TZaTikg3qsCSUFG36/FWm5arHBVH5zeb9unFptaDFovtWqUHtX6aXvUqrD1U9pJgYf3WSqJn1s/k/pE1EJlG/yEq5+/UhUCPx+btsevn/mZavoW5GywhVrheo/6W3S+6TXad7pHy6++qjyp5WoBVEFP56ifT0wVDr+x1vlkLSudv6yDWk5+/W3pXj8qVMdZI3atRcXIXbUM+b5e+d6lB1ybqFjhaCe5OtC5oLlwrHBQK02tNeuo1/dYoWB/qzDTOtoFrkJWf2tuPiscVEvX9/n5Q/Q6v/dZ+lGDTlj8KCS1Dq3A9NP69V4dI1JJHBdNiGv7UsFHLUpaopauazQanvbRGmT9lWpVZcGOF/vJj+7isywQsw52LPQZShnzO+1LvxRIqrDxuZZK9et37U+lza2ixrba+aWgp9aQDTTSdlgrXsHWJtdlPk7ea/uiV65fesC1iYpqcBp6TF9EvV4H4N2ErAEI1udhoxOVylOh0G5vpA6ihqoaOzVzPfQR6EYa6jv5TKWlWN/rRUnyWaoh8x6tox99pp/5+eiAa30NDFCxwp1/qyLAv/VMNPWZ2Xqw3urA17RQVtO3kWYUgEoraV+yP5Q25PW8Ruk6DbTQupKO5f98D4Wtjh3vV2XFWlhAF5AsTch6Uqjr+W6cX35WLgNVOp2OJ2iE64JFA5i0D7kmeK+1+Cwlz2epT1LZBj0wVGlaDZ3X4J5areb6jX1t/Zi9cv3SA65NVPw0fdU+NUmsWj/WKlFAUF+QPk8tL17H96sgUxqMi0/3ClkAUVCy79W6Xc+C0T5Qio8bOq3WrBowC+usvgYLlLFYzF3DyDVSYrZtBH2tk1pzBArVwFW71meoxaJRc5ZSU4Dg8zQDu5/lY4FIi1JWOi4aAUiQ0Qg+CxR2ftoQfB1rvc7SZXy3gpzfWNlxIKirdWMtar6fCiDHhW3he/3mhSo81orT9E0K3KpEqLVnQf56/dMr15YecG2S4hcYQcGg1owCC4WUddYr5aRgwvsikYhnXxYA1Go1tNsbYdx0mFNjbTabnvB7BT/mY9NFbAVHp9NxB0XSgmEbAe9+JBswwO80BJ3P1nBwdZQr0KtjnO9jwARpPLUIlMJkW9T6VYuU/aVBBGqp2roB3oAbpZlUe1fgoF9TQZjP13fZqE3Wk/3GwuezfQQePovZHxhpSCtJ/YX2elVc1JLyO0pE/UUKJJaeUxpTT1VWECOAcT4o3UclRJU6/VsZCLVYreLG9zebTUQiEbTbbU+WeNafc00BT5XCHlj9YKUHXJuoqKC0jm3VfC0Vo8eVsygAKvBRcLDoIlOnumq1XIwaYehXD32vaqHaNs0yzutVICtt5BcYos+z7VPNVq9hXRRwNBmvWiraXq2jAp/2WSAQcIoD4M1/aOkyfqegyz4hJcbr2V82clSVG7U47Tjxer88gkq3sqglzXv9AJnjxbayHn5gbCljnYcWtBSsddy0jX5Ki7WcLA2t16giqO9Rf5jfnLPWrYIei7UarQWmClCvfO/SA65NUiyVoJqqUkUqdCwdpUJDF6/VOvXZ6rtR6kwBhM9ToUkByeAApX+0jkqfaVHBb+tAjVcFptZHP9PAFBWIfhSN+mkorCx9ZIW0tZSUGlMw4jhYELHjqM/UfUwKJHqdWsVqbej1qmzwuQomOq+0rmynUotqJdAi1f7zs1z4TvYLv1erU608nZNK4Wldbd11HWh9LeVsKU+da34KiD5DP1fLkHNRrW0FQxb92851e2xRr7x96QHXJimW7uFkB7q56TR5qM1/xwXGotqu3wLVwAONYOO9ChIqCHQhUzjb/UIqcG2ofqfTDfSo1+uurdwjYwUBBSbBlNQc9yKpBadUKe+jAFarTgWUgpEKSv1Mr9dnc1yUDqIFxs8YZMD7WWder8fCa2JX9qWG1OteOlVUWL9IJOKew2crVaj+KQpnpZXVGlJ6WeeiBWnSZErbWiqb/2u/ttttp/Qofcr2aRCNWuB+EaM6560iwvnCelplg3SvvssGZVjAtwoEA0Cs4sD1x/babR29cv3SA65NVNTHorQScG2SUdXKleIDvNSW0j/WatK9LW+nLargAbyWDv+3/i0FDvUz2feoJqzP52+liiis+DepLG2/1ol9av0ObLv2q7Wy+B5aunwm38WN0SrEtZ/0O30u0KW6LPDwuZqtn0CsAGP7zvqNtPhtJ9D2qxXEtilNqePlB/jsP/pCbbSlWkMq/FXRUstN+8L+1jlvLWDWSzP669pRS1GLZQJYd820T2VRv2c/MULTgprSjxxXtYp75e1LD7g2SeHkVqFpF7FaTPq3Uij8X6kZCwRchCpEgOtvjNX3UWjxnUoVWkFvaUt1ditg+oGDtod1pWBSEOW9So9ZilPbb6kzPpvWrrXarFav9VPA4He0JKxlQGHmR/Va0FbBR9ACunkYVQAr3WaT617PguVz9Z16rZ4OrVa9WoLa/6o8aB/qGOsc07r4UbDWwtH6q2XHd9ggEH239omdEzbyUsFWLUy22SqUfI6fMqGBNlZ57JXvXQKdTdhThUIBAwMD/6+r8fdaLM2nGhyL9XmxqDaugR28nz+q4fL5/B0Ohz0WmNJefAeL5rhTAeDnJ+L79EcFmwKwdV7r861gbLfbLo2VRrKpv0sj16wvSuutAlGjw/idpv+hgkHainVjX9v28xrtQ+0bv31TfIe1IkmFaTu1fWr9qD+G88VaK+zzQCDgFBC1Xi0I8HNNOmyBlnRlIBBArVbzpZ05xjpX2Ycacq7Ki62H0oJad/ah3ful64RF1wj7V9eEAg0pW6sc6DOtpanWt93K8m4q+Xwe6XT6B7qnZ3FtkqI0jF1QVuvjderfsRqtCgNdMCqcVJDrYlVKSt9HDVYXptJ4XKRaD32mtRzpc+Di53vtpl1+b6keCmeNqrQUoRWwFkQV0C3wqVBmO/36zS8U+3pA7ZcrT4FPtXMViNp31uKyc0Pvp5DXfU/aZharSGj/KO3GOvj1BcdEGQNLIVslQ+eWH7XKcdcx0v7T53NN6JhR8eDctUCpFruuD96vlpcqawQiS4Grha0gxT73oyt75drSA65NVMipA93MAdQquY+k1epm0FAfCYWTZlWwoGM1SuBaH5OlYxQAqM3zfgpDLmgFX+DaVEoUBrrZV69pNBqek5a58Jm8VMFHBb9mLFDAIwhcDyDYbk28SwFlHelqZfH5FN7W0rRKgPaF/qYQ1XorWKnFxL6wJxWrpchr7cnAfB7Qtay17ynclQ70q6fOB6WjbVsVBCxFZqMk/ea9jgOL0pf6ftZfQVnntQVX9ouO1fX8oLzWzhO2IxDwZuzQsY9Go575ws97ARrfX+kB1yYp1qdj99QwAlB9Vyo8dOEqHaKChddayoTfc/FZYaOLXOvIYv1CFkA0qk81dft+/a111/OyNApSDy+0fhcLKHyedZqr5cdoTaBLK1nQ1f4jwNl0RwAcwGu4O5+jWrkKW7WQlQLU+aH9wnlCK0OBg4KW9dC6aZopjZ60oKV10zoopWujBy1Q6m/OBbX+7b1qkaolxD4l4Go/qkWoc8uOnQUQXqMsgh0TjRrVftd+stZ+p7NBX9q+0mt65e1LD7g2SeGkthqcXeS6kIEuVaXX2EWo79BnWy3QUmnqX+GzlCKzGrC1DvhuAo+Cgl3EKjCsxdhqbWRxoD9JKTC+y2r/ShexbQQmSxWxPhQ02sdKtSldx4hJOz5W8NnINrUUNKBElQSCjrVaFMS0biwKxLb91ndlgVCDCJjlxO6J47VK7/IzSzX6bTHQNmidtU90e4AqIvZZdiw4vjp3dU1x7pAutMEWtg2qaOi81DrZzd2q1Gkf6+c9a+v7Kz3g2iTFgpMNV1Yhpfn0FOx0/40ubKV4lBJhUaGmC0/rRjonEAh4IgnVD6ACTS0TdebTUtKNqlYrtwIlGAyiXq87KpGCVNNI8VnckwN4j6ewodcarq79SxpWfXp6jVovvKZeryMcDiMajbr0QOp78bNm6Hfhe9leto9UMQUkn8+DK/0AjYEbejSMBQ49W0yFvio1sVjMARifoxtoGWzA/lFLXeeTbb9SwNYXxD7gmJKm07Wh1rLOD85p/VwtXp3blsa0yo5aT35zh3VTylg/43Wka0lzKxgy5VmvXL/0gGuTFKtNWstKtUVex99q5bBYweEnxJTK02fpIlefiBX0aoVpfdSCULru/2vvWmOjqL742dLu0lrbBUq7LVoe4VF5FLVIWQ0xkQ1YGx/Ih4Y0kajRICUBbYigUTAmlsTERI3hiwqf/BMwgkYeobRQBcurttKCVkqKJaYPhfQl9H3+H8iZ/uZ0trQKW5beXzJpd+bOnXvPvXN+55x7ZkbK4xvC5fr4v/RXyuM52Ia+vv6HR/W6m5TVHiR6jKioRPnp0JuWnZyPDwvjuoWQgVPaNvYLPTitzHHtC7PZJCEAPRJMItBzQOYVejVOhouch+/ac/JcnL7CjV4mht0wHOly9WenIqEjEUjfOzs7bWSMssO5rf+KLPCr2thGvJ/wL7YHxwfntFxDv6ZK+iveN8pD+oV14PwxGByGuMIEaP0hcaFCRstdbh58EBfJQeoRIMHotOxga1uofPSzSnLjYkgKr4NenrZmnepBBeCUcCCKQRSbyAhDq/hCYCJ7mM4p1KMJThSclgOGlTDhA5UQyr23t9f2YCoqd+154Tigpyaeqrz1QbxObAtmX+p1IvSEkBilfSILfGGsfpZKkoF06FLmpTwsLe3Q8xCJFr0zvU6KRgC+LUaTiZ5PuA/niMwhJA+MTMi8kfNEvriOpckLxxvH65577rHkIwaWnls453HOGgSHIa4wgZP1r/dr6xNDRPJbbn5UZNrCFWB4Ay12J9JEZY5hHrRkkTjR6kQlgMoTFZPO6EOFguFHLRu5LpIUXh/DiBi2xHNRORENfPcf/o8KE8kN1xKlnDYkUKZyHTkXCQbLIpE6hSmd5E408CvXcr6TfLTcdJmIiAgbuaBSFiWNfZA+yT6ZPxgSxbmtr69lpdcc9V9MnNEJHVJvsDdf6PAf3h+YtCNtwrHUBqLO6NVrmE4esYEzDHGFCXBCS4gIlQ6SjlbYomjlGCoWuXGROLA8kqEOczCzY+o6vhVAt0+nnWsCQZISJdbd3U0ej8eyygWokDUJ43W1dYyEINCkjYoRFRAqULy2DinpRBPtWclv3I+vY9JhKCFoVKRSv/YA5Q0aLteNdSgce5QLhq+wrzjGkgavPWchAR1WFE/L5XJZ70SUc/HaeJ5W8E7tEm8b2ynjoce9r6/P+twLznM9/mh4YDs0YWJWqMxNMXJkfuLYoZGAKfJSh9Qvj4nIOSYVfugwxBVGQMWk10CIBr53D29EjLPLF3vRWkfFSNRvTeKCu9TX1dVlKQYMrwihYghR0tOx/cFChUT932nSmYz4CXpcY5IymD0n5CdKA9e50PuU9mPoRr+oFklCE7Q2FHS4FYlTk50mCBlD/YAuyt7lurEWFBkZaftwpihTGVftDSJBizEjZWSNEsug/KTN4qkgkUl7IyIiyOPx2B70xrVL9JDl2ki4KC/MGpQEFLkmev/oqSF5Ibnr5wfF0MLQKIZDMXSIrw5DzxA9Ixxj9Op0RMLJcJCQIH4k1IQIhw5DXGEEDLvgq2/k5hXlhzcyUf8zWhjjDxZakXrwptVhErmxdShJFBG+pd6JBLTFjzc9Ws6o0LG92nrGYxh+QdnoNsp15TpIvOhBIKEiwUm92oNFhYWKWYccMdNSyqLSdVJ+KFORGabiI1HgPiRPuR6uK2ljRxsWSDKo5NHz0ASCa3FITDjmSOBIdNoTRoMH60YC0MaBTvVH4whloOUgdQphIrGhx4/jgyFD/TUANBKQ6PT7QKOioqwsTYObw/krfAZ3JPAZItm08tQKHW8aJ6tOp2aj8sUMPCERDPtJvRjeQA/K5XJZz1fhPlSgRAMfbkUSRgUpWYz6gV6tGJ2scCQAVHL6eSIi+3NkSMxE/SErKS9KThQ4ygtDX6g0RQGiBS/HdAIAbtg2kYEmAuyfTmWXa+BffCgc5YJEq2WNxoHMLyEIp2xXDAuiB4R16vbinERyFbniPHL6jcaD3DcY1sU+YF+0vOQe0S8Wlr7ox1IwgQUNEU2s4j1Lv2Tu4H1hEBzG4woToDLu6emhsWPHElG/tyKpvqiwkVy0Z6YVmIToxHLEG1/CgrIPs/rEosTFbQkxofJ2sprRo9DrGuiB4DenkGgxsQJDVNInUU469Vqv62FISepFz1Oek2JmyyoWLwMVrbQXw5bSZ72QL8SDz12hl4vWP66r9PT0UGdnp7WOhYaIy9X/fSkkZk0GLpc99IrPXOnElMG8GiRhbLfMRSQAzDJFr0quhy8qxrYhUWijSNqEbxHRa4soG/wfjTNt9Mg4dnR0OHpn2AZpBz52EBkZac0TuRdk3U3muMw5bQAYDA2GuMIEGEsnsr9pWn47JUNohY3ZZPJbznEiE1Q0cj30CqRuVAbym4hs6b9o8crNi8pVh7mQ+ISw9EtNpW0YOtLvMhRgfSgD7INe79FeHNaBa3B4jTFjxlhZdrih/JBwcK1RgEpNgF4IJkxgOBeTdpzCbjiWsg+Pa3mJZ4j14FoVkhgaSNI2fQ2t9GWcZcyQLGW8dShU6sEwo+x3epsHjhXWr/uOxh3KTkc5nKIdOKelfShTp3ki5fQ6nMHNMSy/dMuWLQPc67S0NOt4R0cH5eXl0YQJEyg2NpZWrFhBjY2Ntjrq6uooOzubYmJiKDExkTZs2GAWJYcIsd7k+R18e4IskEtorq+vz1pgjo6OtrwmUaxyo4tiEqUnnoEOfcjzQnITSviks7NzQMICKhmncJuUw/CR3PBEAwkTvxisgaE6qU/aJJtehxFIX3TqvQ6/onWs1yqkX/q39FtISjLsMGyEckbi19a8PNwtbZd2SaKGtFkyL1FOev1QyBnrQi9W5o+0GT1BJzKQhA2tyPVzhdIPXC/D8J8km6Bnht4cGlTSbo/HM+CTMnosJcNViEn6LnMeiV/GS48LtluOY//0uEhZbSCITHE8Zf7hG0EMbo5he1xz5syhw4cP91cAaaCvv/467du3j3bv3k3x8fG0du1aev755+n48eNEdGNAs7Ozyefz0U8//UT19fX0wgsvUFRUFH3wwQe3oDt3N/BG0WEFuRl1PF2UEq7xoKWr33yO10AlI3CyILWFr9c79LoGhh0FGA7SxhESoZCr9BcJBmUk/+N+tKi1UhGlJSSFFjHKWJQfhqcwBIbeInqgOryJnp60WQwKNBpwHczJA8bxxgeLMWynyRHlLf+LbLEdekz1MRx3nD+YXag9CQm54vNU6OFo76y3t/9hbdkn+zGhAvuHcpexwnFHb0pHE1A+SFaYpar7ji9zlj6goaPnpCZuNGSMxzU0DJu4IiMjyefzDdjf0tJCX3zxBX311Vf0xBNPEBHR9u3b6YEHHqATJ07QokWL6NChQ3T+/Hk6fPgwJSUl0YMPPkjvv/8+vfnmm7RlyxbbBDVwBk54Ivt3tnQmGXoPeD5a0RiO0plfSFC6LrRg5beuT1ugqBhQQRHZkwyChVl0PXJ9IRqnEA56HLqd2B8dAtLhS7m+DifhWKCCR+sfDQnt+eAY6jUglCOGz7RnRtSfDarnBBoPOpMRFaZ4AXp9SRMVyhJDv/LIARoIeg1HkyfOZ7mOJhQi+wPuGOLTD/RqmTh5sk5Gk57/aMhpL0/ajPs0YQZbk9MywHnj5NEaBMew/dILFy5QSkoKTZs2jXJzc6muro6IiMrKyqi7u5sCgYBVNi0tjVJTU6m0tJSIiEpLS2nevHmUlJRklVm2bBm1trbSuXPngl6zs7OTWltbbdtoBN70vb397wdE5Ys3sD6XqF/ZSKjEyYNDr0FCI0T9azGoPNFS1NayvFBWZx7KcbxRdeYfeiqdnZ227DcdOtNyEeBxJFQheVQqEsZBrwoJU38AU9ogx5E4nDxAJDztiYgs5bM00jcJL8q6nRzHsUBj49q1a47JFTqkhdcQ4ke5iaxlLqCXo/8X+eq31aMyJiJbarkYAFiHzEcZA+354NspMJkG5YiZg2gE4Bgw25M58L5BuWGCkcxlJw8S244y10SE18I5ifJ0uk8MnDEs4srMzKQdO3bQwYMHadu2bVRbW0uLFy+mtrY2amhoILfbTV6v13ZOUlISNTQ0EBFRQ0ODjbTkuBwLhoKCAoqPj7e2+++/fzjNvmuglT0qY+3BoOJFBYY3FXojaInqG12A19JWs26jlAuWzKDbqy1Wrdi09asViJaDVjJILDpkpklX2upkFOg1GqwHLW3tfej24PjoEBnKSstN2o/7MElFywU9CJQPEpd+cBjPw/+xnU5epx4D3U7t7WgvCcdFzsX1Ij2P9TijHJwiDU7nI6HjuDrNIZSHNkS0zNEzRZno9ujzjMc1NAwrVJiVlWX9n56eTpmZmTR58mTatWsXRUdH3/LGCTZt2kRvvPGG9bu1tXXUkhfRwGwxfXPLTeNkIToRi+x3UjgY3tCKOlh4A29wTYaoKLA/WBe2Ty90Y9o9WthOfUVlqOtHJYUKUxMh7sP2OpVBotEeB5E95KW9RK3YiOwv79UeI8pX5ITp/7rtKHctNxwDHeLT9Th5E059QLKSvqMhRTTQM5V26pCck1GFxzBUjOOC8tUJJrqMJlk9vk6GhW67E2FqMtZ1Ylk0fAwGx39KYfF6vTRz5kyqqakhn89HXV1d1NzcbCvT2NhorYn5fL4BWYby22ndTODxeCguLs62jUY4eTnBPJ//Urf8dvKknMoRBVfiArT0tRLQN7dWjqjMdF2DWal4HW1ta+Wi/9dltby1l6S9BzlH9xf7hF4QKkwNNADwt5MBoPul5Y5KWStvp/OcvBs0QpzaHGyO4G9tLGhC0WWRzLSXo9uivatg8y3YPA02Drqtw4HTfHLaDGkNDf+JuNrb2+nixYuUnJxMGRkZFBUVRUVFRdbx6upqqqurI7/fT0REfr+fKisrqampySpTWFhIcXFxNHv27P/SlFEHPdGdbuibEQ+zPbbuFB5zOtfpJgtGpE7tGcpNP1TFEEyJBFPKg9UfrO26XqdFen1dp3VGPOdmClCPpz7HyWtAonQiY/RAteLHazgRgRMGU/DBPNahkNpgcJrDuD+YcYXydPLQ8ZjepKx+qDkY6ejrOZX/N303APAwkJ+fz0ePHuXa2lo+fvw4BwIBTkhI4KamJmZmXr16NaempnJxcTGfOXOG/X4/+/1+6/yenh6eO3cuL126lCsqKvjgwYM8ceJE3rRp03CawS0tLUxEZjOb2cxmtjDfWlpahqX/mW+w/5CRk5PDycnJ7Ha7edKkSZyTk8M1NTXW8evXr/OaNWt43LhxHBMTw8uXL+f6+npbHZcuXeKsrCyOjo7mhIQEzs/P5+7u7mE12hCX2cxmNrPdHdu/IS4Xc/j5p62trRQfHz/SzTAwMDAw+I9oaWkZdt5CWL5fJAy51sDAwMDAAf9Gn4clcV25cmWkm2BgYGBgcAvQ1tY27HPC8u3w48ePJ6IbL+w1IUNnyLNuly9fHrWPDwwGI5/BYeQzOIx8BsdQ5MPM1NbWRikpKcOuPyyJS9KR4+PjzaS5CUbzc29DgZHP4DDyGRxGPoPjZvL5t45HWIYKDQwMDAxGLwxxGRgYGBiEFcKSuDweD23evJk8Hs9IN+WOhZHR4DDyGRxGPoPDyGdw3G75hOVzXAYGBgYGoxdh6XEZGBgYGIxeGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrhCVxffbZZzRlyhQaO3YsZWZm0qlTp0a6SSHBDz/8QE8//TSlpKSQy+WivXv32o4zM7377ruUnJxM0dHRFAgE6MKFC7YyV69epdzcXIqLiyOv10svv/wytbe3h7AXtw8FBQX0yCOP0L333kuJiYn03HPPUXV1ta1MR0cH5eXl0YQJEyg2NpZWrFgx4OOmdXV1lJ2dTTExMZSYmEgbNmywfVU4XLFt2zZKT0+3Hgr1+/104MAB6/holo0Ttm7dSi6Xi9avX2/tG80y2rJli+1bbS6Xi9LS0qzjIZXNsN8nP8LYuXMnu91u/vLLL/ncuXP8yiuvsNfr5cbGxpFu2m3H/v37+e233+ZvvvmGiYj37NljO75161aOj4/nvXv38i+//MLPPPMMT506la9fv26VefLJJ3n+/Pl84sQJ/vHHH3n69Om8cuXKEPfk9mDZsmW8fft2rqqq4oqKCn7qqac4NTWV29vbrTKrV6/m+++/n4uKivjMmTO8aNEifvTRR63j8s24QCDA5eXlvH//fk5ISBj2N+PuRHz33Xe8b98+/v3337m6uprfeustjoqK4qqqKmYe3bLROHXqFE+ZMoXT09N53bp11v7RLKPNmzfznDlzuL6+3tr++usv63goZRN2xLVw4ULOy8uzfvf29nJKSgoXFBSMYKtCD01cfX197PP5+MMPP7T2NTc3s8fj4f/973/MzHz+/HkmIj59+rRV5sCBA+xyufjPP/8MWdtDhaamJiYiLikpYeYb8oiKiuLdu3dbZX799VcmIi4tLWXmG8ZBREQENzQ0WGW2bdvGcXFx3NnZGdoOhADjxo3jzz//3MgG0NbWxjNmzODCwkJ+/PHHLeIa7TLavHkzz58/3/FYqGUTVqHCrq4uKisro0AgYO2LiIigQCBApaWlI9iykUdtbS01NDTYZBMfH0+ZmZmWbEpLS8nr9dKCBQusMoFAgCIiIujkyZMhb/PtRktLCxH1v5S5rKyMuru7bTJKS0uj1NRUm4zmzZtHSUlJVplly5ZRa2srnTt3LoStv73o7e2lnTt30j///EN+v9/IBpCXl0fZ2dk2WRCZ+UNEdOHCBUpJSaFp06ZRbm4u1dXVEVHoZRNWL9n9+++/qbe319ZxIqKkpCT67bffRqhVdwYaGhqIiBxlI8caGhooMTHRdjwyMpLGjx9vlblb0NfXR+vXr6fHHnuM5s6dS0Q3+u92u8nr9drKahk5yVCOhTsqKyvJ7/dTR0cHxcbG0p49e2j27NlUUVEx6mVDRLRz5076+eef6fTp0wOOjfb5k5mZSTt27KBZs2ZRfX09vffee7R48WKqqqoKuWzCirgMDIaKvLw8qqqqomPHjo10U+4ozJo1iyoqKqilpYW+/vprWrVqFZWUlIx0s+4IXL58mdatW0eFhYU0duzYkW7OHYesrCzr//T0dMrMzKTJkyfTrl27KDo6OqRtCatQYUJCAo0ZM2ZApkpjYyP5fL4RatWdAen/YLLx+XzU1NRkO97T00NXr169q+S3du1a+v777+nIkSN03333Wft9Ph91dXVRc3OzrbyWkZMM5Vi4w+120/Tp0ykjI4MKCgpo/vz59PHHHxvZ0I1wV1NTEz388MMUGRlJkZGRVFJSQp988glFRkZSUlLSqJcRwuv10syZM6mmpibk8yesiMvtdlNGRgYVFRVZ+/r6+qioqIj8fv8ItmzkMXXqVPL5fDbZtLa20smTJy3Z+P1+am5uprKyMqtMcXEx9fX1UWZmZsjbfKvBzLR27Vras2cPFRcX09SpU23HMzIyKCoqyiaj6upqqqurs8mosrLSRvCFhYUUFxdHs2fPDk1HQoi+vj7q7Ow0siGiJUuWUGVlJVVUVFjbggULKDc31/p/tMsI0d7eThcvXqTk5OTQz59hp5aMMHbu3Mkej4d37NjB58+f51dffZW9Xq8tU+VuRVtbG5eXl3N5eTkTEX/00UdcXl7Of/zxBzPfSIf3er387bff8tmzZ/nZZ591TId/6KGH+OTJk3zs2DGeMWPGXZMO/9prr3F8fDwfPXrUlrJ77do1q8zq1as5NTWVi4uL+cyZM+z3+9nv91vHJWV36dKlXFFRwQcPHuSJEyfeFenMGzdu5JKSEq6treWzZ8/yxo0b2eVy8aFDh5h5dMsmGDCrkHl0yyg/P5+PHj3KtbW1fPz4cQ4EApyQkMBNTU3MHFrZhB1xMTN/+umnnJqaym63mxcuXMgnTpwY6SaFBEeOHGEiGrCtWrWKmW+kxL/zzjuclJTEHo+HlyxZwtXV1bY6rly5witXruTY2FiOi4vjF198kdva2kagN7ceTrIhIt6+fbtV5vr167xmzRoeN24cx8TE8PLly7m+vt5Wz6VLlzgrK4ujo6M5ISGB8/Pzubu7O8S9ufV46aWXePLkyex2u3nixIm8ZMkSi7SYR7dsgkET12iWUU5ODicnJ7Pb7eZJkyZxTk4O19TUWMdDKRvzWRMDAwMDg7BCWK1xGRgYGBgYGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgr/B/AzvkASUIB3QAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "n_slices_skip = 4\n",
- "display_slices(image, mask, skip = n_slices_skip) # visualize that our segmentations were succesfully convereted "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Note: Cyan color denotes tumor while magenta denotes surrounding area of high-dose radiation. Only displaying 7 slices."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 3: Saving arrays to nifti format. \n",
- "\n",
- "If you want to use a manual approach, you can view the nifti files easily after running get_images_and_mask(). Saving files as nifti is advisable since spacing information is preserved."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "nifti_path = os.path.join('.', 'Example_Data', 'Nifti_Data') # nifti subfolder \n",
- "if not os.path.exists(nifti_path):\n",
- " os.makedirs(nifti_path)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dicom_sitk_handle = Dicom_reader.dicom_handle # SimpleITK image handle\n",
- "mask_sitk_handle = Dicom_reader.annotation_handle # SimpleITK mask handle\n",
- "sitk.WriteImage(dicom_sitk_handle, os.path.join(nifti_path, 'Image.nii'))\n",
- "sitk.WriteImage(mask_sitk_handle, os.path.join(nifti_path, 'Mask.nii'))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "One can also use the built in .write_parallel attribute to generate nifti files for all relevant pairs the DicomReaderWriter object has found/generated. In this case there are 9 image/mask pairs for unique UIDs that contain all contours we are interested in. Note a corresponding log excel file in the specified output path. The nifti files are written in the following format: \"Overall_Data_{description}_ {iteration}.nii.gz\" (image) or \"Overall_mask_{description}_ y{iteration}.nii.gz\" (mask)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "%%time\n",
- "%%capture\n",
- "Dicom_reader.write_parallel(out_path = nifti_path, excel_file = os.path.join(nifti_path,'.','MRN_Path_To_Iteration.xlsx'))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "We can now reload the nifti files and disaply them to check that nothing went wrong. You can inspect the other converted files by changing the numerical suffix as per the excel log file ('MRN_Path_To_Iteration.xlsx')."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "nifti_image = sitk.ReadImage(os.path.join(nifti_path,\"Overall_Data_Examples_8.nii.gz\")) # reload image\n",
- "image = sitk.GetArrayFromImage(nifti_image)\n",
- "nifti_mask = sitk.ReadImage(os.path.join(nifti_path,\"Overall_mask_Examples_y8.nii.gz\")) # reload mask\n",
- "mask = sitk.GetArrayFromImage(nifti_mask)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "display_slices(image, mask, skip = n_slices_skip) # visualize that our segmentations were succesfully convereted from nifti "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 4: Saving and loading numpy files for later use. \n",
- "\n",
- "Finally we can save the numpy arrays themselves to files for later use (so you don't have to reinstantiate the computationally expensive DicomReaderWriter object) and subsequently re-load the numpy arrays."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "numpy_path = os.path.join(data_path, 'Numpy_Data') # go into numpy subfolder \n",
- "if not os.path.exists(numpy_path):\n",
- " os.makedirs(numpy_path)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "np.save(os.path.join(numpy_path, 'image'), image) # save the arrays\n",
- "np.save(os.path.join(numpy_path, 'mask'), mask)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "image = np.load(os.path.join(numpy_path,'image.npy')) # load the arrays\n",
- "mask = np.load(os.path.join(numpy_path,'mask.npy'))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 5: Radiomics Use-case Example. \n",
- "\n",
- "Here we use the popular open-source radiomics library PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/) to calculate radiomic features for our ROIs. In this case, we only calculate a limited number features from the tumor as an illustrative example. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "try:\n",
- " from radiomics import featureextractor\n",
- "except:\n",
- " !pip install pyradiomics\n",
- " from radiomics import featureextractor"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "pd.set_option('display.max_columns', None) # show all columns"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "%%time\n",
- "# note: need sitk images (sitk.ReadImage(nifti file)) to plug into PyRadiomics, preserves spacing \n",
- "\n",
- "ROI_index = 1 # index for tumor\n",
- "nifti_mask_tumor = sitk.BinaryThreshold(nifti_mask, lowerThreshold=ROI_index, upperThreshold=ROI_index) # select only ROI of interest\n",
- "\n",
- "params = {} # can edit in more params as neccessary \n",
- "extractor = featureextractor.RadiomicsFeatureExtractor(**params) # instantiate extractor with parameters \n",
- "extractor.disableAllFeatures() # in case where only want some features, can delete disable/enable lines if you want deafult\n",
- "extractor.enableFeatureClassByName('firstorder') \n",
- "extractor.enableFeatureClassByName('glcm') \n",
- "features = {} # empty dictionary \n",
- "features = extractor.execute(nifti_image, nifti_mask_tumor) # unpack results into features dictionary\n",
- "df = pd.DataFrame({k: [v] for k, v in features.items()}) # put dictionary into a dataframe "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "df # display dataframe to inspect features "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Numerical results for radiomic features shown here are consistent with importing nifti files as image and label map in 3D Slicer (https://www.slicer.org/) and using Radiomics extension (https://www.slicer.org/wiki/Documentation/Nightly/Extensions/Radiomics)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## Part 6: Predictions To RT-Structure Example \n",
- "\n",
- "Here we will provide a simple example for converting a predicted NumPy array of a square into a Dicom RT-Structure file"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "RT_path = os.path.join('Example_Data', 'RT_Structures')\n",
- "if not os.path.exists(RT_path):\n",
- " os.makedirs(RT_path)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "First, we will create a fake prediction, it will be the same size as the image NumPy array"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "image = Dicom_reader.ArrayDicom"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Now, deep learning model typically create segmentations in the format of (z_images, rows, cols, # of classes) "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "def create_circular_mask(h, w, center=None, radius=None):\n",
- "\n",
- " if center is None: # use the middle of the image\n",
- " center = (int(w/2), int(h/2))\n",
- " if radius is None: # use the smallest distance between the center and image walls\n",
- " radius = min(center[0], center[1], w-center[0], h-center[1])\n",
- "\n",
- " Y, X = np.ogrid[:h, :w]\n",
- " dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)\n",
- "\n",
- " mask = dist_from_center <= radius\n",
- " return mask"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "predictions = np.zeros(image.shape + (4,)) # Four classes: background, square, circle, target\n",
- "predictions.shape\n",
- "predictions[75:80, 250:350, 100:200, 1] = 1 # Here we are drawing a square\n",
- "predictions[75:80, 250:350, 300:400, 2] += create_circular_mask(100, 100, center=None, radius=50).astype('int')\n",
- "predictions[75:80, 100:200, 200:300, 3] += create_circular_mask(100, 100, center=None, radius=50).astype('int')\n",
- "predictions[75:80, 100:200, 200:300, 3] -= create_circular_mask(100, 100, center=None, radius=33).astype('int')\n",
- "predictions[75:80, 100:200, 200:300, 3] += create_circular_mask(100, 100, center=None, radius=15).astype('int')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- },
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "display_slices(image, np.argmax(predictions, axis=-1), skip = 1) # visualize our square on the image"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "Convert the NumPy arrays into RT-Structure"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "Dicom_reader.prediction_array_to_RT(prediction_array=predictions, output_dir=RT_path,\n",
- " ROI_Names=['square', 'circle', 'target'])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# Final notes\n",
- "\n",
- "### I hope that this code has been useful, if you have any suggestions or problems, please open an issue ticket or merge request on the Github: https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask\n",
- "\n",
- "#### Thank you!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "# DICOM RT Tool Tutorial with Open-Access Data\n",
+ "\n",
+ "This notebook demonstrates the various functions and utilities available in the Dicom RT tool Python package (https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask) by Anderson et. al. It serves as supplementary information for the Technical Paper titled: \"Simple Python Module for Conversions between DICOM Images and Radiation Therapy Structures, Masks, and Prediction Arrays\" . This notebook works through an example of publicly available brain tumor data of T1-w/FLAIR MRI sequences and corresponding RT structure files with multiple segmented regions of interest. Full information of the publicly available brain tumor data used in this notebook can be found at: https://figshare.com/articles/dataset/Data_from_An_Investigation_of_Machine_Learning_Methods_in_Delta-radiomics_Feature_Analysis/9943334. This notebook was written for easy accessibility for beginners to Python programming, medical imaging, and computational analysis. It should take no more than 10-15 minutes to run in it's entirety from scratch. The notebook generates about 10 GB worth of files, so ensure you have adequate space to run it. \n",
+ "\n",
+ "The notebook covers the following topics (click to go to section):\n",
+ "1. [Getting the data](#DATA)\n",
+ "2. [Reading in DICOM and RT struct files and converting to numpy array format](#DICOM)\n",
+ "3. [Saving arrays to nifti format and reloading them](#NIFTI)\n",
+ "4. [Saving and loading numpy array files](#NUMPY)\n",
+ "5. [Calculating radiomic features](#RADIOMICS)\n",
+ "6. [Predictions To RT-Structure Example](#RTSTRUCTURE)\n",
+ "\n",
+ "The notebook assumes you have the following nested directory structure after running cells that download necessary data:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "\"\"\"\n",
+ "Top-level directory/\n",
+ "βββ DICOMRTTool_manuscript.ipynb\n",
+ "βββ Example_Data/ <- Generated when you run the cells below\n",
+ "| βββ Image_Data/ \n",
+ "| βββ Structure/ <- These correspond to the Pre-RT scans\n",
+ "β βββ T1/\n",
+ "| βββ Patient number/\n",
+ "| βββ RT Struc file (.dcm) \n",
+ "β βββ T2FLAIR/\n",
+ "| βββ Patient number/\n",
+ "| βββ RT Struc file (.dcm)\n",
+ "| βββ T1/\n",
+ "| βββ Post1/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm)\n",
+ "| βββ Post2/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm)\n",
+ "| βββ Pre/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm) <- The images we care about\n",
+ "| βββ T2FLAIR/\n",
+ "| βββ Post1/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm)\n",
+ "| βββ Post2/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm)\n",
+ "| βββ Pre/\n",
+ "| βββ Patient number/\n",
+ "| βββ DICOM image files (.dcm) <- The images we care about\n",
+ "βββ Data.zip <- Generated when you run the cells below, downloaded Figshare file\n",
+ "βββ Nifti_Data/ <- Generated when you run the cells below\n",
+ "| βββImage.nii\n",
+ "| βββMask.nii\n",
+ "| βββMRN_Path_To_Iteration.xlsx\n",
+ "| βββOverall_Data_Examples_(iteration)0.nii.gz \n",
+ "| βββOverall_mask_Examples_y(iteration)0.nii.gz \n",
+ "βββ Numpy_Data/ <- Generated when you run the cells below\n",
+ "| βββimage.npy\n",
+ "| βββmask.npy\n",
+ "βββ RT_Structures/ <- Generated when you run the cells below\n",
+ "| βββRS_Test_UID.dcm\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "# Load or install the program, %%capture supresses print statements\n",
+ "!pip install DicomRTTool --upgrade\n",
+ "from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# importing neccessary libraries \n",
+ "\n",
+ "# file mangagment \n",
+ "import os \n",
+ "import zipfile\n",
+ "from six.moves import urllib\n",
+ "\n",
+ "# array manipulation and plotting\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# medical image manipulation \n",
+ "import SimpleITK as sitk"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 1: Getting the data. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "The RT struc files and their corresponding DICOM images can be in the same directory or different directories. Here we show a case where structure files and images are located in different directories. This is a good dataset to work with since its somewhat messy but coherent enough to show power of DICOMRTTool. Many files (pre-RT, post-RT at 2 timepoints) but only pre-RT T1 and FLAIR images have associated RT structure files. Downloading and unzipping the necessary files will take about 10 minutes on most CPUs and takes up about 8 GB of storage. One may visualize these DICOM images using a free commercially available DICOM viewer, such as Radiant (https://www.radiantviewer.com/)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Zipped images already downloaded.\n",
+ "Unzipping images...\n",
+ "Estimated unzip time is 2 minutes\n"
+ ]
+ },
+ {
+ "ename": "BadZipFile",
+ "evalue": "File is not a zip file",
+ "output_type": "error",
+ "traceback": [
+ "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
+ "\u001B[1;31mBadZipFile\u001B[0m Traceback (most recent call last)",
+ "File \u001B[1;32m:19\u001B[0m, in \u001B[0;36m\u001B[1;34m\u001B[0m\n",
+ "File \u001B[1;32mc:\\users\\b5anderson\\appdata\\local\\programs\\python\\python38\\lib\\zipfile.py:1269\u001B[0m, in \u001B[0;36mZipFile.__init__\u001B[1;34m(self, file, mode, compression, allowZip64, compresslevel, strict_timestamps)\u001B[0m\n\u001B[0;32m 1267\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m 1268\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m mode \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mr\u001B[39m\u001B[38;5;124m'\u001B[39m:\n\u001B[1;32m-> 1269\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_RealGetContents\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 1270\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m mode \u001B[38;5;129;01min\u001B[39;00m (\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mw\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mx\u001B[39m\u001B[38;5;124m'\u001B[39m):\n\u001B[0;32m 1271\u001B[0m \u001B[38;5;66;03m# set the modified flag so central directory gets written\u001B[39;00m\n\u001B[0;32m 1272\u001B[0m \u001B[38;5;66;03m# even if no files are added to the archive\u001B[39;00m\n\u001B[0;32m 1273\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_didModify \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mTrue\u001B[39;00m\n",
+ "File \u001B[1;32mc:\\users\\b5anderson\\appdata\\local\\programs\\python\\python38\\lib\\zipfile.py:1336\u001B[0m, in \u001B[0;36mZipFile._RealGetContents\u001B[1;34m(self)\u001B[0m\n\u001B[0;32m 1334\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m BadZipFile(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFile is not a zip file\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 1335\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m endrec:\n\u001B[1;32m-> 1336\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m BadZipFile(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFile is not a zip file\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 1337\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mdebug \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m1\u001B[39m:\n\u001B[0;32m 1338\u001B[0m \u001B[38;5;28mprint\u001B[39m(endrec)\n",
+ "\u001B[1;31mBadZipFile\u001B[0m: File is not a zip file"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "data_path = os.path.join('.', 'Example_Data')\n",
+ "if not os.path.isdir(data_path): # create Example_data directory if it doesn't exist\n",
+ " os.mkdir(data_path)\n",
+ "\n",
+ "url_img = \"https://ndownloader.figshare.com/files/20140100\" # brain scans \n",
+ "filename_img = os.path.join(data_path, 'Data.zip')\n",
+ "if not os.path.exists(filename_img): # if zip file doesnt exist download \n",
+ " print (\"Retrieving zipped images...\")\n",
+ " print('Estimated download time is 5 minutes...')\n",
+ " urllib.request.urlretrieve(url_img, filename_img)\n",
+ " print('Finished downloading!')\n",
+ "else:\n",
+ " print (\"Zipped images already downloaded.\")\n",
+ "\n",
+ "if os.path.exists(filename_img): # If we downloaded the data\n",
+ " if not os.path.exists(os.path.join(data_path, 'Image_Data')): # and it hasn't been unzipped\n",
+ " print (\"Unzipping images...\")\n",
+ " print('Estimated unzip time is 2 minutes')\n",
+ " z = zipfile.ZipFile(filename_img)\n",
+ " z.extractall(data_path)\n",
+ " print (\"Done unzipping images.\")\n",
+ " \n",
+ "print(\"All required files downloaded and unzipped!\") # print when done"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "def display_slices(image, mask, skip=1):\n",
+ " \"\"\"\n",
+ " Displays a series of slices in z-direction that contains the segmented regions of interest.\n",
+ " Ensures all contours are displayed in consistent and different colors.\n",
+ " Parameters:\n",
+ " image (array-like): Numpy array of image.\n",
+ " mask (array-like): Numpy array of mask.\n",
+ " skip (int): Only print every nth slice, i.e. if 3 only print every 3rd slice, default 1.\n",
+ " Returns:\n",
+ " None (series of in-line plots).\n",
+ " \"\"\"\n",
+ "\n",
+ " slice_locations = np.unique(np.where(mask != 0)[0]) # get indexes for where there is a contour present \n",
+ " slice_start = slice_locations[0] # first slice of contour \n",
+ " slice_end = slice_locations[len(slice_locations)-1] # last slice of contour\n",
+ " \n",
+ " counter = 1\n",
+ " \n",
+ " for img_arr, contour_arr in zip(image[slice_start:slice_end+1], mask[slice_start:slice_end+1]): # plot the slices with contours overlayed ontop\n",
+ " if counter % skip == 0: # if current slice is divisible by desired skip amount \n",
+ " masked_contour_arr = np.ma.masked_where(contour_arr == 0, contour_arr)\n",
+ " plt.imshow(img_arr, cmap='gray', interpolation='none')\n",
+ " plt.imshow(masked_contour_arr, cmap='cool', interpolation='none', alpha=0.5, vmin = 1, vmax = np.amax(mask)) # vmax is set as total number of contours so same colors can be displayed for each slice\n",
+ " plt.show()\n",
+ " counter += 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 2: Reading in DICOM and RT struct files and converting to numpy array format. \n",
+ "\n",
+ "The principal on which this set of tools operates on is based on the DicomReaderWriter object. It is instantiated with the contours of interest (and associations) and can then be used to create numpy arrays of images and masks of the format [slices, width, height].\n",
+ "\n",
+ "\n",
+ "The following code logic is used to demonstrate searching a path and returning indices for matched structures and images (by UID) for arbitrary directory structures (DICOM image files and RT Struct files not in the same folder). If all necessary structure files are in the same folder as the corresponding images (by UID), one can alternatively use an os.walk through directories of interest and call DicomReaderWriter each time a folder is discovered. For example, I normally use a folder structure MRN -> date of image (pre,mid,post-RT) -> type of scan (MRI, CT, etc.) -> files (DICOM images + RT Struct). However, this approach calls the DicomReaderWriter iteratively, which can be computationally taxing."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\n"
+ ]
+ }
+ ],
+ "source": [
+ "DICOM_path = os.path.join('.', 'Example_Data', 'Image_Data') # folder where downloaded data was stored\n",
+ "print(DICOM_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "This will walk through all of the folders, and using SimpleITK, will separate them based on SeriesInstanceUIDs."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "%%time\n",
+ "Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)\n",
+ "print('Estimated 30 seconds, depending on number of cores present in your computer')\n",
+ "Dicom_reader.walk_through_folders(DICOM_path) # need to define in order to use all_roi method"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The following ROIs were found\n",
+ "rttempglioma\n",
+ "exprttempglioma\n",
+ "brainstem\n",
+ "dose 500[cgy]\n",
+ "dose 1000[cgy]\n",
+ "dose 1200[cgy]\n",
+ "gtvplus2\n",
+ "expltparrecgliom\n",
+ "ltparrecglioma\n",
+ "expltfrontrecao\n",
+ "ltfrontrecao\n",
+ "body\n",
+ "expltfrparrecgbm\n",
+ "ltfrparrecgbm\n",
+ "explttempglioma\n",
+ "lttempglioma\n",
+ "exprtfrontrecgbm\n",
+ "rtfrontrecgbm\n",
+ "expinfrttemprecg\n",
+ "infrttempgbm\n",
+ "dose 2400[cgy]\n",
+ "expltfrontgbm\n",
+ "ltfrontgbm\n",
+ "exprttemprecglio\n",
+ "rttemprecglioma\n",
+ "rtfrontrecglioma\n",
+ "exprtfrontrecgli\n",
+ "brainstem1\n",
+ "eye, left\n",
+ "eye, right\n",
+ "chiasm\n",
+ "lens, left\n",
+ "lens, right\n",
+ "optic nerve, rig\n",
+ "optic nerve, lef\n",
+ "dose 2500[cgy]\n",
+ "exprttemprecgbm\n",
+ "rttemprecgbm\n",
+ "exprtfrparresxn\n",
+ "right_front_par_\n",
+ "abv\n",
+ "abv_roi\n"
+ ]
+ }
+ ],
+ "source": [
+ "all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present, and print them"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "As we can see, these ROIs correspond to a variety of structures. In particular, we can see many GBM and glioma structures. Note GBM denotes glioblastoma multiforme (a high grade glioma)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Contours of brainstem1 are located:\n",
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T1\\001\\RS.CA1756_T13D.dcm\n",
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T1\\011\\RS.GF6065_T13D.dcm\n",
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T2Flair\\001\\RS.CA1756_T2Flair.dcm\n",
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\Structure\\T2Flair\\011\\RS.GF6065_T2Flairdcm.dcm\n",
+ "C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\001\\RS.CA1756_T13D.dcm\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "['C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T1\\\\001\\\\RS.CA1756_T13D.dcm',\n",
+ " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T1\\\\011\\\\RS.GF6065_T13D.dcm',\n",
+ " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T2Flair\\\\001\\\\RS.CA1756_T2Flair.dcm',\n",
+ " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\Structure\\\\T2Flair\\\\011\\\\RS.GF6065_T2Flairdcm.dcm',\n",
+ " 'C:\\\\Users\\\\markb\\\\Modular_Projects\\\\Example_Data\\\\All_MR_Images\\\\Image_Data\\\\T1\\\\001\\\\RS.CA1756_T13D.dcm']"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Print the locations of all RTs with a certain ROI name, automatically lower cased\n",
+ "Dicom_reader.where_is_ROI(ROIName='BrAiNsTeM1')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "You need to first define what ROIs you want, please use .set_contour_names_and_associations()\n"
+ ]
+ }
+ ],
+ "source": [
+ "Dicom_reader.which_indexes_have_all_rois() # Check to see which indexes have all of the rois we want\n",
+ "# Since we haven't defined anything yet, it prompts you to input a list of contour names"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "Dicom_reader.which_indexes_lack_all_rois() # Check to see which indexes LACK all of the rois we want\n",
+ "# Since we haven't defined any wanted ROI yet, it will prompt you to input a list of contour names"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "From these ROIs, we will look for those that describe the following regions of interest: tumor (glioblastoma multiforme only) and high-dose area of radiation therapy. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "Contour_Names = ['tumor', 'high_dose'] \n",
+ "associations = [ROIAssociationClass('high_dose',['dose 1000[cgy]', 'dose 1200[cgy]']),\n",
+ " ROIAssociationClass('tumor', ['exprtfrontrecgbm', 'rtfrontrecgbm', 'expltfrontgbm', 'ltfrontgbm',\n",
+ " 'infrttempgbm', 'rttemprecgbm', 'exprttemprecgbm', 'expltfrparrecgbm',\n",
+ " 'ltfrparrecgbm'])]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "!winget install pandoc"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "Dicom_reader.set_contour_names_and_associations(contour_names=Contour_Names, associations=associations)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Note: The module is printing \"Found []\" because many of the scans (post-1 and post-2 RT) do not have associated structure files. The module recognizes these images exist (unique UIDs) but associated structure files cannot be located for them."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The following indexes have all ROIs present\n",
+ "Index 7, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\009\n",
+ "Index 11, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\003\n",
+ "Index 18, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\010\n",
+ "Index 28, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\005\n",
+ "Index 31, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\003\n",
+ "Index 35, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\005\n",
+ "Index 54, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T2Flair\\Pre\\011\n",
+ "Index 58, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\010\n",
+ "Index 60, located at C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\011\n",
+ "Finished listing present indexes\n"
+ ]
+ }
+ ],
+ "source": [
+ "indexes = Dicom_reader.which_indexes_have_all_rois() # Check to see which indexes have all of the rois we want, now we can see indexes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loading images for ax T1 3D 1MM +c at \n",
+ " C:\\Users\\markb\\Modular_Projects\\Example_Data\\All_MR_Images\\Image_Data\\T1\\Pre\\011\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "pt_indx = indexes[-1]\n",
+ "Dicom_reader.set_index(pt_indx) # This index has all the structures, corresponds to pre-RT T1-w image for patient 011\n",
+ "Dicom_reader.get_images_and_mask() # Load up the images and mask for the requested index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "image = Dicom_reader.ArrayDicom # image array\n",
+ "mask = Dicom_reader.mask # mask array\n",
+ "dicom_sitk_handle = Dicom_reader.dicom_handle # SimpleITK image handle\n",
+ "mask_sitk_handle = Dicom_reader.annotation_handle # SimpleITK mask handle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Dk6V0fjr+mu6dzmtCTw87ubI63t3t3e0G6050klEoCFZaMAJnCQBUSLiyXgzAGG7usKkyVKWHKolwUKmNku8i2QAfolO9WF/Y25zA7OXWazt3T4ffH/F7PvPrZ3hPCfKVd+Lyrpmam+xOe+A6vd3i6Wq1WCw455JBDDjn0kJDr+90AhxxyyCGHHPpuyBFcDjnkkEMOPVTkCC6HHHLIIYceKnIEl0MOOeSQQw8VOYLLIYcccsihh4ocweWQQw455NBDRY7gcsghhxxy6KEiR3A55JBDDjn0UJEjuBxyyCGHHHqoyBFcDjnkkEMOPVT0fRNcv/mbv4kdO3bA7/fj8ccfx2uvvfb9aopDDjnkkEMPEX1fBNf//t//G5/61Kfwy7/8y3jzzTdx9OhRvPvd78ba2tr3ozkOOeSQQw49RNT1/Siy+/jjj+PkyZP4L//lvwAAms0mxsfH8XM/93P4V//qX32vm+OQQw455NBDRJ7v9QtrtRrOnDmDT3/60+Yzl8uFF154AadPn+54T7VaRbVaNf83m02k02n09fWhq6vr//M2O+SQQw459LdLrVYL+XweIyMjcLm+O/Dvey64kskkGo0GBgcH2z4fHBzEtWvXOt7zmc98Bv/u3/2770XzHHLIIYcc+h7S/Pw8xsbGvqt7Hoqowk9/+tPY2NgwP3Nzc9/vJjnkkEMOOfS3QJFI5Lu+53tucfX398PtdmN1dbXt89XVVQwNDXW8x+fzwefzfS+a55BDDjnk0PeQ/ibunu+5xeX1evHoo4/ipZdeMp81m0289NJLOHXq1Pe6OQ49pNTV1WUWvC58+3P9se93uVz3XNPpfpfLZTB4/azTdfpsfT4AuN3utmcBaHuO3Yf7PU9/2993Gg+7LV1dXXC73fB4PB3H4n5t0ffaz7vfuHZqj/37fnPkkEP3o++5xQUAn/rUp/Dxj38cJ06cwGOPPYZf//VfR7FYxE/8xE98P5rj0F+DbIbTarXQarX+2szG5XKZe/SzZrPZ8Tp9h/1+Msdms4lWqwWXy4VGo2Haw8/se9+qP7yPz+CPtvd+TJ1tZfu1bXweP280Gmg2m4a56xja71PSMdF3ut3ujm20x0uf0el7HSsdx05/83+3222ea/dX26rPdLvdaDab97yH77bXQ6d26fx3uqdTfzq1q9OzO33f6bkOfX/p+yK4PvKRj2B9fR2/9Eu/hJWVFRw7dgwvvvjiPQEbDrWTvdk7WRo2s+F3/K2bnEyPn3XamMpoSMqMbYYGwDBm/q1ttJ9lt10FTqPRaGvX/SKPOgnQt2Iy9vvYRn2/9o/tAHCPQNT+KFO1hbT9bvZFBR7H637WivbLFgr6vdvtRr1ev0cgsr22cqB9tt9tM3MVuPa88zsKMb2e/dJ+UvBxfLUfKpR1fdrjYFu+9rjb/VWh12k92X3qtIc6XdtJKeNnncbFFpQOfXf0fcnj+n+lXC6HWCz2/W7G95SUISrdT5Bx03R3dwNAm0bciTweD5rNZscNfT/N1H4XmSatCr1eGbX9//2uVYbG52o7u7u7zd/aJv5PoUvmYVs87JMtuPhsbR/v9Xg8aLVaqNfrhiE1Go22+dFnsg1KfAeZtz2m+nkna8K+Vpkj28g2dbJwOwlXbQMhzXq93tHq0PHje9xudxsj1mfbwl2Fn/ZB77XXoK0AKWzJOWXbOQ46p6pUcQ47WWz3U2bsNa/ClG3gXKuw7KRY2M/V/vO7v0+0sbGBaDT6Xd3zfbG4HPruSTcacK9F0ckCspkBSRmYvXHeiqHZAkw1ZmXGfA6ZH7Bt3fF/mwG3Wi3jc1HN1O6rtrNTuzpZDTp+dn9sjVqFI7/3+XymDSoo9R2dBJD6gpSZ2++0+2XPo70GVOjzhwLEZtr22Og72F+7XQq9KlP3eDzweDyoVqv3wJ2qfHBt6DrTeazX623f870UuKpodFqnKtxUMaAiYwsRe7zt5+je8Hg8cLvd2Nzc7Ng3nW9bmHbae7oWbEvU3r+dLDeHOpMjuB4SUmajzNNmYno9P7ed+GRyvM6Gg9Ta4Aa2oT9lYirIbHjE4/GY720B10nAKgRE5kBGrMyiq6vLCEGPx2P+JtmMlH2w/WrKpLUPFMpsq1o2ZLoADJOkwGAbyZhomdn9U4asjEw1fbbDZrT83+12t1k6+kz2o1arGQuD87G5uYnu7u62taACknOuzFTfYzNx7RvfUa/X296rfdY153K5zBqhQGNfOM5sj46tWlwcM8KjVDw4pmw7FSn+5vixuAHHg2QLelUQdG9RuWEb7P2pFqGOEZUkrl1HYP31yRFcDwnZm1+tE5Ktzd0PflGmSGGijnYVLsoUO0EmpE5+HZsJ29/ZcAmZlQ3fKBzH/7W/AO6x1rRPtr+H/VZhynvJbG2/C59nW538TpmoMutO2r72i/4oCj2FCPlcHXMV7PxfFYuurq42a8FWTMgwOTY2hGpbrXwGv+ccbW5utgk+G2am0qN91/ZTgCjMZsODnAMVKCqsVSDYZFuEvK9Wq7XNiT5XLTa2UdvN3/aYulwu1Go1dHd3t1mMdju41lTp4vu8Xq8ZL4e+MzmC6yEiheFUw9fv+L8yL9sa0ufdj7kqU7A1bm52W4vsxERsJsv7bEaggsl+p0YM8jt9LwU5mY39HruPFLK2k97WeLVf/K2QJ5/b3d3d1g/V+HUMlDGxb3ynMlAbalILi3+rVUxBp+/c3Nw0gsq2GJVhc9y0v50sYSoGnSwSW7gC29CYrjuboet6UWtc+6XPJYzHezc3N+8RLpwnFfqNRqPNaqPQ1XHl/PFvXs+2qmXN9nLsdMxtJUItUSpGHo8HxWKxzcpkv2zkwKHO5Aiuh4iooXo8HlQqlTYHsA1J2Pg/4RFuamqHnYQDN7YydrUCSJ2CH2xNGmjf5LZvQ7V8Mke+QwM9+D+ZKd/D+7WWpTKJZrMJr9eLRqNh+ru5udnxWRqNZws6YMuHwjFUIUCGRWFmW4hq2eo8AjBtsaFYjrUGP/A7r9dr3k/GR2FmC3jbmiRjVMFlM1r11/E3x0bXYq1Wu0fo8z325zYUyuvUCuEYs30qxBSu0/YrNMlnqqDQdlUqlXssK7uNfDY/oyLIOeQ86xpViFLHyRbOnDcdI67fSqXSpjg49NbkCK6HiMhQqLnbVpRCNqoFK8MAOkdx2dCXHarMjUtGo74rfa8yFhWa9K2olagbVJkdmXatVmvzG9k+ja6uLX+cx+NBqVQy/6t2rxZWp+gzwnTKqOi7Yxttq9YeWwpc9tWGZcnIVOjbFib/tiFAfTbJhjKVwfM371eNns9XBYRMV2E1vlMDabjmaDGodaDv07bZ0LQtnBXm5D36To4lBVytVrvHB6YCTAWPKkecV13rNuRqW3c2SqBjRMVEI0s5D52EoK4/fmbDzioYHfrO5Aiuh4TsDU6GXa1W7/FPATCMRYULAGNtkXRDqZaqTntljmot8H8yfo3I0nbaVpxuZmUMm5ubbTCiTep/IOmG17a0Wi3jz/B6vff4lmq1mum//buTMAfQJgQ0gIFjRgd9rVaDz+czQov91d8aaMD3su+0Cvh8jguZnfrDKJxUuChzVyuYn+m7bGFCi8GGfSlEqbwo1ApslWVjX+0QeV1HDNpQy4jXNxoNo3joemS7dB3y2V6vF8C24sOxUOVNFTGuia6uLvh8vra1b6cQKDRpw50qpNUqVQFGa18tL7tvqjjQIlM41qHO5Aiuh4jU2U0mYOPytg9CmQOwHXKszyGDo4NYNz+1a2UitPpUaCizUPgSaId1bEHI56lgtJkmmTafodqzQoS2EOL1nXxLtL5U6GsUI2FBZfLKtFTwKOMl2QKBn9lWlh2QoMLKZoT6owLetmBtaK2TgGIftG3su71uOBYcD302LWkKNhWUnXxcqqyohaJzA2ytdb/f39Zm3m/PoVpCOo4kWkdqJatQ47sJ1ymKoOte59teE/Y483pdrwojKlLC+VS/mkNvTY7gekjI1pKVEdRqtbZNw8WvIbdkErQ21ALrhKl3Yqr8nM/hs23834Zd1PegG1aZqDIg2xJjXxT24UZXgaMRiWS4GhRhP5vP0naTVMiolqwMjRAoLSkKG4U21bq0n6njYX/Pv8lwVeCrtk/FRRUZW2NX5qv94LsUdmQ7FFq0rX17Xm1fnI4Xr7NhUhviVJ+qzoutMNnv17ap0FW4UoWLzgvHkX3QcdYgGRsO5HPVqtM1rOOhQTy0vLhm1H+sY+XQdyZHcD0kRN+LaqQkbrxKpWI+U8avgkI1Q4U4bKZkM1z+pvbNjaobkvClarf2M4H2en4arKGRgco8ms1mWxizarxqiSkDVmbj8/kMM6nVam3WigZaKETE96mSALT7YOgLIvTK9tDqYF/Vd6Ht0r7wPraR1xA+osKhOU/sK8ebATfKkGm92RCsvSZUANoMmdexv8wDY5vYD86fDVnqMzUoQS0OO8qRignHTIWhzgH7rP1TSFatJl1ThHsB3BNkwnHT9cR3cf44R2p9NxoNVKtVs765r7gvKpWKsSI1slHHWf2rDt2fHMH1kBA3FLAdraSadicmoxtZ4Q8+z2aqykzUGlDhwHv5HIXJ9PlkUnqdvUn5TlubVT8SGYDtm6HwtQM6lOFo21QAqRVhWwPaP/aB7bCtpE5as46RPpf/28ESNgylwk9hONtS5BirBcDfGjloC0y7/TomnHuF+9SS4JqiIqHtVeGolr9ah/xOIUG1HO0gF1W0tK8Kcep6V1+Svl8tMb5ThSbQrpDYz7YFp44T14p+ZucUqlJoW2B8ZqeAJYfuT47gekiIm0Qd5ypUVLNUjc8uuUTSjQZ0dk6rICAztTcc363MXsmO+lKoRpkHNXVuYoU3O7W3k7ZKUkZPJqxh1/Z7NVTdtgo5jvo9YUFbCVBLVi0Z1aZti081dmW8anl0CnNX4nVq5dkCg2tAgy/0OcrwuabUV8VrdL2oILfhQjtyjuNCf5OuCX2OQs0q/Kmocd1oGzk/ulY7BSypVUWYWefBvoY/tpDleCtyYFv/tsXGtc3ISN1DOm5OHtdfjxzB9ZCQHVJtbxqgPaSXznQVbLrZdGMpc9X/7eAPZRq6edUatD8PBAKo1+tt/ij9TWZFXxmfoYEmrda9OUr1et1ElPF+9tPWaMn0SAqD2RqzzTDZbv3eHi8VPupgt62g+wV7qABReFTzgWyIVpmkjrndZy1ErH4XbZvmQamvkNF/9N3R0urq6jKBPLaVzbEihKfW7v0sd4XtdGzUX6gWro55J8XEVqDYR7fb3QbD2SHy+rdager/5O/u7u62KE8dB75T/YL8nv4t5hbyWoWMnajC70yO4HoIqBOUQAaqGhw3OzeCMkbVJAHcw5hVS1ctVDc171fmYTvI9X47MITP4P9axVxhNXVi6318Jt/LzW7DSfZ77L7Z/VFhYfu/gPYcM1pMOqbKJDtZX3bUocJ2ep/On0KHtgWlgp/v549tVdpjbwdi6BxyjekBkzr/OtdaJULhMG1LJxiYpM/QtW3fS+Fnj7OutU7Cu1MgCX/ruKq13UnYqaDXe9U65P0KjXPtMheRgkwFY6f1aI+TQ53JEVwPAZExKFPjhtIItk7wk8Iy92NmKmioLatWz3erJUHtn22iH8hmXOVyuU17tiEkfTffWa/XjYXFvmltPGBbW+ZzGbjg9XrbKoTY7dHoRNv3wD52d3cby0Ih0k6WkQ032lF2eo8NOel4KiPV4BS2kZ8xKELvI4NlODffoWPs9/vbYGOOj86j+k07fa/PUx+qnYisY6GWmsvlarMAWXVfrSUyeFqYOt98L+eRa5nP1PnQe3Q8VFlSIdPJ16sKlq457aveo5ZZuVxua6+uA74T2FIcNzc3zXgy2MWhtyZHcD0kpBo1YRhuWODe4AQVYkB7qLPNhPk90F5p3dbgycCUcdoQm91m3eDqcFfmrZCRwnB2PpD6gmwhbENEqkV3ErraLm07ISCSzcR4HxNLO0FctqDXsVfL2H6/bdmoP0XfrVX5VeCr9s/n2xa5bZXaa0ShQo6XDTNrW7ge7YryGtmnzJ7jpcJRhYi2Sy1LFZ4KGaq1B+Cev+15YH95v6006Fzq2NiCUfeF7dfstPY5rnyOWrlqIXbaRw7dS47gekhIN6xqxfxR0o2nlg4ZgR0xphuQG92unqB+q07Qis/nM1qnCiFexw3P+xUqUsGm/e10P/vEv9UCtQMrNNpShYrdDpvB2v4SW8vmmNoCSaEt+t90jBViJdmWtG2Jaj9VcLM/bIeOpVqJHEM7tNsWVp3Wj84ZBSbQHoHHedN1o5ajLQAIH2vZKN6v88N5tpECHTcVGioobAXJXhsqXLU/Kgz1vWyXvcbta2wlTd+pbdOIWc6XWraE7x26PzmC6yEiv99vGCMXeKdoP2CbYSqjBmBgCdX8gfaK8LQ6VCja2L7Cfo1GA36/32w4LdtzP8ze1uD5Dra3Xq8bRqGfdWIQ9PWpcLItJWDb72BDhF6v9x5GroxaK0OQcSnsZkNGZOAaLaaCn9e1WttlomzGa8NnfA5zhfgctl2FtOa8qQVGCFYVIL5bf+t6IaO1gzcoLHmtz+czwSClUqktqEHh3EAgYObStrjYR86LJtBzXnTu2BcNDLIVND5XS4/pmlbLn2W6OMcaWKLoBpUi3Xc2jKj+LkbJMsdL/brcj3YVf4femhzB9ZCQMm6g/eRadZoD9xYG5QbncwDck+dFJgK0n1/VidnqO6n11mo1s5k18IPPUEhE67Npf7SvfJ8KBDKyTpChMny1aNgWZcbaJj5bxwFor42nzF61ctWkmYRMxmi/S5maOvq1r9r2TtYcn6vWpM69rSzYlqZtxal1o9aujr36JDm3+r8tyPW99lyqwOJ86npiGwjDsg6n9p3CWyFlnVtVZvR7XUfsr65/bSMFj73H7HmxLS7OgcKb9vtVmdF79d0OfWdyBNdDQNwQ9kFzNiSizEvvq1QqxgpSpkcG4Xa74ff7USqV2p6jG47X8sA8fq9h4CSFs8hkyJg1qZbX6mbXd2rUmc3cgO0gAVqfdvi/HR0HtOe+qbDn936/H63WVg1EbbsNPSnEqH4zPpcMn8yZfdLKIhQobI/Cq6ROUW+tVguhUMgwd9sqsqFUtb5VqCospdfrNQzb1vmhgkIhzfappae1FhWa1qoUlUrF/K91Dm0L3B4HPosBHzqeCot3gmRJhHJVaOk1tPhsS1whWI6rrSjo9fYcd/KHsa1cG5wDh+5P9xajc+iBJGWa3KAKJekPSS0Wm0FyQ6mlo/fb8JG90fgZ/7f9QXb9N2U82nZ9j1p5/Izt1Daoxq2+GL1XoSUVKHq99p/MiJ/p8xXW4jvYJ1vY6jtIdiCG/ug9NgPUOdUAC7ZTK+53Ulxs7V2FF9cCyxGplWIzXyX109i+TO2rtlvnk7Chy+VqEwzq71LLV/P37jfW+j/v07Gyr7fHT9umZK8TDdtXQa7r316/NhxuW1m6lhz665NjcT0ExA2of9uasf0/N41t+dgbTRlGp+coo9Rn2s5phQltWIWWlm5Q1V5105OU4fD6Ts+kRq/tVcFqM3N9DvvJftkRlWpV8noyP03a5fUqtFSwqc9PmZ1arCpo7f7blpIml/N9hDRbrdY9/j6boasPU/08fJe2VWFk7b8d7KFWP9Belomf02JnexRu0zWqfiu1ujjOnSBr21+mJ0Tztyaqaz+1nbYA0fXSaX3pHtAxtb+3oXVd2/zfqQ7/16eulj17DwHlcjnEYrHvdzO+Z8TFbPsWNM9HhYZGXKnvRRkLsM3EyJwUsqFGamvgNpPSzajtVbjmfsxfNzVzemxBCrSXYeqkmdqwjUIvKiQ4RixcWy6X7wkV532EoewwZXW6a7+1L7b1o0EhFJKtVsvknCkkqe2wtXRbkKulphau1hHsJCDVArF9i7aQ1TnQtvNa29K2+0lGzj7a0ZiqCKm1xfu57m3Gbls4tjBVAcXxsueKxJwxtQbps/V6vW3jqQLc9ktynu0xIozLItjsj4bHA9u5en/fYMKNjQ1Eo9Hv6h7H4noISBmURijZ2rkNcenmJqPk3wpV6DU2dKiOdPVZqJbLe/mZCit12qtfyBZ4nQSSMmebeSvcpcxer1cmrcEBtuZ7P8iH7+OBgwp3KqNTy0jHg2OgvgudRz0gkkqIDYcqs+W42WPCMdW6fSr4VWHg9ToWuoZ4LZ/Dd2ritj5T+22Pow2V6dE2yvDVT6RzzPcRpruf4mKvV5erPRVC15M+375XT+jm+Ompy+wXIyS1jVQSOS5qRWsfbHhZLWG7Hw7dnxzB9RCQwi7qHwLujZrrpBUqkWmQkdhMTbVn4F7fk1pRfJ6SDQHp37xeGZMKUf2M7wa2Kxvo550EM69l/7UskQpauxgt7+vUFh0H/V9DsO2+aD/VClNGrH3S/igpI9bx1GdqMIqGbNtzqcKF7+oUEKPMnYxWLS0VwFpjspOvVNunwl3HSvvSaGwn1etYKzSt/VP4WVEJtb7V12YjBmwX224Hk7APCqfqXtF+6brR9muCuh3soZX/VUHReXCoMzmC6yEg9VMx74ObTM/vURiFG4JQIRk5maHX623TqPmZXVWCG1IhMzI1PhfYZuAa0cbr7GM2bAiO7yXT0oMubSam2qgyTq0bpwwfQJu/pFKptPkg+L3CWfouoD2sX6En3suCs4yY1H52dXWZd+qcEH4iA7NrRrJ/1OIZpWdbWhwfnhVF5t8JDlOLTZm4Wo0qoNRy6DT/ttKjwsPt3jpR2Laq2UY7zF2tGf5tH1Wic0pSBUzhba5PtWJV6NsWKZ+vCg7nkOtRfao6drSoaZ1RUBL21nmwIVu7TbYi6FBncgTXQ0AKOwH3HsGgwkGDC2yrgNcSVuL/vF5hRt3M9sbm9TaEyQ1IRq6aMJ/Pdyqz4vM1aZcavVoDth9NGZ8dKdkJVrOFpkJXfHcwGAQAVCqVNutDmR/7wGdzPIPBYBujVbiM/yvDtvuhVpjNoNWyUGtFhXAnq9VmxlqhQdeLQn3KTPkMtT643lQ46HzqPKqFr9aurgm17Oy225b2W42HrhEdVxsp0HtsaF3Xi4aw6/jYY8xn6lrU0w3YHr3ejhLVubItb4fuJSc44yGg7u5uo6VTSBAaoqYPtC98u9yOYuy6qW0fi8JqnSwvoF3Y2daVOta1+Kpq9iqo9DkqBG2/CUnfp1o68400Os5mQMrEbKFJBsL71frU99n+h/u1tRNTViuSfWflDLXYms1m2+d8HtupjE2FB99H/4stNPV4EpKOiR35qe8F2n2eKoDtcVTB7PV64Xa7Tb6ZDTfakKctYCjQbaupk7Bif3StUIFTixFoh591T/GZ+j2rk7AP+k61zhRKpAKn1VY4dp0UFN1jOn5/H8gJzvg7SrpJCEUow7AFioYwK0NQsjc9BSGhkU7Octt3psxDc8TUca3CgG1XaNNm9PZRJ3blcYUi+X5aPHoNGZEyCEYLqhBSJmlbk0C770u/51zoqb12KS0NW+80n2oBcd7svtmKg86/pgRwDtWXoutA261t4OcsO6RQmM6Prhm11jiOKtB5nx16bltOum51HfN7nWu9ln3TpHddz7o+1RLVftv1Fu3ncD41KMdeJ+y3Ko9sq15vf6bKDveTnT7g0FuTk4D8EJD6pxR60XppvM6GjLQcTyf4jAmovN7WZpUBcKN2IjISe0PazMiGsBTyoWXJza2BJ53gHWUOWsewk7VoQ0LaXxUcymhsaEqtKKC9srj2zbYKbAXDVgQoYHRM1Eq14Ul9ls637bfhnPEd6j/jNZ2qiyh1UnhsYWALJe0D14WWHeM6shUrjdJUy89GCex503mngmKTPXaqHOmcANsCi++q1+v3zbFim9QyVtTDXsO8hr5nKg0aIu9Ahd+ZHIvrIaBO1oZuDqDdcgLaLSDb56OwCxkENz/L9ijD570qlBjQQOtKBRwFIq0v9Zlo4VUyJs0dIgPQyC4NUdbEW9tyU18En9UJBlIBSEhHmZ/2BdgO1bchOi3Cq9eR+Hwtq6SMzA7i0BqObAdTGPgeO5BCLTa2l0ErmlfEeVelRhmpVuHgOlOmrjCs3mevT64R+jn5HAYusB2Nxla1dc6vBnCoMgNslxujENF9YVvE9qkGGqJO60jHWINt+Ax+Z+87ew/ZlhfbpAqNnsulaSTcA3yGXe/RobcmR3A9BKSbmqSM2v5MGcr9rA9ubk2uVOZuP1MFopZAUitCNWUb9uJ3Wp3CtuposangBNCmQdvtU+tOn6XMw7YQ2F5lUMpwteaeMlC+z4ZqFeZRK1MFoA1JdYLiOL68V60UHQd9nh2MQCGkgkT7b8NSnax2XmePly0gKRQYjME1oQyasKXd304WOBUeFSi24FArlNfoHHRavzonbA/nUI80UUVNhaE91mphso3aDzviku0llEy43B5TRQXsuqQOtZMjuB4Cshk9F7tWtuCmIwShlhDvsbVTDZ3WIyB0g6p2yHf6fD7UajWjRSuT0U2t1oAN1ynjAbb9GQrHqcVDJmgHHyg8t7m5aYI0bMZI0nfwverDUEauv9Wvwz7osew25KgnFatVRyuQ/kS1EBRiVOZsw3ydtHf1D2pfVHgyUIJWqwpf9S0qs2fRYY6/DVPa8DPXkkJ+7CeVJBKDHfguFbSsZsG2aMUSjrH6uzjPTPMol8umjaoMqAJmKzyBQMA8m/OhwpfV6tVaI+zH9aBWP/uuc8GIQ7ZdEROdf4femhzB9RCQzei5yG0Hs+1/UlhDiczN1tbJRDpp350sHU2gVF+MvpObXIMlFB4iU1KfAoA2wWFbbHYbFYZTAWzDpqrV6vgpc6IwVqtPtWcAbdF5Nvxot4saNxmW7TvrpNnzHfp+hYL1nZrUSsuHbVOrTS0whUQVflbhYFtzZL7aTrViOCYcb5sJ22tUhRO/5xiR2F7NvbPRAR0LwrJq2fBaVcB0TGnJ6bpW4UxBr3OjgtJWALQttoXNfttWlu5n+z6HOpMjuB4SUmjOxt7tTaOwhAoF9W+oBWQzgE7WisJUfB7QDrkpJGIzadsioRDipmW0HxmNvkNJLUyFvTR4xWauCu1p5B+/p9bOtthMVuFLhTptQa8MR8ea79R32PAl20nSOVIoj0yRn9MHpvlZ7B/Hl0KQjJ3X63M5xxrSrc+1rTudV/3Rsb9ftKANAWvwkMJ1FPi2cLHfrZ8rjK1zacO2XK+d5plzYwta2y+mPjudb10vXCe2MmgHRHVSJBy6PzmC6yEg1bgVYmi1tk6e1c2qGqwNmSnD5fUKuzGgolQqGXisk4ZtCxUydPukYH2XQkoaJs3nqkBhnxSyZMh7p6RkWh2Ew9h3tkEjDlXIqPDi9RoMoVAQGbieQaXCXBkhn2eHjZOZU6AwuET9QmyHzrNq+2rddnV1oVwum2f7/f62or0qxAh18Tn2OCkEyzapBcp3KzSnVpzClGS+GmzCMVerj75Erh0bptVgBRUyOreaYmEHlaiPSaFnW+Dxb63YosIM2Bbq7Ad/20Kr07ypgqVC0bYatYKLQ29NjuB6CMjWcPlbF7+t3Wm0lDI+G/7T5+p71K+jDMC2tgC0acdknLYmrkyFPgEyXVugKIxIH49CMtpmllxSi02vsX0ZtrVKhq2C1uVymXJF/IzjoOHjOp42tKhQmQoRjo1G1PEd2gY+y4ai1OLUd5JZqn+pUzSkMlFtn0KwmiysVoqGlHPs1UrTtWILd3u8eG+1WjXX8pkU9Iwm1PGgxWgjDSpA+R6NRNV369pS6FiDPVTg2tU++N5OsK/2pdPY6ziybWwD945D35mcPK6HgNRnQaGkC78TRKNaof4G2h3Bet/m5qbRXIF2Ycb3q79EhYEKMxWmZEZAu7bJftlBGdpGe/PbwketG5K+XxmnDR3dbxz4fBW2dn5Xq7VdG1CFLtuigtyeFzJIFe5sC607Vs0gE9QoQFvoqPDh+FIo2FalMnp73lQhArZhMxVW9hrSeVYhqcdzaPknTTvgO/R5vN9+tvbXhlc1TL/TGtG+6prU+eP82FAtf9v+RXusdA7tNa790TbaQTe6x7QdDnUmx+J6CEixf4V3FEpTZgvca2mQoai/h5+TIaiA5PW0jvg/gLaCrvQtUdNXy0phHbVCSqWS6ZtaUWy/HfjA56gQUEZGTZtMUk+2ZU6T1mZUDZdjwLZo3o1erw55AOZsJR1DtZ50fNkmChRW8FCfhsvlgt/vb/PZaV8BIBAIoNncKkLM6FHCjcoEVUjdjzErBGYHBqhVphYPLSAljQy030mhS0iaUZ98v/r8eK1WXdGcP64Hhfx0XXPc2WaFKjkXdgQt16NawiqMFI5Uq8y2iDsFKVGBUCVT51StWI6Hjp9Db02OaH9ISBmh/eP3+w0jI+nmUn8VsFUfj6HRaonoJlP4yYYGVdPtBIVw0ytcZB+hQuGg/i4+g/4sG+pS64L99Xg8hiGp746h87yWf6vFotaabV3aDESVBL5Xx47XqJWmjI/v1fHidxxTWihUGHi4JtvCKvK28NA281lqrXbS+kmdrAj2w1ZkdP5sC1ufRT+ebVGq9aoWaavVMqkFqljob5drKxBFLSVVwrS/OlfaNjuogt/bAl7nib/tpG4dW75LhbVaqzaczPHQdtp72qG3JsfiegiIviMVCADafqsG2dXV1ZYzY2fk01qwLSmNdOKz7LwwZZKqNSokRKZE4cZiwOrrscOMFR4ig2FOTicLUYMZ7JJWZBxa0YLjooxfGaOOkUKbJBUKaoFp+/SgToWv1EqwmZgKUp0zMkn62vSnq2sr0KLVapk8K51DW+HQY3BUuOvaUB+PDQlSEDFBnH5FYNsy1DFSi4Ljz7nR3DJVrNTCV+WAAk3XOa0ZvZf90gAh3qPKCVEHVSR0bDUnS8kWLra/116bnDuuC7aXFpruH86PbfU5dH9yBNdDQsoUgG1NXX1BJFvzU41Ur7U1zU5+BUIjnfB8hYhsmIjXEtpSZkKhQwhPndQKx6jFYjMSbZ8NvdjWqfbRhvzsPquVQdKIMoW0+F5VGHgNf9t5VdoOtpVMjZF1tsZtWxEKCeszFdbTtcLvbL8kGbVtFdmCl0qTCh+Xy2UsQgoXtS70/WoB8t22cLSFHeFFW8jq93Z0I9CupOjcqnBT/52uk/tZnzqnqnio1amwY7PZNLAuhSn7oc/rNA663hwBdn9yoMKHgFitwnYmc/OpxqgaKIA22E0Fi2LqqkHq53q/hnHr5rYFg0JwCn+RMagvjfcD7TCbwpxst0JEtv/LduzrMzsxcWWoNrNUYn/12foswlrK6NhvLZxqWz73g5jUuc/vFLqzFQK1YFSwUaMncQ5suLPZ3Do+xefztTFpFV7aLntdqOWqlpn6BXWeVaG637q1LUt7DpXR6zNteJF/sz2Ei+31qn1iP1WJ0vHiM0hqGSpErIhAp73Ie+w1xH3YCdJ1qJ2c87geAuLiBraZsUJvrL6tGqatfQPbsI7NkPgOG4azrQheQ+tHhRgd9wo9qWAlqQWiPrJAINDWNq0XqBqsQnR20Ar/JlNg2R+2xxYy6tsjqXDgmGtuDoWGWjx23hTv57voT+S8NZtNwwR1bu02aRI3fV/K3Om/o7DjePr9fnN/J4GkzN1WQAjt8lquI64zjiGhQ54uQFhMFSAVJmrlsP+6FhRyVJi6kyC3rRR7XvV6YPtommazaUqC6f7RtnWypHw+HxqNxj0lq3gPq4ZoOL6uJ+5HCnJaqlRIdX4VRn8IWfPfiJzzuP4OkwonYFuYKWNTQaLQDtDur7GLtQLtjFY1XDI6fZ5CcupHUl+C+qnYfhtaVCiTG9blct1TdUMFGZmFarK2UNAgE4WA+CyF/ZRRKRxkQ3FqPVGwdGL6KnhsoW8nItP3wfeWy+W2+9SCVSamgqBTtXQKA4U4SboebOvTVgjs93d1tVc5V+HXyVLSdtkQnwphfs754L2qaOmasYUZ+2VH+PEeRRG4PrSYr1qROkb8jG2yrXu+n5amDdva0KOONddTp3l0LK7vTI7geghIoRhuQK0Np1aDbj460RuNRlt+FoUDmakybLVYNP9GgzOAbac+n8/NSP8PGVS1Wm0rOGszNKDdr9QJvtNgC2U4ZBZ06tvRixTsrBJB4WJbS3wPtXxNjOU4vJWfRlMPtH8cj3q9brRrVgUh8+ZnAIyF1MnHoYyQ86Bzo35Bhsgr81YhbQt2MloNP9c+cAxcru0KH3ZwDIN47geTsS0qWNhnHX9eq8Le9gfxXRwvFUwaOq8WG8dKrUZdj2pR83OuFVYc0b2ic6BjZ4fgq4LGfulRP0yT4AnnKjQduj85gushIbuQ6f2gEYXNAJjoM4XsuJkULlTGA9wb9KGCU4WAXQ+Pz7e1cbUGKVQ7nUZMIrNRp3Ynf5NqtMA2IyRpn9XHplq59lUFme1zArar2PN7Gxq1w/ptPxDf5/V6EQwGMTQ0ZGDWUChkmFg+n0c2m0WxWDTzRaHMthNaUjiPfVCIjjAW26AWjFbc7wThqsXKvtgCgZ9x3nTsOR4KZfO5VDy0D3YlDrWaqYRwHDpVS9F+c9zs0lOcN7ZFE77tdrEfthXM33bAEa9nf2yrXNec+ibtdejQW5MjuB4CUsxd6+6pVq4QFNCuvZPZqkZHxqp+Ln5uQxwKAdrOdqC99qFqofxOSQUV20qhzPcxfJ7/K1SlG1sd3WR2ynS1n9onZbjKRNRy5fvUb6FjTcvM5br3bCW7rfoOj8eDSCSCRCKB/v5+TE9Pw+12o1KpoFgsmlOgl5eX0d3d3VaLkH4hhfI0YtOGNzkfmnytc2BH4On825aFWj029Mq54HjYTF4/62RFsv3qQ1RIWJ/VyUrmc1U4dxoHRSXsNcK2aGi63W5a0PZ+sXPW1PLjNQxwUmHI5zHNwKG/PjnBGQ8B2ZFMrVbLlM/RjaWwSiAQaGNOmrWvjNoWXHqPMiv1VWkot23x2A5uZUCdfEm09rQNainYjEoFgjJqfq/CTrV4PVpdNV+FlpTRAtuBJDYjUoHE66gkkPmRlJlPTEyYn0QiAZ/Phx07dhiYiAKmVqthZWUFGxsbuHbtGpaXl5FOp5HJZExgAeeaMKwGOPB/tQo0CIFMmcWDbUuUZFsEGjmnc6OKg8LMKow4N+rr4/+q+KjwYVt03G2lwIZDFU5WZQJoP1XbPgmZ79OzstQHq1aqws3st1piWmRa1xP7olaqjTrouP198XU5wRl/R4mbVCEMDYNWrRJo1071SHYyJ73Whrh4P3+rf00hRxuqU2Hk9Xrbcn/I0JTBqSZuh7wzf0eZAduqZZoUzlGISJ/dyS9kjxH/7+Tzs9+v1oD2A7j33C+2wev1IhqN4siRI5ienkZ/f795PwWPx+NBKBQCsJUgXqlUEIlE4PV6EY/HMTMzg2Qy2WbpKPyq64TCWueGfdfUhE7V2zXRmM/iNeyzVqBnf7kuaHnp3PFHrd1Olj7bq4qQ/n2/ZykyoH3t9M5OfbIVJPZH1wafr2tP55rjrM/heiJp+zRtgOuWz6SS4dD9yRFcDwHZEBmJ0JFaF9wYGoyhWjHQDqsoI1ctVbVk3sPryJj4DBumVGZhw2fclHyH3qOMxvbF2AxMhTE1VNXk2Ub2X7Vlfm47zdUq0XHXNpOpaUCJVswA7q2OEY1GMTU1haNHj2JgYAB+vx/5fB61Wg3VatUoJLb14PV6sWPHDgSDQXi9Xly7ds3UeVRlRa1J/qbVodXXlVlryLpasrY1a/fLTqkAYIJMCPHqPOkz1Bdnz70tgBn5x/fabbSFMv/Xe2zoTgWEjh/bqX4q3Vsq0G3LTK0phf5si9G22vm5HTClkKZD9ydHcD0EpDAIN4MeF6GWhm4+O8TWDuxQDRPYDivnc3ktoUZlVropFXLiplaoRbV1ChpuZvajUqnco+WTMbBffL76q1QIsS2E0+yxUuHO5yqMqA57tlMFmQp/TcpWDZtMlGPl9Xrx7LPP4tFHH8XExARyuRxSqRQAoFQqIZvNIh6Pw+v1GiiwXq+jUqmgu7sbiUQCU1NTGBoawuzsLC5fvoxsNtsG99pQnfqu1MJWK9gWYApVqSWs462KAeeJOU525RMycR0/ey5t60itZHt9ct0xCk/XvFr0AEzqhI6NrnvNu9KCzHwGrSZb+PG3rsNO60vXukaW2sEvChtyfBgJXK1WHQH2FuQIroeAVFjo5gPQ5h9S2I/VELhheD/QfkREJ2uJpMEbtrarsAv9JWQEyrCUafIZ9xOufJ76plQjVlIGAmxrtQrn2G23fWsKZ6kg1PfpmPEemxEqA1MG3N3djZ6eHuzYsQODg4MAgEKhYI6iz+VyJky+0Wggk8m0Me9ms2nqSvp8PuzevRuZTAbNZhOlUqktgEWtX7VGdWy4XuzUBvabAqCTpcQ51OhU/Z/v1rXI9+o8KeyqigevUZ+dbYEpqfXI/gMwyoQd9q7Ck/fayo9aZPba0rnvhEbonlJlUtewKmZq0eoc2GPsUGdyBNdDQAp1KWPTnCD1/wBoy8InE2BAh24goD2kXJmdHnmh4cXKnLRorVpQnTRJW+tXganUKV/NjohTpsHxUG1fLT5epxYj328LIfZPGZxalXw/fUhqoSjT8vv96OvrwyOPPIJdu3ah1do+zqVWqyGXy6FUKmF4eBiBQAD1et34tDKZDOr1OorFIhKJBAqFAlqtFvbs2YNmswm/34/Lly+3jYUKKq4LW5Br0AA/p69F87NIFCTq5ySEp74cHV+Onx5P0tXVZfL9dC0T1rP9lvxfK3ioZXa/oBy1Gm2FQwU622jD1rxen0eIT/2fNuTMZxKu1jWsSIGur04KHt+rB5s61JkcwfUQkG5KxfRZZqeTQ1oDHjS6SwWgwiwkezPzHr6b7VHtXjVKdfjrBlcLTSEnMkaFj1RzVeuDm7+Tj0zbRdLwZ7VCVNCoZWD7uVSL1ug3wqG2haNRnQAQj8cxPj5+T54U3xcMBtHf32/eMTExgWq1iuXlZZRKJRQKhbbxCIVC6OvrMxGJtHB17sg8qWwAnfPqlLHqeuAcqcWjfimdTx1/jWi0LVaFGXUcdZyp2KgSBNzrL9T9oJYN/1ZI204PUCGmyo+uK13T2g7dgzrnep/Or0Lh7KvOJcdf95Qt9By6PzmC6yEgZZjqt7GTXzsxKN1wmvekjBtoTxzttCkBtG06ZWK0SGyBY8Nrygxs/xGZDH9rOLBtZZHs40e0T7bmrdq6tl/bq++x/Tv2uzsxaWWooVAIo6OjGBoaMpYjABSLRRM4MzIygkgkgnQ6jUajgZGREaTTaeRyOaTTaVMRg8IlGAwiFothaGgIoVDIwIX6fs6ZBgSoAOb8arCCLfAVMiQcyXqLavnaqQ/KjDl2CjfruOl8acUThT+5BogUcM51XalF19XVhXK53BZ9q+ufY6MKjMKD7IMd6q6Qug0Lc9ztiEZ9p+4F/q97lu/QOXDorckZqYeAFNojlGAf+aCwjVae7gQ9UFOndqpwI4u/kono5lcLhddy85GBau09WyvWSDYyGwAmh4nvJKPWpFr2hwxDo8c6+ZyUMRGaUaGkBWKZ9MuIMDIkLd+jWr1aAeqPI8N0uVzYt28fTpw4gR07diCVSmF9fR31eh3r6+uYmZlBT08PXnjhBbhcLiSTSeRyOROZVyqVcOXKFZRKJczNzWFmZgaZTAaRSMRYcQcPHkQ8Hm8ToLQCvV6vqTBBYh8oqOzgA44D547zQOHHCEg+h3Olz1G4Vp9rB61Q0bGt/3q9btqt7+nUZlsYc09QsHH+FPpWga1lyHSdaTs9Ho/xFXP/cV2yzbqmdbz8fn9baoE+34b1eY/WmbQVJYfaybG4HgKiT8GG8Wzc344StLVNhd5sS6cTfATcCxtRaKhVopARNWjbYgLaHejAdkKoXmNbQDbMqFaU/q1+F/t9Cv1wrAC0VaAH2i04FULqu6K1aFuzfBcZYiAQMM+rVqsmLN3j8aBQKMDtdiMQCJgj7VutFrLZLCqVCsLhMDY2NjA8PAxgK/qQQrVer6NWq2FoaAgbGxtIpVKmnQoPqjCxITP9W+EvnVOOH9cV55QKigoCfZfCYOrz0ner30cVgU4QtVq7bJ/2z/Z3qfKh7dA22BafWq22b0ktS1thsnO01ALTsVAhrigJx8YeFzts3qF7yRFcDwFxk25ubhqNVCse2PCcMgAyBm4EHn+usAx/tJqARjfpsxRWAdqrcpOREApToaeb1GZmKhTt0G5tuzrB9WBJMihlHNSqVZgp01YfhGr0vEZzciiMVKPWMVTfhMfjQTwex549e0x1l3K5jHK5DJfLZSoEuFwuM06RSMRYY8FgEDt27EAmk8H8/DxOnDiBYDCIarWK1dVVLC8vo1wuY+fOnejt7cXS0hI2NjbQam35zFRhUF+PPc4cBxuq4njwHrVc7XnTtAZeZ0Nq/J8C0F5TbAfHTuebbVWBobU31drRwBOdC4X51OpUa1T9dbyeSIRCrQqx24EaANosMbaFa9AuYcb7NAWD7XYsru9MjuB6CMiGXZRZUNDoRiapxsrvbYtGNT7eS38B0O5f082ucB6d4nyffTYYr1ftXhkE+6gMTK0x1biVwfAZrNbAaxTGUZ8LhZ5WJFdNXRmLRj1qwIYyKY5xo9GA3+8318diMQwMDCAajcLlchmrikV0tX2sqkGBE4/HsXv3bkSjUeTzeVSrVfj9ftTrdeRyOTPu4XAYbrcb8XgcpVIJlUqlbZzYRi0C2ym4xl4Dai1Q+HOcNFdLITyF0thfFTa2MsV1oxYiSQWm3Z5O65ZrQeda1zrniG1RK5Cf63W6p3SeKSBVWOqa1P2j46tBUVTGSBoQw/erIHTo/uQIroeEyHRVq7QFA/8m6UbU78iA1N/E64F7NyA3sgod+ins69Rhr5aQ+hrUB0dmxvZTG+4EUfIzWjx2Dphq1rxHmYE9DvYYKqyqtQA5JgprauKqhoy3Wlt1IkOhEHw+H9xutxEq4XAYPp8PXq8XgUAALtdWAm80GjVjHggETKWNubk5ZLNZDA4OYnNzE7VazRy4GQwG4XK50N/fbyBGjodtZZCx28EUCg+rlWaPnc6brhu73p++VwM07M/s6MtOSpS2SefD9umqEsP+2YqN7evjb11nnax/e61wzEjaN46rKnJ6jf1+hZkVUbCtUYc603cdnPGNb3wDH/jABzAyMoKuri78yZ/8Sdv3rVYLv/RLv2TyU1544QXcvHmz7Zp0Oo2PfexjiEajiMfj+Mmf/EkUCoX/p478XSbVpDVs3OfztW1KXmP7Bsh86TBuNLZPc+WP1pcjzMf3kWitKHOoVqsm1NsOylBmqEEbNkTJNmqAhEJPJA0TtkOPbS1VTxjm9WwbtXLg3gokylDY9lKpZELMvV5vmwWiUFq1WoXP58Pk5CR8Pp8RfByfeDyOSCRihJXb7UYwGEQoFEKj0UAymUSxWDTVNkZHR3H9+nU0Gg3j9xoaGsLb3vY2DAwMIBKJ4NChQ5iensbQ0JBRHDTFoFqttp1bRetQhYjCnxwzG7pTCI/rgnNOIUDfH5k+LU07QpOMXf1VqmBwPlVpUuWG65VrhfPJklOcExLbQpiRQoYBHRTq7DOv4XrnuNFPqagH55hjx7/13Z2EMceWx9uEQiFHYH0X9F0LrmKxiKNHj+I3f/M3O37/q7/6q/jsZz+Lz33uc3j11VcRCoXw7ne/21QAAICPfexjuHz5Mv7qr/4KX/ziF/GNb3wDP/3TP/0378XfcbLhBaA9YkqFgK0l63fcVMqYeb8+3444U98PgHsYJBkgoR8bxlMoRvtj+0dsS0H7QkZMpqYRj8A21Kd5M+ynbb2xz2qJKUPTMVWtn23WRGTbrxIMBtHT04NwOIxgMAi/398mPOnvqFQqpnwRsFVRI5/PY3NzE36/H+Pj4+jr60M2m0U+nzeQ1sbGhome8/l8GB4extjYGAYGBkxkoFbwsIUQ36fWi/bVHieF5HSuODcqXHR92OtFIUK18hWete/XdazrR9c0+6cBPJ0UKCp6un41fN/23ep1fJYdpKFjrWgFrS1VzLTtur+4Z3Qt3c/ac2ibvmuo8D3veQ/e8573dPyu1Wrh13/91/GLv/iL+OAHPwgA+O///b9jcHAQf/Inf4KPfvSjuHr1Kl588UW8/vrrOHHiBADgN37jN/De974Xv/Zrv4aRkZH/h+783SR1ECv0o4yZTFivs60azeNSnF9hL6BzgqdaFrrBNIqLP9zkfBbQDrVpkIVubGVidj+0XcpAbYtKmSgtQmWcnQS8DRVSSPIzjhUthU7QD7V2n8+HSCSCWCxmcp843hy7zc1NFAoF1Go1BINBVCoVNJtN5HI5I5RGR0cxPDyMs2fPYnFxEYlEAoFAAJVKBevr6wiHw+jq6kIikUCpVEKj0cCNGzeMMNToNY4F26FQsD0/bKNChhxv+7dawFxfailz7djwm1q2qkTp9zaUaPvVbHTAXje8hn2zQ96pbNnt1z3Ae7QKiCpK3IsKM1Kh4rs4rrrmGJTBNtiw5v2UJoe26W81j2tmZgYrKyt44YUXzGexWAyPP/44Tp8+DQA4ffo04vG4EVoATD7Lq6++2vG51WoVuVyu7efvE9lQjzIZbgTNoyLZicaVSsWEVqu/Sq0aFvmkRtpqtUy+lTrBAbS1hRaYx+NBOBxuO6mWDIYMhJAL36P+EtWCFdZTQWoLHAD3JOsqM7StIrZVLT32T0ORFTris9T60M+6urYCJnbs2IGpqSlT4mhzcxNDQ0PYvXs34vG4mYdMJoNarYb+/n5MTU1hYmICS0tLuH37NtLpNKanp/H444+jWCziG9/4Bs6dO4enn34aU1NTyOVyKBaL5pDJ6elpPPfcczhy5Ihpr8fjMQEjwLb10enMLs6BnT6g46ZCjZZTq7WdI0jlh1YN22An6qrgCwQCCAaDbcEUah3b17Pd3d3dpm92PiLXpa38cJ8Q0tN13MnC9/l8JqXBttzYb46X+uy0H7ZwY9t0PNkfjinfzXF0qDP9rQqulZUVADAFRUmDg4Pmu5WVFQwMDLR97/F40Nvba66x6TOf+QxisZj5GR8f/9ts9gNPivnbEEcnyKUTFKiMn+Hk1Pa44ZRZqVUHdC4bpM9nO/hsTZBWwcjrbb/J/fwlyoAAtGncbCefre3jZ6q5q4auTIvMRv1mSjq2Ch/xHRT2AwMDmJycRH9/vxm/ZrOJcDiMUCjUVpuPmjktoWAwiEajgXQ6jWw2C6/Xi0QigWg0io2NDczOziIQCMDv96NYLJpgjFKpBI/Hg0Qigf3792N8fLyjJaJzqJCsHezAueC1tDp0HShz7hRIY19nW84cN1u4qJBSi08tNLUAuR90TagvVfcLfVr8nkEyuj90LRMSVuuUc69w9P2ConTNq7KjPjw+k+/h8zpFWzrUTg9F5YxPf/rT2NjYMD/z8/Pf7yZ9T4mCiAtehQw3MH1XXq/XhE8rc1HogQxCmbgyBIZpa6IxrSO2h89RIQDAVAvQiEE+l4ybz1LLjc/jxlXGrteReas1yfFQ/51d943+Hz5TT55VZ7vb7TbavAo01Z7JrOzxe+qpp/C2t70Ng4ODmJubMycXX7p0CRcvXkStVkM0GkUoFEKxWMTm5iaSySSSySSCwSDC4TBSqRTu3r0Lr9eL6elpnDhxAt3d3bh48SKuXbuGTCaDlZUVzM3NmfkuFotoNBp45zvfiY9//OPYvXs3wuGwEaiMbnS73UaAcu7og7MZMxk7mamuO/VT2ZZIp6RczpUmMdNKI7TJNaFFm22lh1YhlSMyf1XkNBhE51wjIRlQpJVRVFhzXZTLZQM1q9VGq1WVE43apEXGaFIVtOyn7gk+l3PFcXHo/vS3KriGhoYAAKurq22fr66umu+GhoawtrbW9n29Xkc6nTbX2MQoLP35+0QKbyk8qH4n228D3JvTBHSusafWGYWTWm42bKMOaXVqq6NZmQqfS4ZgM30lasl2civbTgZqa/c25EUYSUP/bb+N9pNExqaavloObDMZuwaFaHTf+vo6UqkUUqkUZmdnMT8/D7d7K8crHA63afIATDkn+rBcLhcCgQDGx8cRj8exubmJxcVFkw9GwedybUUzrqysoKury5SDGh4eRjAYNP1QC0ej4GzrqpOle7+1pmOp0Bf7xXcAaIOOtU1qqdt+S/s9Om/6t239cx1xvdjrz/YhKRSpz9e+3g96BrYhea473qcCVYNGtD+d/rcRDYfupb9VwcUD71566SXzWS6Xw6uvvopTp04BAE6dOoVsNoszZ86Ya77yla+g2Wzi8ccf/9tszt8p4kZQB7O98VTTU6arWf7KgBSesSOslCnwGTacooxcgw+0bRrhpgyDlgstGruCQKdNTFjFvlafq05xZUgKzyiUasNECm3ZbVHmYjPf3t5e7NixA6FQqE2jr1arxh8VCAQQi8UQiUQAbCskLpcLsVgMiUQCm5ubWF9fR6VSgdvtxvDwMPr6+uDz+bC4uAgA6O3tRb1eNykktCABIBqN4pFHHsHevXsxNDRklADbSlJLRqMRlUGT1F9jW+4cUwpDzpH6pNRq1bXDHw0757hqJQyFiXXMVMCpAtIJouY7+Q61+DspUBwDu818rw3F2wLSRjEUzVAYkBYmFS1NFXHo/vRdRxUWCgXcunXL/D8zM4Nz586ht7cXExMT+Pmf/3n8h//wH7B7925MTU3h3/ybf4ORkRF86EMfAgDs378fP/ADP4Cf+qmfwuc+9zlsbm7ik5/8JD760Y86EYX3IS52YvLcUPzOxvw12MEWGkB7EIItvIBtKE/LKiksSVIBxWv1XZqLoxq1Mg8KNkbWqd9CtX8VuArNkLHYOVUcG4WdFHpURqQatAaDcCxZ01AFHE8odrvdGBoawvPPP4++vj4UCgVkMhlMTk7C5XKhWCwiHA4jEAig0dg64DMWiyGdTiOfzxthkUgkcOTIEczNzSGZTCKVSmF4eBh79+7Fo48+inK5jDfffBPj4+OYnJxEvV7H6uoqxsbG0NfXh0AgYHLHjh49ip6eHoyOjiKfzxsosVQqtUF31WrV5GOFQiGjTLBySrPZNM/kGBAGVt9kvV5vg5Vt3yLXh1rpPp/vnnWhc63KCu+xI0jVStI5ZPs4/6ps6DWce01uJqphlxSjVa2KjcLHGuxBQU44VInjz/Xk9/vNdbbAsxPsHdqm71pwvfHGG3juuefM/5/61KcAAB//+Mfx+c9/Hv/iX/wLFItF/PRP/zSy2SyefvppvPjii/D7/eae3/u938MnP/lJPP/883C5XPjwhz+Mz372s38L3fm7S7Y1QnxeGTEAw0QoIIBtoQN0Lpqrz9XnsJSSaqbAvVUk1FKzncoqHLnZyRRUMNkWHBmFHYUFoI1xkt4qsILtI5PV72xoiXCnDeWwr4z84hh3d3djeHgYExMTyOfzyOVy8Hq96OnpQS6XQ6FQMP0plUqm743GVkIrx7pYLGJgYACJRALVahXZbBYDAwMIhULo7+9Hf38/5ufnkU6nMTExYc7jUuuQMKfX60U4HMbQ0BAikQiq1SrK5bJZM/Rfsg0U0kwYZpI150DHh8KYfefcqsBRAcOx1JJfanFxjWjpJc4Nn+F2u00eqCpF/FuFiAoQzpktRG0rXhUwXeu8TmuDsg9qYem7dD+oUqTKpbZB94WWUXME11vTdy24nn322bc0Y7u6uvArv/Ir+JVf+ZX7XtPb24svfOEL3+2r/94SN4NCMIz2qlarRpDw3CIyX92w3DC0tnQD6ffUxPkOfq45YGRCaoHYtQg7Yfi81uv1tjG6ZrPZtlmVAdgVPTRpVze/1tTjd3b9QkJQZHDqxFcBoMxPrREyHoUku7u7cfLkSezevRtLS0uo1WoYHh6G1+tFuVxGKpUy4f9q3aTTaXR1dWFgYADpdBobGxs4ceIE6vU6vvrVr+LSpUsIh8Po6+vD/v37sbGxgXPnzuHMmTMYHBxEIpHA+vq6yQfb2NhAMplEd3c3Dhw4gNHRUfT392N5eRnXr1/HnTt3MDMzY5ik3+9HOBw20BQtIgZscM5VMHFOOH8co0AgAK/X21YDkmvNVpo4psqUGZzBttDS0wg7uzyTWnxq2XeCdXWdcd5YOYZrq9P1CmXaKSgKd1MR0KR4RtVqOoWueQ024Vjzcycw4zuTU6vwISANpSVzUeHBzWRXk7CtMd10wDbkSEbOe0idYBC9V5m9bn5bsbGFoz7brn9nMx5tsxZm7QR3augzn6FtoNDkc5UJKmPkmHNsONYaUUY4KBAIoLe315R2qtVqyOVybRGO/M13x2IxzM7OIp/PG+ZcKpXQbDYxODiIkZER3L17F/l8HpOTkxgYGMDw8DD8fj9yuRyy2Sx27tyJZDKJSqWCeDwOt9tthCFhNZ/Ph5GREWPZpdNpFItFFItF4/fi+9lvtpH+OQBt/iv1D6qyQ9hUo/1sK0wFh865PkeDVtTiUWFo+yBVgdL9od/b+8Am20JSWFCtJXvP2YqW7cOzrWJdl7pOFQnptIccaidHcD3g1Amy0sALXeRk4uon4jPUAlOIgo55asHqh+oEmZGRkBHZ5zPpJuT19ka1rTIKXX53P1+aMqNO7eLnGiRC4awCic/TcdMiv7bvTxNMycQDgQACgQB6enoQi8WMoFNYye/3t1kSnINQKIRarYb19XWTd8UK736/H4ODg7hx4way2Sz27NmDeDyO/v5+xONxNBoN5PN59PT0IJVKIZPJYHh4GP39/W2MtFgsAtiKyGX5qVgsdk9xYmWU9pz5fD4TZMKkX1pHtB45fhRKPp/PWJicD2C7diTHQeFhPkPhQdtvxe8UulZY115rtuLB7+3cMl2bKnxsv5sKTxW4hLMVklQ0gm3Rd9hrz25rpz3vUDs5gusBJ4U4FKrohKVTs+UGoPCipaHRe8rQ9TNqk8y5sjeQbkyXy2V8LboZtd1Ae8CDzSRZgJZMUuEZZWSEYlSg6aZXWJC+uUgkApdrq1IFIdVSqWTu5bjQ30PIUYW/HcnZam0FZni9XvT29uKRRx7Bnj17EAwGsWfPHlOHcHV1FTMzM7h48SJSqRQmJiaQy+UQCATQ19dnztg6dOgQurq6sLKygmQyiVAohMnJSZw/fx6rq6tIp9Po7u5Gb28venp6kM1msby8jEQigXK5jN/93d/FpUuXsHv3buzbtw8+nw8bGxtYXl5uc/rv3r0bjzzyiEl25vzSd6TniqmQWV5eRjKZxK1bt4y1x3tU+WFkIOeSkGOlUjE/XHNcB6yQD2wHGalSpBGLrVb7+XH2+ldhSIuTFqPf7zdriUEhGs2nCh/3FwNXOO+2UNLK+BSIGtRC4aZ/+/1+8zd/28JcIyUduj85gusBJxuG4MbSwAXF/Pm3Hk3ODaZ19pQBaACELSh1I+o1to/AhkhUwFCYANt1Eumv0mRqFVS2lcbnqnbK/lDzbTabpl1+v98EG6iGbTvLCe/ZlhoZH4UbLdNgMIje3l4cPXoU4+Pj2Lt3LwKBgNHKAWBjYwNvvvkmrl27hpmZGfT09KC3txeRSAR+vx8+nw/5fB6ZTMZUB+/u7kY6nYbH40EsFsPw8LCxwqggEL5j4d1SqYTFxUUsLy9jdnYWc3Nz6OnpQX9/vwkEaTabJlgkHA4bpsmx5BhzTdHS4jyNjIwgEokgEAigUCggmUyacP2FhQWUy2U0Gg1jjQEw4871wWr0HF/OSae8OrUGbYuJVpBtCSmzV0HCz7WcGIWrwooKI9tCU4UK22QHB3F/2oiA/VuFpL0e1crSax0B1pkcwfUQEDcP0F52yIZqeC2ZlTIE1V41UbiTv0A/p6NeHcbKOJThq/asvgxllgqzqKVowzxAO0PQOm5qDVLIamAKAANXtVotUy1CISUAbbX8WF2Cz+N7Xa6tUPVwOIze3l4MDg6aUPPu7m74fD4sLS1hc3MTwWDQJArPz88jk8mg0WggFAohHo+jp6cHjUYD5XIZd+7cQSaTwZUrV7Br1y6TR0WrY3x83CQV+/1+cxwK+5zNZpHL5dBsNlGpVJBOp1GtVhEOh7Fz504kEgkA24m96+vryGQyaLVayOfzxrrlWAaDwTb/js/nQygUQiAQAABj8Y2MjBgr9urVqyawJJVKmZJKFHIsR+X1ek2ACy0v5rpxvmml5fP5NubOOVFoTYsFq2KlDF+RCRUOCgvr3lLBwTlgG/RUAvXv2T5ZVc7sNa3+LhVauhe4p+zISIfuJUdwPeCkG0rPWSLERoZOZqv5XQrLqTBTPw8AEyVm5+i0Wi1Uq1UTWKDtUWe5Blhw09uRZSpoCTXRB6QCkO+gdUEtmtYCrSQNKGi1WigWi2i1tg5rJHNgjgywlZg7NDSExx57DPF4HLFYDHv37kUsFgMAk/zJs7dYC3BzcxPFYtEw3YWFBaysrODWrVtGAMTjcUSjUQwODiIQCKBcLuPIkSN46qmn0Gg0TAmnhYUF3Lp1C3/xF3+BO3fuYGJiAp/97GexY8cOPProozh8+LCZy8HBQQNLBoNBDA0NYc+ePejq2gruoDDbuXOnGaPz589jbGwMN2/exPr6urGy4vE4fD4fVldXUSqVEI1GTTuXl5dRKBTMPDabTVMVhEzU4/Ggr6/PCO+RkRH4fD5MT0/D5drKebp06RJmZmawtLSE1dVVc1gm5zubzZpIRkK2GujCtAH+T4FaLpdNBRC1gDTPitdTIFKR4ZwSKlQLnX469evSL6gWkf5PIaYKF9CeoK0C1ev1trXTTmHRtAFC4wpbO9bW/ckRXA84cfFyU2s4r1oYQHsRWzs6S+EUjSSkMKRF1dW1fcw5sJ3Eq9adapqK1bNdCmsCMP423keBq5F9fBY3vIYXExYloyGz8Xq95lpe5/f7Tc5SKpVCMBjEwYMHsWPHDoyPj+Pw4cOIRCIIhUIYHh5Gd3c3MpmMEVYbGxsol8umAvv6+jru3r1r2prL5YyQ5bvVr8L6fuvr6wZe7O3tRSwWw82bN/Haa6/hzp072Lt3L5588kmk02kkk0ncuXMHU1NTxmdISyuTyZhk597eXoRCIXg8HkSjUbhcLvT09KBUKpnvI5EIisUiMpkMAJjAEY/Hg6GhIaM0EE51u90olUqYm5szc0FlxePxoFKpoFAooFAomMMsG40GgsEgBgcHTQHh/fv3Y2BgAKlUCm+88QZmZ2eRzWbh8/ng9/tRKpWMYKBFx3mlcFQoW+FdZfi6RnWNa1K7+rxUuChcrgFEJBU63AN8BsdDIWzuLf5Pq5FrVPewCiy2RwM7uIYVJXHo/uQIrgecbOiuXC63WVKa/6QJvdzYNixiQ35kZNw8hCwobHw+X9sGBbatqHq9brRZ5n7RH8Rr1G+kwRfqGFf4RS06PtvtdhumR5+QFpD1eDxIpVJoNBpYWlpCV1cXotEo/tE/+keYnJzE4cOHEY1GDVNuNpvIZDKYmZlBuVzG7OwsSqUSqtUqMpkMyuUyMpmMYeBDQ0MmWZewl0ZuUlBVKhUcO3YMyWQSX/ziFw1z+/SnP42DBw/id3/3d3HhwgVsbm7iZ3/2Z7Fnzx7kcjkDG96+fRsHDx40PrOenh6srKxgZWUFPp/PBEfk83lEIhFMTk7i+vXrOH/+PAqFAnbt2oUDBw5gcXHR+OOq1SpmZ2fRbDYxMTGBZrOJUqkEl8uFUqmE1dVVRKNR7N+/38zj2tqasQBYkYP+tmw2i3K5jFqtZqyvnTt3Ynp6GgcPHkR3dzeefPJJzM7O4lvf+hZmZmYwOztrLPFCoWDWRDAYNJZ8IBAwfkv6yLieqtWqgQe5jnRtqiXO9asnI3PdUVgA9ypcXIvq39LvqajQJ8r9yH2m1hiFEX2MwLZvTCMcaR3yGvt0cUeI3Z8cwfWAk1o3GoSg2Dg3Azc7sF0mio5oErVS20dF4n3d3d1ticJatVv9DwDu0XIJ8dEqUj8FrRL1NVDQklFQAGsZHGU8hDwphAkTAlu+mt27d+PIkSN4/vnnzSnEbFc2mzUVJlhDUJkYgwzYDgqpTCaDfD6P8fFxY9Ww78zjOn/+PCYmJkxSqs/nw9zcnPmexaWnp6cxMDCAzc1N9Pb2otFooFAoIJ1OG4bOc9Oi0SjS6bQRtNlsFsBWDdCJiQmEQiGkUiksLCzgueeeQyKRQKFQMIyS1pJSNptFOBwGsBVIUiqVEI/HTZh/vV5HLpdrg9EoWHhWVFdXl7FQV1dX4fP50NPTg56eHgwPDyMUCqHVamFkZAR9fX1444037qm0zvGnX4zzSwtKfUqqPKmio4qP+pa4TjXIgevaFkrcB1rTsxNqoe3i/0yIZzCPtlmDP/heuzqG+rLUN+zQW5MjuB5wYmi6Qha6+anVqW+Alhnv1YobGiLPv7lhKVBUi9WwYWBb8KnFQSjRzpFRX4AGR7APCq+p5spnbW5uGsiQDJPPJBxDpuzz+VAul/Hud78bJ0+exK5duxCPx1Gv101QArVlYNsB7/f7EYvFzHexWMxAZGwr6wc2Gg3DwAG0jQN9ZWtrawaeYwRhb28vNjc3sbGxgZ6eHhw7dgx9fX3I5XLG3+Z2u7G6uopCoYCBgQHjx2QI/NLSEhYWFowlfPXqVezcuRN9fX1twkOt2O7ubiQSCbRaLSMgAJhCzMCW/6lYLGJ5eRl9fX2IRCIIBoNtcJet+XM++b6NjQ2cPXsW4XAYIyMjOHjwIHp6erB//35T9T4SieDWrVu4cuVKW3SjQpNq9fO4FhtGpsDg/RqZSCHB/+1gHA2A0GAcrVph+3/toCdd37pH+X5NKaBgU2je3hv6HvULO/TW5AiuB5y4MfVvbkRqkCoEuMHUp2VvEFZNILzCz1Uz1TwwChVubD5TI6W4eZmAqnlnfI4KWX6n4cxkIpr0ypB5Vofg52wHrZMnnngCTz/9NN75zneiXC4jn8/j6tWrALb8PBwjhpdrVBgFJ0PJu7u7sbq6ivX1dVPwlif1zs/Pm2tDoRCCwSAqlQrK5TKmp6dx8eJFPPLII6b80/79+zE2NoYzZ85gaGgITz75JE6dOoVyuWwYKKtNXLhwAaOjo4jFYobpxWIxlEolXLp0CTt27MDQ0BA2NjbwG7/xG1hfX8cP//AP49ChQ5iZmUE8Hkez2TS+q97eXgwNDWFmZgZnz55FoVDA0NAQuru7sbKyYk5QbrVaxiKKx+PYs2ePCaTQPD3OOaHCtbU1M35ut9tUtL9+/Tp27tyJffv2YWRkBKFQCCMjI3juuefwyiuv4OzZs1hbWzN5VgyuIaxH32UkEjEBMlxjmiiuMLdCehqgBKANuuY61nu5DtTPq59RCPFz2xfGtc09SOuN92jEoSaAa5/0vbrnHepMjuB6CMgutqlQnTqJ1adFjVBxc4UhNOFULSAKOIUo+U6+S4WPvp//k1Golqx9oHZJuKRarRrmwGvViqTAIixDa4yWUSQSwXvf+17s2bMH1WoVqVQK6XTaWAYADKPjuzweD6rVqvnf7/cba4oRhKVSCaVSqS0EH9gShIODgwYeK5fLBta7cOEClpeXcfToUSwsLODw4cNoNptYXFzEjh07sG/fPsTjcSwtLbVBsuFwGPV6HeVyGcB20myz2US5XEaxWMTExASeeuoplEolvP7663jttdfwoz/6o3j66aeRTqcBbFlTpVIJQ0NDpqpHd3e36UsoFMLo6KixVprNJgKBANxuN3K5HEqlEq5cuYJoNIr+/n4MDw+b9QBsCQGG9S8tLaFYLKJQKCAYDBqmS6HUbDYRjUbRarXMOD711FOYmprCm2++iW9961tt1S/UJ8p32j4ejd6jMFIriIocFSddr5qDxXXEdUpo2La2+AxV0hSB0KR4jUa0/biEw9Uy5Bpke6gsOn6t70yO4HrASTeybka1eiio1D+gTl9uBgo1bmCGMgPbeV5ut7vtpGBbI1SmocJThZ/6zNRXQMagyamEpOjw5nsUQqSWq4zA7XYjHA7j+PHjePbZZ3H8+HET3k1mTIa/sbFhxkITt5eWltBqtTAxMWEYx40bN7CysmKsw0KhgO7ubgwMDJhyT6FQCJlMBpubmxgbG8Po6ChmZmYQCASwe/duJJNJ/Nqv/Zqpon769GmcPXsWP/ZjP4YjR44gl8shn89jcHAQXq8XsVisrQ0UZiygS4bm9/sxMjKCsbExfPnLX8a1a9dw+fJlnDx5Ejt37sRv/dZv4fbt20in03jyySdN4IRaMrFYDF6vF/39/VhdXcWNGzcQjUYxPj5uxoU+wHw+j2vXrqGrq8tAjkw2ZvV5Wr9ra2smwIU+u6997WtIJBLYs2cPAoEAVlZWEAqFsGPHDkxNTeHgwYO4cuUKlpeXcevWLeMb1UAYKjZcOwzMUKtZrX+ud12jKuB0vdpBEHakIgNACJnbeVgaqWjnADYaDWOtMnCKkLzP5zN7jutdERMqdXZ0okPb5Aiuh4BUIBCCsLF4xfO5+LlpufhtbU4j/tQq47NtoUXS67Q96jTne9gejVgkEyAz0rZTAPN5KnwpUPmsQ4cO4bnnnsPBgwcNo+XzKpUKUqkUWq2WSTSm8CZjzGQycLvdyGQyJpdpYWEB6XTaMKlKpYKRkREjQHi2FS2cYrGIUChkSkkR/orFYggGgyiXy6aKeyQSQXd3twnX10Abj8eDWq2GarXaxgjpS2IlEL5/165dyOfzmJ2dRTAYRDabxY0bN1AoFEzO1traGjY3NxGJRDA9PW3GnEyVbezq6jL+OA0Dz+fzplwT/YQUEFwbfr/fhMYzIpCJxwwOSafTOHbsGHw+H65du4ZsNov+/n7s378ffX19mJ+fRy6Xw8rKSltEHte3KkwMmycszXWjShHHTde5WkFcp3ZqiULqKhT5oxG8vF6tMApD9b9pMJTuCQ1O4njzvWoNO9SZHMH1EJCtVSpTpzBQjF4/UyHidrvbjo5QSIXMSB3xtoXFNjAHSw8P1IAR9a8ptg+gDQbkO+w2k2FpYAjDphlQUa1W8dxzz+Ho0aPw+/2YmZkx2nkul0MymcTGxoaJKmQ7GUVYKpWQzWbbjpcHtqPslLHQgmBlCADGV1apVAwjLZfL2NjYQKVSwa1bt+B2uw0MR6amvg+N2uPYMGmW40X/EQUFLY7JyUlTteL27dtYXFzEwsKCSRUoFApYWVnB6uoqurq6zOdsL60Dzq3OIRkmc91YpYNrRKNZGQREwReLxczhlS6Xy+SIHT58GENDQ7h+/TpSqRQKhYIpbRWJRLCwsACXy4XZ2VnzHrvSvJ10ruufY8X51TWoflhNEyHRsusUKEEhQktYoWuuX0UYeL8KXbaDv7UMmeZvUTDqOnGoMzmC6wEnLnQKFYVMgPaD7BRG5IYlQ9JkR7U+uFGYOMsNzJwYWgVk4mr11Wo1A58RilIrTa09hVl8Pp+xutQa5P1kpHy+wnvlchnRaBTveMc78IEPfACFQgG3b9/G66+/jnK5jMXFRRO0QV9OMpk0uUEbGxuoVqsoFArGYqCVREFEhunxeBAOh41SUK/XTaX23t5ehMNhjI2Nwev1YteuXVhcXEQ6nUYqlcLP/MzPAACef/55vOtd78LY2BiWlpYMow6Hw+a9JLvqPi0jBqmUy2UDp4VCIUQiETSbTayuruLMmTM4efIkWq0WXnnlFdRqNczOzuL27dtmDCORCABgdHQUm5ubWF1dNdZovV7HxsZGGxPmPPv9ftN/Cl22PRgMGkuSYxyPx+H1epFOp+H1erGxsYE//dM/xYkTJ3D8+HGcPXsWd+7cQblcRiKRwPj4OH78x38c8/Pz+MIXvoBbt26hUCiYVAQyec4XixyrZcL1ReL+4PqkpU3lTpVAKlu235YCjM9guSoqUhwLrm/Om1pYtn/NhviBbeGnCIhW9nDoXnIE1wNOCtGpRULhQ4bOhU/NEmg/qkE1Vb2G79DIK4UiaaEprEcGpni/DVXaARmq9apvANiuRq4WH2v/0cKh4x0AHn/8cbztbW9Ds9nE2toa5ubmDCNkvT7WJ2w0tpKDqeUySIGlgLRkFvO2aJmpVcvx6u3tNSWeIpEIYrGYCahgdGGpVDIW2s2bN/GDP/iD6Ovrw9raGrLZrGkbowrt+ea8EsKiQGO7Nzc3USgUTBtpnTAQotXaqke4sbFh/GO1Ws2UXZqYmDCHT6rFyfBzhvY3m00DXXKNcR1VKhU0m01TzzCRSJjqGLRoW62WOV9sZmYGN27cwOjoKKanp5FOp83ZZbOzs0gkEhgbGzO5d1euXGkrfsw1yTWkPliF7ThP9j5QtEDXOKFH+p9s/9X9rCmNSlW4nvPH5Gha0dxjStxjJFUMHGvrrckRXA84qf+Im4s/6txVgUSBY8NwCl1oAIcdLajP1EgtbiY74pCwkwpSfq7RguyPMh+G5hOSo9Byu90IBoPmf1pjBw8exDPPPIM9e/YglUrhzp07uHz5sklC5hlZLOpaLBaRTCaN1UpGAsBYIpo7RIajbWF1jkgkgoGBAYRCIQwMDBhrjNVMFhcXsba2Bp/Ph2AwaPxisVgMIyMjyGQy5ugSOt8DgUAblMux4PjQF6apAQBMdXiOU09PDzKZDCKRiKkOv7GxYaIvtd8cS/sIF2Dbou1UdZ1MPBwOm2K4DFYZGBgw472ysoJsNouVlRVMTU2Z9hQKBaRSKfT392Pv3r04ffo0+vv7UalUcOPGDQwODuKxxx5DNBpFOBzGl7/8ZcPsFZ5UZIHf2VYMSSNbbQuH/ytcqv3l3/ytPid9nn5OYaTH7HCPKUxuCycVWApZOtSZHMH1gBMFgobdKgyhBW4JV6iWaGum6qMiKVzHwAbex0RNMmFtEwDDTLjpFJIE0BYZpjAkBbIGeZAxBwIBI7QIz9Dh/4//8T/Gvn37sLm5iS996Ut45ZVX0Gg0MDo6inK5jN7eXhNmPDMz0xa0oRUxSPyMQRCExuLxuAlVHh0dRX9/v0mcZY4ULbpGo4FUKoUvfvGLiEajiEajuHTpEsLhsMmFeuSRR/DlL38Zt27dwsDAAEZGRrCysoJ6vW6OJwmHwxgcHEQkEjGh+pVKBYFAANFo1PhvAGB2dhbVahWRSAQejwe7du3C6dOnsby8bNq4vLyMlZUVhMNh1Go1Uy1DoxUpKP1+P3p6etDV1YWFhQUj1Dk2zGMLBALGog0EAhgaGjKHXPJZXq8Xi4uLWF9fx+nTp9Hd3Y33vOc9CAQCuHDhAsLhMCYnJ+HxeHDlyhV4vV7Mzc3B6/Xi5MmTeOyxx3Dy5En4/X688cYbyOVyRpnQPD6iAYTV7HSORqPRVhxaBYUmHTOxnXloFIK8T/eQCkj1V3GvcJ/RB6o5W7rW7chbrj/WzOS7HepM955h7dADRbpJ+FtDx1WA2JuBm4WkWjYZrha7pfNfBaANw9h4vG5oDV3X39oetSD5XAotjeAiHMbySYVCASdOnMDg4CA2NjYwMzODa9euGZ8KISqOD4/VIIOi1cJgDfotWJGDSa/qZ2A0H3O8yMxZj5F9K5fLBvqipUdfWL1ex927d824sQQTi+QWCgVzLAhLLrnd7jYh5fP5zFEhuVwO5XLZMDeWfapWq3jkkUdw6tQpk4O2ubmJtbU1pFIpw5QBIJlMYm1tDcVi0TB25pQRKmWABbANJQcCgbYgjJGREZPczfdRaalWqxgcHESz2cStW7ewuLhohNz6+jouX76MHTt2IJFImCK8AHDz5k1cunQJrVYL73jHO/Doo48ay1IhbRUsXF+cD90LtoLEPWQH5ah1CbSfyKwKH+ddrXJFOhTx4GGUnEeFK3ktlQNbUKpF6dC95FhcDzhpODg3hUajdRIOhO74WzU//lZLDUCbz0nxe9uK48biplMrjJuUzyZDozZK4ai+BfUZkMg4AZjjPd73vvfhgx/8INLpNK5du4YbN26gUqngyJEj6OrqQjabhdu9VYy3Uqmg0diqtsG+9/T0IBgMIhgMGh9MIpFAX18fUqmU6QcL07I8UyKRMMyZfrFQKGROOi4UCrhz5w4WFxcxPT1t6vw988wzmJqaQqPRwCuvvAK3241EIoG1tTXMz89jenra+KSYo0WBSOHrdrtNIIfX68Xq6irm5+eRzWZN8dnjx49jdXUV58+fx507d9DT04Px8XFks1msr6/j5s2bGBwcxNDQEDKZDNLpNObm5tDV1YW+vj64XFtnYK2vryMYDCIQCKC3t9dEEdJfQ8sxEAggHo8bC41ritU0KLiGh4fNNY1GA5/73OcwOzuLj3zkI2g2mzh79iy8Xi92796NWCyGW7duYXl5GTt37sT169dx7tw5/ORP/iSOHz+OWq2Gb37zmyiXy21ReNwfGhhEC10rudtCTvMh7aATWmkqmLS+IK/RKhsKc+t61shCCk1N+qcyBWynUTBIyYEL35ocwfWAkwZKaJitHe5LokbJ73UjKb7O7/SZmqcCtOe/2H4yjTIE2hN77URNvc72M/A9qrnyvr6+PgBbFsKRI0cQiUSQTCaNNaCWUCQSwebmJu7evWvaRh8UgzBoQbF9LNnEY0Dq9XpbxXJWtOAJvhwbRjvyf1omoVCoTbBEo1F0dW3V8svlcoa58nRiCnOv14t4PI5Go2HOASODVoVFx21zcxPZbBbFYtEUq71+/boZDwZV8DiSWq2GZDJpSllFIhED/dVqNWQyGeRyOUSjUZObRWZKxkvrIBAImELHVHLo02M0aigUwoULF9DX14exsTFcuXIFL730Ep544gnE43FMTk7izp07WFlZgcu1VYG/Vqthbm4Og4ODaDQauHr1Kp544gm8613vQjabxdmzZ9ugPPUNci/wt649rnX+5p4hisC/FdWw71flUANGOEccI022JylaodCjLVjZRieP6zuTI7gecLqfNaV4ux3VpHADrSPF+DvBLBpgYd+nkKC+Qzcx26qWm90eQoMayUeyA014Au/a2hpGRkYwNTV1j6+PwQB6XD3DlnXslPmwUrwyPoaE631k/uqvoyVULpcRj8fNs93urSoezKXyeDxYX183hzjS8iQkxrOyvF6vOWsrHA5jc3MTuVzO5ItpGgTbTj9cNpvF8vIy5ufnkU6nkc/nEQwGEY1Gsbq6anw/6tObnZ3FnTt3TLuLxaKxFmgtVSoVjI6OmnmjEGXSNvuq8+/z+UzFfAplALh69ao5tNLr9SKfz+PSpUs4dOgQdu7cieXlZXMczPT0NEZHR3Hu3Dm43W5MTU3hjTfeQF9fH06cOGGgzfn5edMWrQbPYCRdswof6h7i+lYoTteqohD6nf03n6mCjEKRVpsGcdBiY5i7hs5TgHKf6F5w6F5yBNcDTrqINTTc3jAabs777KhB/m9bUcD2plKHNdBeVUC/oxBSIaUJlGw3HdFkwtTUNZmXm5htJzxXKBTw/ve/H4cOHTIWA/OZms2t86para3Tc8fGxgwc5/P5jI9LrZxms4nh4WH4fD7E43ETPk/4j1UeAoEAIpEIKpUK7ty5g97eXkSjUeOPY12+TCaDu3fv4u7du5ibmzMloNLpNMrlMm7cuIFGo4GjR4+iXC7j9u3bWF1dNUeRBINBE2U4MjKCYDCIVCqFbDaLQCBgmDOZIOHOTCaDxcVF1Go13Lp1Cx6PByMjI0ZoJ5NJoxRMTU2hr6+vzccHwAhRrgdW7iiXy1hYWGgL069UKpifnwewlQN28uRJM/ccu0gkYn4uX76MbDaLY8eOIZVKIZlMYseOHcYK6+7uxu7du9HV1YWDBw+iUCjg3Llz2LFjBw4fPow333wTMzMz+JEf+RF8/etfx3vf+1589KMfxRNPPIGf+ZmfQTKZNHCawt1KalFxf2jgBtea+pd0b6hFrVX1aXUqRK5WnO5Z3VvcBxRibI8mWasvz6G3Jic44yEganmKzSt0xWvs4Am9Xy00DcYg2daTaqS2Fqs/vIfM1T4GRa072/KzIyHZP0b0HT9+HAcOHIDL5cLS0lLbGVGMPiQDY+RdPB43uVb0F7ACO60Z+mz6+/uNBUPLhM/2+/2IRqPo7u5GMplEoVAw1mKz2cTdu3dx4cIFnD59GjMzM0gmk3C5XNjY2IDH4zEHPvL8rHq9jvX19bbPK5WKcdbzVGZGlVEr53ywdFMgEDCRhsPDw8jlctjY2AAA8x3HmP4xMs5SqYRcLmc+Y7vIqJnsrP7Pzc1NU2WEcKJCXWS0rK8YCoVQLpeRzWaxe/duvP/978cP/dAP4caNG7h16xay2Sxu375tDs/csWMHnn32WdRqNczMzMDtduPo0aPGkjtw4IDxb+3cuRMnT540yccM4uGcsU36t/7o+rOhQIXXge0SY1ToVMAxlUT3mSqR+ky+Q2sPqj/MDgbRIgEO3Z8cwfUQkGppWgnDhkFUW9OqFBpsYfuV9H4VehoNpUKTz1YhSEGoJ75q2+g/I0yiVpleT2bF03affvpp9Pb2YmNjo+1sJp4ZxbB9wlnhcBiJRAJDQ0MYGxtDPB5HOBw2511Vq1UDTWn+Fp+tR6/TbxMKhZDNZpFKpcx1hUIBb7zxBr7yla/g9ddfh8fjQTQaRaVSMZUkmOhcKBRMVXpGSdZqNaRSKaRSKeMTCgQCJvGXsBfnhEnH8Xjc+KR6enowNTVlLCTmdaXTaXR1bZV4GhgYQLFYxNraGmZnZ3H37l2k02kTmWgrO26320C0wWDQBA7w/UwPoPLAyDwyeUKKLBHVarUwNDSEJ554Au973/sQDAaxurqKubk53Lp1y1SjHx0dxaFDhwAA6XQavb29ePTRR3Hu3DnEYjHcuHEDZ8+exebmJp588kkTBKNBQFzDnUiFiS2E+JkKN1XyKGA0H6wTskG/KBURXkeFiMKWY6cRjoSmVfA5wuutyYEKH3AiY6AfgpuO/hj1S6lfwoYwuGGBbcaoBVUVe1dGxqM+6OznZlILBUAbpKLCU/1x9LlokVL2j/6bQqGAY8eO4fnnn0dvby/u3LmDzc1NDAwMmD7xYEaGVLtcLpw7d84IrV27diESiZgw8FqthnQ6jYWFBZw9exarq6uIRCJwuVxIp9PY3NxEIpEwZZwYacbq9GT29NdkMhn82Z/9GarVKnbv3o2xsTGsrq6ayhvVahXJZNKUjJqZmYHL5UIsFkOzuXVe1uLiIubn5zE8PGwE0tjYGLLZLGq1Gnp7e824r6+vI5/PY3h4GN3d3UilUpiamsLw8DDOnz+Pnp4epFIp5PN5dHd3Y3x83AShnD9/HtVq1SgVwWDQhMjz4Ei/32+CNSKRCMbHx80aSyaTxg/HxOpms2mSsZlO0Gq1MDc3h+XlZbPmFhcXUalU8OSTT+KXfumXcOXKFfzyL/8yrl69inQ6jenpafz2b/825ufn8bM/+7O4ffs2/ut//a+4e/cujhw5gvPnz+Pq1asYHx/H7//+7+PmzZv42Mc+hv7+fvyf//N/8KUvfcmsQULC9K/RwiFSwCg+CmFFEPi3WlH0o6klxn7RJ0pSBIL7hRC6KprqV9UcQLXs1M/l+LfuT47F9RAQF7MeW0LG3ykYQ4WU+q54H7/jhqL2pxonNVkVnOp8BrYP7dPILC0OSi2S2rhGdukzqL3n83n09/fjne98JxKJBG7fvo18Pm/8YmTkS0tLuH37Nmq1mkkWXllZwfXr183xGo1Gw4R3DwwMYHx83AQAsFYiq0oAMHlOZIAMVGBOVD6fx+rqKm7evImLFy+iXC5jYGDAlCrat2+fKflULpeRyWRMiH69Xsfa2poR5ABMMeBcLmfeTWZGy47WFXPUwuGwsWwp7FhaqVqtIpvNolQqmchCFtRlDcFAIGCSXBmVuLy8jNXVVZM3RiHAJHAyfI4L1wpD3WOxGAKBALLZLBYXF5HNZtHb22tgw7m5OXzrW9/C+vo6BgcH8fzzz2PPnj0oFotmfXzta19Do9HA+Pg4jh49ikAggBs3buDw4cNoNBqIRCLo6enBtWvXUKlUMDk5iUceecRYN2o1qpWkn5HsAA6uW65FG1bkdVT0uF5V6GmgBYA2tIL/a6oA15dClwpv2sFDDt1LjsX1EBCjlFjIVCMJyRjpY+BnvE8FGe+hlqpVwhkwwYoEZFI8gsN2gBMyUsiS1zCvhhokk571vCUySL7f5/PhH/7Df4hTp05hbm4OX/va1wAA09PT8Hq9WF5eRiKRwJUrV/Daa68hmUya0O1jx45h586dSKVS5liSUCgEAMaaYn3Bp59+2kCR6+vrAGCqbFQqFXPMRiqVMgEKqVTKwH65XA7d3d149tlnjQXZaDSwc+dOnDp1Cul0GisrK7hx4wbK5TICgQDW19cxOztrxoin/fp8PqysrGBsbMy0NZ/PI5lMIpfLmQCQZDJpfFact6GhIYTDYayvr5vq95ubm9izZw927tyJs2fPYnZ21jBbl8tlogIprBmVmc/nzTEt4XAYkUgEQ0NDJoiF1kU+n0ejsVX4l/5EYKvG4ZtvvomVlRV4vV5cu3YNyWQSzz//PO7cuYMrV67g4x//OB5//HH84i/+Ij74wQ/ilVdewa/8yq9gamoKtVoNv/3bv42nnnoKb3vb27Bnzx5cvnwZyWQSTz31FNbW1vD+978fKysr+P3f/3288MILePbZZ/GlL30JFy5cMDltXF8A7vlNSwxoL2oLbCtPGlXKH0UyuPfsXEiOZSeho1Cj+tA0KIbrQk9b5m9tt0Pb5FhcDzhxcWtIumqDwHapJs37UKtMhZxuNF6n1SVoYVHAaDi47cwGtrVLtc70/dzwer4SgypojTWbTTzxxBN4+umnkUgkcPr0aczOzqKvr88k/9KaWVpaMsfO+3w+XL58GUtLS5iensaxY8dMNQfCV8ViEQsLC1hYWECxWERvby+Gh4eRSCQMk+nt7TXWFduj1etpdRD6Y0WIUqmEtbU1nD17Fq+//jqKxSJisRiGhoZQLpdNMAh/UzGghUnrB9j2OWolEzKuarXaZj3wWYyI5Lt6e3sxOjqKVquF5eVl9Pf3t1V70PB+9dto0A8tp7W1NRQKhbaahZxL5sPxnlwuh/X1dRSLReRyOSwtLZnE4p6eHuzZsweHDx/GmTNnsLq6ipGREZw8eRK7d+/G3Nwcms0mzp071xYhefz4cdy9exetVgsXL15EoVDAxMQEbt68ibt378Ln8+HRRx/F0NDQPWu8U/1Ljp9d+1Cv0ZQNXqNrms+1ic+h5UWoXhEJ7mPuZc6JBmvoPnOgwrcmx+J6wImMhRqZCi1uFmVo9uZUeM6ODtSEY/4PtDu5VVPUKEMN/VWMX53beq0Ga2iOC9v7zDPPoK+vDwsLC7h79y4AGEtkY2MDjcbWmVgMAwe2GEkqlcL58+fx3ve+F2NjY6bMksfjMYJldXXVHBTJqg8aDUbokGPEdnGM9SwxQnq5XA7ZbBaFQgGbm5u4ceMG1tfXMTQ0hGg0ioWFBXNMCH0tpVLJ1AuklaARmBTurKDBPnD8OD88noXBIMFgEGNjY7h79y5cLhfm5+dRKBSwa9cuFAqFtkhO/VvXAZlso9HA3Nwc6vW68fkx0KRTpXMe2MmKJYVCAZOTkzh48KDxEzWbTUxPTwMA/vAP/xA/9EM/hFAoZMo5raysoNls4vr163jsscdMjUcAmJ+fh8fjwYsvvogPf/jDiEQieO211zAyMoLDhw9jdnYW3/zmN03buVbVYtIcL655VcDsgAqF4LkHOgWAqNWkCgiAexQ4Xe8qDLk27ECMTiH+Dm2TI7gecGJVcGWqiq0DMJo8sH1QI7BdVoabA9iGD7nBuGkZ/MEKE9Q++eP1etvOx9LyUHrwoUZcKbOg4O3q6jL+FCYD/+AP/iAOHDiAb3/72/jWt74Fn8+Hxx57DN3d3bh06RLm5+cRi8VQr9exvLxsThxOp9MYHR1FrVbD5z//eXzoQx/Ck08+afpJ62lhYcFUjLh27RqmpqYQiUQQjUaRyWRw/fp1VKtVE7hAyJBQKcsfMVSd5Z5YbYOCZmBgAAMDA6biBiG4aDSKUCgEt9ttfEKsNJHJZEwpJgoujiXHkT4ql8tlhAghR87V8vKyOQuMVdeZkK0HIHKOtC6jQmNMFL5y5YqpOk9/oMu1VVvxxo0biMfjGBkZwcLCgoHr1tfXkUql8N73vhehUMj47mi979u3D6+++ipee+01fPCDH8RHP/pRTE1N4c///M9x8+ZNvPjii3j++eexb98+eDwe/OiP/ij+4i/+As8++yzu3LmD//yf/zP+yT/5J/jmN7+Jz33uc/jlX/5lRKNRnD9/Hmtra2adqQLF93P9c90qREcLiP5D7jMKdi3XRGhbUycI42t6Cb/TaFoNblJ/lwpMCkPHx/XW5ECFDzgpdGeHL3fKMVFt2o4mVI2Tm5KQFf1jCpd0gjA0FJ7XKbRF35dCnHwuSa21RCKBQ4cOIZ1O4/r16yiXyxgeHsbAwIA5GoN199LpNBqNrTqDPp8PuVwOa2trqNfruHTpEl555RXjgyKz6O7uxvDwMHbv3m2qb/CaeDxuknhdLhfK5TLW19dNv3m2Fiu+E9pj4rJaQdlsFul02ginPXv2YGpqCvF4HIODg+jt7TUFdOPxuAk7X19fx/LysjmNmTCq5sNRqWA+FSG7SqWCcDhsTjtmXhfnmxGVWgWeQkhTHTRAgMyWQoCCGoAR4gzmKBaLJpKw0WgYnx6ty66uLlOYt9ncOttrz549cLvduHz5MqampnD48GEcO3YM+Xwem5ubpm4kI0mfeOIJzM7O4ujRoxgfH8fGxgbGx8dN+0dGRjAyMmIqxOtaU8avQUbq29IwdF4HbOe3abShKmW8n2RD53rSuPrJFJ5U/7LOBfdsJ1jSoS1yRuYBJyba6ubSahWECm14QzebworMX1JNGNjacJFIpO14EbsdPp/PBFmoz82GH4F2pzShPW1HIBAAsHUo5OHDh/HVr34V8/PzaDab2LVrFwDgm9/8JjY2NrBr1y5zHAYA83twcBAulwvZbBY+nw9f/epXkclk8Pa3vx07d+7E/v374fP50Gg00N/fb6DIcrmM5eVl9Pb2olAomLqHd+/eNXlfZKIUwPQpMUpPT01mVfWLFy+i2Wzi+PHjeO6557CysoKvf/3rSKVS2Lt3L6LRKAYHB037+/r6kMlkcPv2bSQSCcNEWXyXzI1pCktLS1hbW0N/f785ruTNN99EJpPBvn37sLS0hIWFBfj9fpMzRp9LIBAwvjsNAVdri3OkFeMp5AOBAHK5HAqFAq5cuYJEIoHXXnsNp0+fhtvtxsTEBFqtlqmEUa/XUa1WTTUIjmFfXx+Gh4dx+fJlhMNhY1n/3//7f1Gr1fDyyy9jfHwcExMT6O7uxiOPPII/+qM/QjgcxrPPPovXXnsNb3/723HkyBG88sorOHr0KF544QXU63XcvHnTRIqyj9wrCsnRcvL7/Sblg1GBij7YqINCtnwux4lrXg+Q5GfqJ9XvON+8js9XhUitOIe2yRFcDzgRiqK2R21Sw3QJL6mWqKG2au2oZkmm2Ol7Et9DjV2FpOaQUZvlPTZmrxuU3/l8PoyMjJgSSJrzQn/W008/jfHxcbzyyivmQEcK1rW1NdRqNUQiERw4cACxWAznzp1DNpvFI488gt7eXoyMjJh3M8+KR4n09vai0diqIk/Loru72xxVT6umu7vbFLJVgU34kEymUCjg+vXrps+NRgN9fX1488034ff78eyzz5pjQ7LZLAYGBgyTYvCEzg2DKQh5sU2cM0Kog4ODJkqSARvAtuXBcGydF/Wtcc44P6okcb6UaWcyGZw9exaLi4vI5/PYvXu3aRuTuJvNphkvRQ2YGH39+nUUCgX09fUZa7RYLOLmzZu4desWent7EYvF0Gq1MDY2hpmZGQwODuLu3bs4fvw4xsbGcPHiRYyMjGB8fByjo6MmHF/XGseTvkYVahp1a69d7h2ua3vsFMqjlUbBR38z94vuE51fe7+xHeqHdKgzOYLrAScyR246e8HbzEcZjkJySvxOhZzb7Ta+FH0u/S18tl1AV53OdhgwfyvjolXW1dWFUCiE3t5euN1uE2odDAbR1dWFdDqN8fFxPPHEE8aPlk6njc+OfqLR0VGMjo5ix44diEajqFaruHnzJl599VUTas2E2larZRKTaX1sbm4iHA6bMWYleTJ7Ju9SsKnfo9XaPjCQzDCdTuPChQtYXFxEd3c3BgcHEY/Hcf78eRw8eND4nDKZDPr6+kwgAvPY1BfDOVdLgEKLJzvv3r3bpAFoNJs93zxFWudN/SnKjAkZco3wNwBj4TJK8+DBg0gkEsZH53JtFzKmdUffWL2+dRo0TzhmLcZAIGDGfHFxEW+88QZGRkbM2WLj4+NYWVkxCeVXr17F0aNHsbi4iNu3b2Pv3r3YtWuXKSOlFhDXNpUL7iH1KanfWBOCKawJn2oyvUL3drATsC2cVNHUQCrubUUrqAxqZKNDnckRXA840deiTMQWGsB2qK76nLSwpya4AjBMhRtZoQ2SapuEODTKUR3+vJeOfwBtWme9Xjc+olqtZvxAQ0NDpgxQs9nEkSNHkEql8NWvfhX/+l//a+zfvx8XL15ET0+PEYCTk5Po6+szZ0O53W4Tzr5z506Ew2Gk02n81m/9Fnp6evDJT34S4+PjBvJi5OHVq1exuLiIgwcPoq+vD11dW4m1tVrNRAwWi0W0Wq22HCEdA1oWZGysqkCo6cyZMxgZGcHk5CT+4A/+AJFIBE888QReeOEFY91xDDX4hT6knp4ekzhMATQ/Pw+v14u9e/fi5ZdfNtGKdoSb7fxXRqzh48C2T0ctWq4LCkzev3//fiQSCczNzWHv3r04ePAg/vAP/9CUiqKfLplMIpPJoFKp4PXXXwcAfOADHzBQNS1oYAv2TSaT8Pv9uHr1KhqNBj7ykY/A4/Fg//79mJ2dxZkzZ3DixAl89atfNRVSvvzlL2Pv3r145JFHTHQn/UbcB7rW2S9bAbRD/ilQeJ0eQwOg7dRl/k0rmSgJcK+/TXPA9B2q/DGYxrG67k9OcMZDQLSKqCFzYWv0IAWU/q/aHdBuBSmEA7TXI1SHsRYG5bNtKFC1TqA9MVMtMlosPp8P1WoVe/fuRSgUwurqqjmGntZJPB43hxG6XFvlknbv3o19+/ZheHgY0WgUwHbEXa1WM1abx+NBf38/hoeHsbS0hPPnz2N+fr6tGC3LLlFYhUIhk7SczWaxurpq6v8Vi0XDkDT4hVoylQb17/GkY5/PZyIV9+/fj1arhWQyib6+vrZDDNXHRAZLpUFz3lgtg4yxVCohGAy2WVt6r1rhnZLIlXF2Io2oo7Udi8Xgcm2dobVnzx5jPYVCIXg8HhSLRWO90ieay+XMuWfpdNoEzrCt8XgcfX19pmpIMplEMplEV9dWukIikTAVQ3jw5MGDB+H3+5HP5xGNRjE1NWUsdhW0FBAATHSkBmhwbNQfrNaoHVDBMaZPi9cpNMj3dwq+0IhH9Wlpzp220aF7yRmZh4BU4OhGpOBRC0utK0bX2RFPZO6suKBwHu/RxEndlKoJqqDUiClqudyoZJjc+Cyky+CJtbU1+Hw+TExMwO12o1Ao4Pjx46YwKSMfh4aGzLEltOzYT4ak0+kei8UwOTmJRCKBs2fP4vLly1hcXAQAYxGwDJP2hdYfq2WQYSu8pDCTRoCpZVqtVlEul83RHwxdZ9mpnp4eU64pFAqZvC7OhUZ9sr0AjNbfarWQyWQQCoXa4FeuEz6HzE8jRZVpqvDUe21fqUKA5XIZq6ur2LVrF9xuNxYXF1EoFADAHF6Zy+VMIJBa68lkEouLi+b0ZR7CGY/HEY/HkcvlkMlkUCgU8Oabb2JxcdH4QoeHh1GtVrFjxw7cvHkTw8PD2LdvH+bm5kyNRlrOSjoutpVDwfJWiqANEfJ+jdTUZ9qCiqSRwCrkdG9pW22I36FtcqDCB5wUzuP/9H14PB7j0Ae24QfNH2k2m4a5E86gr0PzcwiHUVvkZuW7dfNqmD2FFH0+/J7Mz+/3t1WEpw/pJ37iJzA4OIgrV67g0qVLePTRRzEyMoIbN27gve99Lx5//HHU63UTleZyubC6uopEImE2PuExluqJRCLm+BGOW29vL9LpNL70pS+hr68PH//4x9HT04Pl5WUsLS2Zunn8uXLlinkeSSM0lckDMDAoAFMiinNAQU0o74033sChQ4cMrHXt2jVMTExg9+7dpnguAxXW19dNNCar3M/PzxtIlOd2MVcqkUiYQywpnDgftAQ1QZ0Cm34Z1fC10DI/o4WbyWRw5swZDAwM4MqVK1hfXzdK040bN5BIJJBIJFCpVOD1eg2M5vf7zWnSe/fuxaFDh0zV/3Q6jUgkgomJCVy+fBmlUgmLi4v4tV/7NZw8eRLvf//7EYvF0Nvbi9/6rd/C1NSUWXfPPfcc/tN/+k8IBoN47LHH8Mwzz+BrX/saksmk2S9c03bEIWFZheoUAlekg3mHDHVnwBTXCq08XSvAtrLGtmhkI/ee7il+p0LMoXvJsbgeAlJHOhe5lqGh5gZsa9Z2pKBuDv6vobaqZet7dFPrs2yHvkY4khSyoaALBAI4dOgQjh8/jrm5OVy7dg35fN7kVM3MzGB6eho9PT0IhULGcR8KhZDJZJDP5w08w4MP8/m8cf4DMLlWDKgIh8Po6+szgRuzs7O4cOECRkdHkUgkjO+IcCB9POq01z5xnMn87Ag19X8B24EWxWIRXq8XwWAQCwsLSKVSpkQVoTNW9iCR2dLSUqc/K7XTf8VncE3YPjk7YABAm0XGOacF4fFsF9dVKy2XyyGVSmFxcRFTU1PYvXu3idZkVKPb7TaJ2EzkZnWNaDSK/v5+c7zL3NycgTx7e3tNP0ulEi5dugSPx4PBwUGMj4/D5/Ph7t27JhCGlvfNmzdRLpcxPT2N4eFho5wpHMq1QQVOfX8UVvRVqhWk88rxtet3cu3bVq++WwM11NdmW1mKdDjUmRyL6wEnhX248OlAV0iCsA/vIfPS2nvq/1D/DD9TaIkbms/R+zT0ne8H0Ob856ZXAUDh81M/9VPYvXs3fuM3fgPJZNJUE2fZpL1798Lv95tw8ZmZGZMndOHCBQwMDCAYDKJarcLr9SISiQDYhkLJgGOxGIrFosnZ8vv9+Ku/+isDLb7vfe/D/Pw85ubmkM1msba2hkwmc0/St8JBANoYDplcs9k0ofOMoiMTpJLQ39+PyclJ1Ot1nD17FgMDA9i7dy+6urqMEOvv7zeCnhQIBNDT04Ouri6MjIygUCggk8lgcHAQs7OzqFQqyOVyxv8VjUYNc+Qpx1w3zWbTWHL2mlGfp8JoFOpcT3zW448/bk5Srtfr2LlzJwYHB00Zp3w+3xaY09PTg7m5OSwsLGBlZQXP/v8rYnzlK19BqVTC9PQ0HnvsMdy6dcv4FwOBAL7xjW/gve99L6anp/HOd77TpEEsLS3B4/Hg8OHDuHz5Mr75zW/ihRdegMvlwsWLF02krELsGpyiihnXtPp8FRbns/gctVpJKuj4v+5RvpPrQn1ghMXZFgaUONSZHIvrASfVvpSp2NaO+mrIoDo53mkFUevUYAu1wqhh8xr6K2w/FzceI8XYPr6LWizPtRofH8f4+LgJNSdE1Gw2kc1mEYvFDATIfpVKJfj9foyOjqLR2Cp1pMEM9L9o6LhWbgdgBAkrxU9PT5uk3Hw+b5JlCWfpswkRkuGrr4SRmzouHDOOLf1v4XAYPp8P5XIZ0WgUk5OTCIfDZixCoRBcLpfJ1aIPzOfzmSNOQqEQ4vG4mZ+9e/caOE7bZCeRd7Kg+VuDctTnw3XCflHIMXCGzDyVSmF4eBgHDhwwltf6+jpeffVVXLlyBdls1hQD9ng8SCaTePnllzE7O4v5+Xmsr69jY2PDjD/PIuNJz2+++SaWlpbMydWEDTlWIyMjCIfDuHr1Krq7u7Fz504zd0qcF12jnGf9jteqv0/3iL3/bL+gPtdGIdQPxrVqQ4P6PIc6kyO4HnBSAQJs54eoRqiCyw5/1sVvQ4gKC9lwhTJndfTrJtfP7CgoZZDU1D0eD44cOQKXy4WbN28il8sZRkwroq+vz9T1o6VYKpUAAD09PQBg8p3q9ToKhYIRPBqU0t3dbc6bYr1Ht3vroMSRkRH09PQYAcFoRAZDcMx07NVPR+ZuO+85ptSkabWxXfF43ETSjY2NYWRkBN3d3SiXyyZFgJp8qVRCLpcz52hFIhFTUml4eBj9/f0AgF27dmF0dNQIGfoyCXuSlBFqIAkDXxRqVsGlc02oN5FIYHBwEPV6HZlMBtVqFQcPHkQkEkGlUkG9vlXT8ebNm7hy5QqSySRcLpfpk9frxezsLK5cuYKVlRXE43F4PB6srKzA4/GYPC/CvYuLizh37pwpKsyzvphewdOgWUh5cHAQ0WjUhKorvKuRgYoq6KGqqnipkO8EBfI6/uZY6fcK5dsQIBVNG750BNdbkwMVPsDEjUCHsmLm3AgKy+mmoIDh5m42m8a5bPtKNGJKLR1+znBzxei1wrueE0aYkvczNwkA9u7diw9/+MM4ffo0vva1r2FjYwOHDx9GvV7H66+/bo5mp5Cjlt5sbp2429/fj0QigWQyiYGBAeTzeQMphcNhDAwMmJB2r9eLubk5E5I+Pj6OcrmMkydPYnBwEBsbG7h48aKpbM620w9DC44MXM+1InzGPnJM6Iciw+R8MQhmx44d8Pv98Pv9OHr0KCKRCO7cuYP5+Xm0WlvH3LvdbhSLRWSzWaRSKSSTSezcuRN79+41Pr2jR49ibGzMCMhIJIJvfetbWFtbQ7O5FfUHtKdREF6mJWozb1qOjUYDoVCoLSCBh2aOjY1hc3MTw8PD6OnpQaFQgNvtxtDQELq6ukwV/2g0iqGhIRMlmc1mEYlEjLIRCoUwODiIq1evYmJiApOTk/B4PMjlcrh27RoSiQR2796NpaUl3LhxA0899RR+7/d+D+vr63jmmWdMwjoP+dy7dy9OnDgBj8eDr3/963juuefw3HPP4S//8i9N8Ir6HW0/pYbNA9tCib5UQqo8Z47P0qhCCjWufc3t0moihN7L5bKxWLnnGDlKJUwDfxxqJ8fieghIw7FVQFEAaVY/0B7MQaZkO6ppYfA6biwVYGTUvFZhSz0C3Y5+UgYAbPvkdu7ciaGhIdy+fRvVahUDAwOIRCLmYEcyR1qCmg+mkCQ1eg3nrlarpmoCmQqLr05OThofWavVQjwex/j4OKLRqAmWaDQaJszeDiFXC7ZSqRiGzM9o7XIutM4cn9dsNhGLxdp8Gs1mEysrKyiVSmZs6/U6crmcsaBSqRTK5bKBGVdXV9FsNrFjxw5MTEwgFoshkUhgfHwcANrO+GKbtNo814T6Tfk/Ga4ycVbC1zD1np6etohWRu0BaEtPoK+OJbQoOGghR6NR8/58Pm8qymcyGbRaLWMVb25uIh6P44033oDX60Vvby+ArRw21s2MxWLYt28fbt68acpQjYyMmDXINqn1o/1UocI1TmVM94dGYzJqkuvFtuIUZube4rzyHq4V3YeqDDnUmRyL6wGnTpFIKiyo5bVa7aG5qikSuqCgIdMlhEcGy0AO3TBkQHwO71dHtjJKaomK9/t8PuzYscMUQ11ZWUG1WsXY2BiuXLmCmZkZ9PT04PDhw9i3b5+pyk7rgZXDGfxQrVaxtraGoaEh5PN5k4RarVZx9OhRY+VNTU1hYGDAHFGyd+9efPazn8X+/fvxzDPP4OjRo/D7/fB6vebEXTvnTH84LrafhDUOGRxin5vG5OPdu3eb8WNiM0PBd+/ebYTv0tISMpkMSqUSzp07h0gkgv3792NychJnzpzBV77yFfyzf/bP0Gw2MTs7C4/HgxMnTiCdTptncj6p2QMwCcG5XA4AjGWrkC77QME2ODiI3bt3Y9euXcjlcujq6jLKBudX8wIpuPx+P4aGhhAIBDA+Po7BwUG0Wi2cP3/ehPIHg0GsrKyYgylrtRp+4Ad+AJcvX0axWMTu3bsRCATw7W9/G6Ojo9jc3MTly5cxPDxsYEmXy4W1tTXEYjEcOHAAv/M7v4Ovf/3rePbZZ83pAizbRf+i+oEVIVCUQfPPONdU/rgvbWicCqLuCe47KgUU8gqxazSsCkeH7k+OxfWAEzU7G0cn0+RC10g03VRq/RDL14RZWm18h24o27JTzF2TZNW/xndqMrPH48H09DQGBwdNvcGuri7cuXMHN27cAAAEg0FzRpbCcYVCwUSXaS24bDZrIL7x8XH4/X5sbGyYzV+pVLC2toZsNmtOTW40Gti/fz8uXLiAP//zPzfH1ff392N6ehrhcLjNB2gLLHXQa2Sm7WtUhu7z+dDX14f9+/cjGo2aflQqFaTTaWxubqK3txf9/f1otVrmyJR8Pm+OSllZWTH+Pyb8JpNJo6xQcLLgbF9fHxqNRtvZUnYghgphPSaeCgmvP3DgAMbHxxEKhbBv3z7s37/f9D0SidxzHI5Cajz5eN++feZn//796OnpaYtOXF1dRX9/P6rVKgKBAEZHR+Hz+RCNRjE+Pg63220CPF577TXMz8/D7XZjbGzMHH+zvLwMt9uN6elpXLlyBdFoFBMTExgeHjYKme6LToqJWo2KMNj7iHOtqR4cS1VYaE3ZyIW9jniNIipqGTp0LzmC6wEmhQ40xFYhNKD97C3ChraDV60EhTHImDXoww7+0Pu1DcT69RpuYgpJr9eLUqlkqrcnk0kjgBhdR7iFeVuEBHnSb7lcRn9/P4LBoLEqi8WiqShP7TubzWJ2dtac6VStVlGtVpFKpcyZV/39/RgdHcXNmzdx7tw5pFIphMNh7N+/H4888ogZd/VP2fCpjncnaIdMij6SAwcO4MCBA22Wba1Ww/r6OlwuFxKJBKLRKGq1mqlCz7OvisWigekikQj8fj+SySQuXLhgcsEIJ7ZaWzlN+/btQyKRMBAaj8XRdaVBOOrjUX9pT08P9u7di/379yOZTJq8LPr8BgcHEQwGzXpiJCSDaXbv3o2hoSFToaWrqwujo6OYmJgwBZEjkYjxpRFSZOSgz+fD4OCgKRFWrVZx9+5dXL58GZVKBf39/YjH49jY2MDS0hLy+TyOHz9uSnQNDg5i165dpj1qyaiCoYKlU+Qhx8YOYOE1qgwoWmErCAob6hxQSGn7FLFw6F5yoMIHmGg50OKhYOp02rBGLTEoghofP6cjmM5qQonqf1Btkm0gUbvm5uNzbYsEaM8R8vl8ePrpp1EqlXDx4kWsrKwgl8vhgx/8IADg9OnTxiEfDAaxvr4Or9eLjY0NzM/PGybUaGydD9XT04P19XVkMhm4XC584xvfQCqVQiwWM3lgExMTpozS/Pw8Go1GW3WKiYkJXLlyBa1WC/v27cPU1BSmpqawf/9+XLlyBdVqtU0I25aK5rfx+BEyIc5RpVLBqVOn8MlPfhLVahVvvvkment7DeyVTCYxMjJizhVbWFjAzMyMSdZdWloCAHNtMBjE0aNHkc1m8T//5//EoUOHzFjwNOWVlRW8/e1vR09PDy5fvoz19XVT+JZzTUu42Wwa/xojBiORCMLhMIaGhjA8PIyhoSG0Wi3cvHkTPT09RlAMDQ2Zdeh2u03NyWKxiGg0iu7ubsRiMfOOdDqNrq6taic7duwAACwsLJhDPi9fvoxgMIjz589jaGjI5OkFAgHs2bMH169fRyqVwsDAAM6fP49cLoef+ImfQF9fHwDg7t27+OpXv4q3v/3tSKVSePXVV3HkyBG88MILePHFF9tKaqmA1lJZjPjU8HRCfRRQHDsAJj1CBRG/o+VKGJIwoip6dnQhlaJAIGDucYRXZ3IE10NAdOSrYKFQoObPhU9SCI+L3/ZJEYa0w+Y1D0zbYGP83PgKn9jvr9frOHjwILxeL27fvt1WMXxychK5XA4ul8sce0+tlCcc8/h5Laba09MDl2urzp2WMwK2coxoxdGS4/HzjPBipOLOnTuxtraGtbU1VKtVc1T9yMiIifRjX5mLpce6aHCGMkSO+8GDB/HOd74Tfr8ft27dQrlcNgnTuVwO1WrVFKxlWD59R3fu3DHFaBkW3t3djZ6eHgwPD5siwN3d3W0pAeVyGVevXjVBJwy1p9VDBkr4jMpMIpHA2NgYgsEgAKC3txd9fX3mxGNWcmfUZaVSwcrKCjY2NhAMBg3TZ1kvjbbr7u5GMBg06yUcDptq8OVy2Sgl7D/HhYw7kUhgfX0dKysrRiFj0eT+/n6T2L68vGyE6rlz53DkyBFz3huPULGP5dFSZVQOFb5ThVBhQbW4uBcYecogG92zNlHJ0UAghTTt/edQOzlQ4QNMCjsorKHWDr9TvwuANnxcfRz8nxuLwovaMx32Nm5PIcR6bHyvjf3zGWwni+eWSiVcu3bNnCLMOoKt1laNxJGREVPuh7XtSqUSCoUCXC6XgcnC4TCi0SgGBgbg8/mMT4UMieHwPCyyUqkYgVuv102CMZkoj4FfXFzEnTt3UK9vnfUVi8UQDAaND0i1dI6fJujS0uL/Q0NDOHnyJKanp3Hz5k2cPXsWfr8f/f39CIfDJpSbYdOFQqGtBt7q6irC4bAJjWeACo9loRWoa2JjYwPNZhPXrl3DrVu3sLS0ZCL3GJRAZuz1eo0faWxsDM888wyOHDliQvL9fr+BZumDotXeaGwdhHn37l0sLi5iYWEB2WzWCEUteMw16fV6TYqB1+tFX1+f8XV5PB7s2bMHg4OD6OrqQqlUMmWuGo0GwuGwEUAMb2+1WlhfXwcAUyarVCphfX0dgUDA+AWj0ag5MFTz6hTmpRBj4jYFGr9XeN6O7gW2K8vbgop/837OmUYCq7+Zc6kFAhzqTI7F9QATmSatBVoQtEjIQLmJlHEqtKGOc16nG1XfpRCfHXigglTfZ28wBgawGvrx48fx6quvmiPqi8UihoaGUK/Xce7cOczPz+PAgQMYGxvD8vIyCoUChoaGcOfOHSwtLaG3txehUAhXrlzB0tKSGZObN28aH1U8Hkd/fz9yuZyxTiKRCCKRCDY3N1EsFrG5uYloNIrNzU1TKX5sbAxHjhzB2toaZmZmEIlEMD4+jkcffdQcfcIyURTaygAZDaf+Co/Hg6eeego9PT148cUX8ZWvfAX79+/Hj/zIj6C/vx/d3d1YXl7G7du3cfLkSSMMGGY+MzMDACiXy/D5fLh16xaKxSKOHj2K3t5eTE5Oolarwe124/jx46hWq9jY2MCtW7dMmgEDQL797W8bYbFnzx74/X4MDg6it7fXCK3h4WGkUil8+9vfxs2bN5FIJEwUJy05ALh9+zaazSbC4TDy+bwRhrVazZylVSwWcefOHfT19eH48eMG5gS2z7Di2jl27Biy2Swaja0DRBlZ2Wg0sLKyYpKIqQgAwJkzZ7C5uYmhoSG8+uqr2LlzJ44dO4ZWq4VLly7h7t27ePTRRxEIBPClL30JH/3oR3Hs2DFkMpm2orb0KWl+IpU3jfKjEGOgCwCjkAHb59px3asw0whgvlP9oXy/RhfyWerndehecgTXQ0C6+BWaoMWk8IZCduo4pgBSX4w+k9fS36VQig0l6sF8bJ+tZZI5DQwMoL+/H+fOnTPPC4VCGBoaMqHbAExVCcJd5XIZmUwGwFZlciYMd3V1GYiqXt8+sG96ehq9vb1GCFAQs09dXV2G2ZRKJeTzeayurqJUKuHIkSOYnJw0VkswGERfXx+GhoYwNjaG27dvY3V11USRcezU38iyVD6fz+RS3b17F1euXMHk5CSOHTtmKn/Q78Owfx1z5qixzp/X68Xq6qoJcmGQitvtNgEKzWbTBHekUimTaN5obJ1zxVqO9F8dPHgQU1NTZsw9Hg++8Y1v4MKFC/D7/ejp6UEmk0EqlUImk0G9Xsc/+Af/AMFgEHfv3sWlS5fg8/kMzMxnE2Y8f/48VldXzbE1hBK7urpMMeRWq2UsaPqe/H4/EokE8vm8Wb9er9fAgwMDAwBgfIDJZBJLS0t46qmnMDw8bPIDG40G+vr6cO3aNRQKBYyPjyORSJjivIpG0BLj2KtlxT2ge4tkQ4CaL9cpkEdJrTXd3wo5U0FyBFdncgTXA0z0QRBm4IZnTggDALSKhvqegK1NTnioUwUBCj+9nxuQG4j+CvWRUUO0MX+FFjc3N02Vh5deeskw62AwiB07dpgKD4ODg+jr60O9XjdRh9lsFjMzM/D7/Thw4ADefPNNfPGLX8TAwACWl5fR1dWF559/3kTNtVot4x/heDE/qK+vzwS63Lp1C8lk0hSjDQaD+OM//mOcOnXKCEhG7g0NDeHgwYP4hV/4BZNbtbKygmKxiLt37yKbzaJcLptABObp+P1+3Lx5E8FgEIcPH0Y4HMbm5qaBC0OhEIrFIsLhMGZmZgyclM/nsbKygps3bxrfHgVxb2+vCUBpNpsmAo/OfArpWq2GxcVFVKtV9Pf342Mf+5gpm3Tp0iXcvn0bCwsLGB0dRblcxsWLF1Gv13Ho0CE8+eSTiEajJvepXq9jdHQU0WgU73nPe9Dd3Y0LFy5gfn4efr8fu3fvBgADZfLMtPHxcZRKJfyP//E/TKDHvn37kMvlkE6nEQwGEYvFjO+rr6/P+MAolAkBa4JuPB7Hzp07ceHCBczMzCAajeKP/uiP8Pzzz2N8fByTk5NYXl7GzMwMJicncfnyZbz88st417vehWaziT/4gz9oK+/FNc/n04/rdrvbksy5nghra+6VCif1kWlZsE5+LiqPGqjBZ9nWl0P3kiO4HnDiglarSUv2kLSeoW4YCi2FMNTprBtGfWEUPnaOFp9vf6bVNRRCJDTG6EiWDBoaGjKJsOFw2FyzubmJUCiEWq2GQqFgfFu3b982ofDhcNiETEejUfh8PgNdeTwew8j5PlqltPA2Nzfh8/lw/PhxTE5OYn19HTdu3EAgEMDOnTvR29trhHK9XsfY2JixBObm5lCr1TA6Omr8KByHUqnUVm2hu7sbmUwGN2/eND6Ynp4e4y/q7e1FLpfDysqKqa24srKCZDJpGDfLL1FI8hRnRt2trq6ayDr1B/b19WF4eBiBQMAcp3L8+HEUCgWcPn0ayWTSBDKMjY2ZABr6IOkDGx8fx/DwMObm5rC6uoqrV6+aavGsMejz+UzAjd/vx44dO7CwsGCi4xYWFlAsFlGr1cxn9HOxViKh2EKhYNYvq6Io1BaPx03QCcd3fX3dhNSXSiXMzc3h8ccfx/Hjx/Hmm2/iQx/6kLG6yuVyW/6V+ol133CdU9lTJEGT77nm7QAPRUY6kQaG6HPV4nIE1/3JEVwPOGkgBIUJNWvNM+Hm0cRhLenD69RX1snJrA5pCh+11Gz4kf4zts3Oaerp6TGwFjXZqakpTE9P4/Tp0yiXy6YaOwMQfD6fCZ+ORCJwuVzG78NouUgkYpglDzkEYBipx+NBoVBAoVBANBo176bPptFooL+/HwMDA3j00Udx/vx5IyjC4bAJLlhZWYHX6zV5RbRge3t7TQ06zUWrVqvIZrOYn5/H5uYmMpkMFhcX4fV6MTg4aNrJ/LNWq2WOq19cXMT6+jqy2ayZX9b4S6VSJk2AgrhcLmNhYcHkVVUqlTb4slgsYm5uzjD2U6dOmfwyCnn16zBXCoAJgtmxYwcikQhef/11nDt3DplMxlSqz2azCIVCxrqmsB0ZGUEgEMDdu3exa9cuFAoFfOtb3zIRhVRsFELTYAhW4iAz5/W5XA5+vx/xeNwITwCYmZkxkGKlUkGxWEQsFsOJEydw5coVdHV1YWBgAMPDw5iZmTEKCdc11yutKK5dDX9vtVrGAtQcMO4HrWdJhUn3hqZScJ8qUqJRwRSgjuC6PzmC6wEnjQDUKgUUSuqXYjKo5pBoWDoAo9lq4IUmnRIOAbbztoB769HRKa+h9rQyGDzS1dVlLCu/328qYzz22GOIxWL48pe/jJWVFRw+fNicQOzz+ZDNZnHhwgVMTk7iyJEjpvgqKzgwWTWdTsPtdmN2dtbUpms0to49WVtbw8LCAlqtrSKvIyMjhhGRSQYCAfj9fhw6dAjj4+PY2NjA5cuXMTMzY/xddKAHAgH09vYiFouZYzV4PH06nUa5XEZfX585tHJ+fh7ZbBaFQgGDg4PmGBAmE29ubpoSSYQgWbewVqsZK4pWRz6fx8zMjIlELJfLaDQauHv3LtLpNFwul6m83mw2kcvlUKvVsLGxgUKhgGeeecY8j3lkGxsbuHTpkoEpS6WSCY0n7Hnu3DnjkyMMyICYWCzWZhlyrJi24Ha7cffuXfT09KCvrw/Hjh3DxMQElpeXsbi4aIojk8knEgkcPnwYS0tL5gRllmtqNpttBZPz+TzS6TRGRkbwZ3/2Z8ZqHx8fN6HzExMTeOSRRzAzM4Px8XGcOnUKL7/8simDpUEamsZg7z09y46+U7aJwoqlrqgoaoSlrczRBUDLk/s0GAyafeVAhW9NjuB6wInaJrVPjYCiBqjQBiEPzS/iD4UJQ8RVs1MrjTkpFFadQnz5Ps0D0/BnBhb4/X6srq62abf5fB6XLl3CjRs3TAUGwiPhcBjXrl3D4uIiHn30UXPiLY8jCQaDCAaD5liLbDaLVqtlirSm02ksLS1hY2PDMNO1tTW4XC709fWZEHqFOaPRKEKhEGKxGG7evIm1tTXk83lEIhEcOnQIkUgEb775Jq5cuWIiysbHxxGJRNDd3Y35+XkD57lcW2eDMaQfAPr6+kwQBc/e4tEsXq/XwIWsOuFyuRCLxQDAwKdut9tU0dAx1+AOAG0QU6PRMD6lZrOJ119/HYVCwfiXeG6Wy+UyQTK6vprNpknEnp6exvj4OGKxGOLxeFs+WqVSMUfRMO+sWq1idHQU8/PzWFtbQyAQMCW1aNlVKhUTrUcIj0EelUrFBNMQIuYa47riuDC6MRwOw+v1Ih6PY2FhAX6/H9FoFDdv3jR+1Gg0inw+3wblqbUMtB8ISWvI3mMKCzKAgsKMfmM72Zh7UxVGrWkIwLTlrWBGhxzB9UCTJiiqf6vVaiEQCBh4hBYEK2Xzbwo1xekZXad+GK30TsZAJqTOa73ettQ0FyYWi6FWq2FgYADNZhMLCwtG+/f5fKYEU7VaxaFDh3Dy5EmjdReLRQMhHjt2DEtLS/hf/+t/4W1ve5vpMwATRtzT0wO/349sNouLFy8ai8Xv92NkZAQATJIxE5YnJiYQDoexsLCA9fX1tiTgRCLRlkhbKpXw6KOPYs+ePUbL39zcxK1bt7C2toZSqYTR0VF4vV5cvXrVvINlluiLmp+fR6FQMO1mQV2eXxUIBAyk2mg0kEgk0N3djfX1dTPuPKWZMBMFDiPhduzYAY/Hg/X1dRMCz2r7Z8+eNTX82EYewzIxMWHSFHjWFst1jY6Owu12G0HbarWMb4rCg0E2gUDA+Bvr9a0Tn6PRqAnTP3v2rJmTYDBokqhHR0fNcTW9vb2Ix+MoFotmD7CYLhUyv9+P4eFh3LlzBxsbG6bqSqlUwvXr1xEMBpHL5dBoNDAwMICXX34ZY2NjmJiYwI4dO5DNZlEqlYwip4EWXM+0ptQaI3rBfQhsBypplRoAbUojBRqvoWKoe7Orq8skn1Np7BSR6NAWOYLrASe1ZoD2OnNKKtgYqu33+40/p9Xarg6vBXaB9nJRfI6WgWLRUQ3x5fXUejWHRX1pzOOhEHW5XAa2GxoaQn9/PwKBgPGxJJNJpNNpxONxuN1uzM/PY3V11fhnNP+mVqsZaI7Mk0EgPFRQ/XUsR0TN/NatWyaMnbCQ5rEVi0UUCgUMDAwYZs7cot7eXnMm1MbGBjY2NozAIPTGclCRSMQcUcI2RyKRNl8eBQWFCQ+etNMSbMubFpHLtVV9pFarGb8cA1eq1SpyuZyxZqhYJJNJk4x86tQpXLp0yUBjjJ4bHR1t84Xxc0JaFPC0DO2E7Wg0ipGREWQyGYMQxONxlMtl3L592xygOTg4aJQjKij5fN4IaLaB7yQkSopEIm0V371er7EuAWB1dRXT09NG6Go4usKGGtWnJ17bAkutIa4dwoZAew4Yr+E7GKnIezinei/3kSO4OtN3VTnjM5/5DE6ePIlIJIKBgQF86EMfwvXr19uuqVQq+MQnPmHw/g9/+MNYXV1tu2Zubg7ve9/7EAwGMTAwgH/+z/9529EYDm2Rbhh17FI7o/aufiwVMAoFciNpZr4+n8yBwsiOSOz0XI1Q5OcageXxeFAul5HNZk24uN/vx9jYGMbHx9HT02P8csBW6P7i4iIymQw8Hg82NjZw7tw5kxsFwPSTAkp9CLyGR5WQAbNwLcsVFQoFpFIp3Lx5Ezdv3sT169dx48YNU3j3+vXrphJEtVrFG2+8gdu3byOTyRjBz3SEZrOJ27dv49atWyZpt1QqmTyo1dVVExFIiDCVSrXlJTGJWXN2wuEwenp62s61AraYGaPw+D+wpURks1msrq6asPPFxUWsra0hnU6jUCiYqET6eBiVWSqVsH//fuzfvx8A2ix0+srUwqAPhn4au24jBQrXBytkEALt7e1Fb2+v6RP9cAzUYb4Z/WcUEkQBaMHw+WxHPB5HIBAwkGCr1UKhUAAAzM7OolqtmqAajVpk+/mjSeYKKXIvULFQpUL9VxqByD3L5/EdvKbZbJo+sZqGUzXjO9N3ZXF9/etfxyc+8QmcPHkS9Xodv/ALv4B3vetduHLliim180//6T/Fn/3Zn+H3f//3EYvF8MlPfhI/9EM/hJdffhnA1mJ+3/veh6GhIbzyyitYXl7Gj//4j6O7uxv/8T/+x7/9Hj7kRC2SlRAYYMDFrhFQ3Iy0TFiTT3NhNHsfaD/sUKuX63MZiQZsM0puOEZQ0a/DTVmpVEz48eLiIh555BEUCgWTSJtKpdBqtUwUHyHFl156CbVaDfF4HC+99BIuXryIj370o0ilUiYwgZF6yWQSy8vLiMViJsru4MGDppjvpUuX2kKqW62WiU5kODqPeQ+FQsZX5vV6zXEiZGzz8/OYmprCO97xDtNnWpPVarUt4pAh5YS5VlZW2gJDWBB3fHwcQ0NDyGazCIfD2NjYMMyQ5aZIxWLRWIbAVu5bPp83Y12tVrGwsGCUi0ajYQ7opOLCI2O4PqLRqJmz/fv3Y3x8HIFAAOfPnzdnYbFKvUb50VcHtFdQ57rIZrMAYPrLs7lyuZzxdSUSCQSDQSwtLWFubg6nT59GX18fpqamjC+TVf7J5DWtggIrmUxidHQUc3NzePrppzEwMIBGY+sU5nQ6jatXryIUCuHixYvYsWMHJicnMTY21nboKHO2KLRo5WjNTlrF6vOi0Gb/WbGFn3Ht8IdjBsC8m2PK33yWEw7/1vRdCa4XX3yx7f/Pf/7zGBgYwJkzZ/C2t70NGxsb+O3f/m184QtfwDve8Q4AwO/8zu9g//79+Pa3v40nnngCf/mXf4krV67gy1/+MgYHB3Hs2DH8+3//7/Ev/+W/xL/9t/+2LZLt7ztR4wO2Q2S1arsGVfBHk4c1dJ2WFbVnt9sNn89nIDcyJM3B0s2qjAm498gGtpe/6SRnqLRaZ6urq1heXobP50NPTw9CoRBKpZKxFli14tvf/jb6+vowODhoit5SELCyBOvaEc4kLEZ/VLPZbDt6gxUfmAjM2n8MEKA/hSHuTIqu1Wrm8EcymlAohEgkYqp4qEauUJRGo1Hgb2xsIBKJIBQKmeAC3ksLjMKa48Z3BINBU++Q60EtH84vmSgZPX2b2r5isYh4PG6s3KmpKbzyyitYXFzEvn37EI/H23yn2icNIGAUqyo0tLoJD3JtkKHHYjFTZJkoQD6fN1GKTAjXYCOuZ/aPlTgKhYK5JplMmhSJQqFgQvDn5+dx7Ngxk5BuCwbdR2odqeJDP5j6fnU/KFLB71XgK9yua8RObXFgwrem/6ciu0yG5FHarCP2wgsvmGv27duHiYkJnD59GsDWERaHDx9uy2l597vfjVwuh8uXL3d8D5mR/vx9Id00CgsqfEQi3KeBFQphUItTwaTChs8gqXOYwo2/CZGQWRI+0moOZHrMVaJ/JJvNIpfLIR6Po6+vD36/H0tLS+aAwD179mBkZARzc3NG82d+F8sQ+Xw+BAIBBINBU1aIVcJTqZSxetR/193dbUpQsSySXeaHUB8tFZ/PZxKeNYKT/evr6zPvIvE+zZfjmOlpv0tLS2g2myZXi2PP73lYJN/HOVVlhO9W3ydDrJncy7ZQqGjeFS2zM2fO4NKlS6hUKhgfH8fi4qI5nZmBI2SoWnlf1xewLcC0ikS1WjX+QZb04tlj2WzWnMFFK4ufMSqzVqsZy09rAzJCsdFomPwtVbyYz0dFJJPJIBgMIpFItMGtXB823K5wpAZuqDXEdcWx0P1E65rt53jrXuYzuPcoUFVpdehe+hsHZzSbTfz8z/88nnrqKRw6dAgAjFOY2hVpcHAQKysr5hoVWvye33Wiz3zmM/h3/+7f/U2b+tCS4uHcQIR2gsGgYTpkzgAMY6LAI2TFjcUw3UZj62wrMiRudK2bp85urcxBqIx5KAxooOBsNBrYuXMnpqamcOXKFbN5GUJNf9Pg4CBCoRCSySQ+//nPI5lMYs+ePfjIRz6Ca9eu4fjx4zh16hTS6bTxfczOziKRSJgwam0/Tw0GtnxErIDBgr/0sxGyoaDIZrOG+QwPD7eFQgMw2rvP5zMh+xROhG85PqrJ8zm0dHK5XJvPkdUfKFjo0+KYrK6ummAQVo1nealMJmP8TwyrV78IFQa+m32lf45zS6vlv/23/2aiKj/wgQ8gm83i29/+NkZHRxEKhUxldkYLMuiDVnwqlTLv5vjQx1gul9sq7jPniWH6DH3P5XI4d+4ccrkcTpw4gd7eXlNPksyetQ1VieJJ2bdu3cJjjz2GXbt2GYWA1UU4VjwRgO1noIeGrtvpEpxf7i0qBeofVguK96ufjNYn9w/3s0KR+h71kTl0L/2NBdcnPvEJXLp0Cd/61rf+NtvTkT796U/jU5/6lPk/l8thfHz8//P3Piikmh6wDRPqoYDcRFz0hGiooaqGx2fyR2E8birChhREep9GT2k+CwMWarUaenp6EIvFsLa2ZjRfmwEA29UyWK2dOV0XL17EkSNH0Gw2TYItNzkj+RKJhIEPc7mcKXlkB08wwlIDGnw+nwkQ0GTScDhsBDv7y3EEgFQqZSL4CC8ybF6hQA02UmGlwRTAdi1JAMZyZK1G9pnaPhUWv9+PVCrVFizDYBSNCqRVyXnnfCpD9Pv9Zt49Hg9SqRSuXbsGYIthLy4uYmRkxEQisp1qcbEqvEJsyqi7uroQjUZN3hvXzNDQkAmW4SGUGxsbppJ9IpFAT08PlpeX0d3djb6+PnR1dSGZTBrYlMm7AJDJZEzgx9LSkvFjzs7OmvmoVqtGCeB9tpWlARn2HFDI0KVBy5VEYcW9qhAi76WVRqHPd9t71BFc96e/keD65Cc/iS9+8Yv4xje+gbGxMfP50NCQKQWjVtfq6qo5lmBoaAivvfZa2/MYdchrbNKosr9PpFg6AKN5A2g7Z0oXuJ5uqxFQDIrQSCduRv5PeIyMjIJRQ8R5rW5CWl9kgsD2gY6s8L62tmbetWfPHrhcLpOA3Nvbi927dyORSODZZ5/F17/+dbz88ss4dOgQFhcXDRNKpVIIBoMGElpaWjLWJf0wDBKhZUULIRAImPFh7pcKJI4RGQzJ7XabgygrlYoprsuTiyORiKnlB8AUiy0UCoYhkUlRIaCgohDnSb+shsFajVqFX4MsWKxYIU4yTFq3nEMKVEJjZPRk5IlEwtQcpGV+9+5dU6/wzJkzWFxcxIkTJ8xY22uAlh37xxOQOebN5tZ5YKz+wSjHHTt2mNOo8/k81tbWEIvFsLy8jPPnz+OHf/iHcfLkSVNJgwrLwsICVlZW2qL1GD5/9+5dUxGFUas3btww7WRx42g0ahKbVVEjFMoAFFWY+B5gG9nQYBhFR/R/OyJYYUmuA+4bt9vdBoc61Jm+Kx9Xq9XCJz/5SfzxH/8xvvKVr2Bqaqrt+0cffRTd3d146aWXzGfXr1/H3NwcTp06BQA4deoULl68iLW1NXPNX/3VXyEajeLAgQP/L335O0fcmFz4Co+o5s7v1c+hUYfqi+BmU2ezPoPP4fsV9+fGo0WhR5fzh4JALb9Go4FMJtNWiLXZ3CqpxCCLyclJTE9Po7+/3ySRAjBh6Xwm4ToW4OUhgsB2ZCWZO9vHvCDCbPF43Bw9Qs2d36sPR4MtGFzBaM1MJtPmAyOzI8TK8bOZlCojWnGcvsFUKmWi+NRC4vhXq1UTnUnNX0t78Z1qIWgABZks28PnaFg3k6fpK2KYPROoWYWfviXm0GlACH+ALSVrdnYWN27cMFVN8vk8zpw5g69//eu4dOkSEokEhoeHjcDL5/PIZDJwu7cK67IdS0tLZk2wf2rVLCwsYGZmxlin4XDYKA9Msejq6jKwMcdO95DumU7BSLxHEQtVeDQ4g6Q+Qg2WUpRDIX7b+nKonb4ri+sTn/gEvvCFL+BP//RPEYlEjE+KR0vEYjH85E/+JD71qU+Zg+p+7ud+DqdOncITTzwBAHjXu96FAwcO4Md+7Mfwq7/6q1hZWcEv/uIv4hOf+MTfS6vqO5HCa+owJrNWZqXBG7yXn9GBr0yNAlDhJBV+wLbTXYMxGGRBDVU3L59DweH1eo22DGz77VgZgW2LxWKGcS0uLmJ4eNjkYPFd1IIZAbd//34UCgUsLi6iUCggHo8jFouZvCAAJhiCAoBCRsdEgw2oedPfR+atmjP9Jkzo7e/vN74YDWkms6MvSEkjBTm3FOgMGLEDbHg9k6a1/UC7b0UhLgoUAG05fBTGbDPHgPuQwm1zcxNra2um1NPq6qoJimHicSAQMIKKQq3ZbBoYcGlpCfV6HT09PUb5CAQCSKfTmJmZMYeB5vN5k+4xOzuLsbExRKNRrK+vo1qtolQqtaVdUFHgeDPZnWuVigzbk8vlMDw8bBLAeXyL1gHVAAnOoQZoKMzI52sUoJ3gr/vJVi7+f+y9Z4yk2Xke+lRVd1fOoatzmrwzs0mbuKQkkqISTdkSrQDQFg3YPxQsWBbs66t77QtbgiyHH7IvTAm2IQiCYcFQIqUluV4GieSSyw3c3Zmd2Uk9nXNVdeXUXen+aD6nnzrTI4v2NdCk6gCD6a7+6gvnO+cNz/u870uEhAaUjoHievj4lhTXb/3WbwEAvvd7v7fv89/5nd/B3/k7fwcA8Bu/8RtwOp346Ec/ioODA/zAD/wAfvM3f9Mc63K58OlPfxo/+7M/i+eeew5+vx8f//jH8Su/8iv/a0/yHTi4+LkJVTkoE4nWGplnGnfiJlOSBeEI4Ji1CBwrKeBYYepG1TgNz68VsQGYXJtCoYBarYZgMGgC96zmUKlUUKlUMDk5iUgkgmq1ioWFBUxMTJh6fR/+8IeRzWaNd0G4bXV1FS6XC88++6xhGR4eHuLixYs4d+6c6QW1s7ODxcVFwyhTgc75I1FABbw2naSiYByDz3hwcGD6QdFTJDGE0B+voTEYpYrT2gfQV+mczSi9Xq8pS6SCrtPpGBjS6/UaJU7PifdNT4/vkO+b1w6FQibupPUQqYBobNBrZ6krEkc4L4TTJicnTdWPfD5vYqHZbBblchlnzpxBJBIxcUm2RTl37hwuXLiAT37yk9je3sbjjz9uiiivrKxge3vbEFai0ShWV1eNYicsTEU8Ojpq7onGCnMQ6dVubW2ZNjUbGxuoVCqmuC2Vihp/CsMCMHCsGlM0ALn/1ICwY7pUUkyC5t7UPa7HDsbJ41tSXH8ZC8Dj8eATn/gEPvGJTzz0mJmZGXz2s5/9Vi79V3bYxAx+RgGrglg9KuCYvWRDHnatQR5vn4fX1SCyTeLQ5nu8Njfi8PAw/H6/EeD8jNASu/keHh5ibGwMIyMjWF9fx8TEBKLRKLa3t41VyntoNBpIpVKGCUYPKZ1OIxaLYXh42DAX2fmX7Uc09qdxBSoaFRqcD6C/Mj7PwRgUhajP5zN5X5x7zrfWV1QiDK14oB9aZaxOPScdjF25XC6MjY2hVCr1MTo5lDJ/cHCAcDhsEoLZswyA8Vj4fIQ9NXeK74DHMImc36fiBWCMGZfLhWKxaIrwknjC+WcMcnh4GE899RTeffdd3L9/HxcvXjQMS4fjqGsyGY1UwErMaDQaxpPmvqAnwxwyKi6tZs+5VsNNvSTOoQ1Hck7075wr2xvTvaEwIM+pScm2fB14XA8fg1qFp3jQGiNtV5NMyYSj8nG5XCYZV9mEdoVtCnulASu0SA9E41tqDdqbl9YlBQo3uNfrNRXXh4eHTbX14eFhfO1rX0OxWMTCwoI5LhaLYWVlBf/lv/wXfOhDH4LLdVQNncVci8Wi6U48NzdnCqmSbs2+Xbu7u6a0keY3qaBTgaJxOQojxrIII3HeqFicTicikYgRrkNDQxgfH0epVDJJw1RSjAMBMOQYfT8UloTp2BaEsThWGNEKDfQ0mM4AAB/84AeRTqdx7949fPnLXzbvgJAYK+n7fD7Mzc0hEAiYNdDtdk2zSXoqNCgobPkMvAcmXRPS3NnZMSSdWCwGr9drCDV+v9/UeuT5Op2OgYHdbjfm5uYQj8fxqU99Cl/60pdw4cIFPP744wY+LBQK5pr0SLPZLBqNBqrVKqanpxGNRs2cUmG2Wi1MTk6iXC6bPmetVgvpdBrRaBT5fN4odhteVWSDDUm5L5VAQcWkdRxpoHBt2cadkp049FiVAYPx4BgorlM+VFHQglaFRWWicSrg2BJUL4NCnNCS2+02sBNwTJHXY2nlagxIPTFN0NQNx+95vV7DxkqlUjg4OMCdO3eMtc/zlctlLC8vY3d3F16v1/Rh4rkIxUWjUcNYzefzyOfzRkmR0VqtVo1So5JQ6EbnR+fMJjsoxEpL3OPxmLJQmluVSqVQKBT6yj1R8Xm93r4EYiooCn5NaXA4HH1Gh0K0GpfifTGOGI/HMTMzg+3tbfh8PlQqFdRqNYyNjRlPtFarIZFIIJ1OG0gyFouh0+lgfX3dPAsZgoR9e71eX2sREkTS6bSJV7Iau3oghC21pBZLNpEGz7kmY5CGQSaTwfr6uiGCcG55DyTv8P15PB6TyrC/v4/NzU1Eo1EDKfLdq6FHRWITl7gWTopZ8buq1LiWta6iTbDgvlNCiULwNt1eUZLBeHAMFNcpHlQGuriBY7Yh0E+e4N8U+rAD/BR8is/rhlFIjMfrZlSvxbYaucGdTieq1appKEgB5vP5TGt2wl38XqFQMFRmAKa6Oi1ZtiaZm5sz1nu5XO5r9litVo2lXavVjGJQ6FNhMcZvNIahUCjnXAPqyj4EYAS81+tFMpk0cS72fHI6nSYn6ebNm9jZ2THzzHgh/1Ewa4UMW6gqUYS5aU6n06RHlEolzM3NIZfLYX193cTPGANNJpOGUcceZ1T4LD2lsRmtlMJ1Qk/c5/OZuVN4WMkRjFfZaQa6blutllE2zJNrt9smtwvoRwyoFGk4EP6kJ7q3t2fyB1kNnrA1FSs9L82jokLRlAUd3HMnETQUolfIUNcS15fCyJwXoim6z0+CiQfjaAwU1ykeCluowNIAsQoOLe7J79p11gCYwDs3E0v6UNgC/XUHHQ6HEfJKxlDlpcLL7XZjZ2cH9+7dw3vf+148+uij+NrXvgan86jdx5UrV9BsNvHFL34RQ0NHVdInJiaQy+Vw9uxZdDodU4WFQm9nZweFQgHvf//7MT09bZ6NVTGoxJgLxfwlWuKMAVEoqzChZ8EWJMwBUzo641QUpCxRRKHo8XgwPz+PUCiEnZ0dvPDCCwY68nq9GBsbQ6FQMOw4WxFwDqnEWOGeTS3pmWnRYFL2AeDWrVsIBALY2NjAxYsXTf3FXC6Her2OcDiMp556CnNzc6bkUTAYhMvlQi6XM/NMYc454vt0OBxmbpk8fOvWLeOBqfIIBAJwu90GCux0Otja2oLD4TBVSNrttvGQcrkcXn75ZTSbTYTDYcTjcbOWadxQMY+MjGBra8sQLqgotZ8Zr8NSYa1Wy3R1pmep60XbsAB4IJ1BDUjdl4p2KBmK51Bv0Ol0GsNAz6NxTLsKzYCc8fAxUFyneKjnZBMxqLAIG6lXoHADoUX1yPQc+l3+nefk9wkBERq0g/m6gUmvbrVa2NzchMvlQiwWM3GEWq1mqj+srKwY5cOGhDMzMwbqo3ejG7nb7RpyB2vXsTUHB5+LPwPoo6nrXKrS0AC7QkiaAM+isJFIxMTVmLwcDAaNwtGaeXfu3EEulzM5TyRxaOzQfi+M5ZD1Z8c96E1rVXteAwCi0SjOnTuHarVq6jhOTU0hlUoZIc6KF0zeVnhLiRlUXHyvVAysGOJyuYwS5LqkF9jr9foqeKgiajQayOfzpuVIIpEwNSG1/h8bU6rXubW1hUajYRiBhANZyYQ938rlMrrdrkkip6HFn3kNG9lQ70r3IH9WYo3CuSTjqEJTdITfo/HB37lPB+MvNwaK6xQPbiZd4OrZUKEohKQBY6VFK1Sj0BkJFvo9LSarjCpVTrppNZZGq73dbpuW9n6/38BnW1tbeOyxx9BsNg2UlEgkTN5VNBpFoVBAvV5HLBYz8Q8KBY/Hg2q1inq9jlwu19cSHoBRnO12Gx6Ppy9WQGGv8Q4+H5lxh4eHxlPiM/JYnY9YLGaea2RkpK8Wn8vlwuTkJLa2tgxJ4d69eyYZVlvE8J3Rm6AiZCFpVW4cfFdaRLhWq2FnZ8c00IzFYpidnTWECQDGC6HSUm+dMTR9pxS8qpy5NpzOo4ag7Njs9XoNZKvn5zvjGqxUKube19bWTJWOmZkZc2+cTyXL8BkBwO/39xlAWumfc8I0C9Z7ZOUY9Z7s/XJSqxY1KhTCU+NHlRafWctI2fFnQtY2C1FZwANSxl88BorrFA97A6llRuuPm424P4WQBsmB475ahPselhMGoI+dCPTHz3gtfpdBZyoEMueGh4dx7949FItFU6D1jTfeMMVkX3/9dbz3ve/FmTNnkEql8Kd/+qfweDyIxWK4fv06hoaGEAwGDbxWKpUwPT2Ns2fPYm9vD3fu3EEgEDBt53XQg2AhWy1pxLljFQ3WVuRz1Wo1dLtdk2zL83EemQIwMTGBeDxumI8sGsu5+KEf+iHs7u4aq35jYwNLS0sGhiS8pqQRQn+9Xg/5fB7FYtHE/NQ75HcIidJDeffdd9FutzE2Noa5uTlcvnwZY2NjqNVqhtzCeoyEfwuFgnl3usaUREAvm14V44lanzAajZpSSywAzeaZpLOz0PHh4SEymQyWlpbgdrtNNwA+H1MLCIcnEgmT31er1RCLxVAul00l/0QiYSrsE7ZtNpv4xje+gddeew3nz5/HpUuXDGTX6XSMkaEKSauUqKGgZAmuIzu+q/EqwsyMZeo+4bk1Hkbvi0gBDS7+bTAeHAPFdYpHr9fra40BHJMlNJdEkyX1u5ozxL9z41IYnUTusGm8/K5CkXovyrxTWJOtK8LhsKFZP/HEE8b7isfjRkHUajWMj4/3WfraisPhcCAajcLhOEqG3dnZMeQEKlgAfWw9phIoRMPzkSlJgU0vll6qxhOZfMy5ISNT4URV5L1eD6FQyMw7CwATdms0GiZwr9eiIuP7sRmNhN14T0NDQ301CzudDmZnZ+H3+1EsFrG+vm5a2geDQdNwk54J6eGE2oDj+Cifgz/rHPN+qQDJHKT3w1QCskN5j8ynq9Vq2NzcxMjIiKn3qHl5nF++E6/X2weN8l+hUEC1Wu1LRKZC2N7exo0bNwAAN2/eNN8h1Mx1o/UpFdVQb5Pvn++T+0IhZY2LKUqhnqye24bv1YvTfTcYJ4+B4jrFg4JWCRC0KgGYckoULJqTReiJrDBlilGAKLWem0aFKC1xZb4B6PM+FFqkEGScjLlGoVAIV65cQTQaxeXLl/Hmm2+i2+3ipZdewpUrVzAzMwOfz2dys7TqQaFQwPr6uikJdf/+fbz22mu4c+cOLl++bK5N4U3IMRgMGoFECjaTaLWME2vvcc7YaqNUKhmBwmoSfF4KQHoShKxU8J49exbtdtvAVYFAoM975JwrEYI/M27XaDT6WrOQQMHj+BkhMACIx+O4efOmydl65plnkEwmkUqlMD09DQB9kBirlQwPD5s+ZKyMQZiW64Hri54Uq7er0mu1WsYbCgaDhuXHmNKdO3dM/PLpp59GJBIxAp1GFqE/vtv79++b+oMf+tCHMDMzg8PDQ+zu7qJYLPbliOVyOVNIt9vt4plnnsFrr71mvLd2u43t7W2cPXsWoVCoL6eOigaAMTJ0vhQCVGWurYDs2BcAsz5ppCjKYcOVnEeFpwfjwTFQXKd8UMCS+QQcbwi15jS4zg1EC1Q3Co/V4LsdB7KJANyktndgx13oRSjDkWSBQCAAv99vNmQymcTW1hYKhQLGx8f7vBsmwPIZq9UqQqEQfD4f6vU6qtWqqUFIZUvFpZRsWr+0mBmfIwxDUgifW+eHBoFWjddq7RTSDsdR6wwtzcQitfl8HtlsFmtraxgeHsb4+Lhh4bGQrlrsfNdUrAAwPj6Oer1ucpwIPeq75/GEICuVirn/YrFo5lXXAZl48XjcMAvV4wCOBSkr46vH3el0TJ6aVgthySvGmgi3FgoFkzRPWj7jhCTt0AjicDgcqNVquH79uklg13jWwcGBKaRLJUOCSjqdNmWz2H2A6QZsbZJKpbC8vGwo8dwPum40Jql7Rwkduv75O/9GA8VmHdreOnBccYRduAeK6+FjoLhO+bCViAZ0bStPmVFKoed3KRQUqlA4SPOGgP4cLg0aa+KmYvGq0OjJ1Wo1U2KHXonL5UIikUClUjHkCj4XY0g+n89sXHblJUuMyo0CTCu5a7zI4XAYoUsFpwnIvKaSWDg0n00LAlMx0gtiZ19t5DgyMmKq4d+6dQu3b99GMBjEI488YpK+K5WKYcDxe1oM1ul04sKFC5iZmTGJ1vRs1NBoNpuIRqOYnZ3F1tYWms0mRkdHUSqVTNIzobpisWjKIlGxs68YlZDtAfBa+n651sgE5Tzo+rMhMSraaDSKYDCIRCJhoEstQaa1FpvNJnZ3d00BZRJuWAAZgIktMi5Iws74+DiWlpawu7uLSCSCdDqNg4MDBAIBE4NicjYbfNKQ4HrmeyBzsdFo9Bl2uv84FMGgQaXGJd+bxsoUHtY9OVBcDx8DxXWKh8aLlLlEujqAvo2jQk8tcttTIhwFHFPHTzoWQF+VBsX8tcSTWqCEymhBb2xsYHR0FOl02jSU3NzcNMSDK1euYGFhAV/72tcMFZrdjvf29rC+vo5MJoNnn30WlUoF165dQ6dzVFZodHTUCGey8KjECIc2m00Ui0WjcJRSrZ6OCiEyBamcSqWS+X48HjcxIipNJvkSVnS5XNjf38fKygrW19exsbEBt9uN5557DmNjY7h9+zZ+5Ed+BLVaDa+//rohwlC5Dw0NYW5uDvPz84hGo0ilUpifn8eXv/xluN1ujI6OIhqNAoBRWmfOnMH9+/fx8ssv44knnsD09DQ8Hg+2traMR3F4eNhXxePg4MBAl7rO1DvTdcBSWPR26XVxXtXrZbWLRqOBdruNYDAIv9+PM2fOmLqFWmqJnQHoLVerVVy7ds308tvb28PCwoJ55wcHB3jppZcwPj4On8+Hd955B++8847x6DweDzKZDMbGxrC7u4v/+B//Ix577DGcPXsWy8vL8Hq9eOqpp+BwOPCf/tN/MrFLrRmpcVsaOZoryTmyY12qhJTswX2kpa+4nwH0FXIeKK2/eAwU1ykeXPjqJXAz2daeTShQb4l/182iHhPPSWuTwkdjZ4yVKVOR12R7CxV03MT7+/umdXun00G5XEahUEClUsH8/Dzi8biJxfn9/j5YhhY087nK5bJh8VGR8DmbzaYRfCosKCjUCta4nU07VosY6PdOKdBJt45Go3C5jroEaxuXYDBoyB8kcWiJrZ2dHXzsYx9DpVIxxAhSwHl8MplEMpmE0+nExMSEUcjsZxYOhzE0NISJiQkEg0FEo1FcuXIF7XYbb731FqLRKObn55FOp1EoFLC7u4tMJoNut4uxsTHj6bFUk8Zz2KsMQJ8nSViQnomuLeAYwuZa0c/8fj9SqRRGR0fN3PLaQ0NDCIVCxgCpVCrY2dlBJpOBw3FUDsztdmNiYqKvYka73UY6nUYmk8Hdu3fhdDrh9/tRqVSwtLSEoaEhXLlyBRMTE/jDP/xD3Lp1C+fPn0ev1zNsRBZ3VvINgD4vXL1IKiklNimsR8OQMTXtFKBrk3OgkKTuXc73YJw8BorrFA+FGZQwQeGpJAkAfd1ZbSiPm0U3ipIxFHJUBcmNRw+GsRTguPI5YxMac+FGXVpawvz8PILBoGGY0SJ93/veh6mpKezv7yMej2N0dNR4BW63G2+//TbK5TJmZ2fhcDiwvb1tEm4VrqlUKn11DRnLItGCip8VK2whAxzDOExYpWCn16aVQ0KhEKanpzE8PIy9vT189atfRa1WQzabNXT0H/3RH8XMzAyWlpZw+fJlXL58GY1GAy+99BJ+7Md+DE8//TQymQzOnj0Lp/OoqgKbUgLHFSMKhQKcTidSqRRmZ2f7YNGhoSEEAgE0Gg00Gg3Mzs7ikUcewTvvvIPr16/jzp07+Lmf+zmcP38ea2tr+K//9b+ajtQTExPw+/1Gcfh8Puzt7WF4eBhzc3OGhEGiRaVSMZAh14j2OWPcyOFwmNqRpMg7nU5DwqEB4HA4TFKwy3VURf7u3bv4xje+YRqK9no95HI5XLlyBZcuXcLCwgIcjqNq8ZubmxgfH0cymcRXvvIVzM3NYXZ2Ftvb27h//z5WV1cxOjpqvK7R0VEUi0XU63XE43G89dZbcDqdprUL88uAY0ienjCVEPeh7j+uRa457gF+1yZWKUIxPDxs2vaQhavnU+NgMPrHQHGd4qGxAqA/8/4kPNzG2lVo23EpFfwc9jl5HrWoT4p1KAyiuV9kW1Go8X7oMc3Pz8PtdqNQKJgqFACMQCwWi3A4HIhEIsar4rm52ekN2t2YO52OIYMo1KMBcc6ZklhIvKCSpzDifDBPqds9qkC+sbGBnZ2dPoHldrsRjUbhdDpx6dIl1Ot1pNNpvPjiixgdHcUTTzxhlA0ZiozDke5O5p4yQn0+n1HqGssMBAIGrjs8PMQzzzyD2dlZfP7zn8fdu3fx9NNPG3iKZaRcLhfi8Tji8bjxUvheCV3xuuqhcj75rHyvZG7S2GEtw16vB7/fj7GxMVPLUb0RFgNeWlrC8vIyLl++jFQqhUajgUqlglgshkceeQRzc3OmSHMmk8Hy8jKSyaRJt6BSPDw8RDKZxP7+vokPMkdwfn4elUoFLpcLe3t7KBaLpvmoNjvl+6dS5dpWIobmvHFNKquWiAWHHcvjsUrcUKiae2swTh4DxXWKh03R1YXMxW4nQtrJwfo9jVXx/Hodm+zBTUSIjf9s4W/DbQrVMSmX8R+2NhkZGcHk5KRh3dH6B449TXohZBMy/2ZkZASBQMDE2iqVimGMUZgo21CFiOa+8Tk0HsjrU3BobyngCPKKRCLodDrIZDJYXV017VZGR0fhcrmQTCZNxfgnn3wS2WwWOzs76HQ6+MEf/EGkUqm+jsCcR8bMOH8ADHSoFRkYF9GY5cjIiCGuJBIJJBIJ+P1+7OzsoNFomBqEjzzyCNbX17Gzs4NisWiSglUxEYrjfdF71TUEHHdMVsYljZtut2uUL1MIqKwIq66trSGXy6FcLptSWh6PB6VSCcvLy4jH45ibmzOFlZ1OpykezC4Cu7u7mJycNHlpJGOUy2WEw2Ekk0ksLy/jzJkziEajeOedd8yzsso/60vqvlBo3X5uXWO6vwi3agK37mUeS29NjS0eo3Ez/f5g9I+B4jrFg0LDZuzppiEkoRRqhQV5jMZ8tMKGzXridynsKeBZnUE3b6/X6yt0yhiItrB45plncPbsWUQiEQPL+P1+VKtVxGIxvPPOO7h27RqefvppHBwcIBqNot1u4/bt29jd3YXP58PGxgaCwaCJh0UiESQSCbRaLezu7uJv3vqbxpvz+/xmDoY3hjHkOnqWP7r8R8ZT45xpmSeleGsVC7fbbQShw+HA3NwcpqamUKlUcOfOHdy7d88oE6/Xi/39feMpXrhwAaOjo3j77bexubmJf/bP/hna7Tby+TyazaYhAxCKJIxaLBZx7949471Wq1U0Gg1ks1nj2YyOjiIcDmN2dtbMLdve93o93L59Gy+++CL+7b/9t6anVbfbxaOPPgq3242VlRVkMhmsrKxgdnbWFC4msQGAUVaM2ZRKJVSrVQQCARPH0xYsVHzhcBjFYtHE1Oh9UtnzH2FZh+Oo9qHD4cDt27fRbreRSCTw3ve+F1NTU5icnDSsQXZULpVKePPNN+Hz+TA1NYVbt24BALLZLBKJhMnnIumDPd329vYMDX9lZQWpVAqJRAL37t0zxCI77YBrnc/APCs1+BgLVk+Je4z7hX/X5pEKEfJ3ha8H4+QxUFyneGgypHpQOhTGAR7s3HpS0JfWnJIybKKHPdQ7YUkatUjtCgHdbhc+nw8TExMIh8MA0Kd0+Y9FXkmsYHt2VvEulUoIBoOGtg3ANEf8wdd/ELVaDU1H01j65jmtR/jozY/C6XTipWdfMrX0eN9Op9MoXnpu9DYYv9Mq8U6n01DUq9Wqeaa9vT00m00EAgGsrq7i8PAQiUQCBwcHeOKJJ0y+EhOH2+02lpaWTIFcKqpsNot79+71VbhgiSV61IFAAIFAAOfPn8fk5KSZZ1awYKmlyclJk+eUyWRQrVaN90OG6NLSkoH0yAilQiKs63Q6TR1EGjyE0bT+o1LK2cKGkC3LV2mFe74D1jwkTX1qagoTExNIJpOGpcj7cbvdGB4eNp/l83m0Wi1TJYTPS4+PsG4+nwdw3LurWCxibW0NXq8XoVDIsE8J+ykszz3A39Ww01qSf9HeUZhVIXsbcrdh/8F4cAwU1ykeuqi1oCqAExWRxiZUSWiysV22RuFBnpOKTmm+SiOnd0IWHSE5ZUG1222kUikT59DW7ppkyv5V4XDYWMK7u7tYWVkxMCEVYa/XM2Weut0uDg8OjTDrdXuAo59wwZ9VQDCGw6rztKypvAjB6XMC/X26ms0mCoWCIS5QiFNppdNpbG1tYXt7G5lMBuPj45ienkapVDIeXaPRwPr6Oq5du4ZisWhqBlLgMw+LxkA4HMbU1JRRFKVSCZubm8jlckgkEpibm8PVq1cxMTHRp2BZp9HlciGTyWB3dxfJZBKhUMgQber1OtbX1w17k9f0er0YHR0FAAMp0qtWMoZCwySzaCPQarVqjg+HwwbSpCdHw6DXO6rkMTk5iXQ6jXQ6bcgqXI/My2OT0Ha7jd3dXZOYzHXEOWI1EBoZrNDCvbK7u4tUKoVIJIJisdgHfxNpoJGmBAuuSa5nNQ41xqWGGlETzefSfakxZu7PwTh5DBTXKR4UlifRYnUjUziTNccNQihMN5oKaVU2DofDUNZ5HoU+aIFS4DscDpM4rBRqWudutxtnzpzB8PAwSqWSwf9brRbOnj2La9euYXNzE8vLyxgaGsLzzz8Ph8OB3d1dfOYzn8GdO3fQarXg8Xj68ooikQg+8tZHjgqsNo9KHXncHkTCkT4BYit2zslH3voIvvjeL/bFGKioyAwDjpUeYzUAjNDrdrsmgZjQaKvVQjgcxvz8PJrNpoEbWTqqXC4jk8kYZuWLL76IW7duYX5+HoFAwHgZ4XAYXq/XNHZkqw/mbxFa2tvbQ7lcxu7urokJvfzyy0bRuFwunD9/Hjdu3MD09LRhzX3mM5/BP/pH/whPP/00stksbty4YWBbllFaX1+H1+tFJBIx1SnYCiUej2NpaQmbm5smn4vMwXq9jrW1Nezt7RnhfXBwgP39fbz66qtoNBoYHR1FKpXC4eEh8vk8arUaHI6j6iMsskxvGDhqKEpYs1gsYnt7G3t7e8brrFQqSCaTOHPmjGFn1ut1wzCkR0TiRTweN8ZDJBIx1eOnp6dN7zN7/XCNcGhhZq4d7jUqJPUu+V01ChUOtONZ3KsDqPDhY6C4TvGgda2sQpvxBxwLWY1jkRrPDcINpudWj45KUIU8cCz0lSCg+WI2Jd/hOKowMDExgampKYyMjBiYiwo2FothaGgI9+/fRzabRSAQgMfjQTabxd27dw1pQJUQ42gfvfnRo2oQzaNCtUOuIQwNDxlIy4Z1+Aw0Ak4iqihMw6FQmOaD0Vrn93mPh4eHGBsbMx4Hq8/3ej0sLi6iXq8bL21/fx+Li4uYnZ3FY489ZnLC0um0Ia+w+y/nXWEpekKJRAKTk5M4ODjA7OwsPve5z2F9fR0vvvgiLly4gLGxMbzyyiumvcojjzyC1157DZlMxiRK06Nxu91GAa2urpqyTVqIl3NZKBSwt7dnjJ9kMmmYn0wLYL4V38n+/j7W1tYQiUTMtTiPnCt6vPSECe+9+uqr2Nvb64NxfT6fiQ3u7e3B4/EglUqhXq9jcXERLpfLtMCJRCJmjxBCTSQSxihkbhxJQGR42mtcoXX+XVmB9J5U6SiTVfcsf1ZPTGPNA6X1F4+B4jrFg0KTG0OVCNBfyV1ztwD0eUj0LhRj11wSvY4qJaUCUzHwupqQzGuyivf8/Dyef/55zM/P45133kE+n4fP58P4+DhSqRTC4TCuXr2K//yf/zNKpRJ+6qd+ChsbG/jTP/1TfPnLX0YoFMLZs2dx48YNE9e5f/8+/mHlH+IwcWiIKD6fD8NDw33CQxWv5jvxHjudDj741Q/is099tm8+qai0mK7OLSusM7+oUqnA7XabXKJoNIrp6Wnkcjns7++bYrPxeByFQgFvvfWWibEEAgH8jb/xN5BMJvHkk08iFouh2+1ic3PTeBY3b95ErVYzXh3nmVDn/Pw8xsbG8NRTTyEcDuPRRx/FxMQEVldX8cILL+C1117D5OQkFhYWcO3aNUxOTuLRRx/F1tYWPv3pT2NychIej8e0Z1ldXcXu7i5qtRr8fj+y2SwKhYKBa8vlsvHO9/b2sLy8jNnZWWSzWaysrODKlSvGM7t79y729vYQiUTg9Xrh9/sNO1ONMO0awBglFUepVMLXv/51rKys4P79+zg4OIDH48HCwoKprtJqtfD888/jzJkzuHfvHm7cuIFHHnkEY2Nj2Nra6qv0QcXA1iiE/ng/w8PDppgyjTy+d4XReR7uC60uT0+RipdrSBUb9yQJQcBxvEuNLu4/TVcZjOMxUFzfBoNCS5mC3FyKh2sxWCoVxpMID1JA6GZSSFDjXKoggeNirvZGJMRGi/bs2bOIRqOoVCrY2NiAz+dDPp9HLBZDq9UyRXLr9TouXryIyclJrKys4O7du8hkMnj88ceRSCQME6xareLv5/8+msPN40K3riEMD32zcgaOqdsqLPjc6rHwGT70yofw4tMvPmA900ujsGKblFgshomJCcRiMZRKJSOogsEg0um0Iax4PB5Eo1FsbW0hk8ng/PnzOHPmDEZHR00r+2AwiDNnziAYDCIQCKDdbiObzeLtt9/G3t6eqYivMRW+V95/qVTCxsYGhoeHkU6nMTY2ZooVX7lyBVtbW8ZL8fv9cDgchtSyuLiIZrOJVCqFQCCAeDyO2dlZ02dL6eDN5tGc+/1HbE2uq263i3w+b2JJOzs7SCQS8Pl8iEajxst2Op2m4Sa7HgMwBBEaTZ3OUXfl/f19lMtl5HI5LC0tIZ/PG9II//GdcL7n5uYQjUbh9/tx9+5dXLp0yeTJEUkgZKetcrhGgsGggbtZTor7hGsB6K+mYpOluC94PJES9cR4z/pd9dr5vxopdrrLYByNgeI6xUMXMmNTXPRUHqq87A3BDaAbAUBf6SKtggEcK0klZ3AT8z70GIVLGO+ZnJxEp9PB2tqasaiZpwPAUMunpqZw/vx5uFwu3LhxA9vb23A4jsodsVdXNps9sjq/KSO63e4RY9BxzKhUC1gTZhWmobBSQWAHzjlXGltkIdzJyUmcO3cODofDVLWIRqOIRCIAYGjqHo8Hs7OzyOfzJjmZXhGtZ9LYu90uMpkMCoUClpeXcf36dSPwtZMwB+MobD1CLyiZTGJhYQFnz541TMNIJIJAIIClpSXjrbBB48rKivEwGZu6fPmyKTjLd03yRqvVQjwe7/POfT4ftre34fF40Gg0TJ4aCTmRSAT7+/uGEJHJZMx7IIsvGo0aeJDzQ8JJLpdDPp9Ht3vU1JMKb2RkxMyBy+UyEHQ6nUaz2cSrr77at3f4bshcDQQC5hw8LhgMotFo9JXo0rVDBaREFDXqlBavMS9buel+4uDas/fxgJjxF4+B4vo2GKo86DmxwrfCe1oxm3EJ/o1CR9mJvV7PEDLUuuQ/JYXYG5esNVYed7lcOHPmDM6dO4dyuYwbN27A6/Wi2WxieXkZTz75ZB/DkAK21Wrh5Zdfxic/+UmTcEyCCCFKj8cDX/sokbnb68KBfuo+iSnAcRKoKnZSre1EY86RemVUSj6fzyh4Fmc9ODjAb//2bxuiBC1wdlmemZkxzLxcLoe7d++iUCggl8shnU7j0qVL5h62trawtLSEV199FfV6Ha1WyzAaWX2D0BUFGYU1iTCHh4e4d+8e7ty5g5dffhnnz5/H1NQUzp07h3A4jIWFBVM9olar4ebNm5iensbCwgJ6vR5GR0dRqVTwjW98A3fu3MHo6KhRVtVq1SitZrOJlZUVJBIJAz0zWZqU92KxaKpPjIyMwO/3G48nk8kgm81icXERkUgE3W7XdJqmVzE2NoZoNGoqsJPuzyRtMiyTyaTxPHn9er1uGpIGg0H4fD5sbm4aUhBTFuhlKUIQCAQQiURQrVaRy+VMVRF6VcoqJcFDh5Y3U4MQ6M+LBNAX86OS47HqlWme5WCcPAaK6xQPxb6VZGHHbWg5K5FDLTZafmoZMn6jXpwSIRQ6VDgNOA4wt1otBAIB1Ot1nD9/HgsLCwgEAiYIPz09jT/7sz8zRWF5LQo2r9eLfD6P5eVlAyu1Wi2srKwgn8+jVCqZhFBH55vP0/umlersr+em90iBoV4kBZHOCQUnFTqNAz0vvZStrS0DewYCgb75jkajmJycRCgUMu+KDS0dDofxPEk139/fx7Vr13D37l3s7OzA7XYbMoP2hiL1HDgWnGq88HMev7u7awR/Mpk0Vfmr1Sqy2azxVJh0e/78eRSLRfMumb/F2o/d7lEBZSoy5kgpvMd74P3U6/U+D51loYAjQ0FbiITDYQPdsQoJFfbh4SGCwSCAo5ggq+GzpUm32zWKQBVkOp1Gr9fDzs5On5GlECOZkmS/0uukt0nSCQCjIE9CNRRCVK+dRqTC7TQg+U4VTVFShsaVdb0ORv8YKK5TPpScoUJVFZPtDZHuy9+5CZVwQaGjnhmVI72CXu+4VTzJHTwPW7M3Gg2cO3cO58+fR7VaNdTqbreLra0tUwqJrDGn02nKQO3s7OD69eu4e/euob6zagY9rZGREfyj2j+CP+g31j7QX5EbgPF0eP9UyjqPzP3R5yQZgx4b25TQc3A4HPjKV76CYDCImZkZjI2NmWrmjJ9MT08jGAwim82a51tZWUE2mzU5Y/Q2V1ZW8PWvfx1vvvkm2u22ga5UqHHeeY+JRALpdNqw85j7RliLg0L9tddeM7X5HnvsMUxOTqJarWJtbQ3ZbBYf+9jHTD3DdruNRx99FIeHh8hms1hdXTWGBnPURkZGsL+/j1wuh0KhYDx69UqYJpDL5YwnQQ+FTEjGtRgn29/fN0YQk7JpvGSzWZOf9dRTTyGRSJhUgHA4jJ2dHdNcdGVlBYVCAfv7+xgaGsILL7yAeDyOaDSKXq9nrpvP53H37l1jDNA729vbw9ramnlezq0m9+uzKgyo8VRVRrrOuGc0JUVJUvyurkv+PiBnnDwGiusUD1pxutD1d40x2XkgJ/3PDatMQJ5TlaHmnihcoVRgWtxjY2MYGxszVcd9Ph/u3LmDer1uvJNWq2UgPG5cegispWffu8bjDg4PEHAEjHXeaXfggKMvkZkCgxAL54PXajQaaDQb8Hl95pmVAk/rVivsswyTy+XC6OgofD6fKYzL+eI9sZK6tpAvFoumPQnrBq6trWF3d9cYJDovfG69h6GhIaTTaePNrq+v4969e9jZ2TF1G5Wuz5ylTqeD7e1tpNNp0+2X0O7KyopRtm632xg67Ig8MTGBvb09A08CR8qHNQYBPJDzRkXL4siaVEtiBj0cCmWfz9eXR8hkZO04QIVHQ8Hr9WJ+fh7AUQWMUChkGnOOjIwgm80aY4qV3Qk/U5kyFkn4kUxGrhdFF9RzV+YuDQ0AZk64hsj81PXFfUNDUteo/m/Hjgfj5DFQXKd86IK3GUm6sCmg9XhbwSmEpgpPYRAOjRHp5qOHwu+dOXPGeEoOx1ECcT6fN/CMx+Mx8BEA0zW32+1ie3vbtAJhnMrhcBgWmWFItjt9bEL0+okZFNz0JEngoHIiw6zdbqPr/iYMg+PkbQp/zgGf/fDwEM1mE+Pj4wiHw30kF8JTFO48V693VKZqd3fXlMdi7Oju3bsmKZZNNRnXIHxLgU3F6ff7EY/HMT4+bpRQoVDA2tpaHwVb3zNLRR0cHGBjY8P03yJ7bnFxEaFQCE6nE7Ozs2beSQhhWxM+P9ccP2PszefzmXkjq3JoaOioDNc3c9m4zuyEXV2ntoeiqQxUMLxWq9VCKpUyMdZkMmmq8zNuNT4+bhSdzgfrMNZqNQQCAYRCIdNZwK40w711kpGoHhjJJTSYeBwZwFzb9Kp13/Lda5ksW3EOxsljoLhO8bDLDelm598070QZS4SxdDNobhKFA3F/DoUMgX6aPYVpt9s1uVZTU1OmSeH09DSmp6eNkFpYWEAmkzFxBcYTvvKVrwA4KreTy+XMvVA56X3/H83/A71e77jCQjRmFBtwTNFnwmynK32UOkcCqdFsoNs7iomMuEfggAM99PATt38Cf3T5j8wz6TwTjnM6nSZpdmRkBBcuXECv1zOKgwQUj8eDsbEx5PN53LlzBxsbG6ZNfa/Xw82bN3H79m2jiBgjY3xIPUR6Tg6Hw8BZTudR5XQyCJeXlw0ZQmOgFKY0MJgXpqWQ2u02XnvtNdy9exd/7a/9NSwsLCASiRja+OjoqCnx9Nprr+Hg4AC5XK5PyGpNQACmlQlwRHXXorO8r+HhYdNwlAqLa0yZs1QKXq8X1WrVFN4lBA3AeLI0mkhwmZycRCKRQCqVMp9r7UK3243V1VUEAgFMTU0hk8n0GS28tsZ/FdFQSJ6f23ErXpd7kkpRlRvfNVvUaOWNgfL6H4+B4jrlg4Ferfqg2fmMGyn5QAuYKuShDDUNAKt1qYNKzva8PB4PpqamMD8/b6q1X7lyBQsLCxgZGcH6+jrW1tawtrZmgvAADGRDxUbmoHp9wHHc7V+4/gVcw8c5WK1W64hV6Diu9NFut9HpdtDuHBNTet1vVrXHN6nJriE4hh1wj7gxPPTN/lq9Lj555ZMYdg73VeemEuQcDg0NmarrbC7Z7XZN7CoSiZiqEY1GA5lMxpRMolAqFArIZDKGVECvV0kN6unRW+U7q9VqpqFktVo1dSDr9bohV/D+NCbCtXN4eGgMBFakB44SiV999VU4nU5813d9l4HomEtFb4SxQdvboEfJ98qhsSHOKZ9bIUadByUD2ay7nZ0d4+WxU7K2uff7/fD7/ajVaibuRQOAUCPnNpVKodPpoF6vG7iPLXXoMauyAdC3b2w2KwcJTTSkbEag7h8qRP3chidtMtFg9I+B4jrFQ5WKDV8A6LMCFT7UIDC/RyFBKx84jqHwbwpHquKj0CH0Mzo6igsXLmB2dtbEHK5cuWIKtz777LNwOp3Y3d1FPB5HIpEwDf+czqOuybRINS9MBVev14Nz6JuB7x5w2DpuPULPgFZ2p3ssZAj7tTttDLmG0EMPQ8NHHojP6+ujOvt8vr5qIvRA8/m88bBICKjX6xgZGUEulzNzQaVFq391dRX37t3D0tKSgUk7nY5pxUFqviZJU2Axx0iD/ZyrVqtliBGE79gtmu+UBBB6xfReuU74M5O6+c6vXbuGTqeDdDptFOOtW7dQKBRQLBYNC5AKj+uk3W4bJigHFTFhP1V0ahxwbdvEBnu9EkItFArY2Ngw9RN5HNMq2GaFDEIAxthThU6DKJVK4d69e1hbW0OlUkEikTDvhQpM1yUVqw2p67PzOLv6DNe4/cxEFXQfqyFpG3OD0T8GiusUD4VT1CJTiIlei8Iy6hGopacZ/4QEdYPxHKq0NLeEAfpnn30Wly5dQjwex/nz5zEyMoLt7W3s7u5iZGQE73nPe/DYY49hdXUVL774IrrdLlZWVjAyMgKfz4fHHnsMW1tbWFlZ6YvF2TTg5kETzsNvbnocxbdq1RrK3TJahy1TDoqKxOP1AD2g3Tn2ON0jbpMHRC+m1+vhpWdfgr/lNx5JpVJBp9MxVTEuXLhgPK5EImGeP5vNGoiQibe93lER3Zdffhlra2sol8uYm5vD8PAwKpWKsb61fBRjZlRwgUAAqVTKCM9Wq2USYjUO43Q6+xh67EvW6/WMwmKpKHpjKuhJfqhUKqYixrVr17C9vY1EImEUFlmQjM0QLqYXyHVWq9WMUuecezyevtgb51i9Ea4/9bq5XjlXTB9IJBKGaKHMQ42f5XI502srlUoBAFKpFEKhEABge3sb29vbaDabpgtBr9fDxYsX8fbbb2NxcbEPyqMCVOiccN9JSkURDc63zXxVaFGP05iewtYDxfXwMVBcp3ioArEtP4USlCVoB4bVE6MAVdiDSlCZi7rZ1HpkomckEjGNBR0OB7a3t/HpT38a5XIZfr8fP/zDP4xwOGxKPTGhkkJXE0eVBMJn42e/hl/D/93+v829dbodHBweHMONDpikZFrJh4eHR4oLDjhdTlNrTxmIVPoU8KSY05tReJAKi/RotspgXIMlrNimpFqt9lHzmRRu591RYYVCIXN+TVCl0WCX7OJc8L2RcKDUfipnr9dr7pNzRgVBRUSvjSWiSI7R/DGFo0kHp5Cm56CeEj0dKlM+twp9Qnmcbx7LIsMATKzI7/djfHwck5OTZo6cTqfx+DY3N7G+vm4YgyzazHdHZczk8uHhYUxPT5vY69tvv93XEUGNKd630tYVJlS0wEY0qPRshMSOp3I/MuVE9/VgnDwGiuuUD25q4Nhi42YhjMS/n0QPpxBTpiGAPsFEfJ5CRkv78BzdbhfxeBxXrlzBwcEB7t27h6mpKbzyyit46aWXTEt0xq+++7u/2+RG7e/v49KlS4jFYmbDklnH85OazGcxjLT6cZyq2+miVq2h0+2g1+3BNeSCw+nAkOMIEmTgH8ARScMxZLwCPnsymcTXvu9raGVbuHXrFtrtNqrVqiFjEM4rlUpGsDBB2OVyIZ/Po16vY2hoyJBEKpWKYa9Fo1GMjIz0Veug98FzuFwuQ9IgvKrvlXPUbDZNWgHjNvRc+B4p5OlJkcRBwa3J0LwnMgyp2Fwulyld1W63TXkuKlSgv14mvR4qQsabqNyopBuNhlmf+ozAMWUcQJ83yXOxgPHBwYExlnw+nykB1mw2cfPmTfR6PWxvbyMWi5kKGJVKBbVaDYlEAtFoFG+99Rb29vbQaDRMDtrq6io2Njawvb1tGKIaa1KPyE6voIGgsDxwDE/qnuOzAg+WjtJz0vtmXJLfG1TPOHkMFNcpH4qRa9sRoF9RqcelG0TjBvwOYRaNewHHQWObtEGL2+12w+/3mw60sVgMd+7cwf379wHA5DxlMhnkcjkjdOv1uokzkP1XrVbNhiXMQkVJq9flch0RLHDkbRn8v9dFr9uDs3tUYLeHYw90aGgITpfTeJj12lHPruGh4T74ql6vI5vNGkVJAUUvZ39/38xnMBg0QpcxDDaFpLLQ6vIA+hpnUkDRAyA0SGWtljU9LVrgSnrQ+BWVhw1bsYo9BWO5XDYeEhUFh8bYgGNPnBUtHA6HYbpxPSlMqIPCVu+Hninnl8L5JNYe/2lqA3tjFYtFbGxsoFQqGa+EFVZoaCSTSfMch4eHKBaLWF9fN/AnyTFsKrm0tITd3V0Dt6unS+VroxCKBnCd2oxDDs4rvWNFFfR5NWdS14tWwxmMB8dAcZ3iwU3ExW4vZmUPAsdBY5tkYR+jigzoJ37YG1GZbzxmdnYWfr8fHo8Hn/zkJ41wJDHi4ODA5HOFQiHk83kjbFqtFkqlEkqlkoGYbDqyQpWs/A4APeex59jDNxWr48GSTs6eE06HQFvDQ+gOHwmNP3nsT+AsHlVRKJfLRkjSk6HAZosWJtdSYJEUQmvY6XQiEAj0lQmisOJnFFiEB4PBoCkwS6+FnpjGRXg+WvGE/KigSSbR0ev14Ha7TR5TPp83XoYyGHWuldwzNDSE0dFRQ8bY2dkxz6IGFNcDn+/g4MAoJ55PUy04B6ywUa1W+6qbKDGHa65YLJq4I3uI0aMEgFwu16fA+b6ZUHzt2jWMjo6i3W4byJr1CMvlsonj8XlsAoaufZtYou9FYUNVbjyOyokeML1Unp/fU7hV0YfBeHAMFNcpHsq6swO2KiBU2Kki6Ha7fZYjNwhp2ralryWVVHlxY2cyGdy4cQNPP/00AGB1dRW3bt0y1vzh4aGpDL64uIjNzU088sgj6HQ6SCaT6PV6qFarWF9fN8QMKl9a51QEvPYDjK6ubGoHgF5/nKHT6aDT7cDldJm/01MplUr4/Oc/j3A4jFqtZjwQxoroiRHe4/WBY0FGb5NeEwkGAEzxWxZAVmU2NDSEaDSKcDhs+ncR8iJcS0jJjmEBMIqHXhorUDBGRU+G75/w3+joqMkLI81fad5U1FQYHo8H4+PjGB4eNrULOZg3RiKLQthqbDCGxxYhVF6slsHebLu7u0a5kQCkyo/vplarmTnWRGKeLxKJoFgswul0olAooFQqYXR0FMvLy/jv//2/4+rVq3jnnXdMLDKfzxsDjYpElQ2ViT4X4UIqJnrnimrQCFBP+CQvi+dTr4weH9+l0v0H48ExUFyneGhQlwKQG4bCXAO9ugGpEFQQaD4KN4paeSd5b8CxF9ZsNrG+vo4vf/nLCAaDpt+Tbu54PG6sZFZQIHTVbh+1CeHfdPOq5a8WMCvBG+UEh1FI5v7gAJxH/3d7XX549HkPaLfaR55br4tisWgUi8/nM8V+Oc+8NwCmwC+JBhTs6tGSAMN5V4iW88jfWQWCsKgSHRhX1O+rMrbXg+0B8J3ynmiw+P1+ozzYgoRCUZ+NQpMlq6ik2CmZZbkoTMl8pGGhHqOWrSIEy+96vV4kEgkEg0FD8tnf38f6+nrfMyqxgwxAKm8aB1T0LHPFIrm9Xg/ZbBYAUKlUkEwmMTs7i3feeadvH9lQq3pSet+6NtXg07ie7hV9d/QEbWVm7zEOpdMrVDkY/WOguE75UEuWQ6EJtlNQD0mDurQgdcPqRgPQp8TUqtSKDvTIhoaG8NWvftXQtCkoKfTYJp3QkdPpNEFzkh7UgqaAVWFOQdzpdPCvPf8arVYL/+fB/3m0mR1OwHHseR3d3DeVFHCs2HAEM6J3ZKX/W9+/hcvlgrvrNq1YWLGdBATgiOzAmBbnjbGeXu+4+K1dKohCyoZn+TtTASh4tQYgr0FFoIpPvQ+e76Q4pA71hNiHi8VpCU9qLI3vndcul8umjFU8HsfQ0FE/Nb5DfU4qKtszVsHb6XSMZ8c4aSQSwcTEBGq1GoaGhrC1tdX3fMAxJKmGBeeDa5gxU41VAUcKi/fh8/lw+fJlbG1tIZfLmefsg5edx3U9bZRDIXl9Ph7Pvfaw+J9eT/+ucKL+TatwDMbJY6C4TvGgUKMS0MCwCizGI/i5ChJuAAoQAH2Wn8KGGojmRlOPAjgmHZA+zDpwvV4PY2NjmJiYMF11mRgbCoVwcHBg8ogobDRuxPunQtEgfbfbNcqphx66nSNyhoEKe91jaBBHSq3dbcPr8WJ4eBj/b/T/he/QZyjhDPBT6bAeH3Act7FjOs1m08BapNKrJwvAKHJ6HBTuo6OjiEajpsI53wHjVPQm9JmViUZvhkQJ3jsNF56H9Rj5PSpalkaix6P5ffSs1Ptl/hfZiTSEmD6gSpoGjnr9hBNJN+ecud1uk9DMOozlchmZTMYoPQptnpcogXqVVBaMZ+3t7WFiYsJU7mfMlRUzdnZ2MD8/j49+9KP41//6Xxs2JZ9BKft6DRpTVKC8D94j94hWsiGywHfEoYqL86bEKf5MJczzD8gZJ4+B4vo2GOpVKUylcS39XDcMf+emUtqtwiEcFCD2OSlAlO6sioUeGeMymjsViURMfg5ZjRS6KjA0xqbwpdPpxK8P/zr+r/b/ZZQWYcMu+mEXh+NIuTl6Dvy78L9DMBjECEb6BJBCW/wu54ZWO+NVWmlD2YPAseWsSk4/47WCwSACgYCJY1Eoac4O/2Zb2eqB2JY6haa9DvQdKiNU15NS6qlUKKj1HdIoIb2+0Wj0KVhNBKYhwHnW++HnTHymp1Wv11EqlfoQAjXAlF7OoRT1Xq+HSqWC/f19+Hw+JJNJo/AYt1xbW0MikUAymexr1slz0pjROCHPQbIR1yHv5STa+0nwrXrF6kXpvtQ8OR53EtIyGMdjoLhO8SALj5tEYz2EnGixqWWqQV/CRSpkFJID+qm7QD9O3+v1+rq7AseVwDXWoKQKViGnsGPlCt4vGYUej+cBtpvT6TTldyhkaPH/S/xL/JPmPzmCCtEzFTIcOLZmHc7+ZFDmXAHHFe+1pA8rNFBocQ6UNNDtdk1vMJYWosLudDomJsYiwsAxLT0cDiMajRrFpEqfQ2NCjEGpcQH0U6RpIPBa9GporfNcFLAUxD6fz3hb9LJGRkaMh6xNJMnWW11dBQCEw2HjRe/t7RmIlUqcBBh6V91u18wL39/BwQGGh4dNVQ96XpxHPpfGbtUj5rujwqrX62YONjY2kMvl8N3f/d2mSzKL/d68eRPNZhPPP/88nn/+efz5n/85Dg8PzbrmXHFN0yCgQmFc037vNIBs5aRpKjr6jCuJp6kHy31MyHAwTh4DtX7KBzcEhRE3i1bFsIkAD/vHqgPcEBqL0XiFXltZcRoHUKu/1Wr1ETCocMjA42ZkAJ1w40keAq9rB8J5zV91/qq5v173m4Kkd5xozTn5V+5/Zfpp8bwUMixBxNYfjUYDtVrNxN5YQaPZbKLRaBiYUGnLvCdVuurZMo4Tj8f7BLzOrT4nn1UFGpU354eCm9fm3yhIlRlnx05owLDwLJl5TK5Wr5lrhLRyJnb7fD7E43GjUNUr0LXIHDXgOFWBELAdr1OP3vZcNR6rMTNdl/pzrVZDqVQyBprCzpubm8hkMjh79qwxsNTIYyoH4VS9V/7OQaOB+8VGB2zDT2F4e9/p+1dvnMcNxslj4HGd4qFMLQbVqQgYp+EGsnF3DfgDxyQNWznRggX66ffAsVCgIODfSFSgZ0Bmno3dB4NBQ0rodo8Yfbu7u31Qkl5PFbB6jzZ89quOX0W328X/0/t/ju4TxwqNypnWPIkBKhDppXIw5kYBozFAFa4qfBTasp/B4ThK4o1EIqbVvVrlKqROUjAKR6qHYQs8vku1/u24iCoXntPtdvfR/+v1uqmuQQ+DCoufuVwuk7u3s7PT17ZD73to6Ki2IytwcK04nc7jRqBCaFEFpPCpQrM671z3CvVqTDaXyyGRSBiDgQqHHaCvXr2Kqakp5PP5PpIK4VCmLHAOGo0GqtWq2VNU5gpz09NVr01/1xidDpvQwmH/PhgPjoHiOsWDyoLkDAAmOMyf9VgOKjJVUg6HwyTOKqyoFqEtRGj1MseGgkY9Ayq18+fPY3R0FIFAwLD2IpEIQqEQRkdHsb6+jvX1ddy/f9+w57j5tXUKPQeyz6go2XxSvYlfG/q1Ywu36zRehcJNAAyVm+e1k0r12sqS0+A9IUUqZSVTcK5p4YdCIUxMTMDj8fQlGauiIvSn16Y3RKOAwk7jZXzPFP78TL0VOwbF6zD/TL04DuaDud1uJJNJNJtNZDIZ7OzsGBq/2+1GLBbD+9//fuRyOdy6dct0RVZojTlrk5OTqNVq2NjYwObmZp9XqPlvjCUy7sn5f5jnokqNECkh7ZWVFQSDQVy6dMkQS8LhMA4PD7G8vIwPfehD+NjHPoZisYi1tTUDa6fTabzvfe9DPB5HOBxGOBw2a79SqWB7extf+MIXTEFhZR6qp0QIlUqfz6AGpo0sqCdp/z8YJ4+B4jrFgwLIVlZqvXGBO53OBzwjoN+qU6+D0JbCHMpwolAjE5CCe2joqABtKBRCKBTC+Pg44vE4zpw501dFgffPKvXVatVUc1cSAoWDXp8xJy0Qq4JLBYEGzBXCoiBljESFoXomGminMmBicrfbNYH7Xq/X1zZErXwNsgeDQVN9XI0GHq8GgcYZlSiiBAct02QLMh77MAtdvTNCt0pKoEHicrkQCARMHMrlciEYDKLVaqFQKJjYGK9Hos3W1pZp+UJ48fDwEFtbW0ilUrh69SomJyeRSqVQLBZNDh09IRIf+A44L8rmPImso++Oa0a97FwuZ1iLvV4PsVisr//W+Pg4nnnmGQwNDaFarWJ+fh7z8/OYm5szSonrcGhoCPF4HGNjY3A4HFhZWcHi4iL29/cfGiNTo0m9e4UT9XcORTr098F4cDh634Z+ablcNs0Jv5OHHaNSoa1xGwpOZZgB/R6FnWtkH6dQIs+lFiWhlMnJSbznPe/B2NgYgsEgKpUKqtUq9vf30Wq14PP5MDIyYurFfe/3fi+SyST+5E/+BK+//rrppMt7Vk/EZukRymEMgp4JcEwT58/0CAnT8HgKM3pjbNLIv3e7x9XE+b1Op4OdnR1DVPD7/UilUggEAkZQ02Ok8PF6vZiYmDBdj/1+v5lb3jM9TA2+8znsyhkKkyqMZr93Kn16Sw6Ho4/5p9ezCTm6jkZGRlCr1ZDP5835CZP5fD4DuanxUy6Xsbm5ia2tLezv7/fF3Xq9Hq5evYr5+XlMTk6iVCphZWUFn//85/uMCxtiVeanrg9eU70RJbpQcdFI+fCHP4wLFy4gHo+bNcrq8LOzs1hYWDDPxx5fm5ubpsYmPWrWhTx79ixmZmYM3f4P//AP8eabbyKTyZj3rEakrlWSb2iI0aCil6jwNfeweszf6aNUKpn2M3/ZMfC4TvFQj+Ik2EBJAifljWi8Q4kVNl2e56cQUaiKwftQKISnnnrKtEan9b6+vo7t7W0DDVLRMdbEWMP29raprO5yufryVeitUAjRalV2Fje6wpn6rPo8Nk2b98NagarkOHcjIyMIh8MYHR01AqhQKJjq5IQgmUuluTZ+vx+JRALpdNo8NxWEHdvi/fL7+m70eM0No/WvXhkFNQWeDRWrN8J5pRBk2xV6DEpWsdmqVFr0RMj6BIBQKIR0Og0Afd8BjryljY0NHBwcoNlsYnp6GvPz80gkEqZ9ir4jtZ9t40pjslrfkM9KhaAebiaTwdTUlEmgZhWUu3fvolgsGkOE3n2xWEQ+n+8jqTidTjQaDWxvbxsIlZT797///XA4HHjttdeQy+X62J82KqIGhCIB9nPr86tnNhgPjoHiOsVDvS0VhPybneOi1rVN0+V3beycXpzNVKTgcLvdqFar+Mmf/ElcvXoVQ0NDWFpaQqlUAgCsra2hWq3iqaeegtvtNnAgcCQgI5EI6vU6tra2TDUDhTSB/jy0k55VPRFVXCokNN7D73IONEmXnpUqdMaxNF4xOjpq4DLGUer1urlOIBAw16ViZ1t5hVr1fjjX+n712fhuVBEpgcX2lviM/Mw2SLQ8mL5rCnGFW6kQaKiQjMA54VDChMNxREKhAqWnwkToer2OTCaDZrNp5iidTpueZny3iibomj6JlKLGFe9B4UR6wfv7+ygUCkgmk33zXalUsLOzg7feegtjY2OGpMKKGn6/37SQ4XpaX1/H2toaxsfH4fV6MTk5iXPnzqFUKmFnZ8eUl9I1p9CmGmP6DEB/zULdC5znwTh5DGbmFA8lTSg5QxNPddPSUifEoQJOc1O42SnUbZiDno3P50MikcDf+lt/C48//rjpX9TpdEwQe2FhAbdv3zYW7tDQEBqNhiFE0CvLZDImnsIYkXoF3MAas1Irlp+rYtBNTiFHtpl6cFq1g/cEwND1eb5arYb79++jWq0ayjhjZISO5ubmEAgETDWNVquFsbExxONxAMdMUBZKVa9ClQ8VpVLlFcqzE3I1lmTXF+T3bViJ905vTXt3KSGAhA0KbMKrVNqdTsdUalflz+r6Y2NjmJubQz6fx/b2tqlDqeSYz3/+8/B6vQgEAhgbG0OpVDKwHgDD3OO9kADD4s1qhOk65XX0vbdaLWxubhpG67lz5wx8zRjs17/+dQwNDWF6ehqXL19GIpGA33/UEXtvb88gCKurq3C73VhfX8fTTz9tSCtnzpxBKpVCIpHoU778305/0P3LOKIqYb4PNebUEBmM/jFQXKd42JuVgli9LLW61cqnUrNhB91cAPqgIQr0brdrMPn3ve99ePLJJ3H9+nUsLi5iaGgIzz33HEKhkEleDQaDeP311xEKhUxR13K5jGQyiXq9jp2dHUM3J8GBMR4ARlCpEubQ5wceLDRrz4Mm36ply+9RCGrTPofDgUAggHA4bIQK2WSMSfh8PsOqo5JzOI56dY2NjcHj8Rh4lQqY96kWtb5L+93q+9X3Q0PDjm+pd81j+ewaP6FnR0OI5+D11WtTIg8VAY0FrifOGQssM7bFChyMV9BDrdfrplwUOz0nEgnzfT4D2Yl2PM6eAxXwfDadX56jXC6bihpcb+FwGPv7+6ZrdDKZxMWLF+F0OrG8vIytrS1sbm5iamoKDocDu7u75jqhUMh4pKz4QYXOoV6zjW7Y6IjNmLSNsAE54+FjoLi+TYZ6WAo56Gbg5rThRN3k2kuJ/9twDK3XWq2G5557Dul0Gr/7u7+LRqOBsbExhMNh0/U3mUzi/PnzWFtbQ6VSgcfjMZb41NQUstksNjY20Gw2EQqF+rB+vXetGAAc553pxuZ4GMHEFvyaA2cLOsJh1WrVtCfRxFwmIxMWZE4aBTeD9sz7AY4hUA4KfxVQFFi8vn6uc2LHujQWoqw0zocKbxI2eL86CKdRqZ009Fr6vqg8yBrle2BuU7FYNIxEnQc2Hy2VSnA6naZCPr1gQo6lUsmQfLhONdeKMCc9LSoyZYVy7fZ6Ry10Njc3cXh4aOKaqVQK6+vrBsmYmJhAOBzG3t4eXnvtNayvr6PdPupy0Gw2DRt2bGysrxHo/v4+NjY2TEdmr9dreqPp/rMhXoXxOa9KrrJjfYNx8hgorlM8KJwVPrIXt8amFAJkAJ5CXAU5YSwGtQEYuA6AiVVduHABV69exerqqsnNOnv2LL7whS/gs5/9LAKBAH7mZ34Gk5OTePbZZ3Ht2jWTr/O+970Ply5dwh//8R/j9ddfNwF+JgTzeWyvgc90UmAbgFEmFFB85sPDQ5NITC+A19Tq+VqXr1KpoNvt4uLFi5iYmEC73Ua1WjVlmugZRiIRsz/1ZAAAubRJREFUQ/Xmv2QyiWQyaeJgAPrmmzDYSZXN+YzM8aJXZxMjVIEp81ChMl0LhMKAY++J1+Za0vJWvBaP5T1S2fd6PeN1svYkk3xdLhdisRgKhYKhxTMZnXmHhIQTiQRmZ2dRq9VQKBSMMq5Wq0bBzs7Oot1u4+2338b29rZRNsPDwyZ2xh5oJE1oySeuAxpghHJv3ryJ27dvY35+Hg6HA7FYDIFAAKVSyaQtvPTSS/jMZz6Du3fvwu/3Y2FhwXTAnpycxOXLlwEA+/v7CAQCqNVq+PSnP43r169jd3e3LxmZ802vj/uV70BzF/m+bS9N14m+38E4HgPFdYqHWmwUZNyomvSqMJPCThoLOolxqIpOrcJGo4FoNIqpqSkcHByYHBjCfBsbG8YbuH//PoaHhzE6OopIJIJKpYJoNIrR0VEMDQ1hZWUFhUKhT8FSgSlkZyfTAuiLbejzq8ICjgWFnkMVMRU0k0M5Z8PDw4jFYnj00UdN65X79+/3eUpDQ8ct7ynUvV6vYRpqLE6FD/PelFSg3iC9AwoqhcFsiJhKhFAk50HfH6nxwDFkCPSTQqjsSTbROpMKU6ny4rnIqmy32+Znn89nrtvr9foSrnVOtJaiek+aUwYckXnS6bR5n6xu4fF4DAuQSIAaKTR6lOjCZ2m3j7ofj4+Pm1QNervAkZe8vr6O5eVlU/UjkUgY+DiVShlSh9frRbVaxe7uLm7cuIFMJtMHTasRxp/dbnefYWPHLvn8+h0lagzGyWOguE7xUIhJYw3cHOpp2RYbhZyy8Li5tNK8WvTqlUSjUaRSKVSrVfR6xx13t7e3MTY2hkwmg93dXXzpS1/C+vo6fvEXfxGPPfaYgYt4fxsbG310a8Yy7GuTYq2wj8bjqLC1eoV+32byUYBSaIbDYYyPjxv4rNfrYXJyErOzsybA3m63Tat3kkvouRJeZCxHlZl6kLwfjTvSiNDYBTsfk6Gn3g8Vhp3vZL9nhQbtWCavrV4aFXaz2TS0/kgkYpQLvTDCoGTZ2dBlPB43ayUUCsHn85mkXyoaerscZBEyH4xEDC1Nxs9mZmZw8eJF8/eZmRlDBqrX69je3sbi4iI+97nPGc9F2Z+E7gjf3bt3D8lk0pxnZmYGW1tbZo+Ew2HjQZ47dw7xeByzs7OIx+Oo1+u4ffu28S5v3LiBa9eumQLCnBdlvKoC031mt0+xvWOuH64rZb8ORv8YKK5TPBQHt9lGNjOMHgS/x42hApHHqoDXawHHgf9Wq2WaBw4NDWFyctJAO8FgEKOjoyausbGxgU6ng1gshlAohEKhYARJrVYzkBEtT1rKvV7PxDlUSVFxUXGrMlMLX/N2eP8qZKngWOrI6XQapQkAsVgMPp8Pe3t7RrnqXOjPqjhVcfEzJS3Y0Bvfn33fhAj5nLaX0+v1TBV3CkPN/7LXiR3oVyGp0BONAnsNcHDdaMK0Vp6nQNW5HB4eNsYH5+gk75hrWGNX9rO4XC5Eo1EsLCwgFAohEonA7XYbgsz4+DjGx8extLSExcVFo6D5ftXD7Ha7yOfzyOfzBtol3Mi94ff7jSdN8gUZliTrjIyM4ObNm3j33XdRKpXMM6r3rO+CPysUb5OF+LvGphViVCNkMPrHQHGd4qGKhoJc2WTqbWnAVzeJLcSVQabwoipACoB8Po9yuYyRkRHMz8+bXJdut4tYLIZisYharYZKpYJKpWLK+zBxt1aroV6vm0669Xq9T1hzs7K1iUInfCYKcnoIVBJ2wqtCnzb0yOdhg0HgiDAQjUYNmYRwosaGgOPeT1RWGmPiPPL6+s7488MShIHjGB+VoBJJOBc0APRdanxPISr+rInpthLm31XR2fEUfs+OPdrepCo/sioJkfI6Nn1fFTvnl9fUNAbGYkOhUF85Kr/fb3LsnnvuObRaLaysrJi5o/Gh91qr1VAul/vSCeilHRwcmHY0LBZNKJuVRFhNfnd3F9Vq1XiCvH9FQAD0zRFjsvzcTrrX1BBdH3b8cjD6x0BxneKh+T2qWID+xotq2TFWcZJiUhxdN5HGuQjnlctlLC4u4s6dO1hYWMD09LSBfiKRiCEnvPDCC/D7/VhaWsL09DRmZ2exubmJcrmMvb09w0AjfZ6eHD0hAAayYTIvFQite+C4KrjGTmwPksKLz+P1eg0MSQFy9uxZ+P1+I6QofAkJch75rLTe+Xc1JGgdK5yjcQq+Bwp0jUfyWhTmfDeaKsCYHPOxFhcXcXh4CJ/PZ7r9Mk7kcrng8/n6vDm2I+F9aLoDh1LQuS7Y5kTnVBU0e4aR7MFq89Fo1HiI+g7VW+Uc0usiS5FGCavp1+t1vPHGGxgdHcUP/uAPYmRkBM1m08RLh4aG8CM/8iNYWFjAv/t3/66vegXXAxmAjUYDW1tbiMViWFhYQDQaNcSOXC6HZDJp1oPP5zNeeC6Xw97eHuLxOCKRCJ566inMz8/jzTffxPb2dh9ETdIRDTE1cPiOlAylKQ36jgil6/4fjAfHQHGd8mHj4GrlnmTFq6JSz8Gm1nJz06NQq5vCuVwu49atWxgZGcHZs2fh9XrRaDTg8XiQTqf7ID/W9aMgazQaqFQq5r61soLG5tRjUCVKYc7PuPkVnlGoSQUABRtwHHdyOp0m2E6LmfAecGwN0ztQZqNCXzZJROdSvTAV2Eqc4FAGonrUhFdLpVIf2YHEkYODA3g8HuTzeVNNnpX0x8fHjeJRr80O+nP96PpQUouSQWzCCM9lM9+Gho46Djudx41AOae69vh99SQ5R1oKyeU6qpWYyWTQbrfh9/v7lGan00EgEMDs7Czm5uZQKBTMe6Dxo61quB6Hho4KITMx++DgwCRGK4LB+eh2u6hUKmg2m3jkkUf64pA8zmbHcu3YcUn1pPh+CLtyvQ7gwb/cGCiuUzxIiuBGVViFAkXhHFVA2hCQnynNmkLDJkAott5ut/HGG2/g3XffxY//+I9jYmLCtN2IRCIGbisUClhdXTU06VQq1afkyFSkIqMXwfgBvY2TYD87MZnCkM9GhcJj2MoCOK5sn06nEQwGkUwmjTJQ+jljU6weYXtx2gpFP7PjTppDd1IMRyFExk3oWZH2vbOzg62tLWxtbaHT6RhB3e0edRSmsiK5g/fj8/mws7ODQCCA+fl5+Hw+BAIBozQJi3HN0MAgM1IhLFUe2vmaa5L3y2fhHKhnxrmgUiZJhjEoJQ+pMuQzso5gPp/H+vo6zp07ZwwirtNGo4FgMIiPfOQjGBkZwTe+8Q0zH4R/yVqt1+um5FggEEAsFjMNQ1lEmeup1ztKMCcsubKyAofDgYmJCWxubpqkY84B1zDnl/PIPcX3p80queaoxBTi5pr5q1Bg9392DBTXKR8nxX34OTeG/l2tRn7G/9Vj4/eU+cTPuYG1nfytW7fg9/sRi8WMF8WSUNls1sSz2AJD4Sn1hMgcI8tQmYwaj1LlrGw92yqmErM9Uyp9v9+P6elpU1zXnkfCXZwnPrvtJdjxBgpbpaDz+dSLVVYnr0FhxmtRuedyOWxubiKfz5vz9HrHKQPBYNDkoanhAhwpyp2dHQM1xeNxxOPxvkaWWnndhoo17mRDXfwOlRqHehN6LxTodrxJ3yMANJvNvriXkhoIWXe7XWSzWaTTaVN3kPdL+DeZTOLs2bNYW1vD3t6e8d54X4RNud44D/qzEndYGYMNNg8PD5FIJNBoNLC/v9/XSFU9VTUaabjontP9yJ+5hzUurZ68jZQMxtH4lvzS3/qt38LVq1dNQdHnnnsOL774ovl7s9nEz//8z5sN89GPfhR7e3t951hfX8eHP/xh+Hw+pFIp/ON//I8HlM+HDHpGdgCdCocWKz8H+gP/qhj4NxXAFKwqtNTbGBo66ldULBZRKBSQyWSM10SBk06njSJifIMMPa0ryGvp9WylweewBQEt2m63a87LDa+xAQpjnjcWiyGZTJqcKwpNhVU5h4T2GI/SvKqHzS9jVDqXvA8lTyisqB4mrXASBba3t/useZ/Ph+npaVy8eBGPPfYYzp8/b+j7FMx6vlqthv39fSwvL5vyRSTQUElo7FBJGHwGGwK175/KSxWrKi56c4QN+cyEWwnH0mPl++S1qfToUXq9Xuzv72N/f/+BeFy73TbG0tjYmPGatGEq30Oj0TDGEklC6vlozzifz9dXpzIej2NhYQH1et3chx2z4jmUJEWlZcOquh/5vxp6fKcD2PDh41vyuCYnJ/Gv/tW/wtmzZ9Hr9fC7v/u7+Ot//a/j7bffxiOPPIJ/+A//IT7zmc/gD/7gDxAOh/H3//7fx4/92I/ha1/7GoAjS+nDH/4w0uk0XnnlFezs7OCnf/qnMTw8jH/5L//l/5YH/HYeKkjUYqbiUqubQkitN+1JBRxbqtxYhHGUsUhlQ8Hy/PPPY2xsDIVCAUtLS8jlciani4nHiUTCbHqPx4NMJmO65kajUROnYOyBwt6uoKFQJpmGyiLU2AMFIQUI4aVYLGZamHDuWHFEq4lQOfEanBdlgVGQkKxAiM/hcPQF0G1h5XK5jODjcRTIKuz5/NVqFRsbGzg8PMTU1JQpf9RutzE5OWlKSu3v75v6fw6Hw+TYsUqE2+1GOByG1+uFw+HoS+BlEi8JHPreqQRtz10hPPUGTvq+KnuNbema5f/qpdFr4T0wplev142Hn8lk8M4772Bo6KhEE/PFlIjj8/kQCoXMGmblDcKq7A9HYhCVSqFQQCAQwPnz5/Hqq68aL/jKlSu4cOGCmYdKpYLPfOYzyGazfZ4zvVml4eta1lgpoXGtIanKjUrZLh02GA+Ob0lxfeQjH+n7/dd+7dfwW7/1W3j11VcxOTmJ3/7t38bv/d7v4QMf+AAA4Hd+53dw8eJFvPrqq3j22Wfxuc99Drdu3cIXvvAFjI6O4rHHHsOv/uqv4p/8k3+Cf/7P/3lfwuJgHEMxXNwU2sAxjVgZgUB/mSgb3lIPhhuHlieHKklawLR6eRyp7kqe0G61ZLPF43FDm6egttlUtFrJyKLgosDhc1PwHxwcGEXD7zidTpMIGwwG+zwq4FgBKS2bFSAcDod5Vno6VMy8hlr5+h4U/lSvmFYz34FCbvRYeN/t9lExX6YdpFIphEIheDweVKtVNJtNMy+Ez0ZGRjA+Po6DgwMcHh6iUqmgUCjA6/UiFouZMlRMReAzMFZH44HxKhW2tvfFZz6Jyq7eqO0121Am3wP/dbtdU/yWz6TeiXpxh4eHpo4hCSjaLJM1BXVeeT1t4Fiv19FoNEwZLgDGQEgmk2g2m9jd3cXbb7+NQCCASCQCn8+H7e1t3LlzB5lMpq8QgN6nwpNcAzpPfC4aA/y+erxUgvZeH4wHx/90jKvT6eAP/uAPTCHWN998E61WC9/3fd9njrlw4QKmp6fx9a9/Hc8++yy+/vWv48qVKxgdHTXH/MAP/AB+9md/Fu+++y4ef/zxE6/FthQc5XL5f/a2v62GjXHrZqFg0M+A/v5PKlB1E+imULaYnotQDYUnY0Sjo6NotVrY3983sRd6TFQwBwcHGBkZgdfrRTgcNp4WBXqj0eiz4GmZcnPTy+H5SJigsKKg8/v9xoJlAV8KYgB91jxhHFWyFDaqTMjS45zQqrcZesoyVFIGcFyOS9l46tHo+221WqZ/lZ6Tz1YsFs38a1sSpkKw6/Tw8DCCwaBpr8I9ovN5Evyk71/XFI+ld0mYzh66PnXu+bt6HzRM6fFQgfBajPtpbJDGUKPRMHmE9LQbjYbJ09IWKfZ65zvUtUwvvtFomL5xfJerq6um2kooFMLa2hq2t7fh9XrN/XGeuJ90HlWh2zEwrjXbuOKwvd3BOHl8y4rrxo0beO6559BsNhEIBPDJT34Sly5dwrVr18wC0DE6OmpaA+zu7vYpLf6df3vY+PVf/3X8i3/xL77VW/22H1zoWipGGWAqUHUzcMFTYHBDakyDSoKKQym9rB7Q7Xbx7rvvwuv14uLFi4Y19cYbbwAAzp49i2q1ikKhgIWFBcRiMcP8IquNiqtSqfTlQfHZqHgUoqRCDAQCpmsxlc7CwoIp+Ko9v7jZqWApCAEY2JAloDjowfh8PvMZr6NsTApWu1oJn0eJIRS06qUovdzhcBgY1uFwoFarYWhoyNSBZEwqFosZSIkKPBgMGg9Z373L5UI4HMb09DTcbjfy+bxRDJFIBIFAwMyZVv3Q2BVzqqiUuaZ0LWqsip8xxkPvlXEhQtU0gkgyAWCIErZA1xgZjQc1pFZXV7G3t4dkMolAIIDNzU0MDw+jWCyi1WphYmICCwsL2N7eRqPRwMHBAQqFglG6JFu43W4Tk+X6YH1Cr9eLWq2G7e1t0wST60B/tj1E2/MmhM25VOXG9aHKr9vtmrxCMi51bQ1G//iWFdf58+dx7do1lEol/OEf/iE+/vGP48tf/vL/jnsz45d/+ZfxS7/0S+b3crmMqamp/63XPA1DA7wqMHVDnGSh6UbR2IrCiurdaOwIOKbhOp1O0+X18uXLcDqdqNVqcDqdBga8deuWoSXTs9LkU00y5jmpBOh5cdNzo7JEEy3jbreLUCgEr9eLdDoNp9NpYDIqEGW02cQF9U54D2qRKxmBykehH2Ug8jigv0eaxhLtd8jjeG+EEflemJtlsyf1OuoV8jO+Y3YdZgyF907Fr96TPj/fA3BcWd5eR7yeEk54fZvhqmtRyS265tRj0jnkcfTadE3yvRweHiKXy/UxJdvttmlKyZhruVw2RhYVK98d42cA+uaGSlXJHDasat83f7Y9bp1nhYsVzlfmoRqYdnxsME4e37LiGhkZwZkzZwAATz75JN544w38+3//7/GTP/mTJgCqXtfe3h7S6TQAIJ1O4/XXX+87H1mHPOakQQ/gr9qglarVpYFj+EQpxhSMaunZwV6lPauw5e/qlSlstLi4iAsXLmB2dhajo6NYWFgAAGQyGbzyyivodDoYHx9Ht9tFtVpFtVo17TBYD1Cte0J4IyMjRgEREkyn0/jgBz+IsbExY01Xq1XE43HjzZVKJWSz2T7yRKdzVHUjEokYz4rwmio1zh+9M+bWqKBUgaZellq/tIqVis85tT0VejoaL7OrWrD4rCYu0yNUYUZPhIqGJJB2u20ENs/N+oEUkOFw2HjwzMVSmJfzqEKYPyvMR6+Vz6OwnTLrOA+Ej7mO+c5UYfGc6u0xBggAPp8PzWYTd+7cQbPZxOjoKMbGxrC5uYk7d+7A4/FgenoaoVDIfF9z5XgOl+uoX1gkEkG9XofH4zFlnzRGxXui3KExwJ9J+GH+lg3VU/FoviRwbLhxblS5Udny+rqOBqN//C/ncXW7R62wn3zySQwPD+OLX/wiPvrRjwIA7t69i/X1dTz33HMAgOeeew6/9mu/hkwmg1QqBQD4/Oc/j1AohEuXLv2v3sp35FAvSfFy23MC+j0HKh5biNqDG9C2simUSam/ffs2HA4HxsbGAADZbBaLi4tGSPr9fnO/tIJJVSbUR0FEIRcKhUzMi9U4Ll26hCeffBLJZBJDQ0ft4Wu1mlHgFFwUvkozV/KBwjVUyBrP0jgVf1arWIWvDdfQCNAcLs6tCn5CfHpeGhK8R5ajohVOg4NxOCoxCmEKPoWT2KpDj6WhQKOF51OWo3qQVK7dbtd4wqrMVaDrPPAY/o3Gjnp4fEf/o9iOGlG6FnkOUtZzuRwSiQSCwSBqtRo2NzeNoUNFRUOGz9Xr9QzLMJ1OIx6Po1wu982VXptzRM+R9893z/euDEXdY4R0eQ475YeKVdcXjQjux4Hievj4lhTXL//yL+OHfuiHMD09jUqlgt/7vd/Dl770Jbz00ksIh8P4u3/37+KXfumXTJXwX/iFX8Bzzz2HZ599FgDw/d///bh06RL+9t/+2/g3/+bfYHd3F//0n/5T/PzP//xfSY/qLzNsmIFDIRAVihQamv9lB4819+Qk2As49uooLJeWllAulxGLxdDpdFAul5HP543VSeVEK7pSqZhyOpprpgpSSQOJRAJnz57F1atXTaUL/t3v95scsUKhYCogKDuMSkJzvBSyIUWbz2YLXHteHwbTqHHAOberavC8mh+mgojxJFVQ6n0pwYE/28rPvm+en7EsfpeK9ODgAMViEd1u11RH1/iKrhu9V1uh2/eiw/YSHgaf8ZpqSKnBxLWoRpvGmSqVilHc+XweGxsbxpuiMaNpCnxvJPSkUilEIhGzF1TpKyzItaxGiX2/VE7aWdyG7rkWuT+4H+mRKbSvBpZdtWQwjse3pLgymQx++qd/Gjs7OwiHw7h69SpeeuklfOhDHwIA/MZv/AacTic++tGP4uDgAD/wAz+A3/zN3zTfd7lc+PSnP42f/dmfxXPPPQe/34+Pf/zj+JVf+ZX/f5/qO2ioZ0BvQuMJFE60qhWGAI6Fl205AzD0b/VEbItXFWA2m0Uul+uDHWm5swJEs9lEvV43tHa2badnR+XicBw15xsdHcXExATe+973YmZmBhMTE6jVaqbkDhNHDw8Psb+/byojKKmCgsbpdBrCBu+NybY2i5HCRevxqbDjNTS2o16vzpN6MTqfVFwUgFowV6Ekvi87GK8wqMt13MdMvROFfvf39+FyHfWVIhNXY0iFQgEejwehUMhAhhSwuqZ4TS2HZTMk+X0dCmmq0qGQtmFqPjOPpXGh9+R0OvvgTsZGd3d3UavV8Pbbb6PRaGBzc9MQvFiJhP9o/CQSCYTDYYyMjGB3d9fsp2AwiFwu18do1H3Gudb8Nc4V759wKNePrfioOLXjNfeQ7k/ueRtqHIz+8S0prt/+7d/+C//u8XjwiU98Ap/4xCceeszMzAw++9nPfiuX/Ss/bItPg/cqAFTo2RuOw/a4bIHEfzZRgMKYAp6DypKKibEa5s1ozEY9QAryZDKJubk50+SPMQMAZpMD/Za/srH0WW3YVCE73rsdv1GlYcfhlDiiyuuk8+jc6efq/enf1IMg4YVMNaC/ZQgNA4V01Ysm85KwIxUO8+PUA6SHy2soiYL3SPTj4ODAPLuuP1tx8370mXlvyhbUd6/n0znSdaalozReBgC1Wg3FYhHFYtEoDVaOVyOMUC0Vtsvlwt7eHrLZrHnOoaEhlEolY5jwnrj+Nd7LZ+RzELZVyFHzvPR92tCfxrn0ugNl9T8eg1qFp3wo5ZobCTj2ljT4S0vRjnVxU9FqZeIucJzQCxx7I0oFV+9EY0f8Dj/f29szNHi/349qtYqlpSU8+eSTfbAMBcvh4SFGR0cxNzeHJ5980pA7aOky1gIck3MqlYohHVBBAv31CdWip8BRYa8sN84BPSONh/C7TOTlu1ACg61MGXejEqLw0meiotCE6kajYYQr3w29wWaz2Rfb4j8K+Hq9bkgaVDTVatXcg1LXyTJUBh/Xkip9Cl49B0kZqmCVlKACXuFark17dLtHBXW73a6B8Ahp6rvROC7v1+E4qgqytbWFfD5v5nFra8vEWknP5/kjkQjS6TTW1tbwuc99DslkEtlsFh/4wAdQqVRw8+ZNw2JVj0rjnxpX5DpWr4vvRO9Z51L3ojbd5DrjXGrM1PZqB+NoDBTXKR4aENcYFGEVW6Fxg6jQsKm2avXaEIVuSG5GelT8u56L1+l0OqbILoUvreBer2cqkOvxtOxJLKCy0Hwy3fRsxU7F4Ha7+1hYag2rZ0BYBuiPW9meo3pkVAxUUNoZmbE825NSi1p7d/Ed8H+F5ACYJon0KrQRo1YV4fX5T5UClajf7zewqpa30qRZ3oeuE40/2TAfDQH1jngvHFx79ufqsdsEBA79mYraHly3avwAMPliVML1et3cs5Ii2GfL7/cjl8uZWG2j0cDZs2dNnIzIgd4X14nG2biuVLnacSr1+PV7On9cR+qNKhw9iG89fAwU1ykeivXbpAB7YWvAVyEI2wK0PQqgv7WJKjdeT/F9xmS4MbnJKDDpdRDPp1DldVRZskoFz6UQiXoX9BJ5LP/pfOg92jE6beLIcyjDTeEyAIaqrXOjgktjZnY8QiE8FXgK86kBEgqF4HQ6Tcki2zOzCRsKU/KZ6Y2MjIygXq8bT0YFvg2VnqSMlFmo64cKlN/lHKthxedSeJD3/DCjQnMIqbRp1PAYrn2FNzUBnwrb5XKhWq2a6+o9sI6hz+fD1taWiZMlk0mMjY1hZWUFmUymb1+oMrep61RcHPqeVcHqM9gQsm1IqtLUNTkYJ4+B4jrFQ+MF2ptHN5Na1b1ez8Q76I1QENEKB9BXV7DX6xmyAIWJQoWEhVQJaZyCP7PfE9tAjIyMYH9/H8PDw4jH4yYWABx5Gc1mE0NDR039gsFg3zNTEGrJIOYBUZjbibwU4qpQVCAD/c0TbRjIFqpqMKiHykRXDeArbKlelg1TqkepUBPJBCyzRWVNYcvBa9I7o0JXGjihPb03eh+E+QhHqnLjP/Xaue4UBmOJKmVoap4gOwMoOUHnle+GCocCmtXrtQkmDQGFx91uN6LRKDqdDkqlkvmMkODU1BSy2SzW1tZM7cdAIGBSKwqFAmZmZrCxsYEf/MEfxOjoKD71qU/h3r17Ji7Id6MKku9PvSM+kyol3Rv8mxo0XGdaeYOfcS2r0huMk8dAcZ3yoZtABQpwzKZTa1SFA7/H7+oGUuvxpOPVC+PmpXUPHCc/q5DkfbE5HxM4GRTXgHmr1TJKDjgW9ApNqfCkN6cN+DgH9gZXaEpLFNkWrSo0PY/tUaj3RPjTjpfpcfo+7POqh6aeEJUQDQN6rkyotgP+fD4qMSYku1wuM/fdbrcvj4wwrnqmNAK4Rmxvh4pMPUp7fji3VMwKddlwme3Jc17Uu9Dn09HpdExeIL1AlpNyuVwYGxvD5cuX8c477wCAWXusMbi/v49EIoFAIIDR0VGkUil0Oh3s7e2ZFAsdChsqRK9KS9e9Qq/8XNeCrjU+v9bTVA/4YekYg3E0BorrFA8VqNwwqmgo4NVi1r/p9+1NZrPCuJls7F4FEa9lQyNqWQ8NDfX1ASMVmd6TwinVatUQMPgdBuDV6+O98ToqJNWTVKWgng6/r4LlpLiMkjwUSuTfgOMEa41V2PCWKlZeS98plRu/x3PbSpZGidZi5DmoQMjA5HN5PB6T08R4Gb+jMCmVD6/Je1DFqYqPc6fEAXte9D5sj0SFta45nlO9LM6pzYZVRWpDeR6PB2fOnMG5c+ewvr4OAAiFQvD7/eaYer2OM2fOoNlsYnZ21lTP2NnZeWC9cD0pJK3PYsdHuT9O2lM8RudHvSqmifA4hYYH4+QxUFynfKhgUKtNvR9uGG58fo/Qn1r1dmyIvzNPiH+z4yO6aVWoMzGYxzFviVAQc4eSyST29vbgcDgMfbjVaqFSqRga/f7+PgCYmAUZfGzuqDASYR0N+gPoS8ClMtTWIIwH6TGav0OWF4WqCjIKGB5rw4u8DzU2qLB5fc4P89O8Xq8xBLR3Fe+vUqn0JSxzPlgVQrs68x61vp7WjXQ6j/LcCNPyM43J8Nq8jk3ooNLV/lPKSiX0zO/a0Czvl9CyQnA0JpS9x3vj87GNS61WQ6vVgsfjQa1WM4nE+/v72NnZQTweRyqVMu+Ba6BarWJxcRE/8RM/gUAggHfeeQf3798375sJzKw2T09YjZt2u20YlVS86j3bClYVP98Vf+ba1vlnN4RBjOvhY6C4TvGgkFXFA6DPwlcogkKd/ytspXEazQOzPTAbItMNTYWhG1Xvg4Kafx8ZGUGlUoHH40E0GkWhUOirWcfSUOVy2dS3PDw8NAV7KYTZDJHXoGDWChGqLHT+1PvhZ8DJVR1sr0DjZjZ0ZQsiPQfnyIY91XNlixZWFuH3qDRVwTUaDQP1qXBUGBg4VgbM5aJHpUnRWhnE7tjLe1VjwYbC+Iyq3DkHXGO2589r2TRz3gsNEDUMOP8q1HnfnCu9r273qFrL3t4eDg8PTWyw3W4baDoYDCKTySAQCCAUCqHRaJjj7fvX9cFraKK+zoPuE36usVG9d55LYXjbK1UlOBgnj4HiOsVDlYgqFgpvWv78u2Lk3AikFzudR5RyKg1VAEB/ORslPqjVrQLa9kSCwaARtrxOKpXC2toaJicn4fV6EQgE4Ha7kcvl0O0eET5eeeUVtFot/OIv/iLi8bhpXU+BrsKTyqxarcLhOKqPqMrcTpJWocxzUGAqrZrKicKQHgSfWVlvJCvYPbIouDj3qjCA41gU41GE8Qg9ct75TijYSIoBjkk1GtTn81NpqSc1PHzUFZpzwTWgsLMaLnxebQfDe+BQtiP/ZscYVWjzn5KEOF/0Bqms1GDS2KneK6E/r9eL8fFx47FHo1E0m00UCgVEo1GUy2VUq1X4fD4cHh4inU4jGo1iZWUFH/rQh1Cv13Hnzh288sorZu4VuVCPms/IdePxePr2hSpWNWA4V3wezrGuNZtqT2+W738wTh4DxXXKh5a6OQk6oABWxaYYvH6HG4/wlQor24OiZambU+EbG4cngcLpPKp0XigUMDIygmw2a+jZVGr83sjICGq1Gu7fv49yuYxgMAiv12tYaczbIqGAkGK5XO5TRBqL0LJIfH7beta/67DjeLZXpd/ns6oSUGiR9wagT2jzXtSj5PviZ6yYT2WtFeHV2gf6aydynVA5sags/8775XMqpGWTB/g8Onf8XQ0j3s/DyAQ8hv8zdqfzpYnQTKLWtUslwvfrdB61tfH7/UZpDA8Pm+aZTD5WJZROp3F4eIj5+XmMj48jn89je3vblH5Sw4/3rUqdilXvxZ4fPdYm4egaUqKUQrG8riryAVx48hgorlM8KEAUVuGw403qGQDHXgTPo1aeTetVooBCIRpQ5mes0q4xNofDgXK5bKo4xGIx7O3todvtIp/Po1gswufzGSHK+/X7/ajVasjn88hms4YBls/nTd03VVou11F9Qm2JwblhHIKK/iTWnq1sVXAojMdnsoW4Cnf9HgWxKgTGgNTa1mtT4TFWQhIGz62tbGxrXYkQjBmpMaJzpmuJCp7wGxUjBenDDCP1etQzeth6VHiRnhXXmB0D4n1qrEchQNuoIh2fJZqYBtDtdpHNZhEIBEzCO+csGo1iZGQEOzs7ePrppxEOh7GxsYHNzU0UCoUHIGXOi2302GtCjYeHrTF9Dnud6bk0FqbHD8bJY6C4TvGwGVQPi0spdMPPVcBRiPN/VXbsR8XcEoWuuBG1b5MKOwpYp9OJnZ0d7O7u4tKlS/jABz4Ah8OBO3fuAADu37+P7/qu70IsFsPdu3dNzMrj8Rg48Mtf/jLa7TbOnDkDl+uo1QnhGF6H96sK5qQYlMJoKkgcjuM6fCpcNR7F+BRjelQ8nE/eAxW3epo8L9+VwrJqSQPHsJ+y/ur1+gNQYa1WA3DsobFgMY0Q9aR4jyyNxXul8uP77fWOiSKsWsIqFCpAbZhLPUkqbFVoqpiUKacEI62GoiQEGj1qlFAhlctlOBwOxONx1Go1rKysoFqtYnJyEh6Px6RKdLtHZahKpZKZE+DIA3v33XfR6/Vw4cIFDA0N4fXXX8ebb76JfD5vlB/nku+O60f7x2mcis+pRiPnTZUXDRM1UnSO7LiWrnPN3xyM4zFQXKd8KBxBy1gXv3plCp9x8FgKCIXJbEXI7+lmsqEhhXpUYNXrdRQKBdTrdUQiEYyPj2NlZQXDw8PIZrO4ePEi4vF4X/IrBf7IyAjW19eRSqUQi8UQCARQrVb7auEBMF6J0+k0gpbjpHgJ40sa42IsTK1e9Rx5DD0EzgvnQo9XL0UZaVopBOjPUVM6uVr4FHhaPaLdbhuBztw43iNjRTynMg4VmqIQ1blg/E29L2Wj8p4B9HmB6uEqxEghrN4W54qeJXPR1GvVZ+f8aWV6XaOMkWYyGZTL5b531+0esVmDwSAqlQq2trbMcyQSCQBHEOPVq1dNaaj19XXs7+/3KVs+P5UVFZKuQY1bUVlprFTXEver7kmuL77fk8hE6okNxsljoLhO8aCncVK8xcbjSZFWaIcCQ6EN3XC93nFCLXAcZPZ6veac3NT0ukhM4HkYwM9ms7h58ybm5ubwxBNPwOv1wuE4ajyZyWTQaDQQDodNh1rCfhRMd+/exf7+Pmq1Gn7iJ34CLpcL9XodbrcbHo8HXq/XNJssl8sPQFsav6NnohAnhWy5XO4rgEuBSy+EDDQ+I4A+AgIFN+NNWiaJnqQt1FVIK4lEvTkqFHqgjUbDMAQpHOmh2ooP6I8PcX61yC4FLhUJj+f6UONF41Lq2fE8ajxxaPyOxyj7lWkTzOnrdo8KBFNQswYlvSZS9gEYY6bb7eLOnTuoVqsIhUIAYNIKpqamEIlE8LWvfQ0ejwf5fB6pVAo+nw+FQgHnzp3Ds88+i1KphHfffRfvvPOOSZDX/UFFb8N93HP2euKcqTJThaWGjsa7aEycFALQ7w/GyWOguL4Nhh3w5WdAf6sJjevwM+AY1iB8olafWscafNfr8trqfSkdnXGKQqFgyjxFo1EEg0EMDw8jlUqhXq8jkUggFAphaGgIkUgE4XAYpVLJnLtYLGJ5eRmVSsWUhSJRg8cEg0H4/f6+dh3qESrbSynYfBaF9tTzUkXC+aEStD1UFWz0sKg4aWhoYVwVhhobUY9EvWfekzIqFXoEjstYUciRVahwJyEnhb50DSmbkYpKPSV6durZUsEr0YOCW4WyEnv4GWFLvjNdO4REbSMNgEkDKBaLBgbVxrM+nw8+nw9Op9M0II3H46aLdjAYxPz8PILBIO7fv286d9NTVZjUngcduq9o8NjkHc6LTWaiMcH1pX/n93XOFMoejAfHID37lA9uDLXwgAf7+9D6VbiBvyscYkM5KoQ1nqQCnxvNFkRAf8fgWq2G3d1deL1ejI6OYn5+HuVy2VTl7vV6iMViGB8fx+TkpKlRSOip0WhgY2MDW1tbfXAKlQ0tdgon3h9wzJrjvWo8hQJKGXg6D1QuGqOwPVfODwc9LVVg+l5OUoy8Nu9VITh6sszBImVeYzXVahXVatWkOPD79BD5Lkjh1ioUVIR2wisVJ4dCy/YzqwHEOdW1ph6Jfg7AsEN5HBUpYUuuA42r0RggFJ3NZs31FdKNxWJwOByoVqsmRhaNRhGJROByuTA5OYnx8XE4nU5sbm5iZWXFrGFFH3jfev+6vtSg072nMLG97v4iI4VrTJWUGlkDqPDhY+BxneLBRcy6dRp3YWFRCiDGQYBja9yuQGBbwYwNcCMqFVzhIgooClzGkdQr4PevX7+O9fV1TE1N4ZlnnsFv/uZv9gnlixcv4mMf+xjcbjdeeOEFlMtl40nVajVks1n82Z/9GXq9Hq5cuWJgIxagTSaTpgNuLpcz88CkU3oYKlxUgCiUR8FAIayQj8K0ml+lwlfn04bglCbP8yls6/F4zLwA6INtKSQZtwGO+k3l83lTIULz8FQB0KtRpUXlp1XvOTSupoQT2+JXb169Wo3T8X8V8Pbn1Wq1T0hrEV8Kdd5HtVo16zibzZp+W91uF5lMBgcHB0in0wgGg2i329jZ2THdt5PJJMrlMmq1Gn70R38Ufr8fxWIRn/vc57C8vGyMCsLAnHeNF9qwrCoTNSg05sc5VViQ39U8wW73uH8e50vXKdfZSW1eBmPgcX1bDLWIFZpQIaQKSr0JHque20nBZg7b0laqL69jQxjcqC6XC8ViEZubmyiVSgYy3NnZQSgUQqFQQKPRwPj4uEkYVeVKoZHJZLC6ugoAfXEaAKaUFBsGEg6jkKHCUBhLvScaAOp98X+FGG0KOpUhf9fuzPSQFC5kxQslS/A66tEpvPawxGBa74zzaWNJfU+8Nz4f3ztjd7Z3Zb9zzoEtTHVObc9SIU4V5jR6+DxcZ/quCXOShKPeDu+FxkClUjFtS4AjZVYulw3Mx7YwwFH3gcPDQ2QyGUxOTiISiaDb7RpvnvNKpa3zoPtHDUM1QnRe1ahTz82GlTXeae8n3XP6+wAqfPgYKK5TPHTxc3CTULgotEDBojg9v2MLBgoPZcAprKS4vAp123Pj95Q9tra2Zizi2dlZU8FgZGQEu7u7fRUleC/KCiwWi1hdXUWlUjHCSze3x+NBOBw2c0Jat0KfOi8UaCp01VOlwlFKtLLpFP7i8wMwCoHzo94shaJWzOD88ZqqrG3FxWNIoLBhQ75bHkdlqEnKXBO8hl7/JFhP4URdX/Y/9Sz0GNvrsL17AA+8H4Wt1fPRmGylUkGhUECtVutb03yOcrmMSqWCTqeDUCiEqakp7O/vIxqN4sknn8Th4SG2trZw48YNs6Zs4oxCgupZcp7sueI64DE21KjPrAYDr0uPWedMjRlleg7Gg2MAFZ7yYQshCjv+TasOUEhpcF4LlJKsABy3WtdAuio2GwbR3C4G+3WzqvJ69dVXUavV8MQTT+DZZ5+F3+/H22+/jVQqhb29PeRyOcTjcZw7dw7NZtPUixsZGYHX60U2m4XD4cDOzg5mZmb68my63S4CgQBmZmbwzjvvoF6vA4DJUdL4DEkdyoyjYCZcRyGhNHbOkbLj+GwUslSUhOk0/sN3QgXA6+m9cah3rO+B7EYyBXkuCnNCnnq/tldNxcr7pnehJAP+r/EkO36j6RRcc+oV6LtRI0tjq81m0/QCU6+Ja1DjZIRo5+bmUKvV8LnPfQ75fL4PygSAmZkZpFIprK+vm/t65plnMDw8jI2NDXzwgx/E2NgYvvKVr+Dtt9/G9evXTc1LVtVX4o8da7L/VyiT98450ngm50ULNvM4m/QxMjJiWtBwHgaMwv/xGHhcp3yodaqDglAhGxuDJ5NLFQs3F3/XKt5KFOAG1TiFWs26+RTaGhoaQj6fx/LyMlZXV+F0OnH27FmUSiWMjIwgHA6jWCzC6/ViYWEBs7OzCAaDfV6ACm7GtrRiucPhQCwWQywWQ693zHxTqIUCwPYkKYi1UDBwXHSWz2nDqVRAOlc25ZuekVrg9pzyH5WSenvqZVDI01vS3Cv+Y94TPWctXWRDTifBeif9ne9QyT6cA3023iefRZW0CnJdNwonalyV82t7OixdRSYhawQSMpyenjZrh7C0y+XC/v4+zp49i3Q6jW63i9XVVWxvb/fFHlXpq0KhEaEwH4d66lRMmkBue6k8p0LNfHc2nM9z6F4aKK+Hj4HHdcrH0NBQX44MPShuBBVEjUajb+GTTGDHTOhZqAUP4IFNpzk+jCVR4VGxaDyEAqTZbOLWrVvY39/H+Pg4Lly4gHQ6jbt372JhYQG3bt3C1NQUHn/8caRSKYyMjODzn/+8CYjHYjGcOXMGq6uruHfvHqampvD888+jXq+jXC4bxtgTTzyB69evY29vz8RJut1uH3kBOE4M5f3x+RkfUciKFrN6KoxpNZtNk+OmhXg5D6TuK1uN70EVu9PpNDAi6+qpZa7H8v4VtlWPiO9UoUq+L86BzZAkvMlBkggNBnoKNHycTifq9br5vnpvnB968HbVdq7TUCgEh8NhjIxer58IwRYnfB4AWF5extraGg4PD03Nxs3NTXS7XVy8eNFUYqEHmk6nUalUcPv2bfyDf/AP4PP5sLKygjfeeAP5fP6BeJZ6OKpcda451COj8UQvT/ebxvi4jjR2xnNxXjSRXGF3je8NxoNj4HGd8qEQnf2/sgBp4dpWmgottf5VuFEYaiCZFrAdizoJKlTLUS37fD6PxcVF5PN5TE5Ool6vmwre29vbGB4eRiKRwNjYGLrdrolVsQEgm/yxrTqZeIxTRKNRxGIx+Hy+PrgHeNAr1JiExl4UFn0YUUXjMvSUVMnze3wP6vUAxz2XbK8QeJDkoF4ZcKy89LsaA1HaO+eP9Rz1ndvfPTw8NPEzJSDYhBSNefLvdixNSQr8Lr1RnSd+bsOe+h0AxotcW1vD5uameRdUPOFwGFNTU9jd3cXOzo6ZZ5/Ph2w2a85RLpexs7ODfD7ftyZ0vSvxR+NbSl3Xn3ncSQQfHqNkJVtZ8fwnrS2Nbw7GXzwGiuuUDxuu09wZjZucFOCmUKXgUiiDG5KKi4JJ4SPCNsCD1GYVSoSp1EqloNnZ2UGhUMDU1BR8Ph9KpRLcbjfu3Llj6N7pdNp4hsFgEJFIBF6vF5FIBE6n0wgoPisp8sFgEOPj44jH431ei8abgP5YixZyVebdSfCQKnnSydXj0JgQvTAKK1UUakzYcB2/r4rCLjZrK2Dej70uRkZG4PF4TII2n53vTxUI4Tleh56orhneD+NsShywn0OhXnu9cC0ocsC5UAVHZeZ2uzEyMoJMJoNKpWK8voODA5PQHolEsLy8bLoNsMdWLpdDNBpFt9vF/v4+tra2+jxvra+o69ueI/Vsub7t92AreT1GoVSFITkf9rpTQ1L34GCcPAaK65QPKhjdEBrL4gZUK00FiW46PY5CUwPkFCKEk5gTxL8plKEKVH+n5U9hs7e3h2w2i1gshosXL6JcLuPRRx/F/v4+7t+/DwC4cOECnn32WUSj0b7yThcvXsTFixdRrVbxqU99Cu+++67xJtgP6+zZs3j66adNHT9NZqVipTJSK5hWsUJ+nE+FhVRws/wUCTDamZhzzLicGgaMRSl7jAof6M8RUio96fSM75CZyfdj5241m03ToFK9In3v+s5U0Cr9Xwk8qigB9BUO5vpUKFXjjUrh13glY3f1eh31et2sU6fzqCUOAGQyGeM9BQIB9Ho9lMtlJBIJjI6OIpfLod1uIxwOY3Z2Fk899RRGR0fR6/XwoQ99CL1eD4uLi7h165Z5j1S6nHN6wdrVmgYU3//w8LDxTjl/3Dss7ss1Y6da2EpMv6/Kk/emil8Zv4Px4BjMzCkfhANtwUNhRytWrbeTLHS19hQy0XMC/Swy3cC2pfwwCITn4320220jyGOxmPGELly4gFdeeQWNRgPJZBJnzpxBq9VCsVhErVZDvV7vSz7e3NzE8vIy0um0edZGo9FXPoqCUefLzl1S61e9BX02FaRUUnwXfD711uil8PxqbKig0nugd6FKi0OPVwiW86lUaQrebrdr4nxkyun39Rp27Mb27GxCgg5dXzb0pfE9NZDU+9I54jPxelSUpVLJxLIYS2Vdw3A4jFarhUqlYpTZI488gkAggEKhgLNnz2JqagqVSgXb29vI5/N970ihS30XvD/1nqiQ+bm9b3St6fuyPSxdN4p48O+2p0vG6sDjevgYKK5TPriBuIHtzaBVH+wNw01plzyiwKCVRyFrQ4f8uwpDW5FpRQ8eQ+VHr6RYLKLb7SKdTuOxxx7Dq6++ilQqhcXFRayuruLcuXM4d+4cJicnsba2htdeew35fB737t3DrVu3DEzIAqpzc3OIxWIolUrwer0Ih8N46qmncPPmTSwvLz9Abbe9BXo/FJpaGUMFCoWukjRs+jbhJqYgKAPQhpKU1Umvi/Ot8KXH4zHJ2XwGUsT5LI1GA+12u49EwndOBa4Bf3p9fAbg4TlHfI/02nisrgmFwuyEZaZd1Ot1NBqNvvXF56cnCfSThHZ2drC4uIjd3d0Hcv/i8TiCwSDy+Tw6nQ6CwSDi8ThmZmawurqK119/Hb/wC7+AQCCAL33pS3j77beN13aSUcf54fuk98T51Hej71uNOp672+32edq2cQIc11yk4eFwHCfP83NFRgaxroePgeI65cO2umwLj4MMMlVouvDtStQKEan1awegVRmqV6fXBfop5EoaaTabKBaLBpJj/GF9fR1erxepVMpscr/fj9HRUQQCATgcDlQqFZRKJaOw8/k87ty50wePccOzlcr6+nqf8lSSBJ/bFjyqsPk8fCZ9NoVDKbz1/KoMFW5Ur0SZc0q84LxxnglDMVZFGJQsNioU/s45ojDmM1Ih8medA/5se0Mac9LP1UvhO1Y6O5+F98T1qEqcSl5JMISXCS2z8LIqE7/fj6mpKTSbTXPOaDSK+fl5NJtN3L1711RV6fV62NraQq1WewA1UA/X9kb1HdsxRn2HGo/iM2tMTPcAFRkVkaZl6L3puRXOHIyTx0BxnfKhlrRuIM05YjzBViJa6VytOAp00uX5HW5s1rpTyIvWI8fD4CIeQ2p4s9lEPp9Hr9eD3++Hz+dDMplEIBDA/Pw8Op0O9vf3sb6+jtHRUcM0dDqdyOfzJsGYcbatrS0Tazp79qwRbqTRRyIRFItFADBtXtRr0DnkUIhTlTMVCedBW2/YeU9amkoNAaA/VkSBx7iKXfrJVgQcVHQUgsrkowWv96CeBZ+DVfH1b/ZasxWuTVzRuIwKdyXmKFWegphrTosBK92fMbpcLmc8RrZ1GRkZwdTUFJLJJG7fvm28/EQigfHxcSwvL6PRaODs2bNwu92o1+vIZDIPtKNRRcR5tGFjNUz4DFzTquztPWCzUQk36rxppX1C2FryTL1aGz4ejP4xUFynfFBocmhuEP/Of2rBqUcAwDCy+F1CQoyL2JuWFj6Vgp5T70stSA6l2A8PD2NtbQ1ra2t49NFHMTc3h729PbjdbhODqNVqaDabuH37NkKhEN7//vcjk8ngxRdfRL1eRyAQMAp2a2sL+Xwee3t7SKfTGB8fR6vVQj6fh8/nw3d913fh3r17yOVyAPBAC3YG1TWOpF4B6eE2DZ3PRfYdIUIeax9/eHhomIhMnqYAV2+vWq0ao4D9ybQ6PxWT9mVrt9sGguM1bSiOpBJV0MyVUkHMrr5cJ3YSrcvlMt4f4UaPx2OUCs+jc0ABTQOIv9vK3+12w+v1YmRkBGtra1hZWTGJ6r1eD4VCAU6nE+95z3sQDodRrVbN/Hu9Xly8eBFerxe3bt3Co48+iieeeAKdTgd37tzBrVu3HoB++Zx2zI1zq4YEDQtFEvT9qlfGvaMIgMKNCgNSYfHeuDbs4wfe1l88Borr22CoZcdNr6VquMGUhWRDWMCDpAqem9Y7N5wy7ihwlUigFqF9DxSaVIZO51G34sXFRUxMTCAUCplOtvfu3TPCxOPxwO12I5fLIRAI9Al8Cqtms2na22ezWWQyGdNziYNtU9rtNvL5vBGodtxPhROFicJ3J7HA+HyaM6dwIs9PhaDnowWueV4aQ9N3wvenP3e7R6WuhoaGUKvV+mj6PEej0QAAozDUs1Gqvpag4jOosOT8KCNVY3O6Lm2YkXOh0KGt+Hn+QCBglPX29jZyuVyfYB8eHkYkEkE0GkWnc5S/53a7jVfucrmQzWbhdrsxOjoKv9+PcrmMra0toyxtIoSNEHB/8HltqFX3n50CovCjem3qYasBokqOx2uMWWOhg7JPf/EYKK5TPnSRq8LQDaCJjnYMjILA4ThO4ASOS93oBtUYDo+hFalQEPBgPzDdwPy7/nz//n1MT09jfn4ek5OTaDQaKBaLhl7ebrcxOjpqIMJkMol0Om0qNrCCCJ+hXC5jZWUFY2NjGB0dNbX7fD4fUqkUWq0W9vb20Gw2TSUNW9nS+td50GaHdg6U1i1UoWYzyoBjerkqdK3QToHOpGpbSFG485/TedTSZXh4GPl8HoVC4YE0CRah5b2yxJEW8lVihHrKKmCpoNrttmnQqGQXW/Crp07DgILXFtZqFLGvWj6fN5UttNN2PB7H1NQUut0uCoWCUYakwHe7Rx2Rx8fHkUgk4PV6sbKygo2NDfNsRBVsOO8kCJ7zw73C98SYnc6Rzj0Vtc4N16uuBSUAaYNPVZQDQsZfbgwU1ykfCjWoEqJQ4tBNx2Pozahw43dUsHCD2V17lfk0PDxsauupsOY9au2/TqdjlEWv14PP58PS0hJarRYeeeQRfOQjH8EzzzyDO3fuoN1u49y5c9je3sbc3Bze85734IUXXkA0GsXCwgJ8Ph/W19eRzWZRLpfNc9RqNXzpS19CvV7H448/josXLxohFI1GEQgEUCqVsLu7i0aj0RfPANAnKLSFPBWpEi2oOLRArBIO6Jmqha/QHu9ZIUT1auwgvwo6pjtQcTQaDZPD5PP5kMvl0Ol0MDY2hkceeQTVahXLy8umw284HDaUfiVn8B0znqQKRRmkNFqUcMK8NvXk1bMEYK5J4gsrjrBbMRXW5uYm1tbWUKlUTG5Xt9uF1+vF008/jW63i+vXr5v3ce7cOTzxxBMYHR3Fn/zJn2B3dxe/+Iu/iImJCXQ6HfzZn/0Zrl+/bhTDwwgp+rMiGBrXpWfFvcRnVa+Vz8x9xGM1cV+hXCpIPUaVKA0pHsu9ORj9Y6C4TvlQxUPBDBxXJuDmVA+CcB29MRsuUQtaax/SytTjFD7SCgQa87Ita0KLtFwpwHO5HFZWVpDP5xGLxXDhwgVD3KjX62aTJhIJFItFhMNhRCIRVCoVbG5uGpiOAnR/fx8rKysIBAKGjUglOjw8jPn5efj9fhQKBTMnlUoFQD9jUOnY2lRRDQP7nXAe9H7Uq6HCodKzg/6cNyoy9aT1vnTk83k0m03s7u6axF3G8pjLBsCQU9h0kTRtzou2YuG1+DvXmOa/UVDzPdNLoCLnGqSQVkVHhU6FyGs3Gg3cu3cPOzs7KBaLxhtpt9sIBoOYmpqC0+k0UKDDcVSR//z58ybReG9vD1NTUwgEAuh0OigWi1haWkKpVDLvkvdjw4W20lFvCugn6jDVgftD943OkXpgqgBtb5rrw74nhbRP8sIH43gMFNcpHzYZQll7aglyoSvWfhK2TzKBQh6Kt1PQKhNKC9jyWkB/jIMWKIPUtMpVqFerVSwuLuILX/gCnnzySTz99NMolUqmHuGrr76KnZ0dnD17Fo1GAysrK0gmk3jsscdQKBRw//59I0ioIO/fv49cLod8Po/x8XFjjXs8HoyPjyOVSqHb7aJSqWB/fx/37t0z3yXDjUJRyQ2q0OxCqVSCOo+cY4WR+Nz6Lvl3tmGp1Wp9BgHPQwKGCsdOp2Pa1G9tbcHj8SAWi5nY39LSEjY3N1Gv1xGJREy9v06ng0AggEQiYc6tkKEyDbXFBj1DAH1sQN4/YWRlWFJxK4Td7Xbh8/lM8WUq3Vqt1tdnzOl0YmFhwRgcr776qlF24XAYc3NzePTRR7G3t4evfvWruHLlCi5cuIBWq4XV1VXcunULy8vLfXPPZ1A43IbS7bgvlYgagFwj6inrHuH37HQKhfj1e0RQOGcaBtC9PBgnj4Hi+jYYXMCab8ShG083GYWs4vPcaKp49PwapKaAU2Gqx2v8xhZS6oXpfVCgr66uGiiQlRDGx8exurqKra0tnDlzBl6vFw6HA/v7+/B4PDhz5gz29/dRLpf7SiZ1Oh0T7yqXy4jFYgCAUCj0AOHi4ODAFOjVOeJzqEBTb9Jm4qmyVxID/65zo8pLY34aw+L70BgkPWgK3sPDQ3i9XszNzeHixYtYXl6G03lUtT2Xy6FarWJpaQnFYhEjIyMIBAJwOo/p1ryeQpWtVquvpqF6DOrZ8365HugB8d2rccX/e72eqZnYarWwv7+P/f19bGxsAEBf6SzgqKyT1+tFLBaDx+MxlfOTySSy2Sy8Xi/S6TQODg5w9+5drK6u4iMf+YhpbbO3t4fFxcW+2B0ND4W1+Y7oVdvrX9+7xpv4nuxYrhou9j5Rr033m/2/xt6UCDRQXA8fA8X1bTDUI6JQJEzDf7Yg1g1rbx7dyNwgCivyOOCYoaaf6ebV86pgVquVipPW5u7uLm7fvo2rV6+a+oRTU1M4ODjAxsYGcrkcUqkU0uk0tra2sLW1hWQyiZmZGdy4ccNAo/R42u22yf959913cXBwgGQyaQL2yh7UuAG9Q/VcFZ5TwWUH5TUxWD0tZfkp3KNQHABDyadVD8Ak12q8LRQKIZ/Pm5jm6Ogo0uk0AoGAUUTb29u4d+8e7t69i8PDQ4TDYXMPbJY5MjJilJauB43dUDHZ8S3OC59T0wEAmPdMejy9V84RPaJ8Pm+MGD1nr9czCsvv9xvYb2xszCQVJ5NJxONxrK2tmWTjsbExxONx1Go1bG5uYmNjo49oo8iDxjSVHGMrJ43J6bu3j1VFzz3G/TkyMmLaxCj7UOOgGkNTL17nczAePgaK69tgUDhqPEs/488UZqpotIyNQj12/IbxKO3mq8pIFaN6XNy8dhBcNx8t/1arZcoO3bp1C5/97Gfx2GOPYWJiAmfOnMHk5CTy+TxeeOEFxONxPPPMM6agajabxfz8PPL5PLa3t/tgvl6vh2q1ikajgddffx137txBJBLB+fPnEYvFMDMzg3A4jPHxcQQCAWxsbGBnZ8fQq9WDaDQaxtvhs2mgnc9oQ0WM+QD9tGkqCc350Zig2+0278CmWw8PD8Pv9yOfz5vYTyQSQSAQQCQSMYpsamoKLpcLL7/8svl+rVaDy+VCLBbrg+L4/vW9nRTjoYelngs9SxX+VMCEH1n95PDwEJubm8hmsygWi8jlchgaGoLP5zNEjUQigUAgAI/Hg0QiYejvVPi3bt2Cx+PBE088gUceeQQOhwN/9Ed/hHQ6je/5nu/BxMQEhoaG8JWvfAVf+cpXsLu725fSwXeoSojPr7FHvlMmcCtSoMxE3XP6XhUmVaiZ1+I5lNhhU95pONr7ajBOHgPFdcoHNwkVhm2JnQSFcNMpnq6WniZDKjymm0YVlgaZT6IUc2hsgfel1QJUGADAzs4OIpGIidWwkngoFEI2mzWNKMfHx7GxsYFer4eZmRkMDw8jm80a0oXmcbVaLRQKBcNOCwaDqNVqGB8fRywWQygUwszMDAKBABYXF00hXxJbOCeaZ6XC2n5e4LhDskJPKvT0PfIYTTJWdiKPJbGgUqkYVmQ6nUY4HDZEB7/fb7yrubk5eDwelMvlvhSAk6jcSsKw70GVEgCTkO3xeEzldK4VhdNYV5BGQKVSwfLyMkqlUl+SNqnprHwSDAbN94PBIIaHh1EoFExL++HhYaOYd3d3DWwci8XQbrdRrVZx8+ZNZDKZvvuyn1mfSeFfjS0phGsbbLoH1YjTfaPzdxL5SZWe/ZkqUDvmNhgPjoHiOuVDFQ6HLmilMTebTfMZgL48HqC/lxcVGz8H+ls26CYDjj0qWoY2XEjojoKSsJFCT1o1weFwYGNjA4VCASsrK6asj8/nw/d///djaWkJb7/9Nmq1Gubm5vDII49gfX0dHo8H58+fx9jYGP78z//cWPz0QHjtRqOBcrkMh8OBxcVFBAIBBAIBPP7446aH13PPPYdSqYR79+4Z5h0Th+lxUFhRqGkyr8YL2cpFY1acr6GhIbjdbqOsqJA6naPEayXYKKuROVvtdhvj4+N48sknTZyHCbisQnL+/Hm85z3vwZtvvolsNotgMIhkMmkUAPPhaFTw/ilY6WkDx4WTKfxVIXEe2NgzEokYeI9J4VRYfOdsVdJutxGPx7GwsIDp6WnTLLTdbuPMmTNIJBJYXl42ycjhcBhXr15FIpHA9evX8cYbb+ADH/gAZmZmEIlEkMlk8NZbb+HNN9/s83RsRMKOZVKx2HC3xsQU4eB82BVkuE/smK7NvtXST/Ye1jgqY342XD8YD46B4jrlQyE9hRUUhrLxerUibS9A8XXb2rQtVYUXNS7wsPtgTpJSfZVQokKdx1erVezu7mJ5edlARmTOLS0tYXV1FcPDw5iYmMDU1BSuX7+OVqsFr9eLsbEx7O/v98GaKqiAo3hBo9FArVYzLS7y+Tymp6dx4cKFPmp1sVg0beKZA8e5sBWSCjL1evUeeLySLHg8Y07qhRH+7PV6CIVCRtGHw2FMTk7C6/Wi0WiYli+1Wg337983XaSvXr2KarWKr371q6hWqwCAYDBojBS+CyWiqCLj/VOA6/qjIcI5pcfHZ1tdXcXKygpyuRyKxSKGhoaMUub78fl8uHz5MmZmZhAKhbC7u2sIIrFYzJST8vl8AI6qoMzPzyObzeLOnTtwOByIx+PG69za2sLt27cNFM37t2OMttdlrxfgQZIF50UZiUo+USjYjoXapBD+XUlRtqerClPX0mCcPAaK69tgcJO53W4jEBW+4O+0mk+ChFSx2VCF0tb5/8NymIB+VqFuLlWiajUqzNjr9foSeZ3Oo2TixcVFI7CSySSSySQmJydx8+ZNvPvuu0gkEvD7/Yaw4XQ6cf78eZO8ynp6JGzo3NFLqNfrWF5eRrVaRaVSQSwWQyKRwOzsrIl97e7uAjiuYt7tHvdHAo4rWtgwK9BPdLHnhD8DMLEeQrlUklT0jG3xs1Qqhfn5eTgcDhPLY7+pt956C6lUCp1OB7Ozs2g0Grh9+zZKpRKazSYymYxRIFqYl+uCigc4ZqWSoq7QsRoiZAuSxJDNZvHuu+8ik8kYRUQvjTBqKBTCxMQE5ubmTCy2VqvB7XYjHo8bFmk0GkUymcTy8jIuXbqERCKBr3zlK6hUKpienkYkEjGxxOvXr2N5efmBmKLtTdmGmXpJQD/ioJUtbIafGi6MQ+p7PmlfqFerc6m5Zbaho+jGYJw8HL1vw9kpl8sm2fI7fajgp5BTIoR6FvwbIShlKtmBZY13cXNSCBMKIcGCm1QD9raHw15D6qXQq+KwE3cJw/C54vE4Jicn8dGPfhRjY2MolUpYXFw0RXMvXbqEixcvIpPJmPYmLtdR65SlpSVks1nUarW+iveacMvcIZfLhUgkgsceewyjo6P44Ac/aGJFu7u7KBaLuHXrFqrVqqGhUyFqG3udB4fjqPWGzqEqcvVOeZ5er2cENmFCehzZbBa7u7uYmJjA933f9+Hxxx/HyMgICoUCWq0Wbty4gTfffBMvv/wygsEg5ubm8MM//MMIBoPI5XKm83SpVEKn0zHtZZxOp2n90W63Tf1DxugYZ+P7p5dGuI9/Y2ypVCqZQsF8r6wnyPXldrvx3ve+FxMTE0bptlothEIhLCwsIJlMmjheLpfDpz71KRwcHOBnfuZnsLu7i//23/4bLly4gMuXL5smkffu3cN/+A//oU/InxRHopKwPXHuCT6Prk+uUX6m5a5sWJDH0iCjp8c9wORlGpb8npaU0r3M79tG4XfyKJVKCIVC39J3Bh7Xt8FQmMlO7lRLThWVxmds0oVCGEoesK1RQo08pwoBbmLgWLlyIypNnZuPmxY4phIzlsNn2d/fR6vVMrGsQCCA8fFxDA8P44tf/CKWlpZw4cIFJBIJzMzM4O7du0gkEkin03C5XPB6vVheXjb3R6GmLdWbzabxFMhC297ehsPhQDAYNASIw8ND5HI5lMtlI5j5nCRrcPCdqMdn16CjdwPAsOqU9cZ31Ww2UavVsLW1hXa7jbGxMUxMTMDv95vK+M1mE8vLy1heXsbW1hZGRkZQqVQMc3JmZgaTk5MYHx83FUkKhQJu377dV+Kp2+32JRwz0ZcUeq4neqyMbRUKBeRyOWxtbZk5YF4W1x5wRLgIh8OIxWJIp9MAjqrhUxmkUilT3YNr7I033kCxWMTzzz+PXq+Hzc1NOBxHnY8DgQBarZZpNkmolbliqgS4XlVhce0qXKqGhyoS3QMcCqmyMooaj4xPqcKhMaDJzLxHjbvp/tRczb8qyutbHQPFdcqHQkk2C0qHbiCgv6Mtj1WK+kmsJm4gXk+ZckxkZV4XYS4KD42zqdVuw4b2tfTzw8ND5PN5vPPOO3A6nbh8+bLp35VMJrG3t4dMJoN0Oo2JiQncvHkTlUoFo6OjiEQiiEQiaDab2N/fR61W6/N27Pno9XrI5XJotVpYW1tDq9VCLBbDxMQEPB4Pzp07h2QyiVwuh3v37hkPiferxBY1LPhPA/RUZlrTkLlJlUoF+Xwe1WrVKHvWhIzFYrh8+bIpe3X79m0Ui0XjYVLRt9ttZDIZfOMb30A0GkWj0cDo6ChCoZCpnj82Nobh4WGTgH14eGiIEUNDQwbeo9eo1Unq9brJJTs4OECpVDJkD51XehYkuoyNjSGVSmF0dBQOhwP1et1456FQyEDDJKQUi0XcuHEDFy5cwNWrV7G3t4elpSVEo1HDOi0Wi1hZWcHKygocDscDkB5jU4x5KSHJVkK2olCFZys9Xae6tm2mqB0/VuPOzuvT+1GDURXrQHGdPAZQ4SkfFJC6AbjRmA8C9HsxtkKwz8U4BM9Da1o9CVvY6ybSPDAN5Gvelg4KQLUkKVCowJRJFwgEEA6H8VM/9VOYnJw0VOjV1VW89tprWFhYwKOPPoput4s33ngDTqcTf/Nv/k14PB7cv3/feCIsL0QhRcFBRcI2IAsLC4jH44jH43jqqaeQSqUwOTlp5jGTyaBUKmF/f9/EcXSeqOQJrfEzwpRUFk7nUYuXVquFp556CpcvX8Y3vvEN3Lt3D/V6HdPT0wCOrPmLFy/i/PnzmJycxP379/GNb3wDf/AHfwDgyJOp1+umJBRhPHpXGmeamJhAOBw2MUIVsuo1NBoNHB4eotlsolAoGKIIvTImL/Mf55MK2+Px9DU3TaVSeOqppxAMBtFqtZDJZOB0OnHp0iWjwFlwFwA+/elP4/bt2/jIRz6CCxcuoN1u43d/93dRLpfx4Q9/GAsLCwgEAnjhhRfw4osvIpfLmXXGPmOqDNTA4z0qAUXjTScpNM2X5LPy72r8qOGne04Ti/l3+3+iE9xrtvLV+qDfyWMAFX4HDt0U3FQ2Ds7NpN1UbXuEwtS2PBUSVAvRDmoD/VUW1PvQ/7kJ9bwnWZknKUjmJzkcDlPGiTX2otEout2j9igbGxtwu9347u/+bszOzppqGfF4HLOzs/B6vUgmkyiXywbuUxjUjtHlcjk0Gg2USiVT+4/eBz2+YDCIcDgMr9eLer1u4l/0Wgin8T25XC6jPOiBeL1ek4AdjUbhdrsxMTEBt9uNkZERLCwsoNM5KsA6OjqKaDSKra0t3Lx5E2+//XYfhMp50ir8hM3a7TYqlQoODg6QzWZNDpbf7zfxOq4VeizM1yIcyFgpc7dUaSlZQd8zcGQcsTNxKBQyHlivd8SUZI1GLTe1u7uLtbU1jI2NYWZmBp1OBzs7O6hWq5iYmMDo6CiCwSBcLhfW19eRz+f7DCd7nau3Y7NhdT1y3aoSU4RD94nC4XZsyob9dF0rLMu1QaWkilT3kx1DG4wHx8DjOuVDPS5VCApZaNIs4ybM6VLFQgGjnhoHrUyek9fg5rOtyJMUqH7XzmWiFamkDHoM/DvhNK/Xaz6bm5vD5cuX8T3f8z1wOBwoFAq4desWrl27hg9/+MOm2saf/Mmf4OrVq/jQhz6EbreLarWKGzduoFgsYnFxEdls1jDyVMCot9hut+H3+xGJRPDUU09hcnISqVQKs7OzprElvRQK+FqtZjwdVmWnwmLcSGE4zlsqlTKsO84985foJR4cHJhKIHt7e3A4jijlfr+/jyzD++faUCIFj6GSJSTLOBPJMVpkWIU7FaF6lFRsfJ9+v78vwZvpDGQP8jzDw8Mol8vI5/MAjjzEO3fuoNls4sd//MfN8VtbW3j99ddx5swZnD9/HufOnYPD4cC9e/fw67/+6yiVSgaqtgsRMxVD6eg2NZ7PwHWvSkLjs2qM8X8blgTQt5ZUgWnskO+I96L7xN5DOs9/FUo/DTyu78BBhUGhSUhNFZLNctNAs0KMaonawpsb2o498X8lelChqadm59HYAuEkmrBtXfJ+PB4PHI6j6gurq6vodDq4dOkSUqkUEokEzpw5g0ajgXfeeccE/t1uN9566y2cP38eoVAI9XodbrfbkDt2d3dNuSjmQfF+9bmr1SqazSbu3buHRqOBRqNhmH6Ew9SborAlpKbeh7Io1fJmPAgAstks8vk8stksrl27hmKxiFarBZ/Ph+HhYWQyGTQaDQOhct5ooCjEqoKP5z88PDT3GQwGTbUJMgXVI+FQmEwJNjw3/8bCuGzsSK8IgCGZBAIBEzdrNBpYXl42MT0SVN73vvdhcnISlUoF2WwWS0tLODw8NIxDt9ttmKRsS2MTLU5SLpxzrlEqI3uN6xxoDFgp9qpsOGxEQhENVaZahkpjZ9wX6uHx/Pa8D0b/GCiuUz5UuWi+D604bTSnMRxVUrqpARjPycboVZnwmrp5dPPS61Cqsb2x9Rxq8Sot+CSSBoW7y+VCpVLB2toabt26ZXKVUqkULl26hN///d9HLBbD008/jfe97334+te/jldeeQWzs7NwOo8KzJKNFgwGjUdUKpVQLpdNpfmT7mtvbw+9Xs9Y9MFgEH6/3+QwRaNR47HwuyxfRCFFuI1zr1BcLpfDwcEBrl27hrW1NWxsbGBpacnMh9vtRiAQwMjIiFGYgUAA9XodrVbLxKtonGh8knNOCJMCVOFFhb107ilc7SoUTCgmdOh0Og0cSGIM12OtVkOxWES1WjUVPPx+P2q1GlZXVw2TcW5uDo8//jjOnDljIMVbt25hc3PTEHIikQjq9TpWVlZw/fp1HBwc9FXxsBWXrnmF8dQDUs9f54vzw3lQNEP3hsLdqvD1Mx6jnrHuJXtP6t5RBToYJ48BVHjKh8a1ToIL+bluKG2gpxtbf1YPSuM+pIwrrKJsKDtuYGP8WhFclZnCKvy+NubTILUK2G73qPDtyMgIZmZm8Pf+3t/D9PQ0hoeH8eKLL+KNN95ALBbDxz/+cXQ6HfzxH/8xVldXEQgE8HM/93MIBoOmR1Wv18PW1hYqlQoqlQp2d3dRKpWwsbFhGGH0alhwlUKOxXhDoRC8Xi8mJycRCoWMInO73X2Ki4qFCbuc13q9jlKphJs3b+Lu3bu4ceMGKpUKisUiIpEIkskkwuEw9vb2DLuQFHV63d1u1xTPpeHCXC0qGYUR+RxcJ41GwyhVHq/fUY+QSqLT6ZhnTCQSpuAvIc3NzU1kMhkcHBzA4/EYwgTfM++fHvOZM2eMsmu323jjjTdw/fp1hEIhXLhwAVNTUzh//jxcLhd+//d/H6+88gqWl5f7PEneJ73nk7wZjVVpzElzs7iXVHFprEr3m7IWuU54L2okqFGmkLuNYigZg9/7q5aAPIAKvwMHFcNJVFoKVW4MxisY47JhC5vlpHEvhT0UErRjAnYQWc+hHpwNAWq8QBUnB6+pv2ssrdVqYXNzE++++y58Ph/Gx8dx7tw5ZLNZrKysoFQqIRAI4JlnnoHL5cL9+/fh9XoNOQI4EsJ+vx+NRgNOpxNjY2MYHR1Ft9tFJpNBuVxGvV7vg9q63aMOwjxHPp/HyMgIyuWy8TYCgYA5N2HEUChkaOaMi7Ggbz6fNyQTKgqfzwen04lAIIBUKgWH44igUigU0G63Tf4ZPR+SQShgeYzGuJR0ocpIvQSFnzlISqHCo4B1u91IJBKYmJhAr3dUkT+fzyOfzxsIj4pE75nv0+fz4dKlS0in033dmff39/H666/D5XLhqaeeQjQaNfNXKBRw/fp17O7uGuWiCfiqZPjMdqxIUQld2won2vOiHg/3FY0xhcl1PdtGnXrCmgeo19byUOr9/1VRWv+zY+BxnfKhUAW9GZIbgH64ghsbOLZI9fWqkqG3w41Dz0qtRIU77EAyz6cb7SSLk/fPc/A8VJRUtHof/J7N0iMz773vfS++53u+B2fPnsXa2hpeffVV9Ho9XL16FXNzc2i1Wnj33Xexvr6O9773vYjH4+aeC4UCdnZ2cOfOHaysrCAYDOLKlSuGgXft2jWTU0WBpQLf9mQ1+E6lRSVEJUJKPCHeVquFjY2NPmV0cHCAVquFVCqFZDKJQqGAarUKn89nKn4AMJ6gls/ie2ThXiVwsP4iDQV2tFa4jB6c1+tFIBDA5OSkiTMCMExGKqP19XVT6YLrgwqAzwEA4XAYkUjEGBlkQ/J58vk8FhcXsba2hkcffRTz8/NIp9Mm9ra8vIyvfvWr+NznPmfWMJ9bjTj1nvicJJsAMIaKohfMy1NoUdejohS8jh5re2p8B7p/FLbnXKmRqBVdNBbH9UQD4Dt9DDyu78BxEsym3otaeL3ecVt7bgg7iK8biRAFN5Ud4+JnqqxoQfI7GsAG+qtda/xE79/26Gy4Ue+F1ioZeIyTzM7OYmFhAdFoFPPz8/jiF78Ir9dryBjnz5/H17/+dbz88sv40R/9UVOd3ev1IpFIIBKJGKq83+/H1NQU0uk0Ll++jGw2i729PcOeUzIM700VAQUWK2dQOQHHiqZer5tK6Q6Ho69SvCoAKrhyuWzemVZLAWBytdSaV2+Z0JkmSSu8pf9IqCDln9AnB+NajUYDmUwG+/v7hibPe+MccN243W54vV6cPXvWNL4MhUJot9uo1Wool8vIZDK4desWDg4OEA6HMT8/b2Jlw8PDKBaLeOWVV3Djxg2zrvjsdnzIjq/qutbSW9xL6u3zWDXUFGqkkUfjy34XJykWPReVE40Hm/yhn+l+sWPFg9E/BorrlA+16BSq0JqE2g5BrVFVLlQaGvtQzB44tmYB9HkVpM/rxrahEP2bKjIqSN6XHXS2IUXg2MOz2XkszpvL5XD//n28//3vh8/nQyqVwuHhId59912cO3cOo6Oj8Pv9WFhYwPr6Ot5++21MT08bmn0wGMT09DTq9TpisRju3buH9fV1TE9PI5VKIR6PIxQKmTp8tVrtgXk/KVCvibmEpxizoKJSQoudkkDDo1gsmuvs7++buQgEAg/EOYFjyjvn3Y5fqafNAr70/hKJhPGoSPlnnpXL5YLb7TbFien1h8NhVKtVVKtVc88U7B6PB8lkEul0GlNTU4bQcnh4aFrIbG9vY3d31yRIM95FlmK1WsXS0pIp3KuEIDWcVHGd9Dvn21YIilDoz3b8SfeQGiuqALk+VSGp0jnJ2yLxg989CUYfwIV/8RhAhad8EDqgValQiSqP/6+9c4/tqzzv+Pfn+I5jO+DETkKckHEJKQQKtCFDVaWSlTF2a5mEKrSittpUChNtUdWyW8tWlWqTtu7WbtO2VprUonZau6n0RqHASsOd0IRAuAVMiC/YxHac+BL7d/ZH9H39OY+PU9JL0h85j2TZ/v3Oec97fb7P832e9z1LlixJFJAVlheTF4ff2WUvjHElT4Nooboce2rk5KX58w55moRPsTeYmpLiyR3xjMSieIWVu2lDZ7TNzR150+7NN9+sDRs2qLm5WQ899JB27dqlffv26dxzz9VFF12UKLe7775bAwMDamho0OWXX65Vq1apq6tL3/3ud/Wd73wnvRl5bGxMg4OD6uzs1KZNm9TR0aG5ubmU0GF6y6fLOzXe1jTfrWUga25uVlNTk6amptKBt25XfX19Doy8UdneGw0Caf48QH/e0tIiaf7EDNJQBkomZjixxDSa96zZoPCYjo2NJeB1vGzNmjVqaWnRwYMH9fjjj0uSli1bprq6Op166qnq7e1NwLh69Wo1NDTohRde0MjIiMbGxtTf3582eC9fvlyrV6/WqlWrkpfX2tqqLMv04IMP6vHHH9czzzyjsbEx1dXVpWQSj73XRVNTUzIKOI+ZlEEvjPPbZTDGRYMrHtnFhCePL8uRlHsDdtzALM0ni3i8uUYZ3yVo1qB6PmYpqcI3oBCk/NoSejUMRvtaf+a/uUE5xpak+fRbW+dcMPQuCCT+jB5cpPlMJTH4zxPhrUSKvAjXy59Vq9WUCl2tVjU+Pq6nn35anZ2dOuuss/Qrv/Iramlp0fDwsJ5//nk1NTXpwgsvVF1dnd761rdq165deu655/TUU08liuz8889XtVrVHXfcoWXLlumUU07R4cOHNTg4qAcffFDd3d1au3atli1bps7OTk1PT+vUU0/V8PBwShZwfM5nDLKdjDGaTrPYK6IR4e/dbmczRmoybktgXCkm7Fip8+QMp9g75uS+tUfpewxuDQ0NGhsb0yuvvKLh4eEEyAZS76WbmprSzMyMRkZGNDs7mzwmbyno6OjQRRddpM7OTrW3t6fzCk2lvvzyy7rvvvv0yiuvaGxsbAHY0NDiZzGjj0JKLs5jUqZcbwQwG2B+ttfIzMxMKjtuRSAlznXqOdHQ0JBLijHVS8PjZAGtn1ZK4KoBsdXH5IlIZ5CXNyhECi9uwKSXY6XlawlqDEpbYTIQHi1Wem3+3sqliHqJz7EQtHiNF/uOHTvU1taWDpNtaGjQhg0b9MILL2jHjh0p6WDNmjU6++yzVVdXp2eeeUbj4+MaGRlJJz20t7cnStDPmpmZ0Z49ezQ4OKg3velNWrp0qZYuXZpOPJeUYmDRO3IMy4rcwMIAfLyH+4YYg7TyttXP/WFWnjYOXD4Vvg2e+vp6tbS0pDhbW1tbyk6cmppKtN/s7GzabO2yDh48qJdeeimBqU98X7p0qSYmJtKmaRsUfX19Gh8f19jYmKQjntnatWuTp+UXRro+1WpVO3fu1BNPPKGXXnopAR37yYDg+UBjjGnsBu3oWZECj/RcBEP3X4wn+/7F5mlMXIpxW9fPc9jMA+d4Gdt6fVJShTUgpmsYXOfRSbasabVJ8+nQ0jy1IinRdpXKfNo8Mwt5nA9TdKUji88p3hbTkIy5+For5LhPy+ATN7pGq9PlW6yEJaXA/gUXXKD3v//9Wr58efKYnn32WT3wwAM6dOiQ2tvbdfbZZ2v16tWSjmQW7t+/P2Xctba2qlqtanBwUK2trek7793yqzgqlUraYzQzM6OJiYmkrCcmJjQyMpIs+tHRUU1OTiZrncdlSUqJHHFMfJYfT8Tws6emphbEyeg1uJ99j+nV5uZmLV26VCtXrkzPsHLev3+/pqen1dLSopmZGR04cCBlJU5MTCTvq6urK5V17rnnqqenJ22ePnz4sFatWqVKpaJXXnlFhw8f1sqVK3XmmWemg3S9F81jOT09rb6+PvX39+uFF17QY489lrYiSMolfcQ4IueKP5fm9wK6b6naOMf4m9eYkjdQut+5/cAGJA0OApHFnrIzR+lZGeSchcqYIqnLkyGjUCqpwjesMIAs5d+qamUYqZCYKcXsQQtThKkIvGC498SJEc7qogUcLUZSJWwDFYYVIj3JomA5FYmUf71KXV2dxsfHtXv3bu3cuVMbNmzQunXrUuzJRwjt3r1bIyMj6u3t1YUXXpg2+voVHUuXLk0xoF27diUF6WOLOjs7E6g/++yzko6kehvge3t7NTMzo4aGhnT4rl//YiC24jIlx+ORbIj4Lc70FjgevpdUL2OETq5gsoazBE0X+uzELMvSKRwGJMfgxsfHUxtaW1vV0tKS3gnW2tqqZcuWpfnjeJnPgpyZmdGmTZu0evVqnXbaaWksDEiO9Q0ODurRRx/VwMCAhoeH03vCbITZMKIHanAm9Sfl34xgj4kp7mQj3N9FMSj3GfvUc9dlG3xsHHCeMmGj6KQMetUWGxiuV1y7NehXHBcpPa5fciFHztgGLT0qdSmfJsx4FBejFYKVb4wR0OuJ4OZYDilE0jPMnvKzrSxJSdpblPI0IKlOWtVc2AROewSrV6/We9/7Xq1evTod8XTw4EENDAxoZGRE+/btU19fn6rVI5tpN27cmDIMW1paNDs7q8HBQU1NTWlwcFADAwMaGhpKxz+5X0zb2fvzwbI+k2/JkiUaGxtLyRa2xn3ElKSUWDA+Pp7a8tprr+XeI2XvwV6qQd4WuoFfOqKUTe/R+/bRVE1NTTrzzDNTOYcPH07Pm5s78i4sb+AeHh7Wnj17UpblKaecomXLluVoyrq6Oj3//PN6/vnnNTk5qVWrVqmnpycdTGxvcXp6WiMjI+mN0n4Zpo+E8nhzvhlsCDj8ngBRRAfaw/W8IR0Y2QPfYw+t6M3EFDMVfBNDBErOW4JhjKURSLkeuRfzZJDj7nF99rOf1S233KKbbrpJn/vc5yQdsahuvvlm3X777ZqentYVV1yhz3/+8+ru7k739fX16frrr9cPfvADtbW16brrrtNtt92WBqyUeaHlRc7dfUWPx4utaGFXq9UEHqQ0uHiLAI/Zg1JeiXBzZvQSoj1E78x1ZNYh68nfsV5FNGJ9fb3Gx8c1PT2tO++8Uxs3btTZZ5+dXp5YrVbV0dGhNWvWaOXKldq7d68GBgb0xBNPpFRtx3wMABs2bFBPT49eeeUVVSqVlFVo72Fqaiodf7Rv3z4NDQ2lV6Ccdtppam1tTQfx2ptqbW1NMTErJWcVSvMJG85U9EkbkdJin3Ajur2WmCna3NycAKxaraYsRJ8I4liLvUr30Wmnnabe3l5NTk6mg4l93+zsbAKtrq4urV+/Pr3w0Vmlw8PD6WSTHTt2pFiaswQZj7On2dTUlChuJzRQydswsAfrdsYYaYxx0UvjHPT3nicGOibW+H/XhSxAEbXtMv2bHhQ9wAiKRXO/lGL5qZHi4Ycf1r/8y79o06ZNuc8/8pGP6I477tDXvvY1dXR06MYbb9S73/1u3X///ZKOTKirrrpKPT09+tGPfqT+/n69973vVUNDgz7zmc/8bK15gwqBgvSFFzav474d0m9xL0sMNscyYwKHhZmJDJZHasb3OW7AWIWVpP829UnwIk1IGsZ1YrzBiu3AgQO6//779fLLL+vVV1/Vr/3ar6WT3ZcuXZqUSFtbm5YtW6bBwUGNjY3p/vvvV2Njozo7O3X66acnOqy7uzvFKkZGRlJqtz02H3Nkz+fQoUPau3evRkdHc0kQnZ2dicaTlLwQ3ispJXO4D+hBu52kVRmX5PXMVOzo6Ein6hu0fMKGx3np0qUpfvb888/rkksuSRmHbufAwICmpqY0OTmpkZGRtMl53bp1OuOMM9IeLIP/6OioHnvsMfX19emVV17R/v37F8zDeOJFNI7o3cb5SCCLoETqugj0GUfyNdHTi+uC859GpOtTVJ7rT0aDGYQsm31TgyTYcZefiiqcmJjQRRddpM9//vP69Kc/rQsvvFCf+9znNDY2puXLl+vLX/6yfu/3fk+S9PTTT+vcc8/Vtm3bdOmll+rb3/62fvM3f1P79u1LXtg///M/6+Mf/7heffXV3K79xeRkogolqb29XZXKkbfUGhQIBFQGMbjMDZu2VJk6HamTmDofuXun8rpcZmD5Pu4fMq3khZ1lWdoITAvW35Fi5EJ2+baEuU/HHlsEyAsuuEBr1qzR29/+dvX09GjFihXp2CJb/BMTE3rxxRd18OBBDQ4O6sUXX8wdWbRs2TKtWbNGra2tOnz4sKanpzUxMaFdu3ZpcnIyeS0G0ki3ui6zs7Mpi9Htn5ubSwDg7D0njNgze/XVV1OAnwaCFSf3adXV1eXeldXQ0KDLLrtMK1asUF1dnfr7+1N/epza2trSnFi/fr2mpqbSizdXr16tgYEBvfLKK0nh+oBhA3Jra2vyVu21bNu2TTt27ND27ds1NzeXPE/PE4Kv6+O5wDR1eqKk25i8wjkoLfTsYyauWYfp6ekc/UqPyBLjTPa6WMfogRWlwzNpxP8TqH0/93UVAe4bVY4bVXjDDTfoqquu0tatW/XpT386ff7oo4/q8OHD2rp1a/psw4YN6u3tTcC1bds2nX/++Tnq8IorrtD111+vJ598Um9+85sXPG96ejotcOkIcJ1MQhCRlKNPotI3305LjuDEWJIVGONgFi7a6MFxMfoac/5UAIzP8TuX7x8CFakeXhupGAKZqSUrSffPU089pb6+Ps3Ozmr9+vVat26d1q9fnzLrnHzQ3Nys2dlZjY6OqrW1Nb19eXBwUMPDwxobG1NXV5dOO+00dXV1qaenR5XKkQw6Ao3Pv/MLJt1P9l5MZ/odVgzUL1myJHmFPqNudnY2vbeK/UeF6XkQlaFPyJiZmdH+/ftTrMynZjhT0h57T09Pqqvfk3Xw4EH19fWpUqlo1apVKTnDVGhTU5MaGhqSNzkxMaG9e/fq4Ycf1r59+5LH7WzCmZkZTU5OSsrv9TMYcezdJ5yPTMiI9BtpdP8fvTB/52cZMIs2J7tf6dFF6tH1YP0sZDtYH3rD/tyARYAu5ehyzMB1++2367HHHtPDDz+84Dsf4+LXFVi6u7s1MDCQriFo+Xt/VyS33Xabbr311mOt6htGHAuS5hcsaboITlxEBAPHUHzigsHG91iYuh69uqgkSF9RSPOxHIJhtG7jdRZeW2Tp2huIysxe6rZt27R7926tWrVKl112mZYvX66uri51dXUl6tBZhU1NTZqentbpp5+ugYEBvfrqq9q/f7/GxsY0MjKSNtwyAWR0dFSHDh3S+Ph42r/letXV1SWPyZ6y/7cn4jY1NDSoo6Mjxbfm5ua0dOlSTU5O5jyEurq6dEqKs/aq1WoufbyxsVEtLS3p5ZZzc3Pq6upSW1ubhoeHE5D5nVcNDQ06dOhQMgac1LJixYr0Y6Xb0tKilpaWNE/q6uoSJbhr1y69+OKLaauGn03jhvPMHhjnk5R/o7PnHmO0pt34vQ0BJ5wQFDhffE/ctxjncBGNR4+aQGYQLlpLBD2uH+7pIt0YAbyUhXJMwPXyyy/rpptu0p133pl7PfgvWm655RZ99KMfTf+Pj49rzZo1x+35J1oix+6FR8uR+3+o3EidsTx6OosFtvkcK1pJSbHSAyCg8H+m0Vspcm8LrU8DIDMmpfy+M4M4rVjSmYx/OFmhUqlo37596ST5pqYmdXR06PTTT1dnZ2d6e6+TEQxMpgL7+/vV39+vvXv36p577tHs7KzWrl2r008/XaeffnpKh7fnNzY2ppdeekkHDx7MvRLFFKQPm/ULIR3rcaJFS0uLxsbGND09raVLl6YMxNHR0dQ+gy3T3z0+pvTa29t1zjnnqLm5OZ1I79ex+H1inZ2dqq+v19DQkIaHh9M5iR0dHbrkkku0YcOG5C1J+SO6+vr6tHfvXu3Zs0fPPfecDh48qJmZmeSB+YxHGhZ8jb2BvQhYGKtlDIxHhUXWgPsPmaXnQ4/juokJGfyOG+Y99w2a0fv3XKXhRQB2XXgostvluhHQTpb9Wz+LHBNwPfrooxoaGtJFF12UPpubm9N9992nf/zHf9R3v/tdzczMpJfiWQYHB9XT0yPpCCXx0EMP5codHBxM3xWJN4KerEK+3kI+nNfxRAUp/+JHggTLZezA9/hz0oHR64lxikgv8p7GxsbciejSfMq3y2RdLdFKpkfGWEhUfL7XsSJmQzqTbmRkRHV1ddq5c6dOOeUUdXV16cILL9SyZcu0YsWKlGywevVqtbe3q62tTQcPHtShQ4c0ODioQ4cOaWpqKiUkmE477bTT0ht/Dx06pIGBgfS36+i42NjYWKLvTHVSyXV1deUOvnVKvRNE2Pe06puamtIxVpI0PDysLMvU2dmp9evXq6mpKRkVU1NT2rdvn1577TVVq1Wdc845Wr16tbq7u9N+JdP1k5OTKdX/6aefVn9/v4aHh3Np/vZ6OA9sqNALJxXoMeMG48guuH9M7dqb5DwgSEZPz2Dock0z85xNzttInRfFXikxvsa1ZImnctBQ87Xcu1ZKsRxTcoZfo0553/vepw0bNujjH/+41qxZo+XLl+srX/mKrr76aknS7t27tWHDhgXJGf39/VqxYoUk6V//9V/1sY99TENDQ68LoE625Ax6Jl5s8Vy7yOnTAnSfOqnCC5pUiJQ/4sbXOD2Zb0VmAJrP8FQycFop2AqmMpHyJwMwXsd2UyE7g879ICn3nEiVus8YV3DfuC7cE2VvQJI6OzvV09Ojc845R5deeqmWLVum5ubmlJX31FNPpTcoe8NsXV1dSpFft25dymjMskyDg4Pat29fij11dnaqWq2qr68vHbdkD8CbvJcsWaIVK1aoo6MjeT0vvfSSnn32We3duzdl/bmPHK9Zu3at1q5dq66uLg0NDWlubk6dnZ0644wz0tuJ7QkcOHBAe/fu1eDgoFauXKm1a9dq48aNqX+eeeYZDQ8P6/HHH08nhBw6dCjVx/W0p2BvJHrEnksGALMEnn9MUomg0dLSkqPyPL5MMmLs1nWhl87PuT5iHMzzJBqJvpfGltdL3IjMuRrL4/00yLihmdTvySC/8OSMpUuX6rzzzst9ZgvTn3/gAx/QRz/60ZRB9Ud/9EfasmWLLr30UknSO9/5Tm3cuFG///u/r7/6q7/SwMCA/vRP/1Q33HDDSe1VHU28CKSFezyih8IgtH/HVF1SM1T2tAJj9hdPJedpF76XVqoXs8tjyjafQzD2SRNWOFQObgOVgtsWvUkrgKjIfJ2tb58mIc3H9JzUUV9fnzbI+qWSK1eu1KpVq7RmzRq1t7ersbFRvb29GhsbSxudh4aGNDMzo6GhIR06dEhLly5VR0eHGhsbUxzMAL18+XLV1dXprLPOSu0zbbR//3699NJLqlarOnDggCYnJ9XS0qIzzjhD3d3dWrdunbZv3572Vvk0DPfX8uXL1dzcrImJiZwnaLrW+8hmZmb07LPPav/+/TrvvPN0xhlnpDMfZ2Zm1NfXp/vvvz9twuaJ85wnkpIH6f6T8skOnk/SvMHCDDrOB457ZAI8zxjTjGvBc5qGUTSAmBnI71kPxkwjw+D6+1oaSEx6cb18fWQt4voh0JeyuPzcd/z+7d/+rerq6nT11VfnNiBblixZom9+85u6/vrrtWXLFp1yyim67rrr9Bd/8Rc/76q8YSROYlIRBhJSbtK8Urd35gVIq5FcPYPkBBdTLabD4kL2NTxRwWUx5mDAsBLi/hbGK1wfb9p1mxx3IICTvqFHRc/RbeP/brfr6Lo4XmQLfXp6Wv39/frhD3+YXt3xjne8Qz09Perq6tKpp56qqamptFH45Zdf1v79+zUyMpLOQ6xUKsljMA3oEySam5vV09OTPD33nU9Mr1SOnHXnxI/+/n51d3en14aMjo5q//79KaZED8T9tGLFihTjGh0dVX39kbctj46O6tVXX9Xo6KiWL1+uM888M73w8dChQ+rr69MjjzyiJ554IvWH5xT3ONljZaIE4040Wlw3j2lMOqL3wjGzR8x4F6k/evg8PilS31wfMbHDc6LoFSk02OilscxIJXKdcc14jPlMr7HopZayuJRHPtWAWLF5IXFB+pQFKkZuICa9ZrGic3zD1zHLilazlH9TLFPfebgurVJa5DFu4O9MQxr0LARPeo60sKPFSqCOWWqkNr0h2p9bUTFgLykHaD4jUDqyt6u3t1dvectb0us5vGk5y7KUEHLgwAGNjY3p0KFDeumllzQ0NJRe1eFDfV1HMw3VajV3rmB7e7u6urpS2rkzFg8ePJhLbDAIO6vQmYazs0deLeLDgKNX1tvbq/Xr16uxsVHd3d3p2Kv//M//1K5duxLwEozY1/HV8x5rZzzSqGAc0m11PMzg43I4tpHi5VmZ/uGc4tjTOKInQ6OL3jiPJXNbyTQQ0GgMFhmIjNX5ua6PDQEaarzORsLJkqRRHrL7BhVutKQCICVnbyHSL5HHl+atTWkeAHyfLWWXQUXAcqw8uAfG1xAk4/8RyKj0GN+IgEsaiRasn29vo1Kp5BQqFRv3DFHp+D5morkeTlm3d3bw4EE9+eSTKQHJsSOfvt7W1payEru6ujQ1NZUSIcbGxhL119bWlug7Zh0eOHAggeXBgwfTO6taWlq0bt26dISUx8TXzczMaHx8XJOTk5qYmEh7wObm5pKh4r4566yzdPrpp2v58uVqbW2VNO/h9vX16cc//rHGxsbS9XV1dTlgiTSs5yPnpceKhgBpQM9XP5uel4VUtudSpMZJsxXNE9aHDIHLZayUJ5VE6py/41z2/TSsIqVvtiOuJa5rUvilHF1Kj6sGJFIdkRvnvqvI40cKR5qPPTCF3s8gVUFqiFYilbyVF5M3HK+KNB4XqJ8T9/IQNOzNzc7OpldLEJjpZRUFtP1s15deZQQw9qWUVyzulyVL5k85n5ycTM9vamrS3NyR/XGdnZ1avXq1LrvsMnV3d6cTJvyCRXtLPqDXJ7EvWbIk7a8zLeVDeJ0QMTIykiglZs8Z2E455ZTc/PAGa/ehdCTRwSeBNDc3pySRnTt36qGHHtITTzyhffv2pbGx4VN0WoTnkq+Vil/FwfEl5WuwjM+KxlTcD+Zne957PjH+ZuOFL95kwgRBg3OK8zJ6/ryOwrIY940gGY2lubm5tDmbTAbn98kgpcf1BpWYiRS9ENNdtNqkPLD5u6isrdRJp9E6jgrflAqpDi5wWtVFNB8D81zolhg7cLtoUVPBkcKKCiVSU5HKIbVJxen/6aGSnnI9Yjr3+Ph4epXK1NSUVq5cqeXLl2vTpk2JVvTr7n3s06FDh5Iy5dFVrr/3gXnvHAGrru7IgcAeD6f521ixAmdbW1patHLlyuSF1dXVaXh4WPfdd5927typ/v7+BbRwbKvHkAq9iPpyG+gpma70uPla0nZR4XOOeq5HNiBSgByXIm/d9xJouEcssgSSUuZonK+sM+c71wOvJb3P57kfWa9SiqUErhoQ0gtFwECPyn/z9G0uBCqDSPHwGVQkRffxeJoYy/J1tGy5gJ2VGGMnLoNeg5UW92LFPqAS9OcxFsh6FSk3S7SYaTTYgnd/xX1A9E537NihF154QR0dHZqamtLatWu1atWq9BZl791yCnyWZelNyTwlvqWlJcWCSK3a+2tqakp0o1PKXe/6+no1NzerqakpeV4GTcc3X3zxRT3zzDN66KGHNDo6mtpJms39EgHDQC8pZzww65N9Z/GcsYdEg6AIMMgmcH4wuSPOaRpfjl1FGt315ss66UmSvmS7WEacOxEobRBxjvM6riM/J8aXS1koJVVYAxI9GWk+RT56PtLCk6ajsidQkZYhZ1/kwdAzK/LcXB6Dy5FusbKW5r0ux1CKFAEBmfXMsixnvUdPhGDHuB2pP9NxVvJOcLD3I+WTNKrVau4EBsZAqtVqov8MQu6zpqamRCO2t7enpAvXp1qtanJyMnlqfmZbW5t6e3vV0dGhtra2lOZuitfvDRseHtZrr72mSuXI23p9FqNPtvfxT9KRONrw8LD27dun/v5+7dmzJ23kdWLIwYMHU3udkej20VspeotA0T4sf87kBAKjx8L9H0EseiAEOnr1nOesh4GfrEHRmopJGa7v5ORkqifB2nWMnpXnlUErxr54LevpORePxnqjS0kVvkEl0g0ECyoALygGnJk+zOu5+IqC7H4uF3WMPRCMWIYz3hg/sJKPliwtUQtBuMiDi7QMKafoYRJUXU9a5ZIW1DEqwRir47VW+PaUXA+DgD2w/fv3a3R0NIGiMwuZ1OJ9UpJSUsjAwEDyunwSRktLi2ZmZjQxMaFXX301neDR1taWwNzelsVnEU5PT2t8fFxjY2OamJhI7+JiTIixTCpa9ynjpjSSqNSjZxGpvZhoUeTBxPFmfWi0cSx8H+ebN95TWCfPizjOpNYjYDFORe/ex03ZIHJfOW4W2YwiY9NAV9KFi0sJXDUgViqko2yZekHR07BVy0XBvyXlFE+0IAksXnSMR3EfD5WTJcZq+D0Xc1Q0BGGCWVHsQJpPDDDl5LKK7rHCi/STvRcnnzBLkkAelXWMI0UPxPWhte0y/XqUqAidwUevdWhoKF3X0NCQy/JjvCfLMk1OTqax96ntbO/+/ftz5yVKStc4a5Lg7ja5fowBuq8iyNszowdBIOBLTGPM0POD3jyBkN53NLKKKEPOPYMSs3B5D+ee+9/jGQ0wlhsBl2BUlGlL2pFnF5LKZP1LKZYSuGpAYiICLUNmTFmZzszM5Da10lIlDSLNW4zxHV1FliEta1/n70j10eNjPd0OKiAeQRXfZ2Wl4b+jl8isM2fqUUm4jc40JK3q57pekUp0H7iuTN32vbToXYbb5WOgWA+eFM7TOtwPbiM910pl/jgt79NymyqVSjql3UBC72FiYiIZOAY714NARMCip8REH26R4P3R0zfYxc8JNDSO3OcEcsYynXjC/Vs8pNZ1IkDTu4uxYJ/Gb3qU/cxn0wgheLscP9Nrh8dLkQ7383lIQPS0XT/3q8+0LGVxKYGrBoRAxQCxPQ0DiRVq0bmA0jyQMHnBC5nKOV4bkxys4GKMg4s+Ptf3RzAjtcdgtDfcMuPOHka0YAl2VpJFgW33H632GHAnrerPfC+fFT0paR5oY909DjHjk+LnWolZUbvOLtdGSlNT0wJvkt6hQdkK2nU3SNBbcfuY+EGvlte6v2Km5WIxTzIF8TqeIRipwCIKzd/TaIr9yDnFcfOYxRMz/DnpPSkfZ4r1o3FX5AESSBnndV8w0YbrxxR7nOOlLJQSuGpEPImLjqTxguR+rsXEC8SLxJ9xkdBC5j4dW/LMXpOUynJ9mAzh+11fL1pSj6Rd6AlEajBa6ewHt73ohZbx9RXVajVHtTqrjPE2WuruE1rfUWnTY4unkUePzR4EPReXwb63JxvrQXAuimFaEft6KlF6QTGWFb14ezz19fU6dOhQ8jYNfG4vPUaOCY0S95PBlzQvvW/PZRtiBkjOHb8slMYT5xJZBXuUpFs5htK8QWWDg3QfjS7OHxokBDK31QZDTFbxKSmm8n1Cv9sT44KlFEsJXDUkpO/sWcV4QPQ04oKKtEr0jqT8qdU8c83ZZaSNSG0xlubv/buICqOCiPXi3rTo3dBrY3zBfcDYC2lOWtB8Jusc28IzAGlRG4CiVW6goOfC0+c9XqaS4vOo6DkGkhIAc4wJQEwOcV95/AwEBrzoAUWFLCk3/u4/end+PpV6NEKisUFjhPQ050z0aAh09KZZT19DZsLPpzFDKo8e3uzs7IJXsnA+cn6wzmw36WJfW0RZ0qOM1Lwp3RK0ji4lcNWARJ6en/EsNX9OBUN6TsonU1gpMbOKIOfySBkW0TjRSic1QqXEz2MGlxe+n8nrqRwWy3iTlFNWVtKxTi6Xz2O/xs+lecW1WBzMnzG5w8qQnob7ml4zJSYukMak8nY9oxfA4L6v5dwgYBMI2IZIhzKGR0Dmc6NhRIOFZUvKeSkEtsWMniKF736NdK/HNfYL50ecd/GHZbAeMf5GQ4j3cT7Tk43PifMrGnElcB1dSuCqISE4USEzxkKgohUXF7tBgJ4ByyJARCCKr2ygtcv4juscF66VspWQFzdjZ9E7igqFAFOkQBw/KYqDRKXoswKpMOwRzczM5Dawsqx4/h6NgOg1VavVlPVHS9yAH9vmckwBu688NjyNn21n+wzg7Dt6rr6GnqLLM8ByTtAAMM3l8gy6VPCcl643QZV9F9tAr7nIw2QmaeyXGCerq6tLbzco2mfn8SEFzrkQPcKiuJspTNKW9Fb9LLed9C3fnEDwLmVxKYGrBqSI4rJScYp0tOysqKanpxfs07LQE3OZlhgXiRl/pJeo0KKSotXPHwJs9ICigowelsuOXpQ0fxJCBNgigGAgPnp7RcBJmspUIetMRc02Finu+Ax6dQZeekBUaDFZxmUwJsTnc8xsIPD5pJAJkGzLYh5rjC/5x0o6JifEfon9G40lzlX+TWCMnn2W5c+cNDARNNgGGjg2FHwv+61oLnI+kw43CLlM9jOzX+P6icZHKcVSAlcNCD0RKz4rTQNYtXrkNRH2drxwqOS9KOOC5/3+m94FT/Imj89gMjOlqBB4nZSnsayU+V4lAjAt5kjf8bqYBEBqy/cXxWh8P5Mo3DdMkSbo+TR1Jk3EGBPbbEtcUnqFjJ9VV1eX9pFF654ASi+YoEivxQF+ggFjSh7/6HmxrpEK9jPdB+43Zq+6T+OeriIv2OXEg3CZdWnl73kX28Ax9HyiMUKv0c/32LjdPDDa/UQWoL6+XlNTU7l5EelhztF44oUNPR8i7D523zk5x/UnBc35UYLX4lICVw0Ig/y0UCUtUBxehNwg60VjmoV0ijS/f4THGRHsqChJ5UTLNoIO6UzXmc+l0irynqJyip+xPgyCc8Ez1kcrncqdsSQLwZjeJcHKz/VvtpvfFXkRvoaJAPQKivos0nn83iDgz9xWemz88XVuF/uXlJaNGZ/+7zGP8amjxbfohUWvKoJQTDbJsiz3niz2p/92G4tik9G79rPi1gt6WnGPFec/qUquNxtMfC63DHgs+NzIABBIS9A6uiyMEJfySydUBvRkpHzCAJWgP6eS83VS3oImvWSLNO4x4UKil+TyqeB9DZM9vA+JJxZQicV4lRVEtEAJIBFkixZ8pLJcL9ctppazTm4HlTuPdqLHGstnv1hI2fq6WOfYPvYB6aUi2ovjwf/5GfvYXs/RaKoiBep6Oc4WPVk+y/Urykykl0iwcNt4TqTHiOBGtiCCVhwHrgm2gePhZzAl3uc+up94D6XIaIhbTjiOrKfv5zov5ehSelw1IIwVSMpZhrQkIwXIQ2Sl/CGiFnpFpBPpqUTF5n1gLpNgxcVJD873FVmcvN/lMROvyDOjh2kFQ6s8ens8KNaxvEhvuu/cLv8mcFopkQal5+nraFzwc/azxzKCMr09xrMqlYXvEHP/mv6K4xPpPJfL/U/0wvy9FTQ3QrvtBHgpfzYg9yP5O85h7mNiP/qZVPb+f7Gjl1x3bzOIniMTkrx+PP6MUToOzGujZ+b2uj98v42ZLMtyp/j7zMe4/YExLXrZpLPd7lIWlxK4akC4SK0ASNER1Hx9/IxK3df4/mitW6H5HlqNRVQdg/vSfEyIn7EspiT7epdJxVNkxTu+EjPJ2BduH4ErZqK53JhQEUGafehy4v1FVGYRxRrbG/uFYBeBqkiiJ+qsNraJVjwNBcYVub8rlsnnsD1xPvkZnEssg0dc0QjgfIhUGeNdrgcBxnHGGGt0/7lONHIIqGQaOAdZd9YrGoxFBhXLiJ4y53Rcf4z9lfKTpaQKa0Qi1+5FG70aaT49mDRc9HRImVFB0oOIZ9JFZU5qjMqNC9f1iArabbJi8f/SfEzP1j0XtZWXpOSRkRaNwEIhmNLy9TPdDt/PPov3R1qHio6fU0gXkXZirINebfT2GMdj30eaKW5vIJDZ6+U4UYFbitpDBU2w4fwheBR54r6enlaR8ma743zj3CboLFmyJJ10b686zm0/i14n5zA9Hz7DXhPXmcuIGbRss+vA+RRZDI5XUayulIVSelw1INE7iJaqhafIEyi8SBhjiErQi5AxEUtcaEy7ZkYVQSPGrPx6ex8OywC3X8FBWogWvgPfpsQiPUTl6fKkvOVOsLISIpXkulJxuUzfayXP/qHnyTIYTyGwGCDjUU7uZxoJDPz7WbTW/Znvm56ezmWtRcVoT5V95znDtHXGo1jvotgbJR4czPd3OXGhKC7lcjini04sifPf2Zo8MNe/CVCc577G8yi2kR4UPVHPF8bkTF8SqL0OaBy4v71GmVUY52WWHaEcJycnF/W0SymBqyaEqbz+iUc1UWF7MfiHyjkGg0knUTFGmo6KwOW4Hr6XFmZUCoxbSFpw5A4tayp0fscYjutJSi7Sdhb+z/6wAqTVbmVky5/HatGDJRi4nm5fBDO2m/3MxIMoBgpeT8/E7eSxSUXj7f6i0mZcxfeS6uKYxO+i18j60FiJ4xDrFA0Gz18aQBEsDbT04CLAuGx6ovSWpqen0/2M/7H+ce6yfMZgiwxI9380VDh2cR76h/R+CVpHlxK4akD4anEvMO//oUUpzWf88TtSIlI+3sHUY/LvXDj8m9YiFZSfQ0AhbXPw4MGkLOwNOGDNs+S40Amufm9UpVLJnVBAhWTAcSIGFQ4VcZEFz37hpmuCKz0gKtIi7yHGZtw/8X++IoXK0u1knxaV5VPiDx8+rKamphzFyOPAimg+xlmi4eC5wXbQo7ZXYQXO18QwBhW9nmhUsWxSjUUGFbdtVKtH3s7svogertvBA5SdHDI3N6fm5uZccgafTfE8iH3keXT48OHcq1Lcvy0tLcqybEEczuvS9fT8MWix3aUsLiVw1YgQbLwQOMH5eQz+S/mXPzKV2tdEcIrKQ8rva5EWnrhAC7fI65LmrX8HuJkZGT2nIlqJipHtZnsJpkV1Yx1pSbMspl6zPLclZpu5P+KYuY4EYX9GQDH9WvR9BC2PURxrUqVsm8vwePkzAye/51jz2dGb41zwmEVvj+1jHaP3FUGBCSkEWPaf+5uebwRj3ucyeSKJMxs5Z8huuJ9p9BTVJXqlTB4i9Wtw5OcGLfZDKT9ZSuCqAaElHOMPXEC0NGOqN9OuqSQjCFm8SOO5gV5sVo6LZb1FasXX+Pm0PKV8csTk5GThaRZsI+tMCix6oAYf3xsB1cokgmxMKPBnMXZiRUxai30VFTfrQYUbva0IBDF7LcYuSbOxbS4v9hXnlMvg3+w/XhczM/1sn/cYQSne789iHWkosc9YV7IO7hPPbfcPPUzGKl0W41IxcYXj7O9I3XGO0hOmN+5n8MQM93+RV24gZZ9FA6iUhVICVw1I3IvFxUievshqJRXoBREXHWMCc3P508u5GGk1RuWwGFVJZcv6EBC8oO0BuK1MMIjgaG+NcQYqCpdHBRe9M6YfWxk1NzcnioeWOu8lRcl2+ZBWttP/s48sNgAi5Rv3iLl+/Iw/TIagte/7mHVXqcwfQBznjoX0WpFSdXnRGCIA0huJMdbo3SxZsiTF6kwfu+9df8dELR4jzlUCGvuOfeZ+L/Io49w2QNOAoqfte+npmkGwcRjXow0ptslGJBNlSjm6lMBVA0ILzYqAJ3fTomNwmBam/45Wd1Tm8bkGzZgxGK1H3hNpFFqufh69FysJe4gGv6iA/Zs/9PysFKInRa/GdXJb4v9UmPzbdXXciUrJ9XA8L/aBy7YiZD8S8E0bESAl5RShn+fnRGCiZR+9T8+LJUuW5GKDkgqNDXrcBF32L2le3kuPks9mneLYRA/Uc5d9wbFgGQR8Xsf1UDTm9DT5PdccQdfX8Nn+jMbi0STOP3rx0UArpVhK4KoB8aKU5k+/8GLiaQJWoNFKt8JzINjCxWqlQQ/KVmH0OIrAyqDhUwkY9+AzCJy27Jng4EXtkwciAJCmZPJEPLzUfUPaNNI1bptT7ZcsWZIOwqUSpMEQrWH2cYx5eCx4xqT7gn3qMWVf8fn2kGJMi+10PXmv601QZ6wny+ZfqGjPhRlwRX0VMxQlJU+EHkVR7IbGFcsoSk13P3I7AqnymBziPo+xJWn+sN5YZ9bNSRv+YYIQQdLjw60jNBT9LPcn54tT6mkUVCqVlGTieeh6lbK4lMBVA0KqiXQdeXUeqkuqyQrRizBaoFwgvpdxLV5HwLGFyXciUTnR8vbnfK7v9YbYSJNUKpXcafekcNhu7ouy+DlWpvFYpWiVExyLXjnhMkmz0XO05c39Y8xodJ/Sg/Fn7mN6zdELdv9F+jF6AvG4peiBxG0VfA693CJFz1feuDz2G5V7pN083nFOsB1FP5wrBA4CH/9nf7EMnrLC+B2Bj4aD20Kvj8BKDzTOE3rCi93LunPjMz8v5ehSAlcNCC1WKlIuAi7cuAD4d9Fp7v6fys3P8G8r3Go1/8I8WqEGCdOLpjS50Gn508NwkJop2PQu6VUQWOilEeCoPOlJRKubRoDrZ6HyKlL2BEEaBKyj+9x9FcsncEQg9OdUklGxM37HOtFy96ZXen4xVsb/7TFwDtAwYlviGLAP4143xnX8HJbH+znnaHi4TYsZVr7f9xBAOEdi5mw0Djkuca2xvQRRGgzse0sR+8A54/qV8pOlBK4aENIv0jw9GDPS4kZJKhsufNIrPH8t0iKkIK3gGxoacqdfkN7wMVFWOH5+fX192m/kujlW5DaZ6rPnUqlU0mZRUznxHEJ6VpboqRiM2XdWVgYUxpB4GK+FSi/2jb0rZ9ZF5STNJ5n41App/kgnUoCmkqgYCZiOo8Wx97WMN8WEFAIdPSEbGU7qqKur0+TkZDrJn4fKui5uA7P64juuOH51dfPvHeNpJUwOIVB43vhaevUEboKVQdJjEgGAHrjHyWUv5nW5b0klF4FsnJOum8eKY2ghBeryadyVcnQpgasGhBlztFLpgXFBS/Mp8aTepPxxUaS3GJfgK0siVWYAo7VPjyda/r6e6cquH8u1wjIQUNFSqVABeMGzHqQqXXYE4eitsL4Ew0g/EfRc9+h1ss98jYGeZXG83HaOs4XtsuJnXQ1CpHhtBBiUqMj9bIJxUXIHPaLoaTIW6s/9TLaN3gwNCo4p2xm9SdbRY+L4Ke+Pxln0OjlHCeouhy8w5VrhZ9FD9We+js/k+LkNpN8jSNPYZPmlLC4lcNWAUPly0VpJ+G8elsqYBT+LtFMR8MUAPJUe04+leerOC5RH9rgs3kdFZqUaT7iwV8DrmWpOQKJCJOjRcrYCIshx3xWBx/cXJWHYsyBNFa8lQBUBaAQFKt+iWE2MpURvzF4j20srn31YFJuLRkWMJVLZ+nvPNYJ8c3Nz7jpKtXrk5BPfZw+Xb+8mZRbjPVbqBBZ6MZFR8FjHsWUWpMfRc83XcK3E9sd1w+fF6ygEoqJ1xTpHBqGUYimBqwaEmV+0XqmcGHegQmVKeEy1phdRqVRSLIRKkAvfysqL3enfVKqk33wfFaIVpZUIKTrWVcrvGaJQ2VsinRSpmlh2jNNYcbg90YuSlI6VikYEab8IElmWpSQTGhesPz0C182GBxUhx4MZoq6L7/XYSEpZkvQ0PJeK6Dl6NQTKojiW+41HTZG6Y3/Y64ttjp/Z64+0HPegsT4GRPd1PI6Mnqm/N7VL+pjePQGWcywm4PDzmMEavT6yEuxHz13OTZ5uX0qxlMBVA0KQsTUq5S09Wmy07P1dUXKClD+6iH/7WTG9nBa8QSE+n5YrqakY5GZMhEKFQwCJSowgwE24bpefG08nWKyu7msG5OkBROqMQBITEVyWFdLc3FyK88S4B+N89M5i/8Sxd7tdX3uFNDyoOO25cM+c+4v30QNjDNTjwD5yOWQC3Bc+u88eN/ubrx3xXPBzXA7HyOBDo4Yg7LbGcbJxRFCkAcL1xfglwYXP5PWuP39It0pawFDEtcR+iF5eKYtLCVw1IFyYpE1ordJCrlSObJSlJ0SPgIrG15Mycpkx5kLr2f9TuVB5WBjzseKIVj8tYkk65ZRTlGVZ8hYspJSskOg1UCEWgQjjMDFTLabOU0ibkWI0RcgDVSUt2JfmGJfH0UqafUqF6aQX0qsEfdeXwOnYJL1DJrzMzs6mw2AjXed2x7lEoHEf0quPMUX2tYW0sY0IX2uvkuNGTyt6Sp7DHAO3022M5fleAhmpdl/jZ9OYoEHAOKTbbNCnUehrmOZOQ4tJP5yfBLAiurGUvJTAVQNC0KqrO5Kh5XcQUZHxNPFIV0SO3kLlRKuTijcqYn5PhSTllVt8DqlBf+//nVFH65ygxDKr1WouzT4qWisLKgP/tgKJ1BX7mR6LFT/7mRl9BiTX08IMxEix0YCIXh/ji0wo8GdMLIiUMQP8/tz38yitIouenhvnATcHc/5wTkajxSeL8EzD6AmxnzyXvJeP7eHY2UN0/djH9KjpIdFQIxNB8KRXH2OOlhh3ixmUHGf3d319vSYnJxPFGLeicCwiA1DK0aU8zbEGxErcSm8xipBWnqQcAJCio6K3kqdYqcd4GBcUPYdoHVMBRnrOadZF5ZKeo3dHStDXUdnQI/BRRlRe8TN6qwQAl8e6LeYhSfksvAgOVHQsg56aFVpRW1zPomQFtp9eAecKY0wcVwIjvV0aGhG4Y538HHs5S5YsUWNj4wLQj3MvtovzjDQp50JMYIhjE+cy5y3HM84vllVfX6/GxsbcfOaYEfw85tEIiDGsaOD4uYwt8jfpyRK4frKUHlcNiJUiFbmUX1DeJ8UMPdMSVt5OHy96zxSVO9975GcxRT6+78p0Db0EnoEnLTyI1AHoohM/YmCa1JDbw2OfXB5T/2nRxv1spANpJVOi90ZrnmPBa6V5JcTTJ+JhtJJymYiM3RCsGGOiMi4CB/dFpF7paZgyI61s+pC0pNvkRAYLDRLPMdedHrnvJ0B4DNhWzg+Cqueh6W56rjY6DAoxzhkBzc9gBqvH0c+dmprK7ediW/2s6J1HqpZj7bGJp8nY62ICEN+OHI3KUhaXErhqTCI9wb1ajKEw04lWMi1Al0NFSEuXsQYp/54k/0/6LlKa0vyCbm5uTnEbemH2DmJKORVW3I/GuB3pJ4NqpAapUOnN0YvhNVYeMQ7IurFPfR8zJ92njB0S7Nxut4FAGcE0AhXHip9zbAgc/i5SlC6bAMh5Er1RGg6uP/uVWYQEGtJ+pMOiN5Jl85ub6RWzfyJz4DHn3InziPN6MTqOWYRuC0GXdDW9VXtR8TtTmjRgOF9cL1KtkUYtZXEpgatGhIkSXLwELdMdpDW8kGxdx6w2x52khadVS/OWozRPtUSqL1qR/PHijunWvt7pzFFpUtkwuM56MPbG2JrrRQqMIBBjOTwnschr42/SsuwD1zceLOvvCFQu30JPlEo1AghfpUKvxTRdTHFnRiXnDg2aeDqF77UB4r7hPjrSl64HQdjjQk9HUopnxu84VjENnYlE9saZYMF14c+5PcFlRqMrjqPv56kv7N8Yj3RfGGjtaUejLWbeuv+YtUtwL+X1SQlcNSRxrwgtSipe0ij2vKSF8ZkIGHyOPyOoRYueQELPImbmuW4EU37H+nDhF2U/SvMAQiXte2K50dOggo3eAD2GovZKecChl2TLm5QSvR4L28Dxi+2PcZqj9b0/s9K2AqZXRhCMZURPqKmpKVd/egzs50i/MuvOYF20PYD1iEKPMPa1n8nxovKnNx7nM/sz9pvvZXIL6+DPeGyVn+0+Jy3IthYZVBTOlbhvr5TFpQSuGhKe3m3rTsq/iFGap6fotZAqIY1jZWuhFR69Jisyx0O82GNw3+W4brw/Ki4rC25iZVlFCo6eoZ9VpGRZBuNA9A4JLkWUKpVapVJZ4LX6e1rr0bBgmRyH2CaPk+tBAyJ6GCyXbeMz3K/2VNgWPjfGbwgapIxjXSMw01OLz+HeMc4d1zd6GwSB2D+cAxw3Ag/7vqgesZ9sXBGMWTY9Us4Tg7U/pxHl+npcvF0ilkVgLeqLUhZKCVw1IFHhUpnQ4qflTO+BFrDLK4ofLMbvUwnEcrwgncXmPUgWl8X9NVbyTAbxYnVAnuAUYyqRJjUV6YxFKlW3wfX1wa8Ef3qC7jvui2Javbch0BiglUyK1X3lcuIBu7w3ZpUx+cT9aeqvKMjPuBypXYNFBGl6eKRTGSd0f/hZbCM9YRszMU5IEGDMj2PLMXVd6LFToUfvmWn3/sxJSqRCfRyV56mf5TYQOPjKHs5/9n0ENhtdMZZpoy7uI2NSC4GzyFsspVhK4KoBqVQqKW5AkCLw0HKlYo3WNa1YKtx44gIVMBMuqKzsgcTyaHnTs4pejRcwF3cETFrzVG70Gg2CrL+fb+Xo+vH5BHu3iWcVEsj8LMd6Yjsj3UTPysqSxxVF5RTr7noxbsV6OCOTgMiT7T034qkSfkYc/yLwNQhGb4cxJ/ed+9hjyj6Nsb3oGVKB01Pjc+N4RVqO3hXHkQYXvVb2EdeLJTITlOgx82+32c/k82ko0GCkMRHbU0qxlMBVA+LJTUVJL8lWsTTvoTBozgC0PZUYb6J1HC3xSJuQwuLfVFTcb0ZFGampSEExOM/7ouXu+kd6ht6olYHpPfYNASXGNqKHSiUY409MOPDzirIg2W73uVOhDdK+nsZBnAMEBbeb40bxNfQiqByLFKyVeqT16Om4PjQgfD/3j8V2s6/jfPOY0iji3GE9qeSLAIR1I20u5U9pZ/q8r4lHUZGxINvhNtvIicDPLRMcW46d+4tGaCmvT0rgqgGpVquJorLisNIytcPsJVqPXhC2xGn9F2UqesFZeZFWkY5Y9VaEkjQ5OZk7FYDvZaKiYqq4n+tnMGZGCtDluR1LlixJB9a6bpH+pNJje6X5Uy8i5eg+YPYYFRUVIf9mTNFCIHXdvB+KGZ8ek8XiR1H5S3kvlCf/T01N5fZtMauOzzK1xhMq3A+M/ZB6I/DaWHA/MiOUJ2+4ruxPGgO+1mNCL4z0L8eHIMmsQmYm0gAwLUiQiQBGw8RiWtfrLQKQ68JxsYdH75QUO8eSRgINERtsRQZIKQulBK4aEy8aLkIviBhz4YLl/7RYeXacP6NicbmMmzAGYsCgUnadYqJB9BYJhgQGPtfXUolbGRAcrJz5TH5H6sftMND5f/Yl4ywEvnjGobchFNWR90b6kIqXBoeVbQz4swxf6+9p0DBZht4z5w//9nxySj0956Ljp3gfY3XcWM15Ri82zmO2nV4b2+tr6RG6T0z3EbAizWihNxPjmQQSeuOeHzb6IvPActne6FnR++bcdd05XtGjL6VYSuCqQeGk9/9MeIjKUzqyaKampiRJTU1NyUIkZUFqiPuu4gLnKRkGHVvyjlf584aGBjU2NqbPfL/vZf2KKJPm5uZc3eN7uWKGpTRvyTILz9cyi9Kfuw/sGVFpRxCkxR5jXFRiTEnn5x4fKk/GsFhfP6/I4GBM0Eovejj0Xq3oCdgEYSeARE+S4MfxKdqa4ef4c58Ob+VNz8597Gf6VBcCCscyxoQImvTGXH/XIwJCEYDxNA33mYHc1CnXQPS8Pc88PmwvxzIaPNzLFinNUo4uJXDViHBh0hrn/hkLwSvGQmgB+hrHJbhIaf1z0Uavg4uZVrOviRa+60faMHqO/JxUnculd8X6MYFEymfq0QMhtRcpKdePdCUVKqlA/02l6nry2ujFMcYj5U8Xj5QUlSKVMj1Lg3dMAmEb2V+k5qIyjx4c+4AeAwHT5TCWRjBjxijjr4tRgfTSIhjQOy36O463v2c7OGbRg7IYSBmvtMTyirx2S6RrSXd6rEjFljTh65PykN0aES9gW2m2oL1IiuIRUj4TzQBlryNmMRUpDC5CKvBIZ7mcSEs5huX7fR2tbYIB2+qFbbB0vXiChP+30LtxXzlNngqfbSadxvMZIx0XqUz/JkhZ6ZP+jMoqlkePgOWzPyyuK8vyGEelF/uU9WdfReorghf7uoi+dX/S82W7SIVZUUfw9hwmVcn7OH+iQcb+ilmnNAAiBcd72B62z2Wwf91e1mexPuR8Yxui4cL5WspPltLjqiGJ9AMtW75A0Yq+qakpUUo8zogL2pa3qQtp3lsy4DQ3N6eX7zEGU0R5RYueJwrQAqaSJt1E65RB80h9ko6h9Uzwdf19EkQRheS6+f/m5uakfBl09zOlvKLnZu1IJdEbnJ2dzSXEmJpj3ejNUHnHvqISrlaPHBJLRerxY1KIn8Hxd3n0BqOnSBrT86vIO7IRxfb7etKFnEOcywQFf8+5Sw/X7fa8MBVNYyKCh+Nh9ODdPm/pKAIX92fMsvX1WZYlQ8prhPfS+CNrUQR8i710spSFUgJXjYg9JS8eUmaScgpYyp84wcQAW6mmF60cWQatfyp1pthzYUr50wkiVUnlxHKikvd9cU9ZBC3GN2Kb+TmVb1QoVNJUWARXl82faLVTQUbazXE1WuQ2OOKWAp/ezzJJWbKu/G0hkHBOFP2mAqbny3gmr+M4sG98L0GLgMR+oLJnudF4if0Xgcp1owHCWK37l+uDWX3cksC1xJgm6UzONRoWcUzsMbkOFAIuPby49nxtKT9ZSuCqEXEauheq03Wd0UaPivuTyMEXeTR8FYa9LCZN+LMiAKOidL2Ylk1PgUASaU1milEhRiqFQEhl4GtinaT5fVZWLGybqVfHMyL9SFB1+e5vaf6UBdfXpzjQK/W40PBwv9rKZgwlAj1fDkoAMAVHb8pttLLlKzaozD1+pk+jJ0bw8PMaGxs1NTWVtiMwOcRAHMHH40Ojhh4xKdRIQUYjIdKKBB6Oh59HY8eg5OSheLKI37TtPov0II0Ixgv9LB9uzbnAfWFejwRbrkn/zezIUo4uJXDViFDBMBDO45Vo5UbLO3o9ptKiZRoteQIT6SkpDyhWmlZM3FcmzWerRYuaCRWMy5F69LVFMQpm4vFef+/f0SP0vf4dQZVKnPWL5xG6L/2c6DXwcz6fY0Mwi2NAb8L31tUdOViWXgDH322KfbDYbyrqonYQTLjZmmDPU9Kjh+x6+3vGvTg3eF/0xDk36Bn6e45x9PY45qTS/RxSltHDjR6d6+Ax5DyJ2YX0UN1nMWGICScxHlbK4lICV40IF6YXvBcBJz69mGi5Ro4/AgZjaFHBSQvfzMqMQGbMUZG6Pg7K0xuMVJQ0H1eSlLxKKzoqtkjTUGH42njmXqQRaWUTBKicpXkPNt7v6xhbctvsZfl+AnD0FqNFz/YVpaFzLHheITMxuaHYdbBnRFovvqKG84Lj67nBeFORN0IlT/rN/RYTVPxsAhTv8TXsL48TY4qej/T8OJ6kKi3un2j8uA+5x5HrKxoS9rQ4T9lHLpOes9sc50JcY6UUSwlcNSLR6uNGT4KGlD86SZq30rmp1tfH/TD0yryoqazoVUnzFiuVBRWelQeVkqm5GHvzQvb+HwOB76FXRUCi1xaPjIqWvak5ghHPEIwp22wrwc59FYGXGZSRauJ19ACZwEAPwn8X1YVt5NwgbUsvmtml/OHYu36eP1S8VKjcesD2up3+jjQnqTTPRVJjLDPGL4s8JYJynKsWzi1m4kajxmLPkXPebaTRELeEsA40kgjOFo5X9LZL0Hr9Uqaw1JAwZiTlU7Et9fX1ufgMf2LA2WX4Hj+DSixSiFxgtFil/OKV8spbmj9HMHo8XPwGEWbPuVy+G4yA688MAAQnZnLZgraSJ0C7vo5JUQE57kGgjXuVXKdYPsG8oaFhQSo/lWo0IPybWyBYNmNc0nycj9Y84z30LNhfbruvd7nRY+Cci4rWdXTc0HW0xPbwTceeQwQ9J6xwHtDY8HxiXeJ8dF+4b2wIsZ/c31xDpMRJ7XG+0Yhz+/x8gmuM03FNxDUVx7OUxaX0uGpEPOEjxWCPIVqo0sJ4BtO8pbyis4XMskizRMqI5VoJxtMmXG8qyCK6y3/Too0AwD7ws+nNxdgCrdroHbI/mGXm+rEv3Q9OriBQss6+z0YDn0PFSmUW+9FtdP3ZThoF/s1yotfr59KDLvKuGhsbc5+z/YxHcR5EZcwxdB9kWf6tyfSE6JW7vAgK7lNSrDR4SGeybU5tp5fq+tMzp0RanX1ZrVZzqfTRe2biBcc7xr8W6yeDYxGAlrK4lMBVI+KFYGtuZmYmtziKKBUuIGlh5h0VuheTvQ4vJi9aP48WboxXMamC4EDrnp6dqSSDL+vnMrnPzHVlTIQeioVKi4rP9zMWFJUY4zVuH7ch+Bp6NP7bHhVByn/bc+A4EJAIIozP8Bn0ZBaL47mNUv70khiLIZXlU+r9GfdExRRvlkcwYvacvbZ4CC8TFjyepBK9X8p9YKOEHjA9wbhtgtcy/sW2e9uB2+q6cRxoUHk+eb66bsyM9fNj37q/Yly5iFK0gUCjoJTFpQSuGhHSPvyfQusvLgqCztEoPv4taYGSJ0D5ugiErh89gCKLlsBh5SBpQb1pmdNj4CJnm90XPIOOioRtZl2pYNiOIlrH31nZUkFHb4s0XLS8fS0VWuwzgkusC8vzeHIjKz1BXs/T6qNHxvrx7xiTJK3FNtvwcZo4FT29Z84XGiN+Bst33bmdgRu6beC47Ng/HHfOL8+x2N44Zi4vZi5Gr5rrj5539I55PRNp7NmXcnQ5phjXpz71qdxgVCoVbdiwIX0/NTWlG264Qaeddpra2tp09dVXa3BwMFdGX1+frrrqKrW2tmrFihX62Mc+tuAssFKKhVSgF52VgzR/MgKteyn/Hix6IAQeemtUhvaGuMCpYF2mrWx7DrbcXU97I64bPUYrQStotodKm1auP3f8iUJFQXou0kQR0H0fwZSZg66jlT7PifQzvMeJ9/FEEse4Ghoa1NzcnOtHjx9Pu6CFT9B0/V0mDweWFlr6rie9Ypc3PT2d29vkttHbMvg1Nzen//meMrbB82dmZiYdrsxn2sPxWLscnjDP+eg+cdtZd3tl/t/1phfDF2x6DjU2Nub6jfPGfed6xuQcgo/nob9jjNReI48eiyn8ZiDcL9EYLaVYjtnjetOb3qTvf//78wXgWJ6PfOQjuuOOO/S1r31NHR0duvHGG/Xud79b999/v6QjiuCqq65ST0+PfvSjH6m/v1/vfe971dDQoM985jM/h+a8cYVUnv+nx0CLkveQIivi2qMiX+w50dOh5WxL0aDExc3EAwKIyzYtxTiE6+vfjM2xfTE1m5auNE8ZMkGD/UAFFD07KpeiOASBgRaz76UX5TrQGme8JFrrVKDRK3afRFqJFCONDCpLAwi9aZfL7MtICVtI+9pjilQdDQDGcFwu54z/dtkcX9J9nKORESAdW61WEz1Z5EGSco2GWhHFxzVBY4jf08vnOikC2SLPLjIN0QgrpViOGbjq6+vV09Oz4POxsTH9+7//u7785S/rHe94hyTpi1/8os4991w98MADuvTSS/W9731Pu3bt0ve//311d3frwgsv1F/+5V/q4x//uD71qU/lXgNfSl44+blAIj8v5c9x43cEFi8ovh2YZUgLN8r6N5W0NA8ujHGw3gSLqCAtkQaLipHtsCXLWEikGelZ+G8qYgK0lStBPtJaRX1gJWjlZon0ELPh/NxInVHhWYH5GayD2+N4DvvB1xHgKHF8SVlFMCe9x/7gM4sUNUHAoC4pbWfgd/SCPW8IHHzRqK/1PPOciQyE68j20dCwgWXv1P0ZE1siuHKtFfVdBD0aT0W0Y2xrHKtSji7HDO/PPvusVq1apfXr1+vaa69VX1+fJOnRRx/V4cOHtXXr1nTthg0b1Nvbq23btkmStm3bpvPPP1/d3d3pmiuuuELj4+N68sknF33m9PS0xsfHcz8no0QKw4ozBvut5Ei7EUxo5ZPqMvXE76LVTbrN11ARkTq00vG+LCn/sr4IrEdLlOB3VEj0cpyUwmwz15G0D+k7Ky6+LZk0U/RIpfkXX5Ke8+9o7VtRT09P56gzgiWBmvSkx80/BD4fLxXBkQku9j7cftNSHn9mSc7OzqZtBPE9aa6nE3Us7DeXxyPDfDRZPHKJYxaNCfabY1g0kGLclKBBg4BzmoDk6+zpF73PjfOURzjF+vr+ItDhNQQ5l8mYLNdBKa9Pjsnj2rx5s770pS/pnHPOUX9/v2699Va97W1v086dOzUwMKDGxkZ1dnbm7unu7tbAwIAkaWBgIAda/t7fLSa33Xabbr311mOp6htWopVeBC4ECf8fvbVIKXHR+38+y0IvKdKOcR9TtMRZ76LMPz6XQpCipxI9BHp+MfjvukdPUcpbxawL+24xiYrX5UavMnpTpAyLPDv2A71lgla8LnrHVPr8PHoHWZY/WJd14mZcti0CgoVjUURrkwqOSp3jyvpGI8dCT5flxvkfPeKYYOHPYv/7eXGMouHn64pAklQp6xeNQak8q/BY5JiA68orr0x/b9q0SZs3b9batWv11a9+VS0tLT/3ylluueUWffSjH03/j4+Pa82aNb+w5/0yStFi9m8uesZn4oKyEFx472LgxeewLv47nu/m8nlPzM5iGawvF3RUahFII53nNjJ9Pdab9aGnutj+tKJ6FMVD/HlUmkX9ReDmfUXKlfE5A0xUppGOcnl8q3ClUilMneeciIBujzcaSJx7pNTiWHLe0LugkRA/4z0RjGikLDZO9qBjkpG/jzQixy8CcRzT2E9xfOP90WixxLhzTP4oEzR+svxMkcDOzk6dffbZeu6559TT06OZmRmNjo7mrhkcHEwxsZ6engVZhv6/KG5maWpqUnt7e+7nZJS4gKIiiRIVZlQw9ED4Oz5nsTLjIo7fFYFd9AKPVv5ilBAVWPRaYhmxbIITY0NU6EU/RYZDUZ2iIqfCZbtjHxYF7otAhgBQ1N9FXm58drw2glbRdUXfx/rEZxbdQ6q5CNBj+2kIxfYUUY1x/vK6xaQI4GLfFpVXFBOLBtbR1ufrWcOlFMvPBFwTExN6/vnntXLlSl188cVqaGjQXXfdlb7fvXu3+vr6tGXLFknSli1btGPHDg0NDaVr7rzzTrW3t2vjxo0/S1Xe8LLYQihaRL7OCpELvEgR8nfRM6IULfTXW//FlAQVfJGSi4AQ67qYF/F66kiFQ29jMRA6mqGwWD0IAgY4KuPF6hvbV5Q0wXvoIbAMAmPRfbG8xQAhjlOcW3xukUdUVE78LPZFzCosKpufRY8ojtHPQ+J6XCxmx2vitbGekVYs5SiSHYPcfPPN2T333JPt2bMnu//++7OtW7dmXV1d2dDQUJZlWfbBD34w6+3tze6+++7skUceybZs2ZJt2bIl3T87O5udd9552Tvf+c5s+/bt2Xe+851s+fLl2S233HIs1cjGxsYySeVP+fML+6lUKlmlUnldn/uzout/UvnHcs/R7v9Zyyt/yp8T9TM2NnZM+j/LjlgAr1uuueaabOXKlVljY2O2evXq7Jprrsmee+659P3k5GT2oQ99KFu2bFnW2tqavetd78r6+/tzZbz44ovZlVdembW0tGRdXV3ZzTffnB0+fPiYKl0CV/lT/pQ/5c8b4+enAa5KltUeuTo+Pq6Ojo4TXY1SSimllFJ+RhkbGzvmvIWa3KZdg1hbSimllFJKgfw0+rwmgWtkZOREV6GUUkoppZSfgxw4cOCY76nJ0+FPPfVUSUcO7C0pw2LxXreXX375pN0+cDQp++foUvbP0aXsn6PL6+mfLMt04MABrVq16pjLr0ngcnpsR0dHOWl+gpzM+95ej5T9c3Qp++foUvbP0eUn9c9P63jUJFVYSimllFLKySslcJVSSimllFJTUpPA1dTUpE9+8pNqamo60VX5pZWyj44uZf8cXcr+ObqU/XN0+UX3T03u4yqllFJKKeXklZr0uEoppZRSSjl5pQSuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpqErj+6Z/+SevWrVNzc7M2b96shx566ERX6bjIfffdp9/6rd/SqlWrVKlU9I1vfCP3fZZl+vM//3OtXLlSLS0t2rp1q5599tncNa+99pquvfZatbe3q7OzUx/4wAc0MTFxHFvxi5PbbrtNb3nLW7R06VKtWLFCv/u7v6vdu3fnrpmamtINN9yg0047TW1tbbr66qsXvNy0r69PV111lVpbW7VixQp97GMfS2/OrWX5whe+oE2bNqVNoVu2bNG3v/3t9P3J3DdF8tnPflaVSkUf/vCH02cncx996lOfWvDutg0bNqTvj2vfHPN58idYbr/99qyxsTH7j//4j+zJJ5/M/uAP/iDr7OzMBgcHT3TVfuHyrW99K/uTP/mT7L//+78zSdnXv/713Pef/exns46Ojuwb3/hG9sQTT2S//du/nZ1xxhnZ5ORkuubXf/3XswsuuCB74IEHsv/7v//LzjzzzOw973nPcW7JL0auuOKK7Itf/GK2c+fObPv27dlv/MZvZL29vdnExES65oMf/GC2Zs2a7K677soeeeSR7NJLL81+9Vd/NX3vd8Zt3bo1e/zxx7NvfetbWVdX1zG/M+6XUf73f/83u+OOO7Jnnnkm2717d/bHf/zHWUNDQ7Zz584sy07uvony0EMPZevWrcs2bdqU3XTTTenzk7mPPvnJT2ZvetObsv7+/vTz6quvpu+PZ9/UHHC99a1vzW644Yb0/9zcXLZq1arstttuO4G1Ov4SgatarWY9PT3ZX//1X6fPRkdHs6ampuwrX/lKlmVZtmvXrkxS9vDDD6drvv3tb2eVSiV75ZVXjlvdj5cMDQ1lkrJ77703y7Ij/dHQ0JB97WtfS9c89dRTmaRs27ZtWZYdMQ7q6uqygYGBdM0XvvCFrL29PZuenj6+DTgOsmzZsuzf/u3fyr6BHDhwIDvrrLOyO++8M3v729+egOtk76NPfvKT2QUXXFD43fHum5qiCmdmZvToo49q69at6bO6ujpt3bpV27ZtO4E1O/GyZ88eDQwM5Pqmo6NDmzdvTn2zbds2dXZ26pJLLknXbN26VXV1dXrwwQePe51/0TI2NiZp/lDmRx99VIcPH8710YYNG9Tb25vro/PPP1/d3d3pmiuuuELj4+N68sknj2Ptf7EyNzen22+/XQcPHtSWLVvKvoHccMMNuuqqq3J9IZXzR5KeffZZrVq1SuvXr9e1116rvr4+Sce/b2rqkN3h4WHNzc3lGi5J3d3devrpp09QrX45ZGBgQJIK+8bfDQwMaMWKFbnv6+vrdeqpp6Zr3ihSrVb14Q9/WJdddpnOO+88SUfa39jYqM7Ozty1sY+K+tDf1brs2LFDW7Zs0dTUlNra2vT1r39dGzdu1Pbt20/6vpGk22+/XY899pgefvjhBd+d7PNn8+bN+tKXvqRzzjlH/f39uvXWW/W2t71NO3fuPO59U1PAVUopr1duuOEG7dy5Uz/84Q9PdFV+qeScc87R9u3bNTY2pv/6r//Sddddp3vvvfdEV+uXQl5++WXddNNNuvPOO9Xc3Hyiq/NLJ1deeWX6e9OmTdq8ebPWrl2rr371q2ppaTmudakpqrCrq0tLlixZkKkyODionp6eE1SrXw5x+4/WNz09PRoaGsp9Pzs7q9dee+0N1X833nijvvnNb+oHP/iBTj/99PR5T0+PZmZmNDo6mrs+9lFRH/q7WpfGxkadeeaZuvjii3Xbbbfpggsu0N/93d+VfaMjdNfQ0JAuuugi1dfXq76+Xvfee6/+/u//XvX19eru7j7p+4jS2dmps88+W88999xxnz81BVyNjY26+OKLddddd6XPqtWq7rrrLm3ZsuUE1uzEyxlnnKGenp5c34yPj+vBBx9MfbNlyxaNjo7q0UcfTdfcfffdqlar2rx583Gv889bsizTjTfeqK9//eu6++67dcYZZ+S+v/jii9XQ0JDro927d6uvry/XRzt27MgB/J133qn29nZt3Ljx+DTkOEq1WtX09HTZN5Iuv/xy7dixQ9u3b08/l1xyia699tr098neR5SJiQk9//zzWrly5fGfP8ecWnKC5fbbb8+ampqyL33pS9muXbuyP/zDP8w6OztzmSpvVDlw4ED2+OOPZ48//ngmKfubv/mb7PHHH89eeumlLMuOpMN3dnZm//M//5P9+Mc/zn7nd36nMB3+zW9+c/bggw9mP/zhD7OzzjrrDZMOf/3112cdHR3ZPffck0vZPXToULrmgx/8YNbb25vdfffd2SOPPJJt2bIl27JlS/reKbvvfOc7s+3bt2ff+c53suXLl78h0pk/8YlPZPfee2+2Z8+e7Mc//nH2iU98IqtUKtn3vve9LMtO7r5ZTJhVmGUndx/dfPPN2T333JPt2bMnu//++7OtW7dmXV1d2dDQUJZlx7dvag64sizL/uEf/iHr7e3NGhsbs7e+9a3ZAw88cKKrdFzkBz/4QSZpwc91112XZdmRlPg/+7M/y7q7u7Ompqbs8ssvz3bv3p0rY2RkJHvPe96TtbW1Ze3t7dn73ve+7MCBAyegNT9/KeobSdkXv/jFdM3k5GT2oQ99KFu2bFnW2tqavetd78r6+/tz5bz44ovZlVdembW0tGRdXV3ZzTffnB0+fPg4t+bnL+9///uztWvXZo2Njdny5cuzyy+/PIFWlp3cfbOYROA6mfvommuuyVauXJk1NjZmq1evzq655prsueeeS98fz74pX2tSSimllFJKTUlNxbhKKaWUUkoppQSuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakpK4CqllFJKKaWmpASuUkoppZRSakr+H5dW4T1RPbNVAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eYxk13Ue/tW+d229790zPRtnhutwRIqkuJmSIRuSJXiJLUcxhNgIJAOOgCwyHCdWjAjxPzEcK1aCGDaUWJGtxJJiWaItUQslmuJODmffunt6X6q71q6tq+r3R+O7/dXtaspy9JOm7XeAwcxUvXrvvrucc77vnHuuq9VqteCII4444ogjB0TcP+oGOOKII4444sj3I47hcsQRRxxx5ECJY7gcccQRRxw5UOIYLkccccQRRw6UOIbLEUccccSRAyWO4XLEEUccceRAiWO4HHHEEUccOVDiGC5HHHHEEUcOlDiGyxFHHHHEkQMljuFyxBFHHHHkQMmPzHB98pOfxPj4OILBIM6ePYsXX3zxR9UURxxxxBFHDpD8SAzXn/7pn+KjH/0o/u2//bd49dVXceedd+Kd73wnVldXfxTNccQRRxxx5ACJ60dRZPfs2bM4c+YMfv/3fx8A0Gw2MTIygl/91V/Fv/7X//qH3RxHHHHEEUcOkHh/2A+s1Wp45ZVX8LGPfcx85na78eSTT+L555/v+JtqtYpqtWr+32w2sbGxgXQ6DZfL9f97mx1xxBFHHPnBSqvVQqFQwODgINzu74/8+6EbrvX1dTQaDfT19bV93tfXh8uXL3f8zSc+8Qn81m/91g+jeY444ogjjvwQZW5uDsPDw9/Xbw5EVuHHPvYx5HI58+fWrVs/6iY54ogjjjjyA5BYLPZ9/+aHjri6u7vh8XiwsrLS9vnKygr6+/s7/iYQCCAQCPwwmueII4444sgPUf4u4Z4fOuLy+/2499578cwzz5jPms0mnnnmGTzwwAM/7OY48vdQXC5X25+/7bXfz29dLhfcbnfb7/TzTvfW3wIwv9/vWfbnb9UmfWanZ+133/3+/Vbv/Le5dr9nO+LID0J+6IgLAD760Y/igx/8IO677z7cf//9+N3f/V2USiX80i/90o+iOY5Y4nK5oMmm/L+tRIEdp0P/b9/Hvq7Ttc1m0yjEVqtlnuVyucx3/JzKvtlstv3N37rdbng8nrZ7bm9v73kPfQ6FvweARqOxpy/0OXa77e/tf3e6T6e+7tR/7DvtI+1PbbveT69xu92mrzq15W9r4JvNJjwej3mm3XaXywWPx2PaaI8rfwvs9LEabra30z21H3mNjqPdTr2P/b193/2eZ//bkdtHfiSG62d/9mextraG3/zN38Ty8jLuuusuPP3003sSNhzpLLYh6aRYOxkbfmcrFl6rik0XrH1//Z0aLn6mCkmf20mZ6/t0Uuydnq+fq2LspNj4u04KulP/2Yazk3JTpMX/A7uKuJORt5U2+47vYLfBNhK2MrWVPduhhl7fjffkNfb763ja48j31/fid/o+nfpY55S2R+VvYxzsPlSHxe63Ts6CttGe9/tltHXq405rT/tb+9qeS3oPjv1b9Ysj+8uPZB/X/6vk83nE4/EfdTN+6LKf8n0rlMD/259x8arit39vG4VGo2HQjLbF9qy9Xm9be2xP3+PxYHt7e4/RtN+R99Tfsw18Fn+rCsTn88HtdqNWq7VRW4pE1NDquwMw7eN3Pp/PPIPX+f1+uFwu8x58fqPRaENIqrRU2dMoqYKzlTH7SpUc38FGoXy2/pboh58r6tL+c7vd8Hq9aDQaexSwzhPbIBPJEuWyfdvb23uMh8/nM9/Zc5L95fF42sZc+0nb2+nd9Hl8z/3Qtc5t3p9jq07JfqhWv7OdgU4ovpPhtg2s3vMAquT/J8nlcujq6vq+fvMjQVyOfP/CBaITX5UfFyq/s9GGKjYbSXBB8l6qYHXxc9HqdbZ0omVs5Wu3Ua9VNMH3VUOixqYTwrINmdvtRr1e33Nf7S/tg2azucfQNptN0yeKgNS4quFRA9ZpfBQ56DvVarU996YR0D7SfysaVDRtzwV7rOz+tp0a+90Ufek91BmwxR4rey7Zf6tRVWeI19jo0uv1tqFT/Y1SyZ36jv/fD7Frv+i6o3HlWOkY7of4OiEyu02d+tSR/cUxXAdEqPyJZmzaBEDbAqaS9Xg8qNfrbQpGURMVKpESlaXSTl6v1yhQVfpUygD20IN2DIoeN6/zer1tyqaTorEVgXr+zWYTwWAQAFCv100b+By+j3qxeh81pgD2KEnbi6aS5Ge1Ws30L9vO/mu1WqjVauZ92VfsW46bbdzUufB6vWYMVck2Gg1sb2+30V2d4ld8HzWGqlx1DLV/+FtbufPZfM9Wq2X6nf1Do1mtVvegQ0Wiahy0z/lZJ8qVbfP5fOb/Oq85puxvZiE3Go02VEZRetCmyO35wvmrLIG9hgC0zXHOPR3DSqVi7q/zSeerrmdH9hfHcB0QsdEKFZ7SMoqcbOpCDZEqLSpS0jhcqDZ9oxSKogU1lHyeKgLb6yYlZdMiNhric3mtKiz+ht+pMVAkqUjLpmhIOdLYkcLS/lIlanvPapRUyVFJ8t52PFDRkfYXx4DX0ihQwdlt09/ZSNO+DkDbd9oPNtJR6UQ96nV2LM2+tz6X/9b5ZTs+/K1SgDpndI6qwdX5ouPQKYbYyVirk7JfIhBFqU4V+1qd951Qqu3k2fPHkbeWA7EB2ZEdUUOh/9fv9W9gB43YwWfb0PE3anxsw9NJaDRsZKBKkoYUaI+F8DlUPErZ2Iper9ve3jZKrFqtti10NXQ2IrE9at5flZrP59vj6bNNANrQrv2ueq06AMCugaWxpJL1eDzGMPGdbAeAv+N7s502StH3tClPdQI0McdGx0SM+l4ad+Iz1aho/2xvb6NWq7WhWrZVjb+NpG1ESdHP7flJZ0XHBMAeo6TvaaMlPoOoTOeIvoO2Wx06nUM693Q8dQy1X/m5tnu/debIXnEQ1wESW0nT+wPavXEuINsztRcj72HThqQ5SHmp8eEi7KQoSCvWajWjvHmNy+VCtVo1iobvoMqTos9Spcg2UxQR8Rp+rp6zKniN3yj1psa12Wy2xTCYiKFtZiBfjZaNwNgfVIz6XmpAFC0Qae3nNOg7sB0cW0XOfG4gEDDvWa1WDd3M+5DWUhSrhpWUqMY3+btOaNJGjkozK73GuUxDx3mn84pjUS6X2+g0/p5zl7+rVqttlLpSs50cDHUadH3ZTo3dz/y9jps6LLo21XByzDQ5iX84fxVtOrK/OIbrgEgnWoeLS7P9gHbP1Vba/EN0odfZSEyvt++hdBDbogbP9v6p0HitUjiq0JU2UQ/ffn9VGLy3evH29WybKlw1HLYnre+lxlEVt44L+53vwPsQKWl8jkpL+8Iea/7NvtG4WKvVQigUQr1eb1O6+i6dvHc1+tp+m9rlWHLM9b20bftRcLYR4zzTe9q/URSi3+k80zHnNbbjo44O26j0ubIEndqu85bGr1KptN3bHnfeT+cYRcdBnTb7exvdOvLW4hiuAyJcSJp+Te/M7Xa3BY9VadhevW3kgF3lxN/a9CHvwe9I/xBJ6G/Vk1UqSFGaGh5FTXaAnZ8FAgGT7MC+sNGWUjya3qw0pj6XQgPu8/lQq9WMAQiFQuYdSbcqIlKFy/+zn9WjtttGJaeI1G6X2+2G3+9vQwzadzqmNlXL/+v4Ep2wT/k+ttFQh0PHVhMcFAXabdF5pRSZTQHyPmpA1MBQiMbUkBBl8Rl8V4/HA7/f3zbPeB2TRezYrzphOpa8B/vJ/l6ROueOPYeVVrQdTXWuaNDZH7YT40hncQzXARE7gGwrcqU5+H+llVQ01qFKw6YNgZ3FyoVJmkaVro2obNTBBayUmb6TetAUjSmoArARG6/l+ygi1OtVMdtJHzYSpaKs1+ttxki962aziUAg0KZAbSeBio9KSmNzqsg0C5JGiterAeY4sO9VqfIP35VjYNOlNm2sFJ/OERtJ2UbLNpLMKKToPdkORYLqlFC0nTq2dGTsvtPnqXQyDprByvtqG/mOdATs+WozANpefR8aHkVWSlNqG3RsdP52QsqO7BXHcB0Qsb0z/b8aIVVkSueoAlIURAWgHrmNjoBdmkkpI/UulXKi8rBpD6UmbYRhe8+qZGxlb7+nKh81etp3+lu7LbyGbaZhsGNJ/J1N89kUpa2Y9Tttj76fOgY2RQvsUphqQHm9PWZ6b2ZW6nuqYlVDp8jGNuaKHu3xYNsUpel9+W+7v7U/dOxth0vnls/na4sD6vP4OdvF+amGSueJvo8+h85EJzpXnQWOi52+z2fru+o87cQ42Akvjry1OIbrgIgiKHqEGgAGdo2Peta6cG3u3ev1mgM6uZjshUwvlKKKn9cSkanCUmSj1CGAPf/Xv1VBKuJQykbRk03H8D2UNlUDpHEI3pvUJ+MfbKOtuGkI9P33o1VVOhl//luTE/j+2j/6jjoOoVAIAFCpVIwBYx/yPW20pX1FxKlZeXxHvrMiK16j76cUsTIANI6aSafjSXpWMyU7zSs1njo+RKf2nLWZBE260TZwPdmGlM/XxAk1cuqUAHudCb1O34v/1jnF+yrVrvSyI28tjuE6IMJF12w222gi9bKVlrA9Sl389gK0jVUndKO/5XW2gta2anDcNlT0aGk0FZmwnarMbQqJ16sxtxc8/9+p3erxqhJUj1mfqdQb76uGuROStQ2JImA+g+3TPte+4P/5W+1TO7miE9rWpBZeR0fERn36XKUmbaVtv4POAdtAqtHX2KrOXzUO/GPTeorOdSw5JrZB4Njw3nbsTNP+lQrUZ9mxPN5PGQfbWGoCCH+naIyfK62ujqEiOUfeWhzDdUCE3rHGZwAY+oTeqB0Y1oWmytFGIuppqxeu1B7vp6KeMdujqcy6wIFd46pKQhe8er7aRl30SpdR1Pu3lbIiUP2N3lfvre3Q/tLfKfrQ+KP9TL6XJlgA2BMztN9ZlbPOATvWZlN3ndqqRlzf2fb49XlqwPhbex7pc3g/zkfbwWF/aYKF9olmINrvrChJnSA15Hof0n025aj3ZWUNOk/83naOKGy7xi1tQ2SjO/1OKVN1EjQl354jjuwvjuE6IMLMOgoXj9/vR7PZ3LMfht6cUjhAe5KHy+VCIBAwqIHVKTpRg4oQVMHb9+R97Sw2bZPSVNp2NZoA9pT0oaKl4uK72yiF/6YCVeOnhs3v9xuPl0qDbdH72anVwG6mnsY4+LmiNFVOagxUGdvIWWNt3EdHg8B72Zuc7Xdn32t6v/anjqW9R05LfvGZ3AOmc0/3XXVCesw01M+0MC/bR4PgdrvNvjHtG0U+tlHge+lcpPBaTcXf3t5GtVrd43jYBpaGhPsSvV6vKdlkGzfOD95Lk2jUiVTkTMOqJbn0b0feWhzDdUBElYkiJXqv6glzwaty4/fqCfNvG5XZqE0VIdC++9/OTtT4kVIsanTUW9XYAz+zY1p6L/Vc7XdRRKHUkNJ7mhHJ+9hCY9MJrdp9TCHqpei72v3H+3S6r+0A8E+nLDptPw1FpyQNRbvabo2pUFnb80ANDeMwnfqcyluNcif0y3nA5BJ7XnLsFD3rPdRA8bmd0vo79aGifEWatkHm/e1Ynqa822tBUa22T9eFfW9dA/Znjry1OIbrgIhNTQB7M/zUmOj1GkdhIgURj6I4pZ+4QBlk189onIimdJFqQF/jMPR4mWauiknfSxVaIBBoyxSjslHjaCeFUPYzyKok2XYizWazaVCcUqTsM7saAo22JkewDYqMiDh1LNToa/zMfg7fm/+29z5pe1SZq5G0EWkwGDRonFmH29vbpkKInf5eq9VMv6hxoiHTPrCRi85HtrWT0VG2QJMjOhl+vqsieTU+itg4z3WeqYND5G6jW847tsXeAqLGUdcj+1MTN3g/HWdF8LbT4hiv7y2O4ToAQlqGtB8XnR3Tsb1Xe6HpAukUU7IRlCY/qNLXALi9X0zRkSocpez03rYC5ncA2pQiv1djquiBaEKNAdulhkn7VD16RQM2CrKRUqcNwVrQt1Ofc3x0/NTYU/mqQbALEvO+tqJWQ7BfjKtTv9pUrz1vbEqMRpyUox2bYx+rg6N0nbZV26fIXJ0wRYq8xk7kUOeIn9mnGWhb2Z5AIGA+t59pJ0/YbdW5ajsPOs56nd6DxtTl2imDxj7RfnTkrcXJvTxgwkmuCozKXJUgxS4zoxlwVI5ctIxJkNvX+6tS28+bt6k99URtpWgrXrudusDVK9c4k63s9Lf7PVf3vSnFpN/pfWz6SY2dTdtSms1mG+JUJW4bcDX0+lxFG2qc9zP26oxoe5Q65DuzGK4aARpfzgl1FjhX+G9N3unUL5yDvLciajVc2mcURSK2Q6Z9pu9pxy63t7eNEbcRmaI/Cktn8ZlkBbxer4nx2fNT16GNCPV7tk3XFt9JY1/8u1OfOLJXHMR1QETPPtIJz8VBmouLVxciRb1LGiRg7/HqSlEpwmDg3KalqGjsSvRcsEqtqeKlYVI6T6kitkHRk6IweuD0nFWxUWyaTNtCj1oVP5+pdfXUIPAz3luVpl7Ld/P7/ajVam19rJ51IBAwv7P3NNkJNzrmqry1/2l42D5FG/oZ0F7hnP9XpKgoSTPq+EeNm/arIkQ1Zvp/Rfc65xTJ2M6AUsX1er0twUFRntfrRTAYNAYsGAzuoevsPWb8Th05tkNjfxwDZSU4jzSuyTmshlLH3S4nZZ9x5shbi2O4DoBQIdj7PZTeUKVP2oqLTQvqUpHblB2/t7PcbPrC9nj9fn9bEogqEKBdIVHB2kVO+RkXuU2hKbVG6URR8jmKQhXZqcIGduNFdjq+Ukd8Fu/Bv7WtNtLUzeGdFKBtxLXfVCnaaMxuD7B74CTHin3fCRXbMT+lgGlkXS4Xtra2TFttWlLnhBpwNb7qUPE7Ver2XFKjZiN4fSe9n/aVGlsaNT5PnR11zPh7Ghy+l/5Ox9VG5zq3OSZqEHVNadxXhc4m30OpXocyfGtxDNcBEA362obE5suBvdlj6hXaaETjHPqZjdYUjdhepCoym9MHYOJzep0udPWCbRRJpUGFoocK8l3ZB0RKdnacnXSiKe/ADrLx+XwmGYQGXA0/FQuzBzspaxoCtkspNZdrNzHGpr5sw6gGQe+tsRter/SYXTFeDR9/z7FUhU+ngYk6ahQ6JV2w7ZyTuqHXpjC1HZwLOqd4b/ZrJ1qQ7WN8TdG4bSx0XDS+pvPf/p5bQhR52utDjZn2u/aPIkWl3/k8PQxV/7YrdThG63uLY7gOgCi1pZSSUmgA9igKexGrQuKC0nvxj5bk4QLU9HBd0Izl2LE1oJ2uVESnJZaA9oQDRRNKg9mIShWrjVTYBzYqsL1oO1Zmox39vf07Ne5qPFWRKoK1+4fPYyYbFavGrPg5n6P9ZT9Xf6v31/e06S51NDQRgr/ROJUWn9X+5RxQha0V3PkZjZwaDkVSvFYdk04ITceIaEUpN0VBdr/pOOo9SROq4dF3tKl1NWK6DUD7tZODaSc06fywHTfHeL21OIbrgIh6op2UqNIZash0oaqh0wXaSaEA7TEcDXJr7EMVoz5L76kKQZUU29xJMagyUGNmKyGlWdRIURHYe5vUqKuBsCkim9rkb3lPtkVRlhomNfLaD2oIbBpMkY0mpPDZ9pjav2V8xEbR2nb93M5YpGFSdGqjQaVTVcEq7agoSpGxGhGdE4qSdVw4NzRGqEaVjpEWJ9Y9gPbzFH3pO9sOhfYZP1MjbyMmpfe0bfqM/RwifaZtBB3ZXxzDdUCECsqOy6hiUcXLz4Ddo955QizvpzEzXXAMwmtqtipvVRo2hWl79WyXJhfYXrAqUv2/KjsG2+1kDVZB0La6XC5zNpPuzVFjy/Zrerd6v4ryqPDYr0pNAbuBdlZYUCVr940G7Rm3VAXIvzt58W/l9TPzjc+kMtd4j96b9yBFxzaSNt1PSXNc1DjqczopbAAmcUgpWEX7uodMFbtWt1eHQ8dF55LSsWyf7sPjb/S9tUIG0aI6dkrlsb36b16nTIJS22o02W5NtlIqk89zjNdbi2O4DoCo96vIijGdTnEl5feBvVl16vnx/2o4dPGoEiZPb2daKa1kf66LU6kkKl9b0eiiV+9f34PX8jNFQ1RSqni1z1QZq/JShamK2+/3m+s1S1LRm0172UhE78nf2/GQTmOh/W+jRBotNfx8D9u4aj9q2xWB2GNl318NsI1M+c6dEL7G1nS8dExtB8NG47YjwPZo2zrRskpX2xSvInqbddC5zzbu51Dws04JRva6tGlQe9y1nx3ZXxzDdUDEjm+o8lWaQhUbPVmiKNtb1c3GtrKgaMaiPs+m09hGpQJ5vf5tU2hc8Da1qO/Edtj1+XRjsU2TqRGmR63P0jbq+6oXr23k+9LQ2hXv1ShpEozeQ9+P99H/qwHgbzspOnUSbLRKsct96ZywY2SKDPhbe1zV8HM+KILSOaWGlc9Wx8JGLmzX9va22R5gV/+gqEG1y3exfXwfe06SVlT2ge2zN1PbhkP7X/uEjpi2y57L7Ds7BZ7PU2dF56Ij+4tjuA6AtFqttlp4VAA0SqrM7Ymv3r2NLtT714WumYM2wqCiogJQ6hLYTdZQ40AFpcrBNgyaks722TSRKmq2lX9rggKfwyw8m4JUQ2Tf2/a09R35O0WCmiVHCorP4Ge8j8/nM3vh+I5KHWo9ShqtcDjcRo9qPymtRqSpdCf7Ro2IIvROyFYVK6/jZ2yHxt/UcNgIzqZX7TG0ESDnDx0NRcd2rErHS6llPkfPmVPDb2dJ2giUY6Nt13mh848xPDpNdnaj9onen+9jv5Nmrzry1uIYrgMi6gHahkppm07B6E70ir3RURWUVq/W8kC6+GyDwsVpGy01lGwv/7YXsU0FaeajjcboqdvvpYpT78U4kE392KhE+0ONM++nStBGv3wX3kt/b3vUnRwKHWel/Siamcdr9Hd6H0VS9jjrPZUe1H1z9l47nXvsD8at9J1tpGz3tbZBHYlOCFz7pxMVy2vUACkS1rFVmlrRJL+zkbo6MLyXvo/2h43gbTTG97CdOvteaiAdeWtxtQ5gT+XzecTj8R91M35ooptEKYwT6X6hSqWyh/6j4VCvWgPQtqGx6UZd9EB7EgiANg9eFzk9Z4072aiFSkcVvT5DDS/jTNVqtSMK4zRmuR5gV/nbaIQIVuM3ivL4f6Xv9lO6zWazbX+RIlJer/1ABebxeNqcB+1fNUB8tvYJgLZYo40O1NCzf4hg+GxbMXeK3/B+amTVOdD4kY0u2Idac5H3Yn/YsS++v42AFIF0aqP2M8fe3jdolzDTuUDjwj7VNabtUxRo7x/kPjjtc/aHtpGixav5DHUUDqBa/jtLLpdDV1fX9/UbB3EdAKFisWmiTgjEjjFRlAKk8uDCspGNjRZs7l0VqCot/lYNJa/RNulitWM7SmspjWYjBa080ek+ijZ0XxGVJg2Ooj19N1X8ilo7KUtb2djvRwMN7MZZtGCy3e5O/aTK0L7OpvfsNhJRqYGyaTL7vW3UalOOiqA5h/h8+x1s50fvr/NKq1iog9RpTtsOi7ZT312/sx0lGkZeQ0RrO2+8l55wYMdFOe+1SobtNCgq7YTWHfnbi2O4DoBQ8agHqB6/nQ2oCogLRctAqdi12ezFzmeoQrIpKf5tKz/eX3+j3L8dONcYinrtRCe2UrVTodUgs99UwervNR6lMSS+Ow2bKjEaKl6nSlY9ZipEbYe+r522rp9rf/IeNHJqOHTMlTa1kw74Puqg2LFGG6GrgdC+oTOhCSOcf4ro2S6l3+w9hrYjwHfQgxXta7UvbXSi81H7Sils3kvRJ+eYJpsoauQctttiz/v9jLNuR9AqGrrObAfPMWbfWxzDdQCEClQXm1JRmpDAz4BdD1UD3txrpDSF3lOND1OUlQ5UJazUj/5fFzKNjla40D0stsJhe/R+fBdVllQQSgHZSrkTUlJ6jtSOKjvdo2TXjlPqlH+rQVDDpdXJtR06Vup82MZIaSaNzXEsNEvUvs4eF93TpchNHQn2fSdnAmg/hJOf82gQGhwqZ/ajPlP7iGPPbFc+S5GMGkFNqOiUFWqjGRonRbcUFgtWtMV7aDq9znObfuTZZIriOV5KUbZarTb60a5faRthva+dJepIuziG6wCIKlY1YLZ3DHSugsFFYFN+nSgg21Ao1aXKzkZY6vVr7Ij3UoVApWVTYADaKELbU7a9Wt1vxN/aHrGNVKiEVHHoPTopTipiTZhQ48lr+Jl69Opg8D20T2y6yFbAvB/f1x5ndRT4vSKJTmjQfm+Omb3XjYrXpuv4njoH2Q5+pjSp3WZV9Haf6zyj2AkNOv467vpvvZca5U4xTPadPXc63VMTWHRcdRx0PnCO8ne2kdW+sfvLkf3FMVwHQFTB24qVi0j5fjVQusgovF7/D+wuUFZ8t9N4FQHZ6cpsk3rdiq6o6DpRK6rwVKGrgtL/23ECRaKKNpR+tI0zn9PJ+CmasL1f+9+2AeLzVQnp8Rv07Nkf2i6OhU11KcrQRAJFpaqk1WBpdQ6lYLUPtKKEjonu7dJ5ogreRlLsQ/Ybn6tJK0ovahYgFTzfk+PJ9tqOmFKfNvWmCJuJOIqytF02KleDre/VKVNQja/2qdKkOs4ejweBQADlcrltHHQ7hGO8vrc4u90OgLyVp6w0k+1dKgLRa/UPsIsoNBBNIU1jowNdcPpcfqdeuyI5ir3nxf6b37E9bJ+NAjs9Sw2hbaBtdGO3mf1BA2MjK6WieMig3tdGw9pGW/HbaM9uV6c+7OTh6/xQxczrtC/5frze5/OZMVQKlKIJMvbzdb6o8dHn8Tnalx6PxxhzHU8dBx17t3tnD5ym3/N+NtJhH3Bfn93XvJ+Ota4D9o0dH1SjpPNR5xbng95Xn9sJCaqT0mmOOtJZHMN1AES9bQBti0MXgr0AgL3HS+h9VFQBahaeKic7UG97q7aB434wO83YjrHYKfzaXv23rahUEZBSo1JUJaVtorG1/71f+2ikbMqPSSNEDKroOhlyJpdQOeomZFt52VSsKlSOB8dQ0ajSdbayVbShCldpQI4p31eNFt/N7XbD7/fv2R/m9/vh9/vbnAuNddmonm3XZAideza61nGx+7nTvymKwOzsVJ1Pug6IxNSBILpUB0LnYKe5y+frlpVWq2Xqa6qRtN/DkbcWhyo8AKL7YJQq2t7eNgFdXUj8jY10bEpEOX4qRw04d/JqbeTHgLp6+opC2GZbOWgbgM6FZe19QrZnzOtsGpJoSPfVUCHbBozf2f3Sia5Rg60Il8ZN9yrZCS1K3dKQKYph/+mWB15vJ18o4lBqz3427wfsUmY67s3mbpFiitvtNoV2eXozk2tozDiG9j4kvTef3Wkc1TGw/8/PlDbjyc4cA+0ne16xoK4aA/6tmbX2OlFaU6va67zgHkIaWJ1Tumnfns+ca5qkVK/XTeUbO06p69CRzuIYrgMgNt3BSW8nGnCxKF8OoE3JA7vKRT1IWwlwcdsUj8ZMdHGzHUqL8D6KCG00xT+qTNT7pGJWalGRBNBeOFcVlb47v+M7axUDvUbfh/+2jVSnd2f7lLq1UZgiH+1DRTQ2raV0oX5P5dopZqjvxPszu07RKQ2XPX46ZjaFRcVunwpgU7/aJ4osFM3bBlMdE3vMaCTYdzpfFKXos+17qhG1Y1LqXOi/bcZC5yTf26Yk9X42GlfGQpEg55hdrcWRzuJQhQdA1FNUg2MvEFWWqtRsr5i0jiZR6IJSQ6ef2zSM7kuxlZxmMtrKg8qPYhssVTiqKPhv23ho2+iJ6543vaf9O9soq+LpRAVpdQZ9D5vu4fsqOlQngUrYNpq64VuNmF3Ul6jSbp/9jkolat1GHQ91cFRhq/Ojpb8Yc2IfKAWpStlGmzpXddxsw2yLjr89/zQGq3Qp311RoSIZjqU6e+zLarXaNod4f7supb0uNAlGESgLAisroE4hP2P7nFT47y0O4joAEg6H25SIeum6R4WfK93ABcUgPK/jqa+8p73J0i5ZpJlnzebezblKYakyshewIhhVurZycrlchsbStGe9n8an1Hjze6XlbDSjXroiA42jEJnZtJLSeTY1pGOhDoO+r/7Ne/Hfajj4DnaSBoA2JWjH89RoADsUF40zlbEiTu0rIhuOk1JYHHNmxGlfdTpPi33daY+UjcT5zjadqWPQarUM/UtDrM6Qx+NpK66r2wjYJlLrGgPUDFS+l+7303dhPxK98np9jtvtNs9RR0rnoxpZOiE2k+HI/uIYrgMktsfJxUiDREVvKw4uCFWYQHuJHf2sE8qyf9spDqP/10XZSZmqIrbficphP9qJiEV/TyWnm1gVQdrKXZW2jQps9KTK3VYudgzRpqQUpaijQGWslUuo1G2aUZ0QfQeKXss+UiPP91I6ioaP/9bDI3lPdQR0zHQe2JmYaqQVwSq60LnLZ6mxtPtKHQkbrWlbbcdH26blmuz1ofNO5xPvre/B++gBpOwnzjO7dJTORZ1Puv7YBhowR95aHMN1AGRra6stMO52u01Vi2AwiEaj0XYEiNJPdgBdFQqP2LCVFRcWsKvI/X5/G0qzEYcuTFsR2QqXcQH17rXiAIVGVIP8nd5HaRqlBCm2grMNj/0OqgC5MVeLGtsGQWMUahyIHsrlsjHG9L7tKiWKQuy+VWOufa9t6IR2dEMxx1DRNt9P2w2gDWWqMbWrVigVyD8af+oUn9O4ohoKHT8mMXCOqxFTOpPtCQQC2N7ebsvW0z1eShHatLYaYu1H/p4GXZGq0nm6jnh/nSM2fajrSREp55ney5H9xTFcB0RUKQEw1dKVbtHsPUVONv3F8jwUpd1shWUr9k6xBt6Xonto7NiSHePgs22kx89tg2a/j/4GaEcb9vs3Go22gzVVwSvSoufbyXPXd9fviC7tOIq+p8ZjdMzsfrKFiRiq8NX4qBHR8VQHRNusJbfsTbx6nc4Z+x72u2mshm3ohDZs1KHvy/mhCErLlLnd7rbMPhvVKK1qrxeNtfJafm6/q85Ve26rgdf5x/dk36uTqc6GOpX8ntfbCMyR/cUxXAdAbI8R2E2N1vJIFC4gNQL6nV2bEEDb4u+kDFXhaHkg9bR5nU1z8W+NW9ieN99NFQa/08XM5+qRGNoP+kxbqdjGlkaM3wNoQ6EaL6OoAn6r59i0mVKT+jw1SKqQ+b3SXHblER3TTnEuG5nZylxRmRpbTfrQ9toKW5EFUQq/s/f46diq8tZ30TlCJ4PPJkq1nSg+W5/XaU7r/3Uc9H14HVP/+R58N5sStJFqp/dVqtw+igYAAoFA2/zXdjqyvziG64CIHetRWoQKxk5WUCWmcRO9TukkRTpceEpP6W/shAlVFq1Wa48HT9HfKZ2kC5730zI9bIt93hY9Vt2HQyFia7V2Nn1qwdtwONxG29l9qOhQvWaNYWicgqhIlajGaIhsAoEAgHYKqRPSIq2nY6F0pd5f92rZdCh/rw6AbazsOdbJCSJlRiWuJZFarRZCoRAAtB3XYhcYBmD2hwE7FKqOvbaJ7eV7sp86GQwaCHsudooN2siLRprrQ2l09qE6eKT4lBLl32Qa9B308E/GX5UV4Bl6OmedGNf3Ficd/gBIJ09ZPVdV7nqdTYdw0asyVsVh70exv7PRkipAeqmdUsrVa1eEwe/tfVgUfT9VqjbtYmfdMWZgowUbkTCGQmEbbK9aFaLb3V45wjbEFE0T19+qslUFxzYx28/n8yEQCJjn0yCSMlMUqkaX2xz0OTaasx0N9qXOKx0fHVObmtM2aDyTn7Ef1HDoH+1je96xbTQU+2WX2nSjPXeUMlaxUS/HsxP9p/NXkaiNvjo5IZ2cCS0XZjMNtrPnyF5xENcBEF1UNj2lSRusGqC0jXqzgUCgzQhqQFw9e0VWVEj0ktXw8P5EQraB0OoR/Nz2jNk2jfVoqr/tJTPrShWXBuP1uA+2TQPrNrrTPtI4m9Kh6hSwWokaXD6X3rtSu2yX9rkqKqWKiCbVgNpHcCgatEVRA8dL97MpguRzmBlnj6Uml9ARUCNjI2pNMFAD12w298wNJqto1QntM9sg6nzinOBzOb6KZnTO67EmXC8aI6TYKFPnoxo4jhHbq23nPNDn6/YU9pkmJ3EvGtdZJ5bCkb3iGK4DIGoslPpR5NEJ2diFZhmU5wLTpAS3291m+OzFowaNClqVGWkhLmA7m1ANie6BseNviqS07Z1iWWp4FQkoMtG4gVJcapy10v1+RkGVkY1qlWJSyovjpfERRUC6bwvYTbjh77e3t03MrRONpzE07S+lPrU/7SxNuxSXGlgegKgKluNjIxJFVJ1QK/9v03TqKNkIUeecZpWyjexXGstOjpC9YVjfk4aEbIGN4LQyCT/jiQG61YFzwKbc9Y/2laLHVqtl6jtq3zgJGt9bHKrwAAgXhm4iBtrr+VH58nouOi24qnEuYBcNAHvPp7KVuC5E/p+LWvl+VVZUmvSsdbGrZ65t4N+qLLUdSsHxXalY7IQPKktVPuwHrYrQ6fda2YKKUjdlU2GrAdNx0X7TPuW/SRXZNKDf7zcbfe1tADYFpc6LjpdNZ3WiTO1itira37pXqRO9yCLKiiRtWlmpSHuOKAK0C/fyHRXVKeWpiFhpN53j2m/2PFDnTA2k7bzoGNu0K7+3N/Brf7Nden/b6SAboWvEkf3FQVwHQNSbs+MIpArtIL96z5pKTJpEaTWgvfq7x+NBMBhso0x4DelGuwyVTZFp1iM/Yzs1m48Km/dXpKg0EZEWFYQiL74jaS5eTyOn7df2qlHT6gVaMFU9fd5HlbmiXypTFvgltcTx4LvSAVGKtxMNx1iaFpml2PEx9jkNviIQKnYdd35mzxelntlmjpPOOzUGtlHTsbQ/Y5ttI0SjoCWv2H6lXdUwadvUuHKe6Lzhu7B/eT9eQyHrwG0YpBptB6WTc0Tjx360+4HP0vPBtJQWr9d+dqSzOIbrAIjtMXPBqNLSWIYaNaC9FI1SO6oEuNC5uGgIqGDtxaexNtsjV29VF6XScqpgqfRViXZavNreTihGlZZ617yXetLqebM/1DtWr90W28ir92z3qxo49g0Nl9vtRiQSQTAYNMavUqmgXC7vKSmk/aZ9rKhBUSDpLkUcajBsGlGpMx03RcU6t3iNlmPSz5UiUxSxH3Lj/21pNnc3Tms/65xRlKfolffUNHo+zy7pZBsMnVe8r200baNqzzPtZzqfOm68lmPqZBP+7cUxXAdE6P0B7d6veqU2zaBcPpMHOnl0qgiAXYUEYI8io3LTU31to6Vp152UmhoUXfx8Ry7mTvRbJwNk0078w42rig7s52nb7WtsNGlvA9B3UsqS727HKoLBoKHWAoEAfD4fhoeHEQqFjDLN5/PIZrPIZDJtCQSqPJVq0z5ln+lRM3wPu7qDLZ0QFN9JY4D7UcedKEAbVXWae8om8HdKtWnb9DsdK17bCR1r22wHUI26znm7Xdpv2nfqwHGM+Bt1CFVsB01/p+9nz0tH2sUxXAdAqICoyPR4B3tviG5WtdPM1UulkaDCsIPT+ns+n0hG4wBEEJVKZY8RsVGHKjMAbRliNHJ6gKFNC2pMh9epwmGbNNWa9CH7hhlm+k5sKz1z+9wr9oudgs5rgsHgHmPPMdIx9Pv96OrqQl9fH+6//37E43F0dXW1nUK8tbWFbDaLW7duYWNjA+fOnUOxWDTvZ6dc26hZjUOlUjF9opSpbcDs+aDKXLMc2f/BYNA8V421IigaC/5O6WylMm3ErqXCtG6f0sfqNKlB13cjvcdkIL4jqW51quzsWraR7STFTuOv/aioW9GfUurMzrQNI50bddbs2JsjncUxXAdAdOMpsBt7sOkSRRPq/dmesn7Pz2wv2zZA+gwqJioOfTaVj9I6+p1SlTZy1LZ0ys5Sw6TtUcqK91D0ofEHVcR236koorM9eO2j/Wgujhd/5/f7MTo6ioGBAQwODmJsbAyBQACBQMDQtB6PB5FIBKFQCK1WC+l0GrlcDnNzcyiVSm1G3/bSdex0bihtynHQeWQjV+0TjmUnVM8/Nn1H6YSa7GvUsGsbbaSl9LjGHjvd336W0uJ6lI6Nlux5qFS8ojV7nqojqEbcNsg2Y6CGykbvDtr63uIYrgMgum8EQBvto4bDjrO43W6Twku6iKIGyDZ46sUzSaNWq7XRMIpQ6vV6m4epSp2KVJGMZrTZ1Avbth86UM9b28J30X1P9p4bfXftO9swMhnCNtRerxeVSsX8m6n1uk9I78OYnt/vx7Fjx/BTP/VT8Pv9KJfL5h6RSMSMKVFJKBSC3+9HKBTC448/joWFBUxPT+ONN97YgwIVJfBIDyo9Tdihs8NxUWPAa9i3HCd1ePgd+5iGgNfQMWC7dD6RHdCEBLu/gN2K67q3SceUGZc29W2PK9ug2wjU2VMEqgaF7SdCV2fIRkIul6ttn5saNL4jr7djzEqnK3PA9hCJdaJ0HdkRx3AdAFGPTo0T0F7xnYveNmKdvD7el6JGhv+2Fyqv03bxM/VcdbErhaMGQBMN9B1J43SK19nvRYpG+8H2oDVWocjLRllUHvq5GkbbsOtvqZTUEBAdeDwe9Pf349ixY0in09ja2jJKXJMGaNxVabdaO1mc/f39AIDLly8b46bttdP0O8WheG+dO/beJntcFRVzDNnXSk8rOlHkoZmT2p/aHtKIOta6LcHeq8etDDbtzXZxjEhhK2qzHRbbMGjdT9uBo+j3tlHTtthJK/Z8thGVjqWN8B3ZK47hOgCimWQ2olJKShW/vSESwL4LSe9nGwRVbjaNyAWrcSVVXkoFUpmpB8y/1RgqpajeuMZLVDmqYulE26kStA2qZlIqtaP3U4RgG3WbLuOzNeYBAJOTk5icnESr1UKxWDQUaz6fN7G8ra0tNJtNdHV1tSlpAEgkEvB4PIjH49ja2trjHNg0qe4p0vG1U7T1Xe0MTx2PTkk2tqLu5KyoM7Lf9Tbip1OhG4v1PbT9tjOhDh6NVqci1DYCtd9XjZN+bqNX7QcaaXte23EtRVI2Tcjf2J87slccw3UAhNSGJmRoEJler16rlBI/VwRiKy8qJ6IB3fyqBop/2/QbgDakwHtqogXbroqC7QV2K3uoFw/s7vVSI0EFosVfFR1oirGNFon62I98D6V/+Aw7Q5L34fPYNqVDuU/N5XIhEongrrvuQiqVwtraGkqlErxeL4rFIq5cuQKPx4Oenh4UCgVsbGygt7cXqVTKKNB0Oo1IJIKenh48+uijeOWVVzA3N2cMmGZNBoPBtrG131udCY4X+9ROJ1d0S6NHtKPjr8iJ84dp+DrO9v4wt9ttqE1FGTrX9FkcC63crjEsdeKUStW5pLSmGhR+r5Vj9BwuRauKjNVIq8Hn9/yNrkVFm+x7nX+O0frbiWO4DoCox2wnTXCx+P3+PRtH7YC7UoW62DspOlVoQDtKsT1hRV3aJjs4TjSoMQ29N59tZ7LZ3n4nz13pP/t9Ot1PDZx+pvfRrEqtq2dTXoqObJowlUohHA6b/VmlUgkulwuFQsHEy8rlclv8slgsolKpIBQKtd2/p6cHY2Nj2NrawsbGRsdqKQDaKEh1TmxnRdvMsSLlrN6/Kl5FR/vRi/pvHX8bXasjpfew0Yw6ETYCV4Nmx474nca67O0MNmugc1adEo3p2oZQjY32sc5Bzvdms9m2zUH7pBMN7UhncQzXARAuDB5logkHVCSaIKDevwbolaZQ7842FroQ9T5EY0A7KtLAOxWAesqquBqNnYK9NKqMYah3ymcyJZ9etHrCuthVWWr8hUqXbWZCRbVaNdsIlPbhbzSOpGPAz/kOmtjAd2IfN5tNDA0N4ciRI0gmk8YgZTIZtFot9Pf34+zZs2g2m9jc3ESj0cDp06eRz+exurpq6MOFhQWkUikEAgGEw2EMDQ2hVqthZWUFrdZOwVpFGOrgsN4gFagiGUUfqpw5tryfbeAVaWtsipuEbYXPflXKmKL9TWqvk/OhBkO3QOiWBn03Ggel8dQ54vohwlcEx3dl+/x+PyqVCtzu9nR4RWFsuz2nuA4VCdqMxH6G2UFdby2O4ToAQsOiE5sKnd+rIlLjoMpI9ycpilHqRBck0J4mbVOQvJcd97ERjYpSUOrhKrWkz9S/9bl8NtujsQrb41VFbFMzdvyDisXOoiMaYR8w80xpMnvMurq6kEgkEA6HzXOCwSDC4TCSySTC4TA8Hg+KxSLq9Tq6u7tRqVSwvb2NwcFBVCoVFItFuN1u9PX1IRgMIhaLobu7G6FQCKVSqc3jJ8qgQtZyU+pIqDPDMVJjoX1u08Q6jrbDYDMDdDyYwm7fn+OusVMdN/5fjRD7VoXtV0Oqc0iZAH2vTkaI80OfrW1m2xSZ8Z7a3/Zc13uxf5RG7MQsOLK/OEV2D4DYSlgD0aoM9A9Fs/eUotOSTsDerCv7WAv13NVz5vPs1GsuSNuDVEWiMQhVrmqg9DdqKDUeo8/k9Ur/qRFlKSV9b+2X/Qw331UVi1KIfBefz4dwOGyMUyKRMIdHNhoNJBIJTE5Owu12Y3V1tS2zjs8rFovo6urCyMgIKpUKcrkc6vU6wuEw4vE4+vv7TcIG2wXAxNc0lsg2amyTn9ljbhsjtkeRpX7OeWJnNdp0maJ9ReD2eNn0s70RfD9aW+eSPW+U1rZp9k7zlv2g72XPg04Okhp/in29xnN1vmof2FS2I53l+zZczz77LH7yJ38Sg4ODcLlc+MIXvtD2favVwm/+5m9iYGAAoVAITz75JK5du9Z2zcbGBn7hF37BeKQf+tCHTHUAR/aKLjgGkWlUbK6fi7xarbalTBNF6MKyF5l6zaRlaERqtZq5p4oaB/WSuQhZ5shGY1QKNBJ2pQkt4mvv+2k0GntqzfH/vF8nD5Zet2b9qedNqkeL3pIKokfPPtSkEFWEPp/PbCJmooXP58Pm5iYKhQLGx8dx8uRJ3LhxAy+88AIqlQqCwaB5x2AwiK2tLZw7dw71eh3JZBLVahVzc3MmNX5ychJ33HEHent7DWoDdk8XpmEKBAJtyp7jyb9tRGCjakXBiub1expJNSa8B+N8jOmw/7XIrc5Fj8djNmSrMdFEByp/O96kip7f1+v1tvJXFM0S5f45voc6QnyurgltL+cWf8fncD7bsUBFc2w7nQ2dy50QvCPt8n0brlKphDvvvBOf/OQnO37/O7/zO/i93/s9fOpTn8ILL7yASCSCd77znahUKuaaX/iFX8CFCxfw1a9+FV/60pfw7LPP4pd/+Zf/7m/xD0DUw7XRhYp6a3aiBABDWeh5SxqX0mQMjWdRdFEp+rGNFq/1eDxthkDRoCJHKo/9gudUguqxq7Hku9sUj16jVBDQflCmGlPbG2e72Edalor34b81RhcOhxEKhVCr1VCpVBCJRBCPx+F2u81hiolEAvF43LS1r68PfX19mJ6exs2bN5FMJhEIBFCpVNBoNMw9BgYG0NfXZ56vWX+q2LWvbarPRkfaN/wNx4hK3FaqvF5RjY2o+Tyl3Cj8XrNmdex5jW1gFf3qeKmBo8PxvShlu386oXm7r+x1oH3Ke6mRYh/yc3se2wWRHXlr+b4N14//+I/jt3/7t/FTP/VTe75rtVr43d/9XfzGb/wG3vOe9+D06dP49Kc/jcXFRYPMLl26hKeffhr//b//d5w9exYPPfQQ/vN//s/47Gc/i8XFxf/nF/r7Kpz4XLDqwXZa1Lo49W/1lpUSI/euVB6wWzVeURSfoRUW9jMI+hmvVY9fabZOlI4aHo0pqLEAOqcS29SMIi1VRFT0pOzsU2ztLDf2oypnNVytVgupVAr9/f1IpVLGoMRiMUQiERPoj0aj6O3tRTKZNF73wMAATp06hUqlgpmZGYTDYaRSKQBAuVyG3+9HLBZDb28vxsfHDfqmh69t5ztrH/HvTjErRQw27aZjyc9tNKT9yvHjPLENlI65Ur1aoV7H06YlNRlI5yffV+eYznMdR/5GDRHvZyMwzhPtK0WFdlYpnT41sLpOeb19ErP93o50lh9ojGt6ehrLy8t48sknzWfxeBxnz57F888/DwB4/vnnkUgkcN9995lrnnzySbjdbrzwwgsd71utVpHP59v+/EMSpSRYeomfczHY3iQXLJUar2fwXM+EokLQLD5SaH6/39BPtlJSj5if22n4AAxaULpFM7d0I7AaETUImgm4H9oEdqsfaKYYKTR64ao4eT/1rhloZ9/wN5oST3G5dgq3MnWdBui+++7DnXfeiYGBAeRyOeRyOaP4isUiCoUCPB4P+vr6MDk5idHRUaytrSEUCuG+++5DNBrFwsICyuUykskkPB4PZmdnsbGxgVKphO7ubpw5cwZ33HEHurq62ihD9eY7xT1J37H/OVY2YtHPlVJTBMFnco40mztFeFlqjPfhmCmKb7V2sjE5f23Dp84BDYnGRTk3FVXxGt5PE39sxK7vZ5dvYpySc9KO6XVCe5ohy3mja4r9zfJoiti0PJkj31t+oL20vLwMAIbCoPT19ZnvlpeX0dvb2/a91+tFKpUy19jyiU98AvF43PwZGRn5QTb7QIh6k+oBqie8X5BaFYgqah77oWhFPWcqDEUcamDUeL0VZUlFYyMg/s3vtd1sp6IHbWcnY2O3X/tOvXtNH1dDrN5yp3iGnZ3Ge2u8gpXi+/r6EIlE0Gw2USgUzPetVqutZqTbvZN92N3dja2tLeRyObRaLSQSCWxvb2N9fR2t1k7B3Xq9jo2NDaytraHRaCAWi+HEiRPo7u5uKz6rTkaneJVN1akS1tihfY2OgyIUzXi10bL+2zZQen8boWv/2Ikb/Dcpb3WabNZB57LOTRoqO8PS7hN7PukaVERrI279jNeroe+UGGXH0RzZXw6Eef/Yxz5mvFZWy/6HJJzUPMeJi40LXauLczHR46MyUUpJ4zW1Wq1tf4ry78BuUoYaHlXsVB5U6HroH39Pw2HHqWwkoAaFnmyr1WpL1Oi0N03T6nXPGT1pLZpLSpTnYfG5RLPAbszKNjKq+BUlVqtVVCoVhMNhbG9vo6enBydPnkQwGDTHa8RiMYyPj6Orq8u8W6PRQKFQQDgcxuHDh7G9vY35+XkUCgXce++9GBgYwOXLl9FoNHD48GGEQiHcuHEDN27cMErvnnvuwRNPPIFjx46Z92I/hEIhRKPRts/8fn/bfiP+YVIEx5AIlb+xEyn4GcdADQjnh85Rv99vnqEZjYqGbOOrsUsdEzVmnBNsL5/P+xA183o1bCxmbCPIZnP3QE9lFThmnBM69+r1els7bONHJ5DxTqUrNelHx8SR/eUHarhYDHRlZaXt85WVFfNdf38/VldX277f3t7GxsaGucaWQCCArq6utj//kIQLUj1SRT9cMIoGNNmBi8YOYAPtKb1qtBTB6LOUXukUEwHakxXU8+Xz+H9tj3q1ihrUU2Yb7YVNo0VFaHvtthLQtHjdFmD3De+r/c1naDYhlR5poKmpKXg8HmSzWWSzWTQaDZRKJQA7c5mZlrVaDVtbW/B6vejq6oLH4zFFeLu7u9HV1YVcLofNzU3jjRcKBZRKpTYqjkV8ebaXjhPHg4ZGkSzfUZMXFKFx/NTIqcGw50snmliv1f7m2Ou92VaNdaoRUOSvil/HgM6ZbRh0vtmGsdOc0vmmiE5LltGBsdeTTQ2SqleKn/2shkqdS3UUHNkrP1DDNTExgf7+fjzzzDPms3w+jxdeeAEPPPAAAOCBBx5ANpvFK6+8Yq75+te/jmazibNnz/4gm/P3RpTK0VRiDfwqBah7nvg7WxkoYqChU6NE0ew0VTa2wlFFZVM/VBo2BadGRg0b388OUneiFRW1KQKjkgXQ5tHaCMJOUiAi0L7Q73UrgraHdFlfXx+OHj2KfD6PW7duYWVlBblcDisrK2YzcTQaRTQahdvtxubmJra3t02MqlaroV6vmyM8yuUy1tbWDIVYLpextbWFUChkjkSJx+MYHR1Fd3f3HlRDpWwrRVWYGgPV/tB+5ftyznXKutM/7GuNKXaiZtlGW5Hb91UEo4iOc1epSpfLZRIr2G51SjRmRqRoU8GcgzbdqE6czg2l+2zUZFOXOp/t6+z15Ehn+b4rZxSLRVy/ft38f3p6Gq+//jpSqRRGR0fxa7/2a/jt3/5tTE1NYWJiAv/m3/wbDA4O4r3vfS8A4Pjx43jXu96Ff/pP/yk+9alPoV6v4yMf+Qh+7ud+DoODgz+wF/v7JBofUc+OxoZbDVQBAe01BGk4SL1RAbF0EekczUwj1ai0jnqhzWYTgUBgTyo76RI1SuFw2Pxb94OxLXw234toR4PzwG69N1Uo3LPD9wTajTyv0b4D9p7MSySmClqrIWj9O01GAIBoNIrBwUE8+eSTuOeee1AsFhEKhRAIBHDz5k3Mzc3h1q1bOHz4MOLxOAYHB1EsFvGtb30L9Xodo6OjiEajxlAVi0UTM9va2kK5XEZvby/m5+exuLiIYrGIoaEhNJtNlMtldHd3495778Urr7yCixcvtjk27NNgMNiRylLkqwhYEY2iBvaRHY8hJW0n4fA5TADi/6vV6h4Ux3ZrkhA/J+1LYfv0On6uaI3fcx1xbqiB7hTj5TyyUaqdEdvJ+HAuaiFndaaULubvuBb4f0f2l+/bcL388st47LHHzP8/+tGPAgA++MEP4o//+I/xL//lv0SpVMIv//IvI5vN4qGHHsLTTz9tKlcDwJ/8yZ/gIx/5CJ544gm43W68//3vx+/93u/9AF7n76colaaLXD1R2zu1s7To8WnsSBW5Tecp6iKa0NgB0L7xVw2VKgRFi0DnElBUTHymGkYbienvNctPlTDvoe9M4bsyDgbAZALW63VUq9U93rkmH1AhBQIBY/hIz/X19aG3t9dkGCYSibbxYcysWq0ilUohkUggk8lgbm4OiUTCGKlSqYRarYZAINDmMPD/tVoN6+vriEQiyGaz5tr+/n6Mjo7izTffbNtnxtgK+4z9Q+qLcTqlgzWzU+cD55KOmW3gdRw4ZlTS3K/E8dHf6O/sftPx1PnOz3XTst7bRu323LMNs9Kf6gDa17M/tM6jJsDo722USYfRRmicy+xTR/aX79twPfroo2/ZqS6XCx//+Mfx8Y9/fN9rUqkUPvOZz3y/j/4HK1QWANoUkKbgAjCBaNtbU2NG71oPnQyFQiaBQb1Sfa69uNVo0qNUr9ymHjUgTa9aDY8aRSoe9ZRVyal3rIaJwX3tM3r52me8V6lUMkqXzgCzAqnQSXexHTRifMdKpYJkMont7W2cPHkSQ0NDqFarmJmZQTAYRCQSMQVyaYQCgQDuuece9PX14Stf+QoWFhZw+PBhHD9+HNevXzdIhFXl19fXsb6+jlAoZDY2b29vI5fLIZvNwuPxIBgMor+/H1tbWxgfH0c+nzdJNzTI7CcaHL/fj2g02tafwC4S4lgrsnC7d7Ig1RmiQVbKj/3NOaKbgam0iew1nmY7YXYsinODY6Poh8bRdsTYFq/Xa96NyNPlcqFSqbTNaRtxkvZUg6UGkXPVzkS1URbbaDtb/I7z7K2MrSM74hTZPQCiHLyiLhoHGhs1JjYCsRehZjHZ8QpeZ8fQKLoJlPfWjCxgFyVqnECVkmZ68f5UbjynyW67okDbs+V3auRoaLivKBQKmQQGAMjlcqjVasjlcm2xQ96D7a5UKm3evP670dipZsG9VfF4HOVy2dyb77+9vY1SqYRyuYxqtYpgMGjqDWYyGWQyGQwNDSEWiwHYdVDUeKrh9fv9prQUDS43NQPA1taW2e7AuaNUL/vGjrMA7cfNsK/tMk12YoGiQSai6FxVxoD3VkdD47EcV/v/6kjZ85JGjsZQHSHb8eHcVCOoRlGdJ/5eDYrSkHQWdQ6q46UoTDdFsy32vObnnahYR3bFMVwHQJQuUoWvaEMpHE0xtheUesOaQMEFyOtIf9kbRm3q0V50bKPX6zWxkE6eqbZV78fr+H5UrvTolb6h8VXaSisRBAIBxGIxpNNpRKNRs1EX2FEigUAAxWIRxWKxjXLStHpmBNIjVkqMRjEYDCKTySCZTCIYDBrFzezBbDaLtbU15PN5lEolVCoV8wyfz4fV1VVcvXoVx44dM1XfeSJyOBxGLBZDPB43mYSFQgGFQgEDAwMYGxtDpVLB1tYWPB4PBgYGMDo6ajbt80gOtoVGj/3IbQGRSMRkOSo9Wq1WUavVUCgU2hRvs9lEJBIx6JSGVakzNUa8jmhL0ZTLtXM+mToLbIMiDzUqOq+Yik7Uz/nCOaHVOPhMTdZRtMY5zJiaoiOl/Gx0yM9tpKrIS+czhfNVnUTOL0f2F8dwHQDhItANrLpwqGRoeDSRQ68PBALmfKFgMNgWu7HREqkwKjv1UPkspUd00SpNx9/xc3sPkSojIhvdC2ZTilT4SjXZVeyDwSDi8TgOHTqEeDxuKLZqtYrV1VWUSiUUi0VsbGyYAxsjkYh5LquTUAGT5gPQVgSWinx5eRkPPfQQQqEQ5ufnsba2ZvZdZTIZvPrqq6YqBmsT8iDIs2fP4oUXXsD8/DwqlQp6enrQaDTw2muvYXNz06TH1+t1FAoFZDIZLC4u4pVXXsH29jZGRkZMcgrpxPe9730oFottCQjNZtOc59ZqtcwWk5GREUQiEVOKyuVyGVRYLBaRy+VQLpcxNzeHfD6P9fV1XLx40Rhj/U2pVDLGnM4H+1JRCvuuXC4bg8cqFZxfnHsAjNOizo06Q0oH05hyzZCVUMZCkZM6TooO6Xgpa6DJI9qvmkCiqfdakUYNoZ2IoklE+rcj+4tjuA6AUMGrsVI6C2hPH1cKh4uI33NBAe37Sfh/9SrVU1RDo+hL/6+/VW9YaRp9F6WxNCitbWb6OjfOkuLS/mCSQau1UyMwGo0ilUohFosZb75Wq6FcLmN9fR31eh1bW1vo6urC5OQk+vr6zOZuJg/whOJisYhsNmsSHMrlsulvl2tnY/FTTz2FQ4cOGYqQY1MqlbC+vo6uri7UajWDzhhT9Hq9ptTTzMwMarWa2aAcDoeRzWZRqVSwubmJ1dVV0x7KjRs38MYbbyAWi6FarWJ5edkgD6JE7g8DdrcFaBmibDaLra0trK6uGrqWafnlchler9cczcLKHvF4HJlMBi+99BIymYyhPlmNnn3Ejc/BYNAYDcY61bAotcY5TaWvhsFeDxT+lu/YCbmok2fTkYrsbJqOBgdop6Fp0GjsdI7retA/Or/t7Qq20dJ3cGSvOIbrAIima3NikzLUdFr7b+Xq6dnp4lXUoLSfUnZ8rtInSlEqatIge7PZNEaL91FDS6GSUiOrh2CyziA9VE0CAHbT3qPRKFwuF9LpNGKxGILBYNuJBER0jAf19PTg+PHjZk8Vq05EIhFDMZEmLBaLxjiSjuLzo9EoTpw4YdLeS6USIpEI1tbWsLi4iPX1dUxNTSEWi6FcLqNYLKJcLiOfz8Pr9WJ8fBxTU1PI5/NYW1vD+Pg4UqkU0um0MVLlchmbm5tmDGkIlpaW8Mwzz2BqagqRSASZTAaNRgPFYtEgNVKE/EP6j8kZKysrBgmoYq5UKqhUKkgkEuju7jb1EmOxGI4dO4ZqtYpoNIr5+XnMzc3h5s2bhgpk/3Bztdu9U6WCz2TdSaX81KhyTiiVrAjHpgDVcOncUCeO46aGxnb07LiYxqZ03rJddrKPTdur88fP1eGzqXabtXBkf3EM1wEQ3RhpoxbGkXRhKfLh7zVJQL1FXaCaPad8vGYjqicKoC2+oYtODYsqDXr129vbJgVbDSO9cuX99R25QVfbnEgkkEgk4PV60d3djVqthtXVVZP9trq6atLFH3vsMYOsmAav/aGo1ufzIZ1OY2hoyCg6Gm8ilVqthnPnziGbzRrDWa1W8bnPfQ4rKyuIx+P4yZ/8SYTDYSwsLODGjRuoVCrY2NhAOByGz+fD2NgYisUirly5gng8jomJCfT29qJUKmF0dNRQqFNTUwgGg5iZmUE+n0cul8OVK1eQy+UwNjaGra0tU6qIfU86LxAIIJFItCEVFqwOBoOmAr3b7UYsFjN9VC6Xsbi4iJWVFdMvpF/vv/9+3H///djc3MR3v/td3Lx5EzMzM217pQAYyk1LStEZ47XVatXQ2KRGOR9oqNRYMfHE7d49IgZoR/U693nmGWNfisz4XlpOTKlJGnU1Qm632zAA+lsAbf9WQ6X7J8kwqFOq76CJS47sFcdwHQBRzlw9VJsStJGSepadPFGiGy4+TdRQdMTveE/uyVNK0P4/n0XlYgelFYUxqUIVhHqtmk1JhcYkAGbrkc6q1WrI5/Nwu90oFovIZDJIp9M4evQoJicnMTQ0tMfQ28pue3sbmUzG9DERCRMV6DCwT1ZWVlAulzE4OIhms4l8Po+VlRV4vV7kcjmsra0hHA6bahks28SMwFAohMHBQVy9ehXLy8tIpVImS8/lcqFYLMLj2TlkkZv0X3/9dbMnrFwuY3t728SpeGKyGgwAKBQKJkXf5/OZOCdjTBwzpvDzd/V6HZlMxlT5X19fh9vtRk9Pj4mP3Xnnnejv70c8Hsfrr7+OSCRiUJUqaCaLaAyIhguAOcGZ8VBFSbbzpnvVFM2oU8a5aMdabaqRaJaxTXsO25Qj0H4QpqJDXmfPL65Tu736fzshxZHO4hiu21w42e2yPMFg0GS4KeXBya/XquHRBctr+LedMccFTQXCRaWFSzU9ms9Qw2i3j56llgPSDEaXy2WOuld6qNHYrWav15MOCwQCqNfryOVyZk/T/fffj2g0arL9OiWaaGyFf1erVWNUaDgqlYoJtNNo8Z4bGxuGwiwUCsjlcmafUL1ex9raGs6cOYNDhw6h1WphZmbG7O3ivi6eZswNyIODg6bgLmnEP/3TP8Xp06fR19eH/v5+LC0twe/3Y319Hd3d3ZiYmIDX60WhUMDW1hZcrp2kCTW+tVoNfX19JluR1B77r1wut2UiRiIRbG/vnCXWaDRQLpcxPz9vHATSgaFQCBMTExgbG8PU1BRefvllLCwsmOeUSiVjyIggg8GgmRs6NpxPRMQcKxoq/lFnBtg9AJLrReemnQhB6pSUts5b9hXnCf/WfYr8t1KLGu/ls2j8lKngNURddhzZke8tjuE6AKJohbEWraQN7D2kTgPPyuerYtDguGY9Abv7Y6ikmYqtsQk7SM7ns22KoBhXU+Sm8Qc+U1GlGkIqF96b7+Tz+RCPx03cpLu7G729vTh27Bimpqba6Be+D2lKOw2ZCJTGk3Qi0Q6VT61Ww8bGhvlNNBo1FBfLWali7O3tRX9/P+r1uql0MTIyYipr8J7lctmUiUqlUgbRBINB5PN5XL9+3dQw7OnpQTwex8LCgol5VatVrK+vo1AotNFMrKzB9jF1Xrc/MBNQEzQ4PkRG7IdcLoetrS2TfAHsblr2eDw4dOgQurq68Gd/9mfI5/Oo1+tIJpPI5XKGVq5UKgY9a+yU91AHh6n4mu6uc9ZGlpw7HB+l/PhenPu8XhkIGkNFPpq5S7TPeysdzrZxjnPe2wkhNLJcB7ynjdQc9NVZHMN1m4suNgBtC0UpOFXy/J3+bWdO2VQFFYguMFJxvL8+w94MzbZR8QHtRXSVAtSYgsbU6HUz9qUHB/J7Pof3YSJGrVZDOBzGqVOn0NfXh56enjYDWa1Wzd4m0mj01EmBMfkgGAxiZGTEVNGgQWeMgn1OI8DkECpln89nthxsb29jeHgY3d3duHbtmomFTU1NmaoV29vbKBaLyOfzBh12dXWhp6cHg4ODSCQS6O3txZUrV7C2tobl5WXce++9qFQquH79ukn35wniNCZEdcz8Iw23uLiI7u5ubG9vGwPEcWCfKMrgH8bKeDqDzkHOL4/Hg0gkglgshve85z24cOECXnnlFYTDYXR1dWFzc9MkaWxubprf6PxUQ8P708jwuXaWIUXZBr2fTcUp1a4JFvy37htU+pt9om3TjcJKy9Nw6Zy342oaY+50nSOdxTFcB0A4iUnRhUIhQ5NRiWr5G2A3PV73fPn9ftRqNZNdpotPaRYqL95b4wU0TKrg2C4+U4v+KuICYJS7xrB0gdMT53voniAudKLA7u5uE+t45zvfiWQyiZ6enrbyPow5ra6uYnl52RzMyFJK9NR9Ph/C4TCSyaRJviCq6e3tNWnqGxsbKBQKmJ6eRqlUMsbQ5XJhdHQUiUQCfX19GB0dxc2bN5FIJHDHHXeg1WrhypUr8Pl8uPPOOzE6Oorl5WXz/Gw2i+XlZXR1daFYLKJeryMQCBhar7+/H6+88gouXLiAubk5PPbYY3jqqadw6tQp3LhxAy+++CIOHz6MyclJdHV1GUP9+uuvAwBCoRBGR0cBAG+++aZ593g8jlqtZgr7Mj5I9MAzvfr7+81+Nyp5IiGPx4NEItG2Cdnv9+PBBx/E29/+dqytreF//a//hfPnz6O3t9fM3UQi0VZuSxOCAJizqziHbHRMo6/znnPJdubUgdM5TQPGNmjyko0mlfrmeuDfSsXS8HKd2g4jgLbi1jZrohSjI53FMVy3uXABasxJs984we3gMb1FUkKKirgwlAYC9tZfU2SmHqAqEo0v6GLv1AZFj1QEyvcrkmSMQz1h/mHWYb1eRzQaxZEjR4xSrlQq6OrqMmiHe5S4MXh9fR3ATop5JpOBy7WTCUglRjooGo0aZMC+LZVKWFlZwcbGhqmAQSVcLBaxvLyMWCyG++67D4899hjuuOMORCIRRKNRU1MwnU5jZGQEtVoN2WwWiUSiTaGVSiWzf8vlcpmqGMlkEhMTE23HpCSTSZw4cQIrKytYXFzEO97xDrN1gOhqa2urbXzc7p1iwNx7pXulSFdqeadsNmsqjHC7QDqdBgCz141ls0iP8vRnGsDu7m489thjiMVieO2119oKbrO9utmXbaVyV3pZ095V4dOh0vnaKXGJ19tUNx0IO65F0SxDpe07GV2l4xW1KZqi46YGVylQbip3kFdncQzXAREuJMZyOLl11z0NGrBbT1CRlR7ZQQVgF7jlYqIC0SocRDu8nijOTnQgjcYgP5U/n6X0kxpL/k3EpQF1IihNOX7HO96Bu+++G729vVhcXES1WjVK0+v14saNG1heXsabb76JUqlkYjxEdWwv37FcLpvU6VwuZyg4brydm5szCSJEfQDw8MMPo6urC4lEAoVCAS+//DLe//73Ix6PY319HZubm8jlcpicnMQdd9yBEydOIJPJoFQqobe3F8Fg0KTGkyr1eDxIJpNwuVzmxO+zZ8/i5s2buHXrFs6fP49ms4k77rgD58+fR6lUQjqdxubmJiqViolpDQ0NmbbOz8+jXq8jFAqZxJDNzU2jICORCBKJBLa2tsxRKqw92Gg0DKJaW1szWxo4J2ZnZ9sQTE9PD86ePWsqhZw+fdog0jfffNNkT3K+hkIhlMtlFAoFEz9iXJVzRcsjuVyuNmPHecN34fyxS1BpBivnZqdN0GpwtFIK20t6lXNTWQyN39pp8WyDVvFQ1GYbWMdwdRbHcN3mYnuVGqSmMVIKQxc2sBsEtjOW9ouN6e/UM6WS0grWmvigiRh8pqIspjsrVaPUDxe8Fi3l91zgmv3l8Xhw//33Y2BgwGTDAUBXVxdcLhfy+Tzm5+exurqKXC7XtmeMikUNBe+rlSNYP299fR35fB7ZbNZk2XEcwuEwDh06ZCg1t9uN2dlZLC8vo1wum+QJzcxkzMbOkotEIgiHw4jH4/D7/dja2jL9U6lUTHuBHcQ4MzODVCqFUqmEVCqFUCjUNtbNZhPDw8Pm+suXLyObzRrKj8aA7x8OhxEMBpFMJhEKhbC1tYVsNmvGjuNUKBRMYgTHhd9R8W9ubuLKlSsYHR1Fq9VCd3c3otEoxsfHEQgEcPnyZUxPT5vKHkpP857qTOmcVmVOqtJOwuF4KhrSa/i5IiEaXj0s1Kbt+H9uJVC63d5UzfvyuWr4OlGB2i5dq47sFcdwHRDRjZFKMyilR1F6hMqfSttOv+X1wG4moaIxLTRKZaVJFzZ1YisYpluXy2Vj3NieTlShxuoUPXKzJ0s/HTt2DOPj4wCAjY0NeDwexONxeDwebG1tIZPJmJODiRK1/5TaoeImSuXeMGA3cYNIol6vtx2DEQqF0NfXZwxROByG3+/HzZs3EQ6Hsba2hrvvvhvBYBDLy8sm65AUmypl9jf3WWmNPtaZDAaDiEajCIfDpthuPB7H8PCwKSKsdF8sFkOr1UI+nzfxS25SJvLS2AwAYzipwHlECttaqVRQrVYN8mQb+ffAwAC2t7cxPT2NjY0Nc3imy+Uye9SSySTy+TwymYxBh8BuLUiNddrZgjaaUQpR5zTfV50wHX/ek3OeRlNpQpsm5zznM/je9prg79SZU0ZEDZgdO3P2cn1vcQzXbS5qCHTR6om/VLr8v2bq6YLRgp9UCrxWFzevszdiAjuKnLEnGzHoRl0qImbwcTEyZkF0pW3Q6hqqnKjoQ6EQqtUqnnjiCTz66KMAgJWVFZRKJZw4cQKRSMSUIFpdXcXCwgKKxaJRAjQ2ilyp8EgrMbGEZ12xYC/7mUjqxIkTCIVCJpmDyo71CNfW1lCr1bC5uYkf+7Efw9TUFL785S+jWCwaurdarRqE5fP5TDkoGvB6vY5IJIIjR45gbGwMsVgMExMT8Pl8GB0dxczMDJaXlw2qGhkZgcvlwo0bNxAIBEzqOgvuMvNxfn4e6+vrbUYwGo1ie3vbFB4Oh8Pwer3m6BQ9+sXn8yGXy6Grq8ukq6szcuvWLbOvbGFhAd/97nfh9/sxODiIeDyOSCSCrq4ufPCDH0ShUMDCwgL+4i/+Ao1Go21vGfuCxsfOVlVUopuVtdIL47Bsu6as6xrjGqIDQdoY2EVKfD7bQCEVq1sMOIfZVu7700QnG5EBaKueb8fZHNkVx3Dd5qKTW2kE9fBIQSltYtddU2/Qpg7tYLUGnJXr14wt/Z2iFY1DsE1qONRY6DvyfkofEsXUajX4/X6Dbk6ePInu7m5sbm6i0WggHA6bCu75fN5UpmCVc5tu5fvQoNLLJ03ItHAiPJ5ozHcAYNCeViNPJBKGgmM/UWEyo1PLLGk8Uav10/DTeWCbt7e3EQqFMDQ0hPHxcZTLZVy9etVkV9ZqNYRCIYPaeMSKjaQajQZu3LgBAMY4h0IhADBIENjdu8TYFsePsZhQKIRYLGaKACtiXV9fNxXfW62WKT01OTmJZrOJbDaLZrOJnp4ejIyMGANH9Mt5rShdUbI6XorIeJ1uQAbaqW+9VoVzhc9R46iGjXOH9yULwTlmJ0wp3U4npxNLoXRmp/Y5sivu732JIz9KoaJQbw/YNWhKR/BzYDddWKlENXxqjFQ5UGnr/fXeGmy2RfcBkVakAdN0ejXGirCoGOlxNxoNQxkxS+3EiRMYHR2Fz+czMah4PG6ezSw8RTY2ramKid40DReVNOvluVw7FeBZBsnlcqG7uxuDg4Po6elBKpUy78aEh3w+3xaP0tgcjwahQSSNyexDt3un9l65XDYxplwuZ6pUsH8SiQRisRiy2Sx8Ph+i0SiWlpaMY6B97PF4DDpkqr7uxWq1WqZKRjAYNEqVToPt9fNAzkajgVAohFQqBZ/Ph1gsZorxer1erK6umsr63Bydy+XMnLp16xY2NzcRCoXw+OOP46677jKZjUzsUdpM/9a5y/mmyEXbrEZBqXZN2mB/6fzg9eoM2hQgmQKbyud3vN6mFJUq15gx26Xz1pG94iCuAyD0pjWhgp/TK2UMQvd22Rt2aRx0kWk6PDepamyJgXld7LwvFzCVrRbcpRB1sa1MKFFEQuOs9I7P5zPZbGx3Pp/Hu9/9bsRiMayvr2Ntbc0kEhBlFQoFc44UvXf2GfuIRpVtCAaDJn6kSRM8ZRjYMco80uPkyZNGWYdCIaytrcHj8WBkZATnz5/HhQsX0NvbC4/Hg2g0itnZWaTTaZw4cQKzs7NYXV3F+Pg44vE4FhcX0dvbawoF8z2Xl5dx48YNQyd6PB7kcjnMzMyYjMeVlRV85StfwfXr13Hs2DF8/vOfx9mzZxGPx1EsFpFOp00Mi4bF6/UiGAyiWq2aDdGZTAa9vb3GIHJTsvYV9/+ROg2FQnj99ddN2SvdLF0qlbC2tob5+XlTgSSRSCAUCuHFF19ET08PRkdH0Ww2zb60Bx98EB/60Ifw0ksv4dy5c5idnW1L5Qd2KTvGTplVqHOIc0/pO64VzgPOX6Uegd0YE9GkoifdhM420dho6TV7Y746ZlrCiuuUWbm6Drm2HNlfHMR1m4vSRLqXSzf8EknRiABoMwx2ZpTGCKiclG5RVEaDo14l0J6qywWt9+Hi1PewaZC38kB1sQeDQWxubuL06dNIp9PY2trC/Pw8stmsQSL5fN5sDibdpZ4zEZSmLLMf2QfA7nEeVCqsWM5kj3g8bgwJq2wwAYSxn1wuZ1K+u7q6sLy8jDfeeMMkRRApJhKJNmSniq9QKBi6LZ1Ow+12Y2NjA9lsFhsbG1haWkIul4PX68XKygqy2Sxu3bqFy5cvG8TGTERmC5LqUkPCfWOkVTm2nEOkBTm2RL6kM6m0Y7EYurq6EI/HMTQ0hKGhIVO6ihtxU6kUPB4PVldXTdKG271TdPj8+fPIZrO455578I53vAOnT582bWGci/NbkRXnE1GKxi7tRCGd/zoXdM7rPOS87bRm7NiUGir2s1Lt9prhWOvaUDSoiN2RveIgrttciKaUStOsQgalNS2Xho6Lkif7cjFpXTlVBkRU/I6eOhccDSUPGGS8hEgL2I1LAWhra7PZNM/VgqpqWDQOwRgIvfszZ87gfe97H1ZXV/HNb34TpVLJJBu43W5zzMj6+jo2NjZQLBaN0tI0ZT5LMwCBdq8bgFH4Ho8HS0tLprL6yMgIotEoEokEotGoOWhyaGgICwsL+M53vmNODw6FQjh58iQqlQpeeeUV+Hw+ZDIZ+P1+3HfffUilUtja2sLGxoYpxkt0s7y8jIWFBQwODqJUKpm4GM+14sbgD3zgAyYj7tq1a/j2t7+NaDRqqmccP34coVAIrVYLm5ubZuOzy+XCwMAApqenzRlZfr8fgUDAlLrSLDemswcCAVy/fh3Xrl1DIBAwRn5kZASpVArhcNgUKGafVqtVfOUrX8Hb3vY23HvvvSgUClhZWcHo6CjuvvtuzMzM4M0338T09DQef/xxHD16FEeOHIHf78cbb7xhkBXXA1G8bhjWsbMNlxowm9Kjw2dTjmroNLEIaD9NQGNR+jvNeOTzOO8UZVWrVYP+WbDYoQi/tzgm/QCITuRO/D7QeX8UjQZ/RyHKoCHUqhGankvRQLLdFntvip36q8aJKEaVDZGcep9MQWfV97W1Ndx///3o7+/HzZs3sbKyYgxuo9EwFdQVWdqeMp+tqI4Kn+9BZcgafwy6k9pk9p8a7ZWVFXg8HqRSKVy8eBHz8/OYnJw0pxyzVuHg4CDS6bRBTzdv3jTxqVKphM3NTVMZnmiA9BQPhgyFQujp6UE6nTYIKZFIoKurC36/H7FYDNvbO0eybG1ttVGldEC2t7eRy+VMdijvSSTFRBH+Ierq7e019Ojq6io2Nzfbqu6TbtXNwnz/RqOBTCaDV199Fc1mE4ODg+jt7TUxuaGhIZPYcv36dVy/fh21Wg1vf/vbcfTo0bZ5zzJeHE/d3qGUuMaObNSjBk3Rjn5vO4m6pmwaj+tH1xrniLIVem8+i4yGrlFNInGksziI6zYX2wjR0HCRcDHYmU00Bs1ms20PDlEUPUBFckBnj5PP0IxBoN2gqmfJRaoGSe+je7aUktQ/AJBKpVAsFuH1enHo0CEAwNLSkjlihAqyUqmgVCoZRUZFqpSg9pedtEKUCcDcV5EmS0ClUimTxOBy7RwZsrq6ilQqhd7eXpw/f97U4AOAubk5zM3Noa+vz/RVT08PkskkZmdnAQDDw8Omr2KxmDHATEPXKh1MUefhjrr3qNFotKW0p9Np07/aJ4xF8t244ZgV5jnPNG2cBs7j8WBzcxMLCwvwer2YmJgwMcBEImGyOz0ej5lznBderxdLS0uYn59HMplEOp3G9evXjVE8deoU6vU6bty4YfbfPfroo200IuepInyuEZ2HRNd8l07zQOejbZQ6GTvNELSRls4pRXecT2yLFo1WdgNoPyNM0ZquH0d2xTFct7no3iwqeGC30kQkEjF7o4BdA0KjRCXEwrhcYPyNUig0WvxO6UOgfU+Z3p/tVF6fbaESo2iavm00+D2wk7q9tLSEEydO4LHHHkO9Xse5c+ewtbWFWCxmPG4AJvOOcZxwOAwA5nwrVUo0btwvwz1CNspUxDM4OIjBwUGkUinz71Zr5wDJSqWCs2fPwuPx4Jvf/CampqZw8+ZNtFo7Jy9/+ctfxpe//GVUq1VTUun48eOIRCLIZrOIx+Po7u7G8PAw7r//fnzjG9/AwsICurq6TFp7NBo1SKNYLGJ2dhYbGxtYXV3FlStXzLuePn0aiUQC2WwWN2/eRLO5UzmDZ21pqa6trS3cunULwE6WIONQOheazZ2iwrx+eXkZc3NzGBsbw+HDh3Hs2DEzZkR9jPPl83lTwJd7vkqlEr70pS8hm81icnISW1tbeOGFF+Dz+fDzP//zAIBLly6hp6cHa2tr+PrXv4777rsPP//zP48XX3wR165dM4iU9KHOUZu24/y0sweBdhZB41dETzYzQIePfWSvSW2Drls1jvZ64fog3ar7xtSZdGSvOIbrNhed7Ixb0Yu2N/Xa9AIXohqKTlSFnW2oCo7XaaKFUoIUrT3IRA1gZ4GzMoKdHsy0c7aBRoSGaXh4GA888AD6+vqwuLhojBbQvl9MlQGfS4TBa7WP7PiHJmconUiKJ51Om1gbURCTJGgIFxYWTGr70tKSoepYnJZ7xW7duoXt7W2cOXPGUGiDg4OG6mu1WtjY2DCVKbxeL3p6etoqeRQKBSwtLWFzc9O8ZywWw9bWlnnHXC6H6elp9PT0IBqNtmXfud1uZDIZLC4umsMnlU7kXrByuYxGY+fwyPX1dVQqFUSjURw+fBiJRMLso1MKmAaRJzy3Wi0TN6vVashkMrh69ao5cbnRaGBrawuXL1/G+Pg4Go2d+omJRAIXLlyA1+vFfffdZyjkK1eu7EEmmrihBkk3tGv6ul6na0CNHg33fgZL0+81kxdoR0+kEJXJUDqT2z5syt2hCt9aHMN1m4suEGZwAbvpuSylxHRg5c0VXXEB8j770X2dOHeK/l9pRz5DDZcmePB6LnjNvmJsSYPaLpcLm5ubeNe73oXx8XGT2MFjPoLBoEloYBUGHi3CfV+NRsNk7eXzeZTLZaNANPWeCoLKjDRfrVZDLBYz50gxhuN272TUsTIG07KvX79uSh1Vq1WUSiWMjY2Zahyrq6tIJpMoFArm3CwAWFtbQzabxcDAgNlDxXdgfDAWi5lToSuVCorFIlZWVkwWICtYlEoluFwuYyQWFxdx7tw59PT0GOMSiURMRQ/Sj+qI8PdsN7MJWXljbGwMwWDQZHbyc5biqlarWF1dxdbWlkm7Z6yHB26ur69jfn4e5XIZPp8PR44cwbe//W00Gg0kk0ncuHEDtVoN/f39uHr1Kp566ince++9KJVKOH/+fFsMinNMjRTnoF7DOWofFKl0otLHmp2oxqbTn07JGbqe+HsaT6Xrde5pCIDG0kFdncUxXLe5cFLTq+Pk1mQCNRpUdqSHNL6lxyTQcPD4DGaz0XBpXMDm85Xz5zPpOfMa/ZzokIsT2E2h1+rdVJDhcBiPPvooHnnkEaPoGYe5evWqOSIkn89jaGgI8XjcoCBWcKcRisViqFQqJuVbURZjQtwwzArvVMY9PT0AYA5PTCQSaDQaKBaLBhkODw/j4sWLePrpp3H06FFMT0+ju7vboLSlpSUTV8pkMgCAfD5vFO2tW7cQi8VM8gafSYQxNzeHVCoFl8uFTCaDXC5nSiHpHjpuFI7H4wB2z7JaXFxEIpGA1+tFIpFAT0+Pqd6RTCZNcgvHXZXx6uoqDh06hEajgYWFBaTTaQSDQdy6dQtutxu9vb0Ih8NIJBIYHh42FO2FCxeQy+WMczAwMIBms4nV1VU0m02sra2hXC6bcldHjx7FPffcg//zf/4PxsbGcPToUczOzmJoaAiDg4P4yle+gve85z34uZ/7OVy+fBkvvPCCMUKaVQvsOj4sqtwpmYJrStkBojeuH0qr1UKpVDLIUQ2YUt1qBNVZ5LrkdbwHHYJCoQBgN0lJ6UcHde0vjuG6zYWxFtubU49Rg8O6SIBdxKYLTfd/Ka1hZ1MBu4jMRltsD9EbvVM93gFo3+Sp6IYLmhtd/X4/CoUCurq68Mgjj2ByctLcn0VZa7Uarl69inw+j1gsZigtIiM+s1gsmv1YjLvE43Fj4DSjsVgsGrRKapFGj3FB0kREQx6Px1SP8Hq9eO2110w7iR4LhQLq9TpKpZKJMbKfeD/1xNkexu0ikYjZdMw+4r6sWCyGRCKBxcVF9Pf3G4S2vb2N1dVV9Pb2mirwW1tbqNfrCIfDpuYjq1LQ0GiijiYz8AgXPlMTfpLJpDnFmXvNWAmEdGZfXx8OHTpkMhSZMJLJZJDNZpFKpbC8vIzz58/jgx/8IJ544gl8/vOfx6lTpzAwMICXX34Zx48fx9raGl5++WW87W1vw9ve9jYTa9OyS2wX+59zmu/CvrYRPt9fk4p0bJRe5294H84Jez+WIjhdexoP49EzNnrk2nDkrcXpoQMgGrvhoqGX6fP5EAgETCxCC+Sq0VJlzdJFXDC68HRxavaT0mxsk9vtbqtizpgMF6iiPqVCtKwQkU6xWMRP//RP4+jRo+b3q6urAGA2sS4sLODy5ctoNBoYHx83G4PHx8dx+PBhVKtVgyKq1SquXLmC+fl5zMzMGLqKZ0CRyvT7/Th58qSJQxFVMBGCG3SXl5eRSCQwMjJiDGGj0cC1a9fw4osv4vHHH8f09DQ2Nzexvr6OSCRivHl67DTq6k2n02mkUil4vV4sLCxgfX0diUQCg4ODuHXrFjY2NsyYLSwsmDEtFApIp9Po7+9HuVxGPB43+4CGhoYQiUSwsLCA3t5eMybFYtFkabLYLTMZmfzRaDSwsbGBRCKB3t5eZDIZJBIJ+P1+lEolbG1t4ciRI7jzzjvR3d1tEE80GkW5XMatW7dw/fp1ADtJM2+++Sa8Xi/y+TwWFxfxxBNPwOfzYWFhAd/4xjcwODiIb33rW/jABz6ARx99FIuLi+awyfe+97144403kEgk8K1vfQtvvvkmfuEXfgHhcBjPPPMMvvvd77ZR5OowAWhD+jRWjMXZmbZ05jpRgRRep3FgYO9RKnpPxq7IipCyVoZD16gaOkf2F8dwHQDRDb3A7j4szYiiqKeof5RP1xI19PBIP6rnqWciKcXW6XlceFoySdumCRRKo9BI3HPPPbj//vsRCARw5coVU/fP5XIhEomgUChgeXkZxWLR7KVyu924fPkyjhw5gvHxceRyOYNUaCSTyaSJO5GOoafOjbpTU1MmZgjsKDyWkMrlciazLpPJoL+/38R4WOQ2Foshk8mYMkWNRgNdXV0IBAKoVqumejoABINBFIvFtvJYpPtYzomp5RqvpAHk+BUKBcRiMczMzKBWqxkjyf1lLOJLZ4LvrIrSRuOMJRYKBaRSKUSjUSwuLiIajaJer5tU/UQige7ubkMtcgwXFxdx8eJF1Go1hMNhjI2Nobe31xxpcu7cObz22ms4c+YMjh49inPnzmF6etpkf6ZSKRw/fhzFYhE3btxANBrFPffcg7/5m79BOp3G8vIy8vk8RkdHcfr0aTz33HN7Mvs0M1KLJtPx4pzSeawGR1GnOnFqnCj23KaxIqLSLSK8ThOqNEmK12kbnfjW/uIYrttcNL3djhVxAbAihcahiKI04MvFoUFjZrspRcR72F4oPVU+xzZMNHy6kVmNnVKZpAmbzSaWl5fxK7/yK4hGo1hbW8PW1pbJpOOepo2NDdy8eRMez86RLNlsFhMTE7h8+TLOnTuHe+65xxgF9g2RTK1W29NHijw1IYPxnlwuh5WVFeTzeQAwlQ2Y2VgoFJDJZHDjxg2EQiEsLS2Z6h08VTccDiMSiZjKFPT4SUESFXMD8sLCAlqtlkkEoWjWI78H2stTUbnyLC7do6fOBOcP4zss26T7AHU7RKlUMsetsF8TiYShubhRe2FhAVeuXMEbb7wBv9+PeDyOdDptKMZgMIjTp0/j6tWreP755/HUU0/hqaeewhe+8AVD7XJP14kTJ+B2u3H+/HkcO3bMoL5UKoVr167h1KlTOH78OJLJJDKZTNscVESrtDj/zTlg0+rqgHVy9mhQNCvRRlo6RuoEKSXM/2uilRpKTct3UNf+4hiu21xsrxjY9Zpt5KW8OhWWVkzgd9yca29AplFSb08TPjRBRGNgtpeoiRuqGHSB8r02Njbw4z/+4xgeHsZ3vvMdXLp0CWfOnEEqlcLS0hKKxSLy+TxeffVV4803Gg1cvnwZExMTuOeee/Dqq6/iySefxMmTJ1EqlbC8vIxKpYJ4PI6uri5TWml9fR0zMzMIBoPo7u5GV1eXiceQQpqfn0exWMT09DS8Xq+peM7yRs899xxOnTpl9lMtLy8jGAxienoaoVDIFOpl9p/LtVNNnpl+zebO3qpyuWyK8xIlZjIZRKNRHDp0qK1sU61WQyKRwJEjR7C+vo7l5WWTIchY2vb2Nnp6euD3+7GxsYFyuWyy+pS+BXYUa6VSwcrKCgAY2kyPh2El+nq9juXlZYyOjiKdTiMQCGBwcNDMQcbh/uIv/gKvvPIKgsEgHnvsMUNhMymG9NhTTz2Fa9eu4bOf/Sz+43/8j4hGo/jKV76C6elpTE1NIZVKoVqtor+/H//7f/9vXL58GXfffTeee+45DAwM4Fvf+hbK5TIefvhhvO9978PXvvY1zM7Otq0JGhdW72BGJteTvZFeU+c5txWZavKQFqSmKLJjRX0iZU2g0ljZfvSi272zfYRzRbehOLIrjuE6IKLUnXp2NpLQTCf9LY2WvYeJnj+wux9FEwaYuaUoThexHoHCdnDRkjLRrC1+BwClUgmjo6M4ceIE1tbWzF6oRCKBer2Ozc1NbG5uGqVOOszt3qkwPzs7i6NHj2JwcBDf/OY30dfXh6NHjxqDyCoOXV1dZtsA91EVi0VjwIm+2E4eJhmLxdDX1wdgJ7MwEong3LlzuHz5MlqtnSNK/H4/1tbW2vaj8T159IrP5zMFe+kQsEBwMpmE2+02SI3Zi83mzubyZrNpKFBgB2Vtbm6acSFq5f23t3dObyaaZCIGsIukdNtCuVw237EvNEOVe8sikYgxXLovj3UVeVRLMplEd3e3MQzcD9ZsNg0anJqawuLiIhqNBiYnJzE2Nob5+Xnk83mkUimsr68DAO688048++yzGB4exqlTp3Dx4kUcPXoUV65cweTkJE6cOIHp6WnMzs6aflVGQg2FJiRpf3Ad6G/tupmkl5VG57851hRFW/o5nQfb+VRDxq0VwN7UekfaxTFct7lo+jhFs6e4yZNeHpUPRYPIwI53TSVNek8Xk1KJirw0TsAFx8woIjs7o5EZh0plkSqrVCoIBoM4e/Ysjhw5gkuXLgEAksmkSQp46aWXkEwmsby8bN45Go0iEomgVCrh+vXrKBaLGB8fx2uvvYavfvWr+K//9b+ir68P/f39Bp2FQiHE43H09vZicHDQVGnP5/NGkRNl3Lp1C41GA4cPHzZFeIla+vv7cfz4cczOzrb1X19fH06fPm0SEEjhsW+5WTkajcLlcmFpaQlXr17FkSNH8PjjjyMej6PVaqG3txdDQ0MmppRMJtFqtbCwsGDqA+ZyOSwvLxuUSGMeCoWQyWQMRdpsNs25ZOoscKxIA5Ki8/v9KBaLpnwVk3DS6TSKxaJxAFg7MhQKIRwOY3Z2FufOnTPGnvOkWCyazdkADL3JzcWnT5/G7OwsHnroIbRaLXzmM5/Bq6++ig996EMol8uYn5/HmTNnEIlEcPXqVTz44INIpVLw+/3I5/P4sz/7M/zGb/wGYrEYzp07h+XlZQBoS9Tg3OU4cA7pXi7OT3vTvdJ2urVDqWb+u1qtGnqXFCCNOg2hXTBAE0PUQHJtqJFzZK84hus2F6Xd9N/0EnmN7aFxMZKuoOi+KUVJ/I1mMALtyR7qJWpGoo00uOhpFBjTsTl8prlHIhFDLfEepVIJx48fx6lTp/D666/jxRdfRKOxU4k+FAoZBMLNsmfOnMGlS5fw6U9/Go899hgGBgbQ09ODWq2GUqlkCsb29vaiVquhWCwC2D31Vjcqk2LkwZJENKFQCIODg9ja2jJ9SuXs8XhMWjirZRQKBeOp0+vnn6WlJQA7tQvdbrcpCcXSSTTySsOWSiVUq1VTUZyGnH2Qy+UAwCSjEGUypqJeP1EFj4AhXejz+ZBMJvdQWcVi0bwPacV8Po9Lly5hbm7OoD0iTb43n8H4J8fB4/GgWCwiHA5jfHwcXu/O8SykVtfW1gAAIyMjeO6553D69GkMDQ3h0qVLmJycxPz8PGq1GoaGhjA8PGwyUHWrgc5hCueQHdPlutLr1DnplLTBexOdAbtISal7O91e2Qu9VuNgNJhaLs2RXXGqw9/motUnNHCs/DtpG/1ejRE9bt2jpUZHy9FoFqG9ADXQrZ6pIjO9nyoHfSav0wQJGgM+Y2FhAQ899BAeeOABHDt2zBS37erqQjqdxsjICI4ePYrJyUmTUn7XXXfh2WefxZ/8yZ/gO9/5jtncyZgTEySooJmFR8qQqeKMSenBiZFIxKR984DGrq4uxGIxlEolrK6uolAotBm0aDRqDm9UFGDXBNREGZaUsiksbgnQjFCPx4PBwUHEYjFj/La3t7G1tWX2dul9ODb2+DIuQyS6tbVlDA9/n8/nsbKyguXlZdNHCwsLuHbtGmq1Grq7uw2aIdrgHCF1u7GxYU5Z1gSe7u5u+Hw+rKysoF6vmz13AMyG8JWVFRNLrNVqSKVSmJubg8fjwdTUlLleEypsak5pdkU97GN7jXHOEpFqpXddWxSNj6mhUyaDa0Fj00pRss/tA1kdaRenZ25zUWrCTorQOIJmhQG7nqddLYPxKS5QUjyaIq2Giv9X42MvKOXlSXdoO7V8Eb3IcDhsNhGvrq6aIy+OHz+ON954A9/+9rfx4Q9/GPF4HJcuXTKnDrP0kyaXuN1uLC8vw+Px4O1vfzsymQy+8pWv4OWXX8bDDz+Md73rXSbgrYcrRiKRtuK1PP+Ke8G4IZh9y0KzPMRxe3sbm5ubWFpaajNuwC7Fy4oVfDaPaunp6cHIyIg5V8vOwGQ/kzZi2abZ2VkEAgH09vZibGzMnK3VaDRMPIoVQlSB0tAxjkIFTyoxFAqZiiBzc3PmBOVoNGpijLlcDul0Gg899BDq9Tr+/M//HH6/H4cOHcLY2Bi+8Y1vYGRkBJlMBrVaDdFo1MTAWGOQdRlv3LiB973vfcYw9Pf3Y3FxEZcuXcJ9992HY8eO4Y033kAsFsPAwABefPFFPPLII4jH4/jiF7+IU6dO4dOf/jTe/e534yd+4ifgdrvx3HPP4datW2beEimrQfB4PG3zV6lx9rkiINLxRI40RJx/FDpFttNG6p4oVNeQHXdTNoQJJI50Fgdx3eaixojGwzZE6rkxNqF0Br07oP0UVlu5aUxCDaYGkbUtirLUi2eKtf0dFyzjLDQSzP7q6upCT08Pzp07h1gsZpQOjUdfX59R8kRM2pZ6vW6SHMbHx7GxsYE///M/x/T0tEm/171qpK3q9bo5uZhHlrDtREiNRgOlUgkbGxvIZDLmoMfV1VWTMchzs9Q5YPIDPWgetJhKpUwJKRozTV0nWtre3jaUXzQaNUqRcSjurWKdQlKC9nyxjRjfiWiLz2Rh4FKphFKpZK7hfba2tvD666/ja1/7GhqNhimNtbGxgVgsZkpWUVHz5GhgN3ux1Wohl8uhr6/PjCFrUM7MzKBUKpkjXJrNJnp7e1GpVDAzM4OTJ0/C7/cbtPXyyy8jmUziyJEjGB0d3cM40AlTw7BfDUD2k71RXJkCXqfIi9eQVqTxseNlndYL1yeNqu0oOtJZHMN1m4siF3p0AIznqIFjLUPDhcp7aIxKK7VzUWtsivfTP5oxyAWnCFApFvUWlR6hUmAA+vjx4waNMM06Ho9jYWEBx48fNwo2HA6jVCq1FR4NBoMmvkPDxuA40dKRI0cQCATwhS98AefPnzcbeJlirsH7UqmEWq1m4kUM8jMbjoqcNBwRFI0wAHMuWD6fN9RfIBAwRjqVShnasqenxxjOaDSKUCjUNt5Ufs1m08S1ksmkOWVYjZTH4zH7rOgw2HQX31U/12dwnLmZmbQjDTLn2+LiIv7oj/4IX/rSl0y5JxpUGmpuC+Dp0Iy3bW1tweVymROqe3p6zFyamJhAT08Prl27hoWFBQAwBoRp/jMzM+jq6sLhw4eRz+dx5MgRs/dtYGAAY2NjbQ6UUtico7qdg3NJ14cd5+L8oNHV+JTe06YF7X7WEm26b1LXYCdHw5HO4lCFt7kQdXCTKBWIUlGkHFqtllHI5OS5x0cNl21MuIh5nQbxuV+FG2JpTBij4sLTbDUNepOG4X2JHk6ePGnS4G/cuIHx8XEMDQ0hn8+ju7sbDz74IMrlMiKRCHp7e005Kyp7lpOioqjX6wgGgxgeHjaJFwsLCwgGg6jX6/jd3/1d9Pf349d//ddNDT8WguXetq6uLoPw2PZWa6fuYKFQQLFYxMbGBnK5nFHmjIUxjZ7KjYV0ef4WqUTuF2P1jL6+PiQSCeTzefO8UChkYkWJRAKVSgWXLl3Chz70IfziL/4iFhcX8Vd/9VdYXFxEKBQy6eP5fN4k5XBu0JFoNBpt5bp0/IlEKYVCwWTKtVo7WZHpdBpDQ0M4ffo0isUiFhcXDTUMAI8//jjW1tbwf//v/8XP/uzPIh6Pm8r3RIOJRAKvvfYaFhYWcPbsWfT19aFYLCKXy+Hw4cNoNBr4whe+AJfLhR/7sR9Df38/FhYW0NPTg1OnTuG1117D5cuXTUbg6dOnEQwG8fLLL+PkyZN429vehqeffhobGxttMVnGkLh9gPEtNUB0doj++Vvdh6WGjfNa1wrnPsdYK97we01OsrMVtYwbf+dIZ3EQ1wEQO16ku/f5vS4KpYMo9PI0M1H3ZfFzm6PXeJidHafPoiLQvVbALo1CxeHz+ZBKpfDQQw+hVCrhxo0byGaz6OrqQq1Ww9zcHI4dO4aenh6DDFm8lXuiQqEQXC6XKauj7+RyuUwSRyaTwZUrV1AqlTAyMoKVlRW8/vrrhl5jAgNTvXkIo8YiGo0GKpUK8vk8NjY2zIZfIlzNItM4ksu1czRLs9lEV1eXUXKDg4M4evQoEolE2/leNMZEOiwgzHZtbGwAAEZHRzE+Po6+vj6MjIyYklQcg07JPBx3pSI59kpPcS4VCgVsbm6iWCwadMr4XCqVMidQ8z6FQgELCwvY2NgwcSAqfq0kUqvVkM/nMTw8jOPHjxskyWQQZpfOz8/j2rVr8Pl8Bo2mUil0d3djenoat27dMnNvfHwcFy5cQKVSQV9fn9l3p3sHaQDUyLC/OH91rdGg6542Ghv9ju9oozz2PbBbeFeTNbSv9ZmaOOPIW4uDuG5zUaPExaa0j6IteumkQBj4Zpq5TTdqZhdRGheTpsTzWfpcLmIqPUV0Sj0SndGrr9fr+MVf/EU88MAD+J//839ieXnZUEELCwv49re/jY9//OM4fPiwSXrg4ZHPPvssDh06hOHhYdNO7knj3zRusVjMVCznRuDx8XF87nOfQ6vVwuHDh41yO3bsGEKhEA4fPmw89t7eXvPOc3NzyGQy2NzcbHtn3bDMPWM0DmxfJpMxp/rqOHk8OwdlxmIxuFwudHV1IRQKYXNzE8FgEH19fahUKhgdHcXw8DBef/11fOc738Hp06dNMkOz2cT58+eNst7Y2DDzQY+21y0Jmgqunj3jo4wfaoyLiIuUYG9vr8kA9Pv9ePnll/H888/j+PHjuPfee7GxsYHNzU2cO3fOnDXGSh4sAuxyuTA/P49QKIRAIGAK5k5NTWF9fR2vvPIK7rvvPkSjUfMOsVjMVCo5dOgQNjY2MDIygo2NDXzta1/De9/7Xrzzne/E9vY2bty4YeapbpRnLJdzlY6LolGdz2qcNEalbAbZDf6WdC2dPvaxbv7W79VB4mZnRYOO7BXHcN3mQq8e2DUYQHuFAH6nC40LhIsFwB5Kwo5b0dBoOrZm7qnHqIFj9RLVwGpCgCaHsKgtM/OItli9fGRkxMS6+A7hcBjr6+vI5/N76ryph8oYGhVSMplEtVpFd3c3gB3EMjc3h+vXr5usN8ag+I6ZTMYkB7CgLYvqsg+ZJMK+57+bzaZBHc1m0yQoNJtNpNNprKysIJfL4dSpU0in021OBDMc3e6d6u+5XA6pVArBYBCFQgFXrlwxqIcGktl7ugePY2CjYt6b48C2UzTDDoCJ4dXrdfT39yORSCCdTsPn8+HVV181WZlerxd33XUXUqmUSWJZXV3F+vo6CoUC8vm8OVRzYWEB0WgUXq8XExMTiMfjCIfDyOVyyOfzZv8c0+97enrMXHa7d85A6+rqMgWAu7u7TSbqwsICxsfHMTExYSqk2PObNDAzYbke+O40KpyvOsb8P8eV425vReE8VKey0Wi0UdBcu4rG2E6nzNP3FocqvM1FF4NmH5EW0kQLNWpvte/qrSi/Ts/l/3kd0L4xmv/XZ2hSh8YLWB1C6aFUKoVarYatrS243W4MDQ2Zo09IUzF7LZPJmOK7VDTcZKxng2UyGeMJc+MuUc/U1BS6u7vNO1y9ehWzs7PY3NxsOwKEFTB4EGSr1TLoSo0l445UVow1at06Gh9Ws4hGoxgYGDAGhxXkI5EIotGoKWzrdu9UuJ+YmDBH1y8tLRn6jWMQCoUMDQjspGfbSQREU3aiBrC7141j4HK5zD64UCiEkZERU5GE6MTn8yESiWBgYMBsuN7Y2DCVKcrlsim4yxqOGxsbuHTpkol11Wo1hEIhc0QNadvt7W3MzMygWCyadHSvd+dYmoGBAcRiMayvr2N9fR133nmnMaYDAwOYmppqo95oxDX+qmyDJmqQAtTr2MdcL9zuoTE+dejUEHHdKjOha1kzHDl/HLrwe4tjuG5z0QxB3Z9CJUV6RxcgYzBciPQKdfGqAePvNemBC4rfscI6FTHvpSnDmunINnABcgPxu9/9bni9Xnz3u99FMBjEmTNnEI1GTXp5f38/BgcHTVJIrVbD6uoqJiYm8PDDD2NzcxPz8/Nt+7m2trawurpqDFqlUkGjsXNq79LSktkv9fzzz5vqEiMjIxgeHsbdd9+Nw4cPY3V1FTdv3jSJCXNzc5iensbc3JypWA/sVl5QZcdx4h+iPhr5paUlhEIhg377+vrwwAMPYHJyEplMBjMzM1haWsLo6CgmJycBAHNzcwiHw7hw4QKef/55AMDRo0dRLBZx7tw5hMNhjIyM4IknnsDJkycxNTVlNiJzDBgvU3SlSQGdkjg43n6/H93d3RgfH8cdd9yBWCyGWq2GmZkZfPazn8X09DQ8Ho85tZmnTNdqNUxMTODw4cPmLLPV1VWcP38eFy9eNDRmpVLBf/tv/w1/+Zd/aSrrT09PAwDGx8cxPj6ON954wxxxw1jXXXfdhbNnz+LOO+9EPp/HhQsX0NPTg8cffxwXL15EMpnEI488socFAHZPMLC3anBcuSGetLMdu9KsS6UdOe+VItdrdR3wd1zPmtCkqJ3tc6SzOFThbS7qxSm1oEbJDghrMoV6hLoQFTlxodl8Pg2UxsV0UXVK6bUXoHqv/f39mJiYwMzMDObn55FIJMyBhwsLC8jn85icnDQFdimkZZhmTm+eaeFMJtD0+FgshvHxcZP40dXVhQsXLpgK7CzP1NXVhaGhIYTDYWSzWVy5cgXFYrGt0KqmTfPdiXRt423TP3Qa3G632bfFpIt6vY75+XlsbW0Z5UyDe/78eQwPD2NkZAQXL15ELpfDHXfcgUajgZs3b5rqEXfeeadBr4lEAuvr68Y46fja1K7OCTosbOf29rbZkzU4OGg2ia+vr2N1dRWvvfYaBgYGDBImkuMeuGq12kbn6oZxbj3gu7722muYmpoyfbawsIC+vj709vZibW0NS0tLmJiYQDgcNm10uVwmQWdjYwMrKyuIRqOIx+PmPLOenh4sLi62jY0KHTX9jv3Gz2zUpHMAQFvGrq4zTdhh/zI5ifdiRmynte7I9xbHcN3mQvqAyluzmjT5QbObiJo0XgGgYwkgNTx6f/VWdWHyPvw9sBsH0HR6epOk8xKJBB5//HHce++9+MM//EOEQiEsLy/j9ddfx8rKiknpvu+++9BoNLC0tGTOfWo2m5iensby8rLZ31UsFhGJRHDlyhVTMX19fd0ciRKJRHDixAksLCyYKhD33HOPObxwaWkJZ8+eRaVSQSwWw+TkJLLZLP76r//apNMzgYFnenGzMAAT71LjrsZOjcLg4CBGR0fNKcE9PT2o1+t4/fXXcfHiRfT09GB8fByZTAYvvPACXnrpJVy5cgWtVgs///M/j7e//e3maJezZ8/i4YcfxsbGhqnBmM/nUavV8MQTT5g+rdVqKJfLZvtBs7lTbZ5Gn04FzzYjgq5UKvD7/RgbG8Px48cxMTGBzc1NPPvss5ibm4PX68WDDz5oKM7NzU2T3UflzqzNhx9+2MSkwuEwms0mXn/9dczOzuLGjRuYnJzE9evX8cUvfhHvec974Pf7ce3aNQDA4cOH4fV6cePGDQwPDyMajWJkZMS0Y3x8HD09PVhbW8Nrr72G48eP413vehf+x//4H/jpn/5pPPzww/jSl75kYodqSDhHNY6lRorxUV1fFDV4mr3LcmUq7CM+U1Eck6gY9+KGbQDGQDvp8PuLQxXe5qJeIIA9hgdorw5Ao6bJGzba4m9sQ8h70hBS4en1GuBX0XgZjRUXJxHG+Pi4OWPK5/NhfX3deNQsYzQ1NWWKvtKDZ9o7DybkBlkedcKNp0xvJ+21sLCAGzdu4MqVK7h27RrW1tbM0SKrq6tYWlrC1tYWMpkMgJ1jTKrVqlFALFar6IXvqUpIvXYb0VarVdxxxx3o7e012wGYZUdDMDAwgEQigevXr+PcuXO4du0aJicnMTo6iq985Su4dOkSkskkNjY28MYbb6DRaODQoUOIRCJYX1/H/Pw8FhcXTX3EoaEh9Pb2IplMmlgYx5mKVrNOOU+4z4kxqWg0ikAgYE51Hh0dxV133WX6IZVKGYRWKpXaEhzC4TAOHTqEwcFBRKNRdHd3mzT4/v5+kwDU39+PK1euIJFI4I477oDP58Pa2hpWV1fNJu35+XlTxmpjY8McgTIxMYGBgQEzX5LJJFZXVzE/P4/Dhw+bPlcDQGrPdjD4HsBu/EkTOpRNUMStv+fa0KoaNiOia0vXp66ZTijZkXZxDNdtLqweoIhKaQkNMitfr4vVRk9aMQHY9Th5T1I/auh0MWusjL/TrEENRPPaVCplKkfweUyNZsB/dHQUhw8fNoqS6f2FQgGRSARHjhzBXXfdhZ6eHuRyOSwtLZl9XUx4YHq13+83FBqNWDabBQCjdC5fvoxMJmOOqwdgtg7QW2aSBd9NKUBgd38chcaa7z44OIgTJ06YQyvd7p2isvl8HrlcDgMDA5icnEQwGMSNGzdMgsjGxoaJ7z399NO4evUqHn/8cWSzWbzwwgumNNPVq1dx6dIlXL9+3RSyVeXZ1dVlNj8TfdgxTCLLVqtlCgcTfa2vryOTyaC7uxtHjhwxJ1Nz+wQ3hBcKBayurmJ1ddXEymKxmEHddD76+vowNTWFoaEhVCoVJJNJRKNRZDIZDA0NmfjX9PS0OQ+NaJrjmcvlUK1WMTk5iampKTSbTWSzWUOfX79+3Rh+zkWdu5rtZ68TXqvz3jZC6vwxpmln0fLeaqg4N3TNcl3y/5oV6iCu/cWhCm9zocfIzZC6D4feGTlzAG1BdqUlAOzxGm1EZRsj/sbOWtQsRQBthpOp6AAMxdlsNnH69GmkUilcvnwZwWAQzWYTDz74IEZGRnDr1i1zNtfx48dx4cIFoyx41Eh3d7epZ9dq7VRz4OGJr7/+Ovr7+w0KYXvuuecexGIxXL9+3Zzzlc1mcevWLSwvL6NareLy5cuGpqnVahgdHcXFixfbTo5m4F4TYcLh8J5sTcaIYrEYhoaG4PV6MTo6iqGhIZO2nkgk4PF4cPHiRayuruLBBx9Ed3c3rl69Co/HgzNnzmBlZQXPP/88Go0GBgYGUCqV8KlPfQof/ehH8RM/8RPI5/P4/Oc/j83NTXzzm9+E3+83e6tyuZwxLDRcNB4bGxsmPsQxIi1GtEtDwczMubk5bG9vI51Om1ObmfzCCvnxeNzMTQBmztG4eTw7pyRzj9rQ0BBSqRSef/555PN5nDhxAr//+7+PD3zgA3j44YfxzDPPYHFxEc8++yzGx8dNXC8SiZhTnxcXF/GzP/uz6Onpwc2bN7G0tAS3240TJ07g+eefxwc+8AE89thjWF9fN0khjL9xXnOOsd2hUKgtsYgoSml3jj+/U4QUDAbNetF0e9L9pOq1ZqLSkFyvpB35G0f2imO4bmPhJOfkVS9ZqR4uFs1e0jgV0L4fRSkuKplGo2HiSUB7mRqlLey0Xj6LXj4XHn/H36TTafj9fqyvr5vvR0dHkUgkcPXqVZPu3mg0TOZfo7FTkZ1tnp+fR6lUwszMjKncwL1G/f395rgMJlcMDw9jaGjIJB/4/X6DeiqVCpaXlxGPx3Hx4kWMjIwgnU4bBFAoFAx9qlXBdVw8Ho+hPTku0WjUUGherxdbW1tYWVkxVc7D4bA5eoTGPpvNYnFxEZlMpm2jb6vVwtLSkqFIv/jFL+LBBx/EwMCAMaZ33XUX6vW6qbXocu1sIdDUbcZRSHmxQjyVeCKRwFNPPYXx8XF4PB5cunQJ1WoVsVgMmUwGXq8Xa2trWF9fR7PZxMDAgCmlVSgUTOFgvjOr2udyORNzpRKuVCqIRCKmYggRoNfrxd/8zd/gZ37mZ0xSTSaTQblcRm9vb1s5JK/Xi0KhgGZzp2YlK6vk83n09/cjEokgl8uhp6cHQ0NDxnBxLuraUIpQt45wjVG49UT3VXINdlpn/A3Xke3gKINix5Ft59GRveIYrttY7AnPfyuC0gWoKe78o9URtNK70ia6/4v34qLjAqK3qIteDZPNy+vz3W63Oc03m82iXC6bQwBpgKiwmY7e1dVl4k+k3lZXVzE7O4utra228kgej8dUyABgKqrzfC0axGq1ahR3KBTC2NgYlpeXEQqF8Nprr+HIkSM4ceIE3G43/uqv/sooXN2CYFNLGqeIxWJIpVLw+XzY2toyz7ty5QrGxsbMuWJ0OBhTy2QyOHfuHC5dumSMOY1Po9HA6uoquru7ce7cORQKBRw9etTEXgYGBkwhW6U0ebYXx77VarVdwzlApPqOd7wD3d3dWFlZwdWrV82BlpVKBeFw2KS/J5NJ9PX1mXqPrPjg9XqNwzA6OmpoXjoeNJ5sn8/nQzwex9bWFgqFAtLptEm0mZiYwMLCAur1Omq1GjY3Nw1a4hzlHjuWheLG9EgkgqmpKUxPTyOdTuPQoUP45je/abL6OO+VueD81SQLO/5FA2evMa4VTeRQJ0edSr67GjxNsuK48H6O7C+O4brNhQuN6epKJXAxqdenxkqzEYFdxEZkRKWrtCEpDN6Lz6eBsWlITfDgwtc4WCQSMbX3lpeXce3aNayuriIQCKCvrw9ra2vI5/M4duwYkskk1tfXEQqFMDo6iueffx4zMzNwuVwoFot49dVXkUwmDV3o9e4c7MiEBI/HYyqQc0OuxspKpZL5TTwex6/92q8hn8/jk5/8JIaGhrC0tISenh489dRTiMVieOaZZ0x7qHh5j0gkglgs1oaAgR1FVavVzGm+3N/04osv4md+5meQTqcRCARM9YfPf/7zePXVV7GwsIBwOIwrV67g7rvvxtDQEK5fv24oyo2NDXPsx61bt3Do0CEEg0FUKhUUCgXzLJ6vRYWby+VMAeKRkRFz/trIyAhOnjyJ4eFhc7JzpVLB6uqqGWeWkLp16xZGRkYwMjJixplll4rFItbW1nD16lVTCeW5557DxMQE7rrrLmxtbaFeryMcDpt5yfqEx44dM4ky0WgUJ06cwKc+9Sncd999uP/++3Hu3DlTz9Dt3qkmwu0O1WoVS0tLmJqawuHDh3Hz5k2srKxga2sLJ06cwOc//3lTWuzzn/881tbW2pwMUuqMkTI5RUsycQ10clY0wUOvYzKPOonqCCrlruwEALNVgk6SI/uLY7huc6EC0h38XCSKlgC0eY82d64eosa19Bk0TrxekZ0+R2kORXfqRVK4GImYstmsUZ4AsLm5aWrhMYGAqdPr6+solUqIxWKYmZlBrVZDPB43G42JKnggJdumG0n5PjRmrIjBaucTExO4++678cYbb6Cvrw8vvvgi+vv7cebMGWxubuLSpUtYWlpq63vNPmNpqFarZdLPWekd2InRxeNxFAoFvPTSSya+w4oeX/va15DP5zE4OIjFxUVEo1Fsb2+brQCMtZDGpWHc3NxEIBAw6e5+v9/0i9LBLI576NAhU4ljaGgIJ06cwMmTJw3iO3/+PLa3t7G8vGwUKhGOz+czsTkqeNbVi8fjaDabWFxcxPb2NorFojkduaenB93d3QgEAuZIGGDXcI2NjSGRSBijlEwmMTIygmvXriGRSCCZTCKbzRrDG4lEkM1mzfxiKj5rWZZKJeRyOePAZLNZdHd3Ix6PY3V11awPey43mzvVVxh70gxdRVl2UoeyHLp+dH1oMoe9rom+bMeHThmwW5rKkXZxDNdtLDQonLz0FrUsjcaVuChJRdmLgdfTKGn9NEVjjH0or69p8+qF6mK2D+BjDOjYsWMoFotYXl42GW2jo6Nwu92YmZkxKePd3d1YXl42CGN5eRmtVgtra2uYnZ3F6dOnsbCwYFLIh4eHAewabFaFZzHZubk5tFotJJNJNJs7lcpnZmYAAA888AByuRxqtRqefPJJ3H333bhy5Qpee+01fOlLX8Iv/dIv4bHHHsORI0eMB7y0tGRS5xmLW1hYQCKRQDgcNkelaAJAtVrFxsYGwuEwbty4gRs3bhiqisd9dHd3mySJXC6Hixcv4vDhwxgZGcH8/LxBBvTMuXcrEomYhABg16FgejrH9OjRo5iYmMDVq1dx5swZtFo7paueffZZPPPMM9ja2jL1A6PRKEZHRw36Hhsbw4kTJ8z93W430uk03G43stksYrGYoeeYev+d73zHlGH6zne+Y2jESCRiag8WCgXMz8/j6NGj5qDIbDaLhx56CG+88QbefPNNk+5PCjmZTJpTAhqNBl566SWMj4+jUqlgbW0Na2trKBaLmJycxODgIL797W9jbGwMp06dwubmpjnQksaE60LXjjIIiowoRE/MNtVYLuc+1ycdHBp7XkuqlNdz3ZEa1cxCRzqLY7huc9FFpvw3DY8eu8DsQvsUZOXldXEC7dWwScnweYqc1DvsVDGC1AgzsIgQwuEw+vv72zZcEgEsLy9jcXHRxDt4gjETLEjd8Hh7bo7t6ekxFBefT4qGBqpUKpkYF+MjhULBHHTYaDRw6dIl5HI5hEIhxONxHDlyBBcuXEC1WsWbb76JdDqNRqOBvr4+hMNhJJNJXLx40fR1Op1Gb2+vqXVon83FfmMcSOndzc1NU3miXC63HVxZLBZRq9VMZRAiAr4vx0crm3M8uJWBTgrHhvGmhYUFc2RJJpPB2NgYDh8+jGg0ahIimIrv9/tx7NgxxONxEyN0uXaOjSGyVCq7UqkYpTwzM4OHH34YtVoNb7zxhqk9efToUTQaDVy7dg3VahWVSsWgY2BnOwKPceE9adhXV1fR39+PW7duAYA54iQcDhvHpVwuY2NjA4cPH8azzz6L9fV1DA0NmTgYx8XOnLWRkZ3EpEjbTkxSJ41jwLFmjI9jxucqFagb1+17OsarsziG6zYXTnAGpamM7HR0eze/encq/K7TItL9XzRcGkfj4qLB1HtyYWt2VLVaRSqVQjKZNNTT9va2OVvpueeew+XLl5FMJuFyuZDL5cxCX1lZMe9Ar7ter2N4eNhkmVWrVUPVURHT+GmZJlYp5/lSHo8H8/PzWF9fNwp6cHAQiUQCfX19mJ2dxbVr10zJoFQqhUQiga6uLszOziKfz5tzpnp7e7G9vW3q5DHbjfuWNOWaBkoTXzhepDSVluVmaSZJqMOgjoi9V4lbEoi+Njc3EY/HEQgEMD09bcZheHgY9957LyKRiHm/RqOBmZkZkzCjiI7onMkf+XwemUzGxDFpFE6cOIGbN2/i1q1biMfjOHToEG7cuIF4PI7x8XGsrq6aNjITMhQKGeXO7FDGs5hEcu3aNfT39xtKcHl5GRcvXsSDDz6Inp4eAMDMzAzy+TzuuusuU3mjt7cX0Wi0zTBQ7EQkpQI5HvYa0hqPvJ9S5ryvrkc7aYNrSGPM9rOcBI39xTFct7mQgtOAsi5AGhsaDCpKKjNNa9dsKD0Iz6YmaDCUytBKHPyMSpMlkQCYiuy1Wg2BQABDQ0OYnJzE4uKiKVPEM5f+/M//HB6PBydOnGjbfFsulzE7O4vu7m5kMhncuHEDY2NjAHY2ZHOjazqdxsjIiInvtFo7Vd2Z2t9oNAx9BMCkXpPSY0p2pVLBa6+9hlarhe7uboTDYVSrVUSjUfj9fnz729+Gx+PB29/+dgwPD+Py5ctYXFzEqVOncM899+C5557Dpz/9aUSjUVy4cAFLS0tte7xIoW1tbZkxYnYjz0Cj0qfRWltbQywWM79lm9RhAGA25arSY2URzpvp6WnMzs7i8OHDJkU8lUohGo1ia2sLGxsbePPNN7G6umrS9jOZjMn6K5fLSKVSiMVi5j2Y1JDJZFAsFk1/b2/vHFNz9uxZvPTSSyiXy0gmkxgYGMC9996LmZkZU8y4t7cXAEyVFLfbjVAoZLJA+Yz5+XncddddOHToECqVCvr7+wHsGJAvf/nLeOc732lqNnKbAynql156Cb/yK7+C06dPY25uzmxD0CxA0nScz3bCkiIgpck7OXpkQlgxhkZYDRX/TbTMdc51qrFlRzqL0zO3sShFYfPoANo8bf5fPXjl69UT5D21cjUXsNfrNcaHxkvRGz9XGpKfu1wuU3KJC7qvrw/RaNRkt7FyusfjQSwWQ29vL/r7+5HNZs2RH7OzsyiXyya2kc1mTSYhq0MAO/uPms2dqgmtVsukmpdKJVNtYXNzs62GIo8NYdYhy0QxYeDWrVsmvZwZeuVyGa+++iouXbpkSiEpbTs/P2/azyNQNAFG6Vg6D0SzPLaFx5AQMVHBEgXRMaFiU+WpxV7p3OgYEKXPzMzg6tWrWF1dNQiOpzsz+YVno7ECCd+H40bly9hhKpUySIw0Jc9VY6WUarVqMjtpVFieCkDbhlufz2eo4FKpBLfbbc73CofDWFxcNJRkOp1GPp9vy/Ts7+9HIBAw5b2Ycdnf32/216mR4NqhI6aOmb0HSzNslZHQBA1F0Rwb3bfViQmxqXwtLOBIZ3EQ120sinQ42YmOaEAoGgwGdr1BvY6KRVN4mUjQarVM7Ef3bily4GJSOpILTmkVBqI9Hg9GR0fNCcRUqBMTExgeHsbb3/52pNNpHD58GOFwGLFYDPPz87h48SImJiZw/fp1fPWrX8Xdd9+NRCJhMsSYVNLd3W3iMsCO507kpB5wV1eXoaDC4TCA3X1AgUAAIyMjKJfLxgAyxsYKDZOTk8jn8/iDP/gDPPLII/D5fLh8+TKee+45Y2jHxsbwwgsvwOVyGXSksQ6tIsKx4PlX7N9oNGoqf5DqZIalGiOlj/nbZrNpyi8RdQPtZzyxXNL09LTZCH3lyhVzz0qlgtnZWUPLzs3Nobu72yS8UKGTgmRaP+laokFuMh8fHzfV/4ne+vr6MDExYSqesOzTxMQE6vU6isUiYrEYHnjgAXzuc59DMBjEwMAArl27hnK5bAxuq9VCf38/HnzwQZw/fx4nT54EAHNy9K1btxCJRExx5ImJCYyNjeH69etmXXGec1z0iBHdNsLnkbbl2DE2RbSp48uYl+4LIyuhzgfnqtK7dvaqI3vFMVwHRGzaQlFYp7OA+BtmL6niswPTGnRWOpKLjkkS9Aa1eoby+EqlcNFzUbMNPMKjVqshnU5jYGDAVFJgmjWTO1577TVEIhGMjo4aD5/Ze9wcTM+de3iYOt1oNBCJREwyCN+V76milF0ul4Pf7zfV34GdNOtIJILBwUG8/PLLiEQi2NzcNAkEAwMDWFtbM0kCTAqhwWK/MB1dUZju0aMBUedB0RX7W2NnNiLQeUDlxzgSx5Z0KLCbGEAHp1qtmqxBNWikX7VSC4+eIUrnM2KxGFwuF7q6uhAKhRAKhUwtQZ/PZxJ3stmsQWSJRAIAsLKyYtAzD5RkqaelpSUMDg62bbTu7e3F5cuXMTg4CACmHiUNSjqdNlmTqVTK/E6dQlKwpPA0U5D3IgJTY8N7KTqyE586JX6ocdPUfBp/ojVH9pfvC4t+4hOfwJkzZwzF8973vhdXrlxpu6ZSqeDDH/6wqYTw/ve/HysrK23X3Lp1C+9+97sRDofR29uLf/Ev/oXjXewjNo9uoy9Nk1YKwlYmQHt6uyYvaFIAn0fFSqNlLz4NPtN7VXqKi5JeOL1UKshsNmuSAphxxg2wXLzz8/OmkoTf7zfIbX19HSsrKya2EwgEsLm5iYWFBfNc1gVk0Vie1cU+ZR8pGlUDx1RzJiGwcjoTScLhMIaGhkz1jZWVFXOcjNKrmjShVBIzKbWYMQ03+1ydCl0fmtEZiUTM5l6On46hJgMwbsRq9ER49mkCXq8X8XgciUTCUK58R9YxrNfrWF9fx8bGhklWYbUQ0mnATpZgT0+PMVY8bmVtbc1swm61dvb4kSrm3q1UKmX6raenx1CsAMy9gsEgLly4YGoo5nI50//cdJ3NZuHz+ZBOp9uQoaIejhPT3JUu1LXFhBKlGnUdMWbFcdb1a1OPFPYnpdNeTEfa5ftCXN/61rfw4Q9/GGfOnMH29jZ+/dd/HU899RQuXryISCQCAPjn//yf4y//8i/xuc99DvF4HB/5yEfwvve9D8899xyAncny7ne/G/39/fibv/kbLC0t4R//438Mn8+H//Af/sMP/g0PsDB2pBy5jXSUXlBaiEqPVAnvp38DMNlcREQawwBglDlr/BGBEUnQADKGocovn88bo8RYUXd3N2ZnZ1EsFvHYY48hkUgYamdhYQFzc3OIRCKYmZnBmTNncOTIERMTqVaruHjxoumP6elpk3m3uLgIAJicnDReNNvFtPLt7W2zOdjj8ZjNvuvr6/D7/eb9+Z1mXTJFnRU6Ll++jOXlZZTLZYMAl5aW9sQxeFJzMBg0+5CYkUikWSqVUK1WUS6XjTNCpMDMRp/Ph+3tbXi93rZKD+qEcAwUiQO71FQ8HsfRo0cxNTUFn8+HarWKwcFBE5/jgY9Xr141NRvn5+fh9XpNdqHP50MymUS9Xkc+nzebwFdWVsxGZR6YWSqVjGHWP7lcDuvr60in06YyBmNVvb29KBQK6OrqwrFjx4whT6fTxrkBdui96elpRKNRVCoVvPDCC/hH/+gfwefzmUNJOQ6zs7Po6+tDX1+fWT82ncp+0jWmMULOd74DU9+B3f1z9XrdIHw6GppFyvtxznLMOMdYE5NtcwzX/vJ9Ga6nn3667f9//Md/jN7eXrzyyit45JFHkMvl8Id/+If4zGc+g8cffxwA8Ed/9Ec4fvw4vvvd7+Jtb3sb/vqv/xoXL17E1772NfT19eGuu+7Cv//3/x7/6l/9K/y7f/fv2mqaObJLEdr7pjTepVQRP2eCABcvjYytWDslgADttBopQy48/sY++oTX81pScIrocrkcZmZmTK0+j8eDzc1N3Lx50xwmGYlEMD8/b+JJm5ubJlNL6bXZ2VkAu2eBBQIBU31DqS1bGZHKVFSjCp/UHftBM/lYlV5pNNKAvF7pPyZgMGOO33HzMctJUekxruXz+ZDNZtuSZ+z20NjRwemUNQrsboFIJpMYHh422YGcI4wZck5ks1ksLCwYNKZrkuPJGA/Hg89qNBpmvxSzAgG0KXI6FUTXfAbpWSIQGkFe19vbi/Pnz5t75vN5ZLNZ9Pb2ms3tzMSs1+tYXl5Gs9lENBo1WyfU2VKam44Nx4+IivOC60ERM+eNZv3SueBcU1pdjyjivFX6X+epI28t/09pK6ziTe74lVdeQb1ex5NPPmmuOXbsmKk7BwDPP/88Tp06hb6+PnPNO9/5TuTzeVy4cKHjc+iR6Z9/KKK0oKIpenJK2dnxLRo5zYCyg7+sMqFZasDeQ+80fqWeIBeyep9UBpFIpE0JuN1uQ+mx+niz2cTS0hKuXLli0shZgy+RSKDVahm0wywztqtQKJj5EAwGkU6nEQ6HTR3BWCxmUAQVtE1Jd/Ky+UeVlHrO1WoVvb29GBsbQzweR6vVQiAQaPPMlbJj7EgVJuc0M/aIlgCYjbSZTKbN+9bUaU2S4bjpfjtSyGyPx7NTIDedTpvsQM4BUrg8poQlqWiAeOQLqUyOBw2XxmN4hhe3PmSzWZMJStqxWq0aJM8SXCwpVS6XTZvC4TAGBgbM+IRCIVSrVZMEUalUsLKyYujAxcVF4zCwYnw2m0Uul0M+nzfoWxMz1GnROc6+o2Fl32vSk21wyDbQeNlIjffkdbyW9+S46fpzpLP8nZMzms0mfu3Xfg1vf/vbTUbP8vIy/H6/CbRS+vr6sLy8bK5Ro8Xv+V0n+cQnPoHf+q3f+rs29cAKDRa9QdZCY2YTJz+wS2dwMZC64D3UIHGh0kvndRqX0ettD1QRlJayAXY98kajYagZ0kD0wKPRKKampsyG2IsXLyKTycDt3jnqhCnijF1pQgg3EheLRQwNDZmSQ4xfcM8W0YsG1hVJNZtNQ9kpQuJ3WgWDCSZ8x0qlgsHBQZw8eRLlchlf+MIXUCqV2jYJM0HE5XIZNMNDHqkkmYYfDocNbUb6l0Vhgd2Ueha3ZVyIY8QkFdLCbGsoFEIwGEStVoPP58Pw8DC6u7tRq9WwsbGBTCaDbDZr6vQRIff19aG7u7sts41VLtgORdNMiGHsMpfLGcNQKpWwuLhoDuqMx+PGeHR1daHZbGJ2dtZU7F9dXUUqlTLJHENDQ7hw4QLK5bIxqppEsby8jMOHDyMSieDb3/42HnnkEQQCAZw8eRKvv/66yfqMx+O499570dfXZxC/Zm8qUrJRExEzx6bV2q12r0ZIY8xcU/qdMhZ2TJLOpZaRcgzX/vJ3Rlwf/vCHcf78eXz2s5/9Qbano3zsYx9DLpczf+bm5v5/f+btIhqXUhqjWq0aBajZZHYcSz+z0RK9PYoiuP2yoNS7pChVqdl0yWTSFLrlgvd6vejr68Pg4CDW1tZw69Yt5HI5RKNRpNNp9Pf3m/p/AEypJCo2FpgtlUoYHBzEsWPHcOTIEXPIJIPnjP3w/agYWF5IU/nVKDFGwb1sdv+RWtzc3ITH48HQ0BAGBgYQjUZN2r3GMzg23OTKuJRuHWBqPhVjsVhsy1ojNUgkwdgYladmu/E37DOiBh65wr1Z3HMGYE+CD4083zccDqOnpwfJZNLQnXyuIkv2s51FykomrVYLo6OjZtP47OwsSqUS/H6/YVGYMs4kl3A4bOJrdAg4JnROSEsWi0WUy2VTNorXsr4h9w7afWUnYNh0XacSapxbNORsn/a/0ubqEGrfqnOi1KVDF761/J0Q10c+8hF86UtfwrPPPmsKnQJAf3+/geeKulZWVsxu9/7+frz44ott92PWIa+xRWuZ/UMSTnSd5BpPYIUKjXkoZ64UoXp9GphmQoIKlZ2m5WpMTA2YUhtc0DQMpO6oUKgsR0dHEYlE8PTTT5sjTo4dO2YqJhSLRfz0T/80ZmZmsLy8bJIDisUiZmZmjKI6duwY+vv7TVyGVTP4DowvkdrhPNJkFAAGoTImptmQ7GcqGMZXFhcXzdEgTzzxBF555RXMzMwgGAy2nUKs48B+ZzWMVqtlYkWKANSzV2eAR5gAQDKZNBSjptFrkg7pVJ46fPjwYXOYJ+s2ulwukxqvqfvsGxYQDgaDZsM3EVSz2TRV7Dm3fD4fIpGIKZrLk59TqRQ8Hg+y2ayZG+xH9nehUEBfX58xXoVCAfF4HIODg+a4FW6HAHb2vRF989SAtbU1pFIps4Ga48tkir6+PkQiEVOEWGk9Ch0vOgbFYtEwDkRFROkcX12zOqeUGrSTQkiLa8II+1+dAUf2yveFuFqtFj7ykY/g85//PL7+9a9jYmKi7ft7770XPp8PzzzzjPnsypUruHXrFh544AEAO1W5WV6G8tWvfhVdXV2mCrUju6KxKvVkuRDUk1PKjsZHs880HZv3VoSlyMOmNjTuo4F4FSp3tpNVC7hwSb8xI21zc9Nk0PX29pryPidPnjSn2Ho8HoTDYdTrdXMkisvlMunqAIwCAmBQBpWM0jXq7bpcLoOsuNcoGAwaA6MxDv0O2K36TsQyOjqK4eFhgwxIu1EJsV9oaDRuQsXGftNEAR0fYDdLMJ/PG7qOyEvvQ1HKMJlMmsQFIrytra02pMQ/zGzkeNGQMcGEG8F5Flo4HG6jmZlFGQgEzNaZkZERU9exVCoBAI4cOYJjx461xZzojPFYkq2tLXR3d5sqG6RuaZj5XDpQXBvaX9vbuweLclsF26rsgm4DUdSlsSmdV2wzx81OrQd2NzfbcVSNTaszyuc58tbyfSGuD3/4w/jMZz6DL37xi4jFYiYmFY/HTYXtD33oQ/joRz+KVCqFrq4u/Oqv/ioeeOABvO1tbwMAPPXUUzhx4gR+8Rd/Eb/zO7+D5eVl/MZv/AY+/OEP/4NEVW8lipyUrgOwZ4HZdB6wu7lY78OF3ul6RStqMNXz4++pWLWKAz1M8vubm5tthjQej8PtdmNtbc149KlUytB8lUoFV65cweOPP45SqWRiJ8lk0uwj4snIXV1dAGCSHlhVnuhSA+iqVDTZhKiS7aOhVwVORcn3IBJSunZoaMhQ2LrPiPQg0H7ApypCpXmZBEI6j9faikxTqe3kAqWMXS6XiQsRaXCDN+lbYJcK0zGmUWUWHh0fJsG43W6Uy+W2PWB0fmgc1AiGQiFUKhVkMhmT8Tk4OGhKTN24ccNQrbwXE2+6urrM6cwAzAZ2xqeI0Ji4wXilnojNpJJAINBmrDjmNgXO++r40ADpvFGKj2uNCJI0pYo+S9ccxTamjnSW78tw/cEf/AEA4NFHH237/I/+6I/wT/7JPwEA/Kf/9J/gdrvx/ve/H9VqFe985zvxX/7LfzHXejwefOlLX8I/+2f/DA888AAikQg++MEP4uMf//j/25v8PRQ1MJzgTMzgAuLi0nRoXcxAe0UFGhoqlU6cO5W3/p5KjGhD0YAGmNU4ADCp3VRekUgEL7zwAgKBAH7qp34KQ0ND8Pl8WFtbwwsvvIBms4lkMonZ2Vl4vV5Tfujq1atYX183x9rH43GT7EBaigqTwj1A9JJpVNhfgUDAFN5Vw66btxmH4iGRpI9CoZChFQcHB82zNzY2sLa2hm984xtmb5NWD2EyDBUr0TApqHQ6Db/fb2JDRC5sM6nFYrFoaibSeGm6PbMEBwYGMDo6ikOHDiEcDptx4vO1T/gsZjjyOlKX3DzMc8/U4SHdCOzGRIPBoLkn3xuAyWLld+94xztw6NAhfOc73wEAg66y2SyuXbuG+++/39Ccy8vLCIVCCIfDmJubazPALLA7NjaGqakp9Pb2mo3jjcbOVgwmnjBjcz/Kj0yFxjh1vakhI82rWy/U0CvNzt/z3C2tF0ongc6pY7z2l+/LcP1tOjIYDOKTn/wkPvnJT+57zdjYGL785S9/P4/+BylquPQz21ujoeDisMeJC4PXcpHy/voMxsCI8hRJ8d76W6V59LNGo2HiI8BuAoAWVx0aGkJXV5c522l1dRVTU1PGOFLhFItFk/JOqpAZhm6326At0lRUADQWVNCqpGlMtc2KWJROUpqUhkyzOBkvSSaTCAaDCIVCGBgYMCnvgUCgDSGwDTSUdARY6FeNilJLGitj9XelrkhVsh8SiYQ5VobHerANSmsRDdqxZNJx7BsaH6IaRRs06KQVOyX00KFqtVrY3Nw0+7MikQhOnDgBr9eLr3/96yaexkoY5XIZ4XDYVBpRWlONjcfjMRXiY7EYwuGwma+1Wg2ZTMZkoiq1qYyG9gvvrwhW0RfQvt/RTmzSxAsbSela0so0XGtOgsZbi1Or8DYWTcVWr5A0DYA2akppMC5Mes5UQKxAoWWF9FoqbS5IogMGt5Vm4+dUfPQW+ffExIRBBWxjKBRCIpFAf38/hoaGsLq6ikKhgJmZGfj9fpw5c8ZsHE2lUigUClhZWTHV4vP5vDGGDPQTbXAvFakhPfiQCSO2F83ivuwzKhIaTPYfka7H4zEHWjItnRXLGXNKpVJ49NFHcePGDVy8eNEkIDDeQSWuGYw0KDyzi/UEeaKyKlH2dbVaRXd3t6EWg8GgMfi9vb1Ip9M4evQoRkZGDMpYX183sSvOH6JHYPecKMbiiGaYDs8U/kajgdXVVRP30goswA4zkE6nDe1cKpUMaq3X68jlcqagbk9PD8bGxvDII4/ga1/7Gl566SU88MADSCaTKJfLuHz5MiYnJxEOhw1NSMTGbQBsUy6Xw9raWpvhzmazpgL++Pi4OdhU54HNGChVzHR4pdB13RFJ0xAB7fsg+SyuQaUpiQjVISIC59x2ZK84UcDbWLhASB1o8N323johLU3cUERme6rqERJF2B6ftkVRnwbklXbR39GDpEHj0RXMQCX11d3djUgkYk7gJcXEo9pJydAAd6rcQcXK0kA0skRYRBZMaPD7/eb/GpshBcW/NXaisS9mItqljbq7uzE0NISRkRFjCIH2BAzd46O0nToViogV+dEQAruxTG7I7u/vx+joKAYHB00SSzAYRLlcNmdfsQAuEymA3e0R6rgoXWj/aTQaJtMxm82aP+x7GkQarkKhYPqJqfKtVstkRvp8PoyPj5sq9tzzx/qU9XrdVM/nAaDRaNRsjmbf0dgDMBubgd1i1Eond0JMui40AUSZDjsRg+vDZirsGLQad42p2ewKY6mOdBbHcB0AsZWXemGaRaU0hiZX6H2UAuHvtZqEeom8nnw9hRQWFacuYHL3rVbLlPBR2o1KJJ1OY21tDblcziANpkgXi8W2ezClm/ty7Iw8VaRMJCCyojKhEOUwxbuT8SMlxj6w94TxGmDHMNLzB3YzKoPBIFKpFEZGRsyZWnx3trvZbJrKFLwfDS8VHL/TpByOF2NvVNq5XA6tVgtjY2MYGxvDyMiIqV7CP6TmEokEYrFYWxYlx1+z5diHNOxEnooAaZiy2axxMvQ7GjceYZJOp82RIwDMXr/t7W2TqXzz5k0AMHG5bDaLcrmMWCxmzl0DYNAnk2E8Hk/badfc7MyxV3rTduJsWhBAWyk0ZT40lqv3sJGXxpQ5R+moKE2pf3RNOdJZHKrwNhbNXKM3zomv8Q6iATt21SnuReXLhakLmChA04L195rEQCRFKpEnEAMw3u709DTK5bKpDg7AFGOOxWKYm5trQ2QjIyPI5XKGPlpbW8PNmzexvLyMkZERALvp7lTWbre7bf+VGi+iKyISPp+p7eyDUqnUpmxpVDT9nW2kB769vY2VlRXcunXL7F9kIJ7KOxqN4tixY6jX63j11Vfx5ptvto0NaVtFX81m04w5awXSeSDCIV3YaDTMoZo+nw933HEHJicncezYMUMx0zB7vV5MTEwgl8uZEk/FYhFra2sAdostK0oAYM744nuzfc1mE/F43BiyhYWFtr4KBoMGAdKgtVot9PX1mXvNz89jfn4ePp/PJLiMjo7i7rvvxle/+lUsLPx/7P1njKTpeR4KX5Vz6Kru6uo8PTlsXnIDo0VxSVG0aICU4QMfmTyGfxGSIUiGIPDYB7BsmdQxDFgGLMoyLOjYP2RZlGlDgbK8pMSgDdzl7g53cuqZztXV1VXVlTpV+H40r7uveqaGNu3P8ixVDzCYmaq33vd5n3CH677u+1nF8ePHMTIygt3dXayuriKXyyEajWJjYwNbW1sGsxLO9fv92NvbQ6VSsQLFZ86cwbVr11Cv1+0IE44/0H9qgiIJXAMkZXDfEVnQ/aFzqWtR9zI9b40hq3fNNakJz1o1ftiO2lBxPcRNYQUudHczqIUG9Ad9VQApwUI3KIW0KiPF/9VzowDU2Jnb+FwmlFLAqZVOb4l09263a8dzsNhsMBjE5uYmKpWKCXKWgdLkUlU0fA+FV5VYAKCv7qDm3+jv+Q58Hwp/WvYkYLCcEPvAc8OoYEiWmJycRKPRwI0bN6zSPb0oheU4tlRkNBIIVXJcSDnXckUsc3TixAlks1kbL/WgGPdhfUBChGrUuB6Heoe8luPDWIzH40EikbDkbHp5zJ0idNjtdu0AS84BUxl4baPRMLLL1tYWxsbGkEgkjOXH8SfxQvuoVdnpjbbbbUxNTVklf8aU2HQNcPzViFODhh4TmaocJ/VMuSd13Pnug/atSwzR3EOXmDVsR22ouB7ipoqHOSKuInJhPjZNaATQtzm4sdSr4GbRpgqBG5HBYwpMxej5Ny1Geh7RaNS8IpI1WPGD1cKz2axZ6VRqm5ubVhyVwpullZR+DfSfsaXwoFq6APrgLioZFRLqUWlOlyr4cDiMVquFZrOJQqFg531poVwVbiRLjIyMoFgs2rxxDqmslCBRr9ctxlOpVKwYrzIkvV6vJdWOjo7ixIkTGBsbs7mnItG6jYFAANFo1JKH+V6EjNUT13XDppAXz7ki5Eo4l+9HJUQPzev1WnqDrgmv12uHUq6urmJlZcUO61xeXsbZs2dtvkiUoCHBOowk/tTrdUs4ZuoAGYmsuKHxRDXCOO9MLeGa1xJdVDQcJ8brXNiPUCDHjHvZhWTVIFJkY0jK+P5tqLge4kbBBhwF7LnRKQx4HdB/lDtjTW6AmFAFYSRuWre4JzeYXsNNpgQMDUa7yrVUKmF1dRWJRAKzs7MIh8OYnJzEiy++iG9+85v44Ac/CL/fj9dffx1PPfUUfD6fJYnSawFgyauNRsNq0PV6PbRaLXi9Xqvdp8ozHA6bMCRr0IVNCQG5yotCTNl3an0zTra+vo5qtWqVHXgtK2RwHvb39zE2NmbHzC8uLvb1R615zuf29jb29/cxOjpqBBWe18UcM85jKpXCo48+imaziVu3bmFtbQ2zs7N4/PHH8dRTT1ncjNU24vE4QqEQms0mrl+/bkqRnimZiR6Px2oocn1xvqkYeN9YLNanXLa2tgyG5JhlMhlkMhmrIM8Y3/r6OtbX122dezwenD9/HhsbGyiVSuh0Okgmk1YwmPPPc8n8fr+tBSqrra2tPuhzdHQUhUKhj1Szs7Nje4J7Sr0kNSrU2GPTeJYafryOML7uExelIPrBeaURofGuYbu/DRXXQ9wo0GhlstHzcRe2S8pQL0GFuluH0GWK6UZU6MqFJZXA4cIsFBjlchmtVguRSMSEYj6fx+bmph3fsbKygh/5kR8xpZhKpe6zQknh56ZWsge9iG63a1Y1qfEkODD+oYJB44G8JxsJCUwSVviM40+F78Y+6H1wzuhFTk5OolaroVQqWS1DtcI5HxSYFHrRaNTqCjKGpzUi+byVlRVcuXLFjg7hqQsUoPV6HdFoFJOTk3Z2GeeckKomRBNy5bhxzdAjILxLj5jzy8LBumZZ/okeO5UG5yMSidgYswI+KfQ8HTmRSFgNVK/Xi3Q6ja2tLVsrrLbC8mD1et0MAIVFqZQHKQaNbSk0qGvDJWfw/1TsVKbcu9yb7nNoiKp3p2veJQ0N21EbKq53QCMbioJRA7ZqKSvLTwWbbgySI5TgQIFIIQ2gbxMR+gCOoDTmoFAQcSNq/CMWi+HmzZuYm5tDPB7H8vIyWq0WHn/8cbz11lvw+/1YXV01ZVculy3G1W63US6Xsb29Db/fj9HRURNuQL9i4d/qFSUSCfMYaIVTebH/fI6OB70NLV6rCpLjFY/HDX5iEVmSKZh/trW1hatXr+LrX/86gsEgPvCBD1gli1u3blmtQMY1KID5PC2gnEgkrD4iP+f88JyptbU1bG1todvtotFooFAooFAo2Fl3t2/fRiwWw5NPPonZ2Vkkk0lMT0/j9u3b2N3dtcRwjheVFgkuzGHrdDoYHR3F2NjYfXAX554V5TudwwTtdDqN2dlZq+K+vb1tscNut9sHJSeTSaTTaYyOjqLRaGB1ddXy+Y4dO2YeL+N1jJXyVOnNzU28+OKLyOfzOHXqFL75zW/imWeewezsLLa2tpDP5+23LNSreVw0INgnnQf1hFQx83c0RLhPNZVAof9BJCnGcvlceqTDdn8bKq6HvKny0BgWoT33e24m/k06tcZ8NJcIOFJcLgzCgDO/U6/CDTYrzKhBcyYY0+Ltdruo1WoWmygWi0ilUuYRaAkcXk+LnF4Bn6OKkgr3J6/8pL1/p9PBb5/6bRsHwqcK6bksMgobCiG1pLWiASEnAH2FZv3+wyNEqtWqHZq5urqKdruN8+fPGx389u3bRqrQyu7sO9+TnkskEjGvlkqXnihwKAhzuRxmZ2ftZOhOp2OxOFaq0AK1p0+fxvT0NFZWVqzaBJUVvS0aRHq0iOYVqsfNpsQRequRSMQqVtDDU2IKCS+jo6NIJpOIx+OWjM2CzHxfVhjJZDLm5Y2MjGBycrLvfLHx8XHkcjlLfA6HwyiXy8jn85iYmMDq6qqts0gkYsV/+Rn3GOdf9x8VHedJY6RKGNLfcO8pIsH1x99rqTH97bD1t6HieoibyxrU+BP/DfQnK2o8iwKIQpjegxIuAPRtFFqYynTzeDxG9WVsRfOKtL8USnxOpVKx87Yo7FmMlgnIPJKC1Q/oQcXjcVSrVQBHzDEKhE6nY0KYivcTb30CHd9Rf7xeL/7mrb95qNjahxDYHz71h/exBoEjS1ohMY6xG4/SOSH1m/CTVpwol8uo1WpIp9P2WTAYtNJFrFrBGoB8TzIJGUviEfalUskscM4LadiFQgGPPfYYAoGAGQpupXwqikKhgGg0anX7EokEyuWyvY8mbWv8zx0LHTdNwHYNGJIy4vG4nc3FGKLXe5jOkEqlEAqFkMlkDH7kvcfGxtDr9cwzIlzK2Gev10M0GrVjV1iIeWNjw+6xsbGBYDBopyEfO3YMa2trWFlZsfhSo9HoM/6UlOHuPb47FbxCxgrv0eDT8eA46x5WiFDHddgGt6HieoibYuj8v7KSut2uJWi6+R5MzASOYL8HbQRazIrR85k7Ozv3QR1K0tCYmtLOeXwGc7FmZmYMErp79y6efPJJq3AwPj6ORqNh/c1ms0in03ZytsI3WoWDSsLn8+En3vwJwAMToMARs4+W8R728JNXfhKBQAB/8tyfmMCit0ABpB4GY00uzVlrIZIwQuXO+xwcHKDZbNp5UTMzMwiFQtja2jLCBu9Hij+VzM7ODvb29vD+978fY2NjqFQqdqgm4UDGq0qlEl5//XV4PB6cPHkSP/dzP4doNIpYLGbszIODA+TzecRiMaytrWF9fR2Li4t4//vfj7Nnz+KVV16xslrqPXHdcX5ZDYPelI6zKjQ9lSASiWBsbAzpdBrr6+uWJkEvkmNDxeoqiFgsZicIdDodi6NtbGxgbW3NYnydTse8tFwuh7m5OVy6dAnPPPMM9vf3sbKygmq1imvXruF973sfwuEwvvzlLxvxRcurKeStMSwaZvR4tb+cf64l3ader9co/BpHJCSs3hXX25BZ+OA2rJzxEDduCKW2KwtN8XHF0rnRuPm8Xm+fQNfAskKHrH/HzzUfym0UKhr7otLSCgOMTWxubqJaraJYLBo7sNVq9VV059+MMekGJ81a35P//4k3f+K+ILYqe7OWfUfC9a++8Vf7xlPHhUJavTEli9AjCYfDVgex3W5jfX0dhULBisem02lLeB4dHYXH48Ha2pp5nPSy6DkxXsk55UnRPKyR55slEgnrK73UD3zgA4hGo7h8+TJ8vsOTmU+dOoVAIIBKpYJqtWqJ1gDsTLRQKISJiYm+WKUyKTVuxd+S9s74Iv+tECP/rx6aVnJnqSnWH9R3Z26XeoC8Xu/DHDGmWDDelU6n+xTIxz72MXzqU5/CRz7yEWOu+nw+ZDIZjI6O9jFidQ9xTegfXetcC6rsOJ8PIlmo166Kjx4Y/1bjcdjub0OP6yFuFGjAURwJOMLDe73DUjuaWMzfAUcJpep58XtN0OU9dUNSWNPCVMiRFrbGnLRfhO4IB16/ft0YVpubmyZ4rl271hdHiMViCAQCdkJtqVSySuusnuD3+/Hpu59GIBhAYvOQgNHzH+W+KGTDMbB+oT9u8JFXPoKvvverNpYuHKYBd44f42okcUSjUezt7eHOnTu4efOmCf4LFy7g/PnzOHHiBCqVCrxeL7761a8iEongp37qp1Aul7G4uIiNjQ2r48f5TiQSOH/+vCVnt9tt5PN5HD9+HDdu3MD6+ropywsXLuDDH/4wzpw5g7m5OXQ6HXzpS1+C1+vFiRMnMDU1hVarhf39fWQyGWxvbyOdTqPdbqNYLKJarSKfzyOXyxnbMZvN3gcBsrIElRI9eoVL6dlXq9X7BDkAI3YEg0HzqKnseD9W9tjb20M8Hsfo6KjBn17vYb4X43Y8mXh8fNzO4trb28MjjzyC69evo91uIx6PW6UUJRmVSiVkMhmcP38ey8vLpkA0AZhzrt6fa8i5sVCuJa4nnuXGhGg99FONKpKjuGeGMa7v34aK6yFvau3pYtZYD9BP4lBIUeNNKpjdGI+rGJXWq54dcJTkC6BPoKnC5Hf0ukhbpvXeaDRQLpdNqHDjs+I6c7AY36HA+Zu3/iY8Xg983v4TcPmO7XYbPfTg8/ruEzJsOoYfeeUj+NL5L/W9KxUgGxW0KjX1MGu1GsrlsiVcdzodnDx5EqlUCqlUCisrK1hcXEQikcDZs2ftfUZGRlCpVLC1tYVyuWxECK/Xa8dzNJtNo66HQiGriuHxHFa9f+SRR+xk4WKxiHQ6jU984hNYX1/HysoKLl26hFgsZjEkejj01tbX1zE3N4fR0VE7WXkQO1Uha863eu66Plj0VskvVHZsNAI0T5GKh+NKJakQdrPZRKvVMoYlk7Sr1SpWV1eRzWYNaksmk9jd3cWXv/xlg1gnJiasbiJTL9hXrluNbeo61rWjMJ7LMnRTRzS2xXuoQqTC597Qew3b4DZUXA9xo2CgVUfvh98BuM8qU4Wi37kCXoUwBbUqKJedqEFmPleVof5x2VNktyUSCVy4cAEvvfQSer3DArqkuTebTYv1sGKC3+83QQt8L37l9cDr8fYpbvWM7I9nsLIfZMlSQCozTJW/C3kpXNntHiYH1+t1s5ZJoCBp4+7du7h8+bId5ri9vW0xD1bHZ7V0lj3iQZqtVsso6UzCJjuSFTZYRX9lZQXj4+M4f/48HnnkERw/fhz/7t/9O4yNjSGVStl9Go2GVVlfXV3F2NgYcrkcNjc3USqV+hirTMqlYiezT9mlGgfkXPAeHA+NjfI7oJ9YRKVNr5seJ9MUqKyo3Agjk9G5tbUFAObV+/1+HDt2DG+88QZ8Pp8dAdNut1Gr1ZDNZi0FwIUDXW+R5Bo3zslxcONybC7t3Y1b6z4mHK37a9gGt6HiesibWmAasFUMnBuBsCJp1m5w2WUt+XxH52lROLER6qFAUs9LN5cyHKk8GLxmBfALFy7ggx/8IGZnZzE6OoorV65gcnISFy9exPj4OHw+n0FYXq8XL7/8Mq5du4Z4PG4V49vtNn7qzk/BFzjyfOjdsC+u8HAFRLfXhd/rv4/G7PV6jcVG2j4FKFlvbvIy++Dz+ewoj07n8Dwowre1Wg1Xr17FK6+8gmw2i3v37mF7e9sUVaVSQalUwsjICFKpFNLpNKanp610Ua1WM0KG3+/HyMiIxWNIUPj2t7+NQqEAABgdHcXo6CgWFhaQz+cxOjpqAjYcDhtl/JVXXrF5LRaLKJVKOHbsmCmIarVqLFD3xF+OrZbN8ng85h0CRycOUMm1Wi0Ui0WrJaiMRaZrEJLM5XJGAKGS43Epm5ub2NzctBqM9LYYT3z00UexvLyMQqGAVquFhYUFZLNZjIyMIJfLYWJiAhsbG0ilUlhbW7NqHqlUCtVq1ZLklX3L+We/uTfoTbLvnFPXMOI+4jxwPHUfcu9wbvn50Ot6cBsqroe4qcdACxhAn5KhFUwlpZ6ZS8VVwaPenAaI+R2taYV7+J1apqrs1CNrtw8Pc3zkkUfw5JNP2lEWpEYr8YKbmV4AKyWMjY2ZgPs/b/+f8Pn7CSh8pln63Q7aB/0Jw3x3F6ah1+QqbR1PvV6VIqsz0AtjfIUCtt1uo9lsYn193ZJ7KVBpKDQaDQDACy+8YKxEjpHP57MCsRwjVp4gnMh8JdLkNzc3TTF6PB5sbm7acSq5XM6o9Z1OB9ls1qjfnKt4PI7x8XGLe9GrY0zGnXuFpimU6T1RQOsRKPQm+S5MH+C9GDukQcG13Osd5rJVq1Wsr6+bcbS/v49oNIpIJGJMQub70UvlAZLBYBC5XM7qVFJBsc4kjTyd4we9p8LuXB9aJUP3Eb9XogjXm+4phea5z1W5Ddv9bai4HuLGjUyF41ph9ApIoqAwBY6gQhci1I1Br4uCQguPugrTJX70wXK9foYhld7e3h6efPJJnDp1ypQhK1msr69bfcFms2mVKHw+n5EwEomEvQsZgXy2wii07NudNtoHbcBzlOeksTfGvVQR6djyHfQsLqU1AzD2ncK2jM20Wi3zhGu1Gmq1GtbX143qv7OzYyWIZmdncerUKTz22GPmYWQyGROq9Co4Z+FwGMlk0ry+SqWCnZ0d8zZIFy8UClhYWMDW1haSySSefvppK7HFXLlAIGAJ3cpuzGazOHHihHk16s2qYFfBrYqK3hNjXCqwWS2D93N/w7ni2CrJZmtrC4VCwapt8BlUGru7u5a2kc1m7WQBHijKsdEyaR6PB61Wywr+0uvR/aGKle/K2BzfT9mBNHpcJIKNn7v7R9cX9zv7MGyD21BxPeSNgpKKQ+E44JCp5XpiGszWeAKv0c2lrEG18FXhATCBoaQF4EjJaVyLibU7OzvI5XLw+/2oVComsMLhMG7duoXx8XGUSiUEg0G8613vQiAQQLlc7juivVwu49N3Pw1PwtOvLNFDr3sI/3Xah5BTDz34fd+rDO+BETUC/kAfC5LjSOFITwQ4quvHPDElHLgxRlr+JDOwJFU6nUa1WjV69tNPP41kMmlJvn6/H5OTkxgbG8Ps7GyfgKxWqyiVSrh9+7adK9XtdhEMBjE5OYlIJGKwXzQaxdmzZ00gLywsYGNjA7dv30aj0YDX68XMzAx6vR6q1SpyuZzFetS7qdVq+LM/+zPzPvL5PIrFosWy1MgJBAJWYFfhLsK2Oh5cDzQGisUitre3sbW1hd3dXYOGqbBYcYN0+Fqthk6ng7t376LX61meFRO5qbBY23J/f9+MgHK5bLGwYDCIq1ev4k//9E9RLBYRjUYxPT2N7e1tNBoNHDt2DCsrK7b21UhRqE8NQ91zhI8JLav39P3IFtzHVFLcg3w22avDdn8bKq6HvCmcpTAfvQZVTC68weZCHloRgQpHax4qVMENqLRwJTuwL0qnZyItISJSnKn4EomEnblE2jM36fb2tsFTGxsb+KmFn0IX/WQJxqs67Y4pMUJP/oAfXs/3+tPrwuu5/wh63sMldmhAXBWcCmbX8+X70/slFEYBzDypdDqNZDJp8zU6Omr5RoTxVlZW7FiPe/fuYXd31xRXIBDA6OiowV2Tk5PI5/M4ceIE4vE4EokEJiYmLB5HD4fJtaznl0gk+ooVd7tdJBIJ7O/vW45drVYzSFOTfimYOWZqxNBjorDnmNMToVfTarVMqQNHxBf+mx5Xs9k0BUdmJcePhgXnZWRkxLxcshN58nG7fXjgZ6VSQSKRQDabxcbGhik1ply4xp1bMYRKRteKvjs9Nv23KkE3BsuUEjfJ2L33sA1uQ8X1kDda+RQW3ByKl3PTuZUy+Ht+r0eX00pnLIO/ZQkhVZLMvdG+UODSStbcJyaZPvvss/D7/UYXBw69kmQyaeywc+fO4ezZswBgp+SOjY31HcOhDC5lXymxglUJlEBCGIcClYJXlWy328Un3vqEUeLJDmQxYgpsMvdarZbF4zi+Wgex0zk8lZieYy6Xw6lTp5DNZi0lQOfsjTfewNraGtbW1ixGxVp7ymxrtw+P6uC437p1C8FgECMjIxgZGcHU1JSxFn/0R38UOzs7eOONN/Dmm29ifHwc8Xgc6+vrOHHiBAKBAEqlkiXw0psksSSfz8PrPTyheGtry85JIwFI43AkeTB+SUXF9Uhok99tbW1ZHLBUKgE4NBJI7KBSIsynMVjS4AkTJhIJpFIpS2AOh8N23hmLLEciEWQyGbz//e/H9PQ0lpaWcPHiRUvivn37Nt797ndbjUcqEiIM6jVp3IkKyOfz9eU1ck3w92rk0GtVkofGVPl/NaiGbXAbKq6HuKl1r9YfLToGtd34lcZ/lJyh3hPvw+9UoKpCdPPEuFHpnQFHCccKL87NzeHEiRN9AogKs1arodVqGduLhwYSVuK9/6/F/+uw/15JrvZ60OkexZ/8Pn9f7IL90fdm3pkLf1KxcSwZb9HvFMZRKrOSVkj5ZvmtSqVitfOUgg3AKm6wevsbb7yBQqHQd7y9Bvw5vxRq/D8A8yZqtRq2t7dRqVSQzWZx9uxZjI2N4eTJk/jzP/9zrK+vY2RkxJTsyMiIzSGp4YVCwbyzZDKJ0dFR5PN5XLx4EaOjo+Z5qeCmEuV9uWY5B4QUObZerxflcvk+Zh3hv06ng0aj0WdU6FjwOgCWsJ5MJu3evV7PjBPCv4FAAFNTU+Zp0uigoiN8PDU1heXl5b7zs/geg/Yl14h63sq+1NiX/oZjqEQPXqMkKUVUhu3+NlRcD3FTT0OVlkIXCuPp9+p5uGQGKim9hhtOvTbXc1MKNJsLH5IZeOrUKYyNjWF9fR37+/tIJpOWREvPgUeBkLRAwUVoCx4hg3R76KIL9I7eSRNUKSzYRyVyaL8HjQcbFR4ZYi4ZRsdWlTrhrV7v8HDLer2OVCqFTCaDZDJpNezoQfZ6PSwvL+PatWsWj6I3q/cnjKbGA3B0pAuZfDy4sVarIRqN4tFHH8Xp06cxOjpqpy5Xq1X4/X6sra1henoa2WzWIELCdiSQbG5uWsX7VquFUqmE6enp+7wA9TKU0cp+s2IHcJik3ev1LMdN1zGhSGUmqpGg1yq0q+NA6E9hb6/Xa6cfU5ES/qzVasaaDAQCdlYYY2eqnDRXy103CpWr8ab7VX9D1MRlL3I98+8HJc8P22EbKq6HuHFzDiJEcHOoIFHKrgpAoP8ICr3HIEWnGxE4Kj7Lz0hKUFyfAfhms4m//tf/ujHZrly5gkQigfe+973w+/0oFotGlX73u9+NXq+HK1euGEy1vb1tMJzf54fH64EHh2WdOt0O2vvfYw36/JaIrLE2/aON/VelxnHx+/34P278H/i9C79nxkKr1bKYlR5eqTlIzKVisVgmIodCIZw/fx75fB6RSMTmj7T1QqGAN998E7Varc/yJ0OUY6sQLyuKMEGZxYHpjVDZVioV/NZv/RZmZmbw2GOP4b3vfS+Wlpbw1ltv4eLFi1hZWcHBwQGeeuopZLNZrKysIB6P4wMf+ADq9Tpu3LiBlZUVLCwsYGRkBKOjo1hcXESr1UIqlUIwGLRDLTV2RY+J648xPk2a5hlaZB3Sw6NC13qEmuOlhzHSO6aRRehQve5wOIxjx46Zd6ex1EgkYnlba2trBoMmk0kAhxAh6z8qSYP7UL1MNeI0IZvrSkktXD/cc1yHin5o/tjQ0/r+bai4HuKmno0qFlqT6h0pXAf0V87Q+JNr4T3IQ3OhD4UtNPhMttfe3h7C4TDy+TzGxsbQbrexsrJiMFosFrP7kvqeTqftbC5a2oyfsP8eHEIn3d7RZtZyThpHcC1VVfDqpemYDbpOGWMcZ/ZPPTx6WlpPkvlWrObAGBwArKys4O7duygUCsb6YwqBelicPxJdxsbGkM/n0ev1cO/ePaytrfXNNd+fxW6bzSZu376NZrOJD3/4w8jlcjhz5gxWV1dxcHCAV199FcFgECdOnLB4UDabRSgUMlJEt9vF9vY2ut0u4vE4Njc37QRlkkq0wK6Ou8aHut2uxUx3d3ftuBXGvhT29Hq9RrJRb0zXpCpqAJZeoUekUEExebndbls1DrL0mMvGY1ZoCPD8M46vQuKaYkJFqV45v1OYUL14jVPze3pZbuxsECIwbEdtqLge8sbNoYfuAf3HRihGzk1DYUKl4GLqujEUf3c9PCoD5hXxHtzoHo8HzWYTjz/+uFU9uH79OqrVqm1wCoiDgwOEQiF89KMfRTAYxP7+PlqtFgAYXNXpdFCr1fCZxc+g5+tZYdyDgwO0O4dnMAUDRxVCOD4U+g9iDaolTCFLoUSPikQDCkBa0cxz4ri12+2+Y0hqtRq63a6VEPJ6vSiVSjZvd+7cwcrKCr7xjW9YsiwtfFZs1/qPTMrudruYn5/H888/j1OnTqHb7eLixYt47bXXsLy83Dd/jN94vYcJ3nt7e1hcXMRXvvIVzM/PI51O45FHHsHS0hIuXbqEixcvYmpqCs8//zzy+bzFLoPBIE6dOmXJu7u7u1b4l59xzOl5hcPhPlp/JpNBIBDA+vq6FcylJ8px1IRvPSaF68YV5lSU8XjcDA56dKxUwvqPuVwO9Xrd8ury+TwymYxBpWS28mDJdvvwxOZsNmtJyfV63Z7BedFai6p8dK8Q8uWaIxLhxq94+oHei+vT3ZfDdn8bKq6HvNHzUQ+HC13xcF6nEKIGwF0vSpON9TlqNfJv9dhU6PR6h4m/Y2NjGB8fN+YhhTarjPd6PYtbeTweg4uq1Sq2t7etnA8ZVZ+59xl0g9+zZD3fS3I9aKPXPczJMivYc0jWYHOD5Qop6TgC91f9Bo6Umlr8eq3GAZnAq4SByclJi+3UajWEw2E0m02srKzgzp07Vo+RzDIqXAB9lr3GTVhlghBWKBSyXCV6L4S22F/1gOg9cX5GRkZQr9ext7eHhYUFq+c3MzMD4CjO1Wg0TKnS46SyovKiMbO7u4uRkRHEYjEzZpRERIXI2otsqgjoCamhwXtwvHg6MNe7etFc8xwTnqbNwsQci/X1dVNyOlZM8C4WizZHXAMksrjeEPejGpG6zzTWpX1VWJtepxs71fU3bPe3oeJ6hzQXynLZgbyGf6vVSiGo2LpuIOAIqnHjQOrVsBE+63Q6mJ+ftyRjN9YUDoextbWFQCBgybikrrMsUqlUsnJIkUjkUFB22vB3/eh1e4BX3r3XT5bweY9O93UFBSEZzTfScQD689Ee5LkqAQGAUcAppHkdYbNOp2OV3ZmXtry8bPX/gP6jMRjToXLiHJKq3m63UalUUCgUsL+/b9UjmIDMU4CpPBkj4/izXNLu7i6mpqbsDK1O5/AE6Tt37qBSqZhS3dvbM9YnBXan07EyUPv7+0ZsoCBmGgHTBmigkKauUBw9GZ/PZx6YQrMaD+KcMHdN2XZunJJzH4lEABwyPQOBALLZrFUUuX37NlZXVzE1NWXPoNccDoeNxEFFpGkoCjezr7rX+B6qtOlFqtGj6IYLc/M+CgMPKfGD21BxPeSNuD6AvpNS1ZKjoOLn6nWRSOAKbY0daDUIFSKqCBiXAA5zsUZHRzE+Po5EImFeFgVWMplEpVLBvXv30Ol0cObMGfPyOp0ONjc34fF4sLW1hStXruDatWtotVrmTXQ9XbQ77b4jNdgnfXda4Kpc+E6qtLq9o/wZVfKuMOJY7O3t9R0nAhyy4prNptGsmUNEIoDX68X29jbW1tbs/K39/X0sLi5ifX0dwWAQJ0+eNGFNeCuXy1nSsPaPZ3RxbJvNpvV3cnISc3NzBh+zcjoV59tvv21ls1iBZGdnB3fu3DG2IyEyr9drfeY4sHYfAIv5KHmASoFwqsfjMYjP5zssOnxwcIDx8XFcuHAByWQSN27cMIiOa5EeHeE1epVk0iaTSRPoZABynjnvSs6gd9RoNBCJRJDP5zExMYFLly7hpZdewttvv40TJ04gk8lYFZGdnR10u11jYMbjcWxsbPQlW3NduUiEC9dT2epaVSNIP9/Z2bE1yfFVZT2Mc33/NlRcD3FzISv3c41VqSDWa9xNM8jzUuKFxtMU2uB1u7u7OH78OHK5HKLRqOXdHD9+3E783draQqfTwcbGBiYmJjA+Po50Og3gsHL4ysoKut0ulpaWUCwWTRlQMLJcU18cDj14PYOp+JqkqhCSKt6AP2AGgFrsajkT9mHuEe9JirsWA87n88b0Yw2+UqlkygaAVQzhfQ8ODpBIJJBMJg2+SqfTFl8iHEw4lUqT80KBToXBRq+Tx79MTEygWq1aHhXTAaiQk8mkHXOyvb1tR6ooWQA4ot0rMcLNMeLYU1EfHBxga2sLrVbrMB75vfgYDSkSJ7rdrsGG/L3G+ThP9Og4prpW+VtNF6DnyMRsr9eL27dvY2FhAdvb26jVaqhWqzh9+rTN7dTUFOLxuMXsNJ6sBCdNClfviuuH+03nUT13/k6NRa5fhQsVchy2wW2ouB7yxo2qXoVaZ+qRqdLS0jtsGkdRQc/mxoG0kXEViUQwPT1t50Nls1lkMhk88cQTdhTGrVu3DJ7K5XJIJBJWEZ4We6VSwe3bt1EqlWyjU3ihi/s8Iff0Ylcx8f8a/zNiSzDQB3+q0netZcJu9CgAWAkkelqZTAYTExPodA5LEzWbTTvhFjiMm5DtpgKNeUTRaNS8I1UUVE6qiLR+H70ffu/G6Oi1zM7OIplMWnFaEgxIDeczkskkQqEQ6vU6isWi3YdVQDQWpzmD7Dfn0+v1WsHknZ0di/EtLi4in89bJZJKpWLK1yWjsI88gwtAX61EGjYK31GBtVotU847OzuIx+OW2N5oNMyjZP4W2ZJer9eqm+zt7WFjY6OvAgrX2aA96f5RRaNMwUEQtAt1Kuw/bP99bai4HuJG4aswGDeCMq24kQH0CTQV4FphgwFpegLcxK7gB46EYaPRsNygc+fOYX9/H6lUCk888YQJfAo0wkNXrlwxyAc4UgAjIyPY3t42z4uUagqSwN7hcSRkkO3u7cLr88Lv8/cpXvU21WPk30xKpVClcHQp83/w1B8cwj77HhNcoVAI+/v7aDabBv2Fw2GcOnUKmUwGrVYLGxsbKJfLfQdDRqNR7O7uolAowOs9pLsTUpycnDT4iwpELW1NnnbnhveiglRoUeN+ADAyMmLVLwKBACqVChqNhsFw1WrVKsTTs6O3xvfgOuJY6eGNekYYSRX0Puv1OrrdLqLRKIrFIjY3NzE1NYVjx44hGo1ic3MTBwcHZlixIDNzvVg30K2LqOxOnXOPx4OlpSWUSiV7j3Q6bffZ3t7GrVu3bD1tbm6aAmftxosXL2JhYQELCwt9cVr13IH+5GElNzG+yBilKjvuCSp6KinG1shkBfoRFj5jmM81uA0V1zug6YJ2rTK30ClwlKhJSx/oh9P4/0EJkxog1yTLsbExnDt3DnNzc0in03bGEXCokG7evGlJpufPn8fExAR2dnawsbFhz2MMjFRkzYNyvSHmanW7h8V0vV4vvL7vVQlBD97ukfDQ91Sl3e60+zw19eBcsgt/Sw+DBAtWeggGg1b9o9c7PICxXC5b1Qsqtl6v1+cZBQIBRKNR89RIxtASUKqE+TsqLTVKCJ1xPKmIdV1w3tjn8fFxhEIhizvRO9T55XN1DNzKDQrdstoE42dK4lCiCXP41tfXMTMzg0wmY3l7PFnZ6z2qru7xeKxmIb1dzq2+n3qaFO6ErOkBM+2AdHnWUgwEAqjVarh8+bLBgiSdhMPhvuNYuDZcD0q9Jr6zQs5UVgrJ95GKxBB1S62p4nINkmE7akPF9ZA3FWgA+jwrrTdHhaNCjpuKlvmgWJAqLmVsUZjy/j/6oz+KY8eOwefzIRqNIpPJoNls4jd+4zewsrKCUqlkhUs/9rGP4ZlnnsH8/LxVAudZU+12G8vLy7hx40ZfDs/Ozo6RFNqtNnq+nlnGB+0DhENhu7bT6aDb6/YJMcafmOzr8Xjg9RwqO31HWsgq4CnAGPNZX1/H2toaIpEIRkZGLE43MjKCVquFpaUlbGxsWEmjmZkZU1pkGDKfa2RkBPl83mA/V0FoMVZ+zj7yXup5U7GysgTni3Ov8UxWlE+n05akWygUjBwDHJJAXMWuxg4VY7PZNGVFr4GEETWIANhYZrNZ1Ot1S3eYmJjA7OwsNjc37SDLTqdjNH8AptA0/9Dr9VplDYULCd+ySDBzseLxOBqNRh+jUT0lO0nge2PJ2JaWrdIx5P7Sfcg5ofHAOVGjSPcrqfn8nmtQ0y/UKBm279+GiushbuppqWeiwkLptGqZ0nrTuBiVkMZV1Nrn/xUyJDORR8GT0l6v13HlyhW89tprBj/yu2vXrmF2dtYUHftHFtfy8jJWV1f7oD5CkvTMyJY0peM92txerxfdXhe97tEZYEB/4Nvj8fQdPqmKWeEcJQVQQJfLZWMV+v1+jI2NIZvNIhAIYGFhAcvLyyY0AZiyVANCBS4PMVRI095DBJ42TWDV/rNxPJURqopY4yhcF7FYDKlUCo1Gw8aA91TYUj09jnkoFDJaOmFOjhs9X8KYeqAoFQ7jXqwdyKR2Vq7QxFzgiEGrMUyNc/Ea1wg5ODiwOCV/m0wm7dw3vqeLKuie0TQHjaO6XqgSejjOHH/XWNJ7qffGa3U9UIm6zxu2ozb0RR/ixk3kfubi6C6MwgWviagUUhrodgUcm7LHmNSZzWaRz+cxMzODdruNhYUFvP766xZQ7/V6qFQq2N3dxebmJra2trCzs4NIJGJnI9FKpmLQXCt6hZoDxWoZvd73Do1UWBNH79Hp9hehpWfCnCb9TJWKS0U+ODiwM50Y/xgZGUE6nTZhvLi4iEKhYLEdFeSDGoWxC/vo+OrcaKMnpkpX50iTfV3ChktuoRJJpVIWZ9N78f4cJz6fXiGL7iqJhnlkjAfy/K+Dg4M+Bc38PFLmk8kk0um0PUdrDupaVsXIsWq1Wna8CcdH62gSnmRMr9c7rOTBOJQqIt07QD+7j0qEe4r9USXnQs+DUAvNz1LlpXFqvq8SXzQ1Ytjub0OP6yFu6jUpnASg73gHvZaWsG4+Wu9uAqcGjik81YIk5NPtdu0UWo/Hgz/90z/FzZs3USgUjDLNzckj1FdXVzExMYFkMmmFTBm/YEVzVVgUOu12G91OF+1eGzu73yvm6vOj0+3A0/Wgh+9Z3gdtE0Dd3mHV+B6OYgNkLnY6HYSCoYHJrr1eD//xkf+Ixlajr+hrMpnEqVOnMDExgZGREQDA+vo6FhcXcfv2bXi9XuRyOYvTbW5uIpVKYXx83DxGnls1Pj6OVCpl80VhxtN8lTBCAcwxHbQeOOdURqrYCIkRbiN0qrR2FvQtlUrGotP6gArJATDlpHE3KnE9z4tHsgDoOxqExgMPr9zZ2bE+AIenCXB9dLtde2/OIb1njT1RwbDfml/Gqi3pdBrxeByxWAzvete7LI9NY6D0ynjyM1MD6DnrHuLaUaNPm8J9fG/Oh9Y41FigKkb2X4v5DtuD21BxPcTNtcI0juF6S/QaFKbQcjJqiSscxOcAR4JGMX0SFV555RXcvHkTAHDjxg1sb2+bwKUQ8Hq9xpaiUCAzkFRownEsF0RFw/cKBAKAB4elnro99Dw9tPG9/K7e94436XzPE/FKMnWnC6/vSADs7O6g0z6Mhe3t76GHHg7aB1Ztg+PFmna00gktsb5dMBjE5uYmFhcXce/ePetjLBYzgaoJtIyXMVeKlHPOh8JDOtYuLV49NQpPV6DRI3fJJu66oDCloE8mk+h2j2oD8nwwzoHmLDFnTD18zl+5XO4j+Ki3RsXH5Gf2iWeVKQFEBTrXnaZzcG0ppKt7hHGoTqdjycfM5yJz8tixY1bfUWFeGmycM8KoCrmrsmM/9PfKJtTfce9qPMydZzVGNTTAv4dtcBsqrndAo4XrYvK60PX//Lda4/RuKFBUAKrC4/1d7+7mzZt9BBHtA2EzF44DjqowaEmpSqXS91wqOt5PYRgqqW6ni46nY8/v9rrwdo/60+v2TIC12200W0308D0PYO/obC3Cpx548O/m/x06jY55Dt1u147eIJkCADY2NrC+vo5arQa/349EImGkCgojnQeWZKLSci1t9hlAHwzmQlhqGLhEGo63Wu78XmEmjYdS4DI9QBlxGtN0YTF6S/SYisWiQblusq4aSEy65nrxer1WxioSifQpcUUB+G+thsF30bFT1IDxUTJBFeILBoPI5/OYnJzE2tqa/Y590likCxG65cJckobuEx1PhTB1XavhqTFe3cvumhi2+9tQcT3ETYO0iqe78Q5lMfF7whT0fBTS48GGvJ73dunVfH4gEDDyBXNw+DsNohPSHB8fRzabtaTlcrkM4LBKRKPRsPJCrsCk0Psnvn+C//vg/4bH64HPe+TRtTuHVjV6ADzfExrf+3ckfFj0trhZxE5rBwftI29zd28X3gMv0AOCoUPo7P+b/f+wVzpUuIyFhEIhzM/PI5FIIBaLWT3FW7duWaJ0Npu1GBEPvSRkSAXu9/stGZvUeAB9JYsUtlWFwXm3d273H0/DPy7RRL0lJjczb0s9Qc4pIToy8La2tmyt1Wo1eL2H9H6WRGKNQlbk4HNIYGHMSfvPiig6x3x/jovGIf1+P5rNZh9Zx/WuCB8SSuT7sRhxt3tIiSdUx+smJibw/PPP4z/8h/9gzEI+8+DgANvb23jqqaeMGXvr1i2Uy2VsbGyYYeWSKnTfUGEpWsH76zrX/aoGHpUpY5EA+u4zbP1tqLge4qaQAS0xQny06lw4QZUYYSKg/9wq9ahotXPDqSUO9J/1RcHD53o8HoOfqMD29/etsGm327Xq7yxtxH6p4lT4khbu/xv+f/EFzxfsen0HAPDiKObi9XjRCXbQ3e+i2Whib38P6AE+/6FnxXdCD2gfHN6flj8FDqEixuTYN0KJ9ADYlIBA2E0D7oNiFBpPVC+D80TvlOOoc8HnD3rGoDgQ1wy/42ds9OZYa5JnVTH+qJCc13tI6+fc08siPEclqzCjxjEVmlbokd6YGj28nkpUvVB6rupFAkeKg3uE8CQ9M35Pkg37zrlnnC+dTmNsbMzISDwIdXV1FcBRbM2FBPXfGuNST5kKSWF5l8iha8mdr2Hrb0PF9ZA3ClUAfVY1NwUp8iQ3cDMwhqQCgQJJY0uqwID7NyJwdHilemNMQqXwyuVyFi85deoUYrGYVRjnicf0XvRodMJXGizXe8PZuxSA7d7Rce0+7+FBkwcHBxbH8vl88AcOK8wf7B9YrUOfz4cvjn4R/u4RO461FAkBArAj7QuFAnZ2dmyc0+k0ksmkWf48V6lUKmFiYgLxeNwIEXw/zfNReEytd84HPyMxRoUfBaIqKHom9IgJlykUybVDYarJz6xy32q1UC6XUalUbL5d5evxeMy7pPfNNUZFq2xFjR/p9VSyjH3pmqNXqEw8d+5VSdHb42eMX21sbCCVSiESiWBnZ8dyxWZmZrCwsAAA9rvZ2VmMjIzg7Nmzln/36KOPIhQKYWNjA//m3/wb3Lx5057JfvG9adApaqDz6Spm3VMADMVQdGUIEX7/NvRFH+Kmm1oxcYUp1Ovi39xAKngoDFxsfRAdm8JGBSeFvN6TcJQeI3/u3DlEIhE7JJIwXLvdtiM+1BPguwxibn3e/3ljrVnrwViF6B3+35QWvR5fvzXb6/WMdfjFsS/2QTThcBi5XA5jY2NIJBJ9ngyhKFLCI5EIksmkxbc0cK/Pp+JVmjnHix6EkhOUhMM/nDOy/LS6iBtXcZmS6gnpvV1Plx6rz3dYlisejxuERgiPMSOWb9re3r6vXJWuDa4J9UD1OsLXqsSUyODGSXWu+C58L+b5qSHA92JNQs0J3N/fx/T0NMLhMCKRCMbGxjA2NoZkMonZ2VlkMhl4vYf1DsvlMnZ2dpDNZvHCCy/gmWeesfGiV6QxLY6rxhy5H2lcuHtbPTiNU+r+G7bBbTgyD3HjplYoRK04F0qyxFvBxl2B5cZGgP44lwoiDYxrwJnnFnW7XYyNjVnpnxMnTuD48eNW448BbwqjRqOBzc1Ng8z4LIWEuKHb7fZRcqrfdxTX6h0SNQ7aAot1e+h0D5mFJF50e114ut8TJl6PeW4U6sChdZ9IJDA6OmrnOGngnEKW/ad3AsAEF8fMjUOpglBSi+vhqhWu86ZGCxWA0syVsMPnKGTIz+hdqQHk1sAjZEgvk2tEc/2azWZfThzXAudKKfqsKUhoTJN+1ejSfDFCaQpF8xpVBqoIAVjdRPVkCFFXKhU7goVe6MzMDIrFIlZWVgw2PHXqFM6fP281JlutFrrdw3qLx48fx+OPP45UKoU333zzyONvH5175sbvuJ/cmJgSo9hn3k/fTdfAsA1unt47EEit1WpIpVL/u7vxv7xRaOkm5ibRGJfW7FPrXoUArV29J78j5KVEC1r4DMRTeIbDYUxMTCCRSCCRSGB6etqOqajVanbOUyKRwPz8vJ1I6/F48NZbb+Hll182qjIFngodFeJkAAaDQfw/vf/H8rkO9g8OCRcU9L0jGNXv9x/S6XuHCotC+J9F/5l5F8yxeuSRRzA9PY1sNmsCZnR0FH6/H7du3cLVq1exsrKCRqPR541of+mVxONxvPe97zWvTSEfTTbWeSVRhgqC46QCSw0NZbhxLQwK4FMg0jNQyBjoP8iSrdfr2aGTJKLw3yQ+sMQV1w2rVFAxuQqa8axOp9N3bIoShqj8mKhOqJJ9JcmI92etR0KNygykoeH1ehGLxZDJZPDss8/iwoULViNxZGQEHo8Hd+/etbU8OzuLWq2Gb3zjG0Ya0TJRTz75JE6dOoWrV6/iq1/9Kt56662+GoO69izu6j1ikiq8qTFlzqV60OqF/mWBDLe3t60Q939vG3pcD3HTxa9eAHD/6b1Av3el8JFr/ZMlpdi8enW8L4PpvK7X6yGVSuGZZ55BKpWyY+Op4MrlssU6YrGYVQwPBoOW8EqigwuPqPXN/lMQHhwcoN078hAMJu10D5UUcJSETAvX6zFiBktDqZAPh8MYGxuzCg4UJCzPRCGoAkZjKPF43PKfKEBZIUS9x0Fzpv9nf6ncKLAUZlNhqJ+zXxw3XTcUiKpkVYDq+KpCZ94dUwR0vAKBAHZ2dswri0QidnIA51UZj4T8FAVQmJFGGHDkWfF3VJBaukm9QPVG1XslyYUVTcrlslHvt7a2sLW1hVgshpMnTyIej2N0dBT7+/sol8tWKX90dNSq2y8uLuLq1atot9t44okn0Ol0UKvVsLCwYH13x5UxPd13Hs8RkanTOUpN4Xvp+Og8k6k6bP1tqLjeQU2hPW5SFXT6PTez0nAZc3EhFw0S93qH50Vxg3GTTU5O4r3vfa+d4tvtHh4bsrKyAuCo0nUikcDe3h5OnTqFcDiM7e1tJBIJfOc738Ht27ftIEMKMIUHgf4zwzQO8oXoFwza+dndnzWPDd+T173ukVfp7Xnh8/vwz2L/DAcHB4dxuIOgVWf3+/1IpVJIpVIIhUIWxGfpouXlZesrx0zLEfV6PUQiEeRyOeRyOaytrZkHyhgPc4m63a6VxBo0nxx/vpsqGBoYVJ6akKysNY6/q/gYi1NaPfOdON68J38TjUat/1RcClfziHuugUajgWw2i6WlJdTrdezu7pqAZgFfNwZHSJDxTwB9h2PSE+f76xEnPNOMXieVOtcQ1w+hwfX1dXQ6HYyOjqLT6eA//+f/jG63i4mJCeRyOZw4cQLj4+OYmJjAsWPH0Gw2sbm5iXQ6jZGREatd+ed//uc4d+4cXnjhBczOzuLv//2/j0aj0QfLqnesNHjOj8bz1FhTWJHXDiLHDNtRGyquh7hR8Kl3pcpJWUyuh6X0do3buErOteQp1HhtOBzG/v4+3v/+9+Opp55CKBTCpUuXjDJMJeT3+1Gr1QwiImGDhyYWi0Vsb2/3VW/X2nqqpJRRph4lhdTnA59Ht9vFL7R/4fA69IyQAQD/NPxPLb7ixviouLQwLj9nlYy7d++iVCqZkCV85PP5LHmXUBJwmJ+WTqftOXyWC/O4/1dlpvOnf+uc6n0V9lXvSWEmN3eIc6zrSWNI6hkwj42euVL/o9GosT4jkYiN3dramh1jA+A+w0qfBfTXSNT30xiQelVcJ7ouNK6kcTZeoydLU0mPjIygVCphf38f8XgcZ86cAQCsrKzgzp07uHz5Ml544QWkUqk+6PD27dtW2iuTyZhxwnXAueLzdL+yj4RGFRJkcz/X+w5bfxsqroe86SZ2N7kb1HUDwoM2PhMzgaNyNUD/IZUkJPDZfr8fzz77LLLZLNbX11Gv1xGPx5HP542I4fV6Ua1WUalUrKhqNBq1BFUmcmpflYmmXoZCQ67A0xjL5/2f73s/Cr5g4LCKOWnsHCOlgRPGonVO5bu6uoqVlRW02+0+Nh8hKM1HYxVynrdFIeQyyNST4pxyzHWueC29DWUgqnJRj1vHjHOqbDXtA9ePKi9ld/L38XgcgUAA6XQaAOx8K1WC9Ba8Xq+VVEokEsboo3Ln+3KtqVGkioseCMktLjPPVVQa4+M1Pp+vz7NUGNzvPzpduds9LEXGxtMO3nzzTdy6dQuLi4t497vfjXa7bQdUdrtdbGxsoF6vW5X9zc3Nvnicq3T0Hdz8Pc4/m8bIdO6HbXAbKq6HuGnuFHD/sQm6aSmQuHHdmm4Go3n7mWu8jyoPfs6N/vGPfxwjIyP49re/jVu3buHMmTPIZDJ91OhMJoPjx4/jrbfesiKvk5OTKJfLWFlZwdramm1IQkSMZTC+4irkQe8A9OeaUUgBR0e9U0gAsAME6dHRm0gkEiY4Dw4OjE323e9+1057JnuScbtu97AgKwUd4108GFNr6rnCU5UOBbAqLuAI1mWcRBVEt9u1qhIejweRSMQUgxtDIzRIj3mQh+0myirjj5UlksmkedL1er1PgXq9h+WbmCP1+OOP4/Tp05idncVLL71kRA8W2KVQJlOUCo9eESFBXqfwtlLvNRWB64XrieuIJI5er4dGo4FyuWxxqw9/+MNYXV3F8vKyMWQrlQq+/vWv48UXX0S73UY+n0e1WsXdu3exsbFhHtSJEyfsIFGNa3HsNcFePyOKoXAi9zfXJZ+hdQ8HEW+G7bANFddD3NSac61vF4JQuJCfqcVGK1DhFFeZaVyB95ydncWZM2ewurqKy5cvo1ar4dy5c1hbW8O9e/cQj8exu7uLVCqFeDyOeDzep0Dq9TpWV1cN5otGo3akiUtk0LibehKEpFQBsZyUKmq+LxOTKdiZ1EphHI/HkUwmsbu7a/GTg4MDKwRM1iGFpAoa9URjsRhisZhVZFCPRD1YN8bDexHS1ca51TQEhbxciImGg76neiwKHQL99fSohLgGlCBAwUmyBtmlFLY0qjqdjpEzfD4fcrkcLly4gEajgTt37qDRaBiBhR6/joXOHceKXrWSLijcVWlxfrT1ej2jwHc6Hauisbu7a8nmu7u7WFpaQqdzWDGkXC7j1q1b6PUOj0CZmpqyGFkymcTIyAgymQwmJiYQCASwvb2NRqPRl0fGsVXkQKHSQTFId89y/vmuQ6jwwW2ouB7iRqFNAaPQkApTjXnob9XiU+Glgkk3DxUXPaZOp4N8Po9cLofl5WUUi0V4vYcJmisrK3j11Vdx4sQJNBoNnDlzxggKGrva3NzE0tJS33P4bP5fYVAlaaiQVi+BMQda87RWlUnn9/st/kIhG4/HkUqlMDIygng8bkmpZBAy90y9Ix03F+IjRT4Wi9n3CrnxWoUB1WtWi5qeDoW11u+jwKcXqu/pGjckZShk6Hp7Cru5cJT23+PxWO5atVrtq7yhfaHHGo1G0e12LQYUDoctRWJtbc3qHnIuNbmbZbYe1Bd9T/ab+0PHntfSS+71enaGVyQS6UtNCAYPCTv37t3D6uqqJaMnEgkAQDweRy6Xw5kzZxCJRBCPx9HtdlEoFFCtVvvmlcYF1yfn0SWRuPvT3e/8jRo5w3Z/Gyquh7hxYWvJICVTAP2n/qpFBxwFx9WrAYBIJNK3kagYaOUpsYHHzlNBer1eFItF1Go17OzsYHFxEbVaDZ3O4UnJmUwG7XYbyWQSBwcHuHLlCm7cuGExD61Bp3EPtTDpOShURi+Q4xEMBo3mzObz+exo+VAoZDUTO53DwzBHR0cxPz9/X2yIHkO320UulzOPkEZDIpHog3w8nqNzrkhM0KbKisJVvTEAfUJcP1dvimxDPeadUBjfWw8LVfYg/9BzIPw3KGdOa2C6/eBvp6enrXwXYbZoNIp0Oo12u42trS2Uy2XzFHlq9sTEhMF5zPtiazQaBhvGYjEcHBzg7bffRrVaRavVsvmPRqN960NjlircGZfk+mCS8PXr1xGNRjEzMwO/3496vY79/X3Mz89jbGwMv/u7v4tisYh3v/vdOHHihNUsBGBeeSQSwZ07d3D79m28+uqrlt8WDAbtOBwdLyXG6BpVBifXknpp6iEPFdeD21BxPeTN9TqAfo9FPTF+p/i75pqolasQEeEaTRzlb/f29tBqtTA2NoaJiQk7nNHv9yOdTlvdQZY5IoTDvJ9KpWLVxjXorEQTKjC+D58PHG10bnItpUTBDhwxDunxhUIh6wO9Ip6vRWucMZxGo2FxJXqUOv58Nwpe9WqUQOAaCEqG4P/VO9LrOQ7qDfMd1ZtWCI1NGYXqhajSVCiW3yls6JIJ1HvhNRzTTCZj0B/7qgYG2YgArI4i/1DxBoNBjI2N2XVkMZbL5b51w37yj46pW4eRzVXApVIJm5ubyOfzCIVC2NnZsTXS7R5W2eh0OshkMshms0in00ilUtjf38fe3h52dnbQbrdx9epVXLlyBbdv3+57Fg0xVVjsqwvfc75ocGj1DZ1310Mbtv42VFzvgMZNq/AZPRcrRov+GAqFmQb3gaOAsJIfFEp0A/e3bt1CNpvFc889hxdeeAHLy8uoVqvmtX3729/GwcGB5eGwdmGn00GxWMTS0pKdfMzNSIFJwcHGuBS9JMZS9L1INqBSZdO4QjKZNBIFFWw2m0U2m0Wr1TJLnxZ9vV63saE178KvvJaCl7CYjptCR8qY03iH5q/xOfxePWD+X+MohNXUO1aFptAg+6ZeHe9PZa9KltCkXs++cA3y3XK5HNrtNgqFgs2tegm8Lz20bvcol2x7e9uUINmLsVgM2WwWoVAI73vf+1Cv17G5uYmrV6+iWq0ai5UJ7Ts7O2i1WkZWSSaT2NvbM9i31+uZgeHxeCzOeuLECUxOTpqSphfI412OHTuG8fFxU2bBYBCJRAKXLl3C7du3cfHixb68LSbfDzLEdH5dL1bhbP3cJez4/X573rD1t6HiesgbhQHjNADui3VQqFLAuTEPF/9XKBA4KvgJoK8EU6fTwdbWFhYXF/Hkk08iEolgZmam77lUVuwfNx9jRqwArs/U+/OZ9CSUEcjNS8tU42TqSfL+/I0rqFOplOWjNZtNO+2X17Fy+CBlqda8G1vUeBitaBVUg4LvrmJRGEkhQvWAB8XaaMQo04/XsymZQ+dYIShVuDp+KoB1/fC3gUAAqVTKvCt63gqRaT9YsJjXkI3Iahxer9cMjmQyaUnKjUbDktZzuRwAoFQqYW1tDW+88UbfQZWa60VDj++3vb2NWq1m8B773Ol0TImSqbm7u2slqvb393H16lXcu3ev78QFjr0aVXoYKsd2EHtU50LHVQ0XN/41bP1tqLge8qbCDDiCmGg1K/QDHAlX9RyAfoouPS2F4JTBBxzVm9ve3sbq6irK5bJVTMhkMqY8w+GwMbYoFFi/j5RxKhZXqDG+QYWl1T74ORUXvSsqZxWqzMtSwUyKdDwetxwrWur0AlqtFoCjOBGFPyFPjoEy/BSW41hr8VmFcPlHmaAuNEfhx3fT8dAYDr0VegfRaNR+o2xHd91w/JTF9yD4kO816D76vpwDVgqhB8vG92ayrRYkZjFjVZb7+/tGeJidnTWvdmZmBtFoFNFo1KBej8eDSqWCpaUlrK+v4969ezg4OLB0CjUkFC4vl8soFovw+/3IZDLGPCUDkaxVrqVu9zC/r9FoWJV5zUPj2Oje0T2m+1bjWfpb15vi/A/jW//tNlRcD3nTTaGBdy1BREuTEIzP5zP6MgWIlqDhb1WAAv2Js+pN3bp1C2+++SbOnDmD8fFxO7MoHo8jFouhWq32QZEUPPV6HdVqFQDsN9y8FNq02CkUFDZhlQvCioxxsX9KzuCmJzut2+0imUxiZmYGACznqtfr2X2pMPS8M74DcARtcgx5f1UqhMR4XypbCm29H/vId1HPmK3dblsOFE/y7fUOD7RcXl5GMBhEKpXC2NiYKVrG4HjsSiqVMiE8CH5Sb5tKjwWE1SBQ6E89d43jxGIxhEIh1Ov1vrgWIVGW3FLKvcLdHHc9BofjNTk5iVwuh8cee6zPMMtkMjhz5gzm5+dx6dIl/Jf/8l9Qr9cN8lW4m+PcarWwubkJAJidnbXTmzudDsbGxmy8yZ5kqsXu7i6OHTuG06dPIxAI4NVXX0WlUrF5Z+xTDQMAfUQYKkPGTjkOSjBhnzkmCh0P2/1tqLge8qYxB7X2tRinWshUclQC9ERUKXCjubCcegcKU3W7Xdy6dQupVAqJRMKsZuYyMaeKjDFeo8pMCRUUaCrcNR/L9RQ1tqdxIX1n1+INBoMYHx9HLBbriyfoseh8z77zvnDkCeoz+Rz+Vsddv1ePRfurnptbo47XdjqHFdmr1So2NzcNXqP132q1LCeJsSWOLz2gXC6HbDbbZ7Tw+Vqtnc31TtgXVVI6tkr4oQLjHDGGp58rhK3vq3Cpm4DOa+lZzc3N2RqjwRKJREwB3b59G9evX8fm5qb1mcrCrWdIZc74EZPnR0ZG0Gg0+pT1/v4+Njc3cXBwYJViEokESqXSfZX8BxmR3DuKLPBajY3qWnc94GEb3IaK6yFv9EQo2IGjGJcKcCoeWrfE8VXwEKPXOIur+LjJWO2ALL5Lly5ha2sLnU4H73vf+yxeNDk5aWV+KCzHx8fh9/tRLpdNWOzu7hrcp5AhLVOFzhgrikQixjZjhQ3CeApTsrID2Yzj4+OYn59HPp83S5/wJWFErd5NajrhTjaXvUehHQwG+yjwmvDrNlrm9ED0hOVOp2O5ZgBw+fJl3L1714gFzDOjgGSZom738AgZjhXvxZJbPNGZnrey8Tj3FJy0+NWz4rv2bLwzSQAArJdJREFUej1T6sFgsC8Ow+uoqFhlhWd67ezs2Jogo5CxWBcaZb+UKUhFXygUUCwWkc/nrWizrqFkMokXXnjB6mHq2ud9dTxZGLfRaGB5eRlra2sYHx+3lI6trS2Ew2HMzc3hxo0bVgV+bm4ON2/eRKFQMIXIeeTec+Fd4CjVgOxB7kVe66ascHyHpIzv34aK6yFvatG6LDcKUvXIlBhA69ONzbjxDQoNZaUxgXdychJ+/+H5VKwYwNyVer2OUCiERCLRB0kSKmIw3Ov1Gq1YyQC0Wqko2Td6dJOTkwgGg31HZvB6nmJLoe/xHJZBmp6eRj6fRzabNQWnCt+1btkPjdHwemUG6ucuNVvJE9/PatY4lD6Dxsn29rZ5rSR+UDCS0UhvW70g3ptxvK2tLav+oVa+vrt6WDoebozFzXmj8lEI0l2rVNIcH17vKkdVYiRKcE0ThuM6SqfTlhisscdOp4Px8XE7L2t1ddXGhrAjDQb2NxwOo91um3KNx+OGHjDuub6+jmKxiN3dXZw+fRrRaBSXL1/G/v5+X94b14F6rlxr7Kt6Znxfzot6Xa4Hzu+H7f72AxXD+vVf/3U89thjSCaTSCaTeP755/HHf/zH9v3u7i5++qd/GtlsFvF4HJ/61Kf6qkUDwNLSEj7+8Y8jGo0il8vhF37hF+4rezNs9zcudA20K8wAHG0CN66hsJrCMRRKLkmDf0ejUVy4cAHvfve7kcvlMDIyglAohEqlYhubjCyFSKhkaenSOnWhSVWa2keWUcrn8xgbG0Mul8PMzAzGx8cRDoctRgUA0WgUY2NjOHbsGE6dOoW5uTmMjo5aHImKUksjcQz5b5JKdNz4HsFgEKFQqC/RV4Um34WfDyI68P10vPV3HH9WG1eiil6jc6e/UxjM4/GgXC6jXq+bAaLxTb2/C3fyWncd6LEiwBHhQ99TodVwOIxEImFHx5BMwvO73GcDMCIE46LVatXSNkqlkuV00UCi8j44OEAikcDc3BxOnDiBvb09q/xCI0zf1+s9ZC8yvsS8MQB2Plev18Pt27eNuj8xMYF2u41qtYpoNGq1FRU5cMeDn3PtcU2xuSSjQUngQ6X14PYDeVzT09P4lV/5FZw6dQq9Xg//9t/+W/y1v/bX8NZbb+HChQv4uZ/7OfzRH/0RvvSlLyGVSuFnfuZn8MlPfhIvvfQSgMNJ/PjHP458Po+XX34Z6+vr+PSnP41AIIDPf/7z/0te8J3cKAgYTHdjAL1er0+g8jRdDRSTKKGbnb/ntWT8qfXIYPns7CwmJibs4MSxsTG8+OKLaDQaOHnyJCYmJixOsb+/j3q9jmazafCdxj8ovJrNph25DqBPqPM58XjcCAihUMjgQtejSaVSSCaTBo2Rar2zs4NEImEkEa0+QWGiniW9PkJfHs9RsrPCtcD956JpXFC9L1dYufAa4StN2OW9CKuynBQbn80isoM8VTJBPR4PxsbGbLw0bul6ByrY2UeuIa4HKmo9j03jZUpG8Pl8Nq7AUeUTjhPfmeubhogmMrNvy8vL8Hq95nVtb2+j1WohGo0aBJzJZPD000/jpZdeMqVH6JjztLu7a8xM4BCGLxQKVkx5aWkJjz76KHK5nCnxUCiE73znO7h+/Tp8Ph9qtZrdU2FXNfz4b+4JNV44tmoYqGEDHOXUKToxbP3tB1JcP/ETP9H3/3/yT/4Jfv3Xfx2vvvoqpqen8Zu/+Zv47d/+bXzoQx8CAPzWb/0Wzp07h1dffRXPPfcc/ut//a92/PX4+DieeOIJ/ON//I/xi7/4i/iH//Af3lc6Z9j6TwTWWIBChcD91RMeBPsopKXXu/EZQnTVahWpVKqv9E6lUjGPjKQBAKa4SNRgTAlAnxCnwmUAXL0fF9qiIqKgU9iJfWJiKqnZvI791TgPcAQ1ufEV9YjcWKCOsY6tC9Wq56GGB5/nxjTU+2KlD+YgMY5HZcbcI4/HY0edl0ql+4gsAOxoeyoFpfur9+Za+Bxnd81Q0esa0liVxlsHQYhcp24aB8cxHo+b8UQ4j/eiwqlWq8jlcn2/9Xq95tnH43FkMhnU63Uzphhf1fSOSqViOWT7+/u2hl555RUkEgmcOHHCSlVVKhXcvHkT5XLZ4FrgiExEKJLzTGNHEQ+Os3vmnMbElMSh4zNsg9v/cIyr0+ngS1/6EprNJp5//nlLBvzwhz9s15w9exazs7N45ZVX8Nxzz+GVV17Bo48+ivHxcbvmox/9KD772c/iypUrePLJJwc+i+4/W61W+x/t9juqqVBTyE+VjMYdVOi6+SP0IBg/0A2lFqBL+KhUKkin02g2m+aR7O7uWm7U2tqalXRSMgj/poDm/SmY3LJT/DdJHMlkEt1u16Aj9SLZb8KGACxvi8pSYT16Bi4tXQ0lwjX8nsJIhSSFv0tgcGNHek9tvAffVw0Men7sAwUgP6cCYxwsl8vB6/X21VnkM9VrJnGC5Ag3Psb5cPME2V/X+OF7ezxHlU/IzOTnqrgeBH+5cR+SO8jsU3YpjY9qtYpMJmOxL46bq7gYm2L/6fUEg0E0m01TbFQmhLtZyqler5s3t7Kygnq93mfU6LrVd9J51rXPzxS6pxHAOXDXxKD7DttR+4EV16VLl/D8889jd3cX8Xgc/+k//SecP38eFy9eRDAYtMPn2MbHx1EoFAAAhUKhT2nxe373oPaFL3wBv/RLv/SDdvUd31QoAv1Jm9xIVBD0XNSSo/BlkFrhRXdjAf0eBZ918eJFeDweTE1NoV6vY2trC+Pj4wgGg1hYWMD169cxMzNjSZ0ss6ReHTembtT9/X2LK7FaRafTQbPZNKjw0qVLaLVa8Pv9GBkZMYVMYUtFXKvVzJhhaSAeZqn3ZrKpJjYrY1MVPuMnvFbjSlQAbG5Ct+sR8D35h4pC/wCHaQTMEeLhhZVKBTs7O5iYmMD09LQx4FKpFHw+H9bW1szj1QNCuSYoCDUdQJWG0uUJp2qtSqD/zDN6foz/0aOjMHc9Oj4nHA7ft9YImbqkGXdcmNJRLpdx7tw5hEIh1Go1mwOeZDw6OopMJoNYLGb7gXuE89pqtYzskc1mjWB06tQpBAIBlEolfPnLXzZDWefM9ZJ1L9ID1XJeqrC5/jU2ChyV6lJvdpCBOmz97QdWXGfOnMHFixexvb2N3/u938NnPvMZfOMb3/hf0Tdrn/vc5/DzP//z9v9arWaJpT/sjYvfrTmonhU/V+iLiZG64UgV1hgRcATLccMpJFcoFHDz5k0cP34cgUDAgtO7u7u4d+8e2u22QYmEp9zES6CfXcWYGuMYmpDr9/sxMTGBaDSKW7duods9PMPLzYVRkooqKJ667PF47IRihej43hqvUgGtMSkqtUHWtQpaV8C45Ab3dxpTUoXokh4A9L0z+0rPD4BVllC2G5UQj30h7VrjLOwnf8OKIp1Ox6py6NrRflHZKZWe76bzrGuMyl/p4qrINK7IZ6iHcnBwgO3t7T6PRCE6GhicL74zx7DX61lhYK4PFtzd39+3vMN2u235buynW7WF9+Tz3Hl3G/vGeyi6ocpQjaJB9xm2o/YDK65gMIiTJ08CAJ5++mm8/vrr+Bf/4l/gb/yNv4H9/X1Uq9U+r2tjYwP5fB4AkM/n8dprr/Xdj6xDXjOohUKhvvyav0zNjSlQACj8Qc+BTVlMFEwqOPhv3Xjc3Pw/N3E0GsXCwgL+4A/+APl8HslkEo1GA6VSCYuLi5iamsL09DTK5bIVXSXJYnp6Gnfv3rVnAkfH3atXRmHg8/mQzWZx7tw5dLtdrK6umnfCSiAKNZKFd3BwgEgkgmg0atR2Le2kxADCie122w6LBO5n7VF4A4fHb1CBKOGAjcH0aDTap4g4jgrH8XuSPjSuRMOACoOMNiZ0s0KJx+OxgxsnJycRjUZRKpUs140KiuPAeCJzsdxxZ6NiJMzG5noQ/J0SNtz35GcaV+TfGu8iOuBCyFSO9BD39vawubmJcrmMbDaLSCRi88g53N7eRrFYNC+dHmQymbQ9MTY2hmAwiBs3bmB5edm8Ha77drvdp6jogfL9OE6qpGlE6D5jDE3jnpo7qJ4px8KFUYdQ4YPb/7RaZwzh6aefRiAQwNe+9jX77saNG1haWsLzzz8PAHj++edx6dIlFItFu+bFF19EMpnE+fPn/2e78kPXHhTX4nf0oggLqtXGaxTm4me6YXRjqXfH+9OTuXPnDt566y289tprtukbjUZfEqz2IRwOI5vNmoIiw4v/VytZ349QXygUwujoqFHiKSgo5A8ODtBqtSzmEwgE7NwsN37E4ykUMuJYaJ6S/pbeopITKAiBIwhJq2BwvDU2ozEer9drR3voGLMfJGMoMcEVYjRGqBz0CBmuA31H9ltzABWOo7dKSNNNrHYThjXXT9cTFZa+u64tJXdwzDnuOh/6h3E+nScSLVTpEdre2toyuJpzqH2j8k6lUsjlclb/kOOtEK5LyFHvT71gfX+Okb4nx0rXDtcC55KGhX7PtTNsg9sP5HF97nOfw8c+9jHMzs6iXq/jt3/7t/H1r38df/Inf4JUKoW/83f+Dn7+538emUwGyWQSf/fv/l08//zzeO655wAAH/nIR3D+/Hn8rb/1t/BP/+k/RaFQwD/4B/8AP/3TP/2X1qP6fs3dyCrENMalNGz+Duhn8tHrYLxAFZhCbq6lx881sM0ETi2fo/Exxj9ZIoqxJQputaY1KB2NRi0HsNvtWoHcdruNlZWV+yAvQo0+nw+JRMLurTAqBQKtXfbBheb4zlpQVwUscBSb4/WDDAN3/vRv9lu9F60oTiVEY5CQLPPItGoI556et0JbCkHymv39fRPQ2g8VmJxHvSeFuHoZbArX8tn0dNwcN86dMu5UMLtKletFvXEAljDMslZUkM1mExsbG+j1jhiKNDjo/eia7fV6Vq6M7FiOqTb2k0aEKmxdN1wnfDcqTV7DvcgxVMOH/eQ16hEPldfg9gMprmKxiE9/+tNYX19HKpXCY489hj/5kz/BCy+8AAD45//8n8Pr9eJTn/oU9vb28NGPfhRf/OIX7fc+nw9/+Id/iM9+9rN4/vnnEYvF8JnPfAb/6B/9o///vtUPSeOC1qrUXPwKJ6kyAvoZTITTFIbRRiGocRcXe9ccIz6X92e//H4/9vb20Gw2cevWLZw9exYTExN4/PHHsbCwgJWVlb5YlHo47XYbkUgEY2NjOHPmDKamphAOh1GtVhGPx61SB4ukahV6n8+HdDqNaDRqz2fSMIVROBw2D42elJ6yrAxMBvXV4tUYHJUg3wM4OgrGFer6t0JSSk/nPPN7Ki/Gp6g81bsjMYI5TBwD9p3kGxa4pcIm/Mm+stAsoS1VYOyXphIos47fUxDzOVQ6KsT5fHrM/J3mHCqUq8YQY3VUYrdv30atVsPZs2cxOjoKr9eL1dVVrK6u4s0337R+qKLhcxi7ajQauHv3LrLZrJGBCCtr1Q9VNGo4qgLX2JoLG9Lg45hz3NSz12vV0FKlPWz3tx9Icf3mb/7m9/0+HA7j137t1/Brv/ZrD7xmbm4OX/nKV36Qx/6lbeoFcWGrpaobgRtdoQmXgqvfD2oUNAqFKPTBZ6mHx3ytVCplgp+xGHpC8Xi8LwGanpa+QyAQsERixnoI/fn9fpw6dQrpdBqlUqkP3guHw0ilUtYXhag0x02VrHquFC56T9crcsdEDQS2QTEgvp+rvNz503+zD4xHUbnos9ULodKlAmJTKE4bx0UJDHotx4X91Gojuk4U/lKlo8aU1tfUv+k16ji4MLd61vobGiCtVsvijaVSCXfv3jXDxi1mTAg2nU6j0zms6djrHdasZKyUyfL8jc6pvrcSffgZ303/zXfV9aAICMdN4156D10nw3Z/G9YqfIibblZd3HpsPIA+5QYcMdQYoAeOFI5CN7wW6D+1l1Yr0F9PTmNG3NT0hObm5qzCRblcRrPZNMjP7/djdHQUu7u72N/fNyYXBXSn08HIyAhOnz6NM2fOYG9vz0695WGUTz/9NHw+X9+puJ1Ox5Qbq2PopqeA5nvTG6DA03enF6PChGPmVpGg96KEF4V9FE5yhRafy7wnVWb0tkhSUdIJf6cxISXf+HyHJz9zXHiSNJ9P74ywIwArjaQxJiVTeDyePoWoUCm9IRoKCgFrtX1dk0px5zvrHChk5q5lXYf1eh3r6+tG4vmzP/szLC4umhdJZiCRiF6vh2AwiGw2i5WVFbzxxhuYnZ3F1tYWHn/8cXQ6HSwvL9vzucY1PqaNMVt9j1AoZOOp+4owOQ/M5Bgo25Xvz7QVVYzDcniD21BxvQOaS9BgkFnLICnUR+HJuAmJEwrZsKmA4H00qM0NRAGungXvxQ3JOCWrbzNJlnCdem/8LBKJoNVqIZlMYnJyEiMjI9ja2jKYj0IzHA4jGAxaOZ5ut2vnG7H/SodW5QrA4DOFXF0PS2FXFegUsK4Hx8/csWJ/+Ld6InqNG0+kYlUFpSQRNTbUM+HvstmsxRiVAKJzrV6W2/RdFJ5UD01JC5x/971dxe0SHQZ5c6owFUIb5NkwbsVTtrleuCcIe2qOGtdQq9VCo9FAOp1GMBjE7OyslShTaHDQnlPIkPOhClm9Su27G3vUeCBhQ4UGB62nYetvQ8X1EDdXWLqelWstK7av0BOFj1p7/L1avvxDxpZClXpP/o59oaWph+fxQD7SmdVSp8JIpVJGGMhms3ZIJSt8k+WmBz2SLt5qtYxaT8hqkMejrEV6CO6Jxio0VFkOamolq5Cl5+UaBy4MxPni+FKhUqEQRmVcU1mIui6o3Fh9XxOreXgn/09PzlUiCmXpGlC4j3PMMXbh5EF5WVwbXCdUIA9SdLyfjo/Og7Izqdg7nY4lE9NwSqVSaLfbVvZL9wfhQs793t4eEokERkdHsb29jc3NTTsOZW9vz5Kwda2zvy6cqkQMKjWFpNXjZ9/ViNHYp66jYXtwGyquh7jRs9JCndwAzWazL36hHhCtQG463ovXcWOph0aFpsQPClNuVgpVheR4HlYwGEQ+n8eVK1cQCASwuLiIEydOIJPJYHV11WDBQCBgJ/sSygwGg5ibm8P09DQikYgFtKPRKNLpNEKhEIrFIra2tgwazGQyVkxVPUg3pgIcCXCfz9dXPUOJD8ARPKbCSuOFqliU+q9J1pwjCrVut4twONxnJChkyHtRuJMCnslkEAwGkUgk+jwlzg/777IJI5EIMpmMnSacTCbNAKAQpcID0JfvprEuCli+JxVpr3dE2FDYj9/xb00kpver9SZV+KuX58YAdT0ypsnnMHew1WohlUrhPe95D06dOoXvfve7+PKXv9w3N7FYDIlEAq+99pqNzzPPPINcLodvfetbuHr1ap/hpmxPNRbZb/U+qdip+Li2Nf6nkB8/4/jyGTS0tASby3IctsM2VFwPeVOrWGNW+p2SNlSZDQryqjWnQtCFrQZBHSpIuLEomGKxGEZGRkzwsko8IT4VOG4AmsKdSoHQl8JkTD7tdDpGd6bA1DFxoTCXbanCmXET9Zz4TCp2Kju1kgcFztVDUchRx82dV46zG+/x+Xx2iCYNF4V/+Ty+r96TyousSqV/q7eoc6AevCpxzb3SdcDf62fue6jBREXNmKH21/V0eQ8XmuN3aozt7e0ZUYPKJp/PY3Nzsw+d8HgOE8p9Pp/Vedza2jJodXNzE9vb233GiHrO6lHpOwxSaOqlqRem3p8bX9Yx1Gr/w/bgNlRcD3Hr9XpG+QYeXFLGjTu55ATg6CRWVwBToKh16N5XlQCbQpCsO5hOpxGPx63mG+vAAf0bnsKQgfSDgwMjJWhpJ7L9gKMyQzxuhRAhvQVep8m2CrVqH3SsPB5PH8mA3omWDNIgv3omKqwUClJjgJ6rKgWOnyoh/olEIja2pJXzelr6gwwZJT7QO+Z7KNWe60qVKn+vSp1rRxUU54ACW5WTelvuGlIjQdfVoOaiCArNqeGk6Rcs5XTnzh3Mzc1hbW2tz9MJh8MYHR1FIBAwaJVnCu7t7RmZSOdYFaQ7p+ynGhJce7qfdI5VSSlk6+4vfd8hXPjgNlRcD3lz4wLE1NWq19iKCmS1WNXT0ZiOKhO1FPWPG89QGLLTOTy5t9frGZ2d8axGo4GpqSmLgxFaVCsfOCRO5PN5JBIJi0UAsLwjKrZcLmdWaaVS6Xs/vhPPJDs4OLBCtRR0jMG5RBP2hf3ku9L6jUQiNhZaX5EGAokCGtTXBFrOH5WMVtcgbEelSk+TAlSrrnPO1BNSb4bfMV5CSJTP13lXQgCVHseW88OxIxTGJHb+AY48R4WZ1WvjfQYxNdU7U6+PjMBms9kn8KmoUqkURkZGsLy8jKtXr5qCf+utt/DGG2+g1+vZ2tnf38cTTzyBCxcu4ODgAKOjo9jc3MQnP/lJTE1NYWdnB6urq2g0Gra32LrdQ7Yg1zPHVan8aqC4Y6v347y4Bo4eg8J6k2oUKUNz2I7asJLjQ94UPuGmcdlNFF6Ku/O3rudBIa6WoAopVQIqpBRy00a6PhOleQZWMBjEzs4OIpFIX+1K1oFjHT0WTmU5KFW+9Fa0Grl6P6R2qwXLd3KhMY6HG5fRmJPH4+krTMt/A7jvXtooiJXFph4JFYOW5qIyUAFO75XlqdwyU9pPd01orIuNykIrhGhTY0jXgCo4tymUpx6I67G7kKG+o46N9uNB88f+8x25TsrlMiqVCkKhkOW7+f1+Wyfs69TUlB0amUwmcXBwYIzX3d1dIxLR6FClPAgWVk/QNQr1/d054f1p4AyaE3qJLoll2Prb0ON6yButPHpeGs/SU2JpuakHpt5GMBg0r0fP41Lqu8uuc60/hZW4UQOBAPb29lCpVJBKpXDq1Clsb29jYmICV69exTPPPIO5uTlcvXoVa2trKJfLAA4VXrFY7FMS/Htvb8+qGXADx2Ix+Hw+O1SSz+X1SrEHjgLmFGDKLuNz6vW6CUV9b17nkjZcj0G9Pf5W4Uday4T/KAD5Xa/X6zuhl14Z349WOO/N32l9PgpBGiaq3BVCVU9d0yN4b4UBSaLx+/19h3gqjKUwIXA//Kfjp6W6lPDhrjs1rkh2AI6KGNNrpjdGCjs94mAwiFgshk7n8EDRQCCAsbExpNNp3LhxwyqndDodpNNp7O7uYmFhAUtLS33eOA0EMgy5htR71vfV/cB34Gd6HIyuASouN36pnvCwPbgNPa53QHMVh1puCu0B/RRo3TQaw1AKs8Yf1GLUgLILK6olykoGlUoFvV4PqVQKe3t7diYS68TxuQqX8Rm7u7t2Wi/Qn6xLBUrCAQ9VBI4YcUrVVsucdHkKBoVzVFm43peOgWt1u/EIjqHGDXl/F06jsHKv5d8sVcW504oeOt/AERRJCE8ZkepFf7/3cT05jaHpPKsHwLXkfs53dtcIr1GBrl6J9lGhbI11qYfHRGeWumLFFo6DnhKdSqVw/PhxNJtNNBoNjI6OolgsIpfLGcRdKBTuI7i4f2uemfZJ51jXE+FSZeRqHBrohw5duNv1/Ibt/jZUXA95003Opgw2tYIVhlHhoxvBFRoKeVDQqJCmUFcL3t2wBwcHKBaL2NnZQSKRQK1Ww+7uLiKRSF9cQDeoQjqdTseSiVWhsa9KPNDfEFIDjgQBFbfH47FyVO6YuOOr1j/HQP+ocB6k0Nl0THntoMojCoHp9VpHUedZG3+nyatuSoB6NRy7QaQeV9GoUud93OR1l4av8Sn3fizuyz+EfKm8XEaewm36GcdEoWTGv6jcSaxptVpWtWVmZgaTk5PY3NxENBpFPp9Hp9PBiRMn4PP5UC6Xsba2Zu+q4zLI83H7qJ/zb+4njRWqh6brza2K4X4/VFwPbkOo8CFvqlhYUgmAUceVCTUoZsH8Gw3ya0CZ1yqLSgWTEg64+Xh2FIVqMBjElStXMDc3h9OnTyORSGBrawuTk5O4d+8ezp8/j4mJCayvrwOAlTACjipaFAoFbG9vY2RkBAAM/qMA4L8JFenvWW9ud3e375h6ngwci8VsXNyxJfxKQcScIyagqgIAjgSce9qwel/0Lvl/jWNRMLGPKsA4noSo+M70GvnOShxRz4AGgMKDqnQUEuQ1ekqyeoT0XHg2F9ebKjdlaCoDkvDz7u5unyCnIlfoVr1I9UTVm1SSDt+pUCigUCggFAohk8nYSQJvvPEGut0unnjiCUxPT9uaOXHiBCqVCh555BGcOXMGS0tLeOONN/D222/bHA1CF7jH2Dc13GggkfmrnpWrfN050DHU+eO/XeLQsPW3ocf1kDcN4rqBf9dKpjXuWooUmsp0Uy+G12iVCfUa1ArkBlWadbfbxfb2Nra2tgAAs7Oz8Hg8SCaTWF9ftyK8iUSiTwByUwYCAdRqNVQqFYtr6f1V8AOHjL5EItHnRajXyXFTz0av0zFSAczv6eko8cUlRej91BPRpvPlxof0M1epuH9cWrpa9gqrUeHx/QHcRzahB6XjpF5Zr9cziFeTcPk+9L7ZB5cCr+Oq60cVpZJU9N9cE7xGPX+OG2OM9XodjUYD7Xbb6kb6fD5jtqZSKXS7XfPMtra2sLy8jMnJSQQCARSLRayurqJSqdwXC9Rn6pjretOKJ2wK0fKdXWREERBdU8ru/X4IwbAdtqHH9Q5ohMDUOmaZJT3CQi1DjUVo/IvWpSY6urAENyA3lUIdtOApwGhpr6+v49q1azh16pRVL/D7/SgUCrh69SrOnDkD4NDbWlpagsdzRF33eDxYWlrCzZs3LRGZZXeAI1o13ykYDGJqagoLCwsol8smfAkfau6YepIez9HR8BQQLpzHd6a3pgKLyp//5jhHIhEAMA+DNHSNG7oWuI6rGgO8Nwv+DopTESoE+o+VV+YnlT/jQmpsqCJUejdjR0rBpmeoRBldC2zshyo5VWbsA5+tMTiFTd1nkyiiTLx6vY6NjQ20Wi3z0ElnP3bsGHZ3d9FsNtFsNrG7u4tEIoF6vY58Po8TJ04gGo3i9u3buHPnjnmo3W7X8gpV+dCgUyVNb9BVdro+9Pw3rVbvGo2ux0UlOgjaHbajNhydh7xx06plq56CKxxVMCkhgYKLEAc3zqBAsOu9uBAjn6vU/N3dXTQaDTSbTSSTSWMNhkIhrK6uIhKJYHJyElNTU3Y/pbKXSiWsrq6iWq0aTEd4lMIAOEow1gRdCnO+o9YuJJSjFq0qDvUW+K40BOipqLfC8XQ9WypIzpML1+mccIyBI9iP17jKxY23PegP1wpP/3U9I/XQlD7Pd2s0Gmg0Gn1nXw36w98ovMh357sp/Kz3Um9fPVVNz1DUQOec997f30etVkOr1epTMJw3ogq1Wg31er3PoxwdHUUkEkG320WxWDTjRPeBIhj8v5tmoteponGVthpcWgDALbGlY6tw7VB5PbgNPa53QHOTSPnZIFhBISm15inAtXwNN50KFr2PkjHYVMhrTKLdPixuWq/XMTExgbGxMayvr2NqagpLS0vGmKOFzLgJFWSlUsG9e/cwPz+PiYkJ6ycFLS1xWq8AzJJmnIrjRCGj3gLjVipMOAaseKDvpALZjUEBRyQRhU85PuoBqmDVpp4R+6MesEJKD4IPNe7i9Xr7UgHceKcbw9R+7e3toVar2ThGo9E+xe7OO+n6rrDmtVqvT9ugWCDXGj9XI4X9VeHfaDRQrVbNU6KHHQgErK4jAKOxj42NYXd3F+1220qFNRoNbGxs2LrQmBr7pp4ua4W6a5995B5RI5D30PlxqfIaa9Y1p+tg2Aa3oUp/yBsFgLKxuNgVXlBPwOM5zMUhhKWCk8JJK0nwd2wq/NVq11iZKlNCPLdv38brr7+OSCSCD37wg4hEIhgfH8fk5CTW19fh8/kwMjKCUCiEeDx+n7dy8+ZNfOMb3zAhs7u7i729vT4FxqD//v4+pqamkMvlrLQRPQ5VQt1u1wSXxlM4poyDaLFZ4EgxUZiw3iIFEIUzFSOFoFrM6j2QRMK507idGw/ivFNZs3wTmwo4rfGo7+fzHZbUInxKSJb9VS9ClYnP5+vLp+NvOObu4ZFsCn/xWvdd3CLOGr+l4mWeHRmjnCumQRQKBaytrdn4r6yswOfzYX5+HseOHbPz3bxeL6amppBOp+204/n5eVQqFVy8eBGLi4vWb8YG6e1qDFYVmMKfamC4XjLHTPPYuI/1/Tkuute4l+nxD9vgNlRcD3kbBBEC/d6Oy0bi9wpXqAWsm0etukGkD+D+84EU7lKvjpZst9vF6Ogojh8/jp2dHYyPj2NhYQHNZtMqvmtZIwpZssWq1WqfsNA+KgQXCoWQTCZNQBMGda1hPouek5IRlN5NRaZejbIDdUzYLyYFa2yGglA9H7WoeT+NhVExEwJ1LfRQKGReKwW8KkYqKIXVdO4ogIEjRaIKTI0RzX9T5aOKzk0iHrRGdY2pQtc+cSzc73SthUIhRKNRhMNhbG9vWyJxt3tICiKpp9froVarYW9vD/l8Hslk0mJX8/PzSCQSKBaLWFxc7Ev81abzw3dQBEONDF37uiZ0nnkdDQs31qn35DzqWA7b4DZUXO+ANohVpkqKHpPGogjB6Qbg9RS2/J7KTYW+u0GBwRXANbbW7XZRLpftYMj5+XkUi0UkEgmsrKxga2sLkUgE09PTVjGCz4lEIvD5fH1JoW4cSZ9Hz48sMvVI2Cjw6SkpgUXjLW7pKPaLiouCWvPGOEa0jjWGph4GvTMqAjaN0fFZroBXyEi9HPXc+J0bO3OVDGNpnHtWHWE/3RjWg5iWyqZTBaVzqUaHGxPkWhvEnFNFQgOFxggRgWq1akYC+8/cLTJbe70eZmZmEAgEsLS0hBMnTmB8fBzdbhfLy8tYWVnpI5gozAscVW/XMdYYnc7LoO8UFdE9rKQLXq/Kmo3r0mWpDttRG8a4HvLGBaxxGLXqGLfiv6mAgKOcJG4u9UrICKTQVCGigkbhIldQsQ985sHBAQqFAr773e/i0UcfxcmTJ/H7v//7dtLxK6+8go985CN47rnncPfuXYMPaU03m03s7+/ja1/7GtrtNh555JE+L1BhHAqFdDptsS7S8ZW0QYiP51O5qQV8X1VYqiyV8dftdu1cK5cU4Hqog+pBknnHRq9OITR6UvS6VDlyLlR5aqCfRYpbrZYpFt5/Z2enL67Gd3e9PD6bc837M/eOSk09RfXo6UlqZQjCpDyGhOOrCljflb9hfKnT6dhJx6VSybzDZrMJv99vSe/VahXhcBhPP/00Dg4O8OqrryIWi+HZZ59FIBDAysoKvv3tb2Ntbe2Bioh9USiT7EzdW8oa5G+VgKHGkRqHrtHEMeLzOJ7qiQ3b/W3ocT3kTb0qQl8A+jaLK8xUwbjMMoV/FI5RC9310lShAf1le9Q7ocC7deuWBb+PHTuGu3fvIhqNotFooFgsIhgMIpPJYGxsDPF4vC8W1+12sbKygoWFhT7s3x0LChLgqFSSGzvS2n4A+iz3QV6sO258DqszKLyono47vjoPOp4K2+7v7xt9ngLLhX7dZ6oXRg+I8+fCc3yWzhub3leVL+9LCjoFK9+Tykire6iH4b6/fu9C2lRcg9IGOBbsy8HBAarVKgqFgilGrgfGtGq1Gmq1mhkyd+7cgdfrxenTpxEIBLC9vY179+5ha2urT0noWHB96Dpz94o2XQtsVLy6NnTMufZcz0vnbggR/rfb0ON6yJt6Q5pDxAKyGoxXK38Q1KPKKBAIWABdBQHpugoz0svQCg4aRFZIo9fr4a233kIoFMJjjz2GD33oQybsRkZG8Pbbb2N6ehrpdBrvfe97cfPmTSwvL5tH1Ol0sLa2hldffRXnzp3DzMwMgKOzjvSMrkajYQJwamrK8nsAmEDhMSoaj6AXoqWTGAhX5aLxGuBIKKnyVwHEf/P+/FxZZ7yGZ0gpFKXWuuZe8bnRaLQvaO/CwnrSsGuk8G89CVkJK0pECYfDpqg4HjyvinUjgSNIjQpOE5s1f4zvwc/5juy7QpTq7dOD2dzcxNraGkqlkq35RqOBZDKJ2dlZBAIBo7afPXsW3W4XjUYDP/ZjP4bJyUmUy2W8+eab+M53voN6vW5raBCpgntFY4Jc11wr3BsKg7oGjBoEamzyb0U/1PN3K4sM2+A2HJ2HvOmi5oIH7vcKlJGk2DqFkTKatLnewiBIUAWsWpLqKWg/yuUylpaWUCgUEIlEMDMzg16vh8nJSXS7XSsjND4+jqmpqb7SURSarHRQr9cBoO8UYr4XDwX0eA4Lqmaz2T52JL0GHQuOKQU3hY97nY63Gg8uG9AVeGotu8QQNSQUxtOYo3pLChFSqbPfLMfEOJrOEe+tcS1dE7pG3H4BRzFQGjbq3fJd/1skEIXE2PTfbgxP54VjF4vF4PV6sbW1hWq1amNAtimrsbAocTweRywWQ7lcxvHjxzE1NYVgMIiVlRXcvHkTxWLRnqsQrc6JOzY6ptpHNWp0zHmNem28rzZeq+QfPlu972Eb3IaK6x3QdNNQSdA7UqhFBZsKI92MCpEpjOPCRYQ2VHi7EKLGm3RzN5tNg/v29vaQyWRQq9WsjmCj0UCv10MikUA+nzeWYTQaRTQaRa93WET13r17KJfLJmSUYt3tdvsSqWOxGLLZrHkUwBEBgp6WphTwHmpta2KsNvd3nJNBRAO1uNXD0nnUf7uwkCo09k+Tn9VTokLT+eZv1ZtS4geVoSYRq9Klx8ZrVCm7zEvts76bC3/pWOl4qvLStdjtdu0kAADY2tpCvV7vU9i93uHBpVwrnU4HIyMj8Pl8WFpawrlz55BKpdDr9XDjxg2srKwYOqAkEVdxsc+cb/23euK6F3Rv8B04J7rGVBm5Bo7CpbrXh21wG0KF74Cm8QyFsFy4wo1zqSfR7R5Snt3KE4wBqWDmdXy2Wo2qJAlfarkeQkSFQgEejwfPPPMMRkZGsLm5Ca/Xi0wmg9u3bxspI5vN4ty5c1hZWUGv1zOacjweR6FQwMWLF7G7u2tem8JaFCrsx8TEBObm5rC5uWmVFdySRgpFsTEHjAKEwh1AX8CdAlXjMFQUfG/1fvm8QV4vhZ2WdlIFBOA+MgffV09fpvECHFUVoUfLo+r5Wyo/XRuszOIaL2zKxOQa5JEiOjZKZ9cYFhUEFSzXF9ck+0YoOBwOIx6PIxQKoVgsYmFhAYVCwfpAMhLP2drf30e5XMZTTz2FRx55BN/+9rcRCARw8uRJ1Ot1XLt2DS+//HIf1Me16u4h3StqfChETA9a4UC+A7/n+tJ1BMCKZKuXzrWgsTvXEBy2+9tQcT3kTYWdWvC6YVRQUKCRKPEgai+FjSYSAw8+I2mQ10dBChxZndonFXrZbBalUgkjIyPY2NhANpu10lCkxrO+nN/vRy6XQygUwsrKCjweD06cOAEAxqyjEOU7UklNTU3B4/GgXC6jVquZMHH7pqQWF3bV9/F6vX3eh44PhSCvZ0yHFr3OkwuZ6Tjy9y6cp2MK9NO01SPQe2gS7aDcKIVb2T8V0vo8hVNdqFlJLsBRTFHXiip39zOXhMD7xGIxUw6Li4tYW1vrg+yCwSCi0Sji8bgp3ng8jlwuB5/Ph0ajgccffxwejwebm5u4c+eOvTOZjy6V3/V0GP/i2GjMS+dW4UB3jl1YWK/hPXkPhUzdew2V1+A2VFwPedOYAv9P65fCmsJbrftB7CT1yCg8FQ5UgabMLhf2oZfg8fQH3d34V6PRgNfrRTKZxNTUFDY2Nqy8EBVSNBqFz+fD2NgY6vU69vf3EY1GrVTPlStX7CTliYkJK6bq8XjM++n1DhNP/X4/JicnkcvlUC6X8dprr5l3EIlETAlRIVBh0hugxwgc0Z05FgzokxygY6qwKr9TEgnjVyrkgaNyUyrMOC+8XgWX5rWpIcH55Bxp8nOtVjNDhpR3NX74HPUkVFGwvxqDYd6bknVUwdHzZK4YPXq3wDGVK6nyVMg7OzsoFAq4dOmS3ZOQqVL+Wdn92WefRTQaxY0bN3Dy5Ek8++yzWFlZwUsvvYTXXnvN5oxjq++v46sekM6vGiNUfqp8+F5aiFihaX6m46VGEfcOT31mrpxrzAzbURvGuB7yNijbXi0zVSyqOBSGUazdhcpUiKiXwPgIG4Wt+1z1YFwLnwohEAgglUrB7/djeXkZyWQSx48f7/NYcrkcEomEWbss2ru/v4+dnR1sbW2ZEuK4aHCdgo2KgFZ4NBrti/upd0IDQEkc6iVyfDS+w+fu7Oxgb2+vz0Ag3Kc5TSoctWIFx1LjSa5npAQL10vQ+JXLNOS86PO0pJHOH/9omSe3rJP7Z5DXz3vqeuQ8qhGg17NRyNMLZhK6wuD8Xkk0jUYDgUAAY2Nj2Nvbw8LCAk6cOIFYLIZSqYT19fU+xc01rt6lQuT8v0J5rqfs7gP1wtk/3t81JvWeCrW6xocaJsM2uA0V10PeFPJho7JRQcfN6eZ5uZtPN4QqM7UQ9Tp3A6nlPSim5kJT9JBSqRSSySTa7TY+9KEP4bHHHkM6nbZ3S6fTyGaziEajRnemxxYKhVCr1VAulwEcHQGhybccHzLOyFrMZrNm2bJmoTsWavmrQHMJBKoIKJB5H41LqPGgcBuVkJaH0iobrlGiRAoda44Bv+c9eQ/1HNxYikuyoWLg9zqeruLl9VwDOo40Atz1oeuEXocrqDXet7u7i1KphEqlYv3k9ZwjEjeCwSDGxsbg8/mwsrKC/f19jI6Owuv1olgsYnNz8z7viQqfCkbHh33S/6tn68ZGB0GMSuWnInZjYrpOVBHyexpPQ2/rwW0IFT7kjQLPVV7AESykUI6LrTPW5QpTXuMyxGglEtrR71SpET6jNU1lAfSfv3Tx4kUkk8m+2oXNZhOvvvoqVlZWEAwGra7ciRMnEA6H8d3vfhfVahUAMD4+jnw+j52dHbz66qs4duwYTp48iWg0aice84+OWa/XQzabRSwWg8fjQbFYtOtZHsqtREGiCT0mZZNx7BQOY/FbejMkQlChhsPhvntQEbCP6p2QVKGVM3R+9FoKxm63a0WI+T5kG/p8vj64Ur0MKimFTTmnerK1MhSVwMA+qcHANcjnA0eV/Gk46LtQsPPemUwGXq8Xr7/+Ou7du2ckjL29Pezs7BjRJJlM2tEt58+fx4ULF3D9+nUsLi5ibm4O6XQaOzs7eP3111EoFAzSJHzK/USoXY0UslaVZKKwoJJYuA94DauF6HzSQ9dqG7rvVIkBR3FDhSOHbXAbKq53SHODt7SSgX7LjxtGP3M9L7WaB1F52VTIKaTiWuEKUbowzPr6OtbW1uy4krt37+LVV181LL9cLqPdbuP06dNIJpPodDpYWlrC7u4ugMOSTtPT0wgEAlaHLpPJWGV7JWb0ej2LKVAZUdg1Go0+5aH9d2N/+l78noqLAndQSSeOAYUxlRsFtEu2ANDnvTAmpIpfK/hrGSiOdSQS6YtNAUe5WZoArHPPPlOIsx+uglVlpUqKsRqOgcZV1ZvQeJJCrny+Mjfj8TgajQYKhQIajUYfNOvxeBCLxTAyMmJ5fl6vFzMzM8Y+JdOw1+uhUqmgWCxaP/meVED8TCFPNQr4LlTSnE9eq3tSIU71NrWElhJDuE7omSmrU++rCnLY7m9DqPAhb7rRB0F+ushdq5yxC26mQfkiD4IRXS9N76Oem95Tf8fNuLm5iaWlJYTDYczNzSGZTGJzcxOZTAbnzp2D3+9HvV43IZlIJDA+Po5QKASfz4d4PI50Og2v12u5XRsbG2g2mwCOYl0Kc7pCJBqNIplMIhaLods9TIDe2dm5D4phn1VA7+7u2uf8LhQKmaIkrdodPx0rFz51x0gJE4QhSefX2A6VvdfrNa9OvSoKSioxVgchhOxa+A+Chdl3Clj3RGf93n1ffqaCl+9Ar4kCfG9vz+A+wsHb29u21gn7kqwzOjpq9x4ZGUEmk0Gn08HW1pYls/t8PmxubqJSqdgcDhpnHVdV4Ly/kmPc+BSbG7vS99braGCxcQyVfKPzMlRY/+029LjeAY2whlqL3AhUSPQ0KLwI4REWYyzF9S5oyQcCASuPRCGnsRiNhRD2IeTD+/Ne9NS63cNjJ15//XV86EMfwrFjx/Cud70LFy9exMWLF5FIJAxu3N3dRaFQgM/nw2OPPYZ8Po+7d+8imUzaicjtdhuXL1/Gzs4ONjc38aEPfcggHuDo4EgdI7/fj/n5eeRyOZRKJbz99tsGybHOnQoMvpPGlbTyPMeGMa4HwazAodCkUub92ehRUvGwaggJEloZg4Vkvd7DosfVahXtdtv6z7PECJnGYjFUKhU7/oPrR+eWgjsYDN4HkanCoaJxzypzPSv1Orle6JVR2aoBFQ6HcfbsWYyNjQEAfv/3fx9vv/022u22HWRZq9Xg8/kwOTmJcDiMnZ0dNBoNzM/P4/z582i1Wrhy5Qrm5ubwrne9C3Nzc1hfX8err77al7PG91TvUuN9Oq9KzCFEr/PJNcLfqAGoBpRbdYPvz3FRZEDREp2jYXtwGyquh7y5wXouapeRpJvU3Qj8N+EJ15LkxqT1qRCKsrDU6+CG1CrZfJbGBfx+P2q1Gm7evIlEIoFoNIrHH38cr7zyCtbW1uw3PJoCACYnJ43MQaXBceh0OigUCrhx4wYef/xxjI+PA4B5UJFIxPpDRiMp951OB6OjoxZ/2t/fN8tclS377sKjvC9jP67H5lrVvB+APoXO+XKtdD6TComGRjqdxsjICGq1Gra2tlCr1SxuxHqNVEQUihSejHupd6bHsHC+lMatXrs73+q1uB65wrYcK00V6PV6iEQiSCaTyGazOHPmDDqdDlZXV3Hnzh1UKhU7FJPrLpFI2ProdDqIRqPIZDJIJpPY2trCysoKnnrqKaRSKQSDQRQKBUtm5xhz3AdB4Vrvk5+5EKIqctcz4vioccL5UEiX3iuvoTLXtaIxN46vrqlhO2pDxfWQN6XnqqXHADitSYUeuIn8fn/fseO0Jl0FSO+KglqFNK1OJQioAHOFPT0j3osb76tf/Srq9TqefvppvOc970E2m8WXvvQlJBIJZLNZ1Go1AIcKlgpsYmLCAvRra2uo1WpIJBLweDy4c+cO/uN//I945plncPbsWaRSKVOiZJzxvXksfSAQwHPPPYdO5/D49m9/+9uo1+tWigpA39lZ/Kxer5vnk0wmAfRXf9B3VxKCCkPOD9DPFFWhRVgSODIapqamLHWgXC4jEAhYDT+fz2fCfmJiAuFwGEtLS2g0Gpao6xJwVFnSIw0EAqbgvF6v5byxEXbk7136PfuqeWpk/xEmi8VimJycxGOPPYZwOAyPx4Nr167hjTfesNME/H6/wbi9Xg8nTpxANBpFtVq1ONjp06ftpOPXXnsNiUQCc3NziMViaDQa+PM//3Pcu3fPFDUhSY6Dnhat61dTOVQx828XJtTvNZeRykm9WB1z7htNFHcVlqswh+3+NlRcD3mjBQscCTP+e5Dl62LmrpXvxrH0D++tXhYFtHpvruUJ9MdXlPDBQPX29jbu3LmDbDaLyclJzM3NYXp6GqVSCfV6Hfl8HrFYDPV6Hc1mE/F4HJlMxhTXvXv3UCqV+ry7xcVFJJNJJJNJ5PN5O++p0+mYd9Hr9UzJK/tSvQ4VPBwn9RzoLfFaFTLqtbJvWj9wkPdL4aXeCD1CZeJFIhGMjIxYvGdkZATj4+N98NTdu3cBAJlMBjs7Oyb4tSwWlRM/I9THNaCNHh8NnUGNxonmBRJuVo+P7+3z+ZDP53Hs2DFEIhE73uall17C7du3UalUzBPkXCWTSUSjUezs7PQpwrm5OfM+2+02crkc4vE42u026vW6HX0yiBnIvqsXpnPIMVXjT+dMkQp+x3mjcadrX/ugxo16UqrU+ByFGIdtcBsqroe8qaUOHFnvuuAVpuAfbiRCRvytG4DX37ibh0pHKdOqkB7UXwo2fR4Pmbx06RKefvppxONxnDlzxso8AUA8Hoff70e1WrXEUlLMNzc3sbu7awLY4/GgXq9jcXERiUQCFy5cgN/vN4XEChwUoGwarCdLjUe/U6hzzKlc9LRmZTJSgGlF+u8XpAf6E7ldq1oJAByLUChkntjU1BQmJyf7YnP0vlOpFNbW1vpyibgmeB+XYu0SLGioDCKTuDAi703FxTFSij3zrcLhMGZmZpBIJOwE4oWFBVy/ft0ShAlrejweZDIZTExMmBKOx+MGtTEmtrm5iUQigVwuZ8/W/C++H+dQjTL2nXNEOJpeEsdV9wTnTkkrLmzoMijd/aZevT5D4Wj10vnZsN3fhorrIW+6kGnVu7EtVSbcUMwvooBV6EetQ/WuXAXJz7QCgCotVZKEkPgs9R5IniiVSiiVShgbG8MzzzyDp59+GplMBnfv3sVbb72FfD6PU6dOYX9/H0tLS2i32zh27BgSiQSOHz+O69evw+v1WhFZAFbPzufz4ezZszh//jyAQ8+Ip/7SG6Cg8HoPi/1mMhns7+/jxo0bKBaLlvBMOImCizlFmqCsZZx4b5ag0sK2WtVeC+pq7JExKJ/vsDQV4UAaAIxxzczM2DMI7T722GNotVpmYDSbTSwvL9t8RSIRg04JCRPK5TsBR+d0eb1eSxrnWCmpgkKZJyLrOmWcKxqNIp1O49SpU0bAqdVquHXrFl555RUUCgVUq1Xs7OxYdY2dnR2Ew2G8613vQjKZxP7+PorFIi5cuICtrS2EQiGcPHkSnU4H3/nOd7CwsID3vOc9mJychNfrxZ07d/Ctb33LYGH2m0abrlNFBVz4m9eykDFZo4wpMsdO1zkVn5IvOLeq4DSOSLKIGgW6v4ce1/dvQ8X1kDduLhUgQH/JJeL17qJXq02DyBTAivMrlOHCHGyuRUi2mj6Pm1lzySjA+e87d+5gbGwMuVwOU1NTCIVCuHfvHorFIgKBACYnJxEKhbC2tgYAOHbsGE6fPo2DgwMsLS0Zk1Ct6WvXrqHdblsSKskrVGAUMGQocgxZVZ45ZTz2nu8I4D6BQ9KJKiWNWyk8xDkhfKbXKZwGHLH4CJt1u4d1AbPZLDKZDAD0Vezg+1ABJRIJxGIxYywylqRxHgpwwnvqeXAt8fecX4VSuU6UecexjUajCAQCmJ6eRiaTwcjIiAns1dVVLC8vo1Kp2LEkZLoyBpbL5ZDL5bCzs4NisWiVVlKpFHK5HGZnZ1EqlbCysoJEIoFMJoNwOIxSqYQ7d+5YbEv76cJ+6tW6yk3nXD1MfubuuUGGnhIudM+pcuQ9iYa4cCLXrjJeh62/DRXXQ95UoKjCIfSgyorClPCRa0kC/VAjN4huONcjUC9Br+G9gKOYmMImVFwqlPkOt2/fRqlUQiaTwalTpzA/P4+PfexjuHz5Mi5duoRKpWLssWKxiLt37+J973sf3vve96LVapmCIzsQABYWFrC8vIzNzU2cPn0aU1NTOHXqFEKhkJ1bxQRfKhG+2+joKPL5PPb393Hz5k2Uy2WDnAgVul5pKBQyxcHxZxULJQEwAVnhKno5e3t7fbR8ji+VRSKRwPT0NFKpVF+tPfaJeVEU1vl83ur3sbwVvSx6Ecpmo+JlzI9zHg6HrY9ka8bjcVtvmn4QDoeRSqWshBfn5eDgACsrK9je3kalUsHly5dRKpWMys94HN/x3LlzSKfTqNfrWF1dRaPRwPb2NhKJBD72sY9hdHQUvV4Pf/RHf4R8Po/HHnsM09PT8Hg8+MpXvoJXX30Vu7u7Nqc7Ozu25pXc5KIF7r+5F1iHUpmVAGwNq9HHz9Tg4PgQlnZjaMrk5ZpRpTj0uL5/Gyquh7y5MRPNRVEYRIUloUL1xnQD6ibSTaXKRpWPG/NQWMPdkKrM2Dc3EO7z+VCtVnH58mVjm2WzWRw7dgy1Wg0LCwuWa8Wk0+XlZYyPj+PkyZPY2dkxhp1u7r29PVy/fh31et1iICMjI4hEIgZjDco3YwuFQpiamkIqlTJIkp4d310JLhrjovegwpBNY2DqJbJMVDgcttwtzhGJGWQGcn7USHFz9wgn8rh61i9UT1ChSV1LjL94PB5T1BSg6i2qZzExMYF0Oo1cLofJyUmb93K5jO3tbayvr6PZbKJaraJSqaBer5si7PV6RqrJ5/NWhLnX6yEcDiOdTqNUKlm5sF6vh9XVVXi9XszOziKdTiMYDKLZbOLu3btoNptWdomogq6/QTFZrn1VGg9CGTRmqXProhq8l8bD1NBz8zFVaalHN4xxff82VFzvgMbFzRgSLTugv/QT0H9cCXCkQGitK/2W9+Z13HBAvyWoG1atz0GbjQqSz1JIkc/js2/dumV5OtPT08jlcpibmzPqea1WQz6fx+nTp3Ht2jWjfe/s7ODmzZvY3d01YUDlsb29DeDQmxgbG8Pk5CROnTrVJ/QZf9Mx4nul02nr0/b2Nur1uikBHQ/Gtwi7UbDrHKjlzXHg9VQQVMx65pfP50MikTBPi96hEm1IUiEE6/f7MTIyAr/fj1OnTmFxcRFbW1t9sRzNteK8u7URNV7KOdTcwEAggEQigUgkYqcMx2IxAIcwZrPZxPr6OhqNBur1Our1OiqVCmq1GprNphlSoVAIx44dw9TUlBVW5jodGRlBMBhEuVw26vva2hquXr2KiYkJjI2NWQ3KcrmMUqkEoJ8QM0j5uEaFrlfX+6Jx48LwGu/TPadxM+5Jdx/qdcDgvD/991BpPbh5eu/A0anVakilUv+7u/EX0hTSU+8HgMV6CCGy0O2gjauQoAav+Qz+zVNadVMNsgo1XqAbjpY6hR2Vrf6e9/T5fHZW10/91E8hlUqh1WphZWUFkUgEX//615FMJvHoo4+iUChgbW0N4XDYCuy+9dZbaDQaJrz1efQS4vE4nnzySeTzeWQyGczPz/cpWvUclWChlvrW1haazSa2t7ftTDFVAOqp8tkqAKPRqMWhCGOVy2VMT0/jkUcewdbWFu7evYu9vT1TnKR587iXUCjUd/oyE62bzWYfHNzr9VCv17G1tYWtrS1L8u71Ds/m0oof2neFqaiEvV6vjTf/ZDIZ5PN58+673S6azSYWFxdRr9dtbHZ2drC0tISNjQ3rC72sdDqN8fFxzM3NGemh1Wohm80iFAphaWkJly5dwvPPP48nnngCCwsLeOWVV+Dz+fDjP/7jSKVS8Pl8uHXrFr75zW/i0qVLNi7NZtPWOseba5mGhhoganAA6FNUWimG13JeByUj65gMgoUJCauS1rlz42F/WWJc29vblh/539uGHtdD3tQzUohBqbSqzPgdrXetWK73dHF1FXzctMCRx6bWuAaPXVaiCnwX8qAw5Kb0+XxoNptYWlrCzZs3ceLECSSTSYyMjNgzy+UyqtUqkskkut2uVQ6PRqOYn5/H8vIytra2zEtT5h/ht2vXrmFrawuTk5PI5/OWxExmoHpNfGeFxUZHR5HJZDA2Nga/349Go4Fms2keBuFEfWeOH8dFhVmj0TASiCpYCnWWbYpGo4jFYiYQ1fNyc6xcL3B8fNxid0wg3traQqvVMuWisRSFUpWJGI1GEYlEEI/HEQqFLNbV7XZNETYaDZRKJfOomFO1vr6Ora0tq+4RiUQwNTWFkZERm2OWtorH43YKwPr6OgBgfn4eXq8X6+vr2N/fx+nTpw1S7Ha7uHr1KhYWFgDgPgXsUv3Vw6SRoXR5zg/XrlbU4Lr1er1GxuH6VEWo3rgaP7yPe5Ck3kdjZlw36gkOW38bKq6HvKlHo5tIq1O48IiL07v0Wn43iAHHDa0JtirI+cxB/dSNx37w+kEBZ/arXq/j4sWL8Pl8OH/+PEZGRtBqtRCNRrG4uIirV6/iqaeeMrJGq9UCcHjkCRXV0tJSn0eo1vbGxoYdp3Ls2DHk83ljHmpsila6jisFSjAYRCQSAXAobGu1GhqNhsFgvd5R/UJNVFVoiONKiDCdTiMUChmjLhqNWmwyHo8jkUiYklU2KXBYzUM9PH7OMWXsLBKJGAyZSCSMtEG4lN4X+93pdBCLxUxxkX2odPn9/X00m01sbW1hb28PjUYDtVoNrVbL6jNWKhVTWgcHBwiHw8jlcpiZmUEkEkE0GjXCTLfbxejoKEZHR/Hd734X6+vrOH36tB0Quby8DL/fj3w+b/G3zc1N3Llzx6pquMpDjTwXLVAPi9dogrhbFUUT04H78/YYc+Q9+Hw3hgXcr2D13sr4BXCfcTJsR20IFT7kjYFzbgRabUA/Q0nhMcIR/Ldakvwd/1aPy2Vc6UZX5pQqIf6OlifrAzIO58a9BsUgPJ5Dmnkul8OTTz6JH/uxH0O320WxWMS9e/dw7do1+P1+PPLIIxgZGbHTbaPRKM6cOYNAIIDf/d3fRbFYNJIKrXIW8GU/RkZGMDY2htOnT+M973kPIpEIdnZ2jMgQi8UQi8WQSqVMuDcaDRtnKhcKcsJie3t7lsisljYZeRznaDRq8Sufz2fPZsyLYzk6Oop4PA4Aply0Gki5XEaz2UStVrPf8lBFNTDcuE+32zVvT5W2G3/Rs8lIWe92uwZzHhwcYHt7G61WC61WC9VqFc1mE/V6HcViEc1ms68vs7OzOHbsGCYnJ63/t27dQjQaxbFjx3DmzBmsrq7ixRdfxJNPPonHH38cBwcHuHr1Ku7du4ennnoKJ06cQCAQwPLyMl577TX88R//cV+fuV9c40kNMY4f/821TUq/FsdVCFhzsqhgVCmxWLEiH/oMl+Cj8KASrXR/DqqH+cPYhlDhD3HTmAlwxDADjqw1ZTLxGv29Kin1fmhBqpDjb/WZCsNokV9VpGrNctO7HprGCfS+pVIJV69eteK5o6OjVgXj29/+NtrtNj7wgQ8gHo9jamoKV65cwfj4OObn5zEzM2PxI429tNttUzLd7uExK4T3mISsx6gwx0i9Lx5GyHwopfiTSEFIj++lVGhS15msHA6HEQqF7DRlFYIUZLT6dWzV8KACWlxcRLfbtQob4XAYIyMjZuwwOVbhY0KoCh+7a4LQFvtIZddqtewMNSqrnZ0dbG9vmxfKivjBYBDxeBzRaBSTk5N9x9MUi0Ujj3S7h+W7Xn75ZTzzzDM4ceIEut0u7ty5g4WFBczOzmJ0dBSRSASlUgn37t3D7du3zUhSph7XMdMElBSkjFq+qyoTek4uKqAwuhIrXGiS4/gglIQHfOr3GlPk/bWfwza4DT2uh7xRiahHA/QrLtd7cZWSC5+o9Q30n91FwauWN+NHAEz4AjBmnltSSp9Fa1KPVwH6vTpWtuB3586dw2OPPYYPfvCDdozH4uIibt26hd3dXVy4cAETExPY29vDlStXsLGxgXg8joODAxOe9ILoRTEuQ4uaCjUWi+G5557D/Py8HZ/BdyPkSFIE4yM0EiiQ1BPid4lE4j4hqOOkxXypIHq9nnk6pPHTkq/X65aQHQqFcHBwgMXFRXzrW98yZUsCxbFjx6zcVSwWs5wzVYauV6Leta41jmGpVLIK/pubm2i326hUKgYFUhlyrpmIPDY2hpGREaRSKdTrdbz00kt9cCq9lVQqhfe///2Ynp62Cu+3bt1COBzGj/3Yj1my8Ve+8hV861vfMmjYFfa6J1Q58LNB0Lobh6VBRU8sHA7D6/Wi1WrZvnOTt934MxEK7hsqKO4h7ZMaDR6Px+499Lge3IYe1zugcWO5hAf3e+B+C50wB7+jVTmI1svvqcBI7HAtVzforZCU3offaTBaladCmQqdFItFXLt2DY8//rgV2yVU87WvfQ3Xrl2D1+vF448/jkgkgtdffx23bt0yCz8UCvUdNqmVzPlOLMi7t7eHixcvYmNjA6dPn8YjjzyCZDJpuVU82JFCiEQJzQNzFYE7L6qgeB2VjXrBjEspyYQkiEKhgMuXLxsTM5FIoFar2XvSM+BxLVTUFIThcBiJRMIShhm34vyyAgdZfiR0MG6nRIxarWYQKr/nuvL7/chkMohEIpicnEQymYTX68Xy8jLu3LnTBzsCMGLKM888g9nZWSwvL+PmzZvY3NyE3+83MkcsFkO73cadO3ewsbFhOXBaeUK9fUURaKS40LgacC56ofPqVshQUobuARp9blIx+0Ao2IX6dW+pofkO9Cn+wtpQcb0DmmsZKguJG831pvhvzeNSKEU3Bu/B++j99BpuWMIkqsRcSFGbChSNh6kXx0ofXu9h4u/6+jqWlpYwNzeHVCqFdDoNABgZGUG5XMabb76JM2fOYHR0FE888QRWV1dRq9UsYTWdTuPNN9+0WBsrZtDroKIAgEKhgFqthkqlgnA4jOnpaRw/fhyhUMgSaPnOu7u7VrBWhaFb5krjkfo3rXiWVeK9gsGgeYaqPBqNBtbW1rC8vIwrV67A7/cjnU5jdnbW+kxKfK/X64MradmTYJFKpSyxOR6PIx6PW4FaZQvW6/W+Ay0JS7KmIMeDSouHWFJBZrNZxONxO36lUqngypUrxgatVqu2HiYnJ3Hu3DkcO3YMHo8H9+7dw/LyMgDg5MmTVpzX7/djY2PDko0V4tPmGkvuvnGNPFViXOODPFJ3H6hHp0aZQr1U/txP+mySOdRLJLtVSR7DNrgNocJ3QCN8oZ6SVoCgItAjMVShUDBSCGkFdBdKBPpr87ERLiNh4UFQC//vemV85sHBQd+92NTqTCQS6HQ6yGazmJ6exunTp/HUU08hEAigVqthc3MTt27dQqvVwhNPPIHjx49je3sbb731Fi5duoRQKGTVFpLJJK5fv45Go2ExGr5bPB6Hz+czocyxSSaT+MQnPoETJ07YcfAAjOathAZVVITkNGFXiRL0LrW6Az1En8+HpaUlrK+vW74Ya/Ztbm6iXq9je3sboVAIIyMjePTRR7G7u4s33ngDwBGkq7EXnSOv12tMSjISw+EwZmdnjeXX6/UMGuS/Gduq1WqWPkCYi0nAvd5h2axUKmUFdoPBIL71rW+h1+shlUohHo9bPhwF+wc+8AGcPn0aoVDI6kn+3u/9HoLBIJ588knMz88b8/LOnTt48cUX8fLLL9vYa+kzF7bTNekSVHSN6mc0pJgLqMpRjUFd8zQQFBWh8gJgqRL8v8KIfJZ6xopeDPO4HtyGHtc7oClur1YdGxe3BpG54ZQmrRR3ZQO6OUju/bQf6sHxM1VwjIFpkVs39sV+KaVf42pUwMVi0az88fFxS8plMu5Xv/pVLCws2DEY58+fx61bt9DpHB4Umc1mja3IM5vW19etpiCJESrAWq0WarUavvnNb2JrawsXLlzAyZMnDVpLJBLodrtG46Yy5meu5+WOIceWdQYprLa3t3Hx4kXcvHkTlUoF1WrVaPeMG9Eab7Va2N7etir5NGxUcGtJKBooNPaYF8VnMG9MjRIyCqnQWWmf65CxKbZMJmNMSTJC2+025ufnEY1GcePGDRPYNCyoNA8ODlCpVOyd5ubmLPE6Go1ieXkZb7/9Nm7fvt1nYLG56ADfv9vt9uVduc2Fr9XwY1N2ps6fG19Two7Cf25MTedKSRn8jULEw/bgNvS4HvKmsIcKp0H5UboJXCUG9CsbLdir8SgKO2L1hLaUmKCwCZs+X/9P4UZKugqRQQm/LrOO/85ms8jn8/jxH/9xTE5OIhAI4A//8A9x48YNxONxfPKTn0QsFsPy8jKWl5dRKpVMKI+Pjxv8RliwWq1iY2MDnc7RicskM5DiHgwGkclkLPE1nU5jfn7eEmhdD5UeAP8ojAgclX5iLpfff3j2WLFYxMLCAr72ta9hc3PTFAcASwIm0UPjgZwbet0cd84v55LKaHR0FLu7uygUCjafrVbLmI98F43hKCTNdccztnK5nCn0bDaL/f19FAoFbG9v90HVvH8ul8MzzzyDWCxmhIf9/X2Uy2V861vfwv7+Pj784Q9jfHwc6XQayWQStVoNv/Zrv4YbN25ge3vbqk8cHBz01Vfk2Lj7hGPhek78TNe5/p/FhzWtg2vXrZCi9UA5B+7+UM+cz9B4mhtv9ng8pkh/2NvQ4/ohbmrp8W9XKak3xP+7kJFadxSQmnzpeki0rLmJXMXIz/SkZPaBgks9LQoHem96HX+nQoabnfXv7t27h0gkgvHxcRw/fhzNZhNra2tYXV3F9PQ08vm8xVpu3brVB9WQ2EAFwhJFpNzTOyHLsdPpoF6v48aNG4hGo4jH46hWqxgbG8PMzIzR2iORSB/LkPfh+NFIoMAiC7FWq+HmzZtYWlrC3bt3Ua1WEYlEEIvF+mKJWkqI80gvT5ODeXqwUqup3LrdLkqlks0F430UvBwT9pt/+F6EEP1+v1H/U6mUrZXl5eU+FmetVgNwVAuRR9NMTEwYFMk6kLdv30a328XJkyeRzWatYkij0cDt27exuLiIVqtlhpYLzRGGVq/INRzU03FZfGx8Fz6Diomfuwn/fP4gGFEVIRufTW/Q3dfst9aNfAf6FX8hbai43gGNwltLyWh8SD0o3RC6gZUIoUqOgkUtS1VswBGOT0HqBpoHxbQUHlEGlkKdSu134RgSNvgdSxZdvnwZ4XDYLPjTp09jd3cXt27dAnBYrDcajWJ8fByFQgGVSgXFYtFOFOahjIlEAqVSCR6PB4lEwhJqOQaxWMygJlLr6/U6dnd3sba2ZvdMJBIW02E8xi2yqt4xx3V7exurq6u4ePEi1tfXsbGxYXE3ElEojEmgqNfrNoZUrloFneMZjUYBwMgBnDNlkhKycwWyPpdKQQWxx+Oxslw0aDY2Nqxf4XDYIL/R0VFTdBcuXMD4+LhVy+h0OlhcXLTqF0888QRmZ2ctudvr9eLWrVt47bXXUK1WTfHs7Oz0KQQqAk2zcEsuuWtQYXQqaiUmKYxHb0r3m65X/Z1rTOpe0T1LCN3d46qk9D7Ddn8bQoXvgKZUccYJ1MLTDQfcz5biRlciBjeyBq81PqOekgayCbOwKRQD9JMser1enzeg1qabmOwGwyk4XA/T4/FgZmYGzz33HH7iJ34C+/v7VnGhXq/jAx/4AMbGxhAOh/H7v//7uHz5MsbHx61k04/8yI8gm83i4OAAX/7yl7G+vm5QKPvNGBk9GBa0JQGD70N6PMd2fHwciUQCyWQS2WzW4Lhe75DosLW1ZcSOzc1NFItFVKtVC8xnMhkT/ru7u1YjMBaL4eDgAMvLy30lqDj+hCjpXabTaRwcHFhyMA0F9bo5voQK+d6E4QAYeYSCP51OY3p62jxPllsaGRkxj5ieXCwWw+nTpw1apTdWLBZRKpWwtLSETqeDfD6P+fl5Oy05Eomg1Wrh5s2b+K3f+i1TikQG6D26SoIGmB7sSSON1z+Iqce1pzmLGn/lv5m3qHuPFfoVgVCYTyFcfqfemvaH70RmKNffD3sbQoU/pI2bSqGiQczBQZi6KgRazXooIZWIKiQlFShcx+erUlNYSeEl9suN9+hmdeMOLgSj96dA7Ha7KJfLuHPnjh33nsvlMD8/j5s3b+LevXvw+XwW1J+bm7O4SCAQwJ07d0zQ+P1+hMNhq6TR6RzV6eO4KMuu1+uZl6JGAUtCdTod8xiULQjACAh8Dmv70WuiR8j7sGIF353KlQK00WgAuP+sL9LrFf51x1a9P7fwK59Fr465WdlsFmNjY8hkMnaS8dTUlJVJajQaCIfD8Pl8RtSYmZlBOp1Gt9u16veFQgGlUgntdhvPPvssRkZGkEwmjZ7faDSwuLiI73znOygWi2ZMERrV2KwaUhpfVcWlMUFVdIQNVZnzt+7fihK4Bh/XqXpX7POg/ajP1/6odzgkZvy321BxvQOaCnYVMKo81Htxg9G6wXRzaV02tz2Itci+qKAA+pOjB8URFKrhO7F/FJa6iSnA1SOk4Gg2m7h37x7W1tZw7NgxxGIxHDt2DAcHB7hy5Qrq9boV0n3yySdx7949hMNhzM3NYWFhAVeuXDEvJ51O99G+W60W/H4/xsbGEI/H0Ww2UalU+o62YNyJSoLeZLfbtbp9pVLJhD6tcj5DYT0qUI1L8Tl7e3uWXKyQIwBTlurFcn6o9AbFOBk7Y21GNVqoqAg1+v1+JJNJI6kwKbtWq1mcq9FoYHV11ZKa/X4/Lly4YMVweV7Wd77zHUvkjsfjOHnyJKanpxEMBg367fV6uHz5Mt5++21cvnzZ4j3sp64tlzTBcR20HnVv6PrWNahGlUJ6LtrApsQMeq/8TbvdtmRjzclSo1P3gSqrQX0dtvvbECp8BzQudIWHVClw83DxayIjoSVNeOTvlLL7IIxdBR6ViMtw07gC70MhxiM0NLfJDUzz3ypkVaBQQNOSpffx2GOP4d3vfjeefPJJjI2NWbLuysoKbt++bcnCExMTuHDhAubn57G2tma5YJcvX8bOzo6x9kjE6PV6iEQiyGazSCaTdgzJ7u6uxcEYI6LiopdHwaXMTM4Dx4/jRg+K3o3OIb1E1txT74B/c1xJTmD8R+E0JYpQuarC4rU+n8/iazzckvNOaJIQab1eN8VKT3hmZgYTExMYHR2Fz+dDo9HAW2+9ZYc8siIJD4Hk0Sk0IO7evYubN2/iD/7gD6zWYSQSQa/XM0YqG+FZKi5VWly3Cv3qd9xPXFea96YsUXrWHB+Nh7HPnE9VWm5MjfCt7jPXE2ZTWB84Sgv5YW9DqPCHuKlQdwPKbhyIUJgLg2gcjPeigFSGHzenKi9XWfIebmxNmwoKXqOemsaA1Hp2vTBl6/G57XYbi4uLVnGCB0UGAgEkk0n0ej28+uqr2NnZwejoKGq1GorFIgAgHo8bHFgsFrG8vIyxsTHkcjk7yJLnbbVaLYOystks0un0fcfQU0gxxqOloQD0KW4lpGjOjyrpdruNZrPZ5y0w94xjyCNWWq2WFculV6ieLBWVEi74nV4TiUSQTCbNc+KaYN+Zt8ZUAQDIZrP2HsePHzflv7a2hkajYQSWqakpzM3NIRqNWm4dn727u4uNjQ28/PLLuHfvnhFQFDXQtcTxURKF7hE3XsvfDDLK3PWqRpq7x+ip8p4ugcP1bDkneg83B5L3GWQcDtv3b0OP6x3QlIVHgaOeCJWBC2dxQwHou57QleL/3DTqIVCocdNqOSIVJLqZB0EqXq+3L2iuVuugKtuDvC9Vfvp+Xu9hjtcnPvEJPPLIIzh79iwAoNls4s6dO9ja2sKlS5dQqVTQ6XSQSqUwOjqKiYkJ5HI5RCIRq8RRKBQwMzODg4MDvPLKK3bkCIUzy0H5/X4rNlur1RCJRNDpdIxoEYlEzBtTz5TeJ6+h90XPCzgitzDxl/leAMyj8nq9iEajdvaV0u05ZgpRanUGAHa99pW5aeFwGOvr633ePPtB0kCn00EkEsHs7Gyfp8hyTayg8b73va/v3DOyHBmju3z5MjY3N1EoFLC5udkHF3Nt9Xo9I8Ro0VkacFy/HCOWDlNYnWuH1+u86G91n7jw4YOUiRvnVWMMOCrwq3tM+8Y5V2WpBupfhvYX7nH9yq/8Cj73uc/hZ3/2Z/Grv/qrAA433N/7e38Pv/M7v4O9vT189KMfxRe/+EWMj4/b75aWlvDZz34Wf/Znf4Z4PI7PfOYz+MIXvtC3gIbt/ubGjYD7YTcKL0IduvncGJVafry/WrKq9HTTuTi8Ki/XW9P4Gr93++IqrQdBktzMGivweDyoVCp46aWXUKvVLLaVTCZx8uRJ5HI5+P1+lEolFAoFLC4uYnV1FdevX8fMzAzm5uZw/PhxxONx3LhxA7VaDcFgELOzs3bS8dbWlsVslpaWkEwm7b7qGdBbGER1JsxGD4bFZjnOVO4ce4V6NQ+JCoDXcg3oOFFRkFzCsXLnzOv1IpVK2ZhTCbGOokJc8XjcnjMxMYFIJIJMJmP9WVhYwObmpiVp83BMzhkZlKurq3aO2OLioh2vMkjQcz1qP1xSA9/FJVqop6OV2AftBX6nz3aPlXHJHPytQsIaL1YFyT8uiqDenBsXfgf6E3+h7X9YU7z++uv4jd/4DTz22GN9n//cz/0c/uiP/ghf+tKXkEql8DM/8zP45Cc/iZdeegnAoXXx8Y9/HPl8Hi+//DLW19fx6U9/GoFAAJ///Of/597mh7Sp5QgcQX4uVMfERdJ2NYmVAo0CVC1KJW6ox+Z6TtzYg2AchZ1UGamnpApPlZa+C79T4a2KkM/rdo9yjDqdDm7fvo1ms4n5+Xk7sJCJwXNzc+ZlJZNJO0eqWCyiUCgglUohmUxibm4Ot2/fxt7eniUWkzpPAobP58P29jZyuZzlejHZNpVKGemBCoNjoGSaQaxLCkG+Jz0dFcYcIyokV8gx9uYqOMahXMOHJyTv7u5abhVjOlSgkUjE1g0L9U5PT/cpUi1QTGMgFouh1+sZFPjd734XxWIRKysrfV4g55nQmholHC961rquqDCIAPAaXa96vc6FjoELT+uaViWn8+aiAq5B5/5WiSUKYQLo8xrddx9Chg9u/0NQYaPRwFNPPYUvfvGL+OVf/mU88cQT+NVf/VVsb29jbGwMv/3bv42f/MmfBABcv34d586dwyuvvILnnnsOf/zHf4y/+lf/KtbW1swL+1f/6l/hF3/xF7G5udlX/+xB7S8jVKhCX6eMioGbhN9zcyg8p2QK/Y6xC4UkNT6jz1d2ICEjCijF+HkfPVWWwoG/1f6z371ez35DYgKD79oP7SOFF6GvZDKJqakpvPDCC5idnTVB2263+xiA29vbKBQK+NrXvoZqtYpQKITHH38ciUTC8ri63S42Njawvb0Nr9eLtbU1iwuSiMB6ghyfTqdjx9pr4VsiChS4mjOlQpHvDBwWsuXnrB6hFjxhNCpwPblYGYoA7PeMM7Hq+s7ODhKJBMbGxgDA6iLyFON0Om3xLL4Dq5jU63X0ej088cQTiEajiEQiVr3kzTffxJUrV6z+osaD2Pdut2vjxPXnMiR1rXINM/lZPRwqDyVXuAYA1xkVjuYg6p6i8ce1qhCgGgu6/3QetH9qEPJ+CnV2u12LK3L96B75YW9/YVDhT//0T+PjH/84PvzhD+OXf/mX7fM33ngDBwcH+PCHP2yfnT17FrOzs6a4XnnlFTz66KN90OFHP/pRfPazn8WVK1fw5JNP3vc8Ztuz0cL9y9Jcy8617lRhKNymikh/q8pLN4ey0XhvhUHUOxhkcfI3avlScOj/FXZRqxTot5S1bA6FgFrHVMZUCuxHqVSyXKFjx47h2WefRTQaNQo7SzWx0sW73/1uLC4uYmlpCa+99hrGx8etACwPRaQnOzo6inq9brX9KFDp4RA+jEajCIfD6HQ6VnlD4TCXPEPhpQYC/63nXdGrUjhMDREdp0HwlXqzFOwej8diZp1Ox/p9cHBglUiYQ9doNFAul1Eul1Gv161OYT6f76uP2Gg0cOXKFSwsLKBarcLn81mOGz07nklGz8v1rqks1GtRZMCNfep+UO+V7+7+n1Asx0ShRO4lelr0Lt0Ug0GkI3fd63xwzbokKTfGNYQKv3/7gRXX7/zO7+DNN9/E66+/ft93hULBSt9oY/kdXqNKi9/zu0HtC1/4An7pl37pB+3qD03TRe0qBrUkXQye12mujm5sCkKFLlwFNyh2pbEwwh/aHwpEVSwUypq/pM/U39MSVa9MvRQ3/uZ6oPTYrly5gsXFRRQKBSSTSaNjp1IpjIyMIJfLIRgM4tSpU8hms8hms7hy5QpWVlZQqVSs6jxLF2lCrApWxn/K5fJ9wlCVh3oI7LvGN/iOrndARafXcl4J++r1rDofCASM5EFlxTwqXqNzydgW+8lKFp1Ox8pdVSoVbG5uotfrYXp6GplMxkpoURhvbGygUChgYWEBlUqlz9ugwtGUAXd98f+6rlTpKkXdjT1p6SdV6Op9KjzNfUPCis4N30c9ZVVuqjx5H86h6+WxD3wHZSi67699H7bB7QdSXMvLy/jZn/1ZvPjii2Zx/kW0z33uc/j5n/95+3+tVsPMzMxf2PP/dze1LF0WlQuXcPOol8R/K82ZliuZfUp+4AZXaIbPUAiSNGkXpmTSKK/XJEw3zuAKE/XIeE+toaiQp8KgFBKkkbMqxv7+Pl577TUbS7Lj/P7D03VPnjyJv/JX/gpyuRzGx8fx/PPPo9Vq4erVq1a1/fXXX0c6ncbY2BjOnTuHQCCAer2Oer2OarWKTqdjQtz1JtjXQCBgCcjsNxU5Yz7u+zGxWCtwcN45nwoLEmb3er1Wfb1er5vhkM/nraIFx2t3dxf1eh2pVAq5XA6hUMhgUY/Hg7feesuONOEpyk8++SSi0SjGxsbsmeVyGZubm7h3754lgbdaLfModnd3+wS3euu6vvj+7oGYrveiho0aRJq/xb913bleLvtBT9b1UBkf3N3d7Vv7SphxY8NKLNJ30nXqeoCaDqLGxLANbj+Q4nrjjTdQLBbx1FNP2WedTgff/OY38S//5b/En/zJn9g5P+p1bWxsIJ/PAwDy+XyfIOH3/G5Q4/lLf1mbbnJd2MCRl6WbkrEONhWI/FstVfWGVFgoNEdBoZYhlaL+W4WR4vXK7FIKPID7rG5eR+Hs8/ks1uGyKPU3Gkfj8zV/igIFOBTYN2/eNHx9fHwcmUwG4+PjiEajmJ+fRzabxejoKN5++21Uq1Ura5RKpRCLxYxaz/OtWJXe6/Ua2aHb7dpZYLVaDTs7O0ZM6PV6ViYJ6BdeGu/g+Gt8kb8LBAJWKYPjr4oQgDEAp6enLf+LlTWYe3b27FkEAgE78XlnZ8e8tWQyiXw+b1XbR0dHje7Psbx+/ToWFhawtraGra2tPmOGczmIqcq1QQXsevaqYHQ96331/3qN/h/oP4fO/VzvodCzq0wGweTqcSmMqOve7btC44O8P7fvw9bffiByRr1ex+LiYt9nf/tv/22cPXsWv/iLv4iZmRmMjY3h3//7f49PfepTAIAbN27g7Nmz95Ez1tfXkcvlAAD/+l//a/zCL/wCisXif5eC+stGzhgEjelC5//dk2AVnlArUTcuhTxwBEu5NHTd8G4sSqEwKhr14BQ6ZFIu45VqfarS5H34Duo1qvCgwiUMx8br+W+NHbm1/AiXMnF5fn4es7OzeOz/1965xthVXXd8zfXMnYftmbE9tsem2CEhgRACbUljJlVUqVhQivpI+YAi1KI2akViqqRBUZO+oK1UolZq1VYVX9rCpxYlVUmrPBAEghsIj0AxmEccTElsAoONH+MZ2/PAs/vB+p/7O//Zd4wJsbl4L2k0M/ees8/ea++9/mv999r7XHRRZeSPHTt+duDhw4er7LhDhw5VUcfIyEgsW7Ysjhw5UiUrdHW1EgsUldAL16nzBw4cqA7D5aI893Mxg07A57QxvX+9cVjnOA4ODlYn4Ov+pUuXxvDwcKxcuTKWLFkSk5OT8cILL8T+/furLQXLly+PpUuXVmt2GgNzc3MxPT0dL730UuzZsyd+9KMfxfe///0afcpjmhjBcO2HY4fRitqu+/zNwB79i/YWA6CxLp1zjdTpQEZtjMqkSya5uPNIZ0L19nlJ1oJUIhOOPLNQzynJGe3lpCKu5cuXx4UXXlj7bOnSpbFq1arq80984hPx2c9+NlauXBmDg4Px+7//+zE2NhaXXnppRERcfvnlccEFF8Rv/uZvxl//9V/H+Ph4/Mmf/Els2bLljI6qFhN6q5ooNAb6nydoy/BzTcgXkvU9EyX0vIj6eYKkayKiZhgIjO4BM6vQy3Rw1bMFRJ5pp+fxOhoRfU6aTYaWzxaVKkBJKVVvWp6cnIzx8fEYGBiIlStXxvDwcAwNDVWbdPv7++PAgQPxzDPPxGuvvVa9uHL16tWxatWqSverVq2q6nPkyJEqQUOGVGtMg4ODVQq96nXs2PFDeJVWr8iqr68vpqam4tChQzExMVEZP531p9T1FStWVMCjdbDDhw9Xejj77LNj6dKlsXTp0mg0GjE1NRXbtm2LY8eOb9C+8MILq3eCKZJTP87MzMQPf/jD2Lt3b+zcubOiTOUE9Pb21oCV/ce+p/OQo8foYDGC0XccL7yWzIA7ZQT5dnvtJGIFCECM6HPzhHPNI046YYwV9FytezGyK9Je3vIdv3/3d38XjUYjrr766toGZMmSJUviq1/9anzyk5+MsbGxWLp0aVx33XXxF3/xF291Vd5RQgpiyZLj7yWiB086jB4gJ7lP/ojWBKUQEHQtDQ8npH6TuqMRyUVV3iY+V587fcK1kYjW2pnoNRdfI1Cb5EEreaHROH6iupIqDh06FDMzM/Hoo4/GihUrYnR0NN7znvdUm5rXrVsXK1asiGXLllVrXEoA2bdvX3R3d1fRTH9/fzQajVi5cmWVjac6aQ1MWY56q7B0rZc0qu3d3d0xNDQUx44diyNHjsT4+Hi1BUFRpNZhdBagEkoOHz4c3d3dMTo6GiMjI7F8+fJqrOzfvz/+7//+L44cORIbN26MjRs3xvr166voRad1TE1NxYEDB+LgwYPx7LPPxmuvvRZ79+6t+pbrqoxi1De+pslEGxp5OjFyxNifvF//K2rmMUs5sFPkpfHjzAQpayYGqS2+BqbrGLn5nKMuVB6ZBdWFDAXnU5G8lCOfOkBksJkFKBBQxOPZdjJM2itD+sW7nB4wqRSuMeg6Uia8xrPG2vH/pFa4JsAkEAKmvzadhpzgLD2pbNaLhkhgwMQGRm26j9l4irxGRkaqfV4jIyMV2PT398fU1FRs3749XnvttZicnKyOMOru7o6LL744BgcHqyinu7u7SlyQAZuZmaky8FJKsWfPnuqU8YioTpfX2pTWuHR6fKPRiMHBwSoRJOK44b/gggti+fLlkVKKiYmJ6Ovrq96ltW/fvti5c2esXr06PvKRj1TJFhMTE7Fnz554+eWXY8eOHTE9PR3j4+MxOTlZJU4owlIErAhQQCpHgK8h4djg2hEBTOJrfHRk6Fj5Oq0iVN9yQOH6GSlnrVNGRO1wXFKTTHhi9iujOyV66HPR5AJNT8xgok5EVFsPPCp8p0o5ZPcdKjTsES2v1BMUSEXkPN12PkqOdozInz2oie68Pg0S/9YkZMTGenH9jMDIevn1WjPzOuWoJY8W3dOWblWeMvj4/rMDBw7EgQMH4uWXX44DBw7E0NBQ9YLE4eHheM973hPLli2Lc845J1avXh1HjhyJ3bt3x969e2P//v3x5JNPxvLly2Pt2rUxNDRUUZTNZjOGhoYqKk4RFw2X9pNFRLVZeHJyMpYvXx59fX0xPj4ec3Nz0dfXF4ODg1XbtHl6+fLlERHVgcGTk5Oxe/fu2LdvX+zfvz/OPvvsOPfcc2PdunWVMX7yySerRAuBqUBLToP0pn4htUbK2Pvdxek2X1PVdz4eeb3TdHyWxovTdBw/ZB0IUoyoIurRoMrmfT6OmeChDdZ0rJwuZVs7MJ44pVIirg4Q31XPiKMdHy5w4UnxnByamLl9QJ4NRg5eE1IgwBMPNCkJbLqP9KFO2+BaiDxdpuvTu202m5U3zbpxPYNt0NqPohmtLckYeYTp9JLAS9cp2UBtj4gqaeG8886Ls846KzZs2BDLli2LFStWxMDAQBw+fLii2CYmJuK5556Lqampag1OmYeMlFUP7rvSazxWrVpVGcGRkZEYGBio3su1ZMmS2L9/fy25RuVOTU3F0aNHq1eyrFmzpjoNQ9GgMgMfe+yx2Lp1a1UPHcLLY6ykE0VfSrhhsgT7L6XWW33Vd6TuSMtx/JEGZgZiO4pZ45zrZiqHz+a9mkt8nkf06g8meCjq9DnGaJ/MARNbqCeKg24HmuY3JSXieodKzmN0qs2jI19nkPHg/hMZ+Byvrv81AbmplpPLPU4ZZXmSXFNQeR7xEIDopUe0jBGNoerG6E2GSoab+mEkyXUY3i8h3egg7pmUeqvx008/Hbt27YqXXnop1qxZExs3boz3v//91ckbOox27dq1MTU1VemEhl0OgTIYdRLH7t27qyOlXn755Upnzz//fERE9eJL0Z4RUb1fTNSZPl+3bl2sWrUqzjvvvOjv76+yIlNK8dRTT8V3vvOdeO6552pGmSfJS+/SnT7P9RvpP9FguaiCbadjQb04fe3rrKSeGWFR/NmcW7zGozp3bHS9klZYppwstZfrcxy7AkrqirrwuVhkoRTg6gDRYG5HW9Cb1P/+49SNU2++JuQGnMaFXq97uPqf62pOqeT2g3HScpJH1Peq0agxw9DbJQ+ZXix1oOhJn0tYFs9DVFsFzPK0I46f2zc1NRUTExMxPDwcr776avT09MTKlSujv78/hoeHo9lsxuDgYC3KouGXKMlAddq4cWPs27evitz0/L1798b09HQMDQ3FzMxMzM7OxsDAQHV2ofpKSSXao7Z06dLqbcY6hHjPnj3xwAMPxPbt26vT8fmqFYEoIxvvS0bU7iTQ2SI48Ugn9jOjLIK7nAeOJa6tsn5OG7cbU4uBajuKUn97khJZBo07bi1hPRwwdT9BuoBXeylUYQeIzpGjMaWhoNAoyNBH1PepKOmBHDwnPukrJi8QXGR4tZnWF8K50dfrqMlNus4pIK3ziIZhIoXaoXp5hploLBqIdsbRaSXp0KM+6cNTnru6Wut4pMt09NmKFSvi4osvruhDUX/Dw8MV9asNxI1GozpTUfQoT07XwbFzc3PVeZ2KoknZqr5qU7PZrBJJ9LyZmZmYmpqKu+++O5577rn43ve+Vz1T/ULHR+OCfcuEGhpd9ZMiN2cHPCFDz1LZ6jdGbOoL7tcjnSuw133uNHEusH89quIY8LnhkScBmkCnqF86cseSwEydao6fKfu3JIUqfIcK92ZF1LOiPKEiImpUXcTC0wAkPM2C3rF7iBIaewcyFwKrAyNfV6Ifes7825/D+pE2IjBRnHJUuYzYnKah16wyGDWwjUqmUB3UHu3b0gbjZcuWVXujmJShzbw6uV2bmXkQsE5d5wG1AjUleniErLrrGl0/NzcXL7zwQoyPj8fLL78c3/72t2NiYqLaHqC9W274SZ3SYEsIXNQj9coIm2OJ0Zn07e0g0Hg9/GR+AqhH4iyLfe9RjztTPq54fJozIvrb5w7nExOCHNAKVXhiKcDVAaIBTspLXr5TggQBRigR9Te9ygiqDE1AHr1Dg8PJToqN4KMfPz/R6ReCTI5WIuXCpBD3fiUOuHwWjZKiI0ZkEbEgS9LrrTa5AeTfBG8uvs/MzMTu3btrqeNa3JfouojjG/q1OVn0og4FXrduXXW9Nh0PDQ1VoEYgUR/ouKm5ubnYu3dv7Nu3L+6///7qIOF9+/ZFV1dXtedMBpUGnDpnEg6fJ30Q9Bm1karTb2bUuZHXc9TeXBINozmP6hll0XnRb9ZpMSeNfe0RF0FIY5iRoUdOnsDBscssxxydWKQuBbg6QHiMDr1GGYqIetqvqCXRLsyuiqjvC+MZgDKWuf1cLIfp+HqGGyLdx8lLTzmi/etaPMtM15P+cu9UEYeAl164r1vxJAgCjp4vmpXRAevtFNf09HTtpHXRuXyHk3Ss33oHlfpJ92qTMiMNAbiclUbj+J4tnfQ+ODgY/f39sXTp0ujr64u5ublqXUz6PHLkSLz00kuVbrSPTSn4otu4ruf7q+gMcL2R9LMcA1J21AH7ystn33NcKBLkGNHzmSGqzxnJiGWg7unc6RqOa4GZr0H6HkQCi0d+Gtt0MNmXjAQ513zuFclLAa4OEKcC3Wg7gLm3q4nD90rRe1ZZ9Py5DsF60KhG1LMFGTmpPqQF9TknrwwljaFTjx7pyEARkJw21DoP05hVPxkzpzFZR/f2GVHK6NJQMrIgfSS9SRe+PsZNqQT85cuXR6PRiMOHD1f1JmhrnUp7s0QjL1ly/FSVgwcP1t5hJyMvsNKzeKq66s/EFgIM+5VrRyqf+tG4cAqXToDTrozSeQ2jIpXh1CPHicqTzkj5+VhjHXMvnWTZHkE6C8BnMLJkJqvf43vi1Bcl4lpcCnB1gLRb4KUh4wRmVpOnJOt7GgYaIU00RiNMMZfnL+NJeo1gxYiEk1rtkUEhmLJ9NDgSleMUFakVHVHEiIBAs2TJksqgU6cEBrVZdXbw8gN9mT4uvZNuk/50AK+iMRpArSupP2ZnZ6tNyb61gIfOvv766zE7OxsptfbFUZcC797e3tq7qrgnSWXz2WqvIlQCvx9YyyhIDpKcI/W3og/Rluo3jgsacKeNOW652VnRs/qC9C/Hu8aA9vbxHWd8N5hT0Iz6PXLj2CYAzc7OVk4KGQc6lSyf9dH/RRaXAlwdIIpaCDSc3BJNREYOuTWKiNZmS6ZlC4SYCs01o4g6Rcm/aYBy6xmajKSQnIpReaLO3GvXvbpW4gZFz6fnyugnF2XR+Ea0KKRGo1GdQqG+IAXGCMo9an1P6lORj+rS29tbo6pUF4ER96SRRpMB5zqP02C6VmUzuqXOKdIx+yVH53Js5TIt2Rfez+pbXUPnyakzjln1K/XvtB77wMcW+5dOA4GQOmBfkp2gXhnZ6Rl8LQnr5npmfT0ZqMjiUoCrg8SpJxoyTTDPFOSZbQQG0RduePkcGksaJCY2kEpxcODnuaQHlkUqigaEtBHLJKXjkaN+fF3D60EjxjowWUNGlk6CnsstA+wTGUgHcJalz+np60fgxnaofqqvXnfi/STDyfoQLN1I640M/JzZliqf9eXapUdbns1KoNM9NNISRkqsH8vmGPU9Zl6mj2WyBw4aDsjsbwIrM3t97qkNTqG6MyidEhQ1HimFJlxcyj6uDhBSMIxwIhYeGxPRmkyiS3iNU42MxtxzlRH0LEMfMjnQ4oTkehQBg1EbozBmpcmQ6hqdWECwkR4IDAQEBzbdL0pMdfBzFfVcGjDvEwmzNAlU7hToXoIWwZR1iahTlh45SofenwQYZoDqM0aubB8NP42x/vdraMw1TnSkkdoicBCdR2Dnyy/1HOogF13zyC2PuiPqtKDqwTVdB2Y6ST43SPfS8Wind0aB7HtnSlwI/qpvB5rlNy1lH9c7VBQ5OS1Cobce0VrH4ATjtaRAVC4jMEYvXKwnUDiVoueSqqGRcZrT6Rte73VmdOHlqw66l9lqfko4wcUBtp1x8QN9VWe2gaeJy5jTmLIcj3RzFJHaQ8eC7SWV5XpjX7A8luHUqp7PSERlsU+9fipDxjYH1KyfZwcSXARWuTqpXhwH7Af/O5eBqnpzjrCduo7Omp7N751eVT951Mx6uqNIRsTZA31epL0U4OoAoafMxducB67JygQLn4CkSHgvvVmVOzs7W5v4fFWFR3sENtVbz6GXy3RxRg7tjDhpLn3nQENDzldpUF8EFtI2jHyY3s83NasdnhItcaCRl69yGWmwTx10fL2LuiZYaizIyNLL95PaZUw5HlgGHQ9+zjHmaz6k3jz6UH/xZBZ9zzMv9b+vgSnadNpYbSV9zGxD/a1+Uhu45kSgd5BU25mcwoQQByzd5wdZ00ngPFN56luyGipPfU7nochCKcDVAUIDownHSInSzuPlZBWFSMNPY0UDSWqE1KGfOiEDqfsJiizbk0xIM9IT9qjBQVf3ELjm5+drYCUjQYPLslkuvXN67jTaXHdyvfI6ro/kaDgaNbbLoyFGtzmqilG12kAAcFDUfe5csC3+4xQe/2ZUwHUhjik9U2BEnRLoGZEQlCQpLaTK3ZFjZMQxoudEtNbQNGa6ulr7I5kZqDaxLYwyOR/pDOQcSbVF1zilyPrx2iLtpex06xBxz80/0/+ctPQoSVfRi3XD4UBCg8+Iil4zIxcaEZapw2OZks2JTFClIdD9jCRz4MHvVb7u5cI4dcF20VtWeTnalMbLjQxBkN56O50qEvM6ULc0amofgSe3zsNr+WxFaPyczgZ/fHx4uxUZsCyCM3Ur3egelkUK2ek9GX2vpwuf32g0ahGbfrP/fB6R3nMg9/U2b5eDjtP5DuBsK8cPy82tWxepS4m4OkB0GkFusjCBIDcpc7SDIqb+/v7a5lydLH748OGIqBsJgeDRo0cXrCvIWGiy67BZ3aP6yBAxC0/f5Yyj02q8R/pYbJKL5hQVKF1wPxSjFtWX0Wmj0Yjp6emqPXz1CKlAtUt119l/Kl96F+3EaEFl+162+fn56mBd1Vu60vutSJsxyiOA6nnNZrN6yy+jT757io4Cjbn6VPepzlwz5JoN+9XHqB+k6xE31wA19vQ9nQ+NAWZqpnT8HXOM2Lg+lXMc1GccdzlK2ClH1aevry96enriyJEjtfGjccf5o/p4lKzxQfAv0l4KcHWIcKJwUsu4iI7hpOQkYzSm+/i5DJyMsyaezsDjplNFUDz7kCDnlJYnDnDxmaBF4IpoAQuBiy/i44sGZeyYqRaxcB2wHQVDQy3DLX14cgV15kDL9RLWL/esRqOeQcbnSzd6pqefExxotLl2p89lJAlMDhYqS/dxrOSiTt7jfS+DzbZrbPqrYljPiHryhsrT/6RqeY0cFNaR448ZhlxvzIGugJzfMfIjWFPf7hx6lCbgYuTviULunBVpLwW4OkA4aWTcaTjp5bnxoZHgNbnEDe34j8gfCKoJSNDjWpKEa280RDTKjNr0v55Bw6v/ZcCd9iQA0COmsSaFqWew/Nyz9T+9ZhredtSi7vOkAwJaRCsBgeuJ7GudxqHooatr4f4sAhDX+HSgL9f89GzpyCMHUpP6zCNd6scBj+NIYJ+7j/rX376m55SjOwik1Ri56HtGoYwevRz1P8+K1PMJJtQ1+4vREvuJbSD4s1/Imvi6WQGvE0vZx9UBIrqIEy+inolHb46ThRPbX6MQUT8eSqLJnyubtIauVRmkcvQcTyZgmV4Pesdsm55D480Iktfq8FwaF97vIKsyI6KWki0P3Kku3cPINiK/9kJqVP/7vR4N09gqrT6ifgCs6qD60JtXlOhls050XByA2VdMTqBx9XU9/abhVV21Dia61WlNAot05RGyjqtiexuN1j4w9gGdGtZFoig+dxq7jqoisM/Pz0dfX1+kdJyCpCPiuuTY5xiTs8A2MPOV40O6PJPWuco+rneoaJLn0oQjWoZUFAfPl+P3EhojUmM5T1cTyLPeeL1TNxJfiHbqidEMn0kgci9WRsaNkkcRue9oXJkmrnoQrBgt+LXUoQw811u4nsF6ukHUM5h44JEygVmGkcBPI8oUfDoYDhaMmqUf9gN1zbqzj9RuH4/Uh57PNhKwc2tz7C/PMmXkzHY4iFLv7pi5g0AHILd9Q2OCWybY/5yHKkPPoXPmkTHnCuuRc4CKLJQCXB0guclCz470ia9P8B5PWRbQ0WDKG+WiPSM3TsCIWGA0aITlZaqejP74XKd3dD+9bxpORma6XkcXMWpiUgvXkgjyfBaNsq/BcS1kfn6+Ss6QntolJijq4GfUv4O5zihU2+mt836Wo3U/RZtc8/HoVWWpn2SMcynYpKQdLP1Uc75Ch5GvEllIUbJOpDgZ/RLAOQ6obx57JYeBY5lApnpzbx71o/6nPujQ6fPu7u4qMiPVmHO6eJ87YhqTPOLKD5wu0l4KvHeAaALqNPYcBRQRtT099N48moqoe6TMluP9moSaVHqLbkRrHYsL1SpXv+kd0/ixTRJ+LkNCelL1JTi4B677F4vWfD0r54nTgMu4kYaKaFE9dBJULp2JXFTCe1jPduDBdbHe3t62KejUKx0cj4gJIh7tOBXNtrRbm9EzuVnay2XkynHg5anvPS2dzhd15ZHT3NxcBUIco4xWNd45FiJazpg+J53HZ6kc/VYGKcHQ663xyjnGNvMaHwNFFkqJuDpA+CJJ0kKctFxcdqpLQi9dk4UbQxmFREStPE40p8y4/qHfpHk4USMWpv3qb0/eaCc50PMjevQcX+diyrWDmEeepPVydSDF1E7HMmIsT9d41BmR395AnZBS4v25rEMaWpbDLRI8cigX3ebKk04YDfJsRUWkfDbHHMeVruFY4WfUL8eg2kEdM3JzdoIOhNpIAKSO9IJV3cuoiGPN+4eivuLZje7k6Pkcc+3KK1KXAlwdIL73JKJ+OoUmBicUDRvpFJUnukX7c5wK0vU0iMqcorEgaDLNmF4rqT1GXoyMNLGZwcUEENIxnNxMXmBbWQ6NjtNVES1jxrUhritJv6qL1hFVD+4jUjnSEQGKumcEySiEtBKNa0TU3lbNtTT37DU+urq6akd2qV/5gkley9NQuKakcpvNZvW5DtQl7cV+9B+BhxIcSLepDp5U4utuuehNThyjSIIeAVP/9/T0LNCLJxGpr/QZQVOJJvp+enp6wbzgu8A01wRiqs+xY8dqyURMTCqyuBTg6gDh+W4CLBoNGsyIWDBR9RmNLCkUTUx50Yw89Dv38kCnigiATlHp8xwAcaJ7mz3qYXlco3Mqi99Tf6yv9OMgKsMlw+jtUT1Ypt/DpATqTUIqyakhXcu+5fP9md73/lzVVaff+725yMwjYtZX7XaQ1f0qW6DL1+hw/HCNiQ4MMwOpEx9PjGbZDo9YCOwECKcjea3a49Gnr8VSL9Qro0KCKXXMZCCvY5HFpQBXBwiNYkQ9Aouon0+oicQDSWWY+VZalefRkrxCvkqEBtCjFiZDsA5K5VYdent7Y2ZmZoFn7uWqPRGtU7ppWLiGoAQJ3wytujFi4j05oGgHep6e7/c5vUjPO6LlwXu2GTdXq229vb1VX+SoOYIRkyIYFVNHBAqODUVubuQ9CiQQqF56di5bz7dDqA8VreciCkY3pJ0JHIw8ucaac9D0ehlShryG39Mh4ZpqO3qU9WGZHAOaO4ro1D+KNAVUpPo9+i/AdWIpwNUBoskRUX+pH70/GgDfiEtjx8mcS0fns3Q/y2HChBsgp4fo3bthonF3715GhKJo0zO0fL2EBprRmDK1GHFSdx6FudGmJ06HgfSkPnPDxz7U8wgeHkV7UgrrRkeCyQ6kgz1phVQk+8yjCa490vDLAPNeN665McloQtczo1HPzhnqnN58TGmMkIngGFHdtZmbY4d7tlT33t7e6kxNghQdPjoozGLkc93RazTq70WjztlW9kmRxaUAVwcIqQb/nIaKk8uPEsrRVRF1A0SwYASiMvXbKS56pDTOTCmnMdC1jLL0P42BA4J7/jR6pGIcQB1UZXRUHo2KyhF4OgCxP3L0JA247iFVSaPK6JUG0mk89Q110mw2ayDqwv4WVaeEA7aDfch1T5ZDZ8ePveLfHKeuL0ZSBEkCtdqpMuRsOGhI3zzkV8/kJl/2PftL93I+kH5VfTWWVCce4ZWjDDluOTY4/3yOutPm/VIkL+XkjA4RThQHKX1Pw84JTXDziIaGmntvfJGZk4rGOaK+KdWjIR7oSqOp+uYoM5UhClBGg0BC0OPfbuhpOGQgPWokkLBNOcOjtvC9WYwcZbR02gnL0HFMHv2w7kxmIW1Jj546pHFXuVo7Yb3d2SCFyPs9ciW4el3dcVFfEIh4r8oiZcjyCAT+3J6enqpcOWV6FvWia7hZnyCpa0kLqp7tnk9gZj/L6ZG+dZ+/186jRNUvF3lrnJxJdOGbOTmj7OPqAKFRogcZUfd2SVNEtOg9N5JaA3GPUX/z1RM5cOKakYQG2iet6kWjyTUKXU+wpEfPeigTjQbB68j/CdAydNpEynvp+dNoyDCxL1SWR0a8j56/R7q+D4trUkxPZ7mqO/vJ0/CpJ+lNRpaJDuwT3SvnQYDFyIdA5GNJ9ZFeCO76350ap4g9YsuBSW4cufg8cNbAxUFd/cBxzXHPeSi9eF+zj9X37mSqbu5gFnnjUqjCDhFfH/LJxYiKXjtfIcHIQx48Ix2nkXyR3iMP1UvP52kKNCKss2fE+R4dfk6v2Nd0WBYB071k0pM09Pqf3/FePd/L5doc9U9jlgMRJtTkomX97949QYXlMdryNnu2HI2vdJK7hnXgOFAUwM9yoj7hte440SFhf0t0HU8bUZnUKSM7jh3uT2N5fLZnFLZri36UZMRIi3OGbRAQuXPGce1jjHpvB7JF6lKAqwOENIgmjB/sKeNy7Nix2mJybg+Ysp7ocTebzQWcOzcnsy6M/Gj89VsARi9b3qyoHqeI5udbrwGR0fJjl7Suo+/0bKbY811XPIk7ov5KFdJLnqmm66RLGjHPPGPGYY6GE3CqPjMzM3H06NEaQIku8kxEJtlwjUXAQ73TgZC+REc50HZ1dVVUppwTUpPUmdqhvhJtSZDg2KCuVA5BSM9iJh2jErabz2C/s0256Fhjmw6ArvXtHnSKNN7cAeOYYOSr/9V/qr8oQEb4EfXXr0gfuci9gNeJpVCFHSAyMJ4tFlFfV/GoiGtC9KwZmTGCclDSs3PeJaMZlauTrj2CoyGjwWWZMvIODPqM9JrqybUftamnp6d2BiDpJRpK1mFubq6WEaZUfpWv11GQQpX+SKM5eHCtim102ottklF26kzG05MC9B1PxGf0yz7zv1U3XyMi2LIfWUeOKdJiOYpsfn6+2rzMV9HQSHvZHPte/5xT5iDFPuE4la70nfTEdU+WzbLYZo67iNbxUP48pyJZ9xxALUZtFmlJibg6QGggZPh4AG5E69w+GlNSS6TcIurp7TmDoP8d7FQfXUfPWeUxO865fO7N4tFDfH+Ul0mDz8Vsesi6l8DA09JllKanpyOidSgrAUSfy2Om3iJaUZ6e71mPEQtfSEk9dXW1UrOVqMEIkW1m9EPg4v4s7yPpyQ/AdaPMPuc6jdOJpA3pJOjZPKlFyRNsMyNXAasnCvEZdEb4vwBZjgkpOAKFona2WU4IHTSOGR/rvn7FMSjxNdScI6Hr/PUxGit+yLPTsUUWlwJcHSCasB6tRNRfpugeYkR935e+o5ccEZUx4MI8IwEHwHYAJ/GUZhkERhIqi0ZZBpNUma7h0UhuXFWWJw44SLeL6AjMuWw61p2G0718Plf1ZATmXjcl51QwgpNe6cQwWmXUobrRwNKwOp2nNvBootw6KseERG1lBEEniWCs8aq2MHrnfQI2UdUE8Vw6Pp06B1SPGgWG1AnHHtsgfZNi59YTrrnxPWh0LKg/tZlzVmVTf67jIgulAFcHiCYmF+NlPLnQnDPGTm9E1Dcpk/bQZGTE40aQAEcQkUHnyRgEFlIrjJA0Qel9EijUXhoEfu70H6kWebFutOnhNxqNyinwpAK2MWcIuV7C+xjJehTFcrk47/VmBKX7WU6u/awjTzZn5CVdO/0nY85oyMGTY4PAwb5t5+jwHqew9QwHUk8IIeAwQtE9nv3olB77hTqkA0LQURnSFbcesH/4TIm3LSKyR26xP6mzIotLAa4OEE0ST8vWd5qwzWaz+swnpoRGM6JFmYjukRCgfE2BhkjPE7VGAyiqTpOfe7J0LRMwuDfKoywJ15loMGREVDeBKI2og630pcV8ethMEODfDoQEI/UL9UEQoN4ZQTi9RoPX3d1d27dEys0ja4Iy9wLROZCOqVc6Puqnnp6eaDSOvx+MlLDKIA0oOk5lOUh5hMv6kvJT/V1ndB5yf3Mvl/TmdfNxpvVYzSmOSTodmhcetTKpReOO45dOperKd7ipfwRmnK/t1r+KtKQAVwcIDSYBa35+Pvr7+ytDmaNG2r0mgwDGMhm1EEz8tSE0KLw3om68KDSQjDScqtQ1Tp0QMBlhUE+6nhEf1z1oPEk7RdSPeuKzeEwRDWdu/cmNreqhv2nUpH9ulmX7c+OAkYf6ikafe71IZ3l/tDOWqqtAP7dHiWWQYmV0QaOe00UO9KkDgrN/z/o4MJKq9WiRoCSngOtknD/UMx0blu3jgeuEDj58ju5TxiEdtVwEVmShFODqEJH35rQh6UM/TduTB7jHSJODu/w1uTxLcXZ2tkqX16SkR0zvcn5+vrqWlGJE60V6EfUUfxonGQ9Gl3ye2iijyDaq3U456Tlsp2821t8ql+8+I1BJJ4wsWTfSU57yrfdW8dT6iPpJ+Lq+r69vQd3pVDgt5nvO9DkjHwnHCVPVuYYk+rSvr696hYnaza0UBGACOA+tZX+oTgRN/aYzpTdae5TjQKXfemcWdUpRue1ocvUJ35+l55JiJbhL72pvLmLkuFSk5xGut6XIiaWkw3eA0IMjEIiycQomtxbkXiCjD37vUU+7dQunCgkAXENxmpLPVn1ZjtrIMrhJk22ld++RCj1hApBHirpWBpc6I+3o0SaNl+vaQUggJeMrmohGnbqQMfTne/TCs/qkd/aHl7uYJ89IUPpmv7Ac70c6G4zSmFnI9HxG8rlxqnJ9mwK3RXj/RdRfUMprtJWBTo3GuurpGaPqK6fLqSv1D2lIf75HiDnGol2SU5H2UiKuDhFNXk7k3ORgdENAIZDkNs3yOf5bniwXriNaWVY0ZD6RJYxcSBM64NBI8l566w4uLNv140DDCMG9ateLRwYEGWbeUR9eZ0VvbBczLXktyyDQ6fmKrtW/fAb1RSGAE2DcmPIaRidzc3MVILDuuTUpOgcaDwQsMgYCL66dsS8iolqbcnqYz1NkS+PvY4/tygGJzyFFXQQyd3w4D9RWghyTjSQcB/xOdfUyi7SXAlwdIKJCfLFde4FkiHgQbUQdLGRA/NR4nmJBQGFChj7j2gpBSIfhytiKtpEBjGi9J2l2dnbB3hbVS1EEwUMGVN48kztIP0kYtYhaosFTQoanLcu75uI5jQgBUX0iYZakg2qOAmKkJiDR/6ScaKwdQAVo2tjrTkVEVK/uIGXpp6d7W9RndHBIM3J9SP3CCE1gpb7TCRKMfFU+o0k6Lt5vElKPXENTIkxOVx7RE7RVR4EO17xIAQtYObc0nwjq1Idn3tJJocPkbIDGQJHFpQBXB4hPNIl7vLrG96noPk0w0ooedTGC0r0EB0Y5/J/fc4OxynePm89y753g4941Ix++Sj6nKxo3/S+qjt4zgcWjIEZKpIKYDeYgnFtLJBVEvTuwuqGWTkmjsf+9nwgI1K2uYVsJoO08fYIAr/EIhq9ZkWORK5914phgfb1trK/3k499j+a9H1l/j7TpMCzWZ1xL5Pimo8a6si2sG2nmdhFzkbwU4OoQcTqGhsO9Ynrk5OJp3PRdRGuC+uT2dS2nSDTpfILm6BeuvfFagSoNQETrZIucl01w9ue6N8u2MrJ0ms9Bys9bzBnfiPrakHvLOTAi0BNo3NAtBqTz8/MLUrT1HUFa7WCZ3le8h4Dn44736j5FXe0cD657+TN9LJFmJVCrDj7uCXiM+Hxskt7MMQos039rrLDNvE8OEOvu48XXY3kNAZK6LnJiKcDVIcIsNe3taZduzAnlRp+TnG+B1fekQJQGLvDgupmMR19fX/T29laZZipXE1YvJXRajwYoom6sGaE5eMpoM7MyImpZgExjFmW4mKhOAgMZX4JGRH39iQv3jCzUV2wj3znmYKt6E4wEhrrGaU0+Q/UnkMuY06sngLDePFKJYM8ECUauDqh6hvYo5SINla1xMTc3FzMzM1VfadxxvEgnBBv99jFEB4BjTW3t7e2tUaWkN0nxMgKS0AkUWKl+HtFKZ/rx9VZm3jYajdp482i6yOJSgKtDRJNBxoEnmtMY0pDyzEACBQ1MLjKRgfNJTM+ZnrJ7xhELF8SdHpIh0/9cF9H9jBR9/SGitfjvBqcdpcWNpQRNP5GBUSwNZS4S0d/8nFQqIzt97uU5nUVP3a/T9zSm3k+uA3cI2Ic+fqRr3pOLfEjdMgOSSQkcA+wLru1pzHJ9kDpVH2sjNMcRI37Vg+dVEoC9HR59cjzkxr87HHRWPOLndxx/Gu/UjcaX1oULZfjGpLwBuUPEEyM0YZSgQSqRHinvVYTS19dXi2r0t6cok2ah4dXE5r6liKjRN06tOTCofg6ipHpoZOWN5uhC6SAXocmTJb20GOD4PX7oL9fl5ufno7e3t6q704QR9Q2yNKieFKDohhSbnu80LssmtcUjiZjxyTap33R/DqQJCIoQeGJJs9msxpMDFDfUauzRAeF4oN4ZGet6RvzcDsJIy8tW+Yw6dY8zFD7W1DeaB+wz3yPJ3+wPXcvNxT7exFSIFdBYFgNCJuFMkDfzBuQScXWI0NP1CMv5eHquOYPXzqtz40IaT+Vz0jO6YGTim0RznjQ9ftZP5eVoIIISI0p9T2MkofGgt0zqlQkS0qHenUTDJ0BwA6c2+z4q9Vtu+wFBjJ43nQAaSM/Eaxf90ugReLwM1dP7wYHHxwzrwCw7Xi9HQ0DM9VbqQrpmJh6pO/Wt08kcG+3GHAFNm5npCOg7Ol4eFUsvPg7VFrXdx5e+5z4xRmP6Id1LB6bIiaUAVwdJDoT0NyeZf8/jouTlkcpyWop0YkT9nUZ8nq6XgeLkZHoxvXhO2BwVI+5f6yZ8Ts7gygAyMmwXHeaMq0eMBGOVTdDyzaZO+5FuU5leV9JHNM5ulPmZhHokvca26DtGGRwrvomX6dt6Bg17bhy6Q0HnhQ4Qy/F2eHtUNxl8rU1x35s7LwRA7xcCpb7LUexsl77juHUHLNc2p6HVf3yeokoBKK8lzVrkxFKAq0NEk0VJAc1ms3ZIqHuTpA5p0LSps9FoHWvEdYSIliFz48KoqqenJ5rNZrWYzldQqD6+JiKDSk/dDWOj0UpZ53Vc0+EeIlJKiioIcH7COI2kUzKeAKPPtAaheug5uaiJQo9cx2DJaSCIN5vNmoFVG9Vf+oxGXTqVgdTzfXOxR7ARscCok1Jz4KHefCwycmDSj1OBBHiVp35W/ymdXs8WHSkaWDrXKRjc36exz7U2d6L0ufTD5BUlitAhINVHilXP4NhTmzjOe3t7K+dB40nOD9upexmhFjmxFODqENFkpuFiZOHGk0bKI6qIVlYavXz3Hn2PDaMiGdeenp7aqdfHjrWONxJIMtJguW5ktUDN09C53sLIkpO+XZva6UXlelREfTn96Av3Xo92dBsN3czMTHatUs/1qE2f+/fsfxljrhFRH6y7AxDHlo8BXc/2Uice3Yqm1BmHnkihZ3v7qXePMv2E+2PHWgcSC/g0zhgtsq7eXrIP+vGN4/ztAEy9cm2O0RIpQYGtgMn70el3j0yL5KUAVwcJj12SURGN4gBESiqiZbCnp6drkzyiNSl5ugVBSoCk/7kOxAhEE5Nlqxy+UZiAJaDS3/rRc2TAlDrM9nCjq07E4II+66brnJ4jlRjRegmm6kvdkxJjXWWg+L90IL0fOXKkliRCwCPV6oZSYNDX11dtgVDbZDy5LhTRihylE663OM2naEURPJ0XRuXuNHV1ddVAyp0KReQaE319fRX9G9F6fYh0wtMvNAbVN+r7JUuWVG+w5ljkeNXYGBgYiIioUu/VHt9GoD73KE99rj7h6SikVkkpu0PE8arrmVCk7QFkSHydskheCnB1iMjblOFjFESDyiSBiLqnTIMbUd+cTOHxTTTCXGTn2gaNt4wWkwecfuI9MpKk+EgBSXQ/PWpSZwQnZiASpD16pB5OpCf3wB2kXKc8Ad6jRpbv0bMk51zk6DYZdUYnBEe+Yy0iapEZoyU6KKyTAxL3gzGJgm8O0Pc83kv9Kz0T8NhGpy1d5xKuw/k4TSlVyTW5qMvXo3wDM8ca+911Q/ZAz+cWC0aFjCYZRau+HOdFTiwFuDpIZCTI70toDLlewghDhp5ZdEy3FhfPycMohZlbbhDovTL9nmtwTAFn5KR25WgaGgR6pzQ2nlHmCREqn4ZZdZVwbcuzKR3wdF07g+pgzchG1xB0eR9BTG2hw8D6uqGljlUHrvGp32k8VXdGLX5YsPTsY5FRAp0p9Rd15i8aZRkEe4IGo8lcf2j8MpLRWOb6reqfy/rUvaT8nG0gxUcmgyn6nDssg+LOpjt0Tp0XaS8FuDpERKd4tMEoLGeQuGCthW0tRus6LmbLiHBzsCcERNTfnExDpM918K4+X7JkSRWJzczMLDjNgnvIJKRXeBoIacB2UYqAjgkbBEGCkKISRQjSW8RCD5geMqMyAZP0ybUNef+emu8L/V536lcUlf5n1KD6cj+bns3nic7VGY8y8BwDbAdPb2figGcwSk8sh3olUFCHHC/UFQGZ60U5J4eAxHnAhApdxz4j2GqMO0WnMUyalPPEGQs6HAQ2r5OX40xCkRNLAa4OEQ7oHI3Ca3wC0BDws4i6R00vn4Y+ohWR0ChG1DPxIlqTnZPXozUmatADpSftXrnq2S41mtGC1911pPuYQMA1C6cQPUpxcPW0etVD1/JoH+mP/UEjSPqMz+SzdA/FwdizKV1fHtm4A8Cy1Gd+srxTXaT4GPkz+vJompSd/vaNu7yP17Pu7HOOfzpyXBtm1ENw8ec5DSlgJ23KQwBUZm6dinNNYMg3JZBmLbK4FODqEHGjKuHkp4dLo0yvnd6dyiU9Jslx7TJGnOCMamgQOPFze1y4lsFojt616iFjFtFaqGeShJ7D+z2Vmc/0KIH3Mb2a9SXA0TumsczplOCsOrquPFqOqG9qZaKEnssz99xj9+eRSlTZXE/y73N1aDc26ID4WCEVpjp53Xi9QN31rOewXDojnjjhtKAfYcX6U+8cD3QQSHGr7qyXj2WOV92Tcxr1fHfoipxYCnB1iBAAaKjovXPgMzGABoNl5ABIRjEiatQG94zpM18/i2hNdBktZbbxMF8mfmjCK2OOE1lArDUGN5DcE8MFfl2jtnPPG9eMuKFYIoPnxk2fKfOMnzNaUz1VDjdG6x4aUVKevFb9KR145KC9X3rfFb12Xcfz76R3Zr/lInMCjNNgOpKIUa2+Z5o6s0GdIiSQM/JWO7z/NB7V1wRw6V7tJKiQ0lb/MKri+Nb4U90bjVZWqfSobD9nLxyQpGPt42qnT5Wta3xLQ5HFpQBXh4joBxooGhqnoAgKEXn60L18957dK9Zn/pMDD3r7EQvpHv8sZ9iVbk0vm3QPvfqIeiYXowWVp/UTrvt5u9ybj6jvD8vpkverfd4uj3w8wo1o0bGuZ9KnXPhn+wR+NJKkZ9m30pvqoQghF/3SOcmNKUmOtnWHhu1yg+4G26MSjW8+j2OPlJ9HkozAPKmJWbg5kFUkx1ej8DkSjyynp6cr54O6IN3MvnRHoMjiclKE6s0331ybLF1dXXH++edX309PT8eWLVti1apVsWzZsrj66qvj1VdfrZWxa9euuOqqq2JgYCDWrFkTn/vc54qX8QaExoIDXK9Wj4ha8oaMuO7l/xH1w08j6hNV98hgCAR4EoCiPU3qiKh5tpqQnPQOgowudB/XBuT1ih6kqFxFQUw/J8DRQEZE7Q3IMj7MJiMgyfjTOM7OzlYHoSrpQkAoz5+6JFgTTNR+rrcRIGUcGYkQnOid02GQKOpTJMtolnUWaOl5pLb0Hdeq9Fy1rdlsLjglQmU1Go3qfqccGX1pI3tfX18MDAzUjklSn6l/NSYEZNKJoiLpj0crEdyVoKQofHp6upbxyGfrHiZZzMzMxPz8fAwMDERvb++Csx25Xki96VnSncau6k0QL3JiOemI6wMf+EB885vfbBUAL+gP/uAP4mtf+1p8+ctfjqGhobjhhhviN37jN+LBBx+MiOOD7aqrrorR0dH4zne+E6+88kr81m/9VvT09MRf/dVfvQXNeecKPXXupXG6RpOVxpMbImXUc9RaRMugcN1H99LoMsJidOXrW07bkd5kOTQQpNboLev6iPrpEnrvllNuEa0EDHn13MStunJdhTrwKMXB00FRhoeRCfuH5ZImY3muO1GTMoA5MGZbc7Qh14ro9ZMKpm7ZTtWTgKVnMjoVTcYoyCN8j7TYt54okRtjfJbGOf+n0+BbJFiuxiAjPe8Lzg8Br1O53g8c/xpT09PTlf7o2BFkJdxEXmRxOWng6u7ujtHR0QWfT0xMxL/8y7/Ev/3bv8Uv/uIvRkTEbbfdFu9///vj4YcfjksvvTTuvvvuePbZZ+Ob3/xmrF27Nn76p386/vIv/zL+8A//MG6++ebKGy6yUGhMOCEj6qDgdBcnIBMD3BBrgnINipOTtAfvcdqIRkSgyXUlevr+Zlo+S+XxBZGksBxgeaadJ3l49iCBjGXl9ExjxLZ6lOO0Ja9XfRyYGRl6JK3ncE8c9UuA8HuZ8elOC8FVdZPnn3MeSNHS4aBuOfbUdo65do6NokGOJ44rgVNuOwYjVb6M0+eIrsnpk+PJf5zK5BiKaL09QNfw/ESPnsh8sF2cg+rLIm9MTjouff7552P9+vXx7ne/O6699trYtWtXREQ8/vjjMTc3F5s3b66uPf/882PDhg3x0EMPRUTEQw89FB/84Adj7dq11TVXXHFFHDp0KJ555pm2z5yZmYlDhw7Vfs5E0aSQ55vLBOSE1ITT9aKd9Bn3HaV0fJMo99E4ODIKyRlietqauDxdISIqmo0AIuPjz4toAZ0oJxpOGgTVSwZFos/dm+WzaOSkR2ZPUhdMmGBd9AyBl/9PT5zbBQg8agv1J3pJkgN3RlpeXxlTJpAw6cGB26NPfU4qk/3j+pOO9KPx5mOG7VE0QuCnLrh+REdH15DqzEX77Cs6FIxeNcZ4vdrIbQCcTwRmd3w0n7gWy/r4+hap3CInlpMCrk2bNsXtt98ed911V9x6663x4osvxkc/+tGYnJyM8fHxaDabMTw8XLtn7dq1MT4+HhER4+PjNdDS9/qundxyyy0xNDRU/Zx99tknU+13jHg0QMkNejfONHpc0NY1bhByHrVHDBF1D9kjsIhYYKx8orMOuQjOswr5fEZz+p9GXUJDQ2PqPzRQXmd61Fqvcmo012c02A46/F/GnoAsAPQTTtgGXcuoMtc+6Y3JKypP9/ghtLl2ePv8+RwXdHa8LJ7gIkBi/7Jc6pnjipS4Z70S7LyPvF5OATq4EcwZbTuwe/29r/lMH2NF3ricFFV45ZVXVn9fdNFFsWnTpti4cWN86Utfiv7+/re8cpIvfOEL8dnPfrb6/9ChQ2ckeHEichLwf9I07tm6+GT1qMmfLaGBYiQmydFuOaCS8eJk5nWsgz/Dv+ffpGEYTeSoGDeQEfWXOOYimRwVyz5g+3wtUsbP09IFKMzC8/sZNfoaJPsh1++MsGiYc23U9fqc44PfUYekaFmu7mV9qQM+k3rX/wQOPZcGn1F/O+eNv6kD/s6BDucD+4F6ZSTLfsxJLuJ3Z6xEXW9MfqwUluHh4Xjf+94XO3fujNHR0ZidnY2DBw/Wrnn11VerNbHR0dEFWYb6P7duJunt7Y3BwcHaz5ksHp343xH5tHUK1218sjgo0jh72Z4q7vX09SEXf25OaDRIoxEkCCbeLteTG2G2ieshi0VQ+jvnUbMt7tGzHI9cGdVJ3FDnwDNX35zuqTvPXnOj6vXPAZKDdO5+Ao5fw+iYz8tFZ7mx7NFUjq7ztlFY/9xc8H7mfT7ecu33cnJ1aQe0RRaXHwu4pqam4oUXXoh169bFJZdcEj09PXHvvfdW3+/YsSN27doVY2NjERExNjYW27dvjz179lTX3HPPPTE4OBgXXHDBj1OVM0Y4iWjEcp8tNun9e5bP3yyzXX3ebDty9SIl5IkLjBB93UNtyj1jMeCkUW93rdOIBEMHFAI9y/dnLhYdpbTwVIl2bWB/sz5+jYO4P3cx48rrGW15nXIAniszR921q/OJrmk3dtv1t55/IqfEy1xMcuM4952v95EJKIB1kpJOQm688cZ0//33pxdffDE9+OCDafPmzWlkZCTt2bMnpZTS9ddfnzZs2JDuu+++9Nhjj6WxsbE0NjZW3f/666+nCy+8MF1++eVp27Zt6a677kqrV69OX/jCF06mGmliYiJFRPkpP+Wn/JSfDv+ZmJg4Kfuf0nFP4A3LNddck9atW5eazWY666yz0jXXXJN27txZfX/06NH0qU99Kq1YsSINDAykj33sY+mVV16plfGDH/wgXXnllam/vz+NjIykG2+8Mc3NzZ1UpQtwlZ/yU37Kzzvj580AV1dKnRejHjp0KIaGhk53NYoUKVKkyI8pExMTJ5230JHni3Qg1hYpUqRIkYy8GXvekcC1b9++012FIkWKFCnyFsjk5ORJ39ORp8OvXLkyIo4f2Fsow7xor9vu3bvP+O0DOSn6WVyKfhaXop/F5Y3oJ6UUk5OTsX79+pMuvyOBS6nCQ0NDZdCcQMq+t8Wl6GdxKfpZXIp+FpcT6efNBh4dSRUWKVKkSJEzVwpwFSlSpEiRjpKOBK7e3t646aabore393RX5W0rRUeLS9HP4lL0s7gU/SwuP2n9dOQ+riJFihQpcuZKR0ZcRYoUKVLkzJUCXEWKFClSpKOkAFeRIkWKFOkoKcBVpEiRIkU6SjoSuP7pn/4p3vWud0VfX19s2rQpHn300dNdpVMi//M//xO/8iu/EuvXr4+urq74yle+Uvs+pRR/9md/FuvWrYv+/v7YvHlzPP/887Vr9u/fH9dee20MDg7G8PBwfOITn4ipqalT2IqfnNxyyy3xcz/3c7F8+fJYs2ZN/Pqv/3rs2LGjds309HRs2bIlVq1aFcuWLYurr756wctNd+3aFVdddVUMDAzEmjVr4nOf+1zbt9p2ktx6661x0UUXVZtCx8bG4hvf+Eb1/Zmsm5x88YtfjK6urvjMZz5TfXYm6+jmm29e8NLN888/v/r+lOrmpM+TP81yxx13pGazmf71X/81PfPMM+l3f/d30/DwcHr11VdPd9V+4vL1r389/fEf/3H6z//8zxQR6c4776x9/8UvfjENDQ2lr3zlK+nJJ59Mv/qrv5rOOeecdPTo0eqaX/qlX0oXX3xxevjhh9O3v/3tdO6556aPf/zjp7glPxm54oor0m233ZaefvrptG3btvTLv/zLacOGDWlqaqq65vrrr09nn312uvfee9Njjz2WLr300vSRj3yk+l7vjNu8eXN64okn0te//vU0MjJy0u+MezvKf//3f6evfe1r6fvf/37asWNH+qM/+qPU09OTnn766ZTSma0bl0cffTS9613vShdddFH69Kc/XX1+JuvopptuSh/4wAfSK6+8Uv3s3bu3+v5U6qbjgOvDH/5w2rJlS/X/sWPH0vr169Mtt9xyGmt16sWBa35+Po2Ojqa/+Zu/qT47ePBg6u3tTf/+7/+eUkrp2WefTRGRvvvd71bXfOMb30hdXV3pRz/60Smr+6mSPXv2pIhIW7duTSkd10dPT0/68pe/XF3z3HPPpYhIDz30UErpuHPQaDTS+Ph4dc2tt96aBgcH08zMzKltwCmQFStWpH/+538uuoFMTk6m9773vemee+5Jv/ALv1AB15muo5tuuildfPHF2e9OtW46iiqcnZ2Nxx9/PDZv3lx91mg0YvPmzfHQQw+dxpqdfnnxxRdjfHy8ppuhoaHYtGlTpZuHHnoohoeH40Mf+lB1zebNm6PRaMQjjzxyyuv8k5aJiYmIaB3K/Pjjj8fc3FxNR+eff35s2LChpqMPfvCDsXbt2uqaK664Ig4dOhTPPPPMKaz9T1aOHTsWd9xxRxw+fDjGxsaKbiBbtmyJq666qqaLiDJ+IiKef/75WL9+fbz73e+Oa6+9Nnbt2hURp143HXXI7muvvRbHjh2rNTwiYu3atfG9733vNNXq7SHj4+MREVnd6Lvx8fFYs2ZN7fvu7u5YuXJldc07Rebn5+Mzn/lM/PzP/3xceOGFEXG8/c1mM4aHh2vXuo5yOtR3nS7bt2+PsbGxmJ6ejmXLlsWdd94ZF1xwQWzbtu2M101ExB133BH/+7//G9/97ncXfHemj59NmzbF7bffHuedd1688sor8ed//ufx0Y9+NJ5++ulTrpuOAq4iRd6obNmyJZ5++ul44IEHTndV3lZy3nnnxbZt22JiYiL+4z/+I6677rrYunXr6a7W20J2794dn/70p+Oee+6Jvr6+012dt51ceeWV1d8XXXRRbNq0KTZu3Bhf+tKXor+//5TWpaOowpGRkViyZMmCTJVXX301RkdHT1Ot3h6i9i+mm9HR0dizZ0/t+9dffz3279//jtLfDTfcEF/96lfjW9/6VvzUT/1U9fno6GjMzs7GwYMHa9e7jnI61HedLs1mM84999y45JJL4pZbbomLL744/v7v/77oJo7TXXv27Imf/dmfje7u7uju7o6tW7fGP/zDP0R3d3esXbv2jNcRZXh4ON73vvfFzp07T/n46Sjgajabcckll8S9995bfTY/Px/33ntvjI2NncaanX4555xzYnR0tKabQ4cOxSOPPFLpZmxsLA4ePBiPP/54dc19990X8/PzsWnTplNe57daUkpxww03xJ133hn33XdfnHPOObXvL7nkkujp6anpaMeOHbFr166ajrZv314D+HvuuScGBwfjggsuODUNOYUyPz8fMzMzRTcRcdlll8X27dtj27Zt1c+HPvShuPbaa6u/z3QdUaampuKFF16IdevWnfrxc9KpJadZ7rjjjtTb25tuv/329Oyzz6bf+73fS8PDw7VMlXeqTE5OpieeeCI98cQTKSLS3/7t36Ynnngi/fCHP0wpHU+HHx4eTv/1X/+VnnrqqfRrv/Zr2XT4n/mZn0mPPPJIeuCBB9J73/ved0w6/Cc/+ck0NDSU7r///lrK7pEjR6prrr/++rRhw4Z03333pcceeyyNjY2lsbGx6nul7F5++eVp27Zt6a677kqrV69+R6Qzf/7zn09bt25NL774YnrqqafS5z//+dTV1ZXuvvvulNKZrZt2wqzClM5sHd14443p/vvvTy+++GJ68MEH0+bNm9PIyEjas2dPSunU6qbjgCullP7xH/8xbdiwITWbzfThD384Pfzww6e7SqdEvvWtb6WIWPBz3XXXpZSOp8T/6Z/+aVq7dm3q7e1Nl112WdqxY0etjH379qWPf/zjadmyZWlwcDD99m//dpqcnDwNrXnrJaebiEi33XZbdc3Ro0fTpz71qbRixYo0MDCQPvaxj6VXXnmlVs4PfvCDdOWVV6b+/v40MjKSbrzxxjQ3N3eKW/PWy+/8zu+kjRs3pmazmVavXp0uu+yyCrRSOrN1004cuM5kHV1zzTVp3bp1qdlsprPOOitdc801aefOndX3p1I35bUmRYoUKVKko6Sj1riKFClSpEiRAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkoKcBUpUqRIkY6SAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkoKcBUpUqRIkY6SAlxFihQpUqSjpABXkSJFihTpKCnAVaRIkSJFOkr+H7xZ6ESqvP06AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXCk13UdfnrfG43G1tgxGMzKWbgPhxIpUqREibRkOZJjxSpbsVRxlSMl5SgVJ3K8xHYqSqVSFZcdxS5XEnmVN8WWy5ZFWRJpSiIpcsQZLrNvGOyNrdFo9L7+/kCdh9NveijT9k8ipO9WoQB0f8v73vfePfeee999rlar1YIjjjjiiCOO7BJxf7cb4IgjjjjiiCNvRBzgcsQRRxxxZFeJA1yOOOKII47sKnGAyxFHHHHEkV0lDnA54ogjjjiyq8QBLkccccQRR3aVOMDliCOOOOLIrhIHuBxxxBFHHNlV4gCXI4444ogju0oc4HLEEUcccWRXyXcNuD796U9jYmICwWAQJ06cwIsvvvjdaoojjjjiiCO7SL4rwPXHf/zH+MQnPoFf/MVfxOnTp3H8+HE89thjWFlZ+W40xxFHHHHEkV0kru9Gkd0TJ07gnnvuwf/8n/8TANBsNjE6Oop/9a/+Ff7Df/gP3+nmOOKII444sovE+52+YbVaxUsvvYRPfvKT5jO3241HH30Uzz//fMdzKpUKKpWK+b/ZbCKTyaCnpwcul+v/9zY74ogjjjjyjyutVgtbW1sYGhqC2/3GyL/vOHCtra2h0WhgYGCg7fOBgQFcvHix4zmf+tSn8Eu/9EvfieY54ogjjjjyHZS5uTmMjIy8oXN2RVbhJz/5SWxubpqf2dnZ73aTHHHEEUcc+UeQWCz2hs/5jntcvb298Hg8WF5ebvt8eXkZqVSq4zmBQACBQOA70TxHHHHEEUe+g/L3Cfd8xz0uv9+Pu+66C1/96lfNZ81mE1/96ldx8uTJ73RzHPk+EpfL1XGSfLuJw+/1OPvvTt/p5y6XC263+6bv9Of1Pn+9dtqfu93utnvd6rhO/7/ePf4ubXHEke+EfMc9LgD4xCc+gQ9/+MO4++67ce+99+JXf/VXUSgU8BM/8RPfjeY48jricrnQarXM7293HP/u9D2l2Wx2/PxW5/C6brcbrVbLnK/Knm1sNpttSpaf67HNZhOtVqvteXjtVqtlAsX6PYHHPtdW5p36yAaRW91D23urvrDbq+e8Xv93upY+j7anEyjb93C73ajX6zedp23Qz+x3pW0HAI/HY96Nft6pbdpnne5h94H9ru1jvguJ1Y78A+W7Alw/8iM/gtXVVfzCL/wC0uk0br/9djz55JM3JWw4crPYCpnSSeHZk9pW4jwG2FYcjUbjpmPdbjcajQY8Hk8b4PBcW3neqp22AuQxNijZSknFvr8qQYKDtpvndPJ8Go1G2zF6zVsptFuBld6HollSek/tDxsACSR2/+n9+ZwKOryfgmqnPtZ28dhbvQv7e16XbeBv/t3pmTr1Wafx2+l8+326XC40Go2OAG2Pq05jke/HNkZU7Gtre25lFNlif2f//+2MDAdE/27yXVnH9Q+VXC6Hrq6u73YzvuPicrnaLFOdVDrRaA17vd62SWJb1wpIBC615DspC35uHweg7T783FZ8aj2rcqcnxWdsNptt7fH5fG3/2wpA/1cFQyVsg5QqN/XkOnkyHo/H/F+v183/ttjKU5/H7is+i7aN7ePze71e86w8rlN/8lp8V/zebiffN4+3PRyv19vmSdnek56n405BW5+n0Wi09YsNiAp6bIf2tcvlgtfrRbVabetDHV/aN/a79Hg8bc/jcrlQr9dvGn/8m8/h9XrRbDbNdfmdtpHPxnuyXZ3Ak79571sBro6B7yfZ3NxEPB5/Q+d8VzwuR/5+otYsJ7J6DqoA+L/9dyew0x9bCXCC2hanDR62Vd/Jogd2JrcqwE6eYKf22+1RxUOlwO/0eVX5aHsUyBWs7GsoYGofsQ21Ws38bytwBUf7ex6j74zK1n7v9nkA4PP52t6p2+2Gx+NBvV43fev17kzxRqPR1i6772kU8fNGo2HOtz0ubZs+r75j27Ow+1bHrW0/a5xO+07HO8eCTbvqWOb/nC82aOr5nYBYxyDP0fvq+9P+6UQFq6dKw4Iguwv9h++qOMC1S6TTBLInBZU3FY4qRNJUtKppndMzo9JrtVqoVCo3TUD9Wy1TCu/Fe7M9bKPf77/JS+BzdVJuajkrsPp8PtNuG7ipeKmgbe+S11WLmt9RAbGdtVqtTcHaFjbb2Wg0zDm8L9tiewN8B7yG7RHSy+S7UZCnB8a+JljbgKLvXPuPHgjvzeso3Vev181xHo8Hfr8f5XIZfr8fPp8PtVoNjUbDeDC8Dj1D9hnfUbVavaV3wbbYnow+H59Bz+dzKrugniZ/sw0ATLt1HOt7Vu9WvTi+Q/VAdawpaLtcLvj9fvNO6DXzb44lvVa9XjfGh/3eHHl9cYBrl4ha+7TKbaVu01G2BalKrpPHpNSSTbWp2MpIP+8Up1Hvhoqq1WohEAgYZa5Kwfbu9DpK+1DZ2G3pZL3rM1FU+Sh1pspcDQQFIIIzwcYGGrZDlSCvQRCw+7ST50AQaTabhqYkOPN62nder9coYwBt56hXZlv62t92vE6NDHp0/Nx+Ln1m9eZsT439z+vZNCCvr15OJ4+W17G9Zh3fei2OG3rJ9pzh+UrJkxr0+Xwdz1Eaks9tx1B1bul4V+qyk+fpSGdxgGuXCJUGFSUnk8axlKJT8FCLFGi3/FXR8BzbqrSpEN7b9jAodmYYAENf8f6qpDvRm508DCoIPr8ey2vx2urJ2EqMf6vS0HbSWu8Eiuwfem71et20x/a69J5si8/na6OtOvWV0knqmdXrddRqNQPYdqzFHi/qyanHo2NBx4MCF9+veh18z3wvjD/xfrwH34EdP9UxSiXPa3UCJNtLq9frbZ679pV66DomeB2OT/alemF6HFkJXluNEY0b6zPa1+lE9Wp8S8HYfj+O/N3EAa5dIpx8HOycCOqB2Fatcul2woMqE07ycrlslKtSQppRSKta76HtUE+ElrSCrsZ9KpUKvF4v/H5/Rw8HaI/5EID5/Lye1+ttU4wAblIGVHi8JhWtej48n8kAShtpf1JR8fkI+qrktC3qHdXr9TaKTylX20shiBAcFXj9fr+5rr4fAgnfu3oPVNadkkvUk7PfhT5/JwBk27TPtG3q4bC/eT7pxFAohFqtZoCd40Pfi9/vN8Dt8/lQLpfb+oj3I/jo+Lb7QL0eAkunGC7PY5uUQua7ZBvoSSsVrWCo1+U4sY04R/5usitKPjnSHgugKFVBwNCJoYoE2Mkc4/V4DVqsOplUoVIIgDY9aFMmBEi1nqlsdNLyWCpsm0pU5Wf3hU1JsW3qabRaLeM9qUVfq9VQrVZvonZshaz0nfaTKjH2hR2zs6/Fe1DZqWdG4bVtj0P7gO+Hz+73+81xPFfPt98TwUmVth6nHoB68Nq39MYqlUpbX2sfalsYB2RbvV5vGyDoeKH4fD4DYrYBYY8/fS861hU8+Bxer7dtXNtGEttke+g6HpUu5P80SmxKVsFdqdlbzU9H/m7ieFy7SAhQtOhoZXLi8xigfUGnKitOLk6+YDCIRqOBarXapshoWQLtNJBNwVAxaRyGignYoQXVE9BrcNJTCdJC13iJekUKegxss+0an+KxVAalUqntfgrUqlxs2lCtYQUqBQF+7/P5bvJqeV3eg0Bqx7h4TcZ89LpsN6+vsRo7EYVeDceIJgnQY+E5BAf1XvQ9K2hqX+hxNsjbywXoXZLe7NRHpBxbre24pyY4aP9p3M5mGghGfEfKFLAfOKZselPHPQ0be92i3SecN+rpaeKFMgecs7wvsGM4KrjxmTuNDUfaxQGuXSI6IexAtHomnfh/tTx5nFJ8SitRoZGK0smrXpqCIr/Tya+AoMfwf22jtksVjZ01Z2cragq8tkVBTNumClX7jGCuHoDtDdnxPl3fpt4Vr6fvQtcm6We8np5nKz0FVxoJfG/6v3pD9D75/jQuQ8Cv1Wpt17Djgvps6rXYSlbHjN1ejf0oRcj+1P/tcapetQKoXpPPpgYZ34UCLdvLpBU75mcvLdE26RhVL6lard5En2v/0Kiwv1dqW6lvhy58Y+IA1y4RpW1oVdpUkB2DAdoVtB0n0ZgD4xDK56vFbgOnKiabHqFVr1SbTYuo8lDFxwlN0XuqorQVlqb/K9Bp/wA7sS4FPfYlPQJg20PTPlUjQMWm4PiZUp68pipvzQxVr4rSKQ5lK127T9UD13YpEPC+fN88nn2vXqsmD9BTUrBjX9rPr8+mfaQgrR6iAiefQcH6VkkoChLa7zxfk0N0rKlBpQaCHqvjSN+/PQaUklQDhW3geFZvTNkRHSvafkdeXxzg2iWik8621PmZ0jK04JloYVvuQHvSAD/jxFTKRykc0nI2RcQJp5PfnuBUaARI22Ozn8n2fnhvVfjabqA9e1HTrLXflF4jtangxb8VtOjFsK0K1qqA+Z16AEpB2v2lSle9Iipxm/b0+/3mGbRtzLhj3M4GA7aLXofb7UYgEEClUmnzsDgu1PJX44NtUc+SoGYDJlPIbc9GlbW2Vd+/9hGBln1se3UKNLqGTA0ipfRswFKw5BhRipX3srN6+Z2+C96DtCDnklLfOrfUs1SwdeT1xQGuXSL0Kmwl02mgK00GdK4Gofy+nV6ui5K5GJlxBaWgOil7tpNKUi1M23PTZ7Oz2Wzlpc/GZ6LSV0+HnpeCjSZDqOek3h/Pt+ky9rGeo/2rikj7Q+kmtkXjVryenVWmx6oiU8+N17dpQd5b+8Cm1mxaTJ9Tx4W+K16f/aXtUC9NwUnXj/Ed2V6gJplo39hAwP7S/3ker60eqNJ6Oj7shec8RwFSvSWbTtSx3imVXq+r41HBUMebHs97qCfsyK3FAa5dIqTHALTRXKpQVBHTetVMLyoYOx1bgVB/a4yL99QFrjpBeY6tZFQR8hgFEFtxso3qGdn0ld7TttTtuJyCCEVpR15LvVEbWDWtXz1Wtlf7kqCtSTCqlFX52X1BRaptVwWt/6vHp4Ch71A9CD1WaUwFTX6vXkgnA0XjUUpx2R6exvm0bbbiVupRr6mp5toG7X+eqx4Zr6XjjqCgSwuUaehk1KmHaYNzJ2pPxxDbTKaCCR/6buiZ8W+dN468vjhFdneJ6IRRi1yVo82X23Eg4GZFrpOJ3/N85eT1f7VGdQJrNiHFLmpqW5kul8vQKLQ0lcpUC9oGFLWyOyl4WthKR+rzh8NhtFotk1FnAzyfnWnZ6pnpeh5em+fweXTRKduq3o4qYRsAFZDVE9N3TOG1dA0dgV9pUFXsCsL6btkW+976HH6/H9Vq1QCBrXD5dzAYbIt3AmiLRSq48/p8753Gtho5NgDa41XpS16bhhzHvW2w6bOqB00QVU9TgUznmF5TMx3tsdhqbWf0Ki3JuGqneN73sjhFdr/HxVYkShmR3uNx/N6mkfR7pWj4OQFSKR9VGDZlY3sgAG5S2PYPcHMaMIWfs836v+1BAO1lh5SO0fbxb1uB2/SfWr38zFb8CjA83qaiFNRsD8m2E9XztA0BfSe2h6yerA3YdtxHQbUTzUkjR5/Nfj49R9+N7RHrmFFwIZBwIbI+v4KwgrNSwex7XqeTF6deGb1kG1xoVNhGkbZHMwL5nDa9bBtL9JrYXt6DbVZvzk7Y0PdnzyVHOosDXLtEVNFzMgDt6eyccHaCArADODYA6fe8tp2EoMfbk9qmj+y0ZB5ney1cO6TKk/dlW+xkDKU/2Se24rOtdaUdbTqoVCq1KSJ+x3b4/X54vV5UKhVUKpWbvAN9H7TK7aQB23JXjxlo9w7pKWhpIx7P69vAxP7S57Qrcegz2rE4Pqudzcf4JJ+Nbee5BABVvGqwEKT4jNoWtl+rWxCQeG0+rxoPzWbTJJMoSNjjQL0zNRQ6xS9t44rt1cQktlGBlOexLY1Gw1SCIdirEcIxwfv4/X4AO9VB1Hhw5NuLA1y7RDolWyhHD+x4UExIsJW+WptKC6kS7pS4oJ+p0uRvluqxgZHxDo2duN0724AoAKqFbqdV85lUGSg42rQbf6sy1uew+0yBmt/r4l5+z+ek6PootbBtT0CpQ/W+KH6/vy0Bgopcsy+1bZ3oNRtg7LFiU4v8Tj1MNX60jVziwPvSAFEjRZ9bKW0tBQa0J9JoexR42C4aIQQu9o/t+arBQaDT9mhfdOonPrv2N9uogKbGHz9TL46f6/hVA0UTbTr1a6c2O9JZHODaJWJ7OUD7wloqUCpTm8KwyxvxO056pYOA9gWmvJdauQQmBTGlEWnd28khCn5KR6my4N9a383OELOTEfi3goleTzMMVSkq+ClIaCZkIBDo6N3xugpy7FcboNhPVOD0MPgsdnxGz1XvTZU3jQCbVlTKWAFd1+nxXeiSAQrBQrNLberRXtKgSl6r9qvxpKDHflfPhn2q3r++Kxskb0Vh69xQClMNPft+6sXZgKjPzX7VrEm70LI97rTv2NZOzITjbf3dxUnO2CVCZWArWFW8FLfbbSgnTa1VpWBTV0oL6jWVylGLlZOc61V0t15tn1KLANqUL7c1UW+C7WZ7bcWk52uwXC1XfqbXUCVD4THcroKKQ3fcVZrPNgCoeNRYsJUln02BV9ujVj+fk+1Wmsw2Smzjo5M3aYO50mxUnnbyTKvVQigUQqvVMlQtM0kV7HmOXUld95ciMGpSCp+bHqVN3SnNrUaLjj1+p4aI9l2tVkMgEDDjgt/xPXBc25697d2y+LOWC1OjSj1V2yvjNTjGddzZGY78TL247ydxkjO+D0RjKGq12mnqagFTWdgUmT1RNJFDlYQqWU5KKkC1GNWbUmWqCoggqaCoXoFdqJRiU4FKFany0Ew1tXgV6G1rWq+vXhM/V7CwgVT/V2+Ifaz9CNwc1Nd3yRRu9d4U9NUr1ufT2BLflyZOsF87eRna1+xH+3p8n/q/7VFqXxAUCB62x6T0pHprNsV3K/ra9u70+dTD4zjQUmG8ji5b0LnEd2OzBdpWbYOOffWkeEynbEOOJTVa1Ohx5NuLA1y7QEj/KMWmCl8VocYf1Ark5xqHUauR1yLvDsDEotRr0EC5Kk4tbqpApWtsbGpK18ko6AE7VRAICAo6qpAp9jNwjYztmSgtaNc8VOWoHiDb1mw2EQwGTWC90WiYCg2aUGGv++JzlMvltrawDwgEqnT5HS1z3pvWOxUzlauew8/szRJVCXNhudJU7GsdY6QF1StVULDfBd83xxG9MH3v7E+OEQV9ih0fUtDQzFH2nQKRvkc1tGzKlPdXY4/X5N+aBWkbSJxDOj75Pd8bDRLuJq1g7PP52moeqtflyOuLA1y7RDiZ1EtRBWOLxkB4vl3E1Y416LWU3gHQtk8SK3krTdUprsP/CZjqpdjxDaXybA+F31EZ3spr4r1UsdvxM35m95ttTfM3lRT7SlPf7fP1ez6XHb+wYy6dLG9tO9+F9ievo3QvP6PCVwCi4VAulw2Q8Bh93/b70TihtlPHmLZb+1Y9N9to0LHG69pb6KjRZXt2vC5jgQp8NiVLJkLBRMHcZgb0vdnGoY4R+91qxqweb3uW/F7HJPuR7XPk24sDXLtIbIqMYtMWFCoPVXBK+9jXsS1Pm7ZQ0Ox0306UCs9TRa8KjoCktCOfkzSOUm9Ae5UHm2LRDD5N7uB5NsCo4tDnteNJ6l0o+NvXZ7+rJ6LWuN5PQco2SjTJhMrejkd18jxulTRBr4OemD1O2B5V6rwu26HvV0FH37n9HApuCmAKANoXnVL5O42bTkaCGk62h8a+UfpY3x3HoYIz31mnAs76DjUZhuNO+4BVM3g876tG5a0MUEc6iwNcu0A4yXRnXrXabWqHk4q7yzKwbmcc6mcA2mgPoH2dFK1aggzbpbvU8jMAbcFt3SZdLWSbmtPzbbDSdusaGAUnpakYb2Db6OkEAoGbrGtV8gpOek9a73wOO5am19HzVRnxbz67HUfj3+p5KUXMihW8Bq9Hb1iXC+jeXfq+7HfMPtbEE333/J7PqckYmhHaKe1bwUG9LCaJ8D3rMfb44zWZbcl3rEk9akRojFTP60SD6phVFqDVarWtIeQY1/ej/WAnXvC+rdZ2AhLfl44ZLWfFOc21go58e3EigbtAVJmpxQ7c7BWpslWPplNciAqOlAuVATl5VXgKJErX2d6HelC2grQ9E30GTl71JjTRQxW5Wu42paS/lebR+B7FToJQZcbn1WvadJf2sSY78LcmSWgb9Bw1Png/VfK2N6Pv26aj7OvrdZTqVIWv79WmH23Pmv2k/aaK1u12t+3IDOxsoqhjzvbIgZupSh0TtqinovQcr8Mxws9tcFODodVqtS0/8Hg85n/2px1j1WfQ9+b3+9uupUYcxzJBi+NFn9P2dh25tTge1y4RTgTN0FIlozy/TvZOE9WefPxOlZlNQ/G3eje2KHcP7GTEqZWs5zJmpYpKPRG9Fy1nVda8nyoLWyHbSlKVEK1dJnKoolbFzWezaSiCg/2ebEveLrjL96htspU1rfhOVrp6k/SCAbQ9l1JS6gkq1abt70TJ2vElioKgUmc2aOu7to0mvRY9Qf5m+9Wo4LGauq7r0uz0dDtN3vbk+TeP1/vYY0efSwHbfs+2AcJrqsfPMa8gbRszneaWI+3iANcuEFIXnNRa8BPYWdBorydS5aLgpkqMmU6qqEulUpuVTHqHigVAm9WosRwqFJVOGzpq3Mf2pCqVilF8/EwLyHKycz8pTSDhPWyvQ9tIUTpLLXb17jpletmxFNJ3CmI2MLKNgUAAXq/XZJMFAoG2/ldQVmOE4K2BfNvjZVYjj7XXgLnd7psWaGsVE9uLpTei/cfxpgCuY4fvNBQKoVgsmriSprp38i4VnOilVatV0z/q+fCeutectkPBnO2lQUD6XD08UvCcW/ou+TydgJ/zwK7swffO8+1zNHOXtKPH42mjUB15fXGAa5eI0ggKDgQFpZ2A9liDppnbipGKSz0vvaedxgy0B/HVo1Eg4L34244r6QSlYrLTyHmsegYKlJolSa/L9k607dqH+j/70g7aa3s6tQtojzWp98e4iHotBEQ7k1D7QUXvrQBqP5f9bmxPq9FotAGUrVQ1AUTbo9dWI4LPocsC9NnYb+o92zsU6PXscaveF71hbZOCn3otXOysXq2dZdkpcYZ9atOwCjYKYAr8CpiagNTpfM3kVKOPPxoztI0lR9rFqZyxC4SWsk449Xw4+dUrUUXGya3AospPlZ1SJ6r8lI7S2Amv28miBnYsVwUZe/0WqTEqLFrFStlQVOHb3oetKNknwM1bpOjz8R5KXfJ79r9a3DxeaVttpypAKlOeqwaH0ppK72lcTv/n3/q9nkvFqt4L26c0WCfF2wm41OBhf2i/axae0p36Pm2wtd+P3R5NtrGNMGULGo0GgsEggG2GwF7OwXN0Yb6ON3p1zWbTjDc+k8/nM4aHMhWsgkFA1LYoKPL+t/pM5x8BTdumz/H9IH+fyhmOX7oLxKaNlJZQ5QqgrRIAlRmzqlTZcVIDO5UWVEmqwuHvTt6DHcRX5UelqgtYbe9MJ67eS0FAlSvbroF7VerMjFPr1QZq9Rrseypg6n2U5tHYiG7JzrZolpkqJNu6pwK1z9c+VeVtU2Z6rB6vFKdNX2q7dEzZcTF9Vn0f7BONZfE5fD7fTRSz9jGfxR67+p45NliOSr0tXedkA7b9rvi9Db5qgNk1BnVu6Rjl/XT8qPdkZxKyXzhe+cz8X8eZgpm9ls2RW4vTU7tEbE/G9jDo9QBoU0Z2lpN6Skp/6LVsINB7Au114oCdckdUHsrfq0elHoAqAl7T9lwotsfBYzTmYVM0dsCd56jXaveF7aXqfQDcpJS1zQogtmei1JWew+t3AhS9psZ1+MxaKYLn2fGZToBNUWCzEw7s5+I70PPU4OD3eo6d4GCnomu2pSp+BXilOlutVltyjjILStfqGFIjQo0FtlcXMqvnqO+S7bdjpXw+jQ/SK7T70O4je9zq8RzrToLG64sDXLtAqLCUclIPQSedx+OB3+83u6lq1p5OeFIhSkGqMrGt5U5VEDSBQgHgVsCjlJ5ax7RGGYdRy9qmOim2V8fveQ8u+tTEiFarZdZxUXnYtCjByaaXSMNqFYZWq2XKOHUCVj4bFa6Wb9KEAN7HpoP1Oam47bgj70kFquuD+Bz6/m06kdme2ldU+HoPBVfN2NN3TYOF8S878UPHBgGLngvT6BVotK02Pan0uV5fM1n1OhyrTGxS40WBkeNCY6YsaabVY3gdjj99zk7zyX4O+/2xbQqujtxaHODaBUJwUBpPLTROXqDd2qZy1ZX//I6/7cQNVXq2p0Nlo1Y60F4ZQyextrcTLaSTXa1PKiVtG7/TeoCqkNkeVh0ndUWQVstfqTF9br2XZoopLaUKV98Pf9vXsZU+72fHG9Ugsa/Lc1R52zE7AppdO0+vp/dUr8b2Vu06l2rA6Pvr9G5tb7qTEcPxqgun1TBSQ4XXU0OH749LGGzvxqa7Nb6nyw30mko98zMbLO1sWTUatL36/gicwI4xZI8VPcemNh3pLA5w7QJRxa5KU4P7/J7p4fQQqtWqKagKtK/8p0dGJa9goBOfx9up9eotUNlpejuwM+kJGgp62n4FZAVhtaL5fDrh1cJlO6jA6R2xDzXeo0CgfWgDPJ9bgdsGJHujSACmaggVnno8lE40ZiclyOfstMyA/UMgUHBWb8r2arW/+TnQrtztGFEnulABQMeO9l2nd2Erbe07vhP2ETMLmZChfc33cKuK9rwGfyi2x69/qyeolKLL5TJLLmq1mlm2QWNKDUylBRWU9Tfvxf81IcSR1xcHuHaB2AoVaLdcqSyUMuIx6v2oN6QWue29KSCo5UmxrWxVgrwHY2Cq4PXawE5mGRW6TZPZHiGwkxwAoK2CBxWFUmW29WuDt57Hzzt5pnb8xqa8Onmp+sx8NjtOQiAEdixtfmfH6Ox3wmdV78aOUdpGiFJX+nwKyEoX2tdRIND3pmOI59seJMeBXk+3rVfDQPtA70nwttP5bQNOPWMbJG0qlUlKmqbeKXbM825FQSuQ6/uyPWAK76GUq73zgiO3Fge4doGoQlBFqcF7KkYCk53FRGvSBiteixasWoGqBFQ5cvLyXqpwOBEJKraXw7RiXltT+Hl9GzT1WH3+ThSk1hO0AQVozxQD2uk4fQ6lqRTwbPC1LXwFFd5PM+9sipJtU9Cwkw00lqhZiApc/J6fab/bsTw1Jniu3+9vu7d6wto/eh7bru9Pr6HGhB0HUmChYtd7qOLXPtfxrorffp+2caLXZV/wfF1j1imtXovoKuOgc0c9XPV6bVr89d6XesAOcL2+OMC1C0S9GE5iO6mAgMKAMSlC/q/X0sK6BABdR8XJxXvxGIKMDY6dlCD/t7dpULpKQQbYye7i5Nd2qkK1i/aSItOiumrhKjXDGJha/ryOrTQVhPR/AKZqh1J4vLatKIFt6pAKjscpOKllbnt4fBYmMXi9XlQqFfj9fkMD2++Bz810cpdre32c3+9voy+V8tV1TewXtluBolqttr0r+/1TbBDkc3Ls6vopUnD6GUW9fs2cVCPDrl6hNRLVs9P+IeioEXarijA8Xz1nbZM+F+cFx456frw3n7dTDNWRby8OcO0SoQJQ4NKJqNa8HTzXzDKdjOqN6OTS7+0JZ9NpjGHY3pveH7g5M01jIbRQ1SvS8+xzbarL9jzUO+H3PM+2jtl+9V61bXbyilrgvI9msqn1rDEYChWurk/itdXL4/+2N8qEBLuiCcGIz2/HpnRcKGDr2NLvOgGhXldTwG3vXY/h/dUAUhC0KVY1ztinOuZ0zOu9OnmJeo4CCc/n5zb1bNN3nSqr2O9OjQ47tmh7XuqR2bSlPrMjtxYHuHaBcGKq52DHh4D2ckhUnrSYOZGAHUXEhAxVIkr/qeJjO5TC0zgbPR8qZVUMvKft3SjdR4+Ax9jgy3Tpcrl8EyDabdLYg+1JKXVne1G2ArTTmTUGaCtUpWX5owCmQMN7qSK1jQY79sV3CuxUS1EDgmCmz6Lt0uP4uWYmEvgUvBqNhlHm6olTIdMD12sS2Pnc7AO9P9ut9KS9TUynd6GGiRo3BFR73KjHp33BOoj67ju1Ud+hjku+I3vMse3KFGgGqPaRPqPOH7uPHOksDnDtIlHFwglJJawbCCpVwQmg/LuCExWeKhj1JDTGoAVTO3kntsejSof341oZFg22FSjQDiB2AdJAIIBWq9XmsXDPIxtEVSkoqAA7C00JHnwmu6irWssUDf7r3wDM+iztH90/TPtMrXP2oXpzur0GP1PwspW60qdK5WocUj0DrmnjM6hnbifWUCkz6YbtUdCxPdJO48QGFop6zeqFk9rU/bFssFGDjp/rNZSdUOFxpE31WnzPjOdyLzTS71ynpoaHjn97OUez2TTAxPHGvudYZf9rvzjSWRzg2gVi0yq2QlFqxPY67PUxaiW+HuDwPupxcELqQk3+UKEpmGrbNRtME0AULNVbUSWttJ/ttalCopLUenc8VpMV2Fd6TSowpQ3tfrOvp/QblT3bapd90r7gj6apq1fo8XjMwmYFNds7s4HA9ujYJzxOKTg1bFTJ6mf6/lUJKzjp/Xh/Ta3X/lZvg8/Ge6iHovelkrfLPalXq16hZvvZlKsNmPq8bDuzDHkcwUupczu2R4NDvUH2t84H9bIIUtrPnEdqHDjSWZwiu7tAVIED7ZXNaaFRGeoWGzYYsUgoFTQnJyk+Th5b8Sgg8lrqjXGS0YPSgLdmF6qXqF6EKla9hj3ZqQBIf+r6NFWq7C/bw9LvbC+P7aGXY29VwkoJej0qQH0eKiO7srz+zWsqrWtTf+oxKDjbn9vp1gREJlToe9Z+soXtst9Dp+1s9BqaAGG/Cx0/6l3bQMjrqPdjgzDHQaeF7tqfCuo0JLjOSseqepD6XB7Pdv1Jbjtje9rqJes71Lbxf7aB9yPI8n8dfxxTnFP2mr3vZfn7FNl1PK5dIDY/rvSHJlnoxKIS04mjFdrVkte/+dv28qhY7JR620tTBcg2aTs7KXI9V1OjVTkodUR6SvtHLX5ei/1hLxPgNTtRWtp3tKw1a1G9CKVXFXhsik6VJJ+RlKd+rv2hQM9rc1dqPVbfh8bl+M7Vkrc9a/aTXo99TcpTFasqbTU8dKzomND3o16NGkLq0WsbOp2rVKGdlamUJ8cqQUiZAfaT7UVrX6gHp4aGelTsF9vw0diYjlGds7wGKUL2LanHXehLfMfFAa5dIEpHcYLQqwFupg71f9ujsS1ZemEaHO9EXXVSKAQCUof8nO24VXzJ7XabxBC1km16z6ZigJ04lv0s2i5bAfIz9VLt/qWXpM+hhoKt2O172QrMXp+mbQBu9vgotieiz6WKs9P7ZjvUK1JlTQDTWGCr1WoDZipUjgk93l6sq8+roEWxAUqNJ116wecG2jfj1HGmz6h9YAOQgrxWjwHavXFtt76/TsCubdMxwv5XalDP0/emAKx9qs+p81nnmiM3iwNcu0A0oM4JoQpEs/mUvuvkhQDt23Uwu6rV2snc4/mML7ANtPhJCxH4lB50ubY3UdTkgU7Po+1xuVwm4N1qtQxNY8fiALRRKJ2ATr0M9oXG01TJUYEw6E7wopWuytkGVztb01Z+qpTUY1TlWavVEA6H22itSCSCVquFYrFonl/pOH5GOkvbRBrYjh/aVKTtLfBvjUcSEIHt5Jd6vW4yOvm8jCfpHmYa62FfsL2q3DU5iEpbwUkNGx1DfGb1Mu10dRpUpOZ0DOtcIBDzHfE+mnwCAMFgsC1VXtujY5nPV6/XEQwG4ff7zQ7j9rk6vvjMHH+d5owj7eIA1y4SpYDUUrWtPT3epo6UVlF6h/SLZrWplagZbhrsViWhIGMrLm2n7RVQcauXoJNY78dJzuvxfIpazHbGntvtRrFYBNBuCdOSpgLUbVnYN3YMRu+lPwoKdoDepm47AQz7itegdPIaNSFG26pgZitK28Pgd3bMUfuc40zHnt5HAVHbr2NAx6pScDaY6v01cYX35WealWfTqhTbM2df6HPpvWjQaQq7Zmfq+1PDiucy09AeGwDawFPHqJ1Z2YkRcORmcZIzdoHY8QDb8yIQUJh2S4VrJ2TYSqfVarVtQaGKSZU+J7lahYw5KdABaAM8jQWRtqHiJmApMOoxtiLi57yHLdpezRC0PTMFbDv+ZNOj6vVoZQf1OmzvT6+hCtOm7tRbshU1AZ3vmZ8TQPmsmulpX4dGANO5mQCg3h8VtG2c2FUqtH81FmNXeVcgtmk1G2B4/04eOp9Vsym1vUrb2kaBetq1Ws0smdBKIjaw24adPQfoBWpf6ZjgmFaPm9ek96dere0t20bC94s4yRnfo6IKFGiPj9i0jMYOms3mTdSRejecaJpRyOuo0lDvSkEBuFkB2HEdTVjgtQG0AYNmrNneE7Czv5NaqlQGtJYVkCnqZdjtYVvVCOAxCiq8R6eF2ur5ap/y+dTY6ASW2re2t6ZKX9PB1eNSeo4VHlSZ21ShehHsRwUOtp9ULdtij0U7NsPncbvdhh6zaTEdqwryvJaOLdurtj1rgpa+B75PW+mzH9VD1/eiHpmuR1Pvn/dWILc9RH0v/Fznlnp/miBkz137c0c6iwNcu0AULJSCUKuaEwW4uRyOZoGph6EenE3v8RhdgKyUCycowYaWvE116b07nWtTNgQyPqO9Jkw9O93GQ2knWyHYFKsNZmoEaBtVYTLjSz02vZYaAva91HuyKVa7DbaS1v/txAJ+xv5Xj8M+V/talb0+uwKjeh/ap+rJ8H52rNUeT7Ynr4BsJ3/wumqcKTOg410zHO33qH/7fD6T1m9fg+3Qvu8Un9RnUGNG56YCKseH7RnzfbCP7WonNFqcdVyvLw5w7QJRCkGVLsECaFfQNrhpVhSVls/ng9frRblcblOi6v0o76/Kn5PRVmKc5HZcgZOWyR71ev2mxAKXy2WsdaWxqAyUkgNgdnlWGkxjHXb/aYxBaR+1tu1KFTa9SiWo1jvvqwrNNiaCwaB5Bio69XZsIRDZnh37QN81n0mTS7R9/F77To0a9RJsWvVWYGlTw43Gdnq/UmYaQ221dpJZ9F1on5BytmOomvjBdinNyHdnH6P0m2Z4aiKNtoVep4KYXQNTk3c4FhR0Wq2W2aOL70qzJLUvyuXyTQvg2cf6nh3pLA5w7QJRyowWmf7Pv/lbN7uzM9l4DukgTkalR3TC8zzN5lJ6TVN47dI/agWrxU2lqhU4VNlSwSidqMqS99RMNbbVLsGjbVAPUPvU9hD4XNofwM37XSlY2TEyBXCNq/CeqqRU+anFru/A9pDsH6U3dSGs9od6BVpPT+lDvZa+X/WINIam3hnbr2BM6lGrmai322mDSb2/9ovNBNjJDASXToCn71zHuvYrxxmBmN9re21vyI5V8jrKPihbwr60vXGeY8cJHeksDnDtAlGFp0pCq0wAO1SaJk/oZNU4mcYbKOrJ8VpqqfM8TkhVtNpOBQwKgUjBjTQkgDZloCDD/3UyM5bDRbwMvmt8ie3S1H9VUmqZU/l0ehZbyalXwOfstK2K/tAbsksJ0fPlOUpBsa4h70tlbK99U+DQ98a263jpNK409tgJEO34lJZ6oifIZ7cpaB1fnahR/Z7jwR6P+r/9PHod3kMNKXpG2rfadh3vtxq7Sk9rrFBjm3b7+E702jTS+P5tBkHHjbbTkc7iANcuEK7ZoZLzer1te0HRogPag92dkgOA9nVFtkWp9GOjsbNVOievWt5K57GQrAagVWFQcbEdVHZUflxPpgqGBVY1tqT7WunaGu655Pf7jZIgwCmFBdxc4VstX96HSpQKlaChsSulvmyjQL049RrZz6FQyKxd6xTXCQQCqNVq5v3q+jl61QpgnfZ34lihN6hlrNTYsWNhNnXF/mg0GqYv1QhRWpTHq7fMd620NkUpahoEGkvSGJZSkHx/NGD4v3pwduzT7Xa3FcfVe1J4fZuS1Xek/cz5CaAtOYZtCIVCqNfrKBQKBkjVe+Q4U+bDkW8vDnDtArG5b40N6MRWD0Ytb+BmekItRo2lKF2kXpp6LrYlTCFgaeFQpZpsOk6Bx7Z4ObFVkSmA6nWVsrOfTZ+FacwEvls9j3p8Nugr5dnp+fX5eB6VHj1kfdZYLGaql5RKJdTrdZRKJeNFagKE9oFStXYmHd+/vl/2KWk2G0zZbwpW7Aven58TKPQ59Fm1HxXUtP3qbeh9bTrcvo/2BcX25LTv9f0qsGmcTa9tv0N9bp2Hepw+v3qB7Gv+by+e1uuyn+xYpiOdxVnHtQtErWulPoCdSa00laY427EipcU4gZX20vN5/U7gptUcFEQAtAGkTmRVWpygbLNa3ur52d6CWtuqqHSNDM9RGocegx27YrKJLZp+rhSWxlVsKk3bZVOysVjM9Flvby9OnDiB4eFhjI+Pm+QK9kcul8MXv/hFrKysIJvNmvdDQKO0Wu0VJqjwbW9Xj9f3qn2loGPfg/1uAzY9ZV6H/dGpT3hvjfWwn3lPxpbs8akerwKqDXw6LtVoUXDSfmGbNDvVHldq6GlFEe1XfQbtLzXelJZVUFYwo9jX/14XZx3X97CQHlIKw6ZOgPbJyR9a/FQINi2mngxwcwVyVdSdaC2d7LyGHbC2qTMNXKu1rxScehIav+I91Sq1rXnbHrPjLnbAHbg5tsf+VIqQz0eFr/1OA8Nen+Xz+RAKheD1ejEyMoJ9+/bh6NGj6O3tRW9vr7kGQadYLCKdTuP69eu4cOECtra24PV6USqV2gL9fE57HKinY3ug7Csqbya4lEqlm56Hv/WdanxTx4u2Q++tfaNjQSkziu3B8Z4cbxzXOob0XNtgUHDSOKF6q52MLI5xfdcKkva40kQQBW9dGM62cMmAlu+yPTBHvr04wLULRD0sYMda9vl8pn4clYpOIJ7L+JIqd500eh8Abd6OrkPhMTaoqKJR3l+VnLZJz7M9uWazaWJbnPC8rk37qEKl2IqA99XrKP2oz6QKne22lbF9bQXdWyUG+P1+VCoVHDt2DHfeeScGBgYQi8VMvM7v9xv6rV6vIxQKYWRkBB6PB6VSCbOzs8jn823eik1XKQCrUlejgtSVPrsCtI4FpVf1fdkJKPY7oMJW40GrftwqTqhUrG14sG/V6NB3pm3ULErtCzV8+L160Wo4KUWs11JjST059pNthKm3pV6feqXat53oZ0c6iwNcu0BuRSPYnpXugsxAsQ1OBAbNbNP7UBmw4gZpGuDm9UBA+1YrvDcBwA5y294Oj9EAObMDda2YKjje07aGdaNK25L3eDxtQGo/N8UO1vP+vKZSjJ08BR7LRBWPx2Mqftx555340Ic+ZBbDrq2toVgsYnNzE273dnHdSCRi+n9wcBB+vx+JRALpdBrnz5/H1atXUalUUC6X2+KDfE/aBj6v7a2QbqOC7xR30Wsy6YXPqe9eE0EUnNhvfB+8jnraanyo0lcDTXcd0PfMdvCd67vQ5CF9Fn2vasTwuWxqUe/NQrnAzdU19Djd144UqgIVkzjY52yrZgG73W6zLtFZhHxrcYBrlwgngE21AO2Vve0kCLUC1Rrl/7YCVkBQT0ZjITyWv5VKBHATONjUT6ekCKXWbIta6UxKJzrHppHUilcvRK1u7Ve2r5PlqzSSy7WTCMN1N/qcPJ9Zg11dXThy5Ajc7u3sx0wmY5QZQahcLiMQCNxUssvn82FkZASNRgOXLl1CMBg0GZPqZbHtCqraF+pJ6IJc9qW+Y8ZGlUazPVR7DNpjwP6eoh6eptarR0sg5GdqlNhLHXRs6Hvp5NFoe/TZeC7jhWxnJyryVuNJ76lzRI0onW8cR+qhadKMQxm+vjjAtQtEOXi1MHWy2UDF88ilK71IK5pWH69DqdVqRukCNysb/a2Wqk5CfkbLU2MIek0FU7ZHqRs+E4A2Oo3KVddQ6WcAblIgfAb2IxWQAkWnOIcNalTqGs/w+XwIBoOmHZVKBYFAAKVSCf/0n/5THD9+HNeuXUOhUEAkEkEgEMDi4iJyuRyAbeW3sbFhPB2fz4fFxUVks1ns378f9957L86cOYOrV68aIAkGg6ZiBfuRNCvba1NV7AP11tjfNDiY5UgwdbvdKJfL5vl1cS0/05qYSrXx3uoV8jwdJ2psKVjZi575PjXBQpN4mDlqxyjpcdretnp/ZCl0fPPd2Nm7Oi6VFdD+1SQXrdChnqP2kwKcDfiOtIsDXLtAqFRtaoNKiYPe9jhUEVDUsuMEYtkkWvKdOHpOfrV02RZSexprUK+JykEtfZueUgXbKbZgx3TUY1Tqhm3V8+34gSocmzJUS5/XsOkom4LVv/V5eO+xsTF4vV4sLy+btPjNzU3Mzs4awGs2m8jn80bxTkxMoNVqYX19HSsrK+jr68OePXswNzdnlDqf104eUAWsXmWnOJHbffOuxp3eKSlj9QjsfrW9atsj65S9qfdSL96muDl2NLPPzqy1vSo1hmzP3I5r6dgg8Nqp8Opla5aqLknQeCjvR9Cy1xPyufReNpPhSGdxgGsXiHoySm2pgrKpOaAdDDghWWvNXl+l5+n1NI5h00BKmSg9p56LxrPU+lWqxQZBoH2/I9sSVe9NFas+j20N82+NqajCVzCi0lBDgc+t11TQ4HXVA2M8cXBwED6fz2wOWSwWcf36dWQyGQwPD5trVqtVU4preHgYPp8PtVoN+Xwe1WoVY2NjSCaTWF5eRjAYbHteXdyq8Rz2rypB28NUihmA8cht5a1ejsawdG2b9pWOA0160RgUz7fPIRiwTwlcPE7fo7aT48SOcanoO7eNPG0T26FV4fm/Gnaa9GKLjrNyudx2f/aDsgvsa0deX97wVptf+9rX8J73vAdDQ0NwuVz4/Oc/3/Z9q9XCL/zCL2BwcBChUAiPPvoorly50nZMJpPBhz70IcTjcSQSCXz0ox9FPp//Bz3I97LYoADsAIEqbrU0G41GWwFY2+NhkJ+fcRdgWvys6MBJxooUXN+k3o4NFjzO4/EYOstWehof0J2PlSKi0otEIm1eIq+jAKyegCo2Kr1gMIhwOHwT+Cgg0+PUPqaVr8rLPp99roAcCoVQqVQwMDCAnp4etFotdHV1wefzYXNzE5lMBv39/Th06BDi8TgCgQD27t2LQ4cOYXR0FGtra6jVapicnMTg4CDcbjeOHj2Kt771rRgeHkYqlWrre46FUqnUZvXzt1KjfH+awacp7qRbtU4ij+WzAjAxOe1T3ddNKUM1OPhbgRpAm1Gjm5ryOy2kzL3F1Cjhj01JapvVmLKp4U7vU0FZ2+vz+UzJsVKpdFNsWZmQUqnUVlRamQzuFt4JPB25tbxh4CoUCjh+/Dg+/elPd/z+v/23/4Zf+7Vfw2/+5m/ihRdeQCQSwWOPPWasDQD40Ic+hHPnzuHLX/4y/uqv/gpf+9rX8JM/+ZN//6f4PhCNqah1S2tPYy86AVTZqJekFI7GldTLoIVseyi2x6TXUepOs6LsFGMNZNMKV1CiMrFBUhWyxh1U+Dy2MrE9Dz6btluz4/jDmBMBXtunwMb/FYyj0SgKhQLy+TzC4bCphjEyMoLjx4+jt7cXoVAIkUgEPp8PiUQCk5OTJl4WjUYRDocNgI+MjKCvr68NVLQd6gl2ojj12VSUUlRPmH1pU6cqNt2m44PjU40sGgg8To/3+/1t8SBg2xAikCq9aY8XArTOD4J7pxR3ns+xpG23aUc+B9unXiKfTbM32XYaTVqwutlsthkOCqoK7I7cWt4wVfjud78b7373uzt+12q18Ku/+qv4uZ/7OfzgD/4gAOB3f/d3MTAwgM9//vP44Ac/iAsXLuDJJ5/EqVOncPfddwMAfv3Xfx2PP/44/vt//+8YGhr6BzzO96boZFNKQYFLgUgtccbCaGnbMQmlKdRKVMpPJ7wGs1VhaTZXJ7qnEyWnouBFq51tUsuZn/FaSvXo3wrwANpiI0qRsR/0OexYDkFLPRM1ALQP9TputxvRaBTZbBZbW1vweDxm25apqSns3bsXpVIJoVAI4XAY2WwWHo8HQ0NDGB8fx+zsLAqFAsLhsKHvent7MTw8jNnZWYRCIaysrBiPlH1ImtL20NlnpBXtd257L0rFab+TKrOVNc/V1HwFeD0HaF/Mq8aAen8qNGT4t45bgpo9rtRAUsNLr6nPzetpO5Q25BjSOpJavcTv98Pj8Zj3ZVOBvL/ubNDJO3bk9eUNe1yvJ9PT00in03j00UfNZ11dXThx4gSef/55AMDzzz+PRCJhQAsAHn30Ubjdbrzwwgsdr1upVJDL5dp+vp+EGV46odTjIe1H+qSTRcytJTR7UOMOqvDV+6DVXKlUDN2hFAuwA6BMNCBgKlVnUzb0CEKhEEKhEBqNRltFdLV4O1GMvJbGReytOmxrmNel9c52aHtIFdIqJi3FzD218hUotbAvszHpVfl8PsTjcRQKBSwuLqJer+PEiRMIBoOYn5/H8PAwDh48iGw2i2984xs4ffo09uzZg9tvvx1ra2u4du0alpaWkMlkEIvF8M53vtMoRJY+Y8moVquFcrmMcrncVpW+0WgYb0G9MvZrIBAwAApsK9xgMNiWFEPvlyDAd6tAqbEl7UcFeo4dUtL8AXDTsdpGrgXj9xxvfH56h0rnMetUCyFrHE69Vvtzv9/fNq4qlQpKpZLpawU3HkNAo1SrVZRKJZRKpZtA/FYZubah5sjN8o8KXOl0GgAwMDDQ9vnAwID5Lp1Oo7+/v+17r9eLZDJpjrHlU5/6FLq6uszP6OjoP2az3/RCUOhEXShAUGloWi4tvE7UkIKUfbx6JPxOLXid6JrdRQuV/7NtSp8oAFcqFaOQgM4emXpxNmiwjVRabJvddipejQ3a1KdavNov7FPbA1Xr2I6r5XI5TE5OYmxszJxbKBRQqVTg9/vR3d2NfD6Pra0tE3/jQt0bN26g2WwimUzC5XKhWCyiVquhUChga2sLLpcLBw4cQLVabaOhbBqLMUCbftL3yH6h56Dgr+NDr6H/29Qu+0DjVfzfPlY9c5tCtscjRQ03GiRa31LpQk2WIBh1YhLUKFIv3KbTNfaqSxDsYzuxELy2fm97svq3QxW+vuyKrMJPfvKT+MQnPmH+z+Vy31fgxQlPC1CVAtBOd1Ch6+QHdray0Ilh00Wc7ARE3puxBwKHBr+Bm4FSr69xCQVDXVSqAEBLutXaSZ9WBce0aX1mjb/xGdk/qlB5Tb/fj2Aw2ObhsY9sOoqZfbwXlbu2g/1FzyoQCODw4cP4wAc+gP7+fjz99NMIBALI5XJoNBqmSkapVEI2m4Xb7UZPTw+OHTuGer2Oubk53LhxA4cOHUIymcTc3Byy2SxCoRCWlpaQSCTwgz/4gxgZGcGf//mfIxaLmexDJsSw7fQCtdSTxjT5bui1a19q8oOujdPUb5t6Zj928o7pBdlJFQoqCkQEDAUhG0x4PN8BwYLbwnD7Hx2fWg3Gpsk1tZ1eYbO5U1WebdW5qdvFEKi0D/hc6tHxt8ZhFcRtytORdvlHBa5UKgUAWF5exuDgoPl8eXkZt99+uzlmZWWl7bx6vY5MJmPOtyUQCJjFp9+PwgGuyl6tyVtZbkplqTJWz8X+XxW9vXU976UKS70u9bZ4rFrsbDeVl1KeBCs+p4KTtlFjXxQqGz5zJw9Pj9V9kxS0O3kB7DuCNTMx2ecaB/H5fIhEIsjn8zh+/Di6u7vb3pnP50M4HDbVLxjzKhaLcLlcGBoawvz8PNLpNNbX11Eul9Hb24vFxUXk83mzqLnRaCAWi2FqaspQYcwCpULWRbf6LDbQ6BYl9ljgMfruVXnrQlmNMSkrwHeiQMk+57VsL5vGh2aWsl0U2zPT90xg1ntqdiDPseOo9Jb12TUeqB6mtkW9f/tzu638v5OxyXmuwO5IZ/lHpQr37NmDVCqFr371q+azXC6HF154ASdPngQAnDx5EtlsFi+99JI55qmnnkKz2cSJEyf+MZvzPSO06pXaUMXO/9UatakGW2EAN5c80k0Y7YmjFq5NIdkUIP9WL8pOTb6V5we0B/V5LGkv+75KwWgWIxW23o/eIjdxVNqxXq8bpa/3Jr1Iq96mkqgQ3e7tFHhec3x8HPl8HvPz84jH46ZaRk9PDxKJBIDtTQbL5TLm5+extbWFrq4uxONx+Hw+rKysIJ/PY2xsDIlEwijz/v5+pFIp+Hw+9Pb2YmBgwCQCMN5E70izAdkujavYyw60z3i9cDhsYl8cH+ohaJzIpiT5nZ0lSK9Hj1HA0P61K6t08up1PNJwohfE/rAzE3UMcn7xfZIpoCGgzwC07wHH43Ru8hiOe22r9rVNvarRZVP7jrTLG/a48vk8rl69av6fnp7Gyy+/jGQyibGxMfz0T/80/vN//s/Yt28f9uzZg5//+Z/H0NAQ3ve+9wEADh06hHe96134F//iX+A3f/M3UavV8PGPfxwf/OAHnYzCWwgnAwPY6jEAO5OaoENlyx9OSLtop+0h2dYmaTO1WlXRsXyUemi08tU610rzuq+SegOkdBQYeE/1AjTl36aPgHZKS7eVAGDW3WgskH0QCATaFBkTXWhF0/sMh8PmGnxeKjcqy4985CMYHx/HlStXUK1WsWfPHly/fh0LCwsYGRlBKpVCq9VCX18farUavva1r6FSqeB973sf+vv7EQqFMDc3h3Q6jfvvvx+bm5v45je/iaWlJdx9991m0XJXVxceffRR/M3f/A2Wl5eNF6TARYXIccB3x9iYKshQKGRoRibOBAIBk5TAJKH19fU2upTvngkg9By0UgT7l95xs9k0u2uzxJjS2eppK1XLZAwdj+opc1xr7JPv0Z4rHCfqnatBQjDTdnPMamYkz1XKnG3ic3P+KWjRKwTQBoA6Jx3pLG8YuL71rW/h4YcfNv8z9vThD38Yv/3bv42f+ZmfQaFQwE/+5E8im83irW99K5588kkz4ADgD/7gD/Dxj38cjzzyCNxuN97//vfj137t1/4RHud7U5RnB3Ymm03vKZWhwMHJqBZeJ6/K9oh00vJzpTn0eHsbE3L9mlkItFfktq/BZyBY2hSVWteMlwDtClppHS6Q1Z2Fw+GwUZKhUMhkDNK7AmDW67A/Gd9Tj4X31hhKtVrF+Pg4xsbGEI/HMTo6at5PNptFOp1GNBo1mWmBQACxWAyZTAZLS0tGmXMzRRooVPDLy8vIZrPo6ekx72t4eBj79u3DxsaGARZugaLKm++g1WqZvcH0fXg8HkSjUbN+TMGNNCjXm9ET4j1cLhfy+Xzb+1EDSGOr6nUoNcmxwvVv9u7Y6oWrh66AZdPU6lXxHpqqr2OdYlOTbL/NTNjttlPteawaRxxP2keaccv3YXufjtwsbxi4HnroodftVJfLhV/+5V/GL//yL9/ymGQyic9+9rNv9Nbft8LBbscOgJ3Ct2739maAVMjlctns16UKBrh5Q0EAJmmBE5UApV6cpiy7XC7jbek5Cqa8hyqLVqtlCsFqdhfXvyhVpcF2YCeOop4DF3gyNsb+IbD19/fj2LFjGBoaQiqVwsDAgLlnNptFoVBAOp1GJpPB6uoq1tbWkM/nsbKyclNCgsbRVEnys0gkgrvuugsDAwMoFotmaQBpv0wmY2JXPT098Hq9uPvuu00/M5W7VCqZVHGu+2q1Wrh48SLC4TA8Hg/i8TgqlQp6enrw+OOPY2pqCp/+9KcNXUkPyKZUqRiLxaJ5hlqthq6uLuTz+TYaL5/Pm3cWi8VMUkl/fz/q9bq5Bt+JVmPhe+A9Ffg77dVGloDJDurhKGBpcVqOL50XncBBkyEIODoedTGzUsq3AhB+zvZzPKvxpF4gPV4KPUvux8Zrko4maNsMiSM7siuyCr/fxfaqgB1L2Y4P2ZSIKg217BQk9PpAO7BpVqBOYvXEgJ3t3m1goXVue21qTauyVKtdqSBVkPQ4td0K5KT1br/9duzduxd33HEHuru7kUgkTMp5vb69YWO9XkcqlUI+n0cul0M6ncbKygpefvll5PN54x3R6uZ6JyofenORSASTk5OYmppCNBrFzMwMarUaotEo8vk8isWiASUChMfjQXd3N+LxeJvFzjVJHo/HeI1erxf5fB6rq6vI5/MYHh42yj0QCGBiYgIjIyNYWlqC3+83wKVGTrVaNYCYSCQQjUaRSCSQSCTQ19dn+i8ajaJWqyGXyyGTyaBareLVV19FOp2Gy+VCIpFAKBRq88Cj0WgbhaYp7joW6e3ZMVPGi3g+37d6TByTyhooRa5Ao9/biRC2p8/xamcz6v3sMc1razzKpqB1/gIwVVN4rG0A0ZNjdRZHbi0OcO0S4cTkxOIk0omqQEQFrrSeHt9pAqsFzGN4X3uiq8XLz/UaNk3D9il9YmcIqmdjW8KkWuz72tlilUoF3d3d2L9/Px599FEMDQ2hv7/fHJPNZm9Khe7q6kIikUCtVsPAwAAymQzq9TpWV1exsrKChYUF8zwERQXOrq4uNBoNHDhwABMTEwgEAqagbqvVwtbWFlZXV82+W9lsFrlcDl1dXQiHw6YyhsZEmHARCoXgdu+kq2cyGWxsbBgqj88di8Xw3ve+F6+99hrm5+exubmJQqFgYlOsOB+PxzE0NISuri4DXJFIxCSMEEAKhQIymQyy2azx3rPZLIrFIlZWVrC6umooVYI5Pfh8Pt+mxBUYWLdS6T2OW4/HcxP1CqDNY7fHEcUGOAUaexkIAFORX8e21vLURB2dc5r9p3/r/dTLU++rU+Ytx7IaAQ5V+O3FAa5dIDroGf/RunRqmVKx6mRnvEezpjRmoFamxgEYMwHQZo0ys4zXB3ZS0jUtmxOQlJvtIWl2lrZfSxixnYzzMQZGT6PVapl08kAggA9/+MO47bbbMDY2hlAoBABYWloylUW2trZM3CoajZq+pQKORqOIxWLo7+83gHPq1Cnj6dTrdRQKBayvr5t+KJVK6Ovrw/33349AIID19XUMDAwgHA6j2WzixRdfxI0bNxAOh5FKpcyuxsFgEAcOHEA2m8XVq1dRLpcRDocRj8exvLyMRqOB1dVVnD171iR6ZDIZvPzyy5iensa+ffvwAz/wA6hUKshms3jXu96Fd7zjHTh79ixyuRyy2axZNxaNRtHT02MselKO9CS5oSUTU/L5vPEYY7EYent7jbHDorGlUgmrq6uYmZnBuXPnTB8SBAm+9CB4HsdENBo175ZUMWm3VquFXC5nwIsUaKFQaDOOSC2ybZo8pPNHKWwde8DN2YkEGzWUdG0jhaBMA6JUKplj3W63odZ5De5pxnvyednWYrHYdrwjtxYHuHaJ6MTU5AylyAgIpOZsYALaKUVuEc7/1QpWy9FOjrBpSRVOeN5frVpeS9fGADuLkanEqIjsIDafkyDJFHamhu/btw8nT55EKpWCx+NBLpdDsVjEtWvXjOdBCs3n86Gnp8dQcayOr0F8ekAjIyPo6upCsVhEJpPB1tbWTZ7DI488glarhfn5ebRaLSSTSSwtLWFlZQWLi4uGJovFYsarqtVqSCaTGB4eNnEwUpiRSAQAcO7cOZw5cwbr6+sIBAJmndjq6ipKpRLe8Y53oFQqYX19vS3eEolEEIvF4PF4EIlETFYn42gAbjIQ+KPp9dFo1MSkqPS3trZMrCmVSmF0dBSlUgmXL182wMh3yT6y62nqZqbqcXSqsGF7ufaY1rHIY3RdoJ3YwR+dV0qja+IS6XKlr5W2VEpUFyCrQafxXP1MDTh6nppo5MitxQGuXSC6UBdojyPp+hL1zCg8VmlAjTcB25Yj06B5HU5U/uYEVQCiglDFozEOTkSd7BRbmdHyp0dFZcWJrW2mwqCSd7vduOeee3DfffdhbGwMjcZ2Kan19XVsbGzg6tWrJsZEi93v92NqagqJRMKUW9JqC11dXeZ56TmRPgqFQpiYmEAymTQGwJ133olyuYzV1VWEQiG0Wi288soreOWVV1AsFhEOh1EoFLC8vIx4PI69e/ciFAohmUwikUiYElButxuxWMxQl6dPn8bs7CyazSa6u7vR3d0Nt9uNjY0NQ9nVajWsr69jc3MTXq8X5XIZwWDQxOL4XjY3N80zMaMxHo+j2Wya2oblctlkKLrdbkQiEZM8wrFB76lWqyEcDiMWi+Htb387+vv78eKLLyIWixnvgf1K46NcLhtQYqkvgoNNu9FAqdVqqFarbdl8tueu66IU9GyQ0WLL+pnthfF57bivshs6f/gdP1fj0aYbdW7ac4LP7SRnvL44wLULhAOaQW1dJ6UTHdipgs5Jy8A1A/PATgYXPQy1CqmkFLQ024ptIbXDmm2kiZSfV+qRSoixN52gHo/HZNUx0UGtXoJUvV43HhKv29PTg5MnT+Knfuqn4PF4sLi4iHK5jFKphOvXr2NpaQnXrl0zae9bW1twu7eL08ZiMWSzWdMGUqx+vx979uzB0NCQSa7Y3NxENps1MZ9SqWS8G6aNE6D6+/tx/vx5PP3003C5tlPFR0dHcf78eXi9XkxPTyMWi+GOO+5Af38/enp6sG/fPrz66qsmY7C/vx+lUglzc3NmEXC5XEYkEkE4HMb6+jr8fj9yuZxZr9bf3w+Xy4Xp6WnkcjlTwikajSISiWBwcBDhcNgAjt/vR7FYNMZFsVhEsVg0G1fS841EImbNWbVaRV9fH7q7u1EqlQyd98ADD+DRRx/F4uIifv3Xfx2ZTAZdXV0mQxKA8aYDgQDcbjcKhYIZB5ubm+ZvAgqBit41DSyCAMcxkx6UBtfsQ44ZjkkmryioUTgWdF0f9zhj+zRebHtzBCtdb8h5ynHLrElm8hK0dW8yR15fHODaBUKwUIsUuLm4JwFHF/h2KkCqqd0ar9LzCFQEF9sSVg9LeXta0mqV6n35mdKAADpOWI2j0WJXr7OnpweHDh3CfffdB5fLZRQvFRfT3RkfA7YLPkejUfT29raBJT0Beorz8/NwubYrVQSDQUPx+f1+k6TAdnE7En6vwFooFNDT02M8G24wSdCvVqsIhULo7u429BmAtsSLjY0NBINBFItFVCoVs68XKU6CLRU9vVMCMauoM3uxVquZeFMmkzHV5Le2tkwWJQ2MZrOJWCxmKDsaFsxEJPgXi0V4vV5MTEzg/e9/P770pS9hZWXFfE8QpTfCNvOaWrlCxw3fNT/TJRz0xvjsNNCAHcpax5jOGaUImZbO+UWPX0GKx9njl/FjAG2xNjXgNEGD5ys1rp9r5rADYrcWB7je5KKDHNjJvLMtOn5OhcBYgZ3WqwkR/JzARMtYKxXwGF0QaidfAGjzuHisJoiUy+U2pa4VDQieBFfGowi89GhoYbvdboTDYXzoQx/CgQMH0NPTg+npaXOPUqmEdDqNbDaLZnO7ynowGEQ0GsXY2JhZRJtOp5HP57G0tISNjQ1zfrlcxtLSErq7uzEwMIA777wTiUTCeAzNZtPExxqN7V2HmZ1XLpdRr9dx+fJl49kcP37clHKanp5GV1cXms0mrly5guHhYSSTSfT29hpwIl3ocrkQCoWwsbGBSCSCra0tZLNZ7NmzB7FYrI0aLpVKeOmll+D1erG5uWkSTZLJpIl3sd+5kLlYLCKbzZrkDi2vxHcTDAaxsbFhPLx4PA6Xy4XV1VWMjIwgHo+jr68PMzMzWFpagsfjwT333IPjx4/jE5/4BDY2NjAwMGAq4TOGw3epxhaNJN25u1qttilyAiTByuPxmKQIjhO+R44rUqBkCnTtFOePUnmM+5EpIFuhHpoCkc4TpWIZsyOdTq+QwMdsUY2BBQIBMw+/37ZveiPiANcuECqSTjy5UngEDZ1AtCSB9pJOmpKrC44VnPR6eg1dbMxzNMVcqwQQEBnr4DoqTfxgewhcrVbLZCcqhceEBrfbjaGhIezbt8/EUxjf2draQiaTQTqdNgtkWSswFosZpUSlXSwWsbW1ZdZaUVkGAgHjiXCNU39/v6H22N/r6+tYW1tDNBpFV1eXSXjo6+vDvn37UCwWMTw8bKirYrGIkZER44HQwldlxiozjUYDqVQKQ0NDWFlZMfQe117l83l0dXUZJb+0tGSSI3w+H0qlkuk7ek3MGFxbWzPUZ7VaNf0Xj8cB7GS40esolUomhZzVR5aWlkw8MB6Po16vo1KpYHNzE4lEAh/60IfwhS98AVeuXMHY2BhcLpcBEI19dqoLaBs3akjxc55Hg4JjnQDI63FhPfuafytNTRpUn5nX49jXdnB+0XjQWqJ8jxTOWU2kUmbE/o7z2knSuLU4wLULRJVbp6CzndKu9JvuJqyTQGNidtaebYHa99KFnVQS3GhSKRWbZtFMLz6LUjO8JqktVRRUzoVCAX19fThw4IDZziOTyZh2r62tYXZ2FisrK9jc3AQA42HVajWsra2ZWNfCwgKq1arxOhSQablnMhnMzc0hEAiY2BMVb6lUQrFYxJUrV7C+vo677roL0WgU3d3duPfeexGJRJDJZDA2NoaLFy/C5XK1Zft1ShtvNrczAtknIyMjuO2228yyhGAwiEgkYhZN+/1+VCoVbGxsYHNzE8Fg0FRMIQXHviWwZLNZbGxsmEohXF9GS5+eoyZE8D01Gg1T05C0qsvlQiwWw+DgINbX17GwsACPx4P7778f8Xgcf/iHf4hcLmeATxMpeF07Q9U2yHiOJkJofEmLJuui9VqtZjwxUrc2hWhTlHaykcZ1+TlT25US17mn1DrHniZZ6Tyzswv5DI7cWhzgepMLQUUL2mrarMa41PJTIKBS4PGc4DppgB2PjJl6LDSrMSZap6o0FDw1FZ40D61LbohIxcK2kFqhBU1FrgVygW2QnZqawn333YfDhw/jxo0bZmPF0dFReDwezMzMmJ24C4WCoV7oQSwtLZk4TrFYRKlUQiAQMN4M28y4Rb1ex/z8vPG+WN/wxo0byOfzuH79Oi5fvoxWq4VvfetbGB0dxXvf+1488sgj2LdvH9bW1nD69Gl85StfweDgIMbHx5FMJnHs2DEMDAygUCigWCwiFAphc3MTW1tbSCaTiMfj2NjYMPt0NRoNfOUrX0E0GsWFCxfMeq+trS0899xz2NrawsGDBw2QXb9+HVtbW4hGo2YhMT3d1dXVtl2SmcRTLpexuLiIeDxuPFym8pO6LBQKyOfziEajGB8fN+MgHA4jkUigq6sL165dw7Vr13Dbbbfhvvvuw/Hjx/HzP//zOHv2LKamplCpVJDP543yt4GJY5nfaWxJayVqGj9pPZ0PCjIcm7yOrrFivJJr25rN9t2WgZ1MXE380Psx1sb/7RguhWNcK2iwnboPnU3XO9IuDnDtAqE3pBQhAUHr96m1xs9pJWpMSr0mXks9OR5nVxq3A9v251rpAtipv6aFRpVe1Gdh2jXB0p601WoV5XIZQ0ND6O3thdvtNouJuV8bN1NkPIV9RkXAhA2uM2JbmOWmbdZ+JZU2Pz+PgYEB1Go1zM/Po1KpIJPJGBqtXq9jenoaV69exdjYGM6fP4+LFy/iypUrqFQqxtPy+XwYHBxELBZDLpczsY1SqYSlpSWMjY0hlUqZorelUslUat/Y2MDFixcRjUYxOTkJAFhZWcGdd96JeDxuAIleVKVSMd4RqVPWP2T8UL0ELjxWapaeKPuF5ae4ezM3xQS2q5D09fUhm83i4sWLOHToEHp7e/H444+bMch44OzsbFsyiSYp6LgnOCq9xvZzDOqSDoKOLslQSo8JLWqw6VjmZ7wv783rEkzZHp5HGppjHdgxKJUt4fWUXtSED53njnQWB7je5KKTgBYeFa8CiGbuKTgptaL8OwPXpKcUcAg0pJlUaXHiaZYgvSwtV8SMKU3mYNs0QM0YBpVLuVxGNBo1QXQG7Rkrm5ycRCAQQDabRTgcRnd3N1KpFNbX13Hp0iVcvHjRBOe5Fmt+ft48p9JUoVDI3AvYVlZU8tq/uVwO6+vrWFpaQigUQldXl1HqGxsbqFar6O3txbvf/W5cunQJp06dwtjYGL75zW/i1KlTSKVSqNVq2LdvH3p6etDX14dQKITV1VUUCgX4/X6T5r62toalpSUMDw9j//79aLW2S0b5/X4cPXoUi4uLWFpawqVLl1CpVExZp7GxMZRKJbRaLRMj08STgYEBk7jC7wAYwK3X6wiHwwBgPApgOxWcsblWa6cKisfjwcrKioltkioOBoMYHh7G+vo6nn32WUxMTODtb387fvAHfxBvectb8JGPfAQbGxsYHR3F4OAglpeX2wwiXTelC6dVyasoAKjhptfk+CZQc9wTTHRBvLIayijovCIgqsGoCS2kPjneCMz0EoGdSjQKUtrvjry+OMC1C4SAogCmiQrKr9Ni0zVTQHuqrXpXBCFOIqVUeF+Nf6k1zs94HEGB1Ix+bk9IKhqlEnXBJUFM1+50d3cjGAwai7mnpwepVAqhUAgXLlzA9evXUavVTEYdn1HX4bDiBfuTWWx8Tj6rKjZWm6DXx40dt7a20Gg00NPTY8oiFYtFXL9+HX19fXjggQcAAGfOnEEul0NfXx/6+voQjUYxNzeHCxcumDVrPp8P8XgcoVDIxDoIQCyJ1NXVha2tLayvr5udlAksfMcsZUXDJBQKoVgsYmFhAalUyijvQqFg4mbsdwL45uamUeD6w5gRaVdWxkgkEgYUs9ksfD4fMpmM6YtYLIajR49ifHwc73nPe/Anf/InmJubQyqVMjFGGic29c0xrQDE/zWZQmlwt3un2gX/t+lwjnvel+9aS5vZc0I9Q2UmeH07TgzcXMuTn9nVOXRO0gDUElGOtIsDXG9ysZMkONnsALMu5iWocbJocgUVsdIb/IwLOZUioTXL63CxMb/XOIPWUVSLVIFRPS6lZXSC87m4topb3g8MDBg6hgtu4/E4arWaiWtRyWsCi/Yhla1mmKmlyzhFpVKBz+czsS6l06rVKlZWVrC2toZQKGQqntNjY8bgwYMH4XK5cObMGZNa393djVarhcXFRVy/ft14Y+Fw2CwU5v08Ho+h4qLRqHmWpaUluN1u9PX1mdqJ9hbzkUjEFA9m1mQqlTJgFolEUCwW2/qYHjXjhvTMNU6qSRpMDikWi/D5fKYUVCQSQa1WQywWQ71ex7Vr13D58mVEo1E89NBDqFar+PznP49Go2EqhHBtmxpCvBfHFsc5RQ01Nbi4yFj7Ud+dxk3VALPBTb/Xe+pCZ6W+2Qb1/Di31NPndTVFXp9Nj3OkszjA9SYXBSfSNLR8NasP2Em+IP/PCaTrpzhRFAArlYopU0QlxqC9Tkh+T9oPgAkqM2jN87VyQaVSMd6MtiEWi7Wt01GAo+XJ5xscHMTo6CgikYhJCZ+cnES1WsXFixdx8eJFpNNpY60SnDXzSz07TZ0m0LBvtZq4ZvMB23SOgk5fX59RNIuLi8hmswiFQvjsZz+LvXv3oqenB+9617vg8/lw8OBBs9dXKBTCvn37UC6Xzdoklmmq1+uGwkwmkxgdHcXa2hqCwSD279+PI0eOYH19Hf39/aZmod/vRywWQ6VSQSKRwNGjR5FOp40Hd/78eQM2ABAOh5FMJjE3N2fGD4GLZaVIUwI7XgINFfbbysqK8Q75nknLxuNxk7b/+7//+5iZmcEDDzyA973vfbjzzjvxK7/yK6hUKujr6zPjTb0PjVMqW6AGEN+r0sCaUERw4Vzge2WavNLk6u3Rm7WvwbljG4acAzovaEBx3nAsK7Ogc4sMBD1JJznj1uIA1y4QpUiUS9dNHjU+QMuNHpNSf8rTU8GrFchr6oRT+kWtUq1Bx7iWxtl4TSoVpSY1hRlot3ipFKLRqMlGjEajpsis3+9Hb2+vyQLkjz4LgDbwYluAHeBnwoMqblVw9Ea0igWTG7S/e3p6EA6HTXwPgMnqO3LkCEZGRkxsiYuIAZj7NxoNk47P9W7MXmT6PgBcvHgRBw8eNN7R4uIi1tbWTNULJmeEw2EMDw+b9vb39+P69evIZrOmHby33SdMYNAMPzWI2E8ch7VaDYVCwRhSTDkHYPb8CoVCOH/+PK5du4aDBw8iEAhgYGAA73znO/HFL34Rq6urplI/vXEaN/SuVeErgNliL7zns+n7UkDQa+g40XR2zgedU/SiFGyV7uR5bK+yHmQx7HHfiUlxpLM4wPUmFwKWzacr1QDcTIlQND2eE4KKSakWVlnXycbvbY+IXhKTN3Ty2ZYt/9Z7UxFr0Fw/I9VD65MZeclkEtFoFPF4HIODg23fM/tNn5vencYzGIdgNiGTMfiZxn3oORDcqtWqWajKDMZwOGzWZmn6fzqdRrVaxfj4OAYGBpDNZrG0tITV1VUDUltbW+jp6TH9RsudiRrpdBpbW1sGUK9du4ZisWjS5em9tVotbG5uYt++fWYh8cDAADweD5aXl9Hb24vR0VHMzc2Z56XnwGvzmfm++cO+4Xu2z1EvguulOG658Nvl2k6X58JwbpVy7NgxtFotfP3rX8fW1pYpRKxUmXrQNIAIJOxrzRzUuCTHnxpgBBuCLsecUpQcV+rd8VxeU9PYtUanTXWqx89rE/jsOe6A1d9dHOB6k4sGbW1vyQYzKh5a8TqJSeHxfFJ7tBiVPiNd1Ww2zZ5JrJOntAeDx8wmUxoQgMkMZFtVobhcLhMjoSLS4Hyz2cTy8rLxQO68806Mj49jeHgYAwMDZnFvOp3G3NycWXDMkkStVsvsTqzWLSlLKlnek5+rVc94GLBdfod9ogWL2dcbGxsYGxszSQ1bW1tmPVV3dzcWFxfR29uL/fv3m2y89fV1Ex/z+XwIhUIm4aRWq+HatWu4ceMGBgcHEQqFMD4+bvbAajQapuI9Y3zveMc7sL6+jq2tLUxOTpqYIONH169fh9/vx8DAgKlkzzGkwKTeDRdDE5T5nkulEuLxuKmYoXQrwZfGCA2iWCyGxcVFs9lnX18fjhw5gr179+Ly5ct4/vnnzZhi/7NtvI4NNranTiND1zHaiRvAjoepCRgKaiwppXFYjlsmB+lSENLnmoLPMc3xpMabpvKzTZyPutDZAbPOcvOGSo68qcTm94EdOoRgoxmF/F75dU5K4Ob1KWpZU+HrAkhSkVx/RPCzLVS2RxMEVHGoAtBr6HfaVoKZ3+/H0NBQ26LYUqmEra0tkxlHL6gTPaTXVgXNNvN8VRCqOLmBIWOFgUAAuVwOiUQCPT09pliv2+0267TK5TICgQBWV1fx2muvIZvNoqenBwcOHMDBgwdx+PBhFAoFo8RIPwaDQVO1fn19HcvLy9jc3ESjsV2t4rbbbsPU1BRSqRS2trawsrJikjmmp6cBbCv3XC5nsj97enpM0geNEL5r3R2AY0DXr+kY5Punl60JJYz/lctlUyGDZbEIsI1Gw8QDGTtbWVnBxsYGarUa7rrrLrz73e824EHjQhcic0yo96y0myZA2GNK40ia5ET2QX84Bniu0s3aJ8pWKLDxOnoNjctpwhLbyPM19uwkaNxaHI9rF4hWmtCJpdl5allSITJOw3NZvJTBfGAnXqHZgoy1uN1ukziglIlSjbTMCRwEG35nB7C1IjsVksfjaatY0Wq1UCgU0Nvbi6mpKezbtw+NRsNsSZJOp00MjJUvWHCV8SgmCqgyAnYATekmxlIoCqqNRgNra2toNBqYnJyEy7VdYPbhhx82aecADGhduXIF2WwWXq8XIyMj8Hq9yOVyuO2221AoFFCpVNBoNIzHMTExgVarhZmZGUQiEbNP19e+9jW89tpriMViJnGGQLu2toYbN24gGAxifX0d3d3deOWVV7C0tGS2Opmbm0Nvby/i8bhZQnDnnXdifn4eMzMz5rr1+vaeZlqYWWOaNEhCoZBJsSd9uXfvXkSjUczPz5sdmz0eD/bv34+DBw+aWpArKyvIZrO4du0a7r77bsRiMbRaLZNWXy6Xkc/ncdddd6G3txff+MY3cObMGVPJolQqtdF09AqZ8UngUKNEvSgta8bzNYPRTuDRSvMEbBs47Tgu55jGn+kdqtdFoNMEEraZ70Bjao50Fge43uSiliPQPgkA3GRxKr/Oial0CM8lh8+qEbqgGNhJqqBVy8lGZaYBe7VG1XpUZaCWvFqoek+/349QKGQUY1dXF/r7+9HV1YV0Og0AGB8fNyWp6H0BO5XB2S+kP206le3Xsj2qhNiPbLcugk4mk6YQ7/DwMDwej6HrmJa/tLSESCSC5eVlkzXIHYvZ56QHWSy32Wwil8sZeopUYz6fNyWOKpWKqcDOqhVcL8e2Z7NZU4V+ZWUFpVIJU1NT8Hg8CIVCGBoagt/vx5UrV+ByudqK5gYCARQKhbY9oZRC1rHDxI5kMmk8RhoB3OU5HA63VWRnJY3h4WHs3bvXABKfb3l5GW63G1NTU+a+ly5dMl6eeiQcS9ouvmOCDf/X8zlWORY0S5Ljj/PEjqPp+FDGQQHGPpb/a1KIXl/niP29I68vDqy/yUWVpyoppXbsiQGgzYvQCUxLWqk8WpWaoahp4XZCCK+tFKTSfkqtqJLQ9WNKF/Ja6jV6PB709vait7cX4XAYs7OzmJ6exsrKiqktR9Cg92WvZaJy0RR4fsYYB61xTYdWoOdzhUIhhMNhLC8vY3BwEN3d3QiHw3C73WaN2ebmJmZmZjAwMGDAl1U3Lly4gPn5ebPmibUZNTOP0mw2jfKv1+vGS1tbW8PKyopZzExvmIkry8vLbTHLTCZj6MBQKIREIoGRkREMDAwYY4Jxqmg02uZBAjtZmapk/X4/hoeHMTk5iUgkYjynUCiE3t5e9Pf3m8/Zh8y0LBQKOHfunEmh57ovev/pdNqU9XrooYcQCARMPIljVGlNjjvbY7YBhWOf47BTIgXHjE2vM/6o6xk5Vik6j5QRUfqR99QMRz6X7U063ta3F1drF0b/crkcurq6vtvN+I4JB7lSdkxdBnZoQ7X2yKE3Gg2jJFmjjhPDBh5SG/yfE0u9PtJBOsEJNsDO7sqa+s7zSLnwunotbQ+9kUceeQSTk5PweDx47rnnjALu6urC8PAwenp6zOLVr3/967h27RrW19dNhXQbrFShkRKikqdo7IGg12w2kUqlDHX1rne9y4BTtVrF8PAwhoaG8Au/8AsoFot4/PHH8eSTT+LKlSumhmJ3dzf8fj8eeOABHD582FyL9Kbf70cmk0G9XkdXVxfcbjdeffVVPP/88xgaGsLevXtx4cIFfP3rX0e9Xjfgw6UBXq8X2WwWjz/+OPbu3YtCoYBGY3tblEgkYrY5qVQquHDhAi5fvmy8WDu+R8+LdQ8DgQAOHz6MRCKBWCxmUtdPnTqFdDqNRqOB/fv3o6enx2w302w2kc/nMTc3hy9+8YsAgJmZGWxubmJwcBAPP/wwlpaWsLy8jGAwiI985CPI5/P4+te/jmAwiIMHD2JwcBDPPPMMPve5zwHYToRh8kur1TK7OdMYaLV29vLSucOsv3K53DZnCCBqdLEvODY08Uk3w7TngsYOOcYI2BrfpdHIBB9dWK3MAA0GO7b2vShMqnoj4lCFb3JhJpfSgKpodFU+QUm9B2AnLVdThDXTz6ZClN4gwOjxnKAaU2BbNdGD91RwI93ItpO+0/tGIhHE43Ekk0mzgHZgYAButxu5XM54b9pHWutPFz8DN3tQfA7elwqJFj0pSD5fb28vgO21WR/4wAcwNDRkdrtlUobL5cLa2hp6e3vNuqQ9e/ag2Wxic3MTyWQSGxsbJkOP69B0J2UueGVW3uDgoKm3WK/XMTQ0hGQyifn5eczOziIejyMQCJhq7fl8Huvr67j//vtNRQ2OB4/Hg66uLpOiz/6gV0aF7/V6EYlEjLFDmpFVSnw+HwqFAtLpNJaXl+Hz+TAyMoLh4WH09/cjlUqZahjZbBYzMzNYWFjA8PAwSqUSkskkVlZWTIX6bDZr+nl8fBxf/epXzWe333473v72t+Opp54yW9fY41jnAbBD99EII8BwLLMvNK6k2bLq9XM+cZxwLqnXpYYfx6KOb9ur49gjmHLcATtxYo7D7wfQ+vuKA1xvcqFFDsB4TJxkpBaAnVhRJ4pOvTCdoMDNa3dsulFjG/bk5v0084vHalvsILiuGwLaF0q7XNt7O9GjYpC8v78f9Xod+Xze3C+fz5vni0ajSCQSmJmZaQNEuy22kGbyeDxmC5R6vW5S6VkTkIpzYmICkUikbcdgj8eDbDaLXC6HaDSKZ599ti3uFQgEsLa2htHRUbOoGoChDNmXTH7gZpSJRMKUdWo2m+jq6kIqlTJxLgBma5TNzU2EQiEsLi6ip6cHHo8HuVzOeHFMuPH5fGaNV6vVwvXr11EqlbC+vt7WHnrqBJVcLodyuYxCoWC2dBkcHMTAwABSqZSpds+1W41GA4uLizh//rxZw6XJPMvLy6YvBgYGcPHiRTz00EOIRCLY3Nw0GYfj4+O4/fbbcfr0aVM8mYvddbzRINIEI02GUIqRXrbS0+o9Ka2n2ba2MUSQUgpQ56XG5jhv+D+XURC89G87BufIzeIA15tcmA2oliMnrYKJWpPcW4mTTiepemRU1pwg6rFxkhaLxTavjEpWr6cBcoIUJ65WnyfVqYuhWXEhkUigVCohGo3ih3/4h00BVtYMDIVCmJ2dxYULFzA2Ngav14vr16+j0Wigq6sL3d3dxutZW1tDq9VqA3zN/CJFRwXV1dVldvVNp9OG4hkcHEQ4HMbW1hYOHTqEEydOYHx8HLVaDVtbW2i1WqZc0YsvvmiSEK5evYpIJGK8iqGhIdx+++1461vfilwuhxs3buDixYvo6urCiRMnkEwmzQJevr9oNGrq/m1ubqLVaqG7uxu33XYb1tbWcOnSJVOWCIBJinj++edx7tw5HDx4sM1TZ3vd7u0SX36/HyMjI+ZZmOmnAN/X14euri6T0l4ul+H1enHw4EFEIhHs378f8Xjc7PzM9WJjY2OYnZ3F5z73OWNoFAoFuFzba/fq9TrOnj2LI0eOoFgsYmxsDH/wB3+A9fV13H777YjFYpifn8f/+3//DwcPHsSP//iP48iRI/jiF79o6E0aNAoINh3MMWfHtQCYhCMdu3qMGnf08HWhMcey3ovzjIaCnqteGj16tkF3UwB2siQd0Lq1OMD1JhedTFpfj1Ya0E6ZKJhw4nJND2lFBSFOfl5HJyxFJyXbRMqGgXVem5aiUopKqxAEFfC40aPf78fevXtN/GZzc9PQJuvr65iensbly5cBbCtqgmAmkzGZbsPDw2i1WlhfXzcAxLVadrBc16qxgjyTPYaGhkx23/j4OI4dO4Y9e/bA4/EYBc3khkKhgNXVVZM5qAVem82m2bNrYWEBi4uLWFhYQLFYRE9PDw4ePGhiVKRlS6WSoSe3trawtbWF7u5uLC8vmyQOVovv7e1FNptFPp83YP2FL3wBtVoNw8PD5l0Wi0Xjdd24ccMoSyaoULmTrgoGg207PjNrk+ADAP39/aakE3e47urqgtfrxfT0NPL5PILBIJaXlw04V6tVs+Qhm82ahI+DBw/iueeew2233YbR0VG43W7Mz8/jypUrOHnyJO666y5kMhl89rOfNV6x1sjkWGIyh84dTX3XRCAdyxSl/NSr4zzQeaZzkuNc5wGANk9K47ksUcY2cDmHZjruwvSD75g4wLULRNOeOfHC4bBRssDOXj/2ZGLQmp4GsDMB+VvpDlIunNxcK8PtM3Qya/UALdJLQOQ9yekrbVOr1RCNRk1777nnHjz44IMYGxuD2+02np7b7UapVMKXv/xlXL58GZFIBKdPn0a1WsXRo0dNbOill15CV1eXUXqNRgOrq6sIhUIAYAoNs5IEAZsAGwwG0dfXh1QqhVKphLW1NdTrdfT29uKBBx7AyMgIent7kcvlkM1mMTQ0hEQigXA4jKeffhqvvvoq+vr6sLGxYTarpDIqFAp4+umn8c1vftMsYr777ruxurqKhYUF9Pb2IhaLmYrtTHVnTcOuri6Mj4/jr//6r1Gv101aPuNIKysryGQy6O3tRSKRwJkzZ3Dt2jW85z3vwYkTJwxlNTs7C4/Hg+effx7ZbNYkd3g8HvT09JgxEAwGTQbivn37sLq6iuvXr5tSU93d3ejp6cHU1BRqtRpKpRJisZjJFP2v//W/4plnnsEHPvABs1B8Y2MDCwsLmJ6eRrVaRSQSwfz8PEZGRpBMJvFv/+2/xW/+5m/iq1/9KoaHh5FMJhGLxbCxsYG/+Iu/wCOPPIIPfvCDWFxcxFNPPYVms2k8FBo9brfblP4KBoNmYTcBIxQKtdHtGou1Y1nATuYuF7hzvpGZ4NglBUsgZZKIMg2d6EnOL7a5U4q8I53FAa43uXBiKUdPALAXKpIWYmzGjisprWFbhHo/PU43nKSnRPCkoqISUSuWypK1/3gfej7AzhYijUYDb3vb20wyA2MLbLPuNEyA3NjYwMbGBlwuFwYHB9uoyGAwaDyRer2OVCplrkWaplgsGqo0FouZ+BE3h/T5fCYdn95dvV7HxsYGSqUSUqkUYrEYAoEAbty4AbfbjZMnT2J+fh5nz57F6uqqeR80DCKRCPr6+pBMJtHV1WUqs3M9E4sGA9uZs/l8HslkEr29vRgeHkazuV0Xj/tyzc3NIZfLYXNz07yParWKRCKBdDqNV199FbfffnubN8A1YPxsZWUFfr8f3d3dALbXw/X397cl5dRqNaTTaeMZDA4OYmRkxFQVCQaDiMViKJfLuH79Op555hlMTk6ir6/P1Cr0eDwm/rixsWGejZU/Dh8+jHe/+934uZ/7OWQyGUxOTmL//v146aWXsLS0hKeffhrvfOc78fDDD2NlZQVnz541RpAaYlw8zHHfiZlge5RhUBpcmQS9FoFJyzTRKGRbOF94HbIdmsCksTR+pt6ak5Tx7cUBrje5qJekyRhUcAoEVEY2JcHPaA3SUtVJqxSJJmsQELhTLq1ye3LZdAuVhqYCk9KhVc/2DQ8PY2JiArVazdBK1WoV6+vrJr7CShi5XM54ekygGBkZwR133IGtrS2USiWT1DA6OoorV64YagvYKdqqtQbZls3NTVSrVYTDYaRSKRM7YxywVCoZi12rL2SzWYyOjpqY0cbGhimky/dTLpcRj8fNZpIs0sv1c0ziII2Wz+fNFiV79uxBd3c3otEowuGw+QG2PWEqZ7aNywZOnz6Nxx9/3KSRb21tYWlpCcA2QAWDQWxubhqPgqBPBc16ixwX9BAY02I/EsCmp6fx9NNPIxqNYmpqyvQB9xRLpVK44447UCgUcO3aNZOIw8ocx44dQzKZRD6fx+zsLE6ePIkDBw7gtddew/T0NL72ta/hsccew0MPPYRCoYD5+XmThadeCg0tTapgTMwet+o9qRGogKQAqLQ6QYgelnpv2hb90evzvXN+aDJUp4XxjuyIA1xvcmEgWNNktZioUnv0bnw+H/L5/E2WnCZUKO2o1qDy8UA7nagTX8GOVRCoJFQ5ECCUUmH6MUshPfHEEyiXyzhz5gyKxSLuvPNOpNNpnDt3Dt3d3aZskMvlQm9vL/L5vNmOvtVq4dVXX8XHP/5x9PT04G/+5m+MR/HP/tk/QzQaxTPPPINLly5hc3MTvb29ZsPMcrls4jJcgEuQaTQa6O3tRVdXV1uW4vDwsClVVCwWzTqmYrGIz3zmM8jlcnC73YjH48ZLJbXo8Xhw7tw5k/RRKBTadiMeGxszi27PnTuHQqGAWCxm6DZm4WWzWRNn03HBOoErKyvo6elBoVDAU089hYmJCcRiMZw+fRqLi4s4efKk8RxoMDAtn3uzkT7kQmtmSfb09Jg1YUwn39jYwKc//WmcOXMGPp8Pd9xxB2q1GjY3N801/X4/IpEIJicnAcA81/DwMLxeL65cuYJ4PI4f+ZEfwczMDNLpNL7xjW/g/vvvx/T0NJaXl3HmzBns27cP73nPe3Ds2DH81E/9lKHoSNtxPuhOB5ROBW0184+elZa/IjBpXFkpb49np6Au2QEFOraD84pxPnp0ypxwnjNz0pFbiwNcu0A0UMssJZsGZJxGJwKVLdBOORKMONlsUepE76Wpu+rlacxLaUz1/ji5qUwIvIcPH8bY2JjJwGPR1nw+b6jBQqFgYlUej8csjmXiRKVSwY0bN9DX14d9+/bhwoULKJVKOHv2LO655x4cO3bMVHdgLUClJHXt0tzcnKHbqLQJhMwqo9LJZrO4ceMGtra2kMlkUCgUTPIGS0PZ74FloQYHB403Ro+Hfd9sbpdAIpgwBsIFwfl83qy/0iQCpoK73W6zhmtpaQldXV0IBoPIZrNwu90G/FnYt9lsYmFhwdyLld+54JhrwLgnGsch++D06dP4xje+gWg0it7eXuONcUwAMKWtZmdnUa1WUSwWEYlEkEgk0Gg0sLS0BI/Hg6mpKXR3d2NpaQm///u/j8HBQdxxxx04deoUlpaWcObMGRw8eBD79+/H6Ogorl69Cre7vbQT54zOG11szv5SloFAzv6z114xHmh7T5wnvLfOMU1A4ly1hcCn3mGndWqOtIsDXLtEWq32nYS5aFYVH+sOktLjBKUVR4uOBW1tOk/3kyLwqBfHyUdvTBd5akYhjwd2gI3xFwJFKBTC2NgYTpw4gd7eXpw6dcossm00GnjllVcQDAZx/fp1c12Xy4X+/n4MDg6iWCxiZmYGgUAAfX19+IM/+AP8zu/8Dn7xF38RJ06cMEounU7jiSeewN13341sNouBgQGjgEj/cc1SuVw2RXsnJiaMd7u+vm7oSU2MuXr1Kp5//nmsra2ZxAcqnUKh0LbkgBtCplIptFotZDIZZDKZNnqQCpPvI51OY3Z21ljsXBRdKBSwvr5uYl6qpKvVqlnfFgqFkE6nDU3MBcCsUsBFxrwmPUSWkuJ7pvfFfqtWq+ju7sbLL7+Mz3zmM3jttdfg9/tN/Gx4eBj5fN7QbPTUmaXJbEyWrmq1Wrh06RK8Xi/2799vaMrLly/jG9/4Bj760Y/igx/8IE6fPo0XX3wRv/Ebv4EnnngCP/dzP4f//b//N1544QVDSbK9fFf0Shln0i1S7OUk+htA29xQ2pAgyGQmgg3pRd6Hc4zX5XvkuOLcscFS56UT7+osTlGsN7kQeJRbB27OPCJNoRUldGIp/04lx4nEe9gemNKGOrlIazC5gufTO9PANSeuemW0bvv7+9HX14dQKIRKpWJq8lUqFSwsLOCuu+5CMpnE0tIS+vr6zDqm++67D/fffz96enpMLb6TJ08ikUjgc5/7HDY2Ngz1x+0zurq6MDU1hUQiYcCCKfTc8oNJBvQYGo0GNjc3USgUUCwWUSgUkMvlzIJfgo9SiT6fz1THVxqrWq2ahBLdsViLJNdqNbMfFUtMLS8vY3Z2FvPz87h+/TpmZmawurpqlCHBhwYL4ya6hGJjYwOZTMaMCR0jfE/RaBTJZBLJZNLQpbr1ilaH527PX/jCF3D69GlMTEy0pZVrXT+Oo0KhgEKhYAop89mTySS6u7sNHcqxEwgEcOjQIXR3dyOdTsPn85nlCPl8Hk8//TQOHTqEhx56yBhLuuU9aTzODe5bZs8nNe7UQ77VXLQ9OY5v9i3/J5DxPAXSTnOX4K7xZUduLY7H9SYXDRyrMlAKjsqFAKFxK05qtfY0zgW003062TVGQMDhOaRmdB8sKksFWTtFX/8nGJG6K5fLqNfr2NzcRKVSwf33349Wq4Vr165hYGAAoVAIe/bsMckbTGuv1+uYnJxEV1cXfu/3fg/ZbBb33XcfotEoisUiXnvtNRw/fhwjIyOIx+MmHsdn1RiFLuAmwOiGm1QwjLNxcbBd7JjXorfDLUTW1tZMNuKxY8cAAPl83sTduKB4YGDAeKJra2ttcRV6hUyMAGA8L6ayK1XLUlD0mu0kBY/HY7ywZrNp9vNiLI8VNTiGWFfxS1/6Evbs2YNyuYzjx4/j2rVrJk5YKBQQCATMeFMPhJ/19vZiaGgIpVIJ165dM9mRXHc3NTWFqakpXLt2DePj4+ju7sb6+jr27duHGzduIBAI4K677kIkEjHr2JSK5rjmbwVXzZAlE2G/O4KQfqdzRbM1+T/7kEaeGo2cV/yOxyn4cTzeCjwd2RYH1t/kQkuQCpUDXTMICSrhcLjNC2LWl1J4tnLlVho8jsqcylj31qIHp5YkJRwOIx6Pm2w3ehwKiLyOx+Mx91ULNRKJIBQK4ctf/jLuuOMO3HPPPXjb296Ge++9FwcPHsTRo0exubmJtbU1FItFDAwMoL+/H16vF5cvX8bCwgIefPBBAMAf//EfI51OIxgMIpfL4Ytf/CL+6I/+CPl8HvF43IAHEx642eHg4CD6+vqwvr6OhYUFk/6+sbGBpaUlXLx4Ea+99prxfrjeizX8aNmrgUD6Tnf0PXr0KH70R38US0tLZg8vxr+YXDE4OIhkMml2fWZRWbd7e00SsyWp5EqlkllITdBk0saVK1cQCoXMHmYEISpJeqD0PpvNpsmO1CURXq8XFy5cwH/8j/8R9957L5rNJh588EG85z3vMfUlC4WCoQqZPXn9+nXcuHEDoVAIwWAQi4uLuO+++3DkyBGMjo4im83i+vXrJtZYqVRw5MgR/MAP/ABu3LiB559/HouLi3jggQdw+fJl9PX14bd+67fQ1dWFJ554AuFw2GSrqoHE5AhNZKLRpftzAdu7PQeDQRPPojGifcm+4HxQT0ozd8lKEJw0kxeAWT9HI1MLWjve1rcXx+N6k4tOQjvRQsHI5sQJCBrLAtorVRMwNFityRi8Nq190mEat9D2aE08m7vXhBDeizERZsgxzXprawv33HOPqQTf3d1tFOrCwgIajYah9ggQ2Wy2rSL6wMAAXnrpJRw+fBjj4+NotbbXfk1PT5situpBAjv7gTUaDczPz5t0ey4+BXZS5uPxuKEpuS6Ma5LoBXIDxGg0ing8jlQq1ba2h1mJzDLjomMmf7jd21umcBuV5557DsViEa1Wy1CcrFDP+CSXEQSDQePxMBmC75qJI4yRqZdt707Nd0tALpfL+Iu/+AvMzMzgrrvuQiKRQH9/v8loZFYlF5evrKxgbm4O5XIZqVQKY2Njph/pbcdiMTQaDayvr5uEHGDba9LyXm63G0eOHMGlS5cMTXvw4EHcfffdOHv2LM6ePdtG12mSEgGE8SmOX6UOaZjZKfAcJ8p4EGh0rnAu2EtYlPqz41bqAdpGnn7vSLs40P4mF12saHPrNhhRYXKC6Up8Wo4KIrT+CTicxEqrMF6i1Il6YLxXpVJBqVRq21ZCrfpO9+VW7ywNFI1GTSry+Pg4fD4fYrEYUqlUW8yCHpvX60U4HEYikUA8HjexMiYPxONxXLx4EZVKBcFgEF1dXbh06RIWFxdNcotei96ry+Uy7eIz6eaXxWLRrOmikicYqTJjJY++vj5TiYIZcblcDufOnUOlUjGLoIvFogFgtgWAAS+Ws6J3QS+PCTQEcoJmNps1YMCaeKy2sbm5iVwu12Z8cL0eAAM+pPkY35udncWZM2fw4IMPGtpwenoalUoFe/bswcbGhkmY4XosUqpM219bW0OhUDBbE9HzzefzWFtbM5Sn2+1GKpXCyMgINjc3cf36dYRCIdx1113I5XLo7u7G1772NRw4cABHjhxBPB5vAxoCrgIHvRul1TmmST/bzALHrVJ+nBP2GjJeX2O7nCuaacg5we+UOnTk24vjcb3JRS3fTp4WJ4FSiKQltNqGTkZSSbyGWqWaUagAyB1tNdlDJ7Rao1SkwM4CaS0rxe3km82mCbxz8i4tLWFgYMCUE4rH45iamsKTTz6J/fv3m4QH0m9MwhgeHkYqlcLi4iJKpRKWlpawtrYGAHjttdfQ09ODWCyGUqmE1dVVpFIpPP7440gkEnC73djc3DR9lMlksLi4aBaVqpU9NDSEYrGItbU1EzdiyaaFhQVTOkqrlNNDfeaZZ3DgwAEcPXoUzWYTN27cQCqVMinkV69exebmptkccnR0FD6fD6dOncJrr71mKubzGeipcJt40q8AzG9mRHZ1dbWl12vWYCKRMKnp4XAYrVYLo6OjOHz4MLLZLNLpNC5fvoxLly5hdXUVjz/+uPHi1tfXsb6+jjvuuAOPPfaYoU79fj/OnTuHjY0NY/Rsbm7i2WefRTabxbFjxzA2NmayLW+77TacP38e58+fx/33349EIoFcLoexsTE8/PDDmJ+fx8bGBr70pS+Zeojvfe97cerUKQSDQfzYj/0YQqEQ/u///b8m9sqxqawCl2qQEqzX62bNFL9jf2qhXI5f0r1MIqLhQxCikcmxxNglKXKda5pxyzHCsUaD0ZHO4gDXm1yUptDJqAsidUJ0ynBSupGWolqgmi2oiRU2IPFz/UzTfZUO5P3J8zPtmnQNsO0h0ENqNBqGOuzt7TVr0lwul6Gg2BdMJa5Wq2YhLDdjHBwcRLlcxsrKCoDtOn9MtKhWq2bn4OnpaczMzBjaUK1t0oO0rhnoZ3wkHo+bIr5UavT8CNL01hqNhtkt2Ov1YmtrCwDMHl5MqqAHRyFN2N/fb1LI+/v7TbyIiTn6HnUpgsZL6L0x+YXPxD7utK8aq3Ssra1henoap06dQjabNd4ixw3T5J955hl4vV6cOXMGb3vb2wx9Svoxn89jfn7eVJEHYPqZRYWTyaTJ4ozFYsbL3bNnD3p6epDL5bC0tITV1VUzVvft24dLly7h0KFDOHbsmBlTml6uz6WJFDTibIaCtDzZC51bdkauVn6354cyJMoY2BmJykYAO6DlANetxQGuN7koIOjE4ufK5+sCTMY2FHw4cXgNTkhd2a/UpGYiMp6j67M0OK2xEY2dsCYgKRu2raenB6lUqk3BZzIZXLlyBT/0Qz9kYiQ+nw+JRALr6+s4e/asofUAmBRtKjgmB3g8HoyOjmJ1dRXXrl0zIDA8PIxsNmuSWJ588kkcOHAAjz/+OEKhENxut1kITUvc4/Ggv7/fKJJoNIqJiQmzu3E+n0c2mzXUXKvVMptd0qLnNiupVAp+vx/hcBhjY2OIRqNYXFw0ngDTzAOBAOLxuPHgDh06ZLypVCqF1dVVdHV1mY0pqeC2trbaqmmQ+mP8LJfLweXaTmfn/mUsscRMQS5wHh4exsrKCk6fPo3l5WXccccdSCaTWF5eNtUuTp06hUcffRShUAjf+ta30Gw28dGPfhStVgurq6uo1WrI5XJIpVIm4SMYDMLlcuHUqVP4yle+gkOHDpl2pFIpvPrqq+jv78eRI0cQCASwsbGBkydP4urVq/jTP/1TNJtNjI2NIZfL4YUXXsBtt92GP/uzP8OP/uiPYs+ePZiYmMD09LQZu3YWrq6Jo3AeaIV+jmEajEq10xAgENoGh21Y6rxQ47FTZQ3N2iUwOnKzOITqm1zorZB6oqhl1wnY7KCuJkWoaHYi/ycQqvemVAfvoenyGtymAlBOXy36YDCIsbExo+RzuZxJ897c3MTk5KTZhJHeld/vx8rKislWY3V0Kn3GnWjB12o1nDhxAgcOHIDf78f6+rqpFMF1WY3G9maHi4uLBiRJ62i/UPkTzOkxUvlofI994fV6Tco66Ta2uVAoGA+MfRgOhw0QM7uyXC6jUqmYrUO4BoyZkCzNRM+LdCkLzdLzAGASOLg+i+BMzyibzWJxcdF4c1tbWyZrMplMYu/evWapAgBTSsrt3q7e39fXZwoS63Yd3PJlaWnJxJzYP9PT08hkMqjVavD5fKa6x+zsrPFMuTnn4cOHMTIyYtZ6dXd3I5PJGGr14sWL8Hq9mJycNGOPY5oxJ74z/vAd83ubRdA5op6ZGnhK0etc43k2aPFz/masS+c0+87xuG4tDnC9yYXWGNC+kp/AQmpKty+hpWbTDZ1oCU48vaZ6bcDOxNUMLJ57q/I2mpKvsTgAJmmBFjmpEWbI7d27F4lEApVKxShZVi/n9ZjcQU9iY2MDxWIRGxsbmJubw9LSEnp7e00lhnK5jOXlZaRSKbjd29umsG7ixYsXTTkkNRAIPsFg0GS66fIEKm1gG3i4rQgrvdM75J5h2WwW2WwWmUwGHo/HtJ/nezwek0nJrEt+x+K2/f39GB8fN8sCarVa275eBFk+h6Z1EzQIKKVSCYVCAVtbW0in07h27RqWl5fhdruxvr6OixcvIhgM4ujRowCAxcVFeL1ePP3007hw4QJ8Ph8WFhZw7do1s4A8l8sZr5Je6/r6Orq7uxGLxUwWZTAYxNbWltlLzOPxmDjq4uKiaQfrMu7Zs8e8S5/Ph/7+frjdbqytrSEajeLy5cuoVqu49957zR5iHC+a9cpxzSUgNLLoPamxpONcEzkY/9I9tZSW5Ty149M20Nl/8zrKjDjSWRyq8E0uSl1wItBSVxpBqQ4FCWYt0crUDD/l2BncB3a8PGB7bYtmEPKHFSLYDi1HpVU0eD0ABlzf8pa3IJVK4eWXXzagy2y/oaEhHDp0CF6vF/Pz88jn88jn8yaTbmBgwCR2JJNJrKysYGZmxsTPqAhZCaK7uxvDw8NYWlpCJpPB8vKyqfSQTqcRi8XwyiuvYGVlBQcPHsTg4KB5Hr/fj2QyaQCgq6vLZECSMmX6PGk5vi+m5vO5E4mEUYo+nw9DQ0Pm2VjMd3V1FaOjoxgbG8PMzAw2NjYwODiISqWC5eVlA2zDw8O48847sbCwgHq9jkQiYag7fSdsCytsMFZHr2hubs4kKgDbADkyMoKNjQ0UCgUkk0k88cQT8Hg8eOqpp7C8vGw2s3zLW96Cy5cvo9Xa3kH64MGDALaBPRaLmbVc9MSXlpaQTqcRjUYNder3+5FIJNBqbdesTCaTaDabeOmll1Aul3Hs2DF4vV6k02kMDQ3hHe94B77yla8gFAqZ3QDS6TRuu+02XLhwAb/3e7+Hn/mZn0E+n8enP/3pNkOMMSuuS9OMW3pnOqdIhdOYYUILEzjUgGSKPek+3o9UMUUXugM7hiQBT0MAjsf1+uIA15tcNOirNB7TxjkBNXWd55D64vc64eyFyXaqPLBT0Z3nclKxNqLG39Q6pUfEc3gdACa+o+uZMpkM5ufn0Ww2kUgkzLNR1IssFosmkWJkZAQul8uUuqpUKqaShX7OUk9zc3M4e/YsgsEg9uzZg7W1NQNyTOZgZQ5mpvH51XLf2toy2464XC4DUvRumHzA9H56WdFoFAMDA6ZYLak+JmpEIhGT1s/dgblgmIkUwLayZBuXl5dNvzDxIRwOG+qS8RmuSVP6TA2RaDSKnp4eU2mjr6/PxJnS6bR558vLywgGg8bT4U7JGg/a2NjA1taWMXr4Pre2tswWJ41GA5cvXzZZovv374ff70c0GjV1IJvNJmKxmEl9JxWZz+fRbDbR19dntjY5dOgQnn32WdRqNUxOThpAJrVoLwdRz7larbaltdMD0nEHoA20lOHgOfTGeL6yIjp+bE+M80czDXWuOnKzOMD1Jhem1AJoU1ykfXTAqwVH8OB39EiUruDkVR4eaF/dz52PNdCslCCtRM3M4sQjcNJDcru3N1tMJpN4+eWX4fP5TK0/7mV1+PBhVKtVzMzMmFJQi4uLeOWVVwyY5PN5eL1eLC4u4saNG2bNVDKZNEkOPT09uHTpEtbX1zE+Pm48nr/9279FOBzG3NwcPvjBD2J5eRmvvPIKQqEQrl69iunpaYyOjuKuu+7CV77yFayurpotSvL5PFZWVrCysmIWCgcCAWxubiIYDCKVSiEej5uNHkmJ0ZqfmZnB5uamid+Fw2HcdtttpmAwgSOdTuPUqVOmGO3GxgZyuZwBNVYpyWQyhq7q7+83z/OXf/mXBhyZVbm5uWk8LV3knE6nEQ6HTRZfOp3G6Ogo3va2t2FgYABnz57FuXPn8I1vfMNUyac3dfLkSUSj0bYEmUqlgrm5OdTr27taM7U/GAyawscbGxtotVoYGhrCwsICzp07h3vuuQcTExO4/fbbsbq6isXFRZw+fRqHDh0ytSe7u7sxMTGBmZkZvPjii3jooYewsbGBc+fO4cEHH8Sjjz6KZ599FseOHcP4+Djm5+cN/cjF4MDORpFaOFmXPnBDT1a3YOxW1y12Sppg4obbvV3rkcYaM2w1tqZJNQRQHgvgJoPQkXZxgOtNLprWaydDKHVIYSo0PTBeg8CkZWkUFAlAdhBZgZBtUHqFtAgX6fIcYIfmBLaTA0ZHR7Fv3z4Ui0Vsbm6iVCqhUqkglUphYWHBeCSZTAarq6vYv38/6vU60uk0/H4/enp6zCaKbrfbZI95vV6z4Jip3KyMzjT7Wq2Gra0thEIh7Nu3z+wS3N/f32YQvPrqq6ZNLPC7d+9es90HYy69vb2mlqECMwGu2WwiGo1iaGgIe/fuRalUgtfrxd69e7F37140Gg2srKygWq0ik8lgbW0NU1NTKJVKuH79uonHhUIhJJNJlEolXL582RQCZmKEVkXnWrS+vj5sbm6iXq9jdnYWxWLRbGSpsRVW72i1WqY+4ObmJh544AFT55GlrVj6isqcXh7fB5cGFAoFk2WaSCTMcoZoNIrx8XHUajXcuHEDy8vLaDQa6O7uRq1Ww7Vr15BIJNDT04NkMolMJoOLFy+ir6/PpNNzZ+tr164hnU4jkUhgcnISly5dwtraGrq6unD+/HkcPXoUExMTmJ+fN3FMXR6ilB7Hvp1goeOYY53jG2jf20vnKq9H0fvSq9MUeTuZSe8B7BirjrSLA1xvctE4EQFIvSZgh6bQdSe3SullDIQT6tvdW4PKdiahTn5ar2yPpgTzmN7eXrMlSaFQwMbGhrlePp83yQdcbBoIBFAqlYy3EY1G2wCzWCyagD/pKk2w6O/vN94pi+K63W709fXhgQcewOc+9zn4fD5MTExgdnYW9XodMzMzyOVyeOihhzA5OYlnnnkGq6urpso6MxNTqRRu3LhhKDrWKeQ+Vy6XC8lkEr29vejp6UGj0cAP//APY2RkxKzNWl1dxSuvvIKtrS34/X5MTExgbW0N586dQ6PRMAur+/v7kUwmcf78eczOziISiWBkZMQA1tzcHNxuN2ZmZsxaMf40Gg2T6k/goReYTCaxsbFhEl22trYQi8UMlbuxsYEbN26YavRKj9HgIYCtrq621WnUKiKNxvbuzH6/H1NTU4hGo4hEIlhcXDRr1Z555hl0dXUhFouZfcAuXLiA0dFRHDp0yFT+YIyTKfwjIyPw+/1mIfuNGzewsbGBw4cP4/Tp02YZhwIWxa7oolmAuiSEWYeaHEVRg1CpdxoVHK+dMgbVKOR3Si063tatxQGuN7lourPGr+ysJE2yYOyLGYe02rhdO+vWtVotkzLNpAoqfs0K5P2okHg9FpdVK5GpzuqNkX7Zt28fUqkUTp8+baqu792716ytOnLkCI4fP25owkqlgqtXr5osvI2NDSwuLhrlEI/Hsbi4aMCIz14oFAAAU1NT2LNnD/7iL/7CnMcafhMTE/jABz6AL3zhC5iamsL+/ftRKpWwsrKC1dVVnDt3DkNDQ3j44YfxW7/1W6YEEb21ZDJpFCgTRUhhhkIhlEolLC8v49q1a3jhhRcQi8Xwrne9C/F4HHv37sXg4CDy+TzOnTsHj8eD/fv3Y319Ha+99hq+/vWvY9++fQgEAhgZGUE0GkUsFjNg2t/fjy9/+cs4ffo0zpw5Yyp1MLuSG2F2dXUhl8uZkkrZbBYejweTk5PGS2acrVKp4N5778WDDz5oPLbr169jYWEBiUQCP/RDP4R0Oo0XX3wRIyMjpvAvgUsXJeuCbRpR5XLZKOVkMomuri40GtvbxkQiEZw7dw7Xrl3Dxz72MVPiiQkXP/uzP4v+/n4AwPHjx7G8vGx2tJ6YmMDg4KBJXunp6cHTTz+N9773vbhx4waeeuqpNmBgViKTfRgHVRoRgCkuDaCNZue80KUMGv/VLEHOCwUlnaucG6VSycwje0sYRzqLA1xvctGMI40naZyKohME2MmMonfFiadJHHbFC2AnkQPYWQip17VpQ2ZpaTyAEzQYDKJarSISiaCvrw/BYNBsW8JddhlAHx0dNdXBuUvv8vKy2QOLVREI5PS4JiYmTLs1YQXYBv5EIoHV1VU0Gg3jAVUqFfT09ODEiRMmLjIwMGBo10wmYyq0Hz16FCsrK2YxciAQQCKRMIVjr1271pY0Q6VFr4Yg8bWvfQ3ZbBbBYBCPPPII7r77bpRKJWQyGbhcLrOAeGRkBEtLS8jn86jXt7d/cbvd+OY3v4np6Wn09PTgK1/5ChYWFrBv3z7jLWWzWdTrdeNlM2W7XC7D5/OZTSQnJiZMXGdxcRGbm5s4ceIE7r77boyOjpp1XSsrK4jFYpiamkJ/fz/W1tYQDAaxd+9e4/mwjJQyAsy41EK2HDNcP+f1ejE6Ogq3e3sfub6+PszNzeHq1atIpVLo7+/H7Ows8vk8pqenzZKE7u5uDAwMIJ1OY2NjA11dXUgkErhx4wbW1tYMiEWjUezbtw+vvPKKqf2oWYYar6Kxptmz6hXpORz/ndgOzk3ODS64tpencM6QOlTD0efzmQX5jtxaHOB6k4uChVIHBJxKpdLG0dPjAXYUuWYrkTqx6QgqE04ugpzSQ52AUY/XrEddC1Or1ZBIJMymkaSUuru7TSkfr9drss3i8Th6enowPz+P1dVVA2yhUMgsWHW5XOjr68PY2Bj6+/vNwmEAJiGg1WqhUCiYihoLCws4fPgwUqmUyUzkol3utDwyMgIAOH/+PPL5PEZGRvDoo4+aChdMT2dcZ3h4GIuLi6Z6BpUQsLMLdDAYhNfrxcLCgvFy9u/fj/HxcRw7dgwXLlzAzMyMickNDQ3h0qVLZjFud3c3AoEALl++jAsXLhglx8ojXMTNTSW50Jd9wdiQ3+9HLBbDwMCAqViyubmJRCKBEydOYHh4GI1Gw6zNWllZQV9fHyYnJ802L1wozVp/fE5miTLTMhAImHqGjGVpNQmXy4Wenh60WtsV5Ov1OiYmJvD1r38db3vb24yX6Xa7ce7cOcTjcZN1mUwmEYvFsLa2Zj7zer3I5XIYHx83Mc2hoSGkUinMzMy01Y5k/yhjQWajk7ej67L0/fJzu5QT54p6aXbquw2CnUDUoQpvLQ5w7QLhxNCFiVRQWs2Ca6k0xsWJxkmrAMXvdTtzHksvi94NvTT1KGiFMqhMURAtl8smIWLv3r1tdNL+/fsxNTVlFHoul0O5XMbExASy2Sy+9KUvGaVDBd1sbm/KODAwYGg0TnKuV+ru7jYeEeNNhUIBw8PDuP/+++F2u81i20ajgdHRURQKBVy+fBmJRALHjh1Ds9nEqVOnsL6+jh/6oR8yFGC1WsXS0hIuXbqEUChklPri4iI2NjYAwNRFZD9yg8RQKITZ2Vn87u/+Lr761a9ifHwcpVLJUKOskMIklEwmg3A4bNZ7sZq61+tFoVAw66IAmHJR9KhzuRwAmHR8r9eLt771rRgcHMQdd9yBSCSCVqtlYkWVSgWzs7NYW1vDs88+a4yAiYkJrK6u4vnnn0csFoPP58Ps7Czcbjfi8Xgbnby8vGy2nYnFYhgeHobH076HVSQSQblcxtraGrLZLFKpFPr6+nD58mWMjY1hcHAQL774IiKRCO69917Mzs7i6tWrplr/ww8/jJGREWQyGaTTaeRyOQwNDeHee+/FpUuXTKxyfX0dBw8exFve8hZ885vfNEsblMbmWGX8j3OASTYqSgEqLQjgpqLFnFt8FwRGXSdGz45zFoCJ2yrl6HhencUBrje5aDKCDTZqpek6Ec38owek3pVOOptG5G+tqK0WoVqSna6n/L16dlRi3EK+1WqZFOy1tTWzwJcxl62tLSwuLrZlhDUaDUQiEbOmhx4kAJOcwWQM1uVjernL5cLevXuxvr6Oy5cvY2NjA/Pz86jX6xgcHDTXe+WVVxCNRnHfffehWq2aY0kR0gulxd7X14epqSlDXbKtNt1Ko4BUGlPvuSaL65W4QHZsbMxUtqAHw2vy3kxW0XVmwM76O3oJzB7s7e3FoUOHDGXLdPtWq2WSGm7cuGFAtlgsYm5uDul02rxrJqDk83l0d3e37UTQ29trgLhSqaBYLGJiYgLxeByrq6vGY2X8L51OIxQKYWJiwgDaxMQECoUCXn75ZQwNDZllD4w7Pvzww0gmkxgdHcX8/DzK5XJbjO/q1asIBoNmM86xsTEDGkxxZ3uZQKH1AnXeqXD861IPnQ+6tETnD+lDTbLi/OD7sROlNNnDkc7iANebXJSG020P+Dm9GipHnTQKMLoIWIvxKghyTZAWzOW9dOKp5alA2SnjkYpi//792NzcxPnz57G2tmb2sjp9+jTm5ubw2GOP4eGHH0ZPTw9u3LiBV155BVeuXDHU0/DwsFFSTBNnLICK1uVymY0emQa/vr6OdDqNSCSCM2fO4NKlS+ju7kaz2TRZhvl8Hq+99prJCHzuuefwr//1v8aDDz6I+++/H3/2Z3+GSqWCrq4uvPWtbzVVQ2KxmNl6/uLFiwiHw6ZEFZViq9Vq21mXbYvFYiY7z+12t1W/n52dxb333otgMIgXXnjBvBcFKa2KwUQIrVbCd8QMvlarhcnJSTz44INt1fanpqbg8/nwt3/7tzh79qxJwFlaWjLrv1iCih4hU/YJuIxTJZNJkzFJ6vTpp5+G1+tFKpUytHMkEkFPTw+Wl5exsrKCoaEhjI+Pmx2nh4eHcfnyZQwMDGB0dBSXL1/G/Pw8XnrpJTz33HOmBuWTTz6JVquFnp4eU4j5xo0b6O3txRe+8AVThSWZTCKbzRrQsJeRqOFGY0PHvu5swPcK7GQlcr5oLFjXbDGjUj0wzh+m62v8S38c6SwOcO0CIRWoSRHqHennnGjKt/NcWn9KWQA3e3X8jIpS669pMJkxNqUkCVqkDiORCHK5HEKhEHK5nAEtegtMerj77rsxODiIVquFhYUFXL16Ffl83ihftqOvrw+xWKyttl25XDaLWvP5PKrVKgqFAmZmZgwYZbNZDA0N4ZFHHkGzuV2rb3l52YAHYxyXL19GLpfDU089hUajgbGxMRw5cgRnz57F5cuXMTExgdHRUVP2ibsmh0Ihs+Yok8kgEAgYOpUKi++CBoZa+ASmVqtlYk8EYwKeel1cT0Uvk7HEZrNpjAXbEz579ixuu+02HDt2zCzuLpVKuHTpEl566SWzt9ny8jIAmPVxBCbSpVyHx9iUetfAdvWRy5cvo1QqmcXb9XrdACC3hslkMuZdDA4OGrCjd91qtQwdS2/0mWeeQU9PD/bs2YNms9m2ESmXB3g8HqysrGBhYQG9vb1mk0rGQe1sWYIG34l6O2wLAV3ZDM4rfq8GHtC+Bksr1GhilYKhHRNzYly3Fge43uSiwWKlhHQlvwozljRDCmiPjxH4NGWdvL7WM6SCdbvdhk7RCchyOVpGSNvN8wim6XTaVJRgkd1qtYp4PI59+/YhGAwik8ngxo0bmJmZMc9NxcdkDr0HYwvcRoN7eq2vr2NjYwPNZhMHDx7EyMiI2V6DVeb5DPQ4vV6vKWB75coV+P1+bG1tYWxsDLfddhsAmKw+YKcOZCqVwsGDB/H8888bBcdsMhoJPJaAo4qP/abLGObn5zEyMoJIJIJisWjiMzQmFPg0FkIDhcqxVCqZRcL0fgYHB43H9vLLL+Ppp59Gs9lsq8jPLD717NjXVNLpdNpkSQ4MDJjxEo1GMTo6ildffdUYSL29vYaqzWQy6OvrQzKZNOWzuGCZ47PVaiGbzSKRSGDv3r1m+cTly5fx9a9/HbFYDKFQCCsrK1hbWzObbNIw83q9uHr1Kg4fPoxYLGYMJMbaOJ8UNPgZj9OKMFp7UL0re72XneBB78teaKyUMu9tz3FHbi0OcL3JhZlxtMZ0kGuGlm35sawN6UVVbLr+hIBEKgTY8dK0UCsnIK1BtV6psDhhmZDBJAHuZry2toZisYhoNGp2v00mk3jwwQcxOjqKpaUlnD17Fq+99pqxsJld1tfXh+HhYVSrVaTTaWQyGZMt53ZvV9Ggt8Wt4ffs2YPR0VEMDw+jXq/jypUryOVyBgj7+vrM9hqkcOLxuAHiixcvYnp6GocPH8bExASOHz+O8+fP48qVK5ifnzep2JOTkygUCvjLv/xLU52CqegEHFK4pD5JGer+Ypr9mU6nEQwG0dPTg83NTXg8HkQiEXMuq7HbdfZIGfP9uVwurK6uAgD27duHP/mTP8Frr72GWCxmrsN1ZXNzc8hkMojFYuY5CoWCySQkeHEJw9LSkqncsbCwgJ6eHjO+/H4/Dh48iEwmg2KxiBMnTiCRSJjCvNPT07jttttMcgljkl7v9qacd955Jz7/+c/jB37gBzA0NIQHHngAU1NT+MM//EM8//zzqNVqmJqaQjqdxunTp7Fnzx7cd999+NKXvoS5uTn09vbi5Zdfxu2334477rjDxO5sWlDpPS7f4FwgCHENH98n3wEAQ1Oz8ogCHuebJm7wPStAut1uc1+v19u2v5cjncUBrje56FoQtcSUytOYkp2MoWCnk4kTVpM8bEuP1+Jv/VzjbTxG16iw2CxT4Xnver2OVCplPJ1kMonbbrsNrVYLS0tLmJ6eRrFYRDAYRLlcNnUGS6VSW0yKioMbVa6srMDr9ZpSR4ODg9i3bx8qlQquXLliaDTudQXAKBhWgWD76IWyfBaTDcbGxtBoNEz6O6uGs3iv7tmlni6NAwI6F7dqVhrfg3pLej7BlsqWCo9t5Puh96zHkNLN5/NIpVJYW1sznu7Ro0fh9XoNRcrYHZ+Fipd9pN4+7xcIBExZKY/HY2g7jjGu9wJgNr9kVXtSnKyDyHJeg4OD+PKXv2zKcvF4rgucm5vD1NQUwuEwFhYWsL6+jqmpKRM7ZLX9paUlTE1NIZlMIp1Ot1F6OkeY8KIeMI8j5Wcn3XC+2DsWE5R03mjCEulcft8pJb5TWr4jO+IA15tcNJGCk0bpIO4oy+w6TgZ+T16elBUnKsv+MDCsCtGOpagSBNrruAWDQdMmKmcqrVAohEAgYDYh5CaGPp8Pc3NzCAQCOH78OA4fPozp6Wl84xvfwAsvvIBcLoetrS1MTExgz549qNfrWFpaQrFYNNuzl0olXLt2DZubm1heXkaxWEQ8Hsc999xjKqHncjlsbm7C7d7eYj4ajZp2UjFwUTL7l4pfqcRqtYrZ2VmzrolxKNYu/J3f+R0sLCyYdHfuRUV6iXFAWuoaM+S70kK1jF253W6TSs/MQK2CookwqmyZicl3yoQbJihMTk5ibGwMQ0NDyGazWF5eNt4t43aaNq7LK5rNpokhknIrFAqGGSBVSDCgEXXu3DlD7zEbk5X+ARiPrlwum92q9+3bhy996Uu4++67sbS0hEqlgpMnT5pEmrm5OcRiMUMfxuNxHDlyxCSeJBIJvPjii/jIRz6C48ePY21tDQDMjtD0oDS7j2nxtpfEyvAab1bGgz8svMx3QO9X12YpoHF5CVkPLlzXRdyO3CzORpJvYtH0Zg54TTenwqLVzYmmlra9fxAVJn80u4nnKn+vtCInrio1repBb0sXorL2HDPUWK1hbm4OyWTSpEsvLCzg4sWLpoI6F/+yCkQikUBvby9isZjxmnK5HJaWlpDL5dDb24t9+/aZtVbr6+soFAoIBAIYHBxEV1eX8fI0DqHZl6TC6EVQSbGPSQv19vaiXq+bBIWtrS2TXBCNRk2sQ+NBGlOkJ0owYFu4uSHv02w227Ik+X5IRykI89r0zJTS1UQeWvuNRsNk/7VaLbNFCbNUeT8mofBZdOkFgUsVMT8nTcmNOMvlsqF3e3p6EAgEcO3aNbz66qu4dOmS6Qtdz3fvvfei0WiYxBDutDw6OgqXy4Xr168bL3Frawtra2vo6+vD4OAggG3alDsk9/f3m/gi55SOb757m53Q2JZ6ahpjtGsZ0kjU2K/uAcZ5x8+1T/XdaljAkXZ5Qz3zqU99Cvfccw9isRj6+/vxvve9D5cuXWo7plwu42Mf+5ixcN///vebLCXK7OwsnnjiCVNg89/9u3/XcZuA73dRoOLfnCSqLHRC8X/+Jr2kChpoL+uk9AiwA3w8jsfSKtS4AIGAVBEVF+8ZjUYRj8fNFvH1eh3Xr1/H+vo69u7da6qcX7p0CVeuXDHt4LouYHviDw0Noaury4DFwsICZmdnjeIdHByE3+/H2tqaoaNYcikUCrX1lypht9ttrGTNxmN1CG7AyO8Za4pEIkin02Z/LyohJsZQMWpCg8YO+U6VWlSlGQ6HAcDQprw3PSLGR9j/vA5pK9KINCaYOdnf348jR45gZGTEtCscDhsPnB6aDVxKS9Iz0KLKXq8XyWQSqVTKvMNkMomBgQH09/ebKvilUsmMqeXlZUPnsdoFMypXV1cxMjJiYqE0BrgJZzweN4uT2fZCoWAWpzMZgnFAZqJqSjo9S/7w+Ww6VBNpFGA0MYrndaIWdT7zOkpDan1Em6Z0pLO8IarwmWeewcc+9jHcc889qNfr+Nmf/Vm8853vxPnz5xGJRAAA/+bf/Bt84QtfwJ/+6Z+iq6sLH//4x/FP/sk/wbPPPgtg23J/4oknkEql8Nxzz2FpaQk//uM/Dp/Ph//yX/7LP/4T7nLRzCcG52u1GorFoqFjAJi1JsCOp6SLILn+RvlzKim19DQtl8dSubM9LMzbbDbNvkMsqVMul02KdrPZRDgcRnd3N65evWqK37Iq+X333YdIJILXXnsN3/rWt+D1ejE8PIzNzU0EAgFDuQWDQfP33/7t3yKTyZhSRZOTk4jFYpidncXS0hLC4bBZYAugzZMEYKgqKiYqdT5rpVJpo+5I3bCvp6enAQCPP/44Tp06hb/+679u82a2trbaqiPwPBod7ENSiWow6GLrQCBgEmwIclqAVQHL7Xa3xcjUEyDQBoNB9PX14dFHH8X+/ftx4cIFrKysmIobun6P/cX+Ic2r26dw3RYXIbtcLiQSCYTDYVO1g2CiCUKrq6soFoum7iDrOHIxMpcXAMDevXtx//3347nnnsPb3/52DAwMYH19HfF4HPfddx/Onj1rqFYW4c1kMmZPNG7zUq1WMT4+jr179+LMmTMGkJjYwhghWQJNSWeiBt8TjQP1oDRexnnE+Uf6UbNvNTbNd66ZuwRcJx3+1vKGgOvJJ59s+/+3f/u30d/fj5deegkPPvggNjc38X/+z//BZz/7Wbz97W8HAHzmM5/BoUOH8M1vfhP33Xcf/uZv/gbnz5/HV77yFQwMDOD222/Hr/zKr+Df//t/j//0n/6TUZCObAsVLukd9a6ocKjIgB1lxYmkqb883qaQOFls8OLfnLycmEoN8jitmagLOwkC3MKEWWnFYtFsR3HhwgX4fD6T6RYMBo1SA2AKxVarVWxubmJrawsAcPDgQfT19ZkKFwBMTTueV6vVzHooO9it1rbSsgDa0tj5TB6Px+wVFovFsH//fly6dAkLCwuGwmSsUS1w9WwJcPY6HY13qdJTL1GP7ZRQQyND41HJZNKAfl9fHwYGBlAul7G6umq2MSHQkS7TmKrt0bndblOeqqenx+zeTPqayS5sbz6fBwBT2mljYwPFYtEYUaRQi8WiqQGpnlBPTw8WFhZMks/MzAxarRbi8TgGBweNh00DjmvouOM1AYE1Drk8g3NG6VVNzlDgIN1Lj4vvj99pfJL9r5md/M0+oRHCuaPjTWlJJznj1vIPIlE3NzcBbFvQAPDSSy+hVqvh0UcfNcccPHgQY2NjeP755wEAzz//PI4ePYqBgQFzzGOPPYZcLodz5851vE+lUjGFRPnz/SI2LceK28DOdgoaMNbzOBmpFBkIVvDjZNQYD+/HSUyahgqcE1zXdlHBcsLSkwmFQmZRbiQSMZ7hwMAASqUS5ufnMT09bXbJ5eJkApdmybHcUKPRwMDAAPbu3Yvu7m6jLGOxmEkM0LgVf/M56SHaFbrZf7TSNdbn8/kMIHL89fb24sCBAyYtPpVKIZFImD5Q2qhThqfGuPi9xsJUmRGIlLZSRWpXzaBi7evrM1ucDA4Omsr49Bp0zGgmoypUHSeMh/X19bVlGqo3yXbSm+GWNnfccQfuvvtuTExMwO/3Y3V11dQczOfzJllDKdV4PI7NzU3Mzc0hEomYWpGVSgUHDhwwY2ZlZcVkJ6qnyj71+/2IRCLmfWtfEnR0WQFFAYvjQOl6NeYoui6M74oGhlLEWkWD91VvzIlx3Vr+3lmFzWYTP/3TP423vOUtOHLkCACYnWq5kJDCbQh4jIIWv+d3neRTn/oUfumXfunv29RdL7TCaPVzgSiAtiw13TRPlQmtZo1X2IqO1+dkIhjROqQy5fU1qUMzGkk5EbiOHj2Krq4uFAoF9PT0YGZmBplMBv/yX/5LpNNpvPrqqwaAV1ZWEAwGkUwm29agsZAuFdyePXvw1re+FaFQyOyGOzAwYGofkjJjajX7qdFoGOXVbDZNZpxm+fE3y2ixn6nYmI7N0kSPPPKIUVoHDhzA3NwcLl26ZDaDZIag0khKJxEMCSZ8H4wF0dgAYGhZxsBYiJf3UaUHbBfenZycNFThyZMnMTg4iNnZWRP349IC3YMtHA63ZaPSgyqVSiaO2Wq1jNccjUaRSCRM39HT1c0mA4EA+vr6cOjQIRw4cAAXL17Ek08+iampKVSrVbz66qvG0ybF+Nprr+HAgQN44okn8PnPfx7ZbBYHDx7ESy+9hBdeeAGTk5MIBoOIx+N47rnnjAeYz+dN6a1Wq4X5+Xn09fVhaGjIpN0rXc4+0xiV7V0xI5T9T+9T2Qh6ZuwrvkvNYOU8AXb22rOpYK244khn+XtD+sc+9jGcPXsWf/RHf/SP2Z6O8slPfhKbm5vmZ25u7v/3e77ZhIpJ41GasUbLmMF7gpOmWKs1q5NCLUJV4po1popRaUgNYGtAmXG4wcFBs2nf4uIiEokE/H6/qVBRKpUQCoWwtbWFZrOJ4eFhNJtNswCZ185kMpiZmUEwGMTg4CDi8TiWl5exvr4OYLu0lMZntI/4v3pvui6NC4MJlGpNs68Y72IsjynXyWQS4+Pj6O/vx9jYGPbs2YNUKtW2xQiVkypBesBqTCg9RJoSaKd/+UMPgqBIYf9rLcWpqSkcP37ceDqbm5smdsf+CgQCbckJmjQCwMSANNVewVgNG/Yfs0u3trYwOzuLxcVFQxHG43EAMFUzuPBW09DpjR04cABTU1M4deqUyVJl2SkmljA9ns+hVGoulzOVV/iO6RUr08D5odQnDShdb8U+09/05NVL0v61f+ht6zXVK6cn5khn+Xv1zMc//nH81V/9FZ5++mmzfxEAs89RNpttO355eRmpVMocY2cZ8n8eY0sgEEA8Hm/7+X4RKlxdhOpyuYwC0TiUgolONi4IpWelFqVSglRAWgKJYKRWJbCTlUgvQbP0qKypLAicLpcL999/v1nntbi4CJ/Ph9HRUQAwOxPTYiWdVy6X8eyzz+LSpUsYHx9HX18f1tbWcPnyZdRqNYTD4TZlZWdEejyeNvqRlCuBg5ZzpVIxlrqmKrMd7E+3240zZ87gwoULKBQK2Lt3L0ZHRzE6Oorjx4/j3nvvRSqVQjAYbKsuorE09rVSlpqKz6xGYGeBMlPLuXaOCTtK2bnd27UdJycncdddd5nKEffccw+mpqYMRVepVMz1AoEAIpEIYrGYKZrLyh9U6h6Px+zllUqlzG96OQoAjFGxPbVaDQsLC5ibm8PW1pbJLgWA69evo1Kp4OjRowgGg8hms2g0GmY/tStXrqBcLuOxxx7D8PAwZmdnDf05Pz9vvOehoSF861vfMpQ0q1lkMhlsbGyYlHiXa3uRM6lSJuYoC6H0oGZa8j3QgGG/6BIE21jiewV2DBA1XpTWpqfqpMN/e3lDPdNqtfDxj38cf/7nf46nnnoKe/bsafv+rrvugs/nw1e/+lXzGffIOXnyJACYBYQrKyvmmC9/+cuIx+M4fPjwP+RZvifFTnNXa5YTRtNsgZ1SP1QiSoMplcRr8lxOSo2ZaYYVsDP57Imlnp9OznK5bBbzknLK5XKYnZ01VB0tXGAHAHm83+9HsVhEPp83OyM3Gg1TRYPHaPs04cJeTqAUqS7StVPTNTVZY2W8TzabNRtd0rtsNBoIBoMYHh7Gnj17MDg4aCg07TP+rdXt9V0oWJCyo1LkceVyGZVKxaTy8/hGY3t/sampKRw4cACJRMKANX8qlYopTqyWP8cL70HQZnuDwaBJQiGA6no3TTYAYOKCTEWnp0jaDdiJX0ejUfT29iKbzZoFzUwCYVWUqakpzMzMoFqtIplMmrFFmjsYDOL69evY2toye37xWZkwoYaNMhLq/RB8mE3JsaTxL13Txnmq1Ds/4xij0aixYHp5nQwuvhdHOssbAq6Pfexj+P3f/3189rOfRSwWQzqdRjqdNnxuV1cXPvrRj+ITn/gEnn76abz00kv4iZ/4CZw8eRL33XcfAOCd73wnDh8+jB/7sR/DK6+8gi996Uv4uZ/7OXzsYx9rK73jSLsoJ29PGLXi1TMigJAKs0FLFSGwU6CXyouTxw5E81j12vSatIIbjYbJBlSpVqu4cuWKmbSsxKApxwSOWq1mFpGOjIygq6vLePVUnNo/dqYdr1epVExaMpUMwZ/eqSoeKmx7PQ2fu1KpYGNjAysrK6bmHz2ZRCKBgwcPYnJyEoODgyYFX6lYfT+8pm7SqQkbPNZOydblDjw/mUzi8OHDOHTokIlvsYoI19rRstfMOZ5PYOG7VGBSQLUVrY45vnsCV1dXl3kujmFW2WCmJst/5XI5ZDIZ4xFyGUelUkFvby9WVlZMdQ1gJzWfMdzZ2VlsbGxga2vLZBjSwFMakmBkL+zm33wuZQt03nHMaeUMm+bTGJp9PO/Dd0nvi8epsejIzfKGkjN+4zd+AwDw0EMPtX3+mc98Bv/8n/9zAMD/+B//A263G+9///tRqVTw2GOP4X/9r/9ljvV4PPirv/or/NRP/RROnjyJSCSCD3/4w/jlX/7lf9iTfA+Ky+UyxTdJK3ESMH6iabcal9FUctJeVIRUWJzEpPVIm2lsi4qVn7EenWab6XHq1TGFWds6NjaG8fFxLC8v4/Dhw2ZTwY2NDdx9991tW7JXq1XMzMzg5ZdfRk9PD44dO4ZGo4GlpSVUq1VTwYJ0odYKBGAsbAInvSlavlQuGk/Sxcj2c2m2XTabNanZo6Oj6OnpwfXr15HP59Hb22vq401NTeHixYtYXV3F/Px8W2Df5/OZGF8sFkMgEDDlqvjOdOGzbpTJ/qeHGwqFMDY2hsnJSbzrXe9COBw2pbsI0IVCwQAKvUOlBXmvRCJhwIDPz0QXji/G1hS0GCPTtWle7/ZmlUyYIODSiODu1vl8HqOjo5iZmcH169cRDAZNeS9eM5lMIpPJ4OzZs+jp6TH36e/vR1dXF5aWlrC+vo6ZmRnTxkQiYdb9DQ4OmixEfaccAwQU9q0agjTQ+J3uVKxLGAhWpNw1U1XBjbUR+S7IoqhX7gDXreUNAdffpSODwSA+/elP49Of/vQtjxkfH8df//Vfv5Fbf18K6T5dwEkPiIFg3YmVwsmm3hiw45HpcaqcOPF04hIE1CJU6/T/Y+9PgyO9zvNg+OoFve/daACNZYAZzL6RlIYiKYnaQ0v6ZDmSHb+VRS7HP1KOnTe2K66U641j2ak4rvdHUqmULeeHK5VUIsdbFNmWZJKmNi5DckjODGcFBxjsSwPoRu8LgO7+fkDXwdVnMHLk98v7gXKfKtQMGk8/z3nOci/Xfd33YRBbMXuFCxOJhCmw6vV6EY1G4fF4EI/HjRBhUmkymYTDsVe1IhaLmfO7SqUShoaGEAwGkc1mjXemsQebtcf3tRvhMipSZflxPDm2yjJUOAmAYf3lcjk4HA4Eg0HjYebzeXQ6ewcmUuBPT08jm812CTA+kx5mMBg0MBnja3y+lp2yYSTmwJ08eRLHjx9HPB43ypiQID0hNq4Xjh8Tx8nG9Hg8BmZzOp3Gw1EvT8dDvRH1NnRtUonyfXgtAFO6aWhoCBsbG1hfX0epVEIsFjNwm9/vRyAQMHEw3jedTiOdTqPRaGBtbQ2bm5tIpVJm7+gBqZpYznklw1Irviu0q8bNQWkCOp68L2OXfG9byeu64jjwnfj/HlT48NYrsnvImwpY9aq4UXjUO8kbVCq2V8EfhS5o9dlJp0rAUOXHzaqbjbCg9pfCYmJiAul0GtPT013xKWBPiTGZ9+bNmzh58iTq9TpKpRISiYQp6VMulxGJREyx3bW1NbjdbnO4JPtL4cbqIrSAd3Z2TFkovgdjYLTkKWC0Aoi+PyFN28NVSIzxn2q1ikqlYsgVpIqHw2HMz89jY2PDzAmFG4Wi2+1GMBhEvV4378TTcxkv5HxQ4fKwzcceewyf+tSnzGGN7fZehRMW6SWzk/csFArY3d1FKpXqKuXEuWSZKUKF9AzUOyUSoAdx0pDhugLQte42NzeNYKbX1Ol0cPfuXYTDYUSjUfj9fty/fx9Hjx7tqlBx5MgRfOxjH8Pt27cxMzNjoOS1tTU88sgj6O/vN0fRaKFfpcb39fWhUqmYdaPejxbCpWfLObKVPr1ZKjOF04F9o4lhFCWvMD1AIUyOF9culR+Ztb3W3XqK65A3TUBV2Erp3CxTpApFFZxCGDaOr3EJTYi0vWu1pvk776kKTb9LweB2752xFA6HTbC7WCyiVquhXC6jWq3C5/MZKIkKjkeU0OpmkqnP5zOxG4VitE6fw+EwcRyNXSn0pp4Mm/ZfoR2ltLN5PB4EAgFzfSQSMYKdyoDXJZNJ9Pf3m4Mu1bPlPfk9xvd4erPOj3qFnU7HHBTJgx+pHPj+CksqU5LljVKplCF3ADDeF7/Dqu0cV/ZTiQccM84HDSH+y3OmqEwJ39peLs8+Y7krpii0221sbW0hFouZU7I3NzdNtfdcLod6vW68LCopVkxpNBoolUpGyap3TkhbvRz1chVetr1vXQt8P1VeGqfi83jdQd6p/h/4X0O4/qa2Ht/yEDfi3rTsSJ6gFdput7uIFPyOvfg19qQsJgBdCpGbTjegBqe5+bjh2S+bUcV4HEkAhLIIN/F8rZ2dHWxtbQHYr7VI2AyAKe0UCoWwvb2N5eVlUzNPacxKEuA9Wq39GnFUBkozp7C2q2jQ2lYjwIZYNT64vb2NbDaLcrmMaDRqPD6OHdMFYrEYjhw5gkQiYcaSz6JnyKogTF1gnT8lk9DboWJyOp2G/FCpVJDL5UwZJE2Z4DvSO2q32yahmO+r/1Lpa+xKoUv+0IPjkStcL1pJo9VqmYRpZTSqAujr60Mul8POzg4ikUgXaaHVaqFSqWBjYwMulwsDAwMYHh5GuVyGy+Uy7EKOKQ9iDIVCplRaLpfD9va28dSVZKLrWJmRNoGG96ey47pV+E9hdNtosPeYPsM2CG1SUK91t57HdcgbhSk3kK1MdFMpY8lu+jfF5RXesa1GxpsIQVLIkCTA/ilkQoubgrRYLCIYDGJoaMicrPvYY4/h9ddfRy6Xw9zcnDmGgkSF/v7+ruKswWAQlUoF9Xod4XDY5HZRiAMwsSR+TgHmdDqRSCTMO2suFVl8GhcjOUKD9XaszOVyYWhoCNVqFZubm/j93/99nDhxAp///OfhdrtRLpexurpqjjjhKc48CbpQKHQd1UGFwVJSwWAQmUwGnU6nK7ZEq59KuVqtYmRkBCMjIyYmyHmgsunr6zPPZ0yR1ex5/AuhSCWBUDHWajUTvyMEzDicsvSoiOiF0ktlRRAqY44vFTTX2vDwMJaXl1EsFhGPxzE6Omo88FgsZmDRjY0N+Hw+HDt2DPfu3QOwl6g8NzeHlZUVZDIZrK6uot3eS2av1WrY2NhAoVBAo9HAyMgI5ufnzThy/eseUqSCHirXuCo2KhY7b5JensYquWe1QDXHUAkbGsfutYe3nuI65I3KSaEKpdxSUfAaJRsA3YFhpWIrnGfDPhqAVoiIz1fvjn0kC0/jYrSuKTgJZXHD0isgxZ33ZXVwCm0qIHpNFDDsg3qCmtemx3qo4rKbwjRs6slpTIwB/FAoBK/Xa7wbUq+1dBYhMs23YgL96upqFwRHz6/ZbBraOk8WZj9ouSulm4qJ+WKcM3o9zLlSxp/CiuohqMDmWJJtyHHi/LVara6kdeDB41qooA6KRbpcLpNIzdhkf38/VldXMTY2hlQqhXw+j3Q6jeHhYbN2WWHF5XLh2LFjpsDy9PQ0dnd38eijjwKAIQDt7u5ic3PTFGem4cP1xvFXY44eoHo9mu/X6XRMcjk9L44lDSOuExuNoHLXvaKQoO63nsf18NaDCg95o1IB9gWLwlncxOo1qOJSCMPG9nktgC7vRQW4endAd6IyLVbCj7xeyR8UNKx/R6sZQBf7jo3sumAwaCBDFl9Vth/fTdmVjFXRu1RyARU9q0UoxKpCiQJIz+Ci4qJ3yWv6+vpMCSt+l/E3hTFpkft8PlOQl54IlaZWcaDQ1xJVNFz0XegdxeNxJJNJFItFTE9PY35+HltbW2bcNY+sr6+vqwK7Pd+Ep0kcoHDmMzUBXRUT76f9s8eVP5oEzhYMBjEwMIB8Pm9qIG5ubmJtba3Lm2fM0uVyGRLP0NBQF9GIipoKPRgMmpw7Vlmh8qRXSuNGUQOFOzlP9hrXdc/31niyKiaOoxp8HF+iC/xcDYpee7D1PK5D3NTiI4xHQauBY1rEzGOy6coU5Ao12tAInwF0W86a4c97KoTGzciNRzYU+zg/P29KAtVqNdy5cwczMzOIRqOo1+uG5g7seTGjo6NGaKmg40GUTEal50KFkkql0Ol0DPXe6dyjcCvbjcqIY9JoNAyMRaVE5aDFiPl9Xq8EByqHcrmMbDaL0dFRjI+PY3Z2Fp1OB/l8HktLS4hGo3jyySdNLOeb3/wmotFol3CkwmRNwGQyacgW9N7YNG4SjUbh8/nwta99DTdv3kQ0GjXVM86ePYtEImHiY5wfNWwAmPcibMj51+oRSjjRkwpcLhdisZi5nueusZqICmoqRhJzaEwFg0GjgKempoy3ScIG+0UPdHh4GF6vFysrKzh37hwajQay2Symp6cN5Pjd737XrEOv14sbN27gzJkzBubVOBWViKILGv+1CSrMBeNc0JukAqXxUi6XjaJUsop6X9zX9JT59157eOsprkPelLlns46A/TiVQoj84ebjdUrCUHIGBbYKbl6jRAWNDwH7ws7O96KgorJSRVsoFLruFw6HzbWkjc/OzmJmZqYrWZYeHkkFjKVQKJHA8dlrn32AGcm+0Rp/8aMvdkGsfAeNF+r3SWph4jYVG1mMZOLl83mMj4+jv78fwJ7gzmazuHfvHmKxGC5dugS/349oNIpQKGQEFYUmISoqRXpp4XAY5XK5K0GVc8FzrKjYSbdmbhw9IbI0lcKupaL4oyQCQl9cY7YHol4BPW9NclaEQNcslSE9qXa7jUKhALd77yDR3d1dFAoF493T46Yyc7lc5rBQhfoajYbxLqenp5HJZPDMM8/ghRdeMDHEoaEhjI2NmdJRfA++L2ObSpCg4qKHqZ6qzgXfjbEx9o3K3jYcuV9Vceq+7rWHt57iOsSNi5tNN5HGMSjQufA1XqMwIYWPsqMImVBJUegovZ7/2sV3lXXFZ3k8HnOdz+dDNps1BIlarYZ4PG6q+0ejUaTTaXi9XmQyGWQyGXg8Hjz77LPY2NhAKBRCIBDA+vq62eBU4KwM4XQ68akrn0J8eq+Yb9lTNoJMISkKmFarhaeef8qM6fNPPd8V3wC6SxtpLAfYP6WY9yUkVS6XcefOHZw+fRrnzp2D2+3G3NwcCoUC/H4/KpUKVldX0d/fb8ogMXbH+zJnCwC2trawu7uLTCZj5owBfCruTmePDr+5uYlWa++MsnK5bPLWmEawuLiI27dvo9FoYHBwEJlMBru7u1hdXTWGBBWwstzo1ZHVx8rrzGFi33d2drC5uYlqtYpqtWqOOmExbIWbGfukEmB+GU9GHhoawtmzZ9FoNLC8vIx6vY533nkH9XrdnBywvr4Op9OJEydOIJPJYH193ShuKq5EImEKgAcCARw/fhz3799HPB7HI488gm984xsIhULGQ6f3Q7q+DcUTeqbnynni71wPJKHwPvQUuWc0DknjR9EQ7kfdd732YOsprkPeuNk1kKuZ99wQ/Pyg7ypcqN6U/igsoh4ZsE//VlYbmYh6/pXWJGT8q1AodJ1ZpMe1kyLPsj5UnP39/fB4PCgUCigUCgZKYlFeClXgwYKkJGQA+0qbXox6NnzvT7zyCXz7Q9/uMgrUYKACJ6Vcq3RQIAWDQezs7B1iyILCfX19KJVKJkfN5/MZ5UTloJXGqZDVm+l0OigWi10V09V4oBIlNDc+Po5KpQKfz4fR0VGcPHkS5XIZc3Nz5pRpwqLxeBzlchnFYrErjkb4jEKUnoOWoWKlCV2TmjtFBqPG/jR3To0dzj2PO+E4sOhuPp9HPp+H0+k01VVarZZhUPLUaR2/WCyG7e1trK2tGXo9a0tSATsc++kEuo7oIWlsStEJ/q5EDcLk9MQ4Xlx79Pi1ZBthRd2z3AO6LzVfs9f2W09xHfJGC8ymumuiJX9sZpR+flDAWCn2qqz0WSrEVQnq5lRrWpmNu7u7plI3LetQKIRQKGS+R6IAC6v6/X4kEgkkEgm89dZbZnP39fUZK5Z9+cxbn9l7X8/+0SsUqtzw6nHyd46RvpPCl1rBgOOhsQ5lnRGmJUOuWCyiWq2aNIJ8Po9UKmUo4vTmWDnBFlRUBlToOzt7p0XzmeVy2RSg5ZjwnLpjx46ZiiSkya+urppyU6zbR5o+D9W0GagcD3pgdhyUApjeCrB/4jXJNTqmSuqgB0vPiHM7PDxs4EN+TkVdKpVMovro6Ci2t7dN7hawTywKh8Nd5I9ms2mqzdfrdXi9XhQKBbhcLoyPj2NhYcG8L9eMGm/abNhQIfiD8sH0GsaA6X3xeWoQ0Jiz926vHdx6iusQN40heL1eAy0RBqPHQ6GtMQO1EhU75wZSJpN6Y+qZKAkD2E/G5XPUO2F/VGG0222sra1heXkZp0+fRigU6qJpUxhToDWbTeTzeTgcDqPcNK4SCoXwsxs/C/e2G56CB33ePQ+CsS56IrYVraWytFQPLezd3d2uOArvxesoUHg954NWO7BXNcPn82FjYwPLy8s4f/48yuUybty4gU6nY07g9fl8qNVqSCaT2NjYMP1jGSDmWFHp/+N//I/R6XTw4osvmhjd6uoqHA6HKZK7sLCAZ599Fj/90z+NU6dOYWxsDKFQCNVqFf/tv/03LC0tmXjZ9PQ0hoaGzEGToVCoa83Ro2LyeLlcNhAwBW0kEnmA7ahwpk0qoqIC9uJ+XK88b8zhcJhz21gDkveJRCKm6v7KygouXryIeDyOlZUVzM3NIRaLmTqFTqfTJHHTG/N6vfiRH/kRjI+Po9Fo4O2330Y6ncbHP/5xfOtb38I777zTddwJvWC/398FwasHpB6jGoJ6ijS9fCVxkMxjQ6cAulikVJ6q/Hutu/UU1yFvynJi08CxekNahNW2CnkPxjIoiHWzaFIxsJ/fpB6bQh3qAWoQWhlwpL+fPHnSnK0F7CnQQCBgFEMymYTP58P6+jrm5uZQKpXQarVMHKvT2UvG9fv85nmshEElojCgxvk4Pvp/9dw+8t2PoNls4k8f/dOusbcFCMeCys6GEwn/1Ot1JBIJHDt2DOVyGfV6Hel02tTCK5VKKJVKcDj2ErxZz46sPrIRz58/j+HhYeRyOZMPp0QVrXW4sbGBd955B+l0GgMDA0gmk13khp2dHdTrdTgce0nA9ICi0aih5qtXSaYqvXqyKukNMrbHpGSuF64PQqtUaloP0hbe/C4NFfVcOMfMb+PaCgQCD5RxUsiSTMdEIoFHHnkEw8PDyGazePnll00aQzgc7tovun4557rXFKLXfankHzWKuL5sMpUSQWzYnvfg2NAw6rXu1lNch7iRzcYyQvzMhu9oYbJuHhe8xnrUEtbPFZLQQqzKqqOyA/YEEunrWkeRQpvXcLNubW3hxo0bePTRR7G7u4tisWho5ZlMxli4x48fh8vlwtLSElZWVky1BjIX/97039uzdP37AWxlHNIK/uK/7MDhUEXtQKfjxhd/o/s4eip6YJ91+KNXfxR/9tifoVqtmngQCRH0iugl0ENjvI3jRoZhKBRCOp3GiRMnDGOy3d6jtl+9ehU+nw8nT57Ea6+9hkgkgkAgYLzQUqlkKkf823/7b1EsFtFut3Hy5ElTiYOeRSAQQC6XM3UQ19fXMT8/j0cffRQnT55Ef38/FhcXkc/njadLxeXxeEz8p1QqmfmmQcMEcI2fUlEFAgGjuBh/4xjQQ1GPVyFfKgCNJWlpMz3yxOfzob+/H2traygWi5ibm8PY2BhisRgKhQI2NjYwPDxs5pOnayeTSUOvB2BSDKanpxGJRPCZz3wGly5dwvz8vIEPAXTl0inZSJmBSmjSfcA1wrWnFfe5H0jq4NpRo0ehQTUCeu3B1lNch7jRClOrTK1i/q7sLl38B3lViuXbMTF+TotTcXs+0xY4qvgU71cFyqoFvEZhN1UkjUYDGxsbpiK8votCk8ryA/YFx6//GtBp7fdJ85V+44sdtNsO/Msvdlv52n/tN59hkxBsL/dhXqfGXQiT8bTe7e1tjIyMoK+vD5lMxlS3oBJhzI9eGwBDx6fyoUJdW1uD3+/H6Ogo+vv7TaLt9evXjaKNRqPGgyX8pZXg1fJXkg3XDUkaSgNX8gK9Hq6her3eJcjpIdJQUIYnjQaNs/EzPWaFuXL379+Hx+PB4OCgUVL0/pmvxnGm93rv3j2sr6+bk5RJiMlkMhgeHjZjw3fTuCONPvab60W9MY1XaYyQBo1tNCqUbXv19v7ptYNbT3Ed4qbxI40jaAwBQBedXRWL3gN48BRlpYwrGUHPqbI3l21Jq3JRAggbY1elUgl+v9/EuagMlQ7M49YJnRE2oQBT2FIFSqfTwa/+X7vo7HQHtlX5AFQse/3S8dMx0nwlCt1arWbelV4DYT97HlSpMlbndDqNxU/Fw6NegsGgga0SiQS2t7dNPUdWlCcBY21trSuG0mg0MDs7i4GBAUxMTCCRSMDv96NYLCKbzaLT6WBiYgIDAwPmsEYy8NS7sq19GkBqkNCz5FzZUKlC2WRJMu9Nhb3el3UL6dko5EaF5XDsHclC5bu8vGzgQ542QCXl8XhQrVZRLBYNGabdbuOtt96Cw+FAuVw23lmlUkEsFsPw8DDu3r1r5pv7QBUr+0xvm9fasS6uMf6rpaVsY0lp7zYCospL49O9tt96iusQN930DOxqHAvY90SA/XpqyuZinIMbgv+qgFWLkBtRky35PIUfdTNzEwPdZy8BwODgICYmJkzxXEJQhUKhi1RRLBaxtLSEhYWFLtbj/zH1f8Dv93dRjW1P74v/soN288HSQiqE6EU5nftwq3qsFCbMpSLdmsm97BOVL6uBcMwpJBX6osfB+3q9XgQCAXzoQx/C4OAgnE4nhoaGjAIn25DMSgCm/BG/S2FKZt3GxoZ5NzI0CUfeuXPH9PXo0aO4deuWIVywNBVJHhqLYWV4jg37r8QEVVxs9NjUcOLYU7nRCKDXB8AIeFbyDwaDcLlcxqMC9nL+AODatWu4fv06crkcnnnmGfj9fpMywVqR1WoVsVjMVIe/d+8e+vv7TYURAHj99ddx4cIFTE5O4rnnnjPKkyQPG1ZWb0v3khp0tieqR9LomuOzOIa8nt4gjdQeVPjw1lNch7ypILA3gG4cYD+orIJYsXluOIVX9G9qddNzUwiFikGTKZUEQS+H/fR4PBgdHcWZM2fM8eqasMkcHlrDm5ubqFQq5piOz177LFzu7qPgVWH/y3/xPU/he6kutmVPIa9Fdnkd38e2qvmuhPTsWoyqjOw4hHoUmlvmdDqNp7m9vY1YLIbTp0/D7XYjHo+buaN3ybG36dH0lhyOvbw2MhmbzSaq1aoReBzLbDaLbDZrKnmEQiFTMotxvHA43EUq0PflGPHd+GyFTXXs6I2qItJxtr1/NSh4FIlCwiRkMKGaBlK5XMbi4iJKpZJJWmc8OJVKwefzIZ1OG4UMwBgDZDWur69jY2PDVGBhLpyiHNxn6lHqfBCKPmhv8keVH8dRFRPHTveRpmH02sGtp7gOcVMrTj0OYN9r4MJXoaBMJ70PN6DGFoB9T00hMgoWvT/vxWbnganHw/5MTk7i1KlT6O/vN9Yx4R0e9AfsHd2+vr6OarWKTCZjNjL7rArC6XTiN77oQKfdXfzUVhgKEfJ+nU63FateEoAHyAOMz6ggV8WlOW2EqwhtMteLcCGPamHsyePxGG+SgpfQ5OrqKmq1milxpDT+QCCAyclJU0CXZ4xpn6k4lpeXDQNTE2Cr1Socjv1TmNXA0XVEqIpkDvUyNU2ASoUECT3Pi2uM76yGAI0EPlc9/Fqthmq1aogwfEartXe+1traGuLxuPGUqtUqxsbGulimbG63G+l0GisrK2g0Gtje3sbc3BwmJiYQi8VM3UT29aDEfq1tyDVgMyNpJGkyPg1JW5npvrLjiFx3vXZw6ymuQ9xUEKsXpdAEa9qp4FHFQUhQg94qhG1lRjhMN/5B0CSFG+u9EebQsjsAcOLECQMR0uPqdPao7fF4HI1GA81mE3Nzc7h16xbK5TJCoRB+9OqPYre1a4rfqtD89V8D3J2OYWY5HI4HknmB/TgWSQYcA83PseM7HDdWmKA3yLEiVMizrQjZ1et1xONxDA0NIZVKYWtry+Qw2UdkBAIBc6BkrVbD5uYmVldX8cYbb2BlZQVbW1tYXV0178M55Lv19fVhZGQEiUQC733vezEwMICRkRFcvHgRHo/H0PHffPNNLC4uYn19HaFQyMCP9HTVU6fHQViQCoRrTwsRl8tl4zWrsUJhq/l86pmRQk8jheuG99e4IceV65BKnM90u9147bXXUKlU8Nhjj6HVaqFcLmNoaAgDAwOYn59HsViEy+VCJBLB4uIiMpkMbty4gXw+j9HRUaysrKDZbOLSpUsAgGw2a5SRIhJKXrGVmcZ5uQfsdBJFSNRTV5jQ5do/q4vz0GsPbz3FdYgbFzrQvZC54dWTsiEHrXqw7208yBhUjJ7P1A3H3zUeZm9k7a+SRAhpsXJBOBw2VGqFcYA9j4uxJFq72mjJ/tqvttGx4g+qdNUCVmVv309JJ/Z42zUfKVwJK9GjUi8XgClo2263TfVx9WpYAYNzWavVcP/+fSwuLmJmZga3b982jDi1vm1yzc7OjqG4t1otpNNpHDt2DCMjI0in0zh37pzxfL7zne+gUqmgWq2aOBj/Ro+N76tkFFZ5YExIj7I5KG9LjwXRsQNg7sMYXKezf8gn509ZiUwp4BzRQGDMkV5ltVrF0tISHn30UeM1klVI5ep2uzE+Po7r16/j2rVr2NraQjgcNpVEqtUqjhw5gsnJSSwtLRkDx45fcc4U/tX13+l0jIGinpl+T9fLQbFohVR77fu3nuI65E0hBmUVMiZCgWHHXFQRUTDR6qVC4/UauyCFV5WT7fGpMlOrHdhPDK5UKjh37hxSqRRWVlZQqVRMUdFMJmOYdGTcrayswOFwYGBgAD9+68fR7rRNFQklA+hR9kB3rUJV4GrlUtj9+r9yooNuBWUrNgpeJrK2Wi0kEgmjbFU405tiLIZjSzo4K8EzubpcLmNlZQXz8/N48803sbCwgHv37nWdd8Vq+Upy4XwRYqRydDgcWFhYwOzsLN544w1cvXoVR44cwY/92I/h2LFjGBoaQiQSwfz8PJaXl5HP581x9/TUSWBgvUXGmghrkihBuE5PBKDXynHgO6iS63zPM67X69jZ2cHY2FjXeWVkE5ZKJSSTSfNd9pXC3+fzGa+akGy9Xsfy8jKazaYhY5TLZZTLZTgcDsMs9Hg8OHbsGIrFIjKZDCYnJ3Hnzh1sbGyYfMHTp0/jzTffNAqVtRM5Fzb0rgqG68wugaWMYI6X0v7tPDYq796xJn916ymuQ9w0yKtxGGDfCmcQWSFCraOncITCOupZaXyLyk0FJzF9fb6dG6b3I2uR1byXlpZMJQZSyZlICwDr6+soFosA9ggE7cp+9QWFJPV5D2u2B8hx1D7qQYlAd/FULV1ERe73+01dP46xeqVMmKVyU4ud3le9Xsfdu3dx79493LlzB3fu3EGhUDCC32aGqnFAxcX8IyWraDzvzp07WFxcRDKZxPj4OGKxGAYGBoxCWl9fN1AcY1Z+v7+rirvT6TReMvuuRYAZP7LHWtlwdgUJHvlCBcNYValUMteqh0WSiMbX6GGpF6qJv1Toq6ur2N3dRTQaNbEvGkWsJ+lyuTA4OIhSqWTSBHw+HzKZDO7evWvm+iAjSPejQrf0kjkmuvf4f4UNaWzqGCpZQ9dDrz3YeorrXdA0pwro9sKYE0Uhx8/UouN3uIloIXPzcFNxo9m/E65RCE4DzvYGb7fb8Pv9GB8fx9bWFubn53H8+HEjpFih2+v1GqHKuIrf70e71EYH3f3YJ5TsCxE2VcwqGNQiVmIFrXoqfV5DcgHHnJ4FvRIlKxAyowLsdPaOEWF8b2VlxVC6gT1B9tprrxloMJ/PA4BJCQAerCsJ4AFFwB9NBqZCLRQKqFQqePXVVzE/P4+RkREkk0n4/X4EAgHjpdMzYP/ISKRwZ50+eliaX6V91TXFdeNyuQzbTokyrVYLW1tbyOVyph8K53Hc6FlqjJZ9bjQa5l07nf26k5VKxXi4VPgko5AIFAgE0Gw2EQ6HDZOy0+kgm82atXfkyBGDDjDepgqL7801yca9pBU2bKSCTQ0ejSEzTqvGVq89vPUU1yFuDofDCHe10CgkCFdobEc9FBXiKlg0zsV76nEZek4UBQ9L1WhhX5sZyAC+z+fDJz/5STz++OP4gz/4AxOH6HQ6WFtbM8mfbrcbpVIJ8/PziMfj6O/vRyAQQHt1H4ZkFXSWOAK64UkKR313ChZlJP7arwO73xOyKnQ5zppvRGVASIrvzuspdCuVisn7osXucrmwsrKCr371q6hUKqYfrVYLKysrBgZieS4qNiVucF7a7TbS6TTGx8eRSqWQzWYxNzdnPCc1VJzOvTOogsGgOY35ypUrOHr0KNLpNJxOJ5LJpKnWr0qX54Xt7u4V+mXenc/nMwdesk6gxi+V7cnx1IocVEJerxexWAy5XA5zc3MAgHw+j9XVVTP+586dM+us3W4jHA4bpZjP51EoFExNRT6bxYDffPNNeL1evOc970EkEkGlUumi2mv+26c+9SmkUimDLLTbbdy6dQsA8Mgjj6DVauHatWtYX183xgu9fa0kwn643W4T89PcNo4HPXCt38m9Y8fINMleWYm99mDrKa5D3hTG0lwYLniFIOyYlApkhRodDoeJZfAeNvxBy5HXK2vxIIIHSQi7u7t4/PHHcebMGezu7h1W6PP5DFTYarUQj8eRyWTgcDiM8E+lUojFYvj8zc8DDjzwfD5blYfCnmoB2+3/+tVdqB+jFrOOmY6d3l89Ch1nVe6sKl+v17G6uoqlpSWj1KikgP3qGupdad/5rvSswuEwTpw4gWPHjmF5eRntdhv5fN7U8lOvlGQLKppWa++Axp2dHVMlolqtYn5+3lStIC2ez+t0OlhaWkIwGDRkChokCrWqkcB/GRPk2qISczj2igl7PB7jZRWLxa546ebmJjweDwYGBrq8PT15WgW/wqkbGxtYXV1Fo9FAJBIxydLAnjeUSqXMIaY8OZkK1el0YmxsDFtbW9jZ2cHg4CASiYSBrhVOVuNQ50xJFuqd8nNdZzrPuo/tPar36rUHW09xHeJG4UY40GYPAujazNwYCtHY97NjWoQ3CIMp9Vrvsb29/UCtOgDmbKhOZ6+i+dmzZ/HJT34S6+vr+OpXv4pYLIbNzU3T74GBAVy4cAEDAwPY2NhAPp9HJBLBkSNH8LGXPoZyq9wFj1GIkQq9ve02Qla9DQozZbdpIJzNhq9UyTudTnzy9U/i2SeeNd/TY2OA7gLCCoelUins7u7i+vXr+O53v4tKpWIOPmQMh9XZHQ6HgatYvUJJJlp1Qyn48XjcxK2o1DSuQsWxurpqqNWsZ7i2toajR4/iyJEjSKfTmJubw9LSEvL5vKnwQEG6trZmTinm0SeJRAKhUMj0RRW7LZAJF/L5JFS4XC6TTMwqGXxuLpdDtVo11fRJz+d7EfpjgnS9XjflssrlMpaWllAoFHD+/Hl4PB6sra2ZOpHVatUUIq7Vapibm8Nf/uVfGsbhRz7yEYRCISwtLWF4eBhnz57F/Py8Id7QG1KEg94XkQ2uPTt+TCXO+VUjyYYFNV7MddJrB7ee4jrkjYJA2W9q8XOTqDI7aNGr98XvsKknB6BLkCv8oTEh2+Lc2dlBMpnExYsXUS6X8dprr5kj1vlcVX6VSsUIvlgsZhhgNgFFc672oKN9CIpxCltw2u+vsTpCRvY765jQK9K4hhoFVGZUSKFQCAMDA6jX61hcXDQey9DQEEKhkDlckgIvHA5jZGTECGNa8BzHnZ0dQ5DodDomiZhkDioRHTPCas1m0+SdkYHJcSRJZmhoCGNjY+h0OigUCl3HgwAwMFVfXx9qtZqBHqm0jhw5Yrwxjq8SDzieHDv1HOjB6BhzfQNAuVw246tUclUGNGxIiGCci3lb4XAYq6urxoDJZrOmwO7q6ipmZmbw2muvwel0YnV1FY8//jiCwaA5syyRSHQpEW3sF9M59L1tohLXp84B1xAJL1RkiqzYxkCvPdh6iuuQN5uIwM808EvlwuRPtQRVcTC+AzyYx6SfA3hgQxKqpJChUHA49vKKfD4fRkZGkMlkMDU1hbm5OQwNDaFUKuHChQsmHkEIqFqtmv6yDp0qU93MwME1Cu1/VWmx37/260BH7qEwkxoE7U4bTnSf9GwLDypMzWdyOp1IpVJIpVLI5XJYWlpCpVLB2NjYXryu3TaKIBKJIBgMIp1OY3R01NDrOd7Afr5UMpk0bMRisWigLSqeSCRi5prrQeN3m5ubJi5ExVIoFHD//n0kk0kEAgFD3CiVSobVR0iMsUXGwUiHr1arRjnEYjFD5qAC5jrjWNNgUg9fYUXOC4U8YT6df/XuNH6pOXe1Ws0YSvTiuO63trZQKBQQj8eRzWaxtbWFTqdjqs3n83kT53M6nUYp2blbqky1vJrtSeke1X1qoyUcazWaOF4HKc1e2289xXWIm25Qtd5sppNCe1RYxPG12Ti9xllUKdHyty1KhSf5/Wg0ikgkYqo55PN5vPzyyyau5ff7MTw8DJ/PZzwGvpPH40E8Hsf29jampqZwunra9PMgAokKOy2BpV6gxiC++BsOtNp7Vcpp2ZM1SAELALut77G7nA6jVFlzj+NFA6FSqZhyRowznThxAh6PB1//+tcxPz9vPJfFxUVsbW0hGAwimUzi/PnzprhtIBCAy+XqqvihJ+gyVkXP1OXaOweNwpgEC74XlYPD4cDJkydx7NgxlEolTE1NoV6vo9XaO25ka2sLN2/eRH9/v1G6zJvieHJ8CVGzpiHhy1wuh0qlguXlZQN3Hjt2rOsIF74D87B4tA3rLfKdCAkz145V9BUK3WeUwswdx9jh2KvA32g0cOvWLUxPT8Pn8xliidvtNsp1d3cX9+/fR6lUMs+v1+uYnZ1FJBJBNBrF1taWKd/FPmlOo3qVNAoIS2vcmNcQRif5iUqM1W5slKPHKvxfaz3F9S5otjWtMKH9Ywd9aSXSw9CNSGUF7LOaFC7TzcPfqXBokWcyGcTjcdRqNROrYIyGFQxWV1cxNDTUdQSFbmSHw4FPXfkUGruNrndWJb3/82BVBv6rJBLtO+/D97fhK5dzv5wSlSaNBY6NKk8qMZIynE6nKdPUbu8lTheLReRyObTbbfT396O/vx/JZNJU0dB5sS11AMZwoPWvXqSOjVYQYevr64PX60UymcTQ0BByuRyKxWKX510ulxEMBhGPx1Gv11Eul7s8UY1jcuw0tshnkjzRbreRSCSQTqfN6cta4WJlZaWLCm/DsOp9aXFjXqNjwznQMlhUqPl8HvF43CgFj8eD/v5+o4ArlQoAmLPPWFrK6XTixIkTWFxcNAzWgyBnRQH4+0FKRteuxkjVMND5U9j/IAi817pbT3Ed4mYLMwbi7TIyNqxgwzAUNvp9hXFsZQegCwahJ8Z8GB4P4ff7TRxna2sLDsde7T1auru7u6YWITepwiqMU7VaLbTaDxYFZv9tKFDhsYNgQgD41V9ro+3oZj3agoi/a0LvH535I3g6+/R3VS4Ko/K5rOBA9h7p87lczrzfwMAAEomE8eIYO1RDg/fl3JAwQTiRClXnVkkpNguT88f6hCQZMIG52Wyir68Pw8PDAICNjQ0DF3JtKRxMWI40cntu1tfXTR6ZepOVSgW5XM5UuFAmpY7nQUQZLa5L6E8NNCo5fs44VzQa7aobmE6nDUORZCQaUsvLy6baBg/35AndfIZtKOnnasjYis02LPieHDOFDHXcde332sGtp7gOcVPoj3EAbuBms2muo2LREjL25mD8QC1V3WhUUKoM2u22ga94qGEkEjGxGrK8gL2KF8FgEIlEAvF4HJ3OXqmlEydO4OLFi13xCMZn1tbWzHXjrfG9/rr2SyrZQrTT6eBffrEDh4Oe4t4G//VfA379XznR1+eCx7P3Ttu72w8ICU34VO9S4xGEhyiM+HwqWk3K9fl8iMViWFhYwPLyMgYGBgDs1V2sVqsIBAI4duwYjh49aqorUODV63WTY8S+2ZUUyM6zoVLG1hhXAtBFV6fga7VaiEQiCIfDiEQiRrGUSiUDV05OTiIajWJxcdHAj/V6vYuVqeQRGkA6Lnz+7u4ulpaWsLa2ZuC8druNer1uYDT1fAkHk+TBBGOOAckmuv7Vs+ZYkJm5vb2N+fl5JBIJxGIxNJtNcyhnf38/5ufnTWL48ePH4fV60d/fj29/+9uYmpqCx+NBoVDA5uam2Qc2SUfnh94R9xd/V4OC1ysSoMpQ55xGlLIXe+3g1lNch7gpgYC/27Cgxq1UENtQg1qIKrgPgoTUqvd6vWg2m5iYmDCWbDqdNsqHiauM3dBiZaLq5OQk4vG4oWizUkSj0cDi4qIpPQTH9zzLzoPng3Vt9HbLsC0oDL74Gw443A/G46gMbCFA5c+/q7LnuzebzS7FwEZ4yeFwmJp7+XwetVrNJIvXajU4HA7EYjEMDg4iEAiYZwH7sUYtrWVDvQpdqvLl++h9qFiUfKMeQl9fHxKJBJLJJBqNBmq1mqnGTuNIjxxRT1xhVq1HaHsLKrB1DSqhQmFojj8hU74nDQQlMajiVhamGha8NpvNolgsYnBw0IwnUwk2NjZMP2lgeb1eXL582RBg2OwKGHzOQXuJRg7ngntI152uP8YP1cO0FaL9nV7rbj3FdYibwgtAd0kgraWmlq8N+3GTKW7OGAu/ozR5hZz6+voQCARw6dIlfPSjHzWfa6kdnjUFwFQeZ2wrGAyaKgVM6IzH47h+/TquXr2K+/fvY3R0FJOTk+hz96Gx28BuaxcddOBy7lv8HewLwD73fq4MvUQtM6SKGdin+iskyuvsI+pZP3F7e9t4JUws5tjy3vF43FSVaDQa8Pl86HQ6RokdO3YMk5OTGBsbMwVilQXI/ys7jZXTHQ6HiROSxacxR+Z28f30+2rp8x3pOZ8/fx6hUAh37twxa2NtbQ3T09MAYJQCCShs6i0znsQ557vY60ZJLfSMyIzk+7DoMksuEcak96SKziYWdTodU8xY42RTU1Pwer04e/asGetgMGiSqOkZulwu9Pf3Y2xsDDdu3MDNmze7ciW5HjqdjvkOla/OoU3cYLoEx1I9Rt17Cpvzb5xL9c577eD28HIDvfb/96ZwlVq4/J0bSS1ytdxV8WnirQpr29q3ocTjx4/jve99L9LpNGKxGCKRiKnKPT8/31VFnX1lBQcKbAa/CQ/Nzs5ifn7eUOJ3dnawvbONVruFTvt7fXdKUNyxH2PgfbTvQLeFr0qZf3tYjEu9GwoWp9NpIEHeS4PoVOgkWrAILz01r9eLwcFBxGIxw35jvzU+p+WRdO6A/XPPOF86n6w1ace1VHiq4KPBEwgEkE6njbFBaFANIsJ2mq/GPvAdNK1Bx8T2HvVASxoZWsxZ+61rmOQfNbY4bqxZSOIGn8n7NRoNw3rkutecMcKP9Cyj0ShOnjyJoaEhYzDwSBdVkvqv7k+9Rr1RwsqaJqDN9vT1KBTeu9ce3noe1yFuGqS14xc2fKhBfmUL2p6HCnb7vmSO0Zpst9s4f/48Tp48aSzRer2OmzdvYmtrC8B+aRtuTkJOpG7zeAgy8NrtNnK5nIHiTK7Qzi467b2YQp+7WwjyPVTx6N/1c4V7bMjR/kyFvX0dGXS0glVxtdttQ7emF6FehXpkQLdxwD7osTRKgFABrjAV31k9HY6LQsUU4gd97nQ6Tbyr2WyiWq12HfoJ7HnTwWAQpVKpS1DbgpSeCD1dQ7IRKLNWq5kxJFGCQl4NKTWulNpPZqfNfmXdP507rTBTLBaRz+eNV+d2uw37k0fQUFH4fD4cP34c+Xwe77zzTlc8jXOnXrvC6Do3urY4P5wD7jElaqinpYpNIVMbpu61/dZTXIe40ftRuFBjH1Q4tPLIhDoofqWwhm4ibhQKZNLdG40GJicn8alPfQrRaBSvvvoqZmZm8NZbb2FjYwOpVAo+nw8bGxuoVqvw+XyIRqNIpVJIJBKGHu9wOFAoFFCv1031dMY2BgYGkEwmEYvF8Ob/50185q3PmLgZBQsZh3xH3cwa37HjBBQw/Fc9NgpQPXGXgpOlpTheJMEoRAsAsVgMwWAQjUYDW1tbXbEir9eLVCpljgAhXVwhWb4fr1GPhvCj/Z4UdABMJXGNLVEZUFgTciLsyD6Mjo6aUk9bW1uGTdhoNBCLxXDs2DGsrKxgc3PTKA1VykwYD4fDBt6jEcL8wa2tLczNzZnP+U5UdDqmOl8818zhcBhmpeZ9KSmF48GTC6hYNjc3cfXqVVy8eNEUuWX8tVqtmkMk0+k0AoEAjh8/jmQyiampKXM+mp1gzGdyXpSJqtA8G/PPyOZkU6+Ya4nzztgwx1RTNnqtu/UU1yFuVDxKA6ZCUkiBPxoH4e8qtNlUCQL7Vp4GwXlir8OxVwj38uXLuHnzJhYXFzE6OmpqykUiEfNdKgWFeKgAqGDVi2LcgMmf3OwUpLSSO9udBza/HQA/CFqxIVD1NiksbPhUrWKFQDlmjC1RuJZKJeRyOTOWXq/XCHSFejWuxZwitbY7nU7XcSBsPGeK8KUNdXI+1WvWf22vk/CYy+VCuVw2nhXHgUy8VCqF7e1t5PP5BxQMlWGz2UQoFEIoFDIHg4bDYRPX4fEoVKCEJB/WL/Wq1YO2IV6dSwp6fQcAWF5extjYmCnmTEXOPm1tbWFtbQ2hUAherxc+nw9nz54153epMuJa0z3FfaOeIP/lnFLhs2mM86B1yqZIQq8d3HqK65A34vJAdxIwN4BuDBu6YLMFMhUIN6EKeH7GGMPbb7+NUqmEb3/729jZ2UF/f7+ppM26dbSCWYSVMS1aq/oslg2igmKcpFaroVqtotls7sGLLqepqq6bnYqY92fflWHGd1aBR8FmB+BVgP7Pi/8Trt39k33tGAaVHYVVvV43J/Uy6dfpdCIajRr4kP0igUGFof2ZelzA/qGb6mXa8TquByoIhRJtOJRj4/f7TfkoLQ3mdDoN4SESiaDdbptKEuxTq9Uyyo4eFueXhgDnkeQLGl8ai9Kx57vb40Cjh/Oq8SDuC3onTBHgmtvc3MTa2hrGx8e7CDxkElarVeTzeayvryMSicDlcmFsbAy7u7sIhUKYm5vruq9NUFHEgutTDTOb3akxTh1Lza1UY0mVYq892HqK65A33RBqlXKzaJBX82tUMLPpd2x4ivEEYN8Tmp6expUrV9BoNJBOp+F2u5HP5w1Dy+/3Y3R0FMlkEslkEul0Gl6vF3NzcwbGYpXvUCiEVquF+fl5cw6T07lHJb979y7W1tbwHJ7D/1n4Px8o3qrv0NxuAh0YeEotc4XgHA6HiR/RA+A48lwnvu83Hv/GnqDt9Jl+FotFU36o0WggEAggEAgA2H82rXatr8fqEUwjUG+F19CbtJULCRtahovUettL4Xzze3qNwoYU7CrwqQxZwaRUKmF9fd3AhQsLC0gkEvD7/UgkEtjY2DDKh8QUzn0wGAQALC0tYXZ2FrVazZx27PV6zZgx1sn1qcKf6xqAGUtWDHG59uoi0lOl0dPp7B8cSW9VjZzNzU3cunULoVAIFy9ehN/vN5VECoUCFhcXUSgUTOV4l8uFQCBgYrqvv/46pqensbW1ZcozaZ+1sj3fSeF5kl7oZdG4otGpnttB3ifXtl22rdf2Wk9xHfKmNGBacbpJdLHbHg6wT+m1IUf7MzaF8Vhtm4fzkbBAr+Lo0aM4efKkYdWFw2EAMEdW6GnCFCyVSsXkc3m9XnMaL/vi8Xrgcrq6TkCGQ85gaj+okLXZsCm/p9CZjiMtez2+xOncO8BSC+oq04xtZ2fH1AGkt8M6ecrss40FVVQcTxu21LgV51aJNhrfpDBU0o3CckrUsZUHT0dWT5QV5uPxOBKJBKrVKnZ3d80xIkNDQ2aMSHhYW1tDtVo1KQVMi6Bnx74wNncQDKbxv4O8GpsBqvOh40mBXygUsLKyYtZbJBJBIBBAPB7H2tqaqcHI40scDoeJXQYCAQwPD+Pll182parUODjIm9d9qGtQ96iePM5+2mviYYSYXttvPcV1yJt6EWpREuKh0GIwVwkYFFoKZXDDcENpOR0KPsaatre34fV6Ua/Xzed9fX147LHH8Mgjj+DcuXM4cuSIEXrAfumgVCqFQCBg2F2sSpDNZs0GpoDf3t42icn/Nf1f8Q/u/4MugeR0OLHb6YZL1WK1hTZ/SMXf2dnBbmsXnr7904xV+ROu0eoVjC15PB5TdDcQCJgSTOVy2ZwhRc/N7/cjlUohHA6jWq2a3C3meOnR7AoPqUXO9/H7/V2Ky4YYOW+MHVEI0pO0YUhSzAF0QbQ+nw8DAwMIhUJGeO/u7p06vLOzg0wmg76+PiwvLxvyTSwWQzabxRtvvAG/349wOGzmkkV3OfY8KZrFZjm+u7u7Jt60u7tXfZ7lsmziEU80VjJOq7VXNJhrRCnvDofDrNs7d+7g7t27OH36tKmjyOov6XQak5OTaLfbWFlZwfT0tNlrjzzyCD72sY/h4x//OL70pS/h1q1bXaxb7jMb7lQFpoqUc66eMvcp50nfzSYi9Vp36ymud0lTb8qGDu3AtAo6WnOqAPVz/Z2bh7/bG4pB9kuXLuGRRx7B0NBQVyHUcrlszo4izZrCjPETFjmll8Nn8bnNZtMkICvkqbEC/l+hGQpFrTEH7HsnFNTqdezu7uLZJ56F172fa0UGIAP6fA8qVgpQQogag6EyVgo3390e94PiVgfF52wvi32gstOYEcfGzgnSZ7OvVIr0nMLhcJenRmZgKpUCAHMsDU9WZkqDw7FXmSKdTmNzc9PkWGnlevV87X5zbfHdqYzZf6fT2ZU6oAaNGhycd37GZ9dqNSwuLpo8xFarhWg0ijNnzph6m9ls1pTpqlQq2N7exvXr17G7u4sTJ07gR37kRxAMBnHlyhV4vV7DYjzIEFQoUD/ju7Ep2sEYHBmIvEevPbz1FNchb4p3A90KhpuH1p/S4Pld/T+vUWGnMJbNniKEwiB+s9lEOp3GI488gvHxcQBAPp9Hp7OX38WAeCKRMMnGOzs7hgJPFhsFU7PZNFaylhhivyjs+Lu+k8Z8VEBQgLU734NSv1cfqtPuoLW7fwAl78VDG1WZAfsVKUi68Pl8Xd4ex0OD9jzmXmE9jUHxGVSI9DbtOVLvUd9ZLXuFrLguqCh5AKUaBDYpQu/j8XgQi8UMU5CeGY0RxnNarZZJVXC73ejv7+9aK1Ru9Oj4DF1zaiypZ8E1wO/YbEyFDbXvNuzG+yuxYW5uDqOjo4hEIqaiS39/v6nasby8bEgoXLM8EqbT6eDMmTPo6+vDq6++ajxCVVhqeNhr035njisNG93Luif1+732YOsprkPcDvKaVBDpxlCPi9aceiPcGBoD43V6Pz6DgW+y4xwOB44cOYK/+3f/riksSxiQLDoqWNYiLJfLqFarSCaTyOVyWFhYQDabhdPpRLFYNKcHE/piDtR/Gv1P+IeL/7CrJJOtsA/yHnZ2d9DutOF2uuF0OPcOh3Q64fLuW7/NZhM7uztwu9z4i/f9BXzwmTFyuVwIhULY2dkxMT0A5sBEWvPb29tYX183JwdzfPku7DcAEyNjmgAAA4lpWSN6Ewofsl8q3DlX+gz+jYpVhT6fYcPGWszW5dqrlg7snUA8ODhocvnK5bLxMnmvTqeDoaEhPPPMM1hfX8c777yDubk5029lz9Fb0rXc6exT/9UTpnIjm9Iu+8R31zVgxy+pEDguLpcL165dMwWRl5eXMTs7i9OnT6NcLpvqFqdOncIHPvABeL1ehEIhLC4u4tq1a7h8+TL6+vpw4cIF/ORP/iS+8pWvmHdQtq/GSznudl81KZxeKdewxjWZC9cjZjy89RTXIW8URAqx0KpTmEUFllpqurn5OwURlZgG9/lMoJv95XK5cP78eZw+fRorKyuoVComlkDPZGBgwJwuqwrS6/WiUqkYGj2Fv1Y2UEjF4XDgD079Ab4w+4UHFNZBFi3hrdZuC06HE+6+veobdgoAAGy3t/Ffj/5XeDwepJwpOJ3OrpQCxmJoyQP7RXkpvFnL0Ol0IhaLoV6vG6+3Xq8bJW4zIjn+FOaMT6ngtef1oMbr7BgZvU2FJ5UMoYpL2aicR5/PZ+JGfGcKfypuh8NhmKITExOmIv7U1JQxlPg+VNRU3nxnoPu8Nyp2XqOQIJUC14fGwHScuM4VSmUrlUrIZrPmzLHV1VXTt3A4jCeeeAKJRMIc/AkAY2NjyOVyWFlZwY0bN5DJZPCe97wHb7/9Nt5+++0uRat5irZ3pev0IHhUv6fKq+dtff/WU1yHuHHzq2BXa5zKSj0yVVAUIrzezi3iNQp1KMwFwJTq+Ymf+An82I/9GLxeL1544QVkMhn8yI/8CF544QW89NJL+OQnP4loNGqqUXQ6HVMFwe1248aNG3jnnXeMZ9VqteD3+xEKheByubC1tdVlcW9vb+MPTv0BOp0Ofvz2jx8In9iemNvthsPpgNvl7sq30soVf/bYn8FZcRo4i4w6QoiMqfD7HA9a2IzzOJ17idOsGKIn+G5vb5tyUCqIKaDa7bZJsqbnoUw0O0DPOdP5UciMSotVPjQ5nYQTwm2MabESBgDjNZNEs7y8bJiETqfT0NEZC+N47OzsIJ1O49SpU7h69So2NzdRKpVQr9dNxQw7Jsd4I5/PtauFZRXupnfG35lnRuWrnozCvZzPQCCARqOB1dVVLC0tYWBgAAsLC1hfX4fP58ORI0dw8uRJ3L9/H7/1W7+FWq2G8fFxfOYznzH5agsLC3j77bfxzDPP4Ny5c8hms1hbWzPvROo+DSBVolzT3MN8R373INjb3ue99mDrRQAPedMNr43Wq3odSqygJ6W/K1yj1rZ6BnaMjDDe6dOn0d/fj42NDXMMu9vtNmWgCMPVajXjUVHI7OzsYHNz08RGKJB9Ph8AdFnj/B6/CwB/fOaPu/p8UOzA4XDA5X6Q8g7sVZdvtVt7h0R+D6ajp6WQW7vdNonQ9DLVEABgvET1QOiRkOKvMSLb69MfrVPI+bMrrat3zb/p/GjfqCQOahxfjT2xhh9/wuEwksmkSSRX70yhK1YGWV1dxfLyMorFIuLxOFKplKmkovCX7QUxt0zH18yVGCN8d64PvrMaADrfiiBQGTI9od3eP80gFosZr83n8yGXy+H69etYXFw0cdeVlRUsLy8bZijrbnKcXS6Xoc1rMWY7LqteriaT8xr1vHXd6v7ttQdbz+M65E1hEhXaNhFD20ExLd0g3PS2JQwcoAy+B48NDQ0ZWnSlUkGtVkMul8PVq1exuLhoyArlchnJZNIEuYnXs1o3AEOrZ3KqYvntdrurqjbfhyQL+50dDgfgEMKBw9llwQLAH53+I7RaLXjbXmOF87k8m0o9IT2cUOOHVDTqRSmLjBChfXSFQkIKo2rtQoXY+J6qfPk3+93UEyPcpuxRG4piU4WiyiMajWJkZASFQgGlUgmVSsUQUzhv7Mvm5qZhisZiMeM9Mr6jcJ7WhdTka747vUV9R/XsFIbT+ox6D44TY5Ws4K9zGw6HzaGSNJ5WV1dx69YtOBwOjI6OYmJiwrAMnc69s7sSiQTK5bJJkKYiarf3DsrUNalKSJUs54hr2qztTvdxQvZe77UHW09xHeKmcR+gO1/pIBYShZBCVOqdqJelnoQqRhUWGldIJpMoFou4c+cO6vU6arUaXnvtNRSLRcRiMXP8ebFYNEels9rE2toaNjY20Ol0EAwG0Ww24XQ6jWDRRF/1XljyqdFo4E/O/okRTn/nzt95gLnHPC/N5XE4HPjTR/8U0U7UfJf5TKyAzn5rbk1f314FDXqEVCoKZ+m4qneigtvhcHRBkVQohOAIA7JvzE2ikUHFyKYKkL9TqFOZkKmoUJRWeVBGJeeaEBcF+ZEjR5DJZEwdRpJm2E89zZgEB3o28XgcY2Nj2N7extLSEiqVCqrVqukHD7PUeCaFOceG/aISInRMI4HXcP71O4TjOLaaOF+pVEwJKJZ0GhgYwP3793H37l2cO3cOTz/9NAYHB7GysmLINqdOnUI6ncbMzAyy2axJCWBMkTl3GpdTxcW50XFj3qQyITkH7Lu9/3ttv/UU1yFuavFTMfEzjU9QSKlVyuv0/wpZadIwBbOyoBRaisfjXRvM4XCYOn08c4uWLTcbrUun04lCoWAELE8JZt/ZBxWurKWnBBIVRn989o/h8/nwt9/+2wD2NvufPfZnXV6L8Sic7q7xVIFOi5mlnTqdjkky9nq9RplRiVMAMm5E4a9xRH0WPRSNfyjkpx4XBZ0NNQEwnpvCl3YsU39Uiel92NRDUeGogpfzwOLH6vVoEWX1Hil0CcUBMAnnpVLJGFOMBTLOx/nXeB6bjiv/rnEgYN9YUU+FSl29H9ZP1DXo9/sNw/X06dPIZDKIx+NduXgDAwPweDwGJt/d3TVeNffiQdC7elw69rY3ZcOHuoZ67eDWU1yHvKklCaBL8HJhU2AA+zAhhRgVGrBvmdoxAmBfqHfBc9+zell3z+v1Guo7YUHmDKmQVkuz2Wxia2vLCEKfz4dKpWLgIxJG+C+fp5U8NJanyuJ/nP8fhnjQ5+rrEngHwUdas49MNgpGrS2nMKV6JnYcRZlrdrzJ/pttYBwk0JQoY0OLSmRQVhqbCmgt86X31Jgn+6jQJBv77nLtlfsCYBS79o/jsLu728WkpGKOx+NGWTUaDXNkjMb4FB2wqeIq3LketWyZKmkbRud6p4JjDJYeXLPZNHHKfD4Ph8OBiYkJDA4OIhAImDXB+zWbTczOzqJQKKDT6ZgKLHZfVWFxHG0Gocbh9B1tQ7XXHt56iusQN4XwAHQF1gndULDTIqcSUYVnC0Sl7wLdte9oqQL7AsDlcmF6ehqTk5O4ePEibty4AZfLhXq9bqonEP5hiSNa6dlsFsvLy/D7/YjH413PJ2SnNGen02niS1Qm/JwxFBU+PLOJFrCeDKwCgBAk+6rnLXk8HkNpJ71f43G2J8BisxxDHW+dt93dXZOkTEXOedKqCZw/enrq5am3pTl36mVQWShZgZBho9Ewc6I1GZXEYRssSlhRuFZZf6rYFRFwu91GmLtcLsRiMcRiMQwODmJjYwPXrl0z/eT1XA/qrfNzheTYNDWBY8XG+WKOHUtQqUfm8XgwODiIo0ePwu12Y319HfF4HO95z3sQjUaRz+dRKpXMHH/zm9/E/fv38eKLLxoDzuncY6byQFRVRlROHAtlFnKMNVbK92ZNR6Xa99rBrae4DnGz4T31gjQwrdabxrkUDlNrW5UYmwprChYqg2azibm5OUQiEcTjcQQCAbM5/X6/sUhrtZphFVIYMh6mNHKW2qESU2iR/acCVe/AFrAaD6AA4Ptx/Njo8VCB6LXq5VEJUegpzVoJB4RGtV+a9G1b2Dakp/PK99V30xiHes5qpavnZnto+jx+V5WVXm/Hh1Thq5LR7wL7+Us201GhZr4XD59MJBLGa6GA5nNViXHclM7P7/C9+T2dYz7bruhuMxvD4bDxCFutljlYkqWuyEjM5XK4cuUK1tbWTIV77bOuLYV5dY74meYL2orf6XR2sRN1Hffag62nuA55U6u+VquZTcJFrhvZZjMp5q/KTWEhCmgVYrwP40rNZhNvvvkmAODJJ5/E2bNnUSwWAewJgGAwaGJeS0tLGB4eRjqdxvb2NjY2NlAqlQDAHNHB4L/L5TLHu7OiOFmIKkgpeBhzU8iNngYhPr4j+06WH5WiCmElRlBp0VsE9j02ki9Yx46wJ+eHY0ov2GZPMqZCD8HhcBhPVT01tbLtONTu7q55F/Uo+Xf+rsxRjYdpzJHzzlgn1wePVNH7s586TjSGCoWCGWcyD3lvG35lfOnYsWPI5XLI5/OmeC49GIfDYWKmjUbDsCR5soDOL40aGlh2cq8ql62tLdNnriPODU99plG2tbUFt9uNWq2Ge/fu4fLly7h9+7bx2LkuyYJUGJD9IeqheXNOp9NApZwbRTlYKYT967Xv33qK65A3bj4KIFVMGs9QbwnYF0xqsXNj2XUB+RwKQDtZkifhbm5uolarIZVKwefzoVqtGvafFjylsm21WigUCuboEirIWq2GSqVi2Fg+n8/k9tjQkx3LsAP3aulTiTUaDTQaDQSDwQNzm9T7sD0YZVWq96CwLO+psSP1sHQ++N5qSe/u7qJerz8AgakHqEF/AOaATVZiZ3+131SaNn3cjneph6RwpK4btfjtfmm8kQqC3qkaG+wXz/1qt9sIBAJmvAjxKnuTCo+5gryW60OvU48O2D9OR8kRXNdMeKZyVUOCZ49RuUajUUxNTeHGjRtYXFw096SyUtajHWs8KEbFv6snqd6z7fn2oMK/uvUU1yFuGp+iMKJQAPY3AhuvtbPzbdjiYfEuVYrqBTQaDZRKJaOE9MiNcDiMUCgEYD8GFwwGEQwGUalUkM/nu2jADocDhUIBwF4NQNLO1ctR5cv+25AYf7djeTwji0Jeqy6oAtQ4in5GYULPijColi0iiYT9UPKIEgwY51LSivaRglKrZ/CHeXH1et2c1lssFhGJRIyXq7ErZRnqIZma5qBlqGyFyfXBMdC4jI4/gC6vjt/XsVCmId+P1/n9/q7CxsFg0HhZHI9OZ4/dybFnugIP+eRc2EYMUyvUI1cInOPAdU+vLpVKYWdnB/l83lRDWV1dNcex0HuiAcbnqaerRgTnWteSKnxdK4qOcC3rPXrt4NZTXIe8qfeiVhzjT4qb294HBbMGiW2LmYJCvYFWa68cU39/P9rtvQrh9XrdVNHu7+9HpVJBqVTC4OAgkskk8vk81tbWAMB8tr6+jvX1dUOgIIFDYxqspq7EE/tdABhhrNXXVUBRcGvebh6sAQAAtaFJREFUEONvdvwI2LeCOY4UeKThM/i/s7NjIB56FuyPjjvJEIyVkQjBU5CVNedy7VfOD4fD8Pv9Ruiy//fu3TM5UvQOeGiljgP7HI/Hcfz48S4jgJCbvo/G1pSWr2tL19pBSk3jj+r9KUSrkKY+jyWxHA4HBgcHDYxWKpW65iwej2N0dNR4g8lkEolEAvl8HhsbG8hms5ifnzcKTMkd6i2T7MK1znGv1WooFArm1OMrV67g61//Oi5dumSg4AsXLhi41Ol04rnnnuvyAm0IlQam7iuF6pXQY3t/NGoYn+617996iuuQN8XO1arW2Aiv082kVi+w722pkrLzX/Se4XAY4+PjCAaDmJqawtbWlimFtLOzY2rZhUIhRCIR1Ot1oxyVGUdvi5uVOL7Dscfuo0ehQpTX67sp2USVEJU06x9ynPTdNI7H71FQEMazSRC0slWIK8xKhUK4C9iPMSnpwoYk1btVz8Xp3KuYv7GxgVwuh6Wlpa6SVLbH02g00OnsFfV1u90ol8sIhUJIpVJIp9MPvAvXjv3+tqGg/7ehX/sajod66+1228QTmfNGL1DHmEqFsSdljHKsfD4fQqEQJiYmjCdEkk8+n8eVK1ewsLCAmZmZrqom9t6gMqUSovIkfMhctYWFBYyPjyORSCAUChl2YTweN8YY42V8B0U5+B46zgqZKkJC5aTjwettj7jXHmw9xXWImwo5oLtau+Lt3JhsWuGBf6eQVfiRgpmbRPNqEokE3vve9+Kxxx7DCy+8gCtXrmBgYADxeBwbGxtYX1+H2+3GxMQEQqGQqQofiUTg9XpRrVaxsbFhrHx6SBRYrIZQrVaNhU3B02g0HjjbipY1BTVJD1R4Pp8POzs7RrFRENL6peA6CGbiOBKio1Kgl0BLnd6OjjUAcxQK6ysq24x18hR6ZVxPhZPL5UKlUsHi4qI5RVqVhUJhJGqocmq325ibm0OxWMTQ0FAXPKe5aRon0uerAqIh0G63DaFGCSaqzKgYGcdiPwF00eer1apJZmfS7+7uroE8FS6jkVOv1+H3+/HYY491xaC4xj74wQ9iZmYGv/u7v4u5uTm0223DVuU7UpE2m03TBxpV2WwWKysruHTpEo4cOYKXXnoJU1NTeOKJJ5BKpUzlj1OnTsHtdqNSqSAQCBilrcWYqcQ4JvRwOXccD4Vq+Z7quamR1IMLH956iuuQN4UJaU0q3d1e4BRI9CT0TCvgQcta40bqjfHvfr8fQ0NDuHjxIsbHxxEIBHDnzp2uTdzX14dqtYpGo2GgNpZS4t+Bfdac3+83wpQ15TSWRcaXbnJ6QJpLddD78xwxKhw71qMkFVUK/FGyAt9Fq2UoZMamfeQcKISptG/tJ+/PPlGhaxUKPssmmOgzFJpkNQoWzqUyVaGqFr3GDjnn+pnGDzX+qAiAGhdcd7rm1OPq6+szc8RjbshIVO+Tv9frdbOuCFtzvlOpFPx+P55++ml4vV5MTU2Z52mclEqG5I1gMGgIIAsLC/jgBz+IwcFBBINBbG1tYXp6Gn19fYjH44jFYsYbY6xNy5Pp2iPk/TCCiyplnV9VXpxrOzTQa93tB6oO/6UvfQkXLlxAJBJBJBLBk08+iW984xvm741GAz/3cz9nKkx//vOfRzab7brHwsICPv3pTyMQCCCdTuOXf/mXe5ju92l2jox+TqVGqOsgiEG/q5tZYxsqePj3arWKUqmEWq2GeDyORx99FJlMBrVazVTCoIAjVZ/Ba6fTaQ4htKE0wn1utxuhUAjJZNKcpMvEYNK+KZQ9Ho+JAymJwVY+TDYNBALw+/1dycOMI6iitn84TlSeCguSoKHkDGUgqmBSWI7jqTlh9GB4pIt6BqwuQi9KlZ82VaQcW6X3KzwF4AEhasewVKlT8NvpFDZxhgrWXnP08NkvHXuOKz1OKju+H+Fkvh+LOTMuRnr76uqqqX7xwQ9+EB/84AcxPj7edbQI14QqCABGcZXLZSwtLZlY49DQENxuN9bW1tBoNDA0NITx8XEsLi7i6tWrZo/wqB+OryIXCpETvdCUDl1nCh0+bO312sHtB/K4RkZG8Fu/9Vs4fvw4Op0O/vN//s/47Gc/i6tXr+Ls2bP4xV/8RXzta1/DH/3RHyEajeLnf/7n8bnPfQ4vv/wygD2r99Of/jQGBwfxyiuvYHV1FV/4whfQ19eH3/zN3/zf8oLv5qZkCSoepdLq/4H9ADk3Le+hVqftbQDdsJHTuZeTs7y8jDfffBPnz59HIBBAoVDA6uoqNjc3cerUKfj9fmxsbMDj8SAcDhsIhlXCK5WKyfMBYGjPtJx5fITT6cTIyAi8Xi+Wl5fRbDYRj8fN0SAsC+VwOEylDFU0mnulUCDjVxR2fDdV4Pw/x4xj7XK5TIFVACagT4+P486/U6hSmLvdbkNEYaUF5iOpoNN4DuG/WCxmvAEqL72eQp/KRKsxsDixwsjBYNDMs8alqJy0DBivUXo82X/KkuQ7qvdBNIBzy3GlEPd6vYZRSIUbiUTMc7ku9Lwt5ja98847iEQiGBoaQqFQMPdmdYyhoSF8/OMfRyqVwu/+7u+iUCh01ZrUZGT+jTDl3Nwc5ubmsLq6ikwmg0QiAQDI5XKoVCq4e/cunn/++S5yEfeKJs7T2+K64DhTyamBo7EsGg6agtLztv7q9gMprs985jNdv//rf/2v8aUvfQmvvvoqRkZG8Hu/93v48pe/jI9+9KMAgP/0n/4TTp8+jVdffRVPPPEEnnvuOdy+fRt/+Zd/iYGBATzyyCP4V//qX+Gf//N/ji9+8Ytdgc1e22uan6UKSTFxbhRueLW8NR6hAovXUziqIuMzeDx9PB43/WCFASqmkZERAHtC0uv1IhaLodPZO0SSyasU2qRuU7A1m02USiXs7u4ik8lgZ2cH6+vrxpLWd6VwpULjMwkrdjr7uTrKUFQ4yw5+q2JQBUEFR+FBhaNHyWvs0TYE7N/tvug8qICiF8q4Et9RY0XqnajnCMB4m6p4lIpvQ8OquLWp8XNQDpztoXKdKRSpxAyOoe1JejyeLlagVk3heDUaDRSLRVSrVUNW4bgAMEoe2KvKEY/HjYLhO6qRUK/XzVoKh8Nm/eVyObz11lu4ePEi4vE4lpaWMD8/b44/4dyrh0pjiePCZylMSONMiTu2waRQrq67nsf18PbXPkiy1Wrhv//3/45qtYonn3wSb775JnZ2dvDxj3/cXHPq1CmMjY3h8uXLAIDLly/j/Pnz5rhvAHjmmWdQKpVw69athz6LAk5//qa0g5hfuinsa5WQQU+DG4WQk1r6ulmUIcXio9PT01hbW0OrtVdLL51Om4Kjs7OzXZBjX18fwuEw2u29Q/tYIsfp3DvChHlV6gVSMPn9fmPxUomwXyqwSAQgnMIxIKuRngAAA/FpVQX+q9AdG/ulLDwlNyjhQZsKGh1Hvjv7pLCfJltzXt3uvbPCYrGYUfL0KAmVqoGiTUkSCllyfhU6VCabzv9BVj5p/spuVIPChhb5Gdcf4UF6zqp0VYhzLhXa4zwyYZ2eJPtBOJinLvv9fgwMDMDv93clRisqQdjS6XQiHo/D4/EgHo+jr68PV69exQsvvIDLly/j5Zdfxttvv21gQ/XSOV5qVGrupMal7XVirxX+zvXO7x8ED/fafvuByRk3btzAk08+iUajgVAohK985Ss4c+YMrl27ZqAObQMDAya/Z21trUtp8e/828Pav/k3/wa//uu//oN29YeiceOT1aWbRs934qaxN4cNaXEzU9hoHEiD2hRCv//7v49oNIrBwUEAe5bu+vo6stks+vr68Au/8AuIxWKo1WqG2s4Tj5loHAqFEAwG4fV6TdHXTqeDgYEBJBIJ1Ot1LCwsGDhodnbWVJCn8KLyALpZWqTbU0kyDqGJqmSuuVwucw81AmwGnla60HHj93SMKbAJsXLsVKmqAAVgGHvafwpBCtLBwUFsbW0ZI4IBezsXi4pC4UtbGamybLX2z/yiYqRxoIKXCoWKX5mSSvzhZ2ogqOdKD5nzx/GylRoNMS3/5HA4zNxxzUejUTNmpNOzFFp/fz8+9alPIRaL4Wtf+xo6nQ6i0SgKhUIXhEdY9ejRo8bbv3jxIgBgdXUVV69e7SIMKWGCe0WNFLJxOXacCypw9bzUkCDsSuOFsCKNxx5c+PD2AyuukydP4tq1aygWi/jjP/5j/NRP/RS+853v/O/om2m/8iu/gl/6pV8yv5dKJYyOjv5vfeZhaSQAMIaisS7dIEA3hVZjXAoN6mYC0AWp2NY477u5uYlyudwFRVII0LrVqtyE6yjYuCm5IRkP4HHxPp/PnNlF74LkED0byxaWCsmw78Vi0UCUjM/oOCihguOp8T0qSo4Rk4X1dzsYz2frZ+qZ6Ofs+0ExSoXoYrGYORJGY1NsmgRLKIzpARwj9fR0/tWqB7qPkWf/lDTC97EVpvb/IKiZc8+m3pkiAFQG6tXwejUkOp2OiRfq2lIiQyaTwfj4uHmGwqZsdn1GrkWuG6Zq6DO5ZvlM3TdaDJpNYUUdH/6rc6demhqRPcX18PYDKy6Px4PJyUkAwHve8x5cuXIF//7f/3v85E/+JLa3t1EoFLq8rmw2a6z1wcFBvP766133I+uQ1xzUSO39m9i4iBlEV3jGFhjqedkCVQWVbgoKYhVMGiOiMAFgLGIAKBaLCAQCqFQqcDgcXUJThSTPNiJ9XnN2dHM7nU4TmI/H4/D5fFhfXzeQI61q7YuWc1IGmtvtNoF/3l8tWHo7jI9pTUCbqKAeKyHPTqfTlVjN96nX610QptKfVdFwHG0KuB55Pzg42JW3xXFjnEiFr8OxV5yWBx7yh+/HdaCxH/ZNizWrF8F1wjnic5SpeBCTVeFR3kfjPAC6ctDo7Snpgfeml1culzE/Pw+fz4fjx4+bdArOqxojoVAIIyMj8Pv9Jv5F75J9Y2WVjY0NUwFGDR6FAe31oqxSvi/7rmuaXrx6Z3Z/VUFzLAl3c23YSrfX9tpfO8bFRjjhPe95D/r6+vDCCy+Yv01NTWFhYQFPPvkkgL3K4jdu3MD6+rq55vnnn0ckEsGZM2f+n3blh7Kp9U7oy7a2bctMBYAKI9uqVe9AmwovoLtmoAaZFY7TzxiXCQQCiEajJnlUqwXoOzGpmDR5CnbCi+12G6VSCZVKpet5LKlUr9dRKBRQrVbNqb08g4n9VeWh46WKXt+dtOyDkpHJkKN3xrHh3OiPKibtC8dV41C8l8Oxx6gLBAIIBoMIhUKmQj2VjtfrNWPM6zT2R2OP/VJI8SBigK4DndeD1pWuOTU8+B76Xsq05HUUzJxHevB6pIx+b2dnx5CB9B7sCz/TWB6/a8co6fXzaB4aBRqv0nWvhBpdM3a8WL1SXUcKu6qyUi9f513jjva+7LX99gN5XL/yK7+CT37ykxgbG0O5XMaXv/xlfPvb38azzz6LaDSKn/mZn8Ev/dIvIZFIIBKJ4J/8k3+CJ598Ek888QQA4G/9rb+FM2fO4B/8g3+A//v//r+xtraGf/Ev/gV+7ud+7m+sR/X9GmELFYA2O0yhB7VqNebF31XIqCCz4za8ntdQeFDI2NdQWAWDQZRKJbjdbkSjUcRiMaPMWNCUcSB+B9gLmFMRUEC4XC4EAgHj/TEwT1hIBYLGilKpFILBoKFqA/vldXg9x0CVuo4lrXd+j4QHhRsZG1IhrjAuv6vxLYUYdY71/0ogoYLkmKvHqdVA6HFRIagwtT09hfu0qcBWD1TnQ9ca70uFZXv6tmGka07HmO9ND5RntqmXQq+YJccUsubY6PzxvlTkVE6aH8XYmp5SwBii7iPth20w2mOo78xr7Xws/Tv3gD5L49Q9qPDh7QdSXOvr6/jCF76A1dVVRKNRXLhwAc8++yw+8YlPAAD+3b/7d3A6nfj85z+PZrOJZ555Br/zO79jvu9yufDnf/7n+Nmf/Vk8+eSTCAaD+Kmf+in8xm/8xv9v3+qHpGlsi3UBFU9n7g9hGaVN63e5ERVeodWquTncpDb7jBax/TcKGMYdxsfH8dJLL6HZbGJsbAxra2tYWFgwZ27R6+I9SQggLRrYzyMDYALfPp8P/f39xsPR1mw2UalUTD5ZMpk036WFzeK0jFdQgKkysuOGWu2D0BKNCIVMVYkpjV3niTESYF8QMlFWhR0LzKoHwtSDdrttCDoM4nPOXC6XqetHwafxEt6PzES+J2FdTVFQRcS1oTEvGi+qNNS75DpRRaZEF84N4UFlE/JefCct5NvpdIzXrcnLnU4H5XIZwB7pZXNzEzdv3sTW1hbS6TQCgQDy+byBTaPRqDFKcrmcGc98Pv8AREzvjCWjbIXM8eE4cy3wfWnwcZ441qrIVElpXLGntL5/+4EU1+/93u9937/7fD789m//Nn77t3/7odccOXIEX//613+Qx/6NborPa3IiNxcVwUEQBDcDsO+B2ZtCq6Pzem5CClndyPy7ei88VBHYz1Ei1Meq5lRCVBasHReJRLry93Rzq2LkMxRSIVxIpaLQGN8NgFFctKY15mJ7H/yuHmeh8B4tc5I7qJRUEdkMNvUK+CxVGirgNf7h8XiQSqWM96heBeEveloKXdretBJFlFhBoazelN1sr169A4U51QDQv/NHvUb2T+OJqujtlA3+8AwzwsD6Xrx2eXkZs7OzD0DEXJOt1t4ZcZFIxOQLulwulEols2eojGwPSD1eG23g/9l/jRnb48jvc1zs6w5aj73W3Xq1Cg9546ah1Qd04+IK2ajFq0qKP5rZD3RbyrqJuHmB7hgZP1dlWKvVMDw8bO5NdlY0GkUymUQulzPWPz0jHkRJocH+Mi5DIe33+01sh8/W/CeF8wKBgKm0AOwpHkKNpOqzH/TweAIvg/18hnqs7BfHUyFTVuxgPT1a9ZqrxHFXj1cJMwojauko/j8WiyEcDpuK5u1227wLFbp61eqNqxeg7DxVrraXwXdUuM3pdJqSV8A+TKlCVT0JNT70GerFaT90vFQZut3756VRKVarVXMUDL3ecDgMh8OBarWKV155Bffv34fX6zUxSqfTiVAohHQ6jYWFBTz//PM4e/Ysbty4gYmJCdRqNSwvL6Ovb+9EZBpFGttVhc9xUQSD86rzbntNDsc+u5bxXVXg6in32vdvPcV1yBs3ETcPmw3H2Auem4jWI4AuocC/aXzmoGfzXxvSoBJpNpsG+vL5fEgmk6hWq0gmkwgGg+bvVJKEcPx+vymrpIFxVbBa4Z1lezSfiQoBgFEYFNYa57FZWhrzUdhP43201tknFSyqgOzkaIUf6RHYjDwbpgT2jQgKejumSEWjfVGloP20IULOowpS9SaUtKNjqGtJleLDYl0av+L9NO2Av6ti5LvZa9f28vmuHG+uHa6LTqeDYrFoahgGg0HjdTmde2xQnmJQLpdRqVSQy+VMTirPA9P3U+XDdcH31FiyzRzUmKkaFBwHjYvqfuTvCqv22sGtp7gOeaOVBqBr03CBE87iRrEVmuYfaQzHhjpsiMIOkCukoZ/Rom02m3C5XMhkMiiVSkilUohEIl2BfgCm+CjjFqpYbSGn1jj/rzETQoUU4spk03gYYTVlMCrzjpR9jb8BD8JBFLDq4ahRoYJJ31khMPUm1LtV5cZ3phemwk69GJvtqXOp8wjsKxntD9eH1l8k7KpeEv9mEwn0PVXB8lnab632r14h50ebjhe/z/6ooaDeYr1eN2eZqVLkGJGByeN4lpeXEQwGMTY2hmq1aspG8X4K++l4qfd/kEGgUDavP0i563wrzMr1/TDottf2Wk9xHfKmyaTcwLQ01TqjF6RWI70ioNs61k3JjULhz8A/FQrvr9avel0rKysAgEgkgrt37+Lo0aO4ffs2jh07hnQ6bWrvhcPhrmA+T6ANhULIZDLw+/3Y3d1FrVYzXoJd0d3hcHRV3WZFeqfTaeAi0p7pmTkcDnM8fL1eRy6XMzlomUymi3nGY+IBdCmTSCTSFdMDYGA7FeaqRBT+0TPJeG0gEDDPVbahwkVUYKpYdC4dDoepwkH6Op/DwsS2t64wKL8HoCs+yHHsdDpdxBB+n2tD87Hq9bpZp4Q1o9GoWSfq/amwppdKVijXrgpzfSZLP/Fzwqpzc3N46623DKllY2Oji03IOoavv/46QqEQKpUKnnrqKUxOTmJmZgYLCwtmnfNfGy6nIuXc8P8cG8KMakCq56prxP6c40KIUg3EXnuw9RTXIW/qfaiAVA9Jr7GD3rZlrILDxu7tWnwHPYc/FKQbGxuo1WoYHBzE/Pw8Go0GstksisUiIpEIkskk8vm8SaYFYKpz0/txufaqsZfL5S5Iys6DArrr49meDf9mU6QVUiPTkIKX3qJ6Hny2ejtK5rA9V46TUuBtAa3xI461eoga/wG6c4j4Ha3qQWWnSbFUXEqL1xqDOkbsJ4W/QqlqYGhsU8dEmXK6BlVo699tsgSArpigpjvweQp9csypWLne9dDSjY0NDA8PIxqNdrEGfT4f4vE4QqEQGo0G0um0gbN9Ph9yuZyp+GIbamqk6bqjQajw4UFEDvUweU9VbrpG7PHseV0Pbz3FdcibWuFAN4yiVpkqIRtb59+5GWhNawDfhmcUouP32Q9WY3C5XMjn86jVakilUpiamjLKLJfLIRgMIpFIGDiTgpUKQy3xRCJhLGp+ZsfnFJrh/aiA7L9RIPO7/D9JHEzaBfaKuCoMp5Y86fDqLXBcbKjIFqqqcDXuRAWl8KaOh8KRhMZ0/lXJMoaoBAGF/dRjtyFHVfAUnjY0zL+zz8putD0LhVR13SqUre+o5ah0jakxomNOgguVG+e9Wq1idXUVuVwOx44dM+dyXb9+HeVyGT6fD5lMBqFQCK1WC+FwGNls1hwSmcvlUC6XH0AxdP2rx32QQrHhQvaRNHp+z76Pwo5EU9Rg6LWDW09xHfKmEJ4G/O3gvioyFTpANzbPpqQGbiy12ClIdbPpZqIgnp2dxczMDE6fPo0rV65genoaXq8Xt2/fxujoKMbGxnD37l0Ui0XzDuVyuau6RbFYxPDwMM6dO4dcLocXX3wRTqcT/f39RskRbiMxgxBhIBAw9QyVhKExA8JmABCNRhGPxw10Wa1WsbW1Zej0ZCaS9bi9vW3Yh1r9gblECq9xnLVQKueG3yPDj8QOvh+V60EeGOeOVcrVUieRRdeD0v55H8YgbW+UpxHzEFDONRWjVpugwuFz1evS8lT0Djke6mlwTfNZ9GRIVefZZvSEFWJtt9uIxWLG4KBx88orr+D27dvY2trC3bt34fP58Pjjj6NUKuHOnTt4z3veg0ceecQciupwODA5OYmTJ0/C4/Hg5s2bWF9fN89gH9UY5L6wEQeHw2EKDCv0znmj0cb9pcYNP+NYacmpntL6/q3HuzzkzQ6OK4EC6KYeK0TF79rCg1agxkQoIDUnjJtVN7M+h/ff2trC2toa4vE4RkdHUS6XEY/Hkc1msbW1hVgshkgkYmAhAKZ+XDQahdvtNl5WIpFAJpMxSjMYDCIWiyEQCDyQS0VBYtPPdVzUK+A7kGLP3J1yuWzurXAQx1WfoSw828Lm+CizkIJYDYCHzSPQnb/ExrlTz009SO2HXsf3JQFF51SNH/ZX51kVl76jri0+D9ivK6hsTz6Hz3jYuPFzHRcbjlW4mzR4eibVatUcPeL1epHP5zE7O4vt7W2zdo4fPw6Hw4F79+4hmUwim83iyJEjJqGfVfh1HrWfCqXqOlNv0Z4LjUvyOo2Z6Vyrx8x1TSOs1w5uPY/rkDdazmqB2vg3BYD9N7VW9e8a11AGFtBN6tBYGO8HdCdFb2xs4OWXX8aP/uiP4hOf+ATW1tbw6KOP4pvf/CauXLmCJ554AjMzM9jY2DCCe2trC81mEwMDA6hUKtje3kY2m8WJEyeQSCRw9uxZAHsnbjcaDWxubqJUKpkqGrRkw+EwnE6nydVS5ehyuQwkypynQCCAVCplIMlyuQyHw4FwOGzeneOhQpb1EinQge7K68pgVBIMn30QC1Ete1VCen96WfRUdX5ZQ1E9Nj0CRNmkfB+FCbkOlKFHxcP1ofEpXsN1SGWys7NjKOl8DvuvCke9Dcb3lM3Ka7T/VLpU/m632+RwMS5WKpWwvb3dRXdfWFjA7du3US6XMTg4iHPnzmF6ehrf/va3ceLECaytreHo0aOGTbi0tNSl9JUkwffmu3AMFQZUJU2vXNNAOHeMR6py5hhy/dl7utcObj3FdcibegwqBNWCVYjPtmybzWYXTq+WvkI2dnCYXg8Vn24uhVEcDgfW1tZQKpWQTCaRyWSMotjc3EQoFEIsFntAQJZKJUNDZ/kf3jcYDMLv98Pn86FarZrKGzZ5wO/3m/7yGhW2WjKIMCDjNCzPROhOx1jjYwAeKKmlc6Ier3osGtdQb4afAd3FbG3oV73bg37UQzjIwLDjXqog1NOhIOV1/I4mGav3w3t9Pw9Kzw/TZ3Bc1ePjs/V9dK0q7MaSVQDMHFarVezu7hVEpoID9o7icTgcGBgYgMPhwPT0NPr6+rC5uYl4PG6YuUwe132h8wjAwJc25E7DQL0rGgz2fHAsuWdYBd6+F8dCkY1ee7D1FNe7oKmVphuaViCFqQbwFToEuo9fsAWsQiT0YGzGHq9jnESJEfl8HrlcDoODgzhz5gzu378Pn8+HUqlkDhe1g9J8hlrltFZJiW+1WqYqOGMBFFBUOlSsVNDKQNve3jZeGune+XzeCDoKT44bx049Do1bAN25WEo20e/rmKkwUthP54XehyY86/M4Tup56Zzod9Sz5nN1bjnvVGz2GtC1xu/b60hhM64BhRf1WeynogD6fnbTd9N+eb1eRKPRrhSCfD6Pra0t1Ot1lMtlVKtV049ms4n+/n6Mj4+jWq1ic3PTpFwMDg6ad6hUKtjd3TVVM2xSk+45/l/JS2o8cJ5s5INjbMPuByEeCiv2FNfDW09xHfLGDcAArpY5omCk4FVMXQUSBQVjDQpT2TExfqbJuBpkVriR8M3Ozg5ee+01HDt2DI8//jj+7M/+DPF4HMvLy2i32zh27BiGhoawubmJTme/wCyPlqjX6yiVSgiFQsYa5vuVSiUTg+BGp6ChANEThUniIGkhFAohHA5jZ2cH1WrVFFN1u90GdrThPSp5LcnD/jC+QuFIKI8wkQo4mwnJMWVCNEkeGpznfBYKhS64qtXay33jXPP7vD89EN6b91Srn2Onyl3JGsA+NK3QmMJoDocDgUAArVbLwJUKe6kHCuwr+kajYfqvxX41lqb3AfbraNL4icfjZiwajQauXr2KVquFiYkJ7O7uYnNz05BM3G43HnnkERw9ehTXrl3Dzs6OMaCofNfX183fNAbMd7IZhdyH6omyn53OPsFEIU/2Re+p3j3XlxqWnAP1gHutu/UU1yFvZG8pLKPQklp36i3oZlGheRAcYwfAgX2lBnQfg2J7fBTQ8/PzWFtbM6fPMiGVQfJYLIZ8Pt/1DCpTh8NhTliOxWIYGRkxkGEoFEIgEEC9XjdWMgP+yqizBWGn0zGUd+aM0QOjcNWmSprjzntRoGiuk46Peg8KhdmkA/WYKMCoxPl3zgs9S8ZzOO/KSjvI22ICtv5dv8v+8kfhR1UavE7vocqIY6QwoK4pGypTSJLxQe0TlQOv5Q/HThU8lfzS0pIpM9ZoNBAOh83hkUyx4GGnVJ6Ejn0+nzm9gO9ir2vdXzpO3Csaq9J30LqQuu807ml/z56vnrf1/VtPcR3yRtycwWp7U1GBqeelApheAL0ECk3+aKyGgkKhMioa/p0ECHo2/P/U1BSuXLkCv9+PS5cu4datW0in08jn8xgeHsbZs2eRzWaRy+XMplxdXTXnTS0tLWFhYQFHjx7F+Pg4stksvF4vJiYmTHJyuVw2ycy06vv6+kwhXkJCjJlR6fE4DGDfOmajoGDsKxwOw+12o1gsGgWptHYKW4/HA7/fb05E5qGWvE6VFAU150aVRKPR6FJMes4W+8R4Hcef3pbGkFQIqvJhf+x3teN1pNrzevUcKWzZSOAAHjwwURUP1xefp0YDlTPfWYkL29vbZiwdDgdCoZCpfEEDJZvN4q233kK73cbFixfh8XgwODgIp9OJu3fvYmJiAufOnTNr4MKFCwiFQpibm8P4+Dh8Ph8WFxcxMzNj9oSyQTWfj+tfjUW9lu9JQoat8HUd6LsD+8qfCl/v9zA4tdd6iuvQNzsGoV6QWnIUMhr70jiMLazVygP2CQh2vMNmqanFyO/TY1pbW0OhUMDo6CiWlpawvb2NtbU1pFIppNNpJBIJ5HK5rqoDjDHk83ksLS0hn88jEAiYvvv9fiSTSRMDUqUF7AlZEi+cTqcpoGpb76qolTBgx1/Y9G92GR4VdAq7KbSkyojwnHoVjNOoUtD55HUshaQwI70VfSeFNBnvI7TJflBYsvG9tc8aBwPQ5eWowlXPm+OlRpQqRcKumrrAPum61iRvPW6Fpz1zjiuVCkqlEprNJprNJorFIgYGBoxiCIfDGBkZQTweN55WJBJBMBjE8PAw4vE4KpUKNjY2UKlUusaBTdENZRuqJ6hzbq8xW+noeOjfFO7lulJqfK8d3HqK65A3CiVSu1VQKBTBz1QQMyamAWMV6CpMFZaxYUfbeubvVCadTsfUAaxUKkgmk4YxuLa2htHRUfT395tjJRgb4/23t7eRz+cxPT2N5eVlHDlyxEBkhL1qtdoDOUn0cgKBgBFYegglPSFCq4RcD2Lb8XeFrhQe4j0UbtN/KXApmJVwQataLXb1euzySaq41LPhPVW40QNRj0jzxvjOOzs7hnzAs8b0nemZa6zFXie6Hg+Cp3mdnmOmsUP9Hu/FNazJ46oYySbU9IxSqYRcLmfWPKnwvGcsFsPg4CAAIJ/Po1wum/elQiwWiygUCkbJK4Sr4895ZbzThg9VYdnQOseSY6sGC9ewGjsKrfba9289xXXImwoUDdTydz1xVYWpllWi0LM9rd3dXSMUFHKiUmHcRT2Lg2JrFDYkUpw/fx5jY2O4ffs21tfXMTMzg8ceewynT5/G5uYm3n77bQB7kBMPnMzn83jjjTdw5MgRnDlzBvF4HM1m0xyWWCwWTcIovSAyBOv1OuLxuKl+oUJvZ2fHVP7WMk8cS8JtLpfLkA74o8xHhVBt8gb/rrR65n6pJ2N7ZpwrNQb4bLIeA4GAUZj0TlVosmoD+0mPlMqW9R+BfYq7rgG+Iz0LrXPY6exV1FDDhWuP31XlxL/Z5AU1QNQQUAOC/2d/+Ayv14v+/n6Ew2GEQiFsb2/j/v37uHnzpvFGS6USgsEgPB4PkskkTp8+DYfDgW9+85uYmZnBxMQENjc3cevWLZw+fRoejwczMzOYm5tDtVo1+4TzdhCTk5AxjQFbCbPZCl6JLar8eC3XnhpKjN/2FNjDW09xHfJGBUOBY0M5KjB0oVM46OY5iD14ULxHLUi1Pm24q9PpwO/3o91um0P7tra2zGGRrBS+ubkJp9OJeDyOoaEhXLt2rSvWwz4VCgWsrq4aD7NQKBhBysK8FKS07BnzYWkihTmB/fgO82YYwwK686mUnkyhzPdUdiChOoVVlWTA+6pw4rhpmoF9uKMaHvQkCZlRsDcajS6qOb05zheNFd5LK1hoJQaFomzFQ8NFYUD1Qm3yhe0l2FCsjRDwGvXyNTdRxxrYr3TCOa5Wq8jlctja2jL9n52dRa1WQzQaNUbP/fv3DSztdruRz+fR6XSQTCbhdu8da7KxsWFiU7q2bYXEvaK/8zP2244XH7RH1TtTA0bv9VdBjr2213qK65A327PhpiAD7SDLT2M5urFoRZPCTs+F/6oyU+XFe9mKjM8H9oRhuVw2Jx4nEgn4fD60Wi2sr68boXHkyBF4vV5TtUIp37VaDSsrK2i390r7EN5yu93GU6rX61214UiSUGVkB9F9Pp8R0GyqKFTBK+GBY8nPARjPwYZUdYzs61SZaIyLECHnRq11Pq9erxvLnAYMm3qLHo/HxLNIeuDftKKDjoEKWqX8K9SsY6kGkMandDzYP2XVcY5VQKsnq3C0jqvH40EoFOqKjW1tbWFjYwOlUslcTyXWbu+VEXM6nZidnUUqlcLExASWl5fR6XTQ399vKPXz8/PmRG4Sn1iuShWKeogKj+tYsc8Ki3KN8d1s5WevLTV0esrqr249xXXIG+ELoLsCvFLkFa5SyIl5JfweLX7m+ZAFBXSTM7h5CVsc5O0pO4rP3NjYwNzcHHZ3dzE0NISTJ09iYWEBOzs7mJmZwYkTJ3DmzBlMTk5ienraFMpttVqmoO2tW7dw9+5dnD59GqFQyJR64hgAMBUTGK8hs49KWKsrtNttw0bjybsaH9PYicKl6qGyKgebUs41xqUQJYWbQkVU5BTmtsDiONNjtWE9vSfnMRaLdRFBCNs6nc4ugc9n8vt8JqExjgkNGjbmyDEHi/dXg0k9OvW2WM5LmZL6LCpcMl65rtgymQzS6bQZ73a7jcuXL+PatWtYXV1FJBIxdHcAhsRx+fJlPProo0gmkyiVSlhYWMDQ0BCOHTuGUCiElZUVTE9Pd40HWbJ2nI7J7jQaFNpThaSGC3+UScp3J9SoDF/b0zsIDem17tZTXO+CpsF2YB8bp9JSoQF0C1M2bipumoPiHSqcKXz4bIUvgH0WGeMMVIyFQgHFYhHxeByZTAbVahXxeBwzMzMYHByEw+FAPB5HMBg0Ne60InilUsHdu3eRTqcRi8VQKBRQr9cRDAYNdEZhyv+Tkq+5V+oJEU7U4LnH4+nyVvg3vi+v03GxoR19Bsf7IChNx8z2Kkj7pjCnAcJ6ftq3er3eVe2CXhZp9apwCaMyKVs9GoX+aLCokFTP2l4jqmxtb189VR4mCeyfXKBIAMee91GlxzGIRqNGaXk8HtTrdczPz5tKKuwH18Dg4CC2trawurqKj3zkI6jX65iamkIkEsHExITJ91pfXzd5g9pn3TNKorCNCyIWNBBU8ejc6r86/wpfa9OxVHSl1x5sPcV1yJsKB024pcejx0tQSFLgUKlo/hGtPM1N0g3m9XqN5a1CTj+jsKQC1Cobd+7cwSuvvIIPfOADmJiYQCQSQavVwt27dzE0NGTIF+VyGdls1vS92WyiXq/D6XTiS1/6EmZnZ/HTP/3TGBgYQDabRbPZNEQOKiKtAqEQZyAQ6CoBxfFSYUxhZ1ci4Zjwd1rK9Fg0h0rjaGpIKNmCJA2NRbFqh8b5Wq1WV+4SY1xagUGVKL3dUqlkPmO1ffXyGo2GEZA8ikUhOmXwaeFgKjPCjsB+nIpeK7DP0iN0Te+VEC+rkzBfjetGWZ5KOW+324hEIhgcHMTAwICB8XZ3dzE1NYUbN26YorqVSgX5fB6ZTAaPP/44jh49iq985St4//vfj0qlgtdeew2FQgE/8RM/gWQyiZ2dHTz33HO4evVq197g+PL/qjw1xsxxIDuTXi3Xj7IpOV+cD64hNQS4f/k8epxcD7328NY71uSQN7V2ubkVS7cTIRVvV2sQONjiPyhWpbCgQiJs2g871tFqtXDv3j1zdHoikTAbeG5uDs1mE0NDQ8hkMkYoK8QZCoUwOzuLl156ySQhp9Npw+LT2oNUwMruozfF2oRKR6eHU6vVTGUPClNWOady4/cU/lEPiuWedJx1rljwVSsnUKjxGWpIuN1uk9DMvrdaLdTrdRSLRUPrZokpPr9YLJoyR7YXrfE6nSN6Y5qjRa+dY2p7ImyaY6XECiWo8HMe2qlrVhWhjivHJRQKIZ1OI5PJdDEkNzY2cP/+fRSLReNF83gev9+PdDoNp9OJVCqFyclJ3LlzB7VazXjuLtfeMTb379/H1taWeQ99b13XXOcHIR32XKvi0X3G/+v9Oea8j8KuXBMKK/bawa2nuA55U8wc6A7oarBeYxSqkNSLOAiyULiECoTXs1GwKjwGdJMICN85nU6srq5iZWUFlUoFwWDQBMZnZ2exsrKCRCKB4eHhrviSkg4CgQDu3r2LGzduoNlsmsMOSRHXI99VYLhce0ddqAfIGnkUmM1mE9VqtauShl33j7ENemN2/T9gn7atwl29YwrpZrP5AHRL+E5z8Fwul1FcgUDAVMfnXJO1yT6pp6iejSorm5DCudR8M42R6rvb39N551joGtF70dPUnDu9hxJjVMi7XC4kEgkMDg6auoIAUKlUsLCwgHv37hnvUaHHdDoNh8OBubk5PProowCAjY0NJJNJnD171iitpaUlZLPZrioeakxoHFAVlCpoezxsw4TXq/HH6zW+p2Qo3Zf6e689vPWgwndBs5WJCgh6IbSUuVm0UCrvod4ENwdjKPxclZdak3YciM/XOABhk/n5ebz99ttIpVI4ffo0rl+/jk984hN4/fXX8dWvfhX/7J/9M5w4cQLHjx/HzZs3jWIE9nJyWAX8d37nd7C0tIQPfehDGBwcxPLyMprNJnw+n4n/EHKr1WoGbiRxw+/3GyIH31XHpVwuw+/3IxKJGKGlsCHH22aFKZUZ2D97iQKQZaiotGgUEAYiW1JhWiocKoRQKNQVx6Owo9LgHGoeX7VaNdR+3pNjBcB4GFTuDseDVcjVa2q32+aQTzWg7OrvquQYt9TakRTifD9CjgoRhsNh9Pf349SpUyaZmHDe66+/ju985zu4c+eOgRer1SpisRhSqRSOHj2KGzduIJvN4h/+w3+Iy5cv4+LFizh//jySySSmpqbw4osv4tatW4bsQwiV/bUJEg6HowsSZJ+VfKNpAwolKjSvMTIloLD0mH6Px/QoaarXDm49j+td0FRxqXUGdMMt6hFpHIwChNcrRdeOdelBinxOp7OfbKregypSPQuJsYdarYZMJoPh4WG0Wi0cP37c1AHs6+vDsWPHEI/HjSKm0KZQyWazePPNN3H9+nU4HA5Da9eYFunugUDAHC4ZiUTM6bd6CCQFJ4v+Mi+MUCYVm9aU03dXT0Y9BZu8wfFRr8SG7RSipSfYaDQe8KoAGOWlPwpzUXFrvUHeX2FB7Ztt2atho7Euep46hjbxQj1nXR/qgfAZOiYK4fL0ax4OynuzDubS0hIajQZ8Pp9Zb+FwGBMTE/D7/cjlcshkMtjY2EA2m8XIyAii0ShcLhdmZmYwPT1tqm3Qq1QDzvYM+RnXJcdPyRX6TppuoLA972fDrlxP+q+9r3rt4a3ncR3yRmuOG5xsLCoWWm60xikcldLOTUUrUY9mcDqdhhRAAcQNzU0J4IF4D6+nJ6YeRKPRwPz8PFZWVvDoo4/iYx/7GF566SU8/vjj+MAHPoDXXnsN58+fx6VLlxAIBPD666/j/v37pq87OzuGYPHqq69ifX0dTz31FOLxuKkwTyXD8eDpv5cuXTICo1wuY2dnB5lMxuR+aZ1DKjWOBRUHxw+A8X4UslMvyjYm1Esl9EMIl0JbLXB7TAkx8jolQnBs6LHxetbsY9yP/SZZQBlwNsTHGJR65+qBaJ/1BG5eR8XFcdOkal3DHGdVVoFAAPF4HKlUCmfPnjUpERy/QqGAu3fv4o033kAulzM1LKvVKhwOByYnJzExMWEKOj/55JP47ne/i3Q6jRMnTqDdbuPOnTv4+te/js3NTTNHupcUIrbjShwb9cSB/YR1/T8VDmNWJJTYxp56afpcrjn+345L9lp36ymuQ94UarDPDSK1XRlairFrkJf/p7WqEBWALkWmkIlS8fXZGqfQflIAVioVFItFtNt7eVTMnVlcXEQsFkOtVsPo6CgmJydRLBYxOzvbFWejN+V0Og1BIZPJmHFgbIqWM70QhR3Zz3A4bIQ7K290Ons17aiw6vU66vW6sbBZK5FxGnpAmvjNcQP2hbMqII6bHexnoxBXYa8EEI2VKflEhRrfn+9N5anPpoK0613ahB/b+td+a+xUhasSLQhj0pDSNcZ+U+H29fWZE7P7+/tNbUuFdVdXVzE9PW2OJSFbkd9PJBLY3t5GtVrFE088YUpCTUxMwOv1YmVlBVNTUygUCsZ74x7RMVBvR6FAZRXqHuK78PtaD5TjxjmyCVIaU7a9K91Xer9ee7D1FNchb5qQqfRvhV+42biBNDCs8QTeS6nZ6iHwfsD+JlbmG5sGxhXGpBDudPZq3G1tbSEQCCASiWB7exs3b97E7u4u3ve+9xmFmslkUKvV8N3vftcIQd43mUzC4dg71mJ5edmUlyLVnSfaso+alM1+srIG415UAmw7OzvI5XJGmScSCYTD4a7jSqrVaheMp14Sx9cWRCSScGzoAXG8OCccMzYqB1Ue/NGyVjZJhPfXe6gCpHdszzH/rzE+W9jaHoANB1Ix8ZBNxvZsSI2K3+fzIRqNYnR0FAMDAwiHw3A4HIaAQiU+OzuL6elpNBoN8yw9IDQUCmFjYwPDw8MYGRlBu71XceXIkSMm5+v27dtdipeGh93UC7aJSbbC1utVOXNN8F25bxQW5nfUANS/6X7i/Pfag62nuA55a7fbxuoHuo++sL2fg2IsFOT8P7+nXo0G81Uga54PgC5rlJa1egOExXw+H6rVKu7cuYOdnR1Eo1GMj4/D6/XixIkTqFarmJ+fx4kTJ3DkyBFMTk5ibGwM8/Pz5vDEdruN06dPIxgMolQq4U/+5E9w/vx5fOITnzBeEovmEurUHCuOnea5ORz7JxjznUulkqlhyEoMJG4wbqRVIzgOvAfHg4pTYTL1UpU2TuGo56uxcQ4ZW7KJD1pTkRR+Ki17/hWKYkKzeh32M/l/9bJZsYSfaf91Hfr9fqOY1eOgAqaBMTExgbGxMaTTaaRSKcPuq9frqNVqZp0uLS3hueeew+LiYpcXzXgf18v6+jr+3t/7eygUCrh27RqefvppnDx5Et/+9rfx7LPPmvioMkKBfdYg58T2iHQdqZHG99b55BjwGRoH1THV/EDuLUVEbASj1x7eeorrkDfdUOoVUeFQoNiMQ1VQmivCKhP8G+MevK8+Q6113hvAA5tN4Sle4/f7sbKygs3NTSQSCSQSCezs7GBlZQUbGxtYW1tDKBRCMpmEz+fD8PAwVldXTRwpGo2aOnVutxvz8/MIBAL40Ic+ZJQLFSjLObH/WlCW0CBjNRTwfAfm+NCaX1lZQbVaNQVY3W63qdBOwaRjTEXA35XsYsNKmtdl99MmwKjhoEpC70Wlxbw2zpvmJqkXqxa//ZntRQH7CloNEwpt9e6onAmn0pBQwR0KheDxeHD8+HH09/ebNAmus3q9bt51a2sLS0tLyOVyaLfbDyR9M1VgZWUFx48fR7vdxvLyMkqlEoaGhtDpdHDv3j0sLi4aw0U9Yx0D9ZoPQin4dyZCA91Kj7/ze3pf3Xf8u3r7ysrlmuGcKHLQaw+2HqvwkDd7w3FD2TDMQRtEY142CUDvDewLWoU7bM9M76lKyw5qU3jTs2o0GoZZODc3h+PHj+PkyZOYnp7G1tYWms0mjh07hoGBAQPreDweRKNRc7rx7u4u1tbWsLa2ZjZ1tVp9gG5Ny16ZerVarSs2RQVCrycWi6Gvrw/VahVzc3NYWlpCoVAw36MioLKh0Ca0pWxD20rn2HKegO6zvujF0hDhdVQaVLgcF82xYv95jR0j4zUqTOl9qbGiSlEFp3oASgsni5P9UiIJY276Dj6fD/39/RgdHcXg4CCi0ahRdMqmbLfbKJfLWFxcxNTUFGq1Wlf6AucsHA4D2KPQP/LII6hUKshms4bw0Wg0MDc3Z2Jb9Lw1PUHXCpvuDzs+x3flZ8oS5d7Re3KseJ0qI/XEdU/rXOgc9tqDredxHfKmcJwmQdpVrAmxcQMprAXAWM4HWZaaRMmNyI1LgakWoG4stWbVMm82m3A4HPgf/+N/4JOf/CSefvppDAwM4Bvf+Ab8fj8+9rGP4fr163jxxRfx9NNP49KlSwiHw3juuecwOzuLUqmERCKBer1uILitrS38l//yX/CJT3zCsMZyuZw5pJKkEJItCoUC+vr6EAwGTXyLpyNToLGvTEgmpBYOh42Qp7JTT1ZJCWpc6PzQ+yGF2+l0mjgVc6nU43I698pVUaATqlMvjdf6/X4AMHG3TqdjcqeYz+Zy7VWvAND1PK4jj8djmIIaZ9PakXxPKjslKGjf6WVx7Kh06bGOjY0hEokYhqbG8uhtdTodfOtb38KVK1ewtLT0QJyur68PoVAIPp8PpVIJn/3sZ5FMJvHss88il8vhyJEjaLfbWFhY6IqNcXzUo2G/bQhP48BafonXMm6q+4B7SfMg1YhkU4NDFZRNeuL3esrr4a3ncR3ypgFebgj93Y5rAPsbSq094EEogwpBn6OsQn6f/7c9O/UQVJnx3g6HA1NTU7h9+zbcbjdGRkbw6KOP4jvf+Q5mZmYwOjqK9fV1zM7OotPpYGhoCOfPn0e5XEaz2TT/tlotY2XPzc3h7t275qyudrttDopU74/CPRAImFOR6akqgaJer5vj28PhMBKJhPHylFXG8VE6vcKHnBO7xJR6eArVaRKvwoS2F6bzpflCNkWb3hS/w/7Q02B5JC1tpeuF46drhH2zPQVWH1GvXD139QLdbjdCoZAprMxnKAMS2ItdVSoV3Lt3DysrK0Zxq+eopxrQ66vVatjc3EQwGMTY2BicTidyuZwpg6Wwug3T2eiD5ggq+qAwKfcEv8MxshWR3tc2OjRFQRW8KmpVir32YOt5XO+Cxk2kVGWbXQjsQw6M/XAD2VAjN5HCYBRO3Cx2kq19P7t4LJ/hcrm6YhzFYhHPPvssPvKRj+D48eN46qmn8NZbb+ErX/kKTp48iWPHjuHtt99Gf38/MpkMLly4gNu3b6NQKGB+fh7tdhuFQgF+vx/9/f3I5/N4+eWX0Wg08DM/8zNGkM7MzJg8JofDYVhnu7u7qFarRlgnk0m0221Tr5AeJd9pfHwcW1tbWFhY6BIkCntp8F2/D+yf7aUn/iqxgeOl1jz7TCXdbu8VmnW73SiXywD2jIRKpWIgT/uoG3py9Jb0+xS0qnQpTNW4sZUl32lnZ8ecn2Z741RcnO++vj6T+BuNRhGNRhGPx7tKOPHetVrNjOPMzAyuXLmCGzduANiLkXK8KMRDoRDcbjcikQjOnz+PYDCIu3fvYnBwEJcuXcLY2Biy2SzeeOMNExujAuS6VyOMxoAyKbn2NSeSjZ4pYWg14Pg3Kh162YyNuVwuc4wP9zTXi6341cDpKa+DW09xHfJmQw52MF2bLviD/q6Woiqag4L1tBQpnNXyVeWniZh2jI3X5fN5XLt2DcFgEENDQ7h06RL8fj8ajQbGx8cRDAbx9ttvw+l0IhqN4vjx4yiVSgiFQtjc3DSCgverVquYmprC/Py8+T7jXbSuaUFrTUAlS1Dp8qwvQm4UvIwBqUdhl4Syx169Ho2tKCuO96IA1QoYds08Wuf0YqgMfT6fgUaXl5dN3Evjg6wEr5CeKp2D5lwFt8JaAMz404Mi9EqvnxU9wuEwRkdHTS4cvS9FB9QLJbR5584d3L5926wpriF6tJyXRqOBYDCIRCKBWq2G+fl5TE5OIh6Po6+vD1tbW8hms6byv5I61GvkmrVhYzvGpXFgGxJW4grHnvewY8K6lzRGrTCwjWj02sNbT3G9C5oqCuBgVhivA7rZXMoq43dpXdobmJtOCQ82/s7fFT5Si12hFXp/brcbly9fRjgchtfrxcTEBPr6+vCnf/qnOHXqFM6dO4c//MM/xM2bN3H69GlDlY5EIvD5fCiXy9jc3DTVIRqNhrGsXS4XJicnjYXOxrgfPRAqIgpgWvMOh8PEi/TYFlv5U2CpBa+CmLCPQoDqASshg2Ou8B+FOMeRSgGA8VhYDikWi2FsbMyQGtbX180cuFwuw+BTkoT2VedarX0qFBJOFHrU9+H3VehGo1HEYjEkEgmk02nzTvo9GhPaLzI4b9++jbW1tS4GIaHYZrOJcDhsii2n02lEIhHMzs5ieXkZH/zgB838b2xsIJ/Pm2dT8XEdAN05h+1221Dwda8dpKwOyu/iXKqnpPuAyk3XgO5RJe4oW1fhxl57sPUU1yFvGkCmYFOShgoVhX4UtqBXQQhPWWisFsHrgG6Goa0MeGowhZENl/BexO7pDbz99ttYW1vDwsICvvCFLyCdTuPmzZt4/vnncfz4cTzzzDO4cuUKvvWtb+GZZ56Bz+czNQdDoRC+8pWvmCKytKb/9E//FDdu3MAHPvABfO5zn4PTuXcKM4kJGiuiotIisHpSMqEeHu0eCATMWVd8Fwb61RjQeWBBWwp/KjRbUXCMWPmjXq+bGFcwGDSljRwOB86ePYtMJmPqLvp8PgNjdTodRKNRLC0toVgsmndi7CebzaJWqxkFoEeM8Pt6LhWVis45lRiVu3oFQ0NDCIVCiEQiGBgYMP2m12hf3263USqVjIGQzWZx584dXL9+HdPT013eHZ/ZbDbR39+PRCIBp9OJv/23/zZGR0dRLpdx8+ZNPPbYYxgfH4fb7cbGxgZeeeUVLC8vm2NruDaVgOHxeEzOmBoLthLXOVcDjWPI9yJ8rNVPqNQJddq1DjnuGmumUaQKstcObj3F9S5ohL8Y3+AmYVOWFLBP66UlqMwoZS7xc4XQbFzdhgspjDUmYMOX6nWx/1QEd+/eNYzBJ598EltbW7hz5w7OnDmD8+fP49q1a3jnnXcwMjICYE/oJJNJhEIhVKtVwzKkV7KwsIArV67gAx/4AIaHh+H3+1Eul7tYluyz5rzRs9rd3TVMQwp3l8uFwcFBuN1ulEolo9QY39D3/37EBp07O0jfbrcNjElDIR6PIxqNmsodfX195jBOJQuQNehwOJBOp+Hz+VCv1w37lO+ZSqWQy+WMwcLCuFQqSqbhvNGoIcmEnh8JK4QDg8EgBgcHjUKlUtT1oAKY96G3tbOzg3v37uHtt9/G/Py8+R4NHRpbTqcTkUgETqcT6XTaKKm5uTmT2E5PLp/PI5vNPgANclwULeBY6rpWWNB+F9sDp8Lh5xoPo7JTT03HWfcir+W97HXVawc3R+ddGP3j0Rd/ExotOqfTiVqt1iUgbMtNf9TzsZUVoRiNY9mQHzeSFv7kvahA7WuULqzeGgPU3OCf+9zncOnSJTz66KPY3NzE9evX8fzzz+M973kPxsbG8Nxzz6FYLOIjH/mIgb14VMq9e/eMoGJx1+3tbXz4wx/Ge9/7Xjz99NNGYBQKBTNWNqGCsB/f1+v1Gio6FR/7TmICAFNFQwUT70soizE5vj8FsMJ/hDH7+/tx5MgRDA0NIRgMwu/3IxgMmqM9NH+IihuAWRMKNVWrVZRKJVQqFXOuV7FYxObmJtbW1rC+vt4Fn1LJ8TkqzLVwbyAQQCaTgd/vN4c2agIxsA+PMR6n6wTYL3js8XhQqVRw584d/OEf/iG2trbM+Hc6HcPsDAaD5kyvbDYLv9+Pj370o4hEIrh27RquX7+OD33oQzh+/DjC4TBWV1fxrW99C9/97nfN/NLIoMfENatxRhuxUMhPyTmqVKhYDxKdfDbXhBqGCq2qt87nc59pjPhdKJ5/4FYsFhGJRH6g7/Q8rndBY6kfoDveRctR82l4jcYhgO6KCN+v2cFhhXlsAaABcN2IqiQVcuTnb7/9NrxeL86fP49oNIrJyUl861vfwvXr1xEIBIznVa1W4fP54Ha70d/fj+PHj+PevXtdMSjGRO7du4dms4lMJoOxsTEkEgm0WnulmzgWVLQUCoTQmIAMAMvLy8jn82i32waWi8fjaLfbBv5zuVzGw6GC03gihdzDSAEATFFgHvsSi8XM+2gxXD6PikkZo7ZBwvdk5Xyn04lEIgGfz4dgMAiXy4VKpYJCodDVN/ZZn+n1eg2NPRaLYWJiwvSLY6mloWwavkJpGtepVqtYWlrCrVu3UKlUzPxR8Y+MjJh4FVmHu7u7GBwcRDqdxr179zA1NYW+vj7E43GjCJeXl7GwsGBgVI4JDTSNG7H/Cg2qt0zv21ZwOo+a3sC9qUaiQpMcD17DfUljkGvF3td/E5TWX7f1FNe7oHHjKStMs/MVGlR4QvF5Ngp820MD8IBlqfCJwhdKQlDrlPfS/KKDYMzl5WV4vV58/OMfx8DAANLpNM6dO4fbt2/j6tWr+PCHP4xHHnkEd+7cMWch+Xw+U3WhXC7D5XKhWq0aQZ/P51GtVvHiiy/ife97H86dO4dkMom+vj5sbm4+AKPyHewKEloJnMKGnpgqBlZo4MGVALqMBPVeGFNjMVl+5nK5cOTIEcRisa4xBPZjS0wqVmXA2JRCeBpvUWOBCoGCuF6vI5fLGWIHFa9dzsjv9yMcDiOVSiEUCiGTycDhcJi8N9tjUKGvjEjek32anZ01jFCtJk9FxKoa1WrVVEnhoaNerxe3bt3C9va2YRKyivz8/HxXpQxlobKvqkxs8oP2X6+nwcb5UcRC17gyBoE9D5ZIBOfsoNixKn0WZraVZa892HpQ4bugUbjSyuUGpFJSKIIbQg8OBB48zI6bg94L4wtUety0/D8FAZ9jU7xttpSSN7gZ9XyjVquFj370o3j66adx4cIFtFotzMzM4OWXX4bT6cTp06cxOzuL1dVVBAIBnDt3Dl6vF8vLy7h69SoWFhZMXoyeqsu4z8mTJ/F3/s7fMYcTlkol5HI55PN5uFwuw1jkgZXAnrCh4CcRhTk9hPoqlQr6+voQiUTMmLFaB5NeKcQIgcXjcSP8CfEBMPEq/mjVCXqKSnphgWDGxzweDxKJhBlP/st+83cqaCoUkmYqlYp5TigUMvlG6p3YdH1dI/oeWmyZ65RJygBQr9exsrKCZ599Fuvr6+YwUXqDJ0+eNAd8BoNBbG9v40/+5E8wNDSEZ555Bk6nE++88w4WFxfx2GOPYXR0FLFYDPV6HV/+8pcxMzODfD5vFGa9Xjd910rtVA5KzNCCuOqdU6FoGSe+ryoWGjtkJ9pxTj6be1BjYSQOqQGpHuPfhNaDCn9Im0IyQLcXY1Oy+ZkSCGzIBngw1qWbUWEePpvEBPW+7M3Mpn2yf9QCvn37Nvx+P0KhEE6dOoVMJoOzZ8/iW9/6ForFIs6ePWuK9ebzeQwODiKVSuHYsWPY3t7G8vKyeRc+1+XaK9J6+/ZtfPOb38SZM2fwoQ99yCSv8iBKHnxJliTfgUJNISZN1KaHwKNVHI69ZGfmFnEMSfTwer2Gyk04kIqH/1LRADDkBIXy+DeF1UiSYCV+EkjoFXE81KhQ1pvT6TRHvlCw2wJU41QU3gqDaXxU4TiSRzSxlxVP1tbWTHySOWEDAwMYGhpCLBbD4OAgfD4f8vk8gsEgxsfHjZd+9+5dXLp0yRgjrVYL6+vrhlWp1Udsz5/rjgpc94rChLoHFH2w4XNd48A+EYXX8x3Vs9J9ZyMaNDB0Pffaw1tPcR3yxk1DgccNo8wwPWCSnpDCNRqnUqhK4xEKbdGr4gbihlevBtjP/2I/dUPye/odKi8qhWKxiLt37yIcDuPEiROIxWI4evQo7ty5g7m5OWxvb2NwcBChUAg3b96Ex+NBKpVCf38/qtWqgQA1EVYrSLz55ptYXl5GMpnE6OgofD4fUqmU8dToJbCeHwW4Nh0fVs6gdwPsl31yOp2mviEVCz0kerYkCijJguOo8UnOD8dLPVbeLxwOIxwOo9PZr1FIhUuYUeFRnRuFrhhDVGVpz7XCwBobonfGfnNd8vwyKtpCoYCbN29idnbWwGeMLY6MjKC/v99Ak5FIBLVaDXNzcxgaGsLRo0dRKBQwMzMDp9NplJbb7cb6+jru37+PfD5vSlrZzVbGWrHiIChOvSz920EGIBUOx5PXcXx4PZ/F8WRs2IZ/1ajQMe21B1sPKjzkjXCCChsNEAPdgWVuTMYu1NPhNVRuqkhUQOqG0dp4D4tpqZdGoUcGGYWhWqgaX6Bn8o/+0T/ChQsXEI1Gcfv2bayvr+PZZ59FNBrF+9//fuRyOdy7dw8XLlwwMafLly9jfX0d+Xze5GfRY/L5fEaI+nw+ZDIZTExM4KMf/ShSqRSi0Si2t7dRKpW6BIsSPki+0IoZrAbBcdN4or5XLBaD2+02eVqMM2lBXCWLHBRfJFTIc8cGBwexu7uLUqmEYrFo7knvhvUACUGyWC/P9mIOms1mY8yMnghTAkiJt1MKGo2GUc783D6Sxel0YmFhAfPz85iamjIltLj2QqEQ3ve+9yEYDKJcLmN9fR2nT59Gq9XCK6+8gnq9josXLyKRSODOnTvweDw4evQoTp06BZ/Ph0ajgS9/+cuYmpoykCS9Vx0/rgc9pViNLfUu1UNSlqy9bqnc+X8qdKYocB+okcB7MGbLXEPdH9pn3d8/7K0HFf4QNlVYKlgUY1dqOzeJxrps9phdyUEtawBmQ+nzFRK0bR2Fig6yUoHu2JfGG4A9T+fKlSvwer04c+YMQqEQdnZ2cPToUdy/fx9vvPEGnn76aQDAwsICTp06hWAwiMnJSZP0urm52fXeVAoulwu5XA7FYhHLy8vodDo4evQojh8/jsnJSXi9XqyurhpL2LaqNdan8J2SJqjcle5OKFLLOGkisx5XQsVIK5/Cy+12IxaLmZwuzh0LywYCAaOA1eAIBoMmKbZerxsiBivg6zhxnki2seNXVHbsH3O72D96HazwTqVULpdx/fp1zM7OIpvNGmEM7EGesVjMnEx99epV+P1+bG5uYnV1FeVyGdFoFOvr62YeeCxKNBpFp9PB4uKiOUWAY6MeINekxpX4jqzGwfXNf23PSJWXKjx9DvcY9yPXiQ2N2/Cleq3cH4xfcx567eGt53Ed8uZwOEx1c0JbSkNXq1FJE/wb2Wdaj42bRHF29ZxI2NB4Afuys7NjEnc19mYvI8X6FYK04ycULn19fRgcHMRTTz2Fz3/+8/B6vVhaWsLKygreeusthMNhnDx5Erdv3zanFk9OTqLT2TuE8Dvf+Y5JPmVQvlarodPpGGtue3vbECj6+/vxsz/7s7h48SJCoZA5W2trawutVgvBYBDAXhUHQouMyyg8SAKGXQ5IlRrHS70z5pBxzO36gKlUCvF4HOFw2BS5BfbyyBYXF7G1tYWBgQEcO3bMzDvfk4YOPSUqnEqlYjxAEkI4VkzW3tnZMd6Aw+Ew3owqL871QfEkn8+H9fV1vPHGG3jppZe6DCOv14uTJ0+aw0PfeOMNVKtVXLhwAe+88w6GhoZQKpXM8SRMP/B6vfjIRz6CyclJVCoVTE1N4Rvf+AZee+01U32EykGTzG2Inb8DMNCtQqpc40A3xEjoXU8UV0WpSeS8J/eQfUK49kmVHT19zbE7CPr8YWx/HY+rVxDrkDc7TsXPgP3cIbUE2TTepfi8XXHDVijqJSjUoXg+n02vwQ7W83N9DoAuZcd7qCJdX1/HjRs3sLGxAY/Hg/7+fgwODuLEiROYm5vDnTt3cPr0aYyOjqLdbuP27dsoFovwer3o7+9HIBAwfVXFQJIEE2hdLhc2Njbwwgsv4KWXXkK1WoXL5YLf7ze5SlROLLPE6hAcTwoc/Z2wJ6FGvpt+j3NCK52xGcJPoVAI/f39GBgYMPlM1WoVtVrNwH70oqjwldrPNUEPi/EmJRtwTgivaUUWCl5dV+rJ833U6/d4PCZRfGdnB9PT05ibmzPrgUnJqVQKw8PDCAaD2NnZQa1Ww/Hjx01B4Hq9jiNHjmB4eBihUAj1eh3r6+s4efIk+vv70Wq1cP/+fVy/fh0zMzNd6ALXK+dE9wGvAdA1PwehDRwH7gs16lQZ6jiqQtLcSo1vsS98ll102d7T/ys5l3+TWw8qfBc0WnvAfnFPu5grBQQ3AS1kteh046jVqJAG41MUcnZuiV6vXplCQfb9FPNXKIfCjx7Dzs4O5ubmcO3aNXi9XmQyGSOEWZNvYmIC/f39SKVSuHr1KlZWVpBOpzE0NITd3V3Mzs6i0WiYqg8kSFDpMqm40Wjgxo0b2NragsfjwdjYGEZHR5FOpw1FnP2kYFVrWcfPJqVoPp1CeOqxUZhRwfLvrM9IA4Lekn6fY6xjbrMHGdPid1UgqlHCCh+cY8KOfI5Carw/Bb/S6zlPa2trmJqawsbGRteaGRwcxNDQEACgUCjg3r17hoK/ubkJn8+HSqWC8fFxhMNhk+AdDAZx9uxZxGIxVCoVXLt2Dbdv30Y+n++q4G9DvLoObQiRc6TQoP7Nhr4VKqRy5D1YFYYeEvei7gsbarRRDK5/hQ7tWHOvdbceVPguaIwlaOxByQhc+CoQKbBsrF+xdDvgzKY4PTeSwpAkXeiPWqWaN0OByfvQIlYYhIKT1/l8Ppw8eRL/9J/+UwwMDBhLO5vN4i/+4i/gdDpx7tw5TE5Oolgs4p133kGj0cDRo0eRTCZNXGx+fh59fX2G7UdPjOPEuAwARCIRnDhxAj/5kz+JkZERBINBc5glY3Fut9sw+XgfCnh7HGlYqEeqJ+dqSSDCbP39/QYWZkFhVrwgBEo25uLiIlKpFBKJhPGoON+EwdTz5ByStMFnU0kTPux0OsYrJXylycn0RJvNJtbW1lCpVEwNylwuh42NDWxubpq1xvy1/v5+lEolzMzMGOWYSCQQCoUQDodNnUmebryysoLBwUGcO3cOTz31FGq1Gq5du4b/8B/+A3K5nFnHelozlYcaZ0pEUaVFZIBeEj1ehd1pIPIzheo5j6r4gG5lqdCvfZ16XgoZE45/F4rlv3brkTN+SJvCTtxE9FaoXOxgrx6noHCIDdUpLVhxevUw1KugMAS6lR29mofdXwvj0iO0YRqF+e7fv4+33noLZ8+excjICAYHB+H1enHq1CksLy/jnXfeMVXTjx8/jitXriCbzWJwcBCxWAxHjhwxleLL5bI5CVmtX7Lntra2sLy8bAgP586dw4c//GEEAgH4/X5sbGx0xXoUJrM9WL0/haZW4+DvJGuogI1EIgY+VLhKBbLX60UkEkF/fz8cDofxLpk7pZCwFgZWco3ClZrbxTlQD1NLe1HxlctlFItFLC0toVwuI5/PY3Z21hzOyfdkwWCn04np6WkzdnpmWDwex9GjR5FOp1GpVHD//n3UajXs7OxgYmIC6XQaAJDP502+Ft+D8duDku0VVlfFRqXCe+g1VMz6ue3JKaqg40nPSde+jinH076HXnfQ3uu1g1vP43oXNG42ekkacLZzaTidTLS0418KfwD7G5DXKGTB4LIdK6O3od/jxmd/+VxChPRMCF/ZsCKhMd6PAnV8fBxPPPEEPvvZz8LtdmNxcRG5XA4rKyu4desWjh07hpMnT2JzcxO5XA7Ly8vmKI8zZ86g3W7jO9/5DgqFgiGWUGHUajUjnOk5Mub02GOP4ZFHHsF73/tenD17Fu32XiLy+vq68Tr4L++nZAgy7NToIKRESrnS7GOxGDKZDNrtvZOBS6US6vU6VldXzbEn9F7i8bi5x+bmJvL5PPL5vCGetFotBAIBxGIxJJNJM76kr3MNqPIulUrGs+S8dDodlMtlVCoVLC4uGu9qcXHRHE9CpUEqOD31VCoFn8+Hzc1NuN1uHD16FK1WC6urqybm98EPfhCxWAydTge3bt0y8xYOhzE2NoannnoKsVgMU1NTeP755/Hyyy8jl8sB2M9j5P8ZY9S4rKZ5AN0wO8dJ9wDXoM4b50vXsk3oeFiuGNebrnN+TyFc3df8fqfT6ZqPH+bW87h+iJtuMlrSXOx2dr5uAioiZVbpJtJNowFmvV6bBqwVSlFhbUONhD+U4ME4isJYKlS4cefn5+FyuXD8+HGMjY0ZEobf78fdu3extLRkKOP9/f3wer3Y2NjA4uIiEokEUqkUdnd3cf/+fSwuLiKfz3cRSJiD5HQ6TY5WoVDArVu3sLm5iZWVFQBAJpNBNBrF0NAQ6vV611ldrP6unhgVmnouGiOj0vJ4PIhEIobWns/nUSwWsbq6is3NTdy9e9f0b3h4GMCeAA0EAtje3sbS0pIpDMwq9qzWUalUUKlUjHBkXUPOBxVPX18fSqWSgRFZ3LbT6aBYLKJcLmNtbc3UZSwUCibBmJ4Y5x7YNzzK5TKcTidGRkZMX+j5Dg8PI51Oo16vY21tDeVyGa1WC6FQCIlEAplMxrAxr1+/buKZPGUA2I/tcl1ScWrMij+KGNjsViryg/K2NG6s82dDfHq9y+UyUD7vdZCiU3icCpHf73lb37/1FNe7qCm0Zm9eDfJygyl0ZeP+mtRsQxr0vHTTqlWq3hvQzeqyc8r4u9Ko7bib9lHjPhQKCwsL+Na3voXz58/j6aefNtXch4eHsbS0hOnpaZw7dw6hUAjpdBrxeByVSgULCwvw+Xw4fvw44vE4UqkUXn31VRM/Uq+Syj8YDCKdTiOXyxmBCgBnzpzByZMn8dhjjyEajRp4jqw/AKbOIStsaHwF2D/KhO/X6XSQSCSQSCTgcrmwuLiImZkZZLNZ3Lt3D+vr64Y9R0UQCASQSCTg9XpRLpdx9+5dZLNZk5TscDiQTCaNgsnn88aYYEV60q7JTHS73UaxUCnTyyCDkR4rP6dHTA+VHiXnmjljgUAAOzs7KBQKphr+6OgoRkdH0Ww2DQzLeRgcHMTRo0cxNDSEZrOJbDaLV155BbOzsw8ktOv6sWE4rjuuJ90rB0HodpKyEk/4HBpftodk7wv17Pg9rm1eZ8fi1EBU5KTXDm49qPBd0LgBgP2grpImCPewfh4tvk6nY/JJdPOq0CY0opYjNxfjLaroeA9+VxNxbUWklGIbx3e5XCZJ18b0KfzUY2m32/B6vfj7f//v4+LFixgdHTVxj6tXr5p8IK/Xi8uXL+PGjRtIpVJIJpPweDyG1ba5uWmOwFhbWzN9YD9YdcPv96Pd3ssl4lHwiUQCP/7jP44zZ84gnU53KQHmSZH4wr9TSdkQLYvkxmIxA0F+9atfxb1798w5YhR6bO12G8PDwzh27BjGxsawtLSEN954w8wRPS7Gv5g8TA+d8B3XQKu1d3QIPYidnR00m00TO9LrGD8jPMqxIYwcCoXMmgyHw0bBcR7Hx8dNLcp2u4319XVcu3atyxscHx/Hhz70IcOq/J//83/i5ZdfxosvvmiUFteDMiE5pnwPViyxDTauP0KC9ITVSKJy43zxfjoPfJ4aWny2/ZkyK+19CHTHqqksbYPyh731oMIf4qZQhR24VcHIxs1HJUFlwKbft4kANhVXrUuF8xSqUYhGPQ2Nm6nQ0WbDhgrXUPC53XtHm7/11ltwu93GM6L1+sILL+D+/fsIBAJYXFzEU089henpaVNFgl7J4OAgBgcHAexVt6DFT/gNgGGqMTE3EomgXC5ja2sLL7zwAu7du4dz584hlUoZZh8FMCFAPZGYPwoDUcEtLy8jm81iZmYGV69excbGhqnjt7u7a8o6kW6+vr6OarWKlZWVB6js/LdarZrxpFJ1uVxGsfLEZ5JleN4bjQqtxKHrgWuQz3U4HCbHje9IViThWMK6Z8+excDAABwOB7LZLO7evWsUn8vlwtmzZ81RJcyze/XVV3Hz5s2uxF97najysaE5O5dK38P2mFQZsf/qDWl8Ste55lwR8eB9dG8A++XT+F1dD3beXK99/9ZTXO+CdhCZQjeUbipexw2utHi1TvV6KgjStSnoKAiBfehFnwl0xxb4ubKjNAanbC4VtCokNP6gECiD3NPT03A4HIhEIhgdHTUxrEwmg42NDeMZHTlyBAsLCxgYGMDRo0exsLBglJfL5UI0GsXp06cRDoeN5c86d06n04yB3+83ZaWazSZWV1eRz+exvr5uYjGnT59GLBYzDDp6KHYcUOONPAuL8CDp/hT+jGERriJk1Wg0kMvlUCqVTFI050cp2ACM96hQFwAD43k8HpMnpiddkxrvcDi64nZcN4QYI5GIqRrCGB+wb9CkUikEAgGkUilzgvL9+/dx9+5d5PN5JJNJOJ1OBAIBk5/X6XSQzWZx48YN3LhxwxxDo8xZVaj2euGat/eMXmN7PUp5V8XDa2zWpf6N0LCmdHDONRbMOdI9yH3AGCGVbU+B/dWtBxW+C5pi5nbw2PZkFErkZ3bciX+z41A2gUCVIgP59HAo0OxkW2ULatxAY3NKwND30f4B6Oo3sH8eWafTwdjYGH71V38Vk5OTAICZmRncuXMH169fh9/vBwBMTEzgxIkTCAQCRnBTaObzeRw7dgzhcBivv/46FhcXkc1mTUyLuUwaz3C73ca7Ipmh2WxicHAQ/f39OHv2rPHwWF/Q6XSa2BKwJ+y2t7exvr6OcrmM119/HZubmwbSo7LhWWF853a7jWg0amDj+fl5k9sVCoWMgtrZ2TFQH4kjhCv5QzalGha8nl4jFSsZgLomKGQJh7bbbXM8TSQSwfb2NiKRCD7wgQ9gd3ev0PHU1JTxFjOZDEZGRjA+Pg6v12sYlZ1OB3/+53+OV155Bbdu3TIQqJaWopLk+rI9QI6xXSGGioTr3UYoFNrWz6icgO7TjLk29J7qceme4nU8y417mrFBNTr0nj1W4cNbz+N6FzSF8myFw42likE3hZIeFGJUyOqgGBbQ7WVxw3EzsZoH+wE8WFSXMI4NYfIZGoOwCR9sCtdsb2+bY0VyuZw5EmVgYAADAwPo6+vD1tYWNjY2UCwWkc1m0dfXh6GhIaNQTp8+jVKphNnZWSwvL5sj4UnseOWVV7qEuY4T/yWlnsq8UCgYkgKTaNPptFFewWCwy9va3t7G2tqaKSrL/CYe1+F0Ok1yNGOIOzs7iEQiBs6s1+smFsaYHL08ej4U+napLfVyFW4kvEe2IPvabreNQmVlc64hQrlHjx41/Uqn0zhy5IgpBrywsICpqSk4HA68//3vRzKZNLloZFQ2m03Mzc3h+eefx8zMTFeCN9eoKivbe9H1cpCHps2GBXXd2YaUxmw1nquGmhp/+sM1o8aXVrPh83TvcS/acHqvdbeex/UuaNyE3MgAjDWuHg0XPDeOwoSqIBS+U+XGTUoLWxUSvRha22oF6+bU4Dfw8CA0+8vraHkqE0wD5HyW0u8DgQAmJyfxvve9Dz/2Yz+GTCaDcrmMbDaLlZUV3L17F6urq1hYWIDb7UZ/fz8uXLhg4igrKysoFApYXV1Fo9EwR5HMzc3h8uXLxgrXgrpULBrI53jp6clU9vS4dEx3d3dRKBRMjAjYE5QK/SlER5LF0NCQYSuSss71QaiTY0thysrwWlZIiROEBNVIqdVqpp+BQMCkGjDO2Gw2EY1GMTg42JWg7HA4TNmsSqWCZ599Fi6XCyMjIzhz5oyBVpXdWK1Wsba2hj/8wz/EvXv3sLq6+kA5s4cpLgp/KjkSZTgXwH51ezaNRWreHe/NZyo0yD2jUKjCeXqUj4pTQohsNqrAuWUjK1OT9P8mtP/Xi+z+1m/9FhwOB37hF37BfNZoNPBzP/dzSCaTCIVC+PznP2+ORmdbWFjApz/9aQQCAaTTafzyL/9yF3Gg17qbwm+a/GgTKDRHSq1RblZgPxaicRe1+LiZqDB4b5bXoSCgUNUYg1qoSqVXuEQ9x4MsUoWGeK16QPy/w+FAuVzG22+/jWeffRY3b95ENptFMBjE0NAQTp48iQ984AP48Ic/jImJCXOS8iuvvII333wTKysrCIfDGBkZwWOPPYaJiQlTBZ7nPvX393dBriRccAwoVCloWB6JXkKlUkGxWEQ+n8fW1haKxaLJi1KlR4ODB0wqIUXz2+r1ukkC5hwx5sRK+Bo30RQErZTBddDpdLrOCeN5Vlp4Nx6PI5lMGm/Q5XJheHgYR48e7aq6H41Gcfz4cUSjUdy7dw9vvPGGOabmve99L06cOIHBwcGudfjOO+/gtddewze+8Q1cvXoV6+vrpgiuMjIV5ubYa4xX0QTbI7LjsfReFRbkPTgf/KFC0mbHlW3PTA0Dzc9SUoj2SUuD6R5+F/oT/6+2vzZUeOXKFfzH//gfceHCha7Pf/EXfxFf+9rX8Ed/9EeIRqP4+Z//eXzuc5/Dyy+/DGBvwX7605/G4OAgXnnlFayuruILX/gC+vr68Ju/+Zv/z97mh7TREuQGAbprnSlMyOuAboVHuEcVH6+hN0drnZ4Nv2tbkxpAVuuUm1G9Of79IEq4srH4HH6PCkwD3vaGJrX7/v37+Iu/+AsUCgW8//3vh9/vN9BgPB6H1+s153FdvnwZd+7cwdraGk6dOmVIHul0GuFwGO+88w78fj9OnTqFSqWC1dVV3L592wgyJt6SSafwqI61WtKa+8R3pILjOPA7Gq+kx0Tig+YeaUoB88iCwaD5DgU3x1ChK/VCVPGRBEJlzcr40WgUsVgMtVoN/9/2zjzGr7M6/8/sM/Z4ZryP7diOAyTODgngDIhWBStpmtKWplKEohZR1AowFZQIAd2AFjWolboXqqpt+AsiqAqtgARCAmFzyGrsLDZx4q2JZyZeZrVnf39/+Pfc+dwzd8YxBZuv/R5pNDPf773vfdfznPOc8763sbGxeCv1kSNHNDU1pa6uLl188cVqaGjQwMCAdu7cqYaGBr3xjW/U+vXrtXLlSjU3N+vkyZN68cUXi0zGxx9/XC+88IIOHz5cZEK6vxhfjJl3NoLcXxYCGj3+GKNyu5kQEe83GBo0CXJkJ+gZcf5GsHRdXCZjcp4X0eDMMr/8RFThyMiIrrvuOn3605/WJz/5Sb361a/W3/3d32lwcFArV67U5z73Of3Wb/2WJGn37t26/PLLtX37dt1www2655579Ku/+qt68cUXtXr1aknSv/zLv+jDH/5w8TqL08mFRhVyL5YXESe9LVEuOsbF+OZbx0Acv4jBYYKdNEvhtbW1FYvWilFS8RoQWpwWB8kJnJJKngCfYSViMKZ3J5VPASc16r6RpEsvvVQXXXSRNm7cqCuvvFLLli3TypUrC8X94osvFrGlXbt2aXx8XJdddpk2bdpUvJdrcnJSP/7xj4tTJ6RTsZsjR45o586dpb1zVvY8wd3j4f4fGxuTdCrhw16Lx2BsbKz4bGxsrBgfJ8GklIq4Fs/p81i5D2KGnYUvt3TmoF//4tR3l2UPw2PQ2tqq173udQUl2N/fr4GBAS1atKjYm7V06VJNT0/rmWee0YEDBzQwMKBf+IVfKG0ifumll/Td735XfX19OnTokE6cOFF4dwSoCDakqjkH4iZoMgDcl+W539bWVmTusX/IXHAuMa3eY+hkCc7BKsMlls8x4drgeovrhizDhSBnLTlj27ZtuuWWW7R161Z98pOfLD5/7LHHNDk5qa1btxafbd68WRs2bCiAa/v27br66qsL0JKkm266Se95z3v01FNP6TWvec2c55lXtwwNDf0k1a5ZqfI8GP+QNGfxROqQiyN6RNLsomL5/j4mftBqpCcU42ZVPH1VgkgMjNuSZp2ovEh/WeE7UWT37t06cOCAdu3apWeeeUYrVqzQ5Zdfrvb2dnV1damzs1MbNmwokjn27dunZ555Rv39/eru7i4A7LLLLlNfX59eeukltbS0aPXq1Vq/fr3q6+vV19en48ePF8A6PX3q2ChbzvaQWF96Bw0Ns+cGOpvQIOjvOX6OOZ08ebKURBGpYxsELisqUW609jj5Myv8sbExLV68WF1dXVq3bp0uuugitba2FkdKzcycOtXdiSKjo6M6fvy4du/erZGREa1cuVIXX3yxVqxYoenpab344ovas2ePHnnkkSJTMcY9PY9Jn3L8SScbXCO7YJAg88D55s/pxXEtxExECuOvEbB4OADL43wmOJGd4DohExENuyxz5YyB6+6779bjjz+uRx55ZM53vb29xWkAlNWrV6u3t7e4hqDl7/1dldx55536xCc+caZVPW+ECQmkfaxspFkl5MURLXFpFpx4NBStTnpbVHD+3gvKFF20km2teiHSWrUFGelAK18+m9dUfRZjC26r6zY1NaW+vj4dPXpUra2t2rt3r5YuXap169bpDW94QxF/3bx5s7q6ujQ6OlpcPz09rXXr1hWnzK9bt067du3S6Oiompub9YpXvEJr167V3r17i/TuaEg0NJx6caLBxX1tI4NHB3k8/D1jL24vPcwI4AREjwcPcKWyZHyRIOox8M/atWsLj0k6dTL7kSNH1NTUpFWrVhWxv/7+/uJtzBMTE1q/fr0uv/zyIk3++eef186dO7Vz584iw9Og6tMtHMciTee20KChMRbnXtX1nIP0wAgmHBeCURWl7c84Poyh0dirouJZnsuM9HxkOzJ4zS9nBFyHDh3S+9//ft13331F1s7ZkI9+9KP64Ac/WPw/NDSk9evXn7Xnn2vhWWfSrAcSj1zi9ZLm0C0WL/q6urpiHw6pFSszL9JIRfl/l8UEBv7vMpg6zGeZemHbpPKZjCzb9JnF1ruvY/l8ud++ffu0f/9+PfHEE9q9e7c2bdqkTZs26dprr9VVV12lSy65RC+99JIOHjyohx56SD/60Y+0ZMkSrVixQuvXr9ell15aKMJjx47p6NGjuuKKK3TVVVepsbFRR48e1aFDh3Tw4MHi2CSCR319ffECS8avrOROnjxZZAnSg+KY+rT/aKnHPUVMf7fBE2M48X1pk5OTWrx4sa6++mq98pWv1PLly4uzC48fP6729nZdddVVqqs7lRDz6KOP6sSJEzp27Ji6u7u1fv16vfnNby7OXRwaGtKBAwd09913q6+vT5OTk8UJGz5Sqq6ursho9HzmHqY4X+hVMrHInxGIeZxTfX19ceo855THgF6Tn8E0f/epr/O88rYQ//Y64fq0JxtZD46d16DXg9dqBq2F5YyA67HHHlN/f7+uu+664rPp6Wl95zvf0T/90z/p61//uiYmJjQwMFDyuvyeJEnq7u7Www8/XCrXWYe+JorfZHshS1Ti0qxSjEFdLxDutaJFSusyWroEHEmFlcx0agbIeS9ja1ysXqCuh1S2Vrmg+RnpSAuf4bZQaRiIpdk3BjOx4dChQ8W7pOrq6ooTG5wib3pr7969GhkZUW9vr6688kp1d3cX8bL+/n7t2rVLU1NTam1t1erVq4sEhuPHj+vo0aMaGBgogNbJBqbv3DZ6UExjd7ucTs2YFueDpCIexjR8K0xSar4nKksfy3T11Vdr06ZNWr58uQ4fPqypqanifVopJQ0NDRUA3d/fr5RS6Zgm718bGRnR448/XtCvNiKswGOsid4LvVC20UIwo/cUjbp4H59lw8wS5z8NPcYQPZ8NLtGLjfReTCDhvI/CZ0dDI0u1nFFyxvDwsA4cOFD67J3vfKc2b96sD3/4w0UG0ec//3ndeuutkqQ9e/Zo8+bNc5IzDh8+XLwk7l//9V/1oQ99SP39/S8LoC605AwrNysbpglHis7XM95Bz0maXSAEGalMyVEx2sL0ArSXR9BhKrKf6Trx/VsULmLGZAyUrJfLZeYdE1CYNh3BQCqDmDS7gXr58uW64YYbitdsrFq1So2NjXrxxRc1NDSkI0eO6Mknnywy6NasWaOLL75YV155ZWHN7969u/RmZYPn6OioRkZGtG/fvuJEeoOQvQ5JBWVmy9/tMJ1mhb5kyZJi7An09oB9/JLHmHSZ42gNDaeOu+rs7FRbW5vWrl1bJJf4aKvm5ma1tbVpfHxcjzzySLFnsKOjo4gZeuNwSqdicKZODx06pB07dmhiYkLLli1TXd2pjeNOdCFVSQ+SiUK+zuPKmKiNEG6cp7fkOc6jsNhXBPNoTJFCtfh6GhH+jLS41wO9tPr62WPEfH1kJmhs2AuM9Trf5WeenLFkyRJdddVVpc8WL16s5cuXF5+/613v0gc/+MEigPsHf/AH6unp0Q033CBJuvHGG3XFFVfot3/7t/VXf/VX6u3t1Z/8yZ9o27ZtF7xXtZBwEkfar2qiMzOpKuPM90ULkOBl5SKpRHlYmM0VvakYp4keVpWFG70vUi8xVlC1qCN9yee6L+yNeDNtX1+fHn/8cfX39+uSSy4pkjgc59q4caM6Ojq0f/9+HT9+XIcOHdLAwIBSOnXkkU81d8ai397b0dGhtrY2rVixQu3t7RocHFR/f38BPMeOHSv6zP1sz6yxsbF4szGBiIk4pBvZfzH12xuI/VZjgzUNhZmZGa1cuVJtbW2anJzU3r17NTExURx/tXz5cm3YsEHd3d3q6OhQR0eHGhpOvY3g6NGj6uvr0yOPPKIjR47o+PHjJWXNI6jimHkDPb1qztGYZCGpRBUTLGI8l/PZc9D/VwEUn+/5E+eevyPdx3nqOs0HOKRAXSeDt9saY2RZquWnfuTT3/7t36q+vl633nqrxsfHddNNN+nTn/508X1DQ4O+8pWv6D3veY96enq0ePFiveMd79Cf//mf/7Srct4IaT0GiaXZtw9HAIrWpS36SEfNt4Dj39xzZGG8SiqfCs+9WX4GPQA+3x6W22Mx+EiaE0BnzCJ+HuseT+1w3V3PQ4cOaXR0VMeOHVNdXZ02bNigjRs3avHixero6FBTU5NWrFihkZERrV+/XocOHdJTTz2lPXv2FHu+7IlMTEzopZde0gsvvFCchNDW1qbm5ma1t7cXdejv79fExIROnjxZvOE4Zng6+9B0o/vaxy7Z47A31d7eXlC7LseH/3oDs/u0rq5OS5YsKWLF4+Pj6u3tVV9fXxETctuWLFlSHM/U1NSk0dHR4iWf+/fv16FDh/Tss88Wx0d5zxvjdkw3j159BBwChOtK1iACj78n+NDoqTqDMzIGNABiPUjNcx2RQmSfcx5XzVfOUc9/3kcKP0u15COfakA8sTnhvSAj5x8ztHwvabjm5uaCnmG8oSq7z1QNqRfuJ4vB9GgxE9QiSDJpgwqiKkjvuvHQWXuBTFV2uXwm20hLmangTHhYvHhxsSn5Va96lS6//PLi7chOkvCepZdeeqmgxrq6uooXVnZ0dBSg4aOV6JEYiLjVw9Ta5ORkkW6/ePFizczMaHBwsMja9XmNBjvX26dgWHgocF1dnVatWqWWlhZddNFFxd6snTt36rnnntPY2JjWrVunNWvWaP369QUYeA/h4OCgTp48qeHhYe3atUtHjhwp4oCSircrO6VeUvHbYxE9o6r5RsOM2bSM83HsSdPFDEqXSyqdB1U7A5OUI40x1oUMBV8uGecaWQnSopH29Dwl00DacyHP7XyTfMjueSzRk6ja7W86jMLF48CyrT+Dl2kjnj9IT4aUYVxofq5fqe7vaKVKsx4brWymM3OB03omoBCg4jN8rxVj9CytCKte88LkhomJieJopkWLFunAgQM6duxYkcCxbt06tba2auPGjeru7tZFF12kZcuWqa+vr3g55ZEjR0qH/65du1bLly9Xd3e3jh8/rrGxsYJC85FRw8PDBYhNTU0VXhrfUvyKV7yiaJ/HzODQ0tJSvGbEQN3R0aE1a9YUGXKrVq0qYkn2MJ944glNT0/rrW99q9asWVMA88zMqbcbDwwMaHR0VPv37y+Ad//+/RodHdXw8HDh7Xk8/IoU9zG9bHrWnF9OYrBEQOIcj/OSJ7rYuKOh5jlB0IveGY0b3+tYGp/t+2mkxXnINUBGg2wJ62gAZrKOjxDLMr9kj6sGxEqKE9wnLthi5GKRZr2nSM/Q4mMAnPERKxfvt7FCjwvMWVYNDadOY7DSdXICs8AYA6MCiW3kHidb1q63lQSBiaBFypQKMypJl+dyfPoFFQ8TIEx1NTc3a+XKlVq1apVuuOEGrVy5Ul1dXcUJEcPDwxobG9PIyIieffZZHT16VIODgxobG9P09LS6urqKLD4nWtiDcjDfryhxooQ3BLe3txceGcdjfHy8aJvPWly+fHmR6NHX16fR0VFNTk7q+eefV39/v4aGhgpl+0u/9EvavHmzNm7cqN7eXh04cEA/+MEPdPToUQ0PDxcn37sNVBf0dKhsfbQYlbqk0lh6jhJg6FWxfM5txkT9HHrsVSwA14CNM574ws3cjKN6HsXzHQ0+BFALvTm3uSo5pAqE+Te3nJzvkj2u81isxAlOUjkewCwnLwAunCqKg5YnF2yMKZCHjxs6U5o9/DS+BynuPSKNElO8XQ/ezywrt4eH89ITraJ6/AyCrdsWgVGa3ZfDA2l9DNTk5GRx9NOJEye0fPlyrVy5Uq9+9avV2dmppUuXatmyZcX7ygYHBzUyMqL+/v7isF0reMe/3Hf0TL1fyK9k6erq0vDwsEZHR4sT5Alg0ikvemJiolCYk5OTOnbsmJ566qlCWR8/flwpJa1bt654s/N1112n1atXa9++fdq+fXtx4ghPKJ+eni6OeSKl59ebcDwIHNx/WBW34RzidoC49zB6RZ7jMV7peeDrOc/tVVcl+MwXT6Ixx/XCenku8xrOS4Kz7zfwue88N3l6SA36E2dVMnDViERLV5qbkRctO1ulpjy8IOLCIK8en+fPuPh8PWNs3PRphbGQRcrEkWjhsi2+x23wK0Li/phImbLMaLmShmIwnFQR6R+DiD2LsbEx7du3Ty+++KJaW1vV19en9evX6w1veIOWLVtWUIk+TPbYsWOFJzY0NKTh4WFNTEyora2tRJn6FPkTJ04UCswnpjvut3jxYi1evLiIXfkdZYsWLdKJEyc0NDSkqamp4m++8mP58uVaunRpEbNra2vTqlWrlFLSN7/5TX3rW9/S8ePHNTo6WlCr3Nwcx2w+wyMmGkRjy2Nihc3P4qHR9Myt8LkXLVJrBD5SevT4ST9yPlN4fJfL53w2CBJMfT1pbyaJxLlIGjFen2VhyVRhDQgXrlQ+AodCwPJGSytc0oH8n4omlmEqyynckdKomjq0JFlve3sEuEjNkILxfVaaMTONiRwGNisP9hFPQKAHFi19l2/g8rFWVHDOtGN/GchaW1u1bt06dXV1qaurS6973eu0fv16LVmypEiGMf1nMJiamioy9EhlmZpziv3IyIhmZk6llg8NDenEiRNFqnp7e3uRENHR0aGlS5cWtOeSJUuKmFxra2uRdbhkyRLV1Z1KDHn44Yf1+OOP6+tf/7ra2tqKPiQt5jicVI4jkTp23d3fkkpjzLnMeBMNm/g/DTMCpz177+uL1HMVm8Dx5rxx/WIGq2OFnFORpo4eGUHcc47tJ9B53ZGhiMbXhSKZKjxPhZ6SNBfArOx5BmGk+rjIaDnS0/G90tzkD1/j+IC/i+nJkT7hAqfXV+UF8bQBlkUailmNptVII5GqooJgvSIAUzHFjaAGGCvqeEJ4Q0NDkXnndPKmpiYdOXKkyN7r7u5WS0tL8VZke1DemOvklu7u7sKDOHnypJqbm9XZ2Vnsg/IesenpaQ0PDyulVGziHx4eLtL2W1pailijNxo7K3JyclIjIyM6evSoDh8+rG984xt6/vnni2QMby53H8SzKOkVMMmnKmnB8zFmE9Ijd9+TBSC9G4WejecjKeIYPyJNXLWmaHzFeFZsT6Qp/du0L4/5sudHxoLA7HZzkzznVKxblrJk4KpB8WKsAo24EKWydcnPpdmkCFq3Vly+lvSilYZUtmwd/3D9SL9ZiXERs1yWxfu5oOM1FioVBt8JXIyH8HmMN8QkDp8WYUXCuA2B0N4Tn3Py5Ek9/fTT+t///d8iqaKtrU1r1qwpki/sFfs9VO3t7briiiu0aNGioq5LlizRkiVLilfK+JR4j/3U1JSWLVtWbFienp7WkiVLirck+6WMHoeBgQENDQ3pmWee0fPPP6/9+/dr586dRWai2+BMRkml+BsNCxpPkuYYTQQu9yvviTRyVVKEv58vU9Z1IrhybtPTjoZVBE+ClD05gqIBLRqB0UB0vdlvnPec+1XzlH2SZX7JVGENiC0wKyzTbhYvKp9Y4MUcqRIDjNOW6+vrS3uCpLlxBElzQKsqHmD6MSonejNWJKwnqScqGNOLMf4W4x1UAI7l0NplXW0d23NiwgmVhmlCpmhbefJlnC6b79hiuxkTc935va/x/+3t7YXH09LSohUrVuiyyy5TZ2enFi9erLVr1xZU5NKlS4vr7PGNjY0VSSDNzc1qbGzUvn379Nxzz+mFF17Q7t27NTw8rOPHj5e81vloX/cjqVWPbTQESMnGuUSgjTEsglWc86RyY19xvAiaZAfiPdx87fGXyqdxRG/OdSHNXdUXpLPZHlKIrKf3D/J9aCz3QkqJz1TheSpcrFI5mOsFTKrPIBA3NEalb/E1pMl8XZWVyAUsqVIRkVYinUfr02fkcUH7O0klyrCK9mNCRTwdgVa6+yLu46JCpLgMf076iJ4dxW3zc/32BCpvjqH70kBqT8dU5MjIiAYHBzU0NKT29nYtWrRImzdv1po1a7Ry5UrNzMyUgL2hoUHHjx/XwYMHtWvXriLDcM+ePerv79fIyIgGBgZKiROOgdJwoWJ1X0SDxaDn+0mdkQ6jxx3nq5/Fe2jo+PpoKBEY6LH4Os9h19P3uCxmOjJ5xOXFcjn/Odc916oMOc9HGmM2EqpoTXptVeVlmSvZ46oR4QZeWpP+TJo9ENeWrQHByoiWMJVTTMe1UClY6LnZcpXKryKJi52LlgBIr8Nl2CP0s/y5VKYY6+pmEzzclhg8J0XK9vo6e1Y+uYLA6XKc6OCsxnhdHBMDNQP+4+PjpfR6Ur0E7KampsJTsrfGd3TZG/Ter+bm5hL4+2R6e4sEKb5F230aFWv0kN3GuM2iykuN/RwNIRpVFhpWLouHIMf57X5zvX1KiIHUfU4jhwDvz6o8I3qDfmaVoRJpdwKlx2lqavZ1QzGG5UQdU5EERNbvQpLscZ2nEq27+ZIPuBC8iLjQ7XFwQzNpECsAv52X1ml8YSHr5s8iR29FTqCMmVMxtuCymOEXPRX/pnXvuvDZLJvKxdcw6cLf0YOVZl93T2AioJKiIo3E8YoKieBhD8sekN/l5Tq7Xw1Go6Ojpfq5HIOk+4SUqetvWsrPimBP+op9WjW2pFnj0VusEwHD4xvfGuy2ROow9qP7ISb5RBqZ48Vx4dyLaezRIyQVSrYiGmjso5iIEWPKTsqJmYVsJ9dJlvklA1eNCK1VehpSOdBMb4c/XNz83/dHC7vK2mXZVL5VNFiMORAwSPe57ra0DbCk0UgxRsrGCsUg7ZRs1pVKQpqljvgSQCpnA6clekZUnPyx0CMmcESQpOJym501SG+AnmnVuLm+jjFxj5GfzVPYY3tcFvvV9XS9oldGKjHSdfYqvLk2eiV8JsvkM0j/0pCJ4MA+jfPen9EQ4ByPbXXf8LzHuG44Tzg+7FveS+DzddwyENes11MGroUlA1cNCGNT9Cic8iyppEhsMXohkTaL8SBSSo5X+B1Q0UvyT9xr5WdZSVmZmDZjDMX3mMKhkrVyaWtrKymC6enp4uw419v3WhFEYKPCcd9Q2UkqeSUEEgJN9DJj7IcKmzRbNCDs7dKTo+Xv+BZBgkYGqVYrQdfL9TA1bMAwTRk9j0gRcjypVOvqZpMYohfEPreyb25uLrw6Gxv0BCPQ+Dcpv6q4Leej2+AxiIqfdeZ8dN8QGAiiBveqhJ1o6JEZIJDzFAyuGT/n5MmTpfkyOTlZMkIJylkWlgxcNSBeQNysaKF34ckfPR9akpEGiUDov+l1UElabM07fkCLntSKrUxJJTCk4nQ8TlJBl/l+KmHuB4peFJ/p7+ipxeC9QZV0GutlBU5PiZ4PLXoq1JhwQJCJNBqVouk9gj49YQN/3GcUlRyt/KjULW4r6z9fnzJmxGdFYPb8cJ055vQeqoCZit5lM/ZJb9715Ju9I6VYxTr4HmbrxefQWGL/GORI/XG+MVEnep98vuc+wZF9yz7JsrBk4KoBsYdE7pzpzPGtqwwqUyn7+J9oSTIgLs1akvTWIn1kiRSivQPX2YcB08Kldc9yDCaSiqQDqXyiAK1wBt2rFjzpGSZmSCreFkwvwH9zc2m0yqlgLQZXn7weaTg+1wqLR1YZHMbGxoq+todpMeDSm6CXwX6oen0GvRpSZs4qpKfsOjD1n+WxP/gM15PUp/vHAOAtA8xCdB87vhbjswQNt5HxV4KEy4n0N+eb68ex5jyuimnx2fSsPdfpNc0HPDa+CIbcQuJrMnCdXjJw1YDQcrMV7EVthUwqhAot0l6R0iN1Nt+1XJBc0LGO0XL1opbKr3yIXgtBjeBFSz2CCL0IUqCM7VhBxHhVfPsvyyM40pOqUtxsAw+JjWNGLyzSvlVjJqnwOq0UOZ7+PKXyZmFSfqQWqcQ5f6KxEWk4zouYsennxFgmqVa2z22gcTQfOHicYnv8OfvRdbBRwbGIcUR6PzFmSJDjtomUUrFh3Nmnvo7zivWP3qQ/5zri5myPKd+vlmVhycBVA0IaxPScVFbmtGAZ3DUNZ0VARcnyaU1WUVDSXLAwMFgIdPYOvMGZC5IKiXWIFrzbQsVHpck2RlqQwEsFZeXhNlYpY4IIwYvX0xu1x0VwIPjRA2a92I/Rs6DX6/sj2FAR0+hgHWL5pAJJX5EKpBcaacfo3UQKMaaruw2RDvOJHhwL3x/ng70vgiMNHNaBe6VYVpzD3N4QjTH2GcevyqOPBlvVWmD7PJ42nmw0MIkmy+ml/vSXZDnX4gVjwBofHy9Slrlptb6+vsT9S+X9MFzgTrvmaz2oSOjB+B7GkKwE6VFRyXnROvbla2h1UhEyiWJyclLj4+MFBcrnuy1UYvEgXX5PEGLMigDG+pIm8x4uKuYYr+K9VRShP3cqtJ9tqtJKkSniHqeYdEIDgJ6Sx5n0moEqUqmkT52BKalIqmB/OAHGbYpUKQHPda0CEI6H/3bCBQHe7aDH5DGQVDJOLDMzsyecRLqT3jcpXCYTcf4zs5P77tif7AvOY4rnUMy2jTQgaV6fRxk9uSzVkj2uGhBPcFNqVjzzWfVxhz7TikkHSXPTfS30NOy1UWG6XrT66b3Qu7CFyesJrvQM+B2tbNNb8SBTgjEVSASsqHwIPPQiIt3Ja/iyS2685vPY7+wbek1WqNGjM9CwjrF8AjYVIucKAcvKmEAe6Ur2HYGOzyTIMl2cSTXMznRMlRLbRG/R9xKYPdZMWqFSd3+3tLQUY0Z6030ZY2SeVwT6qsQi9sl8sTTO02iMcb3S8HD97PnRC+YczDK/ZI+rBoSWXpXFyb9p+VIhUmGwPFJF0tzTtwkG/J8KlIohJnJEZcNFGi1MKtUIBH4G+6FK8UZlk9LsKR8GUD6bSjx6adEL9cskqaSitT0fpUbKz4knzGLjnqcIHqxf1fMIuhHQGKujBxCTEfxdNCCil2dlz/7mOPI7jofrSgCh0RDpXAqNCBpsBHkqfAI/DZgq4y0aA7yf33PORtqa4B5jlrHufrbH3PWwd5e9rZcn2eOqAWH8govf9IYVVDzSiQvHi5EcumNDVCbO/PLimpmZKTK9qMxodVp8jeMXKaXSAbBRMZFS4UKO9JO9NSvN6K1UWbux7aaMSL/5dRR8Vxn7j8Dv+rnfCfisNz02lkHwNVD4XpfLDcSkV2mlu36+1hSf+5H9QWvec4Vp/tFjZx+SeiQIGMANtPSOfF9KqXS6Pum66Km6jsw89fzgmNnz57zgumBGresYQYsUsceVa8xjNj09XZwew/Fz29gfDQ0NxSHKbqOZAXqQUbiGoofHdPks1ZKBq0aEi4BWXYwhRE+IFqXLIS3I77x4p6dnT4/3Nf7bCpCLnEolUo9Vz6HSoIc4X5YWvavowbkveHgun2WwJiCQOmS2nOtpYKDlTGXFOtEadxkxrkGgcpv5yhT3K4WKlm3y/x6nKi+RzyRAMSMvAg/7lXNHKp8F6M+qQJ51ien6kZ6Myjl6vEy+cJ2YJMH2xmQfj3P0UEkDsj2e06yHDylmnTg2nOs0UNiemN1Ko4J7CHkPf2eZXzJw1YBYSTFYzHR4Kl0uZKYUpzS7L4dB67a2tuIZTPKIVji9s6gcfb/rRtDhAbbk+rnQfSiplYEVhr0KX8/zEq18KVTC/l9S4fW5D1xfP6elpaV4Lj05i58dAZN/U4n5OwM6Tydxf9KLoAK3IdDa2lqiJlknZjFGT5G0X6QO2W+m9eh1+V56SPRemQgSlbDLJf1FpR8pbKkcF4up7PQKWRe3l7FOGgI8czNSiIx7ReDx+Lp+NIRsaPEMR48VvXq+ZLSKfie4R+CkMZe9rdNLBq4aEHpRVRaiNPewW1Ns0bOJyj56MVZScfGQjiINxjr4b3/X3NxcvHuLcRta/+T8o2KzVMUzqDzdRoIoyyKoNjU1zXl/E18OybpECpLKmoqRdFIcpypwdR04XpGeZGyPxkAVXUwPIHrm9Dr4DCbsxDiM5wXpZ39Ho8TPiFsOCAxV7SLgWRjb873RCOJYs+8NtBTOBfZD9Jz5BgWvqwhq7jumtxOAWCbnQVwb9Ph4L8uN92SplgxcNSBUPlxwXHj0RLwYInceLc+pqaki5uDU4Oh5zKd8YnCbYGMF09TUpPHx8RKYxsA3AZP0kj+L/UAKjqBNZRED3ox30FKn8p9v/5AVu/+uilkw1hLpXLeZ1BgVMD1k9o3Hxe2IXoD7y8+lYqfhQa+JIOgxs/dN5U2vM8ac6AG57vSASItRScfxrPISIz3L+6u8bv52G9g/bn+cm9FTJZDFec62R8PF4utJUdpIopHFPo7UKeuc5fSSgasGhJaxVAYnAw2zwqyg+S4gHsFDhcQT0iUV+1d8phu9GR64SjpJqk4L96Gi/lwqZy3yXgbmTUsR7LjpmhSSP6uixSyRxuPG1biPLdJSfA69EQsVGeOH9EaoLE1t+YBfl2sQ4fWmDN1Geq6+zmVyrLwHjUDt/iOImy7lVoV4vBhBzmnpptXYVgMPr686F5AGB/ffMfGlvr5eLS0txV4vbmTmMVQcA8/byAb4f1PRFibpkAb254sWLdLMzEzpgN8IjpzrZhY4b0wlRoPMx3mx/+hh0qjKUi0ZuGpAaOVSUTImEakLLiwrOp4eToUizcYKogfnxeTMQn5GD4pKwfWghxG9I9JB9LZcl+gdML5ioeXKvnF9YvYh6xoVChWOFYfLJJj4WX6+28d+cTvZ/y4zAitjOjHVXlJxvqTLjMqf/cs+tSfkcWNf03NkfaMXyHFlxiq9U3v9nI+M2XDcCeCcexwz/08qlXXntgLWVSpncsaYoq+NxofnlstggpKF2a/xORznOJ84p+rqZrdBuC70suPcy7KwZOCqEbGytbKIqcbxhAwqflqEtNalUwvI6e9SeUOuVKbdvBhteZM6YkKFpJK1GQ8h5WGnrk+kl3yqh6+hB0hlaMVsmsmKk95DPL3bfeWymI5OpWUL34H3GGDn3/P1GxWkNzAz9Z+bZ10Xern2kNgux2IaGxuLMw2rANjXxQQdKnZSW1T68TUgbgO9YCroeJYgU8qj58U57TlIDzKCYIzx+V7GeWmM+eQL1nlsbEx1dXVFog6Thriu3G7G9nyYM9PhCYh+RgQcGlYEfma2msWYL0aWpVoycNWQeGHGfT7Ruo/CBUFvyvdwzw6tcSukuEeGFCE9QalsAft/g1tUvtEjdHusTKt+6DEZsGKmZGyzVAZS1rVKmbtdvma+uFVsI5/rz+Mp776GHgjbRi+PEj0kzgd+FhUf41GeM/SmSD3yGZ4nBAr/pnfC+cLxd3ZfFX3LuWOwcB95TE1/s7+i18YYZIwVRmBx2dFrjUYIaWuOP/sgerxxXDle0ZChoRO9T9OwWU4vGbhqQOLC9WfR8q2iKmKSBlPirbStOHiUD6k2qbz4GY+KStsxCT/HVirP/aNXQeXp51Dx1NXVlaxVaVY52nIlFWgPhaDofmCfuBzG2qKioZLx9THpIQIVy7UilGZf0kmFK5UPSrbSdh/4+0grWdy38yVDEMDo8VLBWtwPHB/SVvS0YlKDPQfHq6TZmCjnLz2z6FXYO/Rvzz+OS9yOQNBy+7k/jYaGnxE36fvzKm/J1zExw54evXRud7Bwuwr7j2uU/UJDrgoUs5QlA1eNCJWJNGv9ObBsYPBCNpXE9xaRForg5tR1KnkCAalBxsmqMsG4n4VHLLGMqoVKZUnqiFapr6PVbyUyNTWllpaWUh/E2BLr4/vtdfrvmKAQDQO3pbGxseg3HtnjPvD48GWbVMr0IKJS5gZwC4HUZXjcU0qlzD5SfdHTcHJInF9S+fUhHKcYcyQFW1dXV9qH53sjfei2xbbTgzW1GMfc/WZqje2zTE9PFzQ250r0hGj0sV1+fkqpSJ5xAgn7hGuCiSpsn9ee345QlRHa0DD7jjz3ZzQUs1RLBq4aEFrpVVSgVA5iS2VvgpY2y2C5jBGQhqQ3ZW+ARyRRKURK0QBD5UL6MXoAMUGD2YIEObcr0i/SLP1UpSxi291PjDGwDhYrL1K0URFWZbrxftfb3mqVVxDpQypIepX05NwuKl/2Z6QN3f8ENc4RgkqMLbH/6eEYxPk9DYoqqq5qTKOH7LoYtNwGXkvPxuNAQ4DfuQ7+fL4YaPSIOIfiXGLZ9NzcX56H9Lar5gq/zzGu00sGrhoQT+y4/8TfRaDh4owLLS4SehzS7Hl55NpJE8Uz5SIN58XORcq4kO9xuREwqBAIplI50cFgQqqS1BYVJ++N9eAepljfWFcChsti37Dc2OeMNTn2FT0PggdjcayH/3dZBF1a7dHIiX1uBU8P3GWTwqInLc2+6JOeGOcgE3HIDvC5EaCZieixMyhGr5lAEmONFhsZVXRknEeeNyzT13LM2Df+ngaby+FapefN7zjecc6wXlnmlwxcNSB1dXVF3IiLhPudrDhMS0nlN8HGmA1pL8YJrFi5kPw80lEMYNMLITXp/WDRU4h7bXgdaTAudidQOEMtWr3uF8ZVrHSoeJlR6M9M99BjdB85c49eKZWtLfcIAtG4oKdK2sx1jcDEPvXYxCQSxxGtqJ1h6HkyNjZWAgsqZd7D5xMI3Lf0oGhgVLXf4xATHPw7prJH78+fud8YP4pGB/uMMSrTdFwf8XrPpTgGBHuOF+/3vODc5NziM1i212Y08txWtyMD1+klA1cNCD2MONEpVRa2FwdpxGglk7KiByLNja3R8o20B61sAiCVL6110jS0nl0m35LLLDMC8Xx7XqICoeVsRUxw9POpvGgVW2HzRAu3oaWlpQAK9k0cB8YwaFS4TgQEtpGej8tkPf235wipWnpPVbGhqLC5Z43K1gk8zCSsOijWbeF8pKca52+ktwmwlujJxz7guLmeBGfGFyMlWdW/9Pg4l1wW10D0ZDkvaYBEb5Gf+d4qgM1SLRm4akA8mb2L38qpamNspH5IPVExWglYmTFpgIvHi4yHkDJTikoqWsKTk5MF+Ph6af50flKRrguVYlUCAZM4qEyjdxNTqHlCPMHEB+7Ss/R3MRbk546NjRVZmUwUcVsJTu6rGHP0uDBuSGVIS50g63nhe5zUEcuIqfBMCOD1njPuq5jVSA+OwE9QpEJnHIn1r0qAsWFjL9B1JNAaPMkYcI3QY+RcdL09L5qamoqx9gkv0UMk4HOucnxZf+4dYx+yTK4VzqXonWVZWDJw1YCQluHE5mSPoEPFEWmO6GlImqNM+GzSYhYrAmbpMX7hzwgWLs8AJc1mnJFOsxBM4zVWdNzDQ8UbaUYqNStjb/CluGx6Fu5jArD71cqH8ZmZmdljiiI1WuUJcmzifjdSgUxW4fgYwKuoRxoxUUGSCqzyDNxnBuTo4dBrZPsIHjHrjp4g+8DPd1q9x4bPY/0Z44veW/RiecwVjQ8CCJM7OMdJXcYkC863OAcJXr7f3jrXL41PHwTAMctSLRm4akAinUMrU5r7huS4iKKy8r1W0NHqdcoxLd6oTCnRS4uKn16N6+brqAQIBATiqKwYR3KbeDAwqRfW3YDNOkWgZnzL9aK3EkHI10UAdH8wvuQ+JaDFxATpFGCbduS4xH6ois8woSCeUEKjhpvOqSyjxR/7VJqlOSkRUK3wWQ/WkXVYyKgh5erxcH2joWKQiIYW+49zwzFB96mFIBv7IvYLn8E56HnD9cP+ne/tDmRGsswvdakGe2hoaEidnZ3nuhpnVUzTeFLbEicNSEXFk6m9UOihONBP5UEvgR5OXMhVlIjrRa8wWpbe08SMQFJNVGBuF+Mo3KzrehkQYlwkxjKoSNgu02G0/BmrmJmZKfYGmUJ0//oapt3TSIj0HJUc2+H2Ow7je1i2PR8qU9aZbaNSpaHg59Fw4PixPuyDqamp4vgmj6H7jePCjFQCC8eYRo7LZCwp1iXSnpyHfJeZvX+X7bJ4PiCv4UHS7JuquePPvbcrzlN6bV5fzL71PW1tbZqamprzXjnXjQbWhSSDg4Pq6Og4o3uyx1UjEhUdPZ8qj8rfebHxBOwISFykpMa838o0RhXVRWXEz6PVGJUhFz8VOuNWBFH3AS1uA3BDQ0MRp4ieha+NnhK9mRgXYdvZX66DwYKfReue4xLjVlVUUDRAbGiQ2opbFCQVBgjby76VypStATWCduzz+cYilmvjowpgLH5+3J7ATEy+B4sAzLHk+NmLoRFkoJJUzFvWm3OMZdGTit4/jQSOXxUt67Hm2uQ2AR5txXVKw9H1zrKwZOCqAfGC9MGgktTW1lYoZFr8/m1Le2JioghE+6BRBthJE/EV9ymlIl3Y5VgIbowfRa9Fmnu4LJUYX7XCBR0tz6ampjlvnzXtJqmU1mwlxgSCGB/0M0nXkEbyc0nvuY4xwcJ94TYyfTvScAYK9iMBxc9xggI9yZhMYQ+N/UYQYP35LJdlICQAcL4xriSpdCit6T+2y33BzFeWTW/RIMBEibjNI8bFokfo+el+oPHgcfCYEXwJFOw3e2Gu//j4+Jz0fx70TIrRz4+MQwS+1tZWTU1NFeVwzH3CRmQOslRLBq4akGhxRk+GvDoXpRdz9Lakcup6TEiQykcXeaFGhcxFHyk2P5P3mNJynWMMpirATW/ICil6IgRhApXBxBIVoP8nwBC0CHLuT/cVzx4kxUVvjIkjpMhYJ1rw9Aak2WQK7nWSNIdm5biz3vS8IoXG53N82Na6urrCYKAC50kgBPw4lgS+SHFGj8d70twWghZjYlT4kZKM1CgP6yU7EY2YuG7cfhoyrEdcf7GenGMePxtABCfew3WY5fSSgatGhLSVFygtdn/HxWgw4R4cqZzcQa8r0mgELC5KWsS2xEkBEqT8vLjfiwAcaZcY/CcFxpiA6x5T/WM8kIopxi98vctjAob7PWYYus7Ro+N3VcJy2WdxTKh86fFFBc02xLgVvRs/y/d4XpDWYizR5TJ1PtLKsa1+fqSvaaTQm/Y98VmeWxbGMGloRGPHz/HGY48P6xa9PBp1frbrTAChZ8Q+5qke/tx14TwjM8AN9PScuY6y13V6ycBVI2IPgoFmLgAqFl8bY0/k26XZOAAVSqT+6FXQyyG1w98ppeIAV77DSirTMvZaXA/v97LSIX3E/TdUBvTg+BxmBhLICDbS7IG7MWnD4uc4+4yGAmMR3HJAJWmPhfub+B3jHtF7cp/SOjdIMuszAhjLlmaPvvJnvJdeCyk0K3iClFPBDWLuM256dn/F003Yds5neqjci+YxIa1MI8XlOn5LGpveFRNbTOnxfvaTE1AkaWxsrAA29mmMDdJb5bU83JqGWPS4XSY/y/GtlyfVpmGWnzuJCpXeUbQIvUi56CKFwWA6vRG+Jt1K04s1UiHRAzCgOf4RlZCkOfX0QqfC5XOp8CK4kEazIma7Yv/REyEt6Gf5OvYt748enJ/DNHcLFS89S8cbORbRo2GdqjImST9Fj5vzI46T/2aWIwGeRgBBrApw6VW6HIM5x4NAHulEGiQcu/r6+gKU3HaCBmNZsc0x5kiqj3OHjEB9/ezrZGiQxX6j8UMPl4YRY4ekf2kc0bu2h9nU1KTm5ubS+sgyv2SPq4aE+5C8kKJyjIqSSo/feTHF2Bfps7j/hrShF7DP8eOCjN4Yy6+KV9ASJQBGyi3GM6q8Pf5QWVFZWKFWHTcVvRzSUrS6fW1VnMn96z6nMmI8jfWp6n+Ou4VGBNvnzE96T7HP6AX43rgtwvdESjAaO/ZsIiUWaUv/jtsxYvt5PZ9HT8Z1Yx1ZV1KOpFDt+bssttNjFEGF5VYZAjEJiEYN6xHnJY0ePju2P8vCkvdx1Yhw/xOpGi5eUkfSbDKBP6dV2dTUVFBHVIwNDQ1zKBguSD/baej27PiCyrh4eVJF9P78OY/yYZaW2+Hr4/FUMbOQJ8bTopbmemwR2AlE/p8p6JFujGDF7DYrdrbZZUSAdb9LszSnqaoYi/J4kKZk8ofbGRU9lWaMtfn5pGp5Lb2dCACeE4yfcg4Q5Jm04s9M1bmOVPB+Lp8f6be6ulPZejGOyvlnmnO++rBdHjOuo+jN0QtO/5+y5FyJa5Lj4mcxXZ51amg4tbXjQpK8j+s8FnokkRqiBenNoebzuTiZ3uv7o1UZ42JVHh2fx78jpUVl4e+9yJmZRq+BYBA9MX/Ov2klNzQ0FPEWgjHT8eNZfgS1SH+5bwm+3s9mJUVANpgTwF0GlRnH033Btlf1IcuRZjML2Q4rXbafqfEui3QwlTTni70Kgj29EbfXIML4EfswPtNCupJ9HA0bgjATZVy/uC+KnlKVARO9Id7Da9wf7H/Wn2vC/8fkp9hffBYNSX/uDdlZTi8ZuGpESBPGEyS8aOJeKytVKjsrSFKF9qBMJZF3J21IiooK25lclki7GFBctttDBcVz2vx8l2Evy2Uzc8t9QPqPSo9A5/pTqbNPXVcqlyhOPGBChhUTAYCnIzBZxIo01p0gRGs+gjfB0ONCI4D7sThuFtbZvzkXWltbi+OmxsfHS3Sa20Ivl+XSI6yvry8OsZ2ZmSm9lyq+841z2MaX6xapx0jJ1dfXlzafu640luL2gTiXY1ahr41eE71tespuX0tLS+Hd8RSPaHByvfLMS+7TzLKwZOCqIWF8hIvU4sVsxcjT2akcuBeqSjlTaZOioWVMiXG05ubmkkdCas3X0LOygonKoCoFmQF/Kyx/74w5/29FYQ/I9SeA+G8/M56WTiBh3d03vt5t4NjQWvfnkSqiYREVJWk4gnCkHql0afVbgboPquIybps339IDr/KgY/t9HcHWbWSmIMHZ41FFL9LDY9IIAYs0X9U8Ibiwvq6zf9Pr82ecJ/R+qmhGUthuc5wX9PZoFHI+0IDI8vIkA1eNCJU9FZUnPhcSrcuYGh4Xo8uOtCHjTHw5pYWLj3SQlUj0CKMyYDyJHgDfmRSBjPVmf0QqjjEYgvN8gE9wppfK57sv6fnQw6BHwvEi6DA920KPhjEjAmK8h96Gy6AXYgOHQMfMR447x9CeF71bUphsbxxjb4GgEUIQ47hEWo30HJ/Bk01Y59jX0WOL1xGM2G5+xnXB+rBN0XhwHXiWpTT7IksacWQ9mDASDc8qgyHLXMnAVSPChW/rOMZMbLVFishgEF9NQa6fe6ZIa9AKlVRKVohWLfc2xcVNpUIFHa1ze060vknVuL1WGAYEAmgEMPePYyJWGNzD4/ryzDyCgetNGjUaAaSdfK3bwTRx15+AHvvGfRgzIFknKnRf7zlgBcmx4IsuJamlpaX0yhImT0TvmPWPgMG6sN9iUgmVdMw85Vj7eXFvFw93jkkP/u1+Z6zXR4aZKncZnsuRyYjzmnSfr+e8sKfv9+WZ7nTb3Mf0yl2WQY3GU5bTSwauGhLy7JFKMs9eRXFwgyuBLipXlk+godKyMoheDK3/6OnQqnU5VYBDD4ogG+kxg2s8XJVKk8rMYEPK0+X4GlJ4VdQgFT771P9bmBnJ72LSRvSAZ2ZmSm989rN42K6vY6YoPU9a/BG02B4L6Sl6dEy6YD2c3BLLttESvXaWSzCMxpbrRQOJhoTryes9/tJsRinnjDNnfS2fSSqSRh6NCtfd8z32cWQrOPcYS3Y949saOO+4LjkOWeaXDFw1Ilz0pC6cuNDS0lLKIJRmkyKc8k4eXpo9kUI6tWBM93ghc9FKs5alg+4xo8t/2+K0R+R6ukyn+9K6pwdIBWKQY/qz2840Z2n2bLpI5zEGFb2b6MVFyzrWw/3D7D1m3/lwXI6X20/qzfRaBOMYY5vvKKAYB/O1VpBOhmAch6/BMSD4eyZP8KQK7nWL3h+9pJiKHhNSLBGQImXnPmf2oPtscnJSixYtknTqdAvOd15n4ZxxvePrRuJ+Qn5HBsN155hyntHbM4ixTzjvOS4E4zjGWeaXDFw1ItELojKidUuLnUoneja0cH0PrXNa0KbZyP2T66el7LpR+UXQIB0Uv5fKZ8u5XVRkbhOvicf5uK9ibI3lM/if0mwsj14jwcz0JOktxn5YNxoQvDZa2GyH+8MAzPGKHh+9UZ63Z6OB7TCweD6Ytorzy+Uy0YPZnfwd6S2Pq1Tem1QVh+LzKLFP3Ofs5yqq0tdXHXPGecc+jAYc54MB2+0nOHmuRcBhn7gvmIEZPXB6emQbDNBZFpbsl9aIEEScfk5l4YXGwDqtZ0uknahM4vFJXExUdEyfNi1VBXJ+7QapmEj/NTc3F0fd+HmOFVDBM/EjejO+189pbm4uWfSkZCI9ZkXv+6nE6PlEipXi8u1luq60xGNKN/uRVj6PcnIdq5RtpEXp3bjdBqHoKZDqi15LBO2qOegYqz+LtLGFwMY4Er0RGhaeD54/jhOx/0kTs//ZRtaHXozXA7NiaWyw3zhOHMdI7/l/z2F/zvXieeV1VUUxx/pkWViyx1Uj4gkdD0/lO7a4wEnN0TvjXq2qOJSpL77pV5rdv+T9XvMdeSOVYx9UqC7Th9bSO/JvbkKlwrGCb2lpKagwX19fX1+8z8hKkaeMsN7sH7ebtJr7gLEIAl081YPeq6+R5h5fFMti33icxsfHC8VMStEKPt7r/rQB4XHhCR5sNz1d9zkTB9wHVJ6k3wzwpi9dr0gf00PlPKjyfOnFNTSUXwgasxilUxQh57XLmZmZKdG0/oyep9eP+8if21OjV+Sxdt9OT08X85YGGA00euJVXjXZBnrU9uK5nSPLwpKBq0aEViat3Ziqbaop7jOhxyCVaRE+w0rDiy8qCH4vzQ0w02KlsiawMgZHJRRPIPe1BLgqyoV1oZdAipTBfdJYVESREmIbqpId+D2VrQHB1xtEqtLJreSt3EizWSlyozS9M1/jZ7oN9Exjewh0nBPOvPP8qqubPZki0rT09FxXxkrjtTYwCIqktG0E+QWaBHX2F71MxkQZn+PGX86lOC/i3Ha/REbA18e5FOclx5bjGtcmhRQrxz/L6SVThTUktmi58LyorYicwRQVi++NFKA0dx9XzOjjd9FyZln0PkjdePH6/yoA5EsfCYYsgzSYpYp2Y0q+/44nlzOg73LoJcQEC7aXv0kDSrNxoUiFuZwIfAzmc/z8PceRp+iz3xmzo5gao1Kkpxk9xwgUVZ4DaTaOI9vh7zh+rCupRn5PGo0xNXpGbheNIMYOafSQyjbwx7dGu18MnMwIjFQxszW5tjg2sf/prfu4MJ7S4nkXKf0sC0v2uGpIorfgRWGL3F4LlYvpE1NCpLtcDoPQ09PTamtrK74ziPEQXVJ6VfGNqLSoCHk6AzfZek+R991UPdOKgArF5XFDJ+kwekFWNgzgu+32bAi8kcpk22Lig5UnwZLP8zhFQyB6oaSw+Nv9wbr4Hp7FGE81YfYjPZWJiYkS1Wivhf0VvYHokfp6zk/Xi/umSNs689HxQGn26CjHNg1Srgsp7ebm5tJYk0ZsamrS2NhY6SBqe3But+tCT5JZi2Q2Uprd9sDP6FFFGtmf0/Okt864sueBU/djYkmW+SUDVw0JFR8XNi1PZvNZKXvjafR8LAQXaZauIDVjBWjFRYUWPQu+j8hlcOFz8y4Bk1QMqZlIsZCeqfKACFxshyVSQNHK5/OoYNh2x6Mi3ecYoesZgYTeFttPpUbP1X1gq9z3OXGBB/Sy39weK1ADPIGvivqjd0uQYj+wv2i8RA+NlCGVPMfa88QUcBw7XkMDhM9xH9KzIuVKapRzmu1k9iDHyvWxJ+ytJXwmDRnXmc+IdGocA26nyPLy5Iyowo9//OOlhVVXV6fNmzcX34+NjWnbtm1avny52tvbdeutt6qvr69UxsGDB3XLLbdo0aJFWrVqlT70oQ/NWdxZ5go9lLq6usI6ZfIEwcrKtb6+Xm1tbcUCohKPdJ0t3fHx8ZJiJiC6rMbGRi1atEgtLS2SyvvLImBYefp7HgxLisnzwErMwXFbo1Z4fiULwSL2lYGN2Za2qq14WltbC6VJhVYFINKsgpyamipoH2YF1tXVldLl3S8si/RVBFtmTrLfbIhQgXssXR97Fm6nlbj7mZ6G+4XeQFTYNEw8lu5rjxnH1zRbNGhY7tTUVKnPPcYxAcQesDfUz8zMFIARkz9mZmaKZBEyBAQmn14f+3RycrIUQ+Q6c5ul2QOgaSDwtBXPDWblem67P/hWAvYhT7VpbGwsvNAsC8sZe1xXXnmlvvnNb84WAK76D//wD/XVr35VX/ziF9XZ2an3ve99+s3f/E19//vfl3RqYt1yyy3q7u7WD37wAx0+fFi/8zu/o6amJv3lX/7lT6E556/QY7LS8gJmDMIK0gvI4CWVM+CiZR6VI+koKwkrW3oUkkpUG6+nBUklR7rMSsReGJ/tZ0TPhhtLo7fgZ0UKlBYxvRh6NW4vy6kCNFrupKyixc7+o5dIw8FAz/vosbgepHZJa7kM03IpzW5sdtnsCyvmqmfSc2LdOf/8uT/zvPH3bE/07AxYcfyc5cdjkghOjH35u8gAMNZID8jPjl4ex9Lg5jdTGwhdng0tG4mm3emxck7wM4N6NHAM3PPRslkWljMGrsbGRnV3d8/5fHBwUP/+7/+uz33uc3rzm98sSbrrrrt0+eWX66GHHtINN9ygb3zjG3r66af1zW9+U6tXr9arX/1q/cVf/IU+/OEP6+Mf/3i2NhYQKnUqa1uH9kCk8ubOeNyTgcllRsVUZWV7kceUYS/4qDBIifDamKhAZcR6EIB9b4y1uJ30OukJUDmx3BgHc9nuI2/ejSxABB8rShoDBtkIpLEc18cKl23x3/6fY2XPkvSU2x49w3itlSXB3vOD40Gwch9J5TMFI7iznZxfLMPXmHYjEPq+aIgROPzc2K+cV7yfBhi9pEhzzkcns+95jic9JI6l5x7bzXIjNcmxIahmeXlyxlmFzz77rNauXatLLrlEt99+uw4ePChJeuyxxzQ5OamtW7cW127evFkbNmzQ9u3bJUnbt2/X1VdfrdWrVxfX3HTTTRoaGtJTTz017zPHx8c1NDRU+rkQxcqK6c9UQASfiYmJgj6SZhUIlbsXJxUCFQoVlxWHrU/TL9PT00Vw3Qqf794ipRJpSj6LlicztGyR+xorEyslUzj+8fVRKTGDK6U0J4nFis9JC1Q20mzqPgGBiodKzL/p1bke9fWz2WW+14ores8eV7eLlKjr5+/tmTQ2NurkyZMFzWrPzGPh/+lFMIuRtC1Pj3Af0QvlIcUun8+ZmpoqJVxwrD1HOeam1GhIcBw8jqYTPW+Z2OJ6so84twhg7lPfNz4+rrGxsaJ/SCH7Z3JyspTwwXEmuHr+mcZ1W31/SqcSipglzISrLAvLGQHXli1b9NnPflb33nuvPvOZz2jfvn1605vepOHhYfX29qq5uVldXV2le1avXq3e3l5JUm9vbwm0/L2/m0/uvPNOdXZ2Fj/r168/k2qfNxK9IlpzFi8aae5r4qMXQyXJBcqyqHypnKPHEb04ehTRm4h1jvSIFRvpsUjt8McKKdJ4VZ5AVGox/sY6RTqQ/VcF/hwnSkz+YExHmqWieA3HmArN/9MDjJ4t5wCBNF7Dz093fbwuehfxh0AVPWfOB4IZASbOH5dBUPT9BHfOeX4Wx66q3v6M1/M638c5w/LZT1Vrjv0V+znLmckZUYU333xz8fc111yjLVu2aOPGjfrCF75QpFD/LOSjH/2oPvjBDxb/Dw0NXbDgFRWvVE5D9v9UkKTeWA4XEBc1y4nZWLT0WRdmfMU4jnn+qJQWUqL0MGIcSpp7IC7vj/EMf2aqJ1I8sV8jsFYBOusUreRoLFhinIoGhj8nVSdpDg0by6LxEfuD4+xxoeFg+pD1jgo7KmM/y4ARn1NlTLG9TJ7wNbH/YhlsU2QAWD6/n28uVj3T5ZMpiGPMPmdfuNxYz0iDR6+TVHac21lOL/+nDchdXV269NJLtXfvXnV3d2tiYkIDAwOla/r6+oqYWHd395wsQ/9fFTeztLS0qKOjo/RzocpPOsF5X5UyqlK0UvVhqLGcCIq+z79NvVCJRAue981nCVd9Pl99+Fmsy0LPjptgWW4Eyeg1LGQcELRddvQcoyUer2G59DQNBjFOs9D4VH1XpYDpAc4HyAsZRFL5dBNp7rFSVR4d+43308Bw+6MsNKd8b3xWBBXWu2p8q8pcaE7yuQtJBrCXJ/8n4BoZGdFzzz2nNWvW6Prrr1dTU5Puv//+4vs9e/bo4MGD6unpkST19PRo165d6u/vL66577771NHRoSuuuOL/UpULSiLYWBjDitfG66PSnO/zqAyryn25n5+unCpKJSobWrKneyYVPAHD372c+3lN9BKrQHg+EI/3s1xb5FXKkBSmFWxU4vF3Vf9UGSoRxONPBJ/YpuilxjlURaHOV0fWrar8qnbON6dO913V91VzPl5DephjU2WEkPqs6nvSotE4yPIyJJ2B3HHHHenb3/522rdvX/r+97+ftm7dmlasWJH6+/tTSim9+93vThs2bEgPPPBAevTRR1NPT0/q6ekp7p+amkpXXXVVuvHGG9OOHTvSvffem1auXJk++tGPnkk10uDgYJKUf/JP/sk/+afGfwYHB89I/6d0yhp42XLbbbelNWvWpObm5rRu3bp02223pb179xbfnzx5Mr33ve9NS5cuTYsWLUpve9vb0uHDh0tl7N+/P918882pra0trVixIt1xxx1pcnLyjCqdgSv/5J/8k3/Oj5+fBLjqUqo933RoaEidnZ3nuhpZsmTJkuX/KIODg2ect1CTp8PXINZmyZIlS5YK+Un0eU0C19GjR891FbJkyZIly09BhoeHz/iemjwdftmyZZJOHdibKcNq8V63Q4cOXdDbB+aT3D8LS+6fhSX3z8LycvonpaTh4WGtXbv2jMuvSeByim1nZ2eeNKeRC33f2+kk98/CkvtnYcn9s7Ccrn9+UsejJqnCLFmyZMly4UoGrixZsmTJUlNSk8DV0tKij33sY8VLDLPMldxHC0vun4Ul98/CkvtnYflZ909N7uPKkiVLliwXrtSkx5UlS5YsWS5cycCVJUuWLFlqSjJwZcmSJUuWmpIMXFmyZMmSpaakJoHrn//5n3XxxRertbVVW7Zs0cMPP3yuq3RW5Dvf+Y7e+ta3au3ataqrq9OXv/zl0vcpJf3Zn/2Z1qxZo7a2Nm3dulXPPvts6Zpjx47p9ttvV0dHh7q6uvSud71LIyMjZ7EVPzu588479brXvU5LlizRqlWr9Bu/8Rvas2dP6ZqxsTFt27ZNy5cvV3t7u2699dY5Lzc9ePCgbrnlFi1atEirVq3Shz70odLbfmtVPvOZz+iaa64pNoX29PTonnvuKb6/kPumSj71qU+prq5OH/jAB4rPLuQ++vjHPz7nnW2bN28uvj+rfXPG58mfY7n77rtTc3Nz+o//+I/01FNPpd/7vd9LXV1dqa+v71xX7WcuX/va19If//Efp//6r/9KktKXvvSl0vef+tSnUmdnZ/ryl7+cfvSjH6Vf+7VfS5s2bUonT54srvnlX/7ldO2116aHHnooffe7302vfOUr09vf/vaz3JKfjdx0003prrvuSk8++WTasWNH+pVf+ZW0YcOGNDIyUlzz7ne/O61fvz7df//96dFHH0033HBDesMb3lB873fGbd26NT3xxBPpa1/7WlqxYsUZvzPu51H+53/+J331q19NP/7xj9OePXvSH/3RH6Wmpqb05JNPppQu7L6J8vDDD6eLL744XXPNNen9739/8fmF3Ecf+9jH0pVXXpkOHz5c/Lz00kvF92ezb2oOuF7/+tenbdu2Ff9PT0+ntWvXpjvvvPMc1ursSwSumZmZ1N3dnf76r/+6+GxgYCC1tLSkz3/+8ymllJ5++ukkKT3yyCPFNffcc0+qq6tLL7zwwlmr+9mS/v7+JCk9+OCDKaVT/dHU1JS++MUvFtc888wzSVLavn17SumUcVBfX596e3uLaz7zmc+kjo6OND4+fnYbcBZk6dKl6d/+7d9y30CGh4fTq171qnTfffelX/zFXyyA60Lvo4997GPp2muvrfzubPdNTVGFExMTeuyxx7R169bis/r6em3dulXbt28/hzU797Jv3z719vaW+qazs1Nbtmwp+mb79u3q6urSa1/72uKarVu3qr6+Xj/84Q/Pep1/1jI4OChp9lDmxx57TJOTk6U+2rx5szZs2FDqo6uvvlqrV68urrnppps0NDSkp5566izW/mcr09PTuvvuuzU6Oqqenp7cN5Bt27bplltuKfWFlOePJD377LNau3atLrnkEt1+++06ePCgpLPfNzV1yO6RI0c0PT1dargkrV69Wrt37z5Htfr5kN7eXkmq7Bt/19vbq1WrVpW+b2xs1LJly4przheZmZnRBz7wAb3xjW/UVVddJelU+5ubm9XV1VW6NvZRVR/6u1qXXbt2qaenR2NjY2pvb9eXvvQlXXHFFdqxY8cF3zeSdPfdd+vxxx/XI488Mue7C33+bNmyRZ/97Gd12WWX6fDhw/rEJz6hN73pTXryySfPet/UFHBlyfJyZdu2bXryySf1ve9971xX5edKLrvsMu3YsUODg4P6z//8T73jHe/Qgw8+eK6r9XMhhw4d0vvf/37dd999am1tPdfV+bmTm2++ufj7mmuu0ZYtW7Rx40Z94QtfUFtb21mtS01RhStWrFBDQ8OcTJW+vj51d3efo1r9fIjbv1DfdHd3q7+/v/T91NSUjh07dl713/ve9z595Stf0be+9S1ddNFFxefd3d2amJjQwMBA6frYR1V96O9qXZqbm/XKV75S119/ve68805de+21+vu///vcNzpFd/X39+u6665TY2OjGhsb9eCDD+of/uEf1NjYqNWrV1/wfUTp6urSpZdeqr179571+VNTwNXc3Kzrr79e999/f/HZzMyM7r//fvX09JzDmp172bRpk7q7u0t9MzQ0pB/+8IdF3/T09GhgYECPPfZYcc0DDzygmZkZbdmy5azX+actKSW9733v05e+9CU98MAD2rRpU+n766+/Xk1NTaU+2rNnjw4ePFjqo127dpUA/r777lNHR4euuOKKs9OQsygzMzMaHx/PfSPpLW95i3bt2qUdO3YUP6997Wt1++23F39f6H1EGRkZ0XPPPac1a9ac/flzxqkl51juvvvu1NLSkj772c+mp59+Ov3+7/9+6urqKmWqnK8yPDycnnjiifTEE08kSelv/uZv0hNPPJEOHDiQUjqVDt/V1ZX++7//O+3cuTP9+q//emU6/Gte85r0wx/+MH3ve99Lr3rVq86bdPj3vOc9qbOzM337298upeyeOHGiuObd73532rBhQ3rggQfSo48+mnp6elJPT0/xvVN2b7zxxrRjx4507733ppUrV54X6cwf+chH0oMPPpj27duXdu7cmT7ykY+kurq69I1vfCOldGH3zXzCrMKULuw+uuOOO9K3v/3ttG/fvvT9738/bd26Na1YsSL19/enlM5u39QccKWU0j/+4z+mDRs2pObm5vT6178+PfTQQ+e6SmdFvvWtbyVJc37e8Y53pJROpcT/6Z/+aVq9enVqaWlJb3nLW9KePXtKZRw9ejS9/e1vT+3t7amjoyO9853vTMPDw+egNT99qeobSemuu+4qrjl58mR673vfm5YuXZoWLVqU3va2t6XDhw+Xytm/f3+6+eabU1tbW1qxYkW644470uTk5FluzU9ffvd3fzdt3LgxNTc3p5UrV6a3vOUtBWildGH3zXwSgetC7qPbbrstrVmzJjU3N6d169al2267Le3du7f4/mz2TX6tSZYsWbJkqSmpqRhXlixZsmTJkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS01JBq4sWbJkyVJTkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS01JBq4sWbJkyVJTkoErS5YsWbLUlGTgypIlS5YsNSUZuLJkyZIlS03J/wNAyDA+WtEpmwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYzc530fjr9mZnfuc+/74HJ5k6JE0hIlW5Id2bKdOHYcw3GapI4bNGhgB00MtImLNG2a9msgKJI0jZO0QJA0RYwatePEVxQflCzLpkVJFCkeS3LJ5XLve+e+do7fH/t7Pfuah0PZclxbG3/ewGJ3Zz7Hc76P1/t4XPV6vQ6HHHLIIYcc2iXk/mE3wCGHHHLIIYdeCzmCyyGHHHLIoV1FjuByyCGHHHJoV5EjuBxyyCGHHNpV5AguhxxyyCGHdhU5gsshhxxyyKFdRY7gcsghhxxyaFeRI7gccsghhxzaVeQILocccsghh3YVOYLLIYcccsihXUU/NMH1iU98AiMjI/D7/XjwwQdx7ty5H1ZTHHLIIYcc2kX0QxFcn/rUp/DRj34U/+E//AecP38e9913H5588kmsrKz8MJrjkEMOOeTQLiLXD6PI7oMPPohTp07hj//4jwEAtVoNg4OD+NVf/VX85m/+5g+6OQ455JBDDu0iavlBv7BcLuOll17Cxz72MfOZ2+3GE088gbNnzza9p1QqoVQqmf9rtRo2NjbQ3t4Ol8v1/7zNDjnkkEMOfX+pXq8jk8mgr68PbvdrA/9+4IJrbW0N1WoV3d3dDZ93d3fj2rVrTe/5+Mc/jt/5nd/5QTTPIYcccsihHyDNzs5iYGDgNd2zK6IKP/axjyGVSpmfmZmZH3aTHHLIIYcc+j5QJBJ5zff8wC2ujo4OeDweLC8vN3y+vLyMnp6epvf4fD74fL4fRPMccsghhxz6AdL34u75gVtcXq8XJ06cwNe+9jXzWa1Ww9e+9jWcPn36B90chxz6R5PL5TI/9mf23692/ff6ru/2vtfyuUMOvZ7pB25xAcBHP/pRfPCDH8TJkyfxhje8AX/4h3+IXC6HD33oQz+M5jj0jyAyvlcLTm12jTLMer1unLP1ev0uZsrP+HmtVjP38PNarXbXPfo+j8fT8Cx+z2u+F0Ggz2db6vU6arVaU6HEtrLtbDP7zn7pda/2fntstC/s273G1f77Xu/S99jzQGo2P/rMer0Oj8dz13jrs3mP/Yxm77Gfoe+xv7fphxBE7dD/A/qhCK6f+ZmfwerqKn77t38bS0tLOH78OJ566qm7AjYcak7cnMoQgVff7PY9ryZE+L/b7Ua1WjUMUBmDMmC+m8T79NkqYJoxPxU+/JvM3W6fjoHd/mb9eLX7bKHXbJz0M5sB28+322M/r1mfvxuBbo8Pf6rVKlwulxkrFYr3EszN2q7rhHNtKwO2sNH3apvs52vEmApVfV6z9eXxeMyz+dsW+FwnfGczQX0vhcLuW7M1ov83E+I6tt9pHTn0/aMfSh7XP5bS6TRisdgPuxk/cFIGoEyN/9sb39ZGgcZNqVaC3t/S0oJqtdrAFFpaWhqYIRk4BZQyDLfbDY/HA7fbjUqlAmB7UyvjtYUb38PftnBoxijI0JQhKdPVNtnWh16r77SfzetqtRpaWlrQ0tKCra0tc021Wm1gpipQ9F0ejwculwuVSqXp+zweDyqVSsP9HGN9l/ZT+8Nx4Oe2Ned2u9HS0oJ6vY5KpWKu5Xv4bPZTmbAtDG0lhOuh2VriGtva2jJts4UIr63VaqbPzebUHjedR67XZoLVbg/7bisOKhz1O1uZ0z6qwCXp2Oga4PU6fvazdZ/8qFAqlUI0Gn1N9+yKqEKHtslm5rZWzc94rb1xbMZPUs1XmY8+h8xE3+XxeAzDsrVx/lQqlQZGpBaLbY0BaGDO9oZvaWm5q0229dTsR/sF4C6BZmv/ylTIbLV9yui0DYQjVYjxd7VaNcKMbVCGpW1UgaC/VVFRptfMAtTxI3NV69m2bFTAaX/4nb6/paXlrnm0BR1/7HbquDRra7M22RaQrYyx3faPzoU9H83GT9eALVT0GVyLbCPHwl7DttWlQpvt4v55rXlMP+r0Q4EKHXrtpIxONxiws8moUQONQo4MnwxUr6WWD+xsIoV+lAFQE6cw0k2rTIaaY6VSMd8ro9NrtR98vjJ4Pu9ePiG2Wy0I24rRe3gt36djYFt+vK61tbVBqOi7lfnZsB77bTMyjqXP50O5XDbto/Vm38N2KnzaTEjey1emfeG88B7b96fXViqVBiuTY0erUd+pVqbOLedOLTp+z3GlBdhMoHEstF9q3bW0tJj1yOezbV6vFx6Pp8FC5vdbW1sNgt1WvHi9bTnqcziPtFrt91Ow2fuzGQSrAvtHzeL6XsgRXLuIlCF6vd4GmIybi4Lp1awSG7YjKVOlhq7arm1x2Rp3rVZDa2trg6atcJetVWu/FEIjMyQjt99lC1p9ZjMIiMzNFvxkeOybx+NBa2srarWaESi2wCKDthUH/mY/FPKy4SnbUiDjawYh8vtqtdqggNgBKveyaimYVdjdy7qg0kBrwrYS9dk6z8pwKeTsNtlwKt9rz5Uyeq/Xa9prj7muCXuN23CeWrDNlKZmVhbHmhAk15EqfyrwbOuYbbbXvT2/tjLWTHg7dDc59ukuIvXbAM0hE25UhVqARoarmi83ow132O9QIWhvWF7Hz3WzK/RkCwBlbs2shdbWVgCN8JxCk9So+WxlWmo5Ktxn+zFUO1YYRwVCpVK5yx9nj5FadGRaHAdCbh6Px4y3PY+qcNwLClOFo7W1Fa2treYd91JUVNvX9ytTV8uV3+scsS06xjqmCiHSitK5tS301tZWo3jZfb0XhKfrWBU1KiQq+DkmlUrFzJ1t6dhjq8JOhTH7o+/X/aBzrj5G+9pmCiMFvW3pOfSdybG4dhGpJUOtVhmjCgBq6mQQyhh1k6pGzeeopq3aIxmPMgD9WxmJDRHxh/erBcDNW6vVTKI5vy+VSvB6vQ3CgwyzXC43CEyOEUk1ffZX36/MVIWetl0FGaFPWqR8nu2Xs5k9+1cul80YMFjBnjP2k2Njw5hst46FbdXY40QFwFYmVDCoZazQG5+pfaZQsBULjhnJ5/MZmI7vJ7TG9abCS5Unl2snoIPjTCvZFhB2wAPXVLP1zn1DPxUVLT6HzyScqvPJvqjQ5njQqqcA5VjY77AtfF2buo4denVyBNcuIYVSSPYGUkakG9zWWnVz2laPbX0oM1ANXZmzCjP+z3eUSiXju1INXduqjEiZszKPZn4iYCcgAkADA7L7bPvYyGgUwrKfo+NuWwFqGQB3R03qu/g8O3Rdn0tqptFz3BTa1Mg/tcZsoWT7t2zIUK0UhWVta6uZX8aey2q1auZMQ9l1LFWBUihQBQ/XkN1GtSQVsrOtVM6vWuo2cTw5jgonNht/jq1GL9rzwnbyedVq1UCqtsWla8i2XB36zuQIrl1CZAC2FmczT+LzutGaMUxepxvOfh+tBIU+eD0AY00Ad0NZ3JiEs7T96si2+6IaOBk+tXtlhGoFkQlSo7b7ZFuJai2p85/BHDbj5Hv5Q4anTEvHgkJA+6zt5njxR1MGOJ+2f5EKBcmGAAGYvrNtNlzn8Xjg9XpRLpfR2toKt9ttrBoNjGlpaWlgwhwHZdbAtlLCv224jc+xLXfbUlGL006tUEZupwsoLM11rtYjfZQK92mwkI6LBnhwfaow0+AQPpNjp2Rb2wBMO9SS1znk/HHsHYvruyNHxO8Ssjer+jpsyEetFqAx5JYCgxYZn20zZoVneI3CGiQbhlRokRvT5/M1WCFktM2sL6Axb4f/E9IDGq1P9W0oqWWiUWjKkLV/ABr6oe9Uv5rtO9T5UcHNv1VQ2dfzR4WPtp33cixtbZ8MW6P8mgl/OyqPnyupdWJDnc0sBh0PCmxbEKlyoOvPFkgaDKQCRdcDn2OvB9sKoyKi/bTXqEab1mo1bG1tNSgbHEdds3yv7h8VxJo2oO9pNib2uL+aZehQc3Isrl1GKhiUoaqm20z7V03SJttCAJrDQ3w/v7e1Q4V8lPnbcI76CshUlJkoE1BLQxm2zaDVKtK+qMClsLIFuw2d2n3hc2x4itdxHug/sefEZqrAToi9Mi1l4HYbm0GTvKdSqaBcLjf0k23jmOoYKXzJdqnwU0vDVi4UalSo2lZe2H71Ten8kdSvpbAdv1Phzc/4Pgoz29Lhe1V4qcCy164Nseo613VnrydbEVOhzvFRy9K2oJVsRMShVydHcO0i0g3JzaABCur30JwRbjQ7mEGZqzJibiDdTFo5g9epULEhJv4UCgUjSPmdBiuoRUI4kH3ltRRuKpDI4IG786aUgZRKpQbGSKFpMzFbg9eQbj6f42oHiygTtZmTCgZ+1tLSYgI12BYVTDofFHbKXDUwR8fV5XIZCFAFkApXPudeFh7brPc2Y+jsjwoUhT6bCRMbqqalo4Kh2Rzwej5b4UCXy2VgYq5v7XNLSwuKxWKDJc19xHlrpgQpsW98nypmaokGAgGzLlW4MohFlRJ+r3upmTLoUHNyoMJdRDZTa6bB8rtSqWTgQDtykPcCO1CKDZkx8dTW+G2rSn1oCsvZWqhCIsqMlIHyc76bDF9Dvmld0DehcJ9qxTo2ykCbMXUVXsrgbEGk42ULcDIpChIlhbk4JjoP+ny2Q8PKFUq0+2JDkrRuVLFQP6SOO8eHwo7PVYuH71WI1Lb+1BqzIxp1rrleNERdBXQzXw8FHv/3+XwNQkeVA7UEuXY1+dhWArS/djsV9rPnspnix7bav1V5tC1hhbmbKRQO3Zsci2uXEJkdN1mzfBxCQLrZdQPaTBtoDBu2BaINt9kCTjc9GSafqRokmUYzKItEwaa+Gz7L6/U2wIvsi7aB7VT4Tyt9kPg5x1THis/lb/5NRsr32MnJZDYa1q/94nvVStGgFBUkJJ0D+jFLpVKDT4WWmw2FahtUGOiYqWCwGbla8LSM2FdlsPaaUYtOLUQdD5tRa3tsf6AKB16nof0cC7VAeR9J16etcOm61DVnW2faflV0tB1cZ6pIKTTMd+u6JsxrK0IOfWdyBNcuIYWD7OoETPwkc7dx92bWBK9Tpk2GTCiM16jmr1aTaty6ke2QZ93UwI7VooJQGeLW1laD70sZMxmwQo5K2iYbJtToMWVIyjC1XWyHCnCbKeqYav4V0GhF2P4LtfKUODacS46d9lf7ofAc28D8KVvgqr9T11SpVGoYOwolOwdLmb9tXamVRHisWCw29FutO7aPY1QsFk1SNdcK26H9UGuvWRg6o1jZX4W42R72rdnc2HAtr9GoQ92Tdtg9x4zKhkKRtgWvCpWOrUPfmRzBtUtIhYNqi82wcvWpALhr09iWhG058X/CXmTiqu3zuUDz4r2q4dvCh5uZgkoFCN+rwtaGGbW9qvWTuatgZLv4HL3PToZlPzWAg9/xftuJrwqFCnsljexTH8u9vr/X2Oq86xzxPl5Ly0yhMxvatAWRWhIK/aoFz7bZCpIduGDPl6Zd8HPbP6jfATspEM2CYez5vVcQhI6JQq2qjOg61fs4BjqvXJM2nKcCx7ZkNepXoyYVhtf5dui7I0dw7RJSqEE3ujJlksJDNlOwma69Yfg/k0MV2lBIhe2xmYYNPdkwEze95ncpHKa5Nuo3YtvUuV0sFk0b2Bc7so+kOUBsRzNN2ev1GouAY6eQj+3nYdvK5fJdkWzKWJU5EuLjXHFMFFajpWr3xxZgykTZBvXlKFRrM04bWuX3nAs+j+3WmoeqRGghY64TzikVgnK53NAmVVpoGdv+tGq1Cr/f31C6iW2gUmVbfvpuWkpqdXKcdU/ZkKENEXLuNOiCpLCvwr+8luvZ5/OhUqmY+bQVJhsudejVyRFcu4TIJNWqUsZJgaQbTrXOZnAXISa15ngNGbNuMI0A4zX0ORQKhYZ2KXOw/1b/hx2dBqAheqsZNGlbC9ov2xrUPqmA0D4qdGrDVGopquXC9pKR0zpRQcdr1XJTZUP7on4htaDVaqLVy2fps/U5SjbUqcoK267tUzhO26SWJsfD5/M1WDnN1p1dnUWDV+w1p2uP7dP26BqyS07Zz7MtHFWybCtMhbeiCmrl8ftm+0j3ij23NilcDuwohFoVxaHvTE5U4S4iFQi2BqnMXDeqDY8pA9INrxuW96nQULhE/TPNNjU/a+Zns9vLv20LQRmV3qPv0neqNWYzGH6mUWjqKyGRqaqPjW3id3YQiQ0j8T5be1brUt+rfjJlXLQubBiP7+Lf9BXp3KgVouHyHAO1IHSs+AyNnOR9HBMVjDqfdoQfBU61Wm2wGtX61DnQtaJ910R5tfrtdct2cNzvZbnYsKD2k8/RcdFxowXZbMzsdWrvVY6fXq9zy3c4wuu7I8fi2iVUr9eNxq3WgOZmAY2whvosgJ2oNz2LyBZ0zSyMer2OYDAIYNt/QstBmbFd8w3YCbiwrQhajmR26o+zGbxqqKrJK2SpVh4ZXrVaNXCRwlrqs7F9FXawAa9TjV+Fsgozjq8KL7WGATTMn7afEJtaVQy20GK8ttLCcae2rv3V9aACVuvzcZyUQetn7D9hU51XBtFo0IteYytKCrNpZZZmFirvZ5CQClO1bDXPi3PCedD/+b5KpQKfz2fuVZ+lJp/bwlGtTHsN6NzYgRu2sqV7SstQ6fcOfXfkCK5dRjasoYIA2NEW1Z8ENG5G2+lth4cDdzMB2wpS7ZTX21aDMkN9rq1x8znNQombacT6HmUqqiWznR6Pxwh3WxNXJs1nKcNWuNKG4Wwhr4qFzbz1Hr5HGTX/V4VAYS3trzJXnQubsapAUEGv64U/TODVcdG5soN4dE1RANnjquOpfbeFlD2POsbqJ2xWVV4VK7ZHn6/PUkubxP4QclTLEMBdNQ41/0ytdh0HfY+9Hm1lRdvF9qsgduje5AiuXULqEFdLQJmkQm0qBHg/o81UG+QxIty0NlxBBqCQDYurKmNkG+gf4nPo+7IZn1oBNoNRq0uZnNvtbnBya3UQZV7aZjIJtVJVKKlw5302g7HDmMnMbFiHz6KFokwO2GG+Kog1wELD9+k/UohOBYIKf10HGq1n+150TJuNE/vm9/sbBJtadgqd8v0aoGBDg3wP15ke7UJBo2OpsKcKLhW+Ol/8zhbuWvKMfVBoW31tdlCKKly6JlRBtK1frY6ha5qpKlpphWOmAl/XgvbRoebkCK5dRMpIgR2tXyOnNJScZDMDZZqEDWu1Grxeb4MA5LOplSqcqIxf20AiA+BmVN9PM4tEtXug0Yenz72XxqrMh++/l0DTNvDddmCFPoNMUPtlQ0G2VahOd2WszSA0ZV78u5mlaUOb9vgqk6VQYBt4P8dKoSm+Q4WNHRRDoaqC3E7s1r9t69t+D0mtYNta5XcKuaq/jverUOWzNJBF3817ddxJCqXT8tX1ofBxM9RB4ddmqRa0bKl4qRBUpcSh70yO4NpFZPuPmlk9NvSiVgUZHf0nzSwLt9ttqjGoVthsw6oPS60bTTYm6Ya0NUplKips+A5ghxnapXJUM1a4hpq/klpOCifR76J91T7a8JDCX/fSkG1rjv22Gb8+z/aRcTztsdF+q59FQ/5VCKrCoZa4+rTYVwoBW0lRoWFbz/oMFfp237Ut+hy1yPU7e63rWNFXx3ex7Sq8bEurmaJB6JRt1L6o8FVrXf1VzeZcFTJVHOwDPe9lsTv0nckRXLuEFNZQBqW+KDI2wjFkVLaVYDMebiD6gu71br5frR06uknaLmqvKoyUSSmEYltEGnjB93031otdvFZ9Z3ZulO3z4rUUYNoO4O5j5ZVZ8nuOlxZ85WcK2+lYEKKymT6f3wye4jMUetM28N0MUqEFwPnT8VV/IvuoTNb2P2qwhvowbaXD7/ebebtXv1l7Ui1A9kXH2fYjKaTKihi2EsUxtctr6ZzomBACb21tRblcbvAF6rMV+tS1qOOp58Kx/fl83oyV+vzYRzvYxKF7kyO4dgnpZuX/wI6jmgmtJMXaVSjY8IhCXsqE+Ldqq3bOlz5PryPDcLvdd0F3ZKR2uRt+r8/W7/UzFV5qIdmQmn5Oq8luL0kj0GzrVS0LfQ//tmFDtXj4m1auXkfrplkVdO2bjkMz60MZMj/XsVJrR8fN9mfyWlVwFJamldhsTOx1RVLGrgEiqtSwD7qe9N0a7anP02fp+qSA07EiNQt6oeKg465IBgURhde9+qf/sz+6b1V543rQe/idQ9+ZHMG1C6gZY28Wkq6bTTeTPkcZpGqKyuxshs2/CauosLAZhe2jUV+EMi+7bTYkpZ+pANJ3ap/UKlEYkJZWuVxuSB1QP4daPDbjJyncqoLe1uK1XapVqxWgglgtYoVANYhD553P0zbY42e/x7YUbatRrT21VAA0WJS2Vci5YY4TgIY1yT7Q6lHLzl5fOpe25abrU2FUe96brXmdE9tK53NUkajXt6NDvV5vwzjrHAN3+9D4fNs6BHZgTe2Tfa/d12bIh0M75AiuXUD1et0ct64M0/Yt6efN4Dl+p/4hLT/EZ2v9OxsG5GbXxNZmlpL6mpRR2VaTCl1gp/SS1qoDGoMyKECV8fLdGuDBUHj13aiTne3Q8k4aLadWh76LWrr+rwzXtohsYaWWaTMrxPZ1NAt24BhoXhYhPbZfIxbVWmqm4fMZzMuy+8IfDTrgO3QstY16OCW/1wLRFGaEyez1aQt7XXu6Fuz36bipBWkLbV7DdaJ7RYU888n4fM6t+q74DA2E4Riyf7reuX6bJbA7Qus7kyO4dgkprNOMUehGU6bI74C7tVLb+a7PVh8GGZRq97rpSNzMZCzKwKltK3Oxw7Bta1HhG/6vkVnKCNkuZTpksPahkGRWDKnXqEwqA7avjaQWmy0A1IpTX5ktDHWs1cLTBGUKIYWb1Crib62Qr89TX5Ayc64j26ekZ7fZx9Joe0iq/NyL4SrsZkPDOla2RaR/a/t1Pege0LWt1qG2Q390faswseeN16qf1rY01XLVcbcjCjl/tk9Qx8SGRh26NzmCaxcQN7pG1CkcoYEbhL10Y+ihjLqhNcqNGmMzpqwHNhJKUcaubbQZmTqrgZ2NTFKmRYapwSVk+mqJ2ZAX36fWlt6j7+Hf/KFQoxCjxaOVIMjU3e7tPDK2kePLNAJl7ipM7MhDVQDYnlqt1nCSL+/X8bUrweuxHrxGrVG1NtgOnQMb5mQwBU+t1nnV52m7NReP881cu1AohEqlYo5N0aAiFQDaP20n36FWuQ0vsl2qxOga1nFpJggBmHWv71NB5fP5zFrRPcU1UavVDCLCftrRuhoUwzngj329Q9+ZHMG1C0jhFmCHyQNoyMPiJrK1XzJjMjRljKrl6vO5wamha3CDapxsnwoRkm5+W0O236kbWoWZMldufPWX8PlkairE1JpR6EsZpt0WCh8VjDpWzfwztiZu98MOvuA9tqWi48vnEZLUcbbn6F7zx3FQxYff2321fWt8nzJxDU7Q37rW1HplH2jV6nir8GvWL/282XrUtaUKEvule0EtIf6vgReqOOg9ugZ1/droBsdBoUHdN4QSdV3y2RRazeBRh+5NjnjfBaQbD2gMSa/VdipLc6Oo9qY5Kra2qpuLVoUyQ7WeVLtXC081cmU+JL5XGawNM5HxsO0M37ahUFtbty1BHS8bAmW7lAHq9RxLFTCqBKhgspOt+ZlClbYw0XZzDGzt2ta6VUnQyiW2ANWqDGTKzRQJXm9bDbzerntpt1PHpl6vN8yTRv7x70Kh0KBo6PyxHxrYwbYpMqD+Na4P9XuyHbpedb5VqVKFRPuhQs0WlM2SmxVN0LWmY2aPo84Hf+w1YUPBDt2bHItrFxBhIYX1VDO0NU8tLWT7WPi/ap1AY/FbzWHRE11JyqCVkesmVGGrTJ+wHDcuAzCokW9tbZnPaG0oXKd91f7bFiCfpZYZsHPOlZ2fpRF9ammxHRwjtQBtIaXMlmOgATXaRlU2yHjVEuZzeSYWg2hsK0ShYfUdsj06N7bfi9erD4rzxO81+EefqdCzjp9aNADuEjJ8hwaWADBwnDJ89p3Ps2FnrjG+l3lYbLfX60VLSwtKpZI5IZx7h+PGz7jmuD8UctS+qxKmljDHtVnqgQ19U7hzjnkqNOFGVVIcak6O4NoFZMMSwN0QDTesre0rE+Lm0ZpsamHZWrMyZhvC4+9m2qFCUWrd6EZnMIINt9hWmd1vG2qz26hwjVZB5z12QWJlpvaYkYnYlpuOjzJrFQA29GWPUzM40lYmdDzt57IdKnBs61RTF9RqsgW0KgG81v6sWbCHDQHac6SRpxoAon3XCMN7RZDq3Go/dMw4b7alrutfIxrZHrUQ+U4bFte1q2OtY6FrmP+rgtcMWtUx4XeOtfXdkSO4dgHZG5lkL3KFiIBGAaJh1tywChUBO4yGmqtWSNAcJ2Vi9vc2JKJQj/aB1/Nzatz8n0yGws8+IZn9I2NS4agQlPpxtra2zKnJNiNSWJACgX0pFotNoTeOm7bNnhe1ShSO4lz5fD6j3VNQKmNXCJXj4nK5TMFk7QNhOc6jWrmq7ZM4JgrZ8nPtr1rMwE4OIYMVVPixLepz0ndrhJ5Cbern0dOLKUjU6rUtOw2mUWWJlg6tLl0vdq1A3q8RsSpY7bHkvbTsFAVg33X9ay6XncRtR9o61tZ3JsfHtYtIrQ+biarGp5FtGsBAItNRC0u1P2U8Gm6t72kGkek7bF8FN3Wz6DoVZqrt2hYB3wuggenpO9US43Hx2n8VenZ/bChLYVDtq2rSfB/hHpvp6306Phosw7G2rSDbWlPmSFKo0J4jW5Gw50GtHx07XV9qcVAZUGFl+7903tUvpZ8psU96hhbvIePXtqsAsa0wriVd/7qubYFjC1BtkwZv8DudF4UpVVF4tbXMXDBFPdhnnQeHvjM5FtcuIGrE1DxdrsaSMQAaGIlaQ7rRbOYPNJYLAmDCwoG7i4Aqjq/WnGqh3MzNco5sa1GZFN+nmx5oFDS2b0+fq8yM43AvBsLvlTnxHTZzIsNWpmcrDWpFKXxoM1htq1ppCk+pYLahVB1vtkPnjm3h+0m2hcq22kECNlRrQ5f8rflIzeZW54rzaEcV6rU6Lpw/Dem3q/Mr0Xoi8Vq1cOx1x7FRFEAtPxXC9trWNUN4U+dc79PxZttVqbCFncK0dj8daiRHcO0C4uLXA+/IPLxer9FouXkUTlENVGEhWwO1ndEqRPg8MiOF0ahtatSh5iNxE/MzMgcNMlEhwvZQs6cgLJVK5h22v8Xl2imMyvHY2tqCz+czfhi21xbUABr6p4xLx0GhL2CnPFCtVjP9tLVm9Q3xeRxzBqFQCVHtXgu06r0qDDhPhAx17Di3Xq+3Aeoj2QE8ypxtRYDPowXLOVcYUIUlBbr6lqrVqgmK0TlUq1YtIBUUzAlTdIDjyuoqei/QWLFD1x6fbVvMFKrNzvACdgStnZjO5xBKJtnWIMfXHh9tkyqajtX1nckRXLuE1IpQLVHhPTIJ1fj0jCEyW9203HC60e3P1MKyNXpuyGbXq8baLGgBuDt0nRte32VbjyoQVCO3GbBG7tnv1XFQxqKCSvPF+A76/zjedji+WmvKlJrBTVoGSBmfLWxUEdHPbQ2fxPapf0/niJ/ZkKS9znRe1MpUS7KZZaFrU0mhYa5JXd86L1SatN3NxpF95Gc2zKgWrCo7ij7Y+0b3AZUiCjj21Q58USuR7eJ77ZQQbYM9vrrXHLo3OT6uXUDKlEgavq3QhY3JKzERUpmDwhUkbhxuOn6mQlIZnP7Q+tNgDZsJ6TvIJOz6c7xWmYAycvVfqWBU3536cmyrwxYMCtXouNsBJsAOPKX9Uwakf2s/lbGrX0S/V6bF9nOsddwUhqM1yHHUeoN6nf5uFjWq49VsjvhePkP7qvfwb02hYD90fXINq/LSDHa0IW5acmrV2Em+KqhsS0uDVHROdD703Xb/uS5U2bMVBz5T1x7XNsl+5732rUN3k2Nx7RJSCEkZADc9gAaISbVtrUNnM9B6fSePiAyNx8YrowZ2Nq1GYKnw4Ebk94SH7AP/uIntpFot9KrwIfuuTMK2eoDG0j3aHo2eVKiUfWE/FCYF7oaMaOlxbFnKyLa6VOCp1cvPFNpl323Lj6WlOKeEPimkqaSUSiVzjx2Ob1tDhA6LxSICgYCBuThGbJc9fhwLW1jQYlLlR9cZx80+b4zzpWPEQraqCLD9LKmlEaV8d71ev8sK5rN1jfHdWh2DpGvChoo1OpFCTxUKW7DavmcdR0UgbGuN7+G+sg9BdaiRHMG1C4jCSJmIWguqoSkUBOxET3ET68ZWoaGaPEkZoj5TNWXVlikkVSOlMLQtQVuzVuiHEXpqOZC073Ykn90nvl+tDxueUUhL85Ka5SfZUBUFhVq9KsSpDGj/bGvCtnQ53gor2dfxudoPzpf2S/1OtiVIgcV71U/EvtiWgwp2bYPOqS34m42hws22kGd6gC1YVCip8mYrVxqcwTHR9tuWqrZV/Wh8j/bf7oO2wUYy7H2hUCKVM/vkBV3LDr06OYJrF5C9qO3/mzFuxeHVItByRbqBaOWoRqo+AhVImoNFTRxoZOxakZ33sC829AfsWDdaYgdoPJWZjALYgdtU8NRqtYYKCCqwbee+bQHwOrVk2EZl6GQ8tO7YH83bYVs0AIGWks6d2+1GMBg0wQk6lsw3oyVUq9UaLAtayRrZphVRFB7j3PLoDr7fhu9UIHBOFEpUPxCwXe2CVhqtIRWw9vjwXDSFKlXgqNBUXw+VAxs25fyqpcj226iDClu1jFX5sKuQqHXLdWILaFXKdLw4l/Z4ckzYXr6H1lYzYe/Q3eQIrl1AtHi01I1GotmwmlpPKhxsDVA3nmrTyqQ0mo5MXK0M4O78MjIXhSr1/CpeZ7dZGYxGcKlgVM3/Xs599pPvb8YobStGGYYyGx0329fCvzludhULLdNlj5UKNFVGFBK126VMU8fGtr7VQld/ox21yDHi2uL/2k4V9MqgdeyAHbhN+8W1y2foOPAdajnaPjntD9+hgkctH53XZknqNtTXzIrX+ftOASwqpO1Qf7XstM+1Wq0B4rSfp+ugmcXv0A45gmuXEDeeWj1AY5091fa5qTSE3Wa4GnKumL0KFz5LGYEyM35mR6/Z2rt+rhCjQk/slzJmhavc7p2qHgrtsK18j8I/CkfxOdonZWC2Jqx9U4GgQkw1dU241nJHKkhsy0+FSDOmqu1vxri1rbROdf71OnscdMxUcVEhr2NMa7RQKDQwef2xITzbUlUhY1vkOq+2ZcXrte6mzrv2z7a47Xmw1569LtR322wc6/V6Q91IhUy1LSr07DWl+0DHQhUmh+5NjuDaBcSNogxJmZFCSLYWTiJsxet5L5kFGSSLuapFVS6XG2AhwlQAGiw/1XSVAdkCRv0CwE7NPQoTCmL2WS0UYIfR0qFvh31T0LA9tDIUVrMtJPWxaNCDx7NTOor94njye7ad41KvN57dRLhOBTwtHI3U1D5yHvWMJ1tzZ7/ValN/i0JTmqPEMVcLT/OstJ4j+8MxBNDwvQ0n89kapch71B+lViLnRaEyFX723CrRh6l7QuFHfQ8hOduqUetVlQnbeuf42nCe5lfyXSzwq1U7bOuNc8D583q9TlDGd0mO4NoFpIyNAsH2G6mFxQ0MNJ6ppNaLChQyVlsTtSEsfa6t6Sp8qL/JaLR0EpmGrZGq5qoMQ61Bvo/vVCaiGrRCeMrM1XJUhqiCn89Sq66ZhmxbnnZ/1FoiY9Z+NrPGFPq158i2VGyrRJ/Fz6hoUMDquNtwmSor9ppRYUjSNjSz6FWQ2O+0w/V1zHROeL/6JfXZ/N4eI/XTsv9Kaj3xuVwTCstzbFQY6xrXsWNbFCqkUqjwovrPbGGuBQUcujc5gmuXkL2RgbuFlGqJ3GR0yNPCaAaRUbPP5/MAYCoNsIAoNxmvVShJqyjYVoH6WDSk2Ya7yCzU56P+FIZxc0PbzE0tDdvfx2cos1enPjVdXqcBDGQwKoD0Oewrz6XivToX+hybEfNvFfL8W4MyNPVAx5b9ppVkM1QybWWkWkmE4855UUbcDEpUOFStVPbDXn+6ThWKY5sJs9KaU9hVrS274ksz5YRE66dYLDZY23yPWsG6JtWqt9eVWkkqvDjPbAuJCgjXgw0Hch5siFGPtXHo1ckRXLuAVNNWDZ6fK6NWy0Y3DJ9jQ4N8luaq6OYlk1GoRHN+9Hn8Tt9JUp+HWkDcyFqeic8ls23GUO/lq9B3ADuwFp9jByHYPja7P+yLMigbslUhavvMeA3br4LFZvaaIK6avT5D+0iBoGPJ6yiU1Fq1y3PZa0qFir1utP1k8OqHVKas0CXQGLxgKyz2WKglq8/nGtL26nM0v0rn0uVyNSQn8zn2OtKx4nrXZ+l+oTDVceVzdf65/nTtEr3QdaVKB9/v0KuTI7h2Aam2bW9kW2NW4aOkUI0yGptB2jChbW1oUViShnmrpqzQpi0o+S4+U49dARrhF7XSNGxan6Fwjw3XKLNTwazjqWNqa9EqXPR/Wpwu17bfUBlxs6g2ki0o+V61hvXYEpvR8X59X7lcRjAYRL1eb7AaVUg1m3+dY227QqO2gNKABTtyU+eGglUVFH2Ptsluowp7ba/61+w5Vv8T54e/KZBt/5qOpy2AOcbalmZQus6fjqnClnyfrg2Fo5mz6Aiv744cwbULSDeMDVNws1BDtGHEZtAeN7gGGKilQeIm5D0MlrA1aPUlqfCqVqsNFo5aiso42VYyf/pjbB+ewom2ps7PCf+oJqxCkLlEbDvbqsKhmYWlQletHztNgYzI6/Wa59KS1CrnhDyDwWADDNosp0iVAWX6hNDYHg2q4X0qZOyxq9d3zuPi9ypAVAFSxUg/UytPoTx7PVGZsK/nHPOEYq3+wjFVRUFPz+Y8MpiG93B9NlP2uC44/uyXJuer0tUs9aOZn4/rgPfyuq2tLQO9qwKnVj/nlfCmzplDzckRXLuAyAzUYc+NpOHUNrSiDEI/U2Zia53KCG0tVL9XJqdCU9uhTNB2oDdrI8n23RFGU01UGbgydoU1lelQ+FLIsKq4WiHqv7CZnr7Pthh0jlTztseBpM5+XqOV0nXc7HFXJso+ajttxsrvtA3NhLMdgNCMQWv0ns6fbcXymSqs1Cqy+6brS/turw/7veqDbCYQVdlQ+JH/26XA1LJWiNW2TpuNo72m1ZIiMTpVlRiNouQ86PpyqDk5gmsXEK0ihU2oram2z2sBNDAghXe4MdUCUtjM9mdwY9rCjs+m38TW1km6ubU9zeAjQlu2ham+JxWC2h/2WRmYCiNlUgwoUWe4bcVpJQbts16jVo3CnHbot23F0qKiBaGwn1oaylSbkcvlussyU0HNZygjVYav60bXi86zbeUpc20GlfFvVbR0/Px+v1m3Oi5qjeh7gJ2AC9va5TzakZI6jtw3qpzYQtIWOjpu+rf2T32R2jZbiNowrG1J6njx/Zp+4VBzcgTXLiDCZ5qXwhIxmjsE4C7tkRtPfRFqFXGTqEZsbyS7VBEZmvoUbJ+OHqfidruNkNDnEq4EdkpEKTTH97a0tBgYsRkTV78HhYZttZDBsMSVRnZp4AmAuyp9sD2EmGxIjDAX0OhL5Lj7/f67xkqDW2zNn+OgFo7tt7PTCVQ4qK9En6PPUuvDtrB5nzJ9O0CBY6VjDTRazlyruib1PTpfihzwOfZ7NZxc16sNoasioRbz1taWSRzWQBjmNTZ7NiNGuUdoqdnCWyM+lWzlkXvWhqZ1bDU61aHm5AiuXUDKOFUzJCymEJUyHJvJ2MJIN6gyAZINo7EttgNcrQIyTBsKsgWfMmPV4m1NXuEmvl/DxvW9dvt07DQ5mp/rb7vf+rvZ+3RsNQqSY8trVLtXK1bTCNTqsQMO+G6Okc6lbVWroFCGqDAe71NITNtg95+Cnu1v1i/tk1qrvFbXKQWH7euh4qKWLEkj8pqtMYXZNGFbBbbdR869rjWF6ZoJZI4Dha1ah/Ya5jN0zeu6bGbF6/scenVyBNcuIG5ArXhhWz/c8DbzILNUx7FuFhuS4/t4PQWThv9qTow+i+T1eg2EVSgUGqwAtomMjlaMPlPboxYIN75q8Go9UqgRPrKZqwo9FcgKaamwsMPMFRZUQWYLKtufR6bV0tICv99v+uzxeBAOh80zdHwKhUJDJQZ+rzlbWtiW68Dr9ZrK7+yP7RfUqENVKoAdhs/5YFUW3s/nqQAnqVWoZZM0XJzzA2znWhUKhYbnsA9q4fA+XRO6DmjV89nlcvmuvDfdN80UAR0D7aPmL/KoGc6lrbCoILYtL5ItLDm/fD8De7S4tEN3kyO4dgnZG0xhF36veLvtO7JxfNsa4jPIFG0tsNlGtOFIMm5tp0Jneo8+o9lvfRYFr80syVi0b/oehX3stlFgqdC3maxalnqd3TYVyvZv/t3a2opQKIRyuYxyuYz29na0tbVheHgYPp8PpVIJq6uryGazyOfzyOVyRglhmzVaEdiB2dRq1Tw6VQSUUXLMdHw4nhwX/s9x0SRtVRTU8mtmvXKtUgBoKLjttwV2FC17ndjRj/oeFWQ2bGoLCIWmVVEgBGjDzLreVLnTtqlypN+psOUzmuWbqfVJhc6uVONQIzmCaxeQ+kts34JaDLY2p0xP4R0yfI2iU0Zkb35bYNiRTzYTI+xDht6Mkahg5P1sszIvFSgK1wCNwRh2H5SUKSisabdHrVgdc20vn98MumIbbUvD5XLB7/ebo0q6u7vxyCOPoKOjAz09PSZgYX19HYuLi1heXkYul0MymTSQovZB+6i+RQr4ZgyU7bCtVHvMOSZ2IIy+Xy19G9LT9ap/axSdWq66xrguVdnRtrKdnBe1zBUyZM0/W3jretO1oWOl/bOtboUxtW36nbbbtlRtK9+eP1swO3RvctV3oVhPp9OIxWI/7Gb8wIibR53CuiG5yRhQADSehsxrbSczhYzCi2QOwN1JnPxMBReZrp4fBezk+NAZbTOyZtosrT0GnmgbbEtHx4XXsDQU4UllaGyz+ksoCBVWYv+VuWitu0KhcBdD4liqgFYtPhwOo1Ao4B3veAfuu+8+RCIRA2fF43FEIhFEo1EUCgUsLi4im82iWCxiY2MDX/jCF7CwsGC0cMKH6kfimBNeUkGlcCLHU4WAQqi2v5GWkvoGbcbOdcOCx5oaYSfFK3O31xfbrda5+lV5n9/vN8/WNaWCTJUornEVGjouGpxiw4i83s7lUkGr+0WtdfuUAdvfpZCijQrY1uY/dUqlUohGo6/pHifTbReQbjagUTukILId7Src7MgxbjgyDmVadoSdQoWq7eqzbLjRrrpdq9Uawp9tK0m1ZbbB9r/Q8qBfTIWWCjVliqrlqpbNtpP0Pv1cISg7YECtMt7PCiAa0t/a2opMJoNYLIaTJ0+ira0NlUoFuVwO5XIZxWLR3KPWXEdHB/bu3YtHH30UQ0NDDQEOmn+mc2TDWOqr0/B4nTcdOyZA61zzuXratFod97Lwdf7tudH7dWybBaTo/Ojzlelru7g27ChajUhUKFPD4/k8Feh2nqT6//h8CiU7eEZJFUxVJKgkqXJgQ7sO3U2OxbULSKt7A43VHNT6USsBaPQBqLBgCHy5XDZRWMCOlaQQDEN3Fau3hQ6tQWVONpNrdlSG+qe4me1AB2CH0VHI8vlkNGrtKNPRfCplsPaS59gqU+PY6liqBWtDcmRqvHZrawvBYBCBQAAjIyN417veBZ/Ph9u3b6Ner2Pfvn1oaWlBPp+H2+1GKBSC3+83ofqlUgmFQgGdnZ3IZDI4f/48/v7v/x5utxu5XM70mcENqv1TyDHJmpaPKkD8X8daoVj+2EVvbcharSZb0PDZ/F7nQ616vUYVJ15rrwWuA71GrTbbB6fWlv7P+2gt6ppqpuiowsf1r8WJVbiyrfq3XTlF22lbZLuQLX/P5Fhc/4TJhjpoeXAz2Vqv/Vs1W7VkgMaILjIzjZxTOEytOQ3v5jM0L8qG9oBGC85mUGTaNvOo1Wp3lc3he23rrRksZlsOaoXY1h3bRcuDVhPzeZrBhDo+nBOfz4dQKIRcLofTp09jaGgIs7OzKBQKDTluW1tbyGQyWF5exvz8PFZXV5HP5007q9Uqurq6cODAAZRKJXi9XgQCAaOAUPHgmtB51zkDdmo+kunTD8T7lfmTOA46NiQVOMqEdS2pH1VhNQpEXcsaiajrR/1BzYSa7gN7napyoWtH28/1oO/Wdatj1Ex5s59JRdOOStU+MPJW16HuSYdenZxR2gVkWxJalV01QWXQaumQuZDoJ9EjS1TgqNBS+Eo3lwo0ZVhsr+030O/4uf62fV/ssx0daTvH7eAE3gM0JrqqUNPnqfC2IS0bVrIZqf0cZTx+v9/4Vw4ePIhAIIB0Og2Xy2V8XDxGplbbLqpbKpWQz+eRyWRMFGI6nTbCy+/3o1qtwu/3N1iVOlf2PNDyUiar4w40Wj+2P4uMmFGFnAMdW2DHv9NsXHWOVcg1G3eFD3mtfT3bqn1hP/kdlSB7PatlrAqYDX3a806hS1iXpMJS94KuXZK2lwJXP3Mgwu+eXrPgevbZZ/Gud70LfX19cLlc+Nu//duG7+v1On77t38bvb29CAQCeOKJJzA5OdlwzcbGBn7u534O0WgU8Xgcv/RLv4RsNvuP6sg/ZVJGzc3FDWT7WmhVUJujwPP5fA0Whw2/kQHqZmewQzN/DmEkZeYa+GBrys0EFLVSBm/wfzJLtXDIiEiEOgmN8f36DLaNTLdcLjdAa7R4OA78nLCWMmBCbspUyXRsy83tdiMYDKJYLKKnpwcjIyNYW1tDuVyG3+9HV1cXKpUKkskkpqenMTU1heXlZXi9XgSDQYRCIdPH2dlZLC4uIhwO421vexvy+bx5r33mFMeDTLZYLJqcLs4/IVrOM5ks7yVz5hrgGiKsrOvF9lvp+lMhxPnkHG9tbZn8MF5DeNPr9Tb4o3TNNDtHjH1XoWsHpKgwVUGuVhjnkWuAa099Zdp3jgnHkuuoUqmgVCqhpaXFnKbN05BrtZ1C1UyL0KAgVUYcy+vV6TWPTi6Xw3333YdPfOITTb//vd/7PfzRH/0R/uzP/gzPP/88QqEQnnzySRSLRXPNz/3cz+HKlSv4yle+gi984Qt49tln8cu//Mvfey/+iZNaCWpBKeSl+VdkXGRS6vzX3woVqXBUpqFh0bxGfSV6jwo4Faq2Jm9bV7ZWbkM1ZJBkKPzhNbbvhG1sFpRCpqqMiOOmzFotUdWobciHjJfv4Hy1tLSgWCyis7MTW1tbWFxcRKFQMIy8VCpheXkZU1NTmJ2dxZ07dzA/P49sNmvKY9ESS6VS2Nrawp49e9Dd3Y1sNmuSYTXoxQ6KIamfq5kPxg6G4HealqDRos0gQV6jypX+cCw1uIbrWa0ie/2pBa5+NNt3yT5TWOic2vdo+/Sdurd0vPhs7plqdbtCh9/vN1G1atWqFcffFN4AGuaX79D19aPk3/pe6TXncb3jHe/AO97xjqbf1et1/OEf/iF+67d+C+9+97sBAH/1V3+F7u5u/O3f/i0+8IEPYGJiAk899RReeOEFnDx5EgDw3//7f8c73/lO/Nf/+l/R19f3j+jOP01SXJ2LXM+vosWglpTCLApb2E51ksKRqi3rZ7yO39kC1I56s2EdW8hpRJbCRbxeBTafxXcAd+dWacV3HRftK7/Tah0UfDputuBUBqcMV4WbWm2EYxlcsba2ZiqfUJDNzMwgn88bhlgul9HW1oauri50dnaa/mxubmJ5eRldXV3Ys2cPZmdn0d7eDgAGbuT46ZjbY0nNn9aOjpMKYmWg/F8tEwYWKEzLfns8HpMaoYLcPgKFY6jvUUXIXv86z/q5jrUtRG0/qVpktoCoVCpGGVBl614QpQ372eOgqSXsk0bDKnTbbI85wuvV6fuagHz79m0sLS3hiSeeMJ/FYjE8+OCDOHv2LD7wgQ/g7NmziMfjRmgBwBNPPAG3243nn38eP/VTP3XXc4n/k9Lp9Pez2buCbG2Mm5alZ5odHsgNzI2i8BY1PN1U3GxaANQ+Wp3aJGEjYMenwPcrTAeggenxuQAafBJ6r2q4/LylpcXAK7aF1AzKrFa3T1W2oSzVrnmdjo09Hgp3qdCnoNQgA4Ws0uk0BgcHMTY2hvX1dbjdbuOnunXrFr7yla8gHA7jxIkTSKfTWF1dRbFYxOLiIhYXF1Gr1bB3715Uq1XcvHkT09PT+NCHPoT3v//96O/vx1NPPYVEItEw9rYlq2PazFepbVa41C7SqxavPTd8r9vtNgJRoxX5vUK+Cr/y3XaUoCo4/J/tUoVN13ipVDLzxchZtbT5fqIU7AN9hkSF1G+oUZY6pvY+I3pBqE8VL5Lme/HdbCfXpJ3T5VBz+r4CqUtLSwCA7u7uhs+7u7vNd0tLS+jq6mr4vqWlBW1tbeYamz7+8Y8jFouZn8HBwe9ns3cFUcgQMyfZFo9ulGZwnu18V1hRNXbVvvkeEhmM+qXYRjJz1ZL5W5ka0HhMhUJwuuFtSEg/17ZRY1ftV/1SKhwVElKFQLVgFWK2dUJLlGNrR/NRc+/u7kZ7e7tRuhjyu7y8bGDEo0ePYmxsDN3d3di7dy/Gx8cRiUQwMzODtbU1E0HItnZ2duLYsWPI5XIm8Zd9p/+G/k2FdymkNIzfhgfZfo4j/Yz2vOva43NUsNnWq1pmtiLFNWE/V9eLPlvfZ8+rrhNb6VGL3Y4uVKVL26+IgM6vDWuqdWvvH+2nHdmr7yKpouDQvWlXlHz62Mc+ho9+9KPmf2qzPyqkjmWGU5OoZeqm5uax83f4PTe8QikKsVGYKd6vsKBCe8T8Ga7O/9V6UsZDi44atB53YsMleuQKq2moFm1vepLW1QN2QvQBNAg4dbxzDBlEwHu0PRwrMt9mR7HEYjF4vV6MjIzgJ3/yJzE+Po6nn34ac3NzCIfDyOVyuHnzJkZGRvDYY49hbGwMtVoNyWQS9Xodvb29GB4extmzZ3H16lWMj49jdHQUPp8Pq6ur2Nrags/nw7ve9S78wz/8A9ra2lAsFpHL5RqsCs6xKgqar8T2a1UQW9BrwrvH4zFBI8Vi0VgNajlwzCn0arWdxHNNs7iXANS1p1aJWruq1DQTEpxXzn2tVjOWFNula5BCUte7tlcVO75Hg0S4FgnFMgePz1Kfql2hhcKTig4DNxz6zvR9FVw9PT0AtjXK3t5e8/ny8jKOHz9urllZWWm4r1KpYGNjw9xvk8/ng8/n+342dVeRhnhzI9HSUeaimqXCL7b1olaSMjcNiwZ2hJxqiOoPAtDAALi59SA8MiCF3jT4gURhrMJTBaVaZOoXUT8d+6BMRvuhPhDeq5aBMloKP15P5qcCWAVyvb5djqi1tRWbm5t497vfjf7+frS2tiKZTJqwdhbRHR0dRSwWQyqVQjabhcvlwuzsLPx+P9ra2tDZ2Yn19XWk02kEg0G43W6srq4ik8nA6/Wip6cHHR0d8Pv9iMfjDVAahbwKeGWwuhaAnfyuUCgEn89nwt+pjFQqFayurqJQKCASiSAcDhsLz47oU7jRjsC0rR5VVij4NNVD285naBCEbXWp4sP+2dYWFSV7Haig1utVICoUreiBnbStSIaSftYM2dDPHIvr1en7KrhGR0fR09ODr33ta0ZQpdNpPP/88/iVX/kVAMDp06eRTCbx0ksv4cSJEwCAM2fOoFar4cEHH/x+NuefHOlGsCEe/k/LTC0Thc+ARv+WMu1mAkyZEje6Wmt2HpUyRDskGdhJJgZ2/B18B+9XZqeOcoWa1A/HtrMvCs/o+HA8+H4NPODYUMjaEA/vZ1i5MhcKu0AgYHwoQ0NDcLlcWFtbM5aSavRMF1lcXEQul0M4HMby8jJaWloQiUTQ39+Pzc1NrK+vGyHKPpfLZYTDYYyOjmJxcRHxeNzMIfvFvjGSURk654XzHAgE0N/fj87OTkSjURMt5/P5TN/m5uYwOzuLlZUVJJNJAEA4HDZjqUEHHB+NPuUYKnTNAzYJt+pcKlTIz+0gBq73ZoLL9o9xX9zLSufaUpiQa5t91KATe/9wnWh9Rh1jhQhtP6QdwGELPIfuptcsuLLZLG7evGn+v337Ni5cuIC2tjYMDQ3h137t1/Cf//N/NhDHv//3/x59fX14z3veAwA4ePAg3v72t+Nf/st/iT/7sz/D1tYWPvKRj+ADH/iAE1F4DyKzU1+KbmTCPXqyL6/hZlX83k6OpIau0J06i7npCQ3ZlpBaL8COxsh3qcVD5qDWFoAGQcQ+kwFQ++d1ZDJ6PQNUFCJkFBcL6fL9NqSkAQqa88WxIUMkg1LrQN+Vy+UQjUbxUz/1UwgGg5ifn0cul8Pc3Byi0Sj6+/sRCoXgdrtx6NAhAMDFixcNtNjV1YXp6WlEo1G8853vBABMTEygXq8jHo9jeHjYJCGvra3hgQcewO///u9jeHgYwWAQ+XweLpcLwWCwIe2Bgor+smQyaSrTP/LII4hEIuju7kY8HjdHrJAJl0oltLa24sknn0S1WkU+n8fk5CRWVlZw5swZrKysGIiVFo2eseXxeEwpK44lx1GLPnM9qMDiOOs82L5HoNEyUj+npjZQ2WKemK4j+zRiDR7RtUL4UxUDvotnaOkeUGsO2IFTNYiFa1Pfx/c7Auze9JoF14svvog3v/nN5n/6nj74wQ/iL//yL/Fv/+2/RS6Xwy//8i8jmUzijW98I5566imT7wAAf/3Xf42PfOQj+LEf+zG43W789E//NP7oj/7o+9Cdf5qkmpp+dq/vKeSARniC/1OgceOQmkWnkZmTEaqmqVaJ7euxtWDCTvyc0KE6uvm3+qb4mxucAoxBBAAaGBY3PRnW1tYWBgYGTBX2RCIBn89nBFihUMDq6qqpDZhMJhvyjWq1GvL5vGk/E3rJAPl+n8+HVCqFhx56CKOjo/B6vQiFQmhpaUEwGDTWSzqdNnAgE4TJVPv7+5FKpVAsFjEwMIBCoYDr168jmUwiGo3C5/MZ4bOysoLW1lYMDw9jdXXVhN1zDSg8x598Po9yuYyjR48adGRkZMRUsOda4VwDaLD23G43/H4/9u3bh97eXiSTSVy+fBkLCwsoFosmfJ/WF4WeMnFdh/o3FSIVZnZuk1oqCoXye42GpFCxr6EiRlLrSS0uG7bTNqjQ5PfNhJ+ud13XRBAUjbD9yQ69OjlFdncBaWSUapQayk0N1oYFSWp10ZpgRJomItu+Gz5LLT5m/FPYUKsm0yMTUriSMJoyRWqxtjVUKBQaoDs7b0gTkNk25mWxP5FIBA8//DD279+P48ePIxKJIBgMIhwOG6aaTqfN8SG0CDY3N1EoFHDz5k0sLy9jbW0N6+vrCAaDALaPNdHkbWWQ+/btw+OPP469e/ciEokgEomgWq1iYmICKysr+OxnP4tKpYL7778fH/3oR1EsFvEnf/InKJfLGB4extDQEJ5//nlUq1X8wR/8ATKZDH7zN38Td+7cQTQaxc/+7M9iYGAA9Xodt27dArB9htczzzyDyclJ9PT0IJfLoVQqGcvH5/MhEomgra0Nx44dQyKRMJGLnLNyuWysrFKpdFflCY45/w8Gg6bW3vr6OmZnZ/GZz3wGy8vLRkCTUZdKJeOjsw9vpE+wXq+byjkadKPogi2MVLARKeDeqP//Ax4oCFTwAGjI99OgEhU2zaBFXYcqRLn3VAA3e47uJVWyVOnUgCEblfinSt9Lkd1dEVX4o07qZ1EHsP2jfh0yct3Mmk+lAkoLteoGVyFpP4MMg5YdP1d/igZc0Fdi+yhUE+Z72D67koFCRcoIABhLJJfLoaurC3v37sUTTzyBwcFB9PT0mOdqtXt14POdiUQC0WgUHo8HfX19yGazmJiYwPLyMlKpFOr1OsLhsFGcCoUCNjY2UKvVkEgkEA6H0dKyU/UdALq6urC5uYlSqYRoNIqenh4Tts5gjmw2a4QJoTYy1Uwmg3w+j5WVFbS3t6O1tRXRaNT0/eDBg9jY2ECxWDTwntfrRXt7O7q6utDe3o7e3l6MjY3B7/cjGAw2jAew7QIoFAomQpGh84Qf+/v7EYvFjALCsYtGoxgfH8eJEydw5coVzM7OorOzEx6PB7lcDpubm8YaY3AFGTnfp2utmXAinMf8LPXRaVtUEPB+23rSoB+gEbmw/WO837Yk9Zn8ngFJ9tq20QSFRIlEaB6afufQvckRXLuAbHhOP7ej7IDGwqW238mOKNTruYF042iFDmUEuslrte3SRM1gGoZc0ypSmMWGb1QwEaLiplenvkJJvJfnXu3fvx/79+/HoUOHsHfvXoTDYWPpkflpiL3WK6S1xjOyWOG9vb0duVwO6XQaZ8+exdzcHEKhkLEkGOauFb+z2SxqtZrxGa2srMDv96Ovrw+9vb3Y2tpCKBRCd3c3kskk/H4/wuGwsYIIi4bDYXg8HpRKJUxNTaG/vx9dXV0GugyHwxgeHkatVsOLL76IUCiEw4cPo62tDfF4HNFoFMFgEPF43Ahw1h2kL6xYLCKZTJozwhhByB/6ZXp6etDe3o5YLGZgT1pfhw8fNu4ArYDv9XpRLBYbgmx0bvm5Rp9yTdgRrQqxqf9U1zH3g/rTuE65LokeUCGi5W/7lAgB6/7hs3Qv2kKUSpcqW7onaCGq8qWCUfeIQ83JEVy7gMgANNRbBYxubsXgqdGRuWt0VzNLitqfJkrymXqQoDIMwnoqFAn/0OprbW1FqVQymnYoFDKblFCgLRDz+XyD74IFf1l1Xa2RUqmESCSChx56CE8++STa2tpMBfbJyUncuHED6XQayWQShULB3N/e3o5QKIRYLGbgSmAbrikWi8jn88aKIfP/yZ/8SWxtbWFtbQ0bGxuYnZ3FwsIC6vU6Hn30UQDb1ks2m4Xf74fL5cIzzzyDr371qyaBfnl5GRcvXsSb3vQmPProo8YqolBmm5LJJIaGhkwx3osXL5poxOnpaZRKJezbtw/j4+M4cOAA3v/+9xsLiuNKLb61tRX9/f0NCcvpdBrnz5/H0tISZmdnzRrw+/0miIQWwvLyMlZXVxEKhbB37160tbUhFouhUCggk8kgFArh2LFjGBwcxJe//GWsrKwY+I7rolgswu/3G8HFqELCYoSgKQAJewKN0bIUSmqRc/1opRc7D033hAovFTj6LK4JwsNqWQE71hrztlSgktRfrMWHea0Wj7ZD4h26NzmCaxcQmbk6jgmhKA6uGiWwk8Oi/iENiOD/FIYUIOrP0qg5Chq2hW1TLdG2oKj9MiCE7yUz43WaX8N3KyPhUffc9NVq1eRGBYNBPP744zh69Cj6+/uNf2NlZQV37tzB9evXkclksLm52VAurKOjA93d3RgdHTX+FuYp7d+/H/l8Hqurq5idnTX+sHg8jmAwiH379qFer+P48ePY3NyEy+XC8PAwwuEwADRUU+dRJe3t7XC7t/Ox2tvbUSgUEAgEEI1GzbEnxWIR0WjUlH9aXl5GJBJBT08PFhYWkE6nzbOz2axJPKZVRv8W54c+ROZo0RpMp9NYW1vDnTt3TBFfMlOuo0Ag0GCVEs5if7u6uhAOh41vENgu8XbkyBHcunULMzMzJiiEY5HL5Ywg4frRda0BClz3vIZWtvqUuIa5rpgcrbAdn0XrvxlyQMGk/ilVCG2kwF7HCtVrRC4/o5BSmJNrnW1gdK8DFX5ncgTXLiAKAxUQFASaQwLcfUCjDWnQn2PnbPGearWKQCBgvtPNymfSAV+pVAy0pb4vZX4aCKLMSjVx/qgQpkbOzxk8ocmrZGBDQ0N48MEHMTAwYIR1JpPB9evXcefOHSwuLhrfTS6Xa/BrMOqPbUgkEojFYiY8fXBwEB0dHSZoQwMFfD4fOjs7cfjw4YYoSY4HgxToV+rr60M0GkU2m0WxWDTwqsKLtAiSySRu3bqFW7duIRKJANjxpxWLRQwPDyMUCqFWqyGdTpvoRy3XFAgE0NXVZeYkmUyiWCxieXkZ6XQaGxsbWF5eRqFQaLCoi8Wisb5pudK/B8CMoeZ+lUolZDIZAEB/fz8AYH5+3lTbYBHbVCploGBVZGhBaXoCP1NrSCMAVfDwGSTOMa/VyjCaKsCx4pqzI1spZLn2dZ1z/WgQi63IKVSvqSmquOla0T3n0L3JEVy7gNSPw0VNpsfFz9B21b5tJzMZHYWJvckoCNTZzQ2sFRLIoDWRVzVMChoADYKSEA0TOfl+Xsu2qGCkls/7ufk9Hg/27duHN7zhDTh16pSpusLThF955RVcvHix4fyqaDSKAwcOwO/3m/ZWKtvV1wlVXbx4EW63G2NjYxgYGMCBAwfwlre8xWjGi4uLWF1dxe3bt7G+vo75+XkEAgHjD2NwBp+9vr6OxcVFRKNRJBIJE0pPYUkBwzkNBALwer1YXV3F8vIy3G43NjY2sLS0hGw2i7m5OUxNTeHhhx9GX1+fKc5brVaxvr6Oer2Ovr4+tLe3IxAIGH9KNps19Q8vXbqEjY0NZLNZZDIZuFzbEZGRSAT1eh35fB6xWKwBcs1kMobBZjIZlMtlXL9+Hevr6xgaGsKhQ4eQz+dx5coVbGxsmMCQ+fl5BINBJJNJ4zfUSEZa1nrKNAWBz+dDrVbD5uamYfgMrtGEbv4A2xGPuqa4jnVOtEo7152NZqh/yt4Xmgdm58lpbiChV+4ffSf3JNcisIOGaNsdak6O4NoFpM5g+h00yRjYCcltFhKvmqT6xSgQqekpPKcaox2NRSiHvgQNyrBDmBVGIdHvRt8CmZCtvWoUooYVM/z++PHjOHXqFIaGhrC5uYmtrS2kUincvn0bi4uLaGlpMcmvHs92rb2enh6EQiG0trYil8vd5fdiexcXFw0UF41G0dXVZcLKXS4X0uk0tra2kM1msb6+3uDEp58oEomYwATmSWnkHoUBGRrzuvg9FZDV1VWkUinEYjFUKhUsLi7ihRdeMAEdXAuZTAaFQgFtbW2mbBPntaVl+ziTZDKJubk5E4DB+WBkJPvP6EHOMdBYzxKAscI8Hg9GR0cRjUaxb98+XL58Gel0Gp2dndjY2DAwIqMCac3R78UxYIShwm+cFw1F57rkGlTfrub8cZ03izwkcZ1TSVMfso6d7ifdJ/qjKSKKdLBPNgSp/jCF2vXZDjUnR3DtAopGo2ZD0hJh+DfhDmqMukEVUiEDIvMgVGI7m9UKsy0hfkatVvOZCAnppqTvisxGYTo7kEOhlGw2az7Xyt3U2P1+P44cOYK3vvWtiMfjJvqtXC7j8uXLmJ+fN5F6DIhobW2Fz+czAoTtp/VJoUnYCNjOF7x69SpWV1fR19eHAwcO4NChQw0MlRBZV1cXurq6EAgEEAgE0NPTg1qthunpaVQqFcTjccRiMTOG6vvxer3I5/PGii4Wi0aYVirbFeDb2tpQr9exsLAAv99v2vW+973PCNKbN2/C5/MhGo0iHA6jq6vLrJdMJoOXXnoJs7OzWF1dRbVabcg1o++Pc6UVMDQKk344Wphut9s8Y2BgAB0dHXj44Ydx/vx5nDt3DpFIBJVKxfi2+JxCoQCv12vC+unjZIkqroWWlu2ThBmco4JBD2Rk2+nHo0Ak3GivZ1XgGIzC7yqVigkOUl8wn9cMcreVPLZTrSz6JilgiSao1amRlVybDt1NjuDaBUSIQ5m4whqEF8gUgOZRSbTK+LduMPsedYZrsIXCil6vtyGplM9hSRu1oNRPoFCNara0jChYlcF4vV74fD6Uy2X09vbiDW94g/Gt0C+Xz+exsbFhfFEMObc1ZuYnLS8vI5PJoF6vG1hKK38TAlpeXjZ5WX19fSYijxZOOp02womlk0KhEJLJpIk+DAaDyOVyJpJu//796OjoMAySFTQIHUajUYRCIcPgGG2YSqWwtLSEoaEhzM7OIpvNYm1tDW63G9ls1vhvKLhrtRpSqRSWl5cxMzODzc1NE8ZP2JLwMftuW1Ya3MPxU+tsa2sLc3NzZt1EIhEcPHgQf/u3f4t0Om2ULA2FZ9QmoTKecqB5gc2I1jmtE9tqITSs0ZVqsdt5VLre1Y+lgSJcO7RgNaCJyiPXMtd1s0hBDZ5SBIX+RVuBdOje5AiuXUBkzurMtjFz20lNwQY0RgACjecnkSFRwNihvvo5BYzCk/ZG5L3cvCo0yLz4TAZcEOKksGDdNzKzQCBg2tvT04NTp07h2LFjDZBRvV43Ca88qyoQCBjtWR3q9D0tLCwYCIqC0WZeGoVHX5Df70c+n0culzOW8Pz8PFpbW1EoFBAOh7G5uYnp6WlMTEyYXKh0Oo1sNotQKITR0VHE43Hk83lsbW0ZS4PwZjweRzqdNhGSfr/fwJ+pVArJZBIejwcbGxtYX1/HwYMHcf36dRQKBeMbY4kohu2n02kjpHWeaEGw75pvx0AKJi0zQVoVmGq1itXVVZN3Fg6H0dnZiVOnTuHFF1/E5uYmAoGAWZOqNOXz+QZYkGuFbdCjY/gujchr5rO1hYjuBb1O1zdD8RWaViRDYXAVTIpy6D7gb16nv9kmoDFal2vRTmR26G5yBNcuIIU4uIHo62IdQWDHuQvAJMPm8/m7IhIJpwBo8Ctw4xFa0dI4hBhpGWneEy0vWnwMo7ahRwo+tpXvIrNWJsJ7aLUxp+c3f/M3cfjwYfh8PqTTadPPW7du4dq1a7h27ZqBFNva2kwgARke301lQA/lZF8IlQE7dfS2trYwPT2Nc+fO4eDBgwgEAuaZPp8Pa2tr2LdvH1566SWsr68jm81idnYWW1tbaG9vN8Vph4aG8KY3vQkHDhxAMplEIpEwzGttbQ31+nZBXUbmMUBiaGgIf/d3f2esq4WFBQSDQVy/fh33338/Hn30UWxsbODq1auYmZlBNpvF1tYW9u3bZ6BCzdHj/Kn1YDNhClNdA/V6HYlEwowjaWlpyUQjMr3gPe95Dx588EFMTU3hb/7mbxAMBk3IvsKAbrfbJH1z7VG4ck3YARvq4+LapZDzeDwNxZE1ElUjcfkMrlVNfuZ+U3+XVvegksEx5H6hosb1xT3LMQV2Ima5/1RQ8rkKkzt0NzmCaxeQOpQVFrEdykBjzhdhI25sfZYNxekmJ0NSiMM++pz5Qhp4QUZAYUjIT5Ne2X5lmrYvQfNdCMW0tLRgfHwcY2Nj8Pl8Bg6kz2B1dRVra2smWbRarSIcDsPl2q76wKCHcrl8ly+L40bGodYGx48MaW1tzeRkMfAjmUwiFAqZqMH19XUkk0msrKzA6/Vi//79xsLr6enBwYMHEYlEkEqlEAqFTJuoUBBqDAaDCAaDJmqxWCwikUigtbUVi4uLxmKOxWLGGl1cXDT9KRaLSKVSBtKk0GJfFSZUi962Mmq1mikDRcGq1hAtGyYj04JLJBLw+/2IRqO4fv06rl69ilgsZqJG7XqP9nzwhwoT54Xr2YbWlPmr1aMBD1xXKqB1T+l6ZJv4PM0v5PhoriQFID/nOrStKwolfY72+0elRuE/hhzBtUuImj83MS0Cbgpeo5uTzmCFE8mouNnUd8HvVeMjjEYrRKP6gMZD9DQKi1outXw+R5/BkkO0CNg3MkIyCZfLhSeeeAJPPvkkOjo6sLq6is3NTQwPD6O1tRUzMzP4+te/jtnZWcN8VTNfW1trSHCmlUbhRU1ZK3jYwS60zG7fvg2/349HH30Uvb29mJubw/r6Oo4fP46uri4cOHAAZ86cwQMPPGCCEp5//nlEo1G8733vw4kTJzA4OIhkMmkK2i4tLeHSpUuoVCqmXNPW1pY5c2tlZQUbGxtIpVLo6OgwDJXh84lEwlT48Pv92NjYQDweBwBMT09jcXGxIaScjJHz6PF47ipsTAub64c+MA3w4fyo4FpbW0MqlTL3UQB/6EMfwtzcHP7H//gfCIfDiEajWFlZaVC8bF8r54MBRBpZyO8V5uQa5j7gb1tpU6HpcrkMDEphr8/UvCot7sxnF4vFhvbQ+tI6nuwHlQM9Fkcr4nDtsZwXq4Y4dDc5gmuXEIWWBjnQEqDgUPhEhY86gvVeaqdaioabUjVFPoObmBaQBmyoQ59QDQWoBnBoUIDtA6CPS+ETYFto3HfffRgbGzPCgAygWt0+m2p+fh7pdNo8gxadVn0AdorK8n/2n2TDmxqBSDgqmUwa4chcKfqBRkdHEQ6H0dbWZoIvWBnjgQceQEdHhyloy+TnSCSClpYWFItFY7kxCq+trQ2Li4tIJpPo7u5GKpVCV1cXWlpazLzx8Ef6C9U/R0sLQIOyoYEodtAOieOoz+OY0RKy55C+P56SXCgUkMvl4HK5MDg4iL179+LmzZuIRqNmjap1o9a3+rY4L1qeSeE7nTf1ldl+V13H3APqN1bY1LbUFC69VwCFtldhfX03ADN/6g+mwHT8W9+ZnINfXuekUBw3JAWPbgz94TXcCHY0EzeSbmBqmCoEbXzfhhXVKlGnNn9reR2FqWxLTyEZaq0UOpVKBW1tbRgfH0cikTBh22Ta6XQac3NzyGazd8GWvJ/h1PSnsD380XbxPvZfQ69Z7SKTyRjNnFFxHo/HhMH39vbC6/UiHo8b4dHd3Y09e/agtbUVy8vLyGazaGlpQTwex8DAAAYHB03h22g0agI/enp6jCLw4IMPYmhoyBT0HRoaQrFYNGWq3O7t0HQmMavWTn+iz+drOI+MJZ2AHWbK+xUG47gqw1fmzUCbfD5vUhNqtRoymQxu376NW7duYWtrCw8//DB6e3uxurpqTlm2oTJd7yqEdC1xjSi0q9af/q9RiBqAQdK1xutsRcxeNyS1EnmNrsFmED0tXrUIud4UZXDo3uRYXLuEyLyAxmMbqA1qhKHmV+nm5fESunHJlKlx2xUC+AxaWRp1B+xU19D3kMrlcgMsyXYr5EQGQSGnxXgjkQjGx8fx9re/HWNjY8ZPRXgsk8ng5s2buHLlimHKtFR0XFgxxBbqhP/0aAnmU+l5ThwnVo5fXV3F3NwcOjs7jR+HeVOZTAb9/f0IBAIYHh428/Ge97wHLpcLFy9exNraGn7iJ34CLS3bx5+0t7fj/vvvN+cStbe3G7itv78fmUwGV65cwWOPPYZ3vvOd2NzcxMzMDBKJBJ577jlsbW2Z8k5+v98ESTDZmOO5vr5ujk7hHOv5W3b0HH1f9pxTSFKZoe+Q481ahj6fD8lkEjdu3MDt27dx6NAhvP3tb0d3dzfOnTuHZ555xlSaZzUVzg+w4yPNZrOmTWr1sc1qOeo+aEZ2mLoKG65fnfdarWbWgkJ39A9S4HAs9LlUmihk2X6FJNV/xr1IS1YVMYcayRFcu4DUiqEAIUNRzcz+24ZN+NuGg2q1mhEYzAlTx7YyBQZmMIBCgy0o6DToQiO/lNEw8ZKbXX1iZCSDg4M4fvw49u/fb/KlyBB5VH2hUDA1/jhW7L86ufXZtDB1HBROpFJAZq2Rh2QuyWTSBFEQliSjLpVKWFxcNGPwwAMPoKWlBVevXsX09LSJwmQofGtrK0KhEOLxuKmeXqlUkEwmMTMzg9XVVaTTaUxOTpqcsnQ6bcaQf/v9fpPkrdGQLpcL4XAYy8vLd1nJ/FvrBCoD14g7tUg1CpUKCJO8WYjX7/c3nILMo2G8Xi/Gx8fxzDPPIJfLmQLAVGa47hTW5ryqxU8hq9YR17yuXd1DGpyilhrXiCptaoVrRKwGhagApTDTPWG3w0YsVFgrMqIKoEN3kyO4dgHZi56keLhGRmlEFZkqHdncFPostdzUEa1atW5SfYfNBNQfpJokSTen9o3/KxR14MABHD582JxZlcvlEAwGjeN7a2sLuVyuobisMgtCYBrAsrW11XB8C9/JvtBfRWasNfFYvonWS1tbG6LRKFpbW5FMJo2PZ3NzE5cvXzZJyY8//rgRZLR6WS5p7969CIVC2NraPrWZbSuXy5ibm8MLL7xgnlOr1TA3N4dMJoNYLGbC5zc2NpDP542AtS0mAOaIFfbRtng5J1wLdgSdbaHbwp/rh9GPPMLE4/GYOo3BYBDLy8vw+/1IJBI4deoUzp8/j3K5bM40Y86drk2NDLSjPtVCVCFFC96OfFRYm5amQvD6TN6jY8T1onmN2n8VSDbEqntEoXi9xg4ocag5OYJrFxCZPYWPkjIOYEdrpJbKaDEyGQ2R5/1kTralxHdrzTq1YqiJq+bNd/FZthOb15EJqXZPZhQMBrFnzx68853vxNDQEABgcXHRJOayH/Pz85icnMT8/HzDZrcd6erboh+HVe0BGOhM/RG5XA5ut9skP/PoD8KUk5OT2NzcxP33348jR47g3LlzqFQqJvE4mUyaROHZ2VkAwJNPPolTp05hfn4ed+7cQbFYxODgIMLhMEqlkjn/y+fzYWJiAmfPnkWpVMIv/dIvYXh4GJcvX8alS5dw/vx5+P1+3Llzx0RVnjx5EvF4HNPT0wiFQmZeWW2DjDiXyyGRSJg6iswLUwuNc0IBTiuL88iIQlbEKBQKxrLyer0mIKNYLBqf3QMPPGDen8/nkUgk8K53vQsnTpzAN7/5TVy6dMnUR6TCwXdz7oCdos1cu2rVqzBgrpjuERVG/FyhUIXWFd5TtIORlgrVq9WlcL3dbioKDCyicsXnq1JgK6kONZJjj+4CUiexBmXYjl3bAmLQgAoGjbqzo7Fs6KSZNmiTDTtRE7WhRrs/NlNROCgej2NwcBDxeBz1+nZFDDr81ZrS6hr6XPt9OmYMfde+a34ZGZEyHLU+YrGYqa9XqVSwtraGwcHBBk1ahXYkEkEymUQmk8H8/LwJrFhfX0e1WsW1a9eMxcRow2q1iuvXr2N2dtYcEunz+bCysoJwOIyenh4jLJhkzby1SqViojIDgQD6+/vhcrmQTCZN2DdhLfpugJ1oT7U21F+jpzvbVo4mkxPypdXFslf0YzGSkuukp6cHp0+fhsvlwubmpimAzHlT/6jCymr98EfXOi1KGxrX/cT1S8GhypwdKMH/dW2ocqcWkg01K6rAMVJFSQsCs318p0PNybG4dgFRe7OdydT0gJ0NqJaVVtLQCEKNxuJv9aNp5JPCLCrg1DJTJ7JCLbZzWYUsgLsEar2+XQ/uzW9+Mx544AGEw2Fks1lcvnwZ165dQyKRQHd3NwCYM6RYRJd+LhVOZF4sXktmXq/XjZBQQc5oOwZ6EGriM7e2ttDW1oZQKGQqzc/OzuJ973ufsWA2NzfR2tqKrq4uBINBdHR0mIjEv/u7vzPlmU6fPo10Oo2nnnoKANDb22sY7vLyMp5//nlkMhkcPHgQCwsL+OQnP4np6Wkj0JeWltDV1YWTJ09ifX0dZ86cwc///M+b8P5SqYSWlhY89thjGBkZwec//3kMDg6a4BKuKY4HhY9WbtfP6NskXErLiuPb1taGrq4ueDweLC4uIp/Pm7PAqtUqrly5goWFBezfv9+coLy8vGyCSj7ykY/g0qVL+Id/+IeGPCe2g2uKvli3220UGT3rjdZ8MBi8S6kCGsue6X5Qi5yFpKkAUFDS98h15fHsHNWje4NrRf1XfBfbwPcy+tPe447QenVyLK7XOXEz2BCJfq+/1TJSLVCtJd1ovJfaoUJCJG5S2/pQIaoFdVUDbaY52lg+mRv9PAcOHMDQ0BBaWlqQTqexsLBgzo/SUGv6o7TOoRIFsIYfq9C08+JUOJOZaJkfFbCxWAyhUMhUOWcJquXlZXg824m9rGnIwx9ZgmtzcxN9fX0Ih8NIpVJYX19HoVBoyLNKJBImEXllZQVra2solUq4ceMG1tbWUK1WjX9tYGAAt27dMlUquru7EQqFkM1m0d7ejvHxcRw9ehQbGxvmhGaWWGKqgJ48oH2ngsTrXS6XCSDhPLS2tqK7u9sUQc7n8wBgTpXmeWMbGxu4ffs21tbWzJxQqHd2duL+++9HT0+PEY56soHtZ1NEwYYLATSE8+sab6Z4aUCP7iVdL2q98T2aWKz32fuRa9EOBLnX3iWk6NC9yRFcu4gUtlBcXKOYSApdkTRKSxNObahQYReFJxU+UihFBYfm0djWIPtgQzC0/NxuN9rb29HX14dYLIZSqYR0Oo1cLgcAJnycRV7JdPleaq9kwPpebZsmgarfTwWdwpDqA9LSSzzehe9eXl7G9PS08dHEYjEA2ycGZ7NZ3Lhxw/jJCKklk0ksLi4inU6bKunFYhEDAwPo6upCMpnExsYGfD6fOSRzaWnJaOiZTAbxeNyMUWdnJ+LxOKLRqCn4OzQ0hDe84Q2YnZ1FMpk0h26yij8tVE0qV+HAzzye7Wondih4W1sbvF4vSqWSiVyMRqMmsZoCjgWAFxYWkM1mjdVRKpUQDocxMDCARx99FEePHgUAhEIhI/wIH1LhUCtL16BC1c18q/xt54HZfl7m8nEPKTSpAUAKNwM7fjn9Xn84ruo/Yxv4fM0tdKg5OVDh65yUsWtQBRkJifCKVpJvtvgVMlS4kUxEhZJaYgr76fEqQKPAJIO3NWHer9YLLTWetTQ4OIi3vvWt6O3tRaFQwNzcHLa2tjA8PIzBwUFsbW2ZYzlcLhfa29vNGVCMOKTG2tLSgo6ODhMoQAiNzEoFFbDjyyLToVBUjXt4eBjpdBqrq6v40Ic+hOnpacRiMQN3nTlzBs899xxisRhqtRr6+vrg9/sxMDCAra0tdHR0IBKJIBqN4pvf/CYuX76MxcVFPP3001hZWUFfX5+pLZjJZEy1d87l8PAwksmkCX9fW1tDNpvF8PAwHnnkEVy5cgXhcBjFYhEdHR2o17eDFAYGBvD4449jeXkZzz33HNra2hCPxzE5OWnOBGN/ge1zyBgkE4vFjEAgU2fe1rFjx4xVeOnSJTPmBw8exODgIDweD86dO4epqSkEg0FjcZ4/fx4AsG/fPhMePzY2Brfbjf3792P//v14/PHH8cd//MemVqNWb6fFYyckq1XDaylQudaoyFHp0GK4asERktQ9yHWia96OelQLXaNWqSwSWQDQIBC5p9WPp2H+DjWSY3G9zkmhLaDRauLm4aZQ+M62ivgZhZlWClBrhBtHrSD1melm5G8+jxtS4RTVPtkPfqdQXzQaxfDwMPbt2wePZ7vsE4+V7+npMSWR2F4Wpu3s7MTIyAi2trZMZJseAc9+2AmialVooArHk+dhkWlHIhEMDg5iamoKb3zjG9HR0YH19XXD7IPBIKampoyvrVAoYHNz0+Se0QGfTqdNwILX60UgEECpVMLc3BxKpZK5b35+HtPT05iamjLQGw9epGBmgndLSwv27t2L8+fPG0uGpzUvLCyYaiPHjx/HW9/6ViwsLKBUKqGvrw+BQMAI9HK5jEwmY45f2djYMFVCtHKI3+9HV1cXxsbGEIlEMDMzg76+Phw9etTAvN3d3Uin01hbWzNnotGHmM/nMTU1hbW1NayurmJ+ft6MG882GxgYwOnTp5HP503dSRYbrtfrpvo7ABP4QStJgydojQFoUFh0PXLN8lquSZJaa9wDdiqFDTfaPi2uAf2e77etRScw4zuTY3G9zsm2VDTTnpq4Qh3U1tTH1Ox+WmzcoDb2rzCePketPhWGtlWmPjVCYPo5mQetmo6ODoyOjpqDGjc3N1EoFIzwWFlZwczMjIHAqLlSW//617/eoCXTiW6f1aTRY8qQaH2p36tSqSCbzcLr9aKnp8ckzr7nPe9BvV7H7OwsgsGgSSJeXFxErVYzUZAaScdDLwGYJF0GeAA7p+MyxBzYhvLI0EOhENbX142yQSZM/1pnZyeeeeYZvP3tb0d7ezuCwSD6+/sxOTmJvr4+hEIh9Pf3IxwO4/z581hfX4ff78fw8DDK5TJWVlaMYKJQqFarpio8q1iEQiGMj48jHA4jn8/j+vXrqFQqePDBB40C0N3dDb/fj5dffhn1eh2dnZ24efOmCZpwu7cP52RuHqvYx+NxbG1tYX19HR6PB294wxuwtbWFl19++a61rdaKBjdQAWNYv0ZBUlnSHCwbXudvWk+6drjOmwkZ+17bt8Y1zzZwjXK/NENHdD851EiO4HqdExcuGSw3oCY/ai6IRjMxukyfAcA41Hm/WiP8H9jeOGT8DIfWem565paGR9MHwXeqBahWGZlutVrFj/3Yj+HEiROIxWK4dOmSyS+i3+Tv//7vsbCwgPn5eZw6dQqhUAizs7Po6enBgQMH8MY3vhEXLlwwVppGVTJMnP4cav4atk1N2+v1mvwmtvPQoUOo1+u4dOkSPv7xj+ONb3wjPvnJT+L27dt497vfjUqlYmoWxmIxZDIZMycsA5XNZjEyMmKCF+bn57G5uYmhoSFzLEkgEDAwKKMSvV4vbty4YeDSyclJuFzbuVOESqempnD79m1sbGzg+eefx5vf/GbkcjnE43HcunULGxsbGBkZMZbYv/pX/wqzs7O4dOkSJiYmUCwWjWAm3Aw0Kh/BYNBULEmn05iYmIDX68Xx48cxPj5uctCCwSBCoRBefPFF5HI59PX14ebNm0gmk0YhYqUMVgHJ5/P40pe+hPe///3o7u7G1NQUpqenMTo6in/xL/4F/vf//t84d+6cOa+La5hCSiv7s91U0jTQQY9H0bB2XZt6ercKGLXeVImzFTGtMML9Rv9coVAw76Mw5H5QHy0FsSO07k2O4NoFxA1KjdbODVEHMiEKrfigpNcAjUJKw975v101gBoj26MaqO0fUx+XHuxHpkDhRv9NJBIxx88zKTifz2NpaQnr6+sAto8V6ejowODgIGq17QoWGxsbGB8fR6lUwgsvvGD6wyRPCm+FdRjazLEkc6GlxyCKzs5OY/F1dHSgra3NQHsAzDEjrOrO9wHb+WgayFAoFODz+RCNRjE9PY1sNovp6Wn09fWht7e3gcnSz+Z2u7G6ugoAeOyxxxAKhUyScXd3N4rFohEMLpcLCwsLyOfzCIfDDcEmnLNsNotAIGCiNmu1monYJGOOxWKo17frNmYyGQPNptNpc9ZavV7Ho48+ip6eHqMAEEJcWVnBhQsX0NPTg1KpZCwrrtNYLAa/34/V1VXk83kcOnQIU1NTOHfuHB577DH09vZicXERS0tLSCQSeMtb3oJcLoeJiQkDNbKtVE4YHs/1qT4oTXTXdcz2aPSiIhTADrTNdauQsj6PQlEDNrjWNCLVtvZUmVRrzYksfHVyBNcuIBUmuhnsShr8joEIzQQdsFNjjZuM1hRzWAhPKfOkD4uwH6tPsMo5oSQNJqnXt4+c1yKuqpEyMOCxxx7DwMAA1tbWsLGxgUQigYWFBVy8eBGlUgkLCwuo1+vGcnruuefw5je/GWNjY5idncWXv/xl/ORP/iQef/xxuFwuU309l8uhUqkglUohEAiYahm0FnlGFZkuq5V3dHSgv7/f+JySyST6+/tx+vRpdHZ2olgs4uWXX0Z/fz8OHDhgBMWb3/xmTE9P4+WXX8by8rKpED89PY3u7m50dHRg3759KBaLeOmll1Cvbx9JQnhxaWnJjCUTlCl0YrGYKcIbj8dRLBaxvr6OpaUleDwek7xLAcPIzNXVVUxNTeHYsWMmhL1arZoE5v3795vySBRWc3NzqNfrxhLM5XJYW1tDS0sLRkZGcPr0acRiMdPOfD6PY8eOIRQKYWlpCX/6p3+K/fv3o6urC/l8Ho8++igymQxWVlaMH3BrawuhUAijo6P4yEc+gq6uLvzGb/wGRkZG0NbWhpGREbzyyiv4+te/jne/+9346Ec/iqeffhqf/OQnEYvFkEwmDaJAIaW+OuZ4cTy5F3iuGNCorFWr2ydZ01rn/WodUSFxuVwmT4zjaZdIU4uOCIcNd3Kf2lGH6i9zrK7m5Aiu1znZFoyWnVFHsVpkquXZCckKL+qm1FBdvV/9A9x4Gj6thWvJAGzM3w7Q0ACT/fv348SJEwC2rR0ylfn5eVy6dMkk9hIeC4VCKJVKuHXrFmKxGCqVCoaGhnDmzBm8853vxKFDh+D1ejE3N4dUKgUA6OrqArBToYAMhlYfK7IPDg4iGAwCQEMZo7GxMVMJXoMsxsfHEYlEsLq6inp9++ysZDKJrq4upFIp48ciE0wkEshms5iZmTEafCQSMQyVDI4CtLOzE319fQCAVCqFGzduoLOzE/v27cPS0hJKpRI2NjYafJatra3GMgqFQqjX61hbW0MymUQikYDHs338CoWi5ujxfs4jGTircrBqx8jICDo6OjA/P49KpWIOi1xdXcU3vvEN9Pf3Y//+/SiVSojFYqYgMiML6U+LRqNGiJ04cQLveMc78MILL+Do0aOmLNX6+jouXryIffv24cSJE/irv/orEyXKNUZkANhJagd2YGo7zJ+k0XuqAGpwkfqPuXY12tB+rgb68Hvep1G4vF73Hq1Cfu7QvckRXK9zUvhAN5gKAXtz6WYBGjcwLSaFMihIyMRUCJKYpKraJQUd30OGx/B2DT3nM1mBgcxyaGgIQ0NDxkKKxWKmwOz8/DyGhoYaYD2Xy4VYLIaFhQV0dnaiUqng1KlT+PSnP41vf/vbeOyxx5DNZk0iMPOW6HcLBAIGVqLVQAHR09OD9fV1rK+vm+i5RCKBrq4ueL1e5HI5JJNJA1dRIDKvLJVKYWpqCisrK2hrazMWXygUwtramplDfu71euH3+824BQIBhEIheL1exGIx9Pb2oru7G9lsFjdv3kQsFjMlkyKRCFKpFFZXV43mns/nUa/XkclkTGkpt9uN9fX1hug+JiGzejt9KxRWmrcXiURMcEYkEkE8HkdfXx+i0SiuXr2KSqWCQCCAmZkZnDt3DpOTkzh8+LCxPOjHpDAIBoPmoMxyuYy1tTXMzc0hFovh8ccfx2c/+1m43W4cPXoUvb29yOfzuHz5MrLZLI4ePYq3ve1t+PKXv2ysHUK8qoTpWrOVM653GybkfrKDLfgs3ss1rwqjHkSqFpXt+1WoUa05kh1wxX3l0N3kCK7XOdkQIcvJ8ARdxc81P4Th4vQjcbOpMFJfALV+OuC1EgYAk/BJf4Zi//xNRqk+Nzq7ycQ8Ho+BoPr6+nDfffchFArhwoULqFQq6OzsxKVLlzA9PW3aEIlEzBEetBTJZFOpFP7yL/8SP/MzP4MbN27g4sWLJrfq53/+59HR0YEvf/nLWF9fN1XIW1pajEUUiUSQz+fx/PPPY25uDuFwGH6/H2NjY+ba2dlZI2x4fhYDETY3N035o89//vNGOfD7/QgEArh58yZ8Ph/C4TA++9nP4siRI0Z48KBJ5uD19/ejs7MT5XIZXq8XoVAIk5OTmJubM4JwdnYWpVIJY2NjaGtrw+nTp40AoyXHOQkGg+js7DQh7rQw6/U6IpEI+vr6sLKyYvK10um0KVhMoX3y5EkAwOzsbINv7OrVq1hfX4fP58Pm5iY+/elPY3BwEIcPHzY+M+axeTwetLe3o6urC5VKBe3t7bh16xbOnz+Prq4urK2tYXZ2Fnv27MFP/MRP4Omnn8aXvvQl/MzP/AyOHDmCL33pSzh37hxu3ryJn/3Zn8XJkyfxxS9+EefPnzcWENcqrWQqYQAa9gUVJlrcGmihvi3uD71ffWV6EjP9t0Qn9EeDSdQC02ASYOdcO1rd3JMONSdHcO0CovWiwQ/UKG1rhxuL0InmPtmRUGSYmhPD6uSqgdqRjcFg0EBbiscTmqzVdk4RpuAkBEXIcmtrC0eOHEFPT48RtNTMb9++DY/Hg4GBAZTLZVNWiTCX+q5GR0exsbGBl19+GYcOHcKFCxdw3333YWhoCC+88AI+8IEP4H3vex+mpqawurqK1dVVY0FUKhXcunULwLZg7u/vx+joaANMxoMWGf2WTqcRCoUa6kASPsxkMhgZGUE2m8Xq6ira29sRDocxNzdnKkmsrq4ikUhgeHjY+Hk6OzvNPDOyjQI6m81ibW0NwWAQ2WzWMLapqSmk02mMjo4iEomgVqthc3PTWG1sm/oYaWlxLfGQw3w+j7a2NuN3rNVqRrAODw+btUa48MaNG5iamjKHQF69etXkjdFf2N7ejra2NrOGyZR5SGcoFEIkEsGePXvg9/uxsbGBYDCI++67D+VyGd/61rcwOzuLffv24eDBg7hx4wYymQwKhQKOHDmCcrmM8+fPN4S38x2aMqDwtcKIqvQprK1rnutbAyYU2eC+U2uMQVHccxRCXPPcL1omSsPybWvOoebkCK7XOdEprCG8dkgv/yczBmDq3pFpcdNRCyQEomG5hFaYNMtIKbfbbYRKsVhEW1sbPJ7tI+n5fPqgKFx8Ph+AHV+aCk/CWG9605sQCoWwurpq8oyi0SimpqawZ88eHDhwAF/84heRTqcxNjaGnp4e7Nu3D5VKBZlMBi+88AIWFhZw6NAhLC4u4nOf+xz279+PW7du4fjx47h16xZ+67d+C7/yK7+CsbExnDx50pRfAoD19XVsbm6aMSkUCjh//rwJJff7/Q1Fdvmbtfp6enpMoi2L1/b29pqq6JpKcOfOHbS1tWFoaKghCOKJJ54wvrqNjQ2jTLS2thqrOhwOGz8TYd1cLoeFhQWsr68bSyYej6Orq8vAe6lUyjDP5eVlRCIRhEIhXL582byDuW7JZBK3b9/G3NyciZ7s6+szJa7a2tqM8Lx48SIikQiWl5fx9NNPG18bYdkf//EfN0pVuVxGNps1AT+tra3o6OhAOp3G29/+doyPjxsoc9++fTh69CjGxsbw0EMP4b/8l/+C69ev45/9s3+GY8eO4dlnn8XnPvc5vOUtb8Gb3vQmvPjii/j6179uUg804pVJy4RkaVExSrZZJK5WkdFADO4vjRDVvCstn8Y9RwHFNcB3adEA7m99Ntvl0KuTI7he52QHSOiG0ygl1SipldOnolaZbaE1y+HSTWXfR0hD/QnckGQCrObANmodPFoTfX198Hq9SKVSWFpaajimnRFeiUTCRI4dOHDAlEyiRTA0NGTgreHhYRQKBayvrxuI7fDhwyiXyzhz5gwefvhhcyhlOBw2DJu+pWq1auDVYDCI9vZ2uN1uk3tDWJWBEx6Px5QjoqUZCoXMESbVatVUvAiFQg1QkNfrNYKN1pv6GWOxGNrb27G4uGhC6hlZyarvhLuY5wbsHHXPYAn1ozCEHAAymUxDu6iQsGpFNBpFX18f2traDOzGNbe6umrgtpdfftlYv/T3ES4mwyaptc6qH/v27UNXVxdWV1exvr5uFCgWDh4ZGTGnPrN24+LiIr797W+jo6MDjz32mMn5Up+SQnLcOxrYxFw0hQbVp6V/87euddvnrKWkKLDVV8XnqbDT/WsHLdlh9w7dTU7Jp9c5qVAAdkLZSdyY+h0XvYblUvjwB8Bd2p36vLSMFDcpNVJ9BjemXY3bzmkhA+VBeb29vSiXy1hcXEQymYTH4zFnVvl8PuNrY/BCZ2enKbxLZjkyMoKuri5Uq9vFauPxOEqlknlOsVjEvn37kMlkcPHiRSwtLaGzsxP9/f3myA2Px4N4PI5IJAKfz4d4PI6enh7E43EjmMLhMCKRiKlIQWtSmRirYGSzWdMfMrtwOIy2tjZjOTFPTU8/pkVMod3R0QGPx4Pu7m6MjY2Zo1u0cjrTGAjN8kTo9fV1JJNJk6rA9cC55dlf+XweLpcLgUAA2WwWmUwGbrcbXV1d6O3tNXUK/X4/3G43Njc3sbq6Cr/fj3Q6jfX1dePP4zE0HR0d2NraMkLQ7Xab+7kWmXKh1iEDYgiphUIhPPDAA4hGo5iZmUEul0M4HIbLtX222Isvvojjx4/jgQceaBAqtgIH7FSo4F5S+E+hcE3K5x6gwqhRmCp8eB3HmEgGv9eIQz6DigqVR+7FcrnccGKztsWhRnIsrtc5aeAFNThgR0jZ4cvATgkcOzRdE4V5ui03udvtNhUkNLKKDIcwICFIYMf3phUKdPOyHWS0bHd/fz9OnjxpIt7IuDc3N01iL8OhWSg3HA7D49k+QZfH3kejUYyMjBj/ErAd+l4oFJDNZrG4uIje3l488sgjePnll/GJT3wCo6OjGB8fR3t7O5aWlkygAgBks1kDEba1taFcLiMajSIcDhvLj7lg5XLZnObLeWL/9u3bBwBYWVlBPp8345ZIJMyYHThwAMePH0cqlcKdO3dMpQwWfU2lUsjn8xgdHUWxWEQ2m0VnZyfm5+eRz+cNw2c+UTabRU9PD8rlsgnWcLlcJviEQi2TySCVShl4kAWCb9y4YZKQ9+zZg3g8bqymlpYWTExMmPqKq6ureO6550zE5aFDh/D000+jt7cXY2NjyOVypt4hozip8FCxSKVS6OrqQjQaRSwWw/z8PObm5jAyMoJkMomtrS28+93vRmdnJ/7P//k/JqKREN7NmzdRr9fxC7/wC/jWt75l1o1Gx1JIUmhpErYKFA3SoGBSJUzTOeywd1qrvEcjGYk+UHAqZM/9oyH5REm4Dx2L697kiPTXOanmaMMO/J+blbAFAxlUC9QIJwoj/vAzbhbVMNVBbGuz3KzATpQU38nCrGoF8hkM5wZ2nPbaHmrxXq/X5FWRAoEAotGosXrod+rv70dvb685CoOC2eXaLp903333oa+vD5/+9Kfx4osvYn193fhtGJyikZQs/6TFVoFta4V5RPl83igLTJROp9NYWVkxfXe5XCbxdmFhAbOzs7h58ya2traMkFSNn/6V+fl5U+B2cXERuVyuIQ9II+fUb1mtVk3YPktPsRLI6uqqqaxBWJURc4VCwYwlgzYIG5fLZRN27/F4cOXKFeNTGxoawtLSkhnD+fl5c8jnxsYGJicncfXqVfN8ACavLRqNIhqNoqOjA7VaDaurq6Ze49bWljmjK5/PY3p6GsViEQ8++KAJeHjllVcQCAQwPj5u5suG1O1oPzvASS0xu4CuBnbwfxVcCpvrXCikaOd88Xteoydy616wow4daiRHcO0Csjcg0HjciQoXhQS5Ufm/Yv8qmBQiVDxfYT6FK7nBdGNpG/1+v4EXCTlSC2WIvp78ymK2xWKx4Z5YLNag+TNQIhqNmmRatoM5Wi0tLUbj57EfLS0txsp76aWX8KlPfQoXLlwwFh37wVwv1jIE0BBckM/nUa1WTSAL28tAgEKhgEQiYY4+YX4XrazFxUVMTU0hmUyaBOFYLGbOreL8lkolY63lcjncuXPHBI/U63UTKu/z+ZDP543QYIkmVtanFco1srKygtnZWZNczaK6PPfMrgDBoByG0zOwZnNzE9FoFGNjY/D7/bh27Zq5bmpqCl6v15TvWl5eNgdhMnhoY2MDtVrNKA6dnZ1oaWkxFl0kEjFrZe/evUgkEqYe49DQEEZGRlAsFvHCCy9gZWUF999/v8lx43irz0n9XhqRy+vvlfirAk/J3hN8PvcM4T4Gh3C/6h6022TDmyokHbqbHMH1OicKCwANFSt0kwA71QMYxq3HlnAj08+hCckAjH+EQkfhQB4XwbYo7KGOe9VyVYskk9CaeYw2Uw2TkXhMlG1ra8PBgweN70Q1XRVSTOJlv5l0XKlUkEgkzFEf9XodHR0deO973wu/34/f/d3fxaVLl+DxeDA0NISOjg4kEgljBdRqNaysrOD27duYmJjA5OSkCXfv7u42kYB8J9vG4Il0Oo1CoWBgOs3tikQiyOVyJhHb7/fj5s2buH37tvE/MRquWCxiY2PD9F8tUB4gSb/XxsZGQzIyfUU8uPL69eu4ffu2EVoM8V9dXTVVSwhXuVwuxONxFAoFTExMmDVx+fJlHDt2zJzk/O1vfxttbW0YGBhANBrFnTt30NfXZ6rA53I5HDhwABMTE5iZmcHKyop5HoVkV1cXfD4fFhcXUSqVTM4XazJ+4AMfQCKRwLlz53DmzBksLS2hUCigra0Nn/3sZ/H2t78d73//+82+UCVJBQKtJ5Y245rXM+yovPA6RpGyP3o/1zOFE/cdoWRamc0qZVA5YLAS9yoVSVrfDjUnR3C9zkmhDS5o5kYBjVi7HSFl+5w0cEKjEWm5KY7P+/ijWqcGedBa0/vsYAP1tdHPUSwWDRRIC6dYLGJzcxORSASxWMxYFm1tbdjc3DQbmQIDgBFefDYLvWYyGVMZgyHvLtf2sfMHDhzA4cOH8Td/8zeYmJgwhzvS8iHUasNOAEyeFCPjKAAKhYKBSAk1kflQkAMwlpEKDABYXl42hWjdbrdpE5ki54oKAa0xfscoQo6F+jk5NywPxTksFosoFArGf8lSYlxjLS0tJneqpaUFq6urSKfTpkbhtWvXMDAwgIMHD+LSpUs4d+6csZA3NzcRj8dN+zs6OrCysmLaf/HiRUxNTaFSqSASiRihn0wmzbzS0j1w4ACOHDmCcDhsINRQKITe3l4jPI4cOYKjR4829JnKEomQnlaI0fEAdtAERjhqKSmFatU3rHuIVpUNMep9VAB1LynUyL3pBGfcm5zgjNc5UfjQUuImoFCg5qZ+MMXVlRQyJDG4gxu9Xq8by0AP5qNfgRva3rz6mVZjZx9oQRBqm5mZwbFjx0xZnzt37mBychLpdBonT55EPB7HzMwMstksTpw4gaeffhozMzMYHBw0VTTGxsbgcrlMTUL6OI4dO4YjR47gU5/6FEZHR3H27FnEYjFTdDYYDOLxxx/HV77yFfz5n/85wuEw9u7di3g8jpGREVO2amtry1hADNCYn583AQ9XrlxBf3+/CWzh2NrpCUyg5inDhUIBGxsbmJiYMBGQy8vLGBoaQigUgsu1fXgmIT+OJa00BqPU63VzHhiDXmjl8Zrp6WmTZxYOhxEMBo2/jGdqbWxsIB6PAwDa29sRiURQrVaxvr6O6elpU3Xf7d6udnLhwgXk83l0dnaivb0d0WgUb3vb2+D1epFIJDA3N2cqi5RKJVy+fNlU+3e73RgYGEBrayt+/dd/Hf/6X/9rnD59GseOHcO5c+dw9uxZFItFY1HfuXMHR44cMWvp7NmzJsI0lUqhs7MTzz77LB5//HH84i/+Il566SWz3lQoKfRmW5bcK9xHmrDMklZURhghyb2jSgrfoVG/3KPcP1qMmm3j9Vw7GtTkUHNyRPrrnKiBKQxIa0M1MoVEVNNU7Vudz9ww6igm8Tm6sSlwFOLTcHsN7FDLjRo24RgyhKWlJaTTaSPsqNnXajVTyZ19SCQSCAQCSKfTBrYEYJKgl5eXDexDvxatHFbMmJ2dRSqVMnBSpVLB/v370d/fj8997nO4cOEC0um0CQOPRCJIJBLGlxQOhxGLxbC8vIyFhQUAMMd10C+TSCQafF4K5VLA07eSTqextLSE69ev4+bNm+jv7zd1GkulkjnXinOrAlH9KbTCKpUKYrEYhoaG0NPTY6INl5eXzbgyoAWAqXlIf6SeRM3nbWxsGIFcr9fR19cHt9uNiYkJw+hv3LiBl156Cf39/RgbGzNj5vf7kUqlUKlsHwq6uLiIcDiMVCqFzc1NbG1tYX5+HmfOnMH169cxMDCA7u5urKysYHl5GbVaDZFIxKzb/v5+7Nu3z0Cu0WgUi4uLKJfLuHr1KtLpNIaGhtDZ2WkYvlpJChtyPhRNoHKowTg6Z/yx0QzuMQpl9UFrcIYdTk/BqVaa+qB17zl0NzmC63VOqoUps1IoQeEFoLmDmZuE39uaITcptUjCJNysdhkahV1sP5dGVSmjZRSez+fD3NwcNjY2jK+BeTwMtGB5IVppm5ubZiO3tLSYyDcmr5KxzM7O4saNG5ifnzeh5Ovr67h8+TLu3LljitiWy2UEAgGMjo5iYmICX/rSl3D16lX4fD5EIhETvRiNRuH3+xGLxUyoPY8fIeTH40tOnDiBwcFB4/dSLV8hUwDG0llYWECxWDTnejEQIh6Po7293Sgi6vRX6InVS9SvxnXi9/vN+VkATKUMWgEK1dJ32NbWhkqlYoIwGJo/ODiIeDxuwtB5uvPGxgauX7/ekErBoBoKKPr93O7tXLBMJoN8Pm8Oujx79izC4TAGBwdNGkO5XDYVQYrFImKxmLGKE4mEsdRXVlawtLSEmzdvoqWlBaOjo2aMuCa4DwjdKiKhMJ8qBronOGYcd86JHYGokDLfqXtH95qthHBMNXzeCc64NzmC63VO9XrdVKLQqCS1rgAYRkRrpVkBUcIVPp/PFD8FGmu08Z3qk1LNVP1sdmI079UNrhotsFMnb2ZmBplMBmtra7h58yYWFxfNPa2trejq6jJ1DC9fvmxylhYXF5HP5+Hz+UzuDwMxmJs0Pz+P6elpIyRLpRKuXr2Kz3zmM0gmk8bSYGmrt771rXC73fif//N/YnJy0giCjo4O7N+/H4lEwiQme71epNNp9PT0IJVKYWJiArXadrWKxx9/HEeOHDGCQQsWU9FgHUg9n4nMuVwuI5PJoFwu4+DBgzhy5AiSySQ2NjbgdruRTqeRy+Xgcm2nFDBggGOeTCaxuLiI9fX1hlqDPCaESgkZo9vtNsEbLpfLhKYnk0lzLMzly5dx5coVtLS04MyZMzh06BB+7dd+Db29vWhvbzeWLgMWKJRoOQ8PDyMej6NareLmzZtYXV1FNpttOPLlG9/4Bm7dumXG99KlS/jWt76FQCBgjk/Z2trC+Pg49u7da+ZlYGDAQKB///d/j4mJCTz55JMYHR0165nwMYCmaAP3jgZccI/QcibKwfu1Kr2udQo4PtPlcjUUu9Z9WygUjLAkCkByfFzfmRwf1+ucNKCCm8LG4PmZWlfcIJrPBeyUpFFt0L5H30GyIUXbF6AbmHg/289rqtWqqRTBskssSNvf34+1tTWsr6+bWoeFQsEEOzD0GwCi0ajxpVGAsl8Mox8YGMDLL7+MeDxumI/X68W3vvUtPPHEExgYGEB7e7up8DA0NIRKpYIXXngBJ06cwPj4OFpbWw1Myf5SEBGK3NzcNKHyExMTmJqaussyZd/JxPg3rQ4+l5am3+83gQ3d3d1YWlpqCHDR3C2Fj+v17VB5Wq7VahUnTpww0CEZqx2kw7kPhULmPC8Kt/n5efj9fkxMTGDv3r1497vfjYWFBePb2rNnD4Cdk6ArlYoRXOovYyAKS3oBMAKgUCjg1q1buO+++xCLxTA3N2f8ncFg0KQPUBClUilks1ns27cPm5ubKJVK5uiXo0ePYmBgAHfu3DH5YroHqDjZlhHXLv8mxKv7RPeARgcqZKj71t4vqkRyL3IsiDSw5BXf61BzcgTX65y40dTZDMD4KzRCirk33Ggs3AnsRKUp/EGtn8KPmp8yXaBxE2qYMaEnYMfpzJBgChJaLy6Xy1RpSKVSOHr0KACYAAz6j3K5HI4fP46BgQE8++yzKBQKGB4exu3bt9HV1YWOjg4jjGiJ8HBJv9+PU6dOYXR0FD09Pbh27RoefPBBXL16FTMzMxgdHcXp06dx5swZJBIJvOtd70Imk8GVK1fQ2tqKQ4cO4dKlS7h69Sp+4id+AuPj46YcVDabNceLADCWUTabxY0bN7C0tISvfvWr8Pv96OnpwcrKioFcKXAymQwqlQra2toQCoWwZ88eUzFjeHjYHLPS0dFhave9733vQ39/PyYmJhAOh80hjK2trcjlcsafpD4sZZbRaBRtbW3Gym1tbTVV4oGd0wMGBwexZ88e1Go1zMzMANguQtzT04PV1VUAwMmTJ+HxbB9RcuzYMUxNTWH//v1ob283806hSSHq9/sRDodx7NgxZLNZPPPMM6ZiiVaQ/+IXvwgAOHjwIJaXlzE9PY2zZ8/i1KlT8Pl8pkJ+X18fXnnlFTz77LN473vfi3q9jm984xvo6urC1atX8fjjj+O9730vnn76aUSjUWQymYaoUy1jRguKc0SBYfuIqZhRsHBv0JKmgKSiyO9tZVADp5igzvboNfzOgQrvTY7gep2THVLLz7SmGf1NWlaJVgGLxKrFplq2vkOFnFpswI5QaxYNpe2jwFLNnpuQ/7MSPCPuKpWKqfIAAIODgwgEAlhdXTVWis/nM7BTqVTC5uamgVDpH6C/hpXsAWBpacmcD+V2u3Hy5EmUSiWcOXMGMzMz5ggQCuyBgQEsLi7i/Pnzxo/GArTZbBYdHR1obW1FW1ubge5WVlawurpqIv0o0NmfQCCA9vZ2jIyMIJ/PY21tDQcPHsTx48dN+Hi5XMbS0pI5XuTGjRtwu90YGRnB2NiYCW6hlccEZj0RgD5J5noFAgEzN0w5YH1DQoYsvnvw4EETZcjTlXO5HILBIG7fvm2q9odCIQwODmJoaAjPP/88BgYGEAwGjTBi1KMWAU4mkyYIpLu7G7XadnV79dfOzMzg+vXrGBkZQX9/P9bX1zExMWGCNsjM+/v7ce3aNZPEzIAYBs8UCgWMjY0ZGNJGJXgMSjAYNDA8rVWuAw3keDV/GICGyvQUXkQdKAz5vY1S0Irjdeov033k0N3kCK7XOSm0p9ACNwA/I1xGDF8jpYDGSEENzqDA4YbmhlI4CWg8l0uTJTXfScvg8Nlac41+ARaxzeVyJheJm93tdqO9vR31eh3pdNoEQLBMFIVWMplEvV435Z20LUz+9Pv9uHTpElKplDkDqrW1FYcPH0Y+n8fXv/51HD9+vKGeXyKRgN/vx8svv2xCxwlNcVzpS/T5fNjY2MD6+jqy2azxUbE6O/0eIyMjuP/++zE6OopkMolUKoXx8XEMDg5ifX3dlIEKBALo6ekBACwsLKBS2a7UHgqFMDIygomJCbS0tKCnp8cIbFa/4LEq9XrdnDJMP2YgEEAsFkNPT09DkA4FazQaRWdnJ1wulyl67Ha7EQgEjA9PA0U8nu2zuSj4GLavik88HkcoFDJrjYKnq6sL4XAY6XQaCwsLyGQyBsa8cOECTpw4gXA4jM7OTty+fRuTk5PYu3evUXAIUbLQcjweNz7PcDiM6elpnDhxAv39/bh586YRRhrYYitsFLLcE4QkaUmxT4pucE/xfj5P88Z0/2qQDj+n0mHvbRWSDjUnR3C9zkmDJPjDCDAyaWCnsC41fo1k4oalECGT1wKkKsTUj6Kh7tom3bQul8s4m6nhamgwr+nq6kJrayseeOABtLS04Fvf+hYKhQK6u7sBALFYDH19fQiHw1hbW8PGxgZWVlZw/fp1jI+PI5lM4uLFi3C73YjFYhgbGzNjQSbg9/uNb+zQoUNoa2vD888/j1OnTuFNb3oTkskkWlpa8Na3vhWtra04c+YMfvzHf9ycZsx2HDp0CFeuXMGFCxfwyCOPANiuRzg7O4tQKISuri50d3ebk4cBNBTgjUajBjrr6+tDtVrFl770Jayvr8Pv95vaibOzs5iYmEAqlcKhQ4ewZ88eMy8co/7+fiQSCbz97W/H5OQkJicnTRkozY3r7u5GKBQyPsBarYZHHnkER44cMVXW19bWsLa2hlKpZCpetLS0mECT69evY9++fahWq5iYmMDg4CCOHDliQuPv3LmDO3fuYGVlBdFo1ITL08KsVqsolUqmsoUGCgHbVmAwGDQCjMeWDA8PI5PJ4K/+6q/w0EMPob29HdevX8dXv/pVPP744wZiDgaDGBwcxNLSEq5du2YqyE9NTSESieDmzZsIhUJ44oknzBlhXOMajcpqKsA27M69ZK9ZDX5igV/9nta1Bnwo/Md9wyhPzctUPyWhewB3CT+H7iZHcL3OSaP6AJjKBgAaIAf7HhUuJFuz00oUam1psIXmkfHZ6jjWyCfF8zUwRP1rLClF4UKGQq25u7sbbrfbVJa4fv26SeBlrUCv14toNGosLdWUSS6XC+3t7Sa/aWBgwPiWyKAeeeQR+P1+nD9/HgcPHjTJwdVqFV1dXYZRUzlg8VhClDyYkW3gWU9MkHa5tk8Znp2dxdWrV7GxsWHO2bpw4QKGh4cxPj6OmZkZzMzMoL+/H6FQyJxPBgCrq6sm4o2V7o8dO4aXX34ZKysrWFhYQKlUQj6fRzKZhMvlwsDAAGKxmBEQ7e3t5qwwJmv7fD709fUhkUggn89jdnYWs7OzxlKcnJw07Th//jympqYM7KwHKgI7h4Vy3TAHjHlzgUAA8Xjc9KNQKMDn86GrqwvZbBYLCwuo1WqIxWIm6fnAgQMmYGdyctIcscIITlas37t3L0ZGRrC4uGiUhqmpKQwODqK3t7ch94+CRfO87MALfsY55D5gH3Wt670Kw9tRtXYIPt+llW1sS1D/d+hucgTX65zsBW0LKzuEHWgMTVfLRzehhttqrT0yJMX47Q1LX4GdbKk+C2qg6gx3uVwGwlpbW2vwK7BCQSKRMHlbL774IlKplDm7i4wwkUiYgx7JUGxnOhl/Op1Gf38/2tvbGzTkdDqNaDSKo0eP4uzZs7hy5QpGRkYAbAcseDwec0zI8vIyQqEQCoUCYrFYQxUFBj/wCPtYLHaXs71YLKJYLBrLMpFI4OzZsxgYGMDRo0fR0dFhxkML4K6treH27dvIZDJIJBKo17fPJQsGg4jH4+YkZ45jR0eHSfj1+XyIxWJYW1tDKpVCOBxGNBo1/i/+zwTuqakpAMDY2BiuXbuG69evo1ar4eLFiw2+K4UDE4mEGS871JxzSEujpaUF8Xgc9XrdnEI9Pj6O0dFReDwebGxsGIVgY2MDS0tLBlo9d+4cenp60N7ebsbd7/djamoKS0tLOHLkCG7dumXKUS0sLODo0aPo7e3FzZs3DQJAwabRgypkdN50PxHJUAiP+1J9XOrP4vdU4Ihw6J7WNaL3UAlzBNe9yRFcr3PSDUWNVRc9rwFg4DL1NSl+T0YP7GifKnzUalGfgBbZ1UAGtfS8Xq95D//mPYTwRkdH8dBDDyGVSmFychIATF1CRuOdPHkSS0tL+PznPw+32403vvGNSKfTOH/+PFpaWjAyMoLe3l4Eg0FUq1UjoEqlkrHYeCrwV7/6VUQiETz55JNwu7crPjD3i8feBwIBHD9+HMlkEt/85jdx//33o1wuo6enB9Fo1EQaZrNZeDweo+2zft++ffvQ3t5uShul02mk02ljlZTLZZMgzYCEen079Pz3f//3TS5UtVrF7du3UalUsGfPHiwtLeEb3/gGWltbsbKygnq9jueff94oFnoUC8d5fX3dvDeVSqGtrQ2f+9zncObMGTz00EP4sR/7MZO8S+vu6aefxrVr19Dd3Y3Ozk4UCgU899xz2NzcRCKRwPj4uJl/+kF5/lQgEEC9vl0DkVVQODYsIEyrk+epsSL8+vo6lpeX0dbWhr1792J9fR1zc3NwubbPEJuYmMD4+Djcbjc+/elPY3p6Gu9973sxNjZm6iOeO3cOL730En7xF38Rc3NzuHDhAra2trCwsIBIJIJHHnnE+A/toAifz2cCVAA07BfuKRUstsDifqFi2CznijmEqnyqEOVe098UYipEHbqbHMH1OiduCF3IqjHaeSEUKHZulu3wtasEUFtWi4nvZZ1BtoGbz7YGNVJKLTeePdXb24t4PI5r164hmUwahkYoaWxsDCMjI5idncVLL72EI0eOIBKJIJlMolqtmgK3AO46vK+1tRXxeBytra2Ynp7Giy++iCNHjqC7uxuLi4tYXl7G0tISrly5gq2tLQOV1et1fOYznzHH2NPqymQyJiF2eHjYFMDd2toyldKpIBDyGR4exq1bt0yhWJ0b9XGQWTJIgXN5584dvPLKK2htbTUV0ldXVxt8IpxXChEmxiozrVQqprTS3r17kUql8PTTT5tEYxYfrlQquH37NqrVqoFVZ2dnzUnGDHzI5XKIRqPmvfSh0ZpWmIwHbhIKHhoauivvjoWQb9++jWQyiVgsZtYCLUEeekklYnJyEi+//DLGxsYQjUbR09OD1tZWc2Bmd3e3KSlFhWZ4eBh79uwxxXzViuKYK0zO7zmnqhjZgU1c4xwDtb64n3iSg1pTWlKKfjWNVuTn93IDOLRNjuB6nRNhIG4EzUdR7Y9wm/qTKMTs0Fo6o7nR+Az6jLjRuIE0MrFcLpvqD9zgHo/H+Ku4GbmhaQmNj4/j2LFjiMVimJqaMjlNhUIBqVQK73znO3HkyBG0trbiv/23/4br169jz549WF5exubmJvbv329yqmhVsFisx+NBV1cXtra28Bd/8RcIhUJGW3/22WeN9RCNRvHzP//zCIVCyOfzuHHjBrxeLx544AFTaoeMbWFhAYuLixgaGsKhQ4dMGaR0Oo2WlhaTQL20tIRkMomenh60tbWZ04V5vhWAhgRp/s8qDeoTqVQqePbZZ/Hss8/iPe95Dw4fPoyvfe1rRlmgwFO4lgEhqv1zXmdnZzE0NISuri643W6cPXvW5NItLS1hfn4etVoN4+PjuHXrFubm5rC5uYm2tjYzdx6Px5yXBeyU26Kiw4MnZ2ZmTOJ0V1cX9uzZgzt37mBxcRGbm5vo6+szgjIWiyGRSGBkZAQLCwvY3Nw0RYw7Ozvh9/sxPT2NaDSKI0eO4MKFCwiHw3jxxRfR3t6Ohx56CPv27YPH4zG+t3379mFxcdFUqL906RLuv/9+PPLII/ja175mhAjzDTV6kEKNY0vYmkETam1xjKmUcf1zT1KhINzLorxap5DP0Xdy7wCNUL9DzckRXK9z0vBbWjEul8toaroRbEuMpNoeN5BqmgoB8plqrfG3QiJ2XopaanZEYr1eR39/Pzo6Osx3FIYUPj09PahWt8sCvfzyyxgYGEAmkzGn67a3t8Pn8yEQCCAcDht/FQMneHZWLBZDf38/tra28OUvfxl+vx/Hjh0zJy4Hg0EDcdGaaWlpQSgUQigUMgw5EomYgx+HhobMu6k8sKIDQ7RZOZ6WVTqdNnPFsdAyQZp/pmHmTKZeXFxEPB43Sa8a/EBlRqPXNDWCVijPuGKtxZ6eHqPFLy0tIZvNYnh4GNVqFXfu3DE+M64JBsG0traacHcmlNt+HAbO5PN5+P1+c4JxuVzGzMyMCXYoFApmzoaHh01EI+FP9pP9Gh4exvr6uoFgz58/j+HhYYyOjiISiSCVSmFjYwMDAwPGJxkIBDA5OYmDBw8iGo0CwF3rWUtVaRQu1zPnhaTpGmohqX/V7/cbS5bRlrYvWp+n+5sKKfcQBaxDzckRXK9z0gXNiDr6SzS6kBtTS8goFKibVjeTRoIBOxAiP1e8nVARN7VuYPUNsM2E5Gq1Gnp6ekyAA7AT4UhGPzw8jM3NTbz00ksIBALo7e1FMpk0Fg5rMLIgLICG0OZr165hfX0dDz/8MNLpNF5++WW0t7c3BHEUi0XMzs4ikUiYUHVgO0mZAQ9MTI3H44bxz87Ooq+vz0R0trW1IRAIIJVKmbZkMhnMzs6aEPGWlhaUSqUGhqnwra108HwvRtwtLy+bOWDRXo6XRrMRKtQ51mCbxcVFY5FGIhFTWqpSqSAYDKK1tRVra2smEdntdjecAq0HVyoMxvWj3zH0nD4uKgtMQvb5fCaQo1arobu726yhUCiESCRiLHfCgw8//DDuv/9+3LlzB7dv38bMzAwuX75soOe1tTXMzs6it7fXFAiuVCrm9IFQKGTGXv26Wv6KQoICTH3IXNe0jtlX/Vz3mG0lqeKnUCWv5f5QiJ+V+rmHHLqbHMH1Oidqhgon0d9DomZHxkjmZhM3KrV9dT7ze2rzFF4a2q2bVMvjKLSofja2saWlxZyjdefOHeOf6ujoQC6Xw2OPPYaBgQE888wzeO6553Ds2DEAwMbGBsLhMNrb2w3kwvJDPOV3cXERi4uLJjfp85//PAYHB82R74VCwYTU85yn7u5uEw3IKhvJZNIEUbDqQW9vLxKJBJaWlnDjxg34/X4sLy+jq6sLjzzyCNbX15FKpUw4+dDQEDY3N7G6uoq2traGI0EAGD9ZrVYzgoHvJ1xFCHR5ebkB9lUFghCWQly0uGiJ0SfZ1taGer2OVCqFqakpRKNRkxfW1tZm8ro6OzuNz4x+KGDbl+h2b+fNce75GdceAOzbtw/JZNII61AohMXFRRQKBbS3t+PWrVvGsgoEAlhfXwcAY2F2dHSgq6vLnAi8Z88efOpTn8LGxgY++MEPoqenBx0dHbh9+zaeeuopbGxs4NFHH4Xb7ca3v/1t9Pf3o7e3Fx0dHchms0agHTp0CP39/bhz545Zrz6fr6GCPyvqs3o8fboKwaqVxv1AmJZ7oFQqmZJX9jE/6jujsFTfpCqnVCQdqPDe5Aiu1zlRs1NfFy0tMjL+qEBSzFzDa+1Qbf1Ow3+1/I3i99ykNoSouLxW+2AwAw9I5GnEbFcoFMKRI0dMBQlGrVHzZikfll3K5XLmoMvl5WXMzs4aoROJRHD69GlzCCZ9DZlMxvQzFosZi4mCluOZzWbNfWtrayakvKVl+3RmVvm4ceOGKY1EayYejyMejxthRQZFv6EyOGVkatlyTux0Ao6VRsYBO7lymtagc8H/E4kEOjo6EI1GEQgE0NbWhlgsZvqs9SQ55xooQGGo/lWuHa4FRgwyYo9nlNGqXV5eNlXhy+UywuGw8TvmcjlTHZ99BYC2tjZcu3bNFCNmgnUmk8Hc3Bzuv/9+JBIJXLt2DZubm+jq6kI0GjX+yoWFBRw4cACdnZ24c+eO2TuqjHEcNThCLR32UYNj3G63saoVOtRnkZpFEOo+VcGlFp1T8unVyRFcu4Co2TG0VsPbbSiQzI4wBACjBZLIXMiQuXnUyUwmwo3OZ5OJqcBUjZQbs1arGSbe3t6Ozs5OJJNJ3LlzB/l8HidPnsSLL76IX/iFX8D999+P//W//hdefvllVKtV4/ei34lnatVq2yWDXC4X1tbW8Pzzz8PlcqGvrw9vetOb4PF4kEqlcOnSJZOnxQCQYDCI7u5uHDhwoAGGoTCJxWKmWCzbPj09DZ/Ph8OHDyORSCCbzTYEmITDYYRCIWPVMGeIjIdjXKttH2PBsQNg3k2Yigze7XYbCJTjz7nh+Cr0ReGo1SlotWWzWbMG2trazCnHhEQ3NjZw48YNVCoVo1iwzZxr+tg0MIRKDMeKFiMr3nu9XoRCIVNiyu12mxqQU1NTxqrK5/Nob29HT08P5ufnsba2hnA4bNbaW97yFnz1q1/FrVu3cP/996OnpwcPP/wwrl27hnK5jPn5ebhcLqTTabzyyismqZnw8ZUrV7B3714cO3YMk5OTJh2B46ypIipEOMaqzFGwEYblvlLIUIMsNHiJ79IUk1qtZpQaksKTjsX16uQIrtc52c53tagogIAdmA9oFGKEPwh5kOin0s3J/5kjpMyxWfgv28cNSiIUQquDiaqZTMYkEdOHNDg4aI4EKRQKphqFFrhl7Ts62lldIZ1OY3R01BRVTSaTmJqawtrammEMbAOL72qlA7/fbxQBtYA0rJvwVldXF/r6+hAKhRCPxxEOh02xW8JyHo+n4agVMkASLTtgB/LlfNn5cWSIKuyaHRejfhWNeqNAjkajRlDxGgbJLC8vG8tB505/2B6uP46TWo1cj9lsFplMxoTMcx79fr8RnKFQyBz++cILL2B+fh59fX1mLrimSqUSuru7cfjwYVy/fh179+5FMBjE6OioSZpm7lgoFDK1D3ncTCgUwsrKCjY2NhoqpuTz+YYgFgoUDRhSdEOtHx1vW0Cx7Rwjzi33iwZP2YFOdvqKrkcnQKM5vaaTyj7+8Y/j1KlTiEQi6Orqwnve8x5cv3694ZpisYgPf/jDaG9vRzgcxk//9E9jeXm54ZqZmRlTH66rqwv/5t/8G6c+1z2Ii1mjyAhbkDFyoetmcrlcRrPVyD+FMtQpTEGn1hc3kQo8QnmcL2XSukE1sq2jo8MUpGX5Jp/Ph87OTlPiiPlD4XAYkUikQagAMMeyr66ummNEYrEYBgcHEYvFsLGxgdnZWRO0wjBtnmjMiEH6IRicEA6H4fP5jM+OxH4RNqzX6+jq6jKVK3jKLy0mRqcBMOkCrN9HJUHnTv2GnBMyXc4LITyNZuMz1PJlQAIrnXM9RKNRDA4OmnJXDFdnPlkmkzGChYqJtpfrAoBph+bzKVRIqI/KBmFVv9+PSCSCSCSCRCKBw4cP49SpU9i7dy+mp6fxwgsv4MUXX0Q+n28KVw8NDeGVV14xPKSzsxMjIyPo7OzE5uYmKpXtM8sYJcrxoe9wY2PDlL8CdgQLrRruMSp43BfA3cf6cE7sChgqzHX/6F60r1PEQpVK9l/RFIfuptdkcX3961/Hhz/8YZw6dQqVSgX/7t/9O7ztbW/D1atXTWLor//6r+OLX/wi/u///b+IxWL4yEc+gve+97345je/CWCb8f34j/84enp68K1vfQuLi4v45//8n6O1tRX/3//3/33/e7jLSbF2FVDqK6GQIeMj8wB2HOm6CciQCTORURKOooNatT3V5hWWonapUYUKv3R0dGBkZARra2u4evUqcrkcjh07Bo/Hg4cfftgc7hgOhzE6OmoCOliZoq2tzRTnnZiYwLPPPot4PG6go0KhgKWlJUxNTcHl2i7kq05xat9kJKw3qH4aWqa0yAjpMLeIoeIbGxs4fvw4vF4vYrEYarUaVlZWsLKyYto5MDCAqakpBIPBBkbocm2HWFP54HjpeGrOEEPiGWrPiEMt/moHC9BSpmI5NjaGxx57zAS3cD5u3LiB8+fPY25uzkRLMmmagktPudbQbDJazrme+ca5YwLyxYsX0dXVhdHRURM0wer8x48fRzabxaVLl7C6uopXXnkFg4OD5uywWq1mfFuJRAJ//dd/jZaWFhw6dAgjIyMIhUL4zGc+A5fLhfvvvx+VSsVU+GftRgaBPPjggyZAQ9vLCEcWadYjWdSS4jxqCokKN4UAbSFkJxVrRCYDYdTipbLSLELRoR16TYLrqaeeavj/L//yL9HV1YWXXnoJjz76KFKpFP78z/8cn/zkJ/GWt7wFAPAXf/EXOHjwIL797W/joYcewpe//GVcvXoVX/3qV9Hd3Y3jx4/jd3/3d/Ebv/Eb+I//8T/C6/V+/3r3T4Q0CEKdteqXovCxr+Xm44bkJuTmoqBSiEL9NAon8jm6oaidUxiyXXwW/STpdBqpVAqlUglDQ0NIpVJwu92mWsTg4CDa29vh9XqxtLSEVCqF7u5uY63duXMHt27dwtjYmKlDNzc3h7m5OWxsbJj30CejbaVw0KAGtTRVs1YG43a7Tc5XKpUykYX9/f04fPiwOa2YlkooFDIFbhk5aAcx2O3SIBgbjqUlpRAiAMPsNFiD8xMIBDA6OmrO8eL4uVwutLW1oaOjAxcvXjTHgtDaohXHMaLVasPTnFNgJ7GaxHt4InEmk8Hm5iYikQj6+/tNNfjW1lb09vbiDW94AzweD65evYrV1VVUq1Xs3bvXWIQUPkePHsVXvvIVfOtb38LevXvh8XgQjUZNRGChUDDpEoVCwRwxA6AhEMSGN3XNKtTOtaD+MApqG4HQ+eT9FD4Ko3KONICGQpPWsl1UwKF702uCCm1ipWmeYvrSSy9ha2sLTzzxhLnmwIEDGBoawtmzZwEAZ8+exdGjR03BUQB48sknkU6nceXKlabvKZVKJgGRPz8qpJaNvWEUdqClQHjQDt4gHEI4y67mQEaoZEdeqdatMId+pr4QPpeV3fP5vIF2AGBychJPPfUUVlZWTPHdlpYWZDIZc1AiA1OuX7+OcrmMxx9/HA8++CB6e3sxPz+P1dVVc4hkJBJp8M/Y/h6OGxkMrQrNDaMw0YMg+T2PVblw4YI5FoNVSDye7TOqBgYGTJQkIUlb2VCflMJG/N7j8ZixoHWjygN9cJrsWiwW0d/fj9HRURw7dgzHjx/H0aNHEY/HjQXX2tqKSCSC9vZ242/i3LW2tsLv9yMYDJrzxOhTI2PlmGmEoUYwcvwIzwaDQbjdbmNpJRIJrK6u4uLFi5icnERHRwf27duHgYEBVCoVrK+vY3NzE9lsFvl83hzeydOZL168aIJ0NMdsYWEB+XweAMzZYLlczlSi93q9xpIjabs17J3zoutFD/G04URdbzq/3F8cQ+Y0MvhF71PlQH2dDt2bvufgjFqthl/7tV8z5/0A24mcXq/XRC+Ruru7sbS0ZK5RocXv+V0z+vjHP47f+Z3f+V6buqtJoYnW1lZTioYMjBFfdg00wkjADjMkpq9wGK0j1f415FkDBxSrVyvOjiakACPD6OzsxPLyMiqVigkbr9VqeOWVV9Df348jR45gbW3NhM5Xq1WEw2FTK+/mzZu4desWDh48iO7ubty5cwcXL140fi4eEMl2qz/C9vuo/4vMhVYHx5rFUQkdUTi1trZiZmYGN2/eREdHh6k6QQHJAzLHxsZw3333GYtwdna2wQ+lkBHH3u12mygz9cFQ6CoTJBxbKpUwPj5uIE2eEH3w4EHD7MPhMObm5nD9+nWsra0hFosZy4zV4an507Jgf8k8md/FtVSrbVe5IBzNyEd+TqWhu7sbuVwOm5ubpqqJy+XC9evXMTU1ZSyu3t5eXLx4ES6Xy5wBxoodq6uruO+++/De974Xly5dwrPPPouTJ08iHA7j2LFjWFxcxKVLl3Dr1i1T33FrawvJZBLBYNCUFKOw3tjYAACTx+X3+41/ThUuVS6AbQHHMeDnKlxUqCmsr6iHWvhULpmQryiFjr1Dzel7Flwf/vCHcfnyZTz33HPfz/Y0pY997GP46Ec/av5Pp9MYHBz8f/7e1xOpv4kMWrVxO6KM19Gq0twszSvhBlENkp8z/JebViEpFXQKgfAZ/Iw5Q7SmWeNvc3MT7e3tCAaDRkOmBUBLC9i26ufn5wFsV5Kfnp7G7du3sbi4iO7ubrS1tZmw/q2tLcOAaX1qgAmZP6E2KgD0e5DhEFrUUH+OKYM8FhcX0dXVZbR+Wn0M4c9kMiaRl2WOmOjKiEdlVhxTzoX639huKgk6516v11hHPJW5UCiY0HIy7HA4jGq1io2NDdy6dQvr6+sN4d02FKwQKtdVvb5zkrHNWDXSEIAR0tXqdhmo6elp9Pf3IxqNmvm6c+cOIpGIWZsejwerq6smv4sh+uVyGfF4HHv27MHnPvc54+NiVZTJyUmsr68jn883FBDWkP1YLIbOzs6GyEdVspTYDxsG5HjZwRe6z2zrWudWlUUtM6VQtSqSjvC6N31PgusjH/kIvvCFL+DZZ5/FwMCA+Zy1wpLJZIPVtby8bI4k7+npwblz5xqex4ghXmMTTewfRVKfg4apk4FR2wXQsOB149lQBu/hJmGEmiZm2lAKBaXtG+Az+R0FBDfl8PAwOjo6sLKyglqtZko5LS8vm7JJlUoF/f39BtYik15YWMDk5CTm5+dNodhr164BAEZGRhpyjGgh2v4X+r7I/FmkF9jJpWL7+b8N8+RyOVMRoqurC36/H7du3TLnefGMLlqIExMTuHr1KkqlEgKBAB544AH09vbi5ZdfNvUAVbvmWNGqBnYsbYara0AOfVZMK+jo6IDX6zUnLZfLZdy8eRMTExNYXV1FV1cXenp6UKvVzMnBtVoN8XjcWOIaeEMfE2Fnl8tlSmHx+eoroiDWiD7Ca6zxeOnSJczMzJjxr1arpjBvIBBAT08P1tbWsLm5icuXLyOXy6G3txcAsLi4aArwut1ufOUrX8Fb3vIWw2MGBgZMkMxLL72Enp4eDAwMmHPfgG1UZ+/evebQSvZZDzNVPyQFlO4TtYZ4nUaH6vW0qlQA8Sw4RTLsKF8ABjVw6N70mnxc9XodH/nIR/DZz34WZ86cwejoaMP3J06cQGtrK772ta+Zz65fv46ZmRmcPn0aAHD69GlcunQJKysr5pqvfOUr5uwjhxqJkJs6wYFGC4z5KAozqT9McXReQ+sC2KnKADT6zlQTtYM+yMTIcOnLUn8R72cARyAQQEdHB/L5vGGKZNbhcNgkjrJdm5ubyGQyxnJj+wOBALxeL7LZrKmmQQZApsS2MoybwllzdUgaAm7DRepf4ri3trYilUqZaupMRK7Vts/BYnmjfD6PbDaLYDBojnShAOBhiITl+Gx18FMwEDIkvMRSUYlEAn19feju7jaHZbIiSLVaRTqdxo0bNzA9PW18Qvl8vuFIGFvjp/BRq4I/mpum0XJ2iL6OOS3CSqVixoTtp9VbKBQMhEyf2Pz8vCliXC6XTdWN8fFx5HI53LhxA7lcDuvr6yaRO5FIoFQqGaHHosiEQ6mIcC41IlN9jxwL9kMDZNS/y2dQEVSFEWhUnnT9ce/ZAlBTDhTBcOhuek0W14c//GF88pOfxN/93d8hEokYn1QsFkMgEEAsFsMv/dIv4aMf/Sja2toQjUbxq7/6qzh9+jQeeughAMDb3vY2HDp0CL/wC7+A3/u938PS0hJ+67d+Cx/+8Id/ZK2qVyMuaIWUbKZjRyHpZqR10Uy75+agtQHcjd1zU9ES4bPIxKhVEvqyg0mYL+R2u82RFysrK8hms+Z8KDrxmf9DCzuTyQDYDv4h1EWhzKK5FFBqCVLwKbOlJcc+qaar8JtGYeoYkoFxnFhKKp1Oo7OzEx7PdvLx2toaZmZmTC4XK0l0dnZicnIS9fp22oKeXkzivHCeKSDsoBqWVCIU2N7ejra2NnN6NAMVmIPm9XoxNjbWYOFqKapmSoqtKOmYaSQk/yf8qhCaDTlq2DwhTQaw0HqkhZTL5bCxsWHyzPL5PEKhEEZHRzE1NYWZmRkcOXLErDHCsolEAuvr64jH4+YZVB4UatUoSbW0bOtH148KLB0TJa4jLYCtc6mwvt7DsdS96wiue9NrElx/+qd/CgB4/PHHGz7/i7/4C/ziL/4iAOAP/uAP4Ha78dM//dMolUp48skn8Sd/8ifmWo/Hgy984Qv4lV/5FZw+fRqhUAgf/OAH8Z/+03/6x/XknzDpEQvExllVOp/PG+ahmh+ABm2ZYe9ksAovklQgAY2MlFCKRhFSqHJjkqkzRDyTyZjj471erymk+swzz5gK7fRV0PEdj8cxOjqKVCoFl2u70G00GjXWRiAQMALK7/c3hUTJ6DluPG5Cq4iQuRDSUQbKcaCWTKHJQxUBmIAQt9ttylIxiGRlZQW5XA6JRAJutxt79uzB8ePHEY/HceHCBczOzuLWrVsm3JvCSC1nCvuBgQHDwGh5tbS0GD/Q8PAw+vr60NfXh3A4jN7eXnz961834fjZbBYLCwtYXV1FvV7H8vKyGTsADdq9WiAUPvxOE841cITrjoKB64vXsI5kMBhENBo1a4MBIcVi0QQoeL1e9Pf3G4F248YNuFzblVdofY+OjuLBBx/EV77yFQwODuLw4cP46le/irW1NSwuLuLBBx/EpUuXzGGTeu4ZT82m74vCSPtJJUh9oLq2qOjRt6nWE/eQWnDca5obRoiQflHdO1RKqRw41Jxek+D6bgbS7/fjE5/4BD7xiU/c85rh4WF86Utfei2v/pEmLni1Ckj23+pEVgiQz1FNTuE/3Zw2HKKfA7grAVkjptQX4/F4zDla1IopAOnnYHIwj/OIxWImWILHvLtcLnO+lQ1tAWgIMlCBQ2FNocAxsSO7OHa8T0ktVPoYeW+5XDanO5fLZSwtLZmw583NTaRSKXR0dJg+Mezb7/cjm80aq1OtKL6LASp9fX1GsKrjntUwWDU9Go0iEokY64eJ5/ThpNNpBAIB5PN5E7CggoqWM4Ux55RjSuXHtjLUquV4aR4gLToGW+gcATAClHAvFbNyuYz19XXMzMwYP3oulzNJycPDw9jY2MDg4CA6Ov5/7L1njKTZeR76VOjqyrFzmpx3dmaHu9zEXealdElBhigoGSYNCIZBSIYhGYbMa1kUleEfNvVDlG1CMiwJBCnKkmWKEoOYNw93Z2Yn96SejtXdlXNVV7g/is+p5zvTQ136XhuzZB2g0d0Vvu98J7zheZ/3PWOIRCJYW1tDs9k0MUciOAq1MxZHA0QVDb15ZYqqB8z1oZ6R7hsqG0LVulfpOXPMGE9W4ouO4dDb+t5tWKvwAW/c+ArrKctNKbi0JingFKKxY1vceMpuY6CewpkkCd7P3pwkClCQs1HARaNRHDhwAI1GA8lkEvPz8yZfiAw7JviWy2WTP1QqleD3+/H444+b4ym0sCv77fP5jBC2G6HDQCBgqsXbgpeKiPR4CmF+n/GVQqHgUJqdTgdbW1um7t3DDz9sPKNMJoPJyUmTEDs/P49wOIz19XW4XC6cPHkSx44dQyKRwMrKiiPJV5UAlTHHxuv1GiXn9Xqxb98+JJNJzM7OwuVyoVqtOt5nXIkeuVbJ5zxXq1UDJbOKg0J8bnc/AZswqa5HYOCh23ld9F7b7baJxSnFnutHjRkeO6Oxv8XFRdy6dQsHDx7E+Pg4XC4XlpaWsHfvXrz73e/Gpz71KfzkT/4kksmkIX3UajWEw2Fsb28jFAqZo2SU+s5CvoowcD3zdaZQMO5kx8ZYQxOAQT9oXPC6jL1xPekp4fQ8tQA2jSYaXMN2/zZUXA94owCmYqHyAgYellptyvBSuq/CIrag52sqRAEYSGO3GJpNl96trzytuNlsGqhIEzC1YC/r6AWDQSNcvF4vKpWKyckBnMJS+85Ga9cubkpBqTXp9Lsa57FTD+zqFRTiPNrk+vXrprAsn4EJv4TSCKG53W5EIhHMzMyYGB2fhfCZzkE2mzUxRL7GGBGvS6o9j/SgJ0ihSOFMWj6NFa4PelpcN1rDT70pKlZ6DPax9rvFX21GpB3z4fhoBQ+uJxJZKpWKqQDCQylJ0HnjjTfwjne8wxHrAvo5oWQWFgoFk+umRZDVc9fzsbg27HinTcrgd3UdKWVePVldb3xOjq+9x9SbG7bd21BxPeCNG4DwgSotvk8BTQ8CgEM422QLwBkQVoiPf3PT0kvhBgMGliGFDIWyKjL1iqgwSONmf0nKINzGorudTv8Qylwuh0wmY7wJFRpqtWufdUw09kZBpEeNqFJSb0oJKYTu7EbBUy6Xcf78ebhcLrztbW8zpCSeBqyJrvSKW60WQqGQOSpFWXl6fXoBhE6p6Bi3I2mE3gEJK5VKxVSQ6PV6RullMhkUi0XHeqDS0rQBXXu6Zgi3qtC1x4qwp8JonU7HJCtr7Eznip67kiISiQRqtRo2NzdNcWPGdZvNJqamprC1tWUo/FTIfFZWXykUCkilUo74rBpiOt4K0an3qYxK9pl9VYXN9aj0efZJEROFI+nRKXoybN+7DRXXA9wIxXHTq7IhNEcrWZUQWYJ8TQkYFD7cuIyrEN5RRcfvc0Py/lRE+jo3phIbKKS1HiKPCQkGg5iZmTEFUQ8fPmzozGTira2tmcRkEjSAAexCKCsYDBqFFI1GzZgQ4iORgsKZAXuy79RaplBRwUYoiM9P4UzCx9mzZ7G6uopHH30UMzMzOHDgAIrFovEM0+m0yUEiZBkKhTA5OYl6vW6YbvQw2Jd2u21o9jxIE4DxZhXao2eSy+WQz+dRrVbRarUwPj6Offv2wePxYHFxEdvb2wiHw4ZYoxRsriONBXL+AWeMlIqCyrher5u1wKoXLMHVarVQrVYdULWOOdch1yrneWJiAoVCAel02lDbJyYmTN3IM2fO4OzZs6jVaqZ+JM/1ymQyKJVKmJycxPXr1433xefmvO/mMSnJhFCy3bhXbCKLz+czni49ZWBQLJsKj+OriprX1DjjsO3ehorrAW8KZ9gChE2TV23aLeCsOUjlZm8ghUTU2qcg0+RmvZ4qSAAmkZnHo7OaBWMcKqi8Xq+JQbCUVS6XMx4SIUcKSSpEEiV4ZIbHMzhkkVR6l8tlBBUrMFDgejwexzEaChtxbDhWhLH4rGzhcNj0p16vY3t7G5VKxaSGcL4oyFqtlsmxogWvUKkKdPXA+H2dJ51jep29Xs/kjfH6bne/7NLk5CT8fj+azaZRehSO9A60ajrHgXOlEB+bknLsH95HPWwaDvV63QhsPUpGmbO8P9mKpVIJ9Xod1WrVwJCEk6empoxim5mZQavVMsxJPv8rr7yCWq2GYDBo5lKhYZ1vjTHqs+qYa61B7j+gHycks5fGj7IXFRLWPuhetsd42HZvQ8X1Jmi7xREU0lAWkioXvqc17vhZCgmevKuxMoU31CpVrJ6bmIJWK2fzbwoj9YioDCg8gcEBiYVCAVtbW5iamjLWPCsvUPBRIWp/Fd7S+EUkEnEIaCpBxoUUtlQWmEJE7C+tZ5txph5HLpcznhDp/Qqt0ePi9am8lMXJzyoDTY+0Z+X1RqOBQCBgFBoVH5WGy9XPj1tYWDCena3sAWfxZF0XNgym61CVlt6ba6Jer5trKYxIj4qejMKjuu5USXI+WXOQHkm9XofL5TIVSfbt24dgMIiDBw+a4stMdq7X68hms6ZEl5Yv4zPofqLRxmemolGjjUYPlZPGILXUlK4nexz5Wd6ba9KGaIft3jZUXA9wo0WtSogCUEsT0SNi8J/WNi1xCjNaqxQStLR5pIJahFQ+pJWzaX4LvS1Vhq1Wy8CbjUbDHOTHGAa/S4Hk8/kQCASwtraG5eVl+Hw+vP3tbzdCh0ebEC5jnIcEBcI6PBASAJ788pOOe6jA8Hg8+NY7vwWXy2U8I3qqHEOOgUKuGpegJ0Chz7yzc+fOYWRkBMlk0sT2ms2mySMji4yCkxR4AGbsIpGISQtwu93I5XJoNBoYGRkxCdkejwerq6soFAqm6jnJEgAwNjZmPLxHHnkEgUAAly5dMmxN5s2pJwcMiuXqeLFf6lVrfFDjgHqtbreLarXqYKF6PB5zBhahOPUOOUbqyXB9FQoFuFwuHDt2zFRa6fV6SKVSyOfzWFpagt/vx0//9E/jLW95C/L5PM6ePYuXXnoJ8Xgc6XQa4XAYR44cwcsvv2xITEqYUMII782xYN/0OwoX8gwzetqcCxomABwUeFVOtgemRsOw7d6GiusBb9zY6vkotq7Wv1LklWjBH7WoKVDsDWR/VuMBVKBqrStxw+5ft9tFLpczUB8t3+3tbXg8HkQiEePJUDjziPdqtQq/349oNIpgMGgEQblcNjDS1NQURkdH8cSXnnB4iF2X01vQsWq323jL37wFOzs7+OLjX3QE0PlMOpY2nKceHsdyfHwcnU7HHCefSCQMxKUxEhXI7C+hSJ4qTTYiG705u8rE+vo6gsEgjh496nhOsjN3dnYQiUQQi8Wws7ODWq2G0dFRBINBoyxV6SjBQGM+fE/LZbGZ8e46T3fW73NsqYC0pp/mfBFW1JgRMDhGhYYSK6twLr1eL/bs2YO1tTVks1lTkHd0dBSnTp0CAJNfV6lUMDc3Z0gfNNBonGici8gBn02NR/X2dQ8p1KneGPeIeqG8NsdD46q8zhAqvH8bKq4HvHFj6AbTBGDdCDZBg96EQhUqbIBB5QwSLrrdriEj0FLmxqLwpmC1Y268N4VOr9fD+vo6xsbGTFX47e1tdLtdk5uUSCSwZ88eRKNRVKtVRKNRlMtlrK+vm2dmPUCy6EZHRxEOh/HeF9/b97Iig3qDGjtSFh4Fq1rK73v5fej1evji4/0DUj0ej6muwGfgaxS8CjFSmEajUXg8HmQyGdy9e9fUDyTUmUgkTC4U43GsjMHaetlsFsCAAk4vef/+/fB6vbhw4QIWFxfNAZyE/I4cOYLp6WmMjo4aL3VhYQE+nw/T09MIhUK4c+cO1tfXHcxO/q0wJNeCbfRQcWkSt6Zm8GRnxtny+TyAAXGI3q0Kf64zhXLtOCvn0e/3o1Qqod3u17LUc9s8Hg9mZ2cRiURQq9Xw13/913j00UdRrVYxOzuLmZkZ/Omf/im2trZQLBbxzDPPoFar4Vvf6nvdJJVwPllrk7AsFaRWtlDCE40Pel18TWFffoapHuph8TmVeKSM4GHbvQ0V1wPeKCCURGCzkXQjAAO2VLc7oIIDzhqGCglpQJobUK1R2xJWGMXr7R9RwfiP4v+8v7LPwuEwYrGYuScF8Pz8vDkX6fr168jn8wYeJETjcrkMa5AQFq1fCj5lyPFZeOSJbflyvN774nvxpSe+BABGkCq1mc8ODAgaetAiy0JVKhVDPuBR9VS2Cj/t7OxgeXkZLpcL29vb2NraQqfTQSQSMXR2oF8DdGFhAe12G5cuXUKlUjHHgiQSCdy5cwd37twxNSB5qnEsFkMkEkEkEkGr1TL0cfZf42A0PtTg4XpSejZJNEo5Z6OBQyXGEk5aA5LwqU10AOCIB6mhoQWbyazV5PlSqYRQKIRwOGzWYD6fNzUht7a2DJuTa4DMRCZf814a09L1zqbrXWO9+h7/V29V94xddcP2shTpsL3bYXO2oeJ6EzRuBCoS3RgUiJ1OxxEg1g2gik6hQTtYrNfa7X/F3wEn5MX+2NRhwjmVSsXEPGKxmCMHS3Od6JVR6FPIlUolE8t69uvPotvtotaqOeBS9ar4N+N6SlHWxud67qXn8OUnv2yENj0MFbAUzHxWjVcQvqIyHR8fRy6XcxA+mORaqVTw4osvotvtolKpGFiPyrdSqWDv3r2Goch5n5mZMTAfY39nz57F5OQk5ubmTPV3sufInmSMinOj6RE6dnxGe+1prI9KXZUb1wmfVclATD1gH+jx0qBQoc44qMJrOrbtdtt4LF6v15BhEomEgd5mZmZw9+5ddLtdrK2t4fDhw3jkkUewsbFhnoepFVqAWo0tQnycW/7N79t7SJWtKiCFqRW5YFMUhH3g95QgMmz3tqHiesAblQM9AApmWr+Ex3SDafxKNxCtVY1JaXkZ+/MMOFNwUpiwX8qiUoYYPYtAIGBKI124cAF3797F6OioIRRQkK6srJiD/ihsCYlx85ZKJfyjN/4RgoEgyt6yUXxqKbMPzK9ifGx8fBytnRZ2Wjvm2BQKPzYqMBoGzG/iexxzVvCgwFK4h4V9d3Z2TBkiWvrtdhvhcBilUgnf+MY3cPz4cUxNTeHChQvY3Nw0OWfT09PYs2cP3v/+98Plcpm4zaFDh+B2u7G5uYlyuYypqSns3bsXExMTuHr1Knq9Hp599llTZYRlrpg/FY/HTfV4rYyh4wcMjCRlutEg4Wf4t8fjMfUHS6USKpUKOp0OxsfHHZAsv0Mau5I51MBgIjEFN0skzczMAOify7W0tGQqj7Dw7mOPPQafz4dqtYrHHnsMFy9exBtvvIE7d+7g5MmT+NCHPoStrS28+OKLuHv3Lqanp/HII4/gO9/5DkKhkKO6Bcs2UYlwrm3yBl/XvcTGdci1pDE+heg1HqjGkf4/bLu3oeJ6wJsmJqp1RzjMhg7Z7BgYhTLhDsBZ1kYD4sBgAylkQe+JkAf7ZEM86vGUy2XUajXjWQEw+TiEjqrVKra3t41SAAaHPNLK/6mrP4VOr+OoEkEFQwHCmBOVKhmOI74RjPq+G/yv3ps7w+/+6Ks/ii8+/sV7iC4cA61bp3R3hXJ5XaXBU1HW63UsLy8jm83iZ37mZ9BsNg3rEuizAaemprBv3z5DsPD7/QiFQpiYmIDL5UIsFjNJ2aOjozh8+DDa7TauXbuGY8eOOeZZISwVkDpXXAe6TjRGaa8JZbOSjUojhXNDIa2wGP/W8dSxo0Jg7h0hTRoYkUgElUrFzLHL5TLMTb2nx+PB1NQUzp07B5fLhUwmY9Zaq9VCsVjEnj17sH//fly9etWsIWXSqtLiHrA9TVVWNCy1CLMm7LPPuj50j9q/dfyHbfc2VFwPeKMHwY2irCylaqvQsSFACioKDPWeuBkpuJQOzPsyaVU/p8F0Kk3CPgoT3b59G2tra3jmmWcwOTmJmzdvolAo9L2g78Zf1tbWTBULwoi8Hi10Kgq3y+1QlDZZgvcF+nGR3/oND0IhF1wAOt0uKhU3fuWjI8YgYFOFo82GCaPR6D1xPrWsu92uOfmYCokCOZvN4rXXXkMikcDp06dx+fJlzMzM4NChQxgfHzfFen0+H+7cuYNKpWIIBDzmY3193ZRz8ng8eO2111AoFFCv17F//34kk0nzXLw/ySCFQsGsJxbipcLhSctKiadQ5/eprEiU4RgzHpVIJBAOhw3VnhXYuT5YTUM9Vf7m/JKYwtwoACZNgMWZS6USCoUCotGogwxSLpfRbDYRiUSwb98+M2crKyvmKBmexn706FFcuXIFi4uLRqmEw2Gzx3Q+qYhCoZDDA1WWpK4VfU0JGvb+oQJWD05jbFx3w3ZvGyquB7yR7acLnxtJPQ4NBNtxKMXQNa+JTf/Xo+P5nt6XfytrSuElVZ6M5xQKBYyNjaHZbGJ7e9sIUAohEhJKpZLZ1OxHs9nEP775j9Fz9QAX0Ol20EMP+G6Xe3AyJlVZ/9uPthBqjdwT+/vNj7vxf/9qxygftYLf88J70Ov18NW3fdXxrKwCQlYeFbwKNwpKwk1aGYL9mpycxLVr1/A3f/M3SKfT8Pv9WFhYwIkTJ7B3717s7Oxgc3MT586dQyaTwfb2NjY2NrCysmKo4AActR2pMHjUfblcNiQVZQMqoYeNHhBJMCpIdSx1nBSS5rMzFkWY1i6CrBUkdEx4HRpJGgMjOYNzS4OqWCwik8lgbGzMkIPoFVFZcr15vV5sb28jm82iXC4br3dmZgbT09O4ceOG4ygVPo+mgXDt0EDRdW7Hu5RApe9pTFBjXeoJc72oQTVUXLu3oeJ6wJsysJRgQShGCRLKAARwj9BUQWQrO25W3Tj8rCYYK1wCOAkaFEJksPH6ZLExzrK1tYVut5+g2ul0zDEWjIGwWobH48FPXPwJtNGGy+2CCy70uj10us5Cw73uQDDwtV//tR58kiBrCxpV7ray5VhqnhO9EjZ6qxRUquSUyUmrnJDnwYMHsbW1ha9+9at9gkmtZpJrl5aWsLi4iJWVFbz66qsoFApGyR84cAAf+tCHzKGWpNoztysYDCKZTKJUKmF1dRWdTscQF/x+vznXjPNkM0zVG9A1ozEqvkaIkEpUjaPd2HAknGh8iK/zO+pF65ojI5VeDGs7er1eTE9PGw/J7/cjHA6bnLdoNGoUFws1E1rc3NzEzs4OZmdnMT09jUwmY76nRomiFzrHugb0+RX50NSC+42N7msqcaIeNolo2JxtqLge4EbsfDd2kUIRFNq7VQLgNbgBVTjYwlxjGPTy9LwttYzZB4VB+JpWojh06BDm5+cB9E8N3r9/PzY2NgycF4/HTTyH1bxZyftd334Xmr5m38MC0Af8vvv87u/ep+ekcH/8Y4DH44KrB8NmU4FM4fPxjwH/7mNuQ5WmAiD8ura2ZsaMRAeNr1WrVdN3YBCTo0VNmruSQXq9Hubm5vDBD34Q7XYbyWQS3W4Xy8vL+M53vgOXy4VDhw7h7W9/O378x3/cwJn0RBn/cbv79Rfdbrd5LxQKGe9qY2MDjUYDmUwGkUgE0WgUs7OzuH79usmHokdBY4VjqDCoklV0/Agrcj0pa5BeEj0wO0ZKb4wMTPWuVIE2Gg1Uq1VDdlEvhEWEH3vsMUSjUWSzWXi9Xsc6Yj7ezs6OyWF79NFHMTo6iuXlZayvr2NiYgLveMc78Gd/9mf3JATrnKm3yfHhcykBRZUd95fG99iImOh3gAExhAaBfm7YnG2ouB7wph6RTaBQeEyhG5vJpNg74GST2ddVqIPwhdbT01p7trdGxUfrvNvtmiRQemGEkrrdLlKpFFwuF/L5PDY3N+HxeExl8R955UfQ6DYGkKA8J1x9JeZyueCGGz1XDz1XD7/xMYDigQqVkKoKUBoD3W6fKl6ulNFqttDpduCCC26P23EMBxliGrRnnGl0dNRRxJew0+bmpqmtp1Y6hWAoFDKV7UOhEObm5tDr9Uz8qFQqoVarIZfLoVqtol6vm4Mr/X4/ZmdnjSdFhcayV61WC5VKxZE7xngW6xxyrlnPkcfJKOuQ467emJIWaBRQmXHOQ6GQw3u1EQCuLSWHKBuW64T/12o1Awdy7bDwLmOv5XLZeJ2sikGFR+MtmUzixIkTKJfLWFtbQyQSQSKRMNdljUWuG1U46qkqUqF7TOFzjQPreuRrNpOXqICu1SE54/5tqLge8KZWl1q5mltFYcjNAjg3BL0l3RD3I3HQ6lXoTC1hwMl0BAa5QPweoZt6vY6FhQVMTEwYIaeB+ng8jnq9jkwmg42NDXMAo1qtnW7H0U8Vbp1uxyi23/x1J/RlKy42HQOSHhr1BtqdtnmWbrsPY1LJkqlIAcxrKgTk8XhMZfp2u41CoYByuQy/32/y1FiAlwqFOWv0KqrVKjY2NlCv17G4uIhcLmdOLebnvd7+ScjT09MIh8Pm6PpOp4NkMolAIIDZ2VkT09G4FWsm1mo11Ot1o5A5H7ud+6VQtR59Yr/farVMH7WkFJsSeJTMooaFxn6oTKhIOYbsA0kZJMswXkrDp1wuG2+XHh6VF/Pd8vk8pqenkUgkHOeUKURqG4cKO6tiYqM3ph6qTavnGCoZSt/T+qTDtnsbKq4HvNFa1MRXUndtqjxL1FDAqhCnYOB11AOhUqLAoUWogoUwmI3781oUWCzcSyV04MABhMNhA+fwHqypVywWsbq6ilwuh+npaZNo7GA8uroOBdHr9dDtfVcJ9oCP/1oPrt4g/0w9UPUg2edOp5+QXCqXgJ5AsnCh0+0LSlrfjOlQMRGy27NnD8LhsPEumEQcj8dRq9WwuroKl8tlWHaRSASpVMpQ4JeWlpDNZnHr1i1Uq1XjXbH6hnpFFNZaL/DVV18F0CchJJNJTExM4OTJk4jFYuYU5JGREUxOTgIYpCCEQiEDg7VaLeTzeZOPxVJKVF52TJD/q3Lj+mDsietOIUPOhXp0/NE5A+A4yp5KLBAIODz2UCiE7e1tXLhwASMjI0bxbG9vG8XFahqsMtJqtXD16lV4PB5Ts5Bw8HPPPYcXX3wRGxsbpn/qFe42BownKyGD7+n+0PipKi2NibLxb95f3xs2Zxsqrge82RaYxqq4aXRDaaxJ41iEN/i+lq5RaFEtdBItbI9lN6YTvRNuUArOXq+HfD5vKOJUgCycWy6XUS6XTT+r1Sr+r7P/F+CCia/1ej0T5zJUY1d/bD7+a4BLrF5V1oz5EBqkR8AfF1xwuV3ooYdu57vWsygywmEkOgSDQRPTojJRWj09YtLB1fNoNBpYXV1FPp/HysoKrl69ilKphM3NTVPqigqFhBWyAtXwYKN3RFisVCqhXC4jHA4bsgtjPpx/VqNXAgYbY02E/ai42Ac2jfvQoyXjkmuMcLFdJ1Nz7NRboSLk+qPyoLJif+1alNlsFrlcDlNTU+a+pNXzezSWCA/yPK5isQi/34+1tTWcPHkSx48fx/Lysjn2hH1VsoSSMajQlD3I/UnlpEny3DfKWqTittmtimwMWYW7t6HieoAbvSg2CjWXy2UEEOvCqUXOzynTjhacWnz0joABLVpzqLjpFMu32WZUeFoAmILo4MGD6Ha7uHnzJmKxGMLhMKrVKtxuN+bm5pDP53Ht2jVsbGzgoYceQiQSwbuffzfq3bqB1lg9nXX4ur2+l+V2ufHbv+mF1zVgSWoRWSofn89nSCtkBlKAsK+9rhOaBGA+2+v1MDU1henpacTj8XviPcqyJDNSSS6VSgXZbBbFYhFra2umwoSegwb0FVE0GgUwqPEHwPSB8BM9P+Zr8TkAYHNzExsbG5iamsL8/DxGRkZw7tw5dLtdTE1NYW5uDt1uF9vb2+b6NiuV9yB5gp4nCT70BBlXo7JggV+OR6fTzwOkEqzVaobgQkHOo0loHHD+lJxBj5frNx6PIxgMot1uY3l5GYuLizh9+jSSyaRhYQaDQWN0Ke2ce2VmZgYvvvgiAoGAgauPHz+O9fV1XLhwwZBxNPbL/vGZyXbUWJXC61RoWrCaSpupHvybz6axLzuePWzONlRcD3hTOM629LhRqHTU21LWIa+jm1g9MfteagnzfiqwbTxej4WgIuv1+vX6eNZWJBJxKEvCh4xDpFIp/Mz1n0HX7TxShArUVDRwufHxX+vndHnlWSgMtTSRjoVRTKLUdQzpxfW6380X+65QYpX1SCQCYKBICBuqJ6EnULfbbXMuGUs6ZbNZ82x6DpcKK7XgqZjovfDok16vT+LQOBONDh4Pk0gkEAgEUCgUDIxLz0Q9IRI+VADznDKXy+WoDcjnVfahsu+4brgm9H/NkVLlrsQNjWvpaQdkK5KUwuvxTDKyEunFdzodRw4YEQu/328U4b59+5BOp5HP55HNZhEOh3Hs2DFsbm4inU6beVDUglCo7iHAeU6evqe5c+qlKmFKr8Nrcd0PFdf921BxPeDNJhxoEFtjUW6329BpbcagTV+3sXNVTupV8bMa3LYbFYLxXr4rVJvNJubn59Fut1EsFjE7O4tgMGjKFdFqplD9J7f/CdwBJxyq8aqd9o7xskjIUJq21kukoFH40/7ZDYIxEKTLjXg8jkAgYOJYwCAWaI8Z4z0UVMqC6/V6KBaLKJVK9xBHbK+YcCGb1+tFLBZDKpVCMBhEOp1GoVAwUJPbPWA/ttttU7CXMCMAc/IxvRGXy2XgMioAvsZxITxID1I9O3rXHEcqUnppfB8Y1DlkoyFAZUghzblTJp7NxGTclAYQvd9yuYxqtYrJyUm43W5sbW0ZEgs99Xq9btY16fITExMYGxtDo9FAqVRCNpvF2NgYDh8+bEgttVrNwSLk2lQjUI0ievY0MBW1UMWm60ivyevZjMRhu7cNFdcD3Ah3AQNrXFlKhO8Y76C1SiHKALxarmTJaSxLYxCEQLQPWlZJg8YKLbFf3W6/4vmzzz6Lp556Cs8//zyWlpbwyCOPIBaLGWXKQrsTExN9gdbrEzuqtSpGfaPGOmafPR4PfuNjLnhEMaM3KPIbDAYdCcEul8t8jwpBhcjHPg7sfDdfhpCSG27EojH4/X4cPnzYCGLWoCOjDxh4wITCqDAbjQa2trZQKBRQq9XgcvXp/oTJWFmDCioUCpm6g81m00BqZAm++93vxuHDh5FKpUzZort376JUKhkYlPR3Vq7gkSr5fN7EjorFIm7fvo2FhQWMj4+biiWELOmtKRzI56TiIytRY1ScI3oJXCudTr/ChRJ83G63iREWCgVDniC5R8dRmZyE1hqNBtLptDFQEokEKpUKbt26hXA4jEQigfX1ddMvPW+M3urOzg4mJyfxjne8A4lEAqOjo3j99dexsrKCbreL48ePIxKJ4Atf+AICgYCh+avhqIaPekvcU5obx2aTpvrLd6Cg7Xw63efDdm8bKq4HvNFyUwiOTS1B9ZB0was1x781L0utR/vzvK4GlvV/AA5Lmaccj42N4dFHH8XU1BRWV1eN0qD1G4vFDFGAZYt8G76+Aml3AJ+zLy6Xq093x70FSTW2Z1uqCuVo/9mUWelyu+B2uc2hkRxf21hQNhjJHurZkpgBwDy3kh7Ue/H5fEgmk4ZQ0Ww2TQWHnZ0dpFIpxONxQ6EnQUSfnYogmUyaue10OibFQOnrCnOSAaqwpE2iAAYkEK2gTgNJx1EhMCpUjiEbYWK3u58wXS6X7/FglI2ojFAaYSRVeDweJJNJU8JpcnLSGABcO+w/q42EQiHE43FTXoue3OnTpzE6OoqlpSWMjIxgfHwc0WgU+XzekdRv7zXdI/a+1DmyY6E2TKioCL+vim7Y7m1DxfUAN24YWvKMoWiMSYWIzUzSwD2/QzgRGNRNU6FMmIe/ubkIH/V6PRM011ibEh4++MEP4plnnkE6nUalUkGlUsHW1hbW1taws7ODZ555xpzYC/SLwY5kRvoC3zWIkTDW0ul00O10ANegPBCtbrLM2Bf1OCkwNOcMAP7dx7rYgaX83F5DBqF3RAHJceDrwL01HanMyZKkEKd3y7F1uVxIJpOYm5u7x4MJhUImRkf6+tLSEjY2NkyMK5vNotFoYGpqCrFYzOHFjoz0x/Ds2bMmcZmxOLfbbcpLJRIJU3mDng4VMNcDrX8qYR43wrHls2nOEsdT14p6ISRh8ARrFvUlXMg1qnFAsgsJR1KJulwujI+Pm5w35mstLCwYT5JoxOTkpHn/5MmTeOihh3DlyhWsr68jGAzi6aefxtNPP43t7W0Ui0WEQiE8++yzePXVV7G5uWnWP8dCoWiebK0wPjCo58jn11ig7itN1uc8DtmE/3AbKq4HuHGDcDGrYGHAWeMltpWnCo6vA86K1Tbso16O7Z3wvur9qWILhUKo1WrYv38/Go0GXn75ZXPsOgBz5tTOzg5KpRK2t7eRy+Xw4aUPoxVtmWszdsJg/a/9agfetNdB/lD2m61A7aYe2K//hgs74oX0ej1DflDr2iVKEhgYAmw6pmpRa/kofo994PEc09PThvVHKJbxIMaf+F16aXw9GAxidHQUU1NTjv7qvUKhkIGOeTQ90FeyjHONjo4aZdLtdo33w8+RQacVzJV0QPIKf3hveka8BteODS/TE+J3eO/dyEKccyWgEFLVwznr9TpGRkYMdMrnJNxZLBYNbPziiy9iZWXFjOWRI0cwPT2NXC6Hbrdf1SWRSCCbzZo9xH7QmGIfabDxOTSmpYQmO1amv7mWbJLHsO3ehorrAW//EFxAS043iQ2j2WQMZTjpBrID0OpV0ZNhMq42t9tt4JhwOIzJyUksLS3hxRdfRDweNxUdqLSq1SoKhQLW19f7Aqg9iPt43B5Hfz7+MWCkM4LR756OrF4if4CBYrFZWvbratFSQTE2pIbCbrCjjqtClvT6GO9SkoXOydjYGCYmJjA3N4dEIuFQAupV8J70NjiPPAgSgMmJI/GA33G73dizZ48hHdy4ccNR+Z1pBYQfqfwymYzD46HSVi9Ln9f22nUt0ctkjNFeX1R2JPEw9mdDcbwm546J+PQStYRZs9k0h48yLkkFSa+7VquZCvFXr15FNptFt9vFq6++ing8jlQqZbzqSCSCqakprKysOCj8CutxPfN1PjefkX1TpavrUNEBKneOuRqiw3ZvGyquB7hxAXPBE/bThGRd4Fz8pGKrMCPcqKQNYJBIqxCNfW3th1bxAGDyVMrlMpLJJP7pP/2nyOfz+JM/+RPMzc3hxo0b+MAHPuDIYVlbW8OtW7dw7do1JBIJuF3uwXlb7gFL8GP/rgtXuy+4SHVWa3Y3lpZCiTYVuX/9QXqB0u5VUGoRWPaJP1Tk6oGwkv3Gxga2t7cdNfw6nQ5isRjGxsZMZQuWJGLVfAplCjC3221YlwohkelHi1+VqvadRYpnZmYQDoexsrKCdDpt8rKKxaKJlbHaBwkdrO9HSFmfg8+v1VSoSJmoTshSS0hpugAVbTAYNEQQQqv8niP2KMQIjd1SCZMAUygUcP36dTz77LMIh8PGc2K/uO5v3bqFaDSKjY0NM2+f+cxnUK/X8c53vhPpdBoulwunT5/Gnj17DFTL+CDXA5Uh4Ky9yPnUFA6W1+KatA0Uxoc1ZmrHzYbN2YaK6wFuNtwA3AsxEGPnxuem4OYiU5BChxtCN5i9QXa7l8JFFCy04ikYjhw5ggMHDuDSpUvGIk6lUubU3mazaXKb8vm8+b5uUv6/GwGAAl6hQQ2EK5SjHoA+u8t1L5SocUM+r20Zsw/qbdjWNa15wmi8XjQaxdTUFCKRiEN4Ac7zllSosR8UhsAg9gcMlK3Wr2TTqhfM3er1eiY/qVarGaHLEkrxeBzdbtcwAXUN6ngDMF6gwtVUcDROaAhRcWlie7PZNIcy0tvSOVSmndaK5P35zPqczWYThUIBzWYTwWDQQIa93oDpyGsRLiUJptPpYG1tzZxesLy87CgabROkNMalcDv3GfvPtWPvJ3t9KnnIvo+mRwzboA0V1wPebEtTGz2g++VX0TJX8gbfowBWgadCWYWV/ZoNP3o8HuNRJJNJXLt2DcFgEJVKBSdOnEAwGDQwDjc5++T1etFrOVmMKhz0WbSyPOA8z0iVr0JMCnnqc6jCtNmGNtSquUoUfnoveqaMb2n8ze12Y2JiwrD+9Ls6r9pfZS2SXKFW/G6QsApMrRkYDAYxPj6OZrOJzc1Nk+9Fj9zv95sq6Ts7O0apqUer3ic9LTtBmIqKytSGUzlf/M3nI4lCvU0l+vC7CmHSUGIsjSSOWq2GWq2GaDR6z/WooHncCQATC/N6vcjlcvD7/XjyySexb98+NBoNFAoFA60qrKtjbuds8TVNM9G1RYXPceH1NGFb1+iw7d6GiusBbioM7EA1NzWxfMB5ajGtTUJiTMq0YQhCO26323E0ha2YVLDapaDcbjeefvppPPHEE2i3+5XReVzG4cOHEQwGjaVPOIule7xeL3rdHtzeewWxHSei4GCcQ2MNvK5aw4xbqbL4+MeAj/7bgYeiypsxEQCG0aj9ULacKlVCsIx1ccxI2d67d6+pEm/fk/E1zYWjEuTfFGpKFlEPRvtP6JJzuLOzg1AohH379uHmzZvIZDIolUqmoG4+n8fIyAjm5+cxNzeHkZERQwv3+/3wfze2WKlUHPfhelFiAj+j40BmJr0jwpcATKyTSdOdTr9GIxOjOQb0YnWd8jWtZF+pVLC8vIxoNIpYLIZisWju7ff7MT8/bxKXSRwplUpotVq4du0a/vIv/xKHDh2C1+vF888/jzfeeAO1Ws0R46JyUlidho9WJOEaUJhfGZa28WhfbzckZNgGbai4HvBGCEK9CrV0FbJRz2E3GI2/VWjrb246ClFVAmph+nw+E6+gxxGJROB29xNdWXFBPQyW5OEzeTweo7j4THzPJl2oktAETVWuqtDVyuV3bM+Rv+14EcdWhZB6T/Y8qFeiwXt6h9Fo1PQJcHq1JEeoZ2E3jXGq4tLn1vlm//WzjJmFw2EUCgXH2qpWq9je3kYymTRMPyqRbrdrWHlabor3JBFF0zRoWJARyTQOTS5Wsg8TsunVMfalxBSFU+mlkSREo4xw+ebmplFQul48Hg9isRiCwSBKpZJ5LnpLXq8XX/rSl/DGG2/A5/Ph5s2bKJVKJg4GOI9p0RqDGv/kPCgKouvMRgc491w39h4ett3bUHG9CZoqId1sekQJNx83Kzeb5tOQAWVvDtarA+5VYr1eD6FQCMeOHYPb7Ta5V61WC2traw6oZnNzE9vb24jH48hkMshmsw4BRebh5uYmer0eDh482C//s9VxMP0GCmEgiCkINN5kx8X4ty0gKXA8Hg9+87e9aI/AYdWqMG632/jyk1/GSG9wVH04HDbjrkF6/qYCJVTY6/UwPT2NVCpljhXhnPA+JGPQEtc+AveeqKxQIPtsK3hbiaqw9Hg82L9/v6GTA31jgt4UE8eZG5bNZlGv103ppGg0arygarVqvHoy/DiGoVAI1WoV+XzelLlSL7RarSISiSAWizlipHxm7Tcp+oxZsZEQpONEY4OK55lnnoHH43EcvsmxpgfLosbpdNqQUW7cuGHG2OPxoF6vGwamloCiManPR4VND1TXshKquE5V8WnT76lxNmyDNlRcD3hTj0AFNIWyVsHQ2I0SC+7nWVH48TUVrITZQqEQFhYWsG/fPhPYVqtXISsezOjz+UwfaK1TCHKjMw6xvr6Obqfr8Hrs59c+ar+V2aexIY2v2MpNPZv7jSm9CAoPPYKeyo795Zg1m00jwLvdfj4WYypsam1rDFGD++ox0oNUwWYLMpssYsf21MCh16UUenpIPIhR79tqtVAul00VDyZoMzdMvVKtIs/70Qui8cBnjkaj5vRoZSbaELYNEdqeio0o0IPMZDJmDQNwVAppNBrm1ORGo2GOMWE6A8dNx92+h86dva9sr9yeC42H2fNpr9Ghx3X/NlRcD3gjOYACRYUUBavGsgA4lIbGvXQD6qZUgcE4C1l9R44cwYkTJ0xyMb+jJ97ye3qYYKPRMIf6EVKil8Hj6Q3E2RsoLhXkH/9NN37j151QmAbH/6HgtcbqbOWmwtL2ZnS8COfxM/RYtdSTyzUgTrBvfr8fwWDQxMzYH1WWNCrU0NA4n8bp2Cfe3yY0MBZGS5/rQ5UZK1Zsb2+b56QwpxdDhp/WByTcRyVJw0TjbbwvyR0qkNUrZP1EnlZsx1W5rrrdrsntUygcgGMMuAe0L8Vi0XhvJNQwX61YLCKVSmHPnj147bXXMDk56Yg/qtfK9aHzpoxaXTO2AcSmHrOuY41laU1NRQuG3tb921BxPcCNCoQCUqFAWn4UZvw84CxJo5CSDW2oBcjvUWE1m02cOHECP//zP49gMIi7d++iXq878otofbvdbmQyGWPN5/N5tNttPP74446YAgvnZrNZw+hqNBpo77Qd3h+VX78skZPtxw1NocTn0CrjHCNgAAl+7OP97+98dwy1mj0Ah/fG+AxZfapctLAtoTyFZUnwiMVipuK6HQvjNQgraoFaPgOhKM4P55mCjUrKpuoDznqKnGuXq0/aGBsbw927d81r7XYbpVLJ1OhjYVmPp38qMtcC16LH48Hs7KypftJqtUypKiZE8+BQVrKnx0Qvh5BbOp2G1+s15Z8qlYpjHdMjK5VKZgxZQaRWq6FUKhnUAYDJhVpZWcGdO3cwOztrakCyjuG1a9cwPT2Nn/qpn8L+/fvxwgsvmD643W6TtqHr0VbEHG/ur92Sze04q5ItyEzlmlNvVOfZ6/WaM8SGzdmG5Ycf8KZCU4kJujlUQakw16C2WvM2RZ7CkYKs2+2XvDl27BhSqZSxEkdHR02B3FAoZILd9J7Yr06nX0EjGo2azUgrvVwu4/bt2+YsJdKNtY8af/rYx2GeRxUsN7ztxahXxc8qGYD3oZKxoURChbT09XRfCmEKYsBZmYPXJZNOhZrtHalnaUOgWjRY51JP5tVxUEIE78Xr8Fr0Fljqic9Lz4owL//nvXhEClmqbrcbgUDAkBZIM+dBoWSQKkTNvusxJ4QwmSDMNVmtVs3z8SRn9oXf59xw/m3YjmegsUIIawyOjIwgl8vh5s2b8Pv9eOihh/Dss89ibGzMrLdgMIhYLOaA59XAY/93g/io2HU/7bY/FQ7V+eYc6foYtt3bUHE94I2bkhvUZiWpMGQjNMHX9TfgzOeihceAMgXOnj17zAnGhULBwDUU3IFAAJFIxMGK4nsjIyOIx+Pw+/2GCEDPcWtrC+vr66ayAZ+x2WoaQaSKtdfr4Vd/reOA4lS52RCjrQzY9H2OgUKkbJ89+lnDoCNjrdlsOioasM9sWrKIwkkhJe0D+01Brs+g31VYl3/r9zQOpl44r6NClP2gl0yyARUPGX2kfrvd/bPd6Onoyc5cc7v9ADDeJL1GwqxKkuEzcYw1SZf0dj4Dq72rB23DxUrC4Rxsbm6iXq+b04wJrdbrdXMidSwWw+HDh3HmzBkcP37cxPm4XhW2VKXCe3Lf6N7TcVbmoXpfuqd1z+52nWHbvQ2hwge4Uci53W5HLTfAeZChbmYKEYUddNMDzoRQQocUJB6PB4cOHcITTzyBvXv3Yn19Hevr68hms3C5+gcOzszMmO9UKhWk02mEQiFEIhFTqWNmZgbJZBLZbNZY+hsbG7hx4wZ6vR7i8TgOHTqETqeD8yfO44kvP4Gd1o4RuBTG9FparXsJJRwbtVI1l4uK8Nd+vYcenMnCFKz6OWWC6XlQAIw3Qe9Gzyij4GXQnyw2xqeoXAiBUugBMJ4o78+4DpUT55RkCVvQa4yO1+c1CT8qs9Dn8yGRSDjo5F6vF+VyGWtra3C73SbXCYCZz8nJSZMftr29jW63X83e5eoTU1ZXV1Gr1cz36B2ppwfAEC7U69ODOHu9njkVG4CjdJQmvvOaVORcz6FQCB6PBzdv3sTY2JiJNeZyOUSjUUxMTGB7extf/OIXzTExU1NTmJ6expkzZ1AsFpHP53H+/HlzKCXnmF66Xc1C0wQIBSvDUA3P3Tx8wHkqOaFDRUyGzdmGiusBbwo70ILWoD6FrnoCCiHZCbP8DOCE0Sj0PR6PSeD0eDzIZDIoFArY3Nw0hUhTqZS53/r6OqrVKvbs2WOSVdvtNoLBIEKhEDKZjAm688iPUCiEcDhs4JVAIAAXvguruJ1xAf79a7/ef4aPf2wwNgoN8hl//TdclpfhQgu7M7QUJuWYaLFdFd4KTWn1CgpTzduxGZI6d8DAS9bYIwWd7Q3b7EVNW9jNIud39LlUebpcLlM1Q2OeJAFVq1XjhZEhSGUciUQAwMSpRkdHMTo6inq9bogZrL7Bihh8Dh6jwtghx5rP32g0TGIyY2UKi/J1/rZTGbgnuBYqlQrW19exZ88eU8y30+nXb8zn80ilUkin09jY2EC73UYoFML09DRisRhmZmaQSCRw+fJlk8+lhp2uDztOrMaRfoZzaL+ma5HfVwN1CBfu3oaK6wFvqmToYfBvvr6b96XeADA4L0o3iMKHvJbL1a9iPjIygmw2i9deew3r6+sYHx9HrVZDOBxGMplEt9tFMBjE1atXce3aNbzrXe9CIBBAsVhEIpHA/v37TU4PAGSzWdy9exfb29s4deoUfD4fvvzlL6NcLiMcDmPp1BJ+5vrPmGdR2AQYJOL+m/97kIjb7VJQtTE66sHIiAdd78AiZxCcSsGOH9hw6t+85W/g7/odylxjXewHMDhviR5DPp83gXQqaiZYa86WHV+0FaFChTZrj8+kc2174nyPAk9rO/I+9JSUgELl22g0sLy8jHA4jOnpaQSDQdRqNdy6dQuZTAaxWAyRSAR+vx+VSgU+nw+jo6N4+OGHce3aNaytrQGAg7hDBUiPT8sb0StklQvN19L4JSn7nD/Oq3rQLpcLxWLRzO3q6iquX7+OAwcOoN1uo1wu49ixY8hms4jH4+bQTkLanOtKpYLHH38czzzzDG7duoX/8B/+wz2xUiXzKPFJIUuuQ86h1pUkmcWGnxX9GCqt+7eh4nrAm8Y6uAkAOKw84N5TU23CgsKHtjfAza/eG/O01tbWUKlUDKyk8ZZer2fylxhLKJVKSCaTiMfjhqHIeEG5XEa73TZ5USRn+Hw++P1+80waxFaYRS1V+1nt+BbHRAkceg1g4F15PB787WN/C293kIOkSp/XsuvJsZ+E+IABrKcwH7+vQk6vy2vZ3p9+nsJSla9teLDt5mXrONHjspUohTOTkplrFQwGUa/XzRyS2VetVlGpVBAMBhGPxzE3N2cq0LvdblQqFQP1aUFdHT8+HxmH7D+flUaHQms2vKvrhuuNcblMJuOowBGJRJBKpZDJZJDJZBCPx7Fnzx5Uq1VMTk6iUCggl8the3sb+/fvx9GjRzE9PY2NjQ3HXtJ9o2xOIhe7wYK77T8b8lWPeqi47t+GiusBb6qA+L++pkJQc0DUotXrKIwBOA+r1M8z1rK5uQm/34/19XVzbR5P3+n0DyYMBAJwu/sJo5VKxcRDaGUGg0FkMhlzuJ8KYJ/Ph2g02hc+uLcquyqubq+LXtdJTNFn0LGhYFbPFIDDa9UYFC1g9WBsIWXHHEg8UI9Og/J8fs4V76UCSnP0bMXKPqjnYXujSjLhtXSt6JrhOFC56vMDgxw+GjGEiScmJrBnzx4T2+Pn6/W6oaWzUsjOzo5ReOVy2cT7WHWDY8q+KGTKepocb/aR40SCj03IUcVGD4/rj+suHo+b+FMqlcKtW7fQ6/Vw4MABzM/PO+prVqtVrKysIBaLIZVK4eGHH0apVDIkHRqBtnFlw3xUqAonsq9qBNLo5F7ezegYNmcbKq4HvFGY2ApH4SRuWhIG1DrlhlBPRmNArHSh7EQKGZ7dxNjHqVOn4Ha78cYbb8Dt7ufUZLNZHDt2DMlkEsViEfV6HclkEi6XC7lcDs1mE4lEAnfv3sXGxoYpocMWDofNsSd/uu9PMTIygg/d+dA9irrb7QI99JVXx+mV2DEchdgAOE4KZoKtCr6vvu2rQBuGeKECk/eg4lJyBONCmUzGPDuFZqPRMJZ3MBi8h0TCvqrws9/X40A8Ho85v4tenkLCtrJivzkOfC5l+PV6PQQCAbMWer0+3T8SiZjSTt/4xjcwMTGBd73rXRgfHzcEHApblmXyer0IhUKYmZlBt9vF2tqayYcC+kqO+WEkaujzK+xpK271wNQjJeNR443cMy5XnzhUqVSwurqKaDSKeDxu1ly73TbHzXg8Hty5cwe5XA4nTpzA1NQULl26hFu3buH06dN473vfCwD40pe+ZPqle4pEF+aREda1jS96u2Rt2kYI51wV8VCB7d6GiusBb2qF2fRfQnEUSJojooKR19E4ilrxgNPz0lN8O52Ogf+mp6cxOjqKq1evIhAIIB6PY2dnB8lk0kB97A8hI8JouVzOUR2ewpOwlTK1Pnf8c/jpaz/tGAdjhfaAHnr3bHq1Xvm3Km1VFrxep9PB3z/99+jsOGNCtoC0x4jCSb063of/sxoFFQPvCQwUqnpe94MKFUKyoSaFzjR/yO63QmpkxfEzetijy+UyNf2CwSAikQhWV1eRz+fNicGhUMgYOixrVa1WDQzs9/sRi8XQarWwvr5uiBsK5VFBKaRp0845TlyDHD+Nbe0298qg9Xq9aDabploHr0mPh8q7Xq/j+vXr2NzcRCqVQjKZRLlcRq1Ww/r6Os6cOYPZ2VlzH+0P9xR/1Fi0kQ8aQwplc15tiH/YvncbKq4HvBHCUouSgl5hJf1bPQ8yoVRA8PPAIB5CgUvviqwukhImJycxOTmJXq9nSBrsBzcqj8zgkSCFQsFYoZubmyahlcF2HpuhG55C5S9O/AV+4uJPOGMavb7XBfSVlzYbMiMcRmgTGFj43W4X//2h/96v3N7xGuVJ4gBZbRS2gUDACE2OMeM1gUAAExMTphAtIS/SqhOJBPbt22egSY2BdTodY60TBtNq+grruVwuQ/5Q75hKyOv1mliS0s05NvwOPReuJz4z6xjyWBGeAMBYUbPZxPLyMgAgFovB6+2ftDw1NQUAuH37tlHY0WgU+/btg8fjwfXr17G1tWUIHTxh2F6P9rq1vV6F2agUOKccN/XWGHf1eDy4ffs2UqmUKTXGZ+T32+1+mahkMgmPx4PNzU00Gg1MTExgfn7e1DQk5EnPSZWfesA0zKis1OCwYU4achqjHnpZ/3AbJiC/iZqJ9QjlHYDDKmVTocXvAjAxGC0FpAFivRe/3+v1K2kT5giFQoaZ1ul0DA2e8AdLHZEWT/hRBS6vTwucCkMp4f/9of/uxPtlP+vGZ9uNlWcLbJfLhf/5yP90xB70M+yTHbOyiTG8FgCTjE2SQiKRMEKqXC6jUqmYvCYKLgpQrZJh09vVELHhXvUu2CcV+ro+FE7WOadSpPcUDAZNJXZS1XkuF89PYyWNXq9nknVZMon3JEQ4Pz+PQ4cOYWpqCiMjI4Zl2Wg0HEaArgs+m8KMhDo5J1Squsbt2JIiCpVKBfl83hCBIpEIxsfHHWW5fD6fYVECQCqVwvHjxzE3N4dqtYpareZgpiqjcTdFSkWm88T+2OiJKjA+l3prw3ZvGyquB7zZDDRuBnvTU8jYBA2FyBQ3V6FvW4x8DYADFuJmo7dF9pgew06PipY/4xnKuqMnqB6kbnQ+j8vlwl89/FeDGI4LgAv39NGG1GzYRQkSX3j0C2Y89fvaD3owFOA2dONyuQwxQxUgv+/xeJBIJMyYVSoVI4hVSFF58VqAk6lIhU7PV0scKUNPoSmNeXG98JlsAct78RTkYDBoynkFAgHH0R30vnjwpcvVL9/FgyBZKcXl6jNSi8UiRkZGMDMzg0OHDhmlNTY2Zs4osynfKvTVmNGTCNSrseNdnEM+J8erWq0il8uZ1ItQKIR4PG5KllFxxeNxBAIB+P1+HDhwAAcOHEAikUC5XEapVHJ48hrn3G1vaZyV69DekzYsqMaFxi2H7d42hAof8KYWti5qbmCNcakiAu49AoMwGjcMYUj9rApzehmkJWcyGQM7lstlbG9vIxwOY2pqCltbW9je3kaj0UC5XDZxhYmJCdy5c8cchzI+Pm6ECqnWjAPp5lcl9Nen/9qwHH/62k8DLsDtcnpKfH56NlQ+FCxffvLL/ThHFyY2qEVtlQhB4cx+Uumyj/RC3O5+UdZqtWogJ8JIPPuqVCoZryuRSJg5pNJRqFcZjZwPhaI09sOYlEJ52n+9psY3+ZsQrnoRFKyxWMzhJesRL4RCOc6MBQWDQQOV5nI5Uy/Q7/djfHwce/bswdbWFiqViimqy4oZOvYcY2V/sn4h+8J5YR/oNZHxpxA5lUw6ncbNmzfx+OOPG+87EAiYCvXj4+NYWFjA/Pw8JiYmDHmj1WrhypUruH79+j3xZtvTs2OTo6OjBoXg6+wj/1cDkjDkbknww+ZsQ8X1gDdVWGy6cWwKtQr/3UgYqhS8Xq85qkTJAQBMySKg73WVSiUUCgXEYjGTrMlq8X6/H7VazVRTAGDiSkwu1XvYXiS9RX5GrWj+7xiDHoznZUMutkfqdrvxrXd+C96W13GGE+MTFHC06JljRo/AHjNCXDw7i0qLSpJ94DMFAgFUKhXjodLT0koctrJivzmfdqIq37e9S3ob6jmrQtCcLX6H96UwVW+g0+mYeoN8Rs6pQr+MeyqsWC6XDTt1ZGQEExMTAIDt7W1Uq1XDCGSf9QwvO09KvUbChDQadkML1NAjg7XVaqFQKJjEcM4x5yOVSiEWi5myVux/NpvFrVu3sL297Vhnu8GT9vv2frShP/tzWl5qGOv63m2ouB7wRiHIRkGh1rPCRGrdKaOQ8BM3EK1OXlOFGeE/xjuYr5XL5TA1NeWomE5IKZPJmAMH6Y0A/STVra0tQ3DQ/qnQodeoykgVFzfxZ49+Fj919accQv6Lj3/ReAL2M/r9fkQQMTR1CkAAJi9HlQMFGpuOI1uv1zPP7fP5TKKtlkiiAOb4ulx9sorb7TYpAHx+hZr4eX6XVrgN72rMjv1Upc/5VsNG4UF9NlW8Ho/HKFTWKeR48Dn0+XjdTqd/HhsLLHs8HmxvbxtPKRaLYWRkxJRY0rVLNqLL5TL1Dql02B/ef2dnUM9S0wLUAKCC1rGh90uiBQ0u0viTyaSBDQlJbm1tYWlpCSsrK45TwhWS1bnQtUWFbFP09fsKcbOf/LwaHMN2bxsqrge8qdKyz+MCnHCDnbGvlTB2i3cRluD3CIlRkfAY95WVFWxubmJ6etrUonO5XAgGgxgbG4PX68Xdu3dRKBQwPj5uiBoAsLKygtu3b5vjT1S4+3w+E0/hs2psSQWQWp+fPfpZeDz986L8fj/8Hr/jCHn1Rur1Ojyefp095u+Qos3+aO4NhaUKGW30DL1erxHQzFejF0FShkJevE+tVkOlUjGlk2ymIj/b6/WMUtU+2t6SrVg1/tbpdFAsFg0kx+cNBALmfDSer6b3LZfLxqtm0VoVpIS7yITkuDAhmTDc2NiYUbxkkL797W/H+vo6lpeXkU6nzWnKNJJ0HoF+zlU8HjeEDv4mHMhGJarKlPApocTt7W2T2kFFxbyyyclJpFIpw4y8ePEi3njjDdy5cwe1Ws2MDa+vRhLHWv/nHFGB7bY/2RTK1bSFocd1/zZUXA94UwHKH4XBdDOo1a7KTLFy3RQaN1FLHRgw68LhsImhqMVN4U5qNAPoAEwNPMYxyuWyqbTh9/vNtQmlud1ucxaUWqAKyVB4s49KStHnoTCjgO52uyanikqa36XHxPwyjo9S1mmB8/qMmbF6CM97ImxKhUvhqs9DsgPHk2PL6ytkyO9ROWj8w+PxGMVirxX1wHlYJ2v8EfLjZzkOHGub+KFemvZNlfxu9fboNakBwjkaHR3F7OysOXyyUqkgl8uZmpZMA9A4Fs/lYj91vdqGisbtbJhcq3dof1V5UtldvXoVt2/fRqPRMIYA94DuR1tZ8j3dj/rD/aqK6n5G0lBx3b8NFdcD3igsGZTmJuGiV+iIn9dNTeqyTdzQPBZlm6mAjsfjOH78OPL5vMndYmyG3kEikUAgEDBQH3O9KMTL5bJhH5Icwo1NqEYtY7siORUFY06qWPRsKRWytMxZJggAyuUyOp0OotGoUSCNRsMoB8KKFJBUlsrk4zjbhy8q9EPIjd5SIBDAyMiIifUwLra8vIx6vY54PG6UBp+DMJwqHxbxnZqaMsd1aByTc894U6PRQLFYNAcq8gRghf7I7ORaUhYjn19z3FQp8TBJVsTg2V1a2Jhenc0e9Xg8SKVSOHLkCNxuN0qlEl577TUUCgWsr6+b56hWq0ZRAjDxLV6LxpBCi0qA0PgYPbRisWjqMLLVajXkcjmzV9bX13Hx4kVjWLEeJ/uuMCfnjI17kwaSEntoKPD51BhTRcZrcG8O271tqLge8KYxHzsWosFg21PRYPtuNFxVJPy+Fofl9eLxOMbGxpDNZo2QU/iR1rjCXFpIlYdQjo+PO1hp6pEAzpiNvXnZVGnZ8R0KWfUa9BBLejnqLVCgEarUmIoqWJst5nK5HPlwhNOAgbek46+wJ/tPZcQaenxufoaCeWtrC7lcztTcK5VKqNfrmJiYMMpb2Yb04JrNJiqViin1RI9TvS4lEug408Pgacn0pOkF8XpqWKhi1hgiIWEaPZpjRuo9mX25XA4uV59FyPJl/D7jkVSCVBqMLXGsNY7HtUADRj0ywn+8DqvF7OzsoFAoOO5BL43X1zWhRqQ2ZbwCMMaYriWuaf2uzsOw3b8NFdeboCnLiJuV3gc3gyo4bSqAFUrSwDKtUQoF/mZliOnp6V0D+RQq9Joo1PUQxHw+j1arZZQCqdR63Mj9KoLwXlR4VDgK1/Bz9Ah4PQp+Tegk7ZrXAZyFUCnsVBDqb36efbGhRypsvq5QFxUln4nWOMeG88xn41EpKysrKBaLhlZPRl+1WoXf78f09LQpw6T0d96b5ZvC4bBRtnwmJQcolMw5pSFAQa3MS0J6/KFBwDnkWqTnSwo84TYqc667yclJRKNR+P1+lEolFItFLC0tmZqPPHqE64z9VIhOx0/TDTTWxGdkLIsGVK1WM14Yvf99+/bB7/fj3LlzxkO3mZ82xMumyAX7pkpLU034DNq/oQL73m2ouB7wxoWt0IJ6VMpe04ROCkkqKVUC3CA2A4qlfrghW60WEokEnn76aSPQW62WqZJQLpcNOcPn8yEWiyEcDhsF1+v1HFW16QH5/X4EAgEsLy+j1+sZGjIAh7dGIezz+QyhgE0Fr+Zi0SpndXBVRBRYCoNR4WhulA292fEvZR62220DzVEYdzodU16Iz8DqIqSRJ5NJNJtNbG5uGoFNYVev13H58mVzxDyfgyf+bm5uYnNzEwAQj8cxPj6O2dlZc9CjshmZ8MsKJlw7FJ6EoLW4qwpbCmYtLUWiDRUP1w2Zelxb+sMcQJJXOF4KZQcCATzyyCMA+jDs4uIicrkclpeX0Ww2EY/HTUyK3qfCgzrXnEMaMdVq1cDjhISr1aopS1apVPDaa6/hyJEjOHHiBHK5HCYnJxGLxTA3N4dLly7hxo0baLfbDkWpKQG6HvWEbL5nkzdUUem8DWNb/3AbKq4HvHHh70b3vZ+lpqxBtd4oRKgMVXHxfcZINJmVCqlYLGJlZcXAM6VSCaOjo46q34zpkLDQbDbvYcVFo1GEQiGk02kTw2EFdY0XqeCzYUqFWvgMCoNS2VEw81mp3FutloHCNE7BayitnWOvcQf1Kugx6REcNjmB425DrBS2CqPWajVsbm6iUqk4yBuEBdXLqFQqBjIk4QEYQJKMa7HfNGjYF/VG1aPnM+rYcQ6UxchnozFCr0qJC2632+S7aSxWn4nzynXX6XQQj8fh8/kcpxTQgHO5XEin02as7efSMeLa5nqhZ1qv11EqlbB//34EAgGsra1h7969mJycxOjoKLa2tgDAUTWG92A/uRfs++meU0ibvzWmxbGy9/yw3b8NFdcD3liMFhgk9arQ05gUNwQFzG6MLxVg9nVo8d+5cwc3b95EIBAwsSmND6RSKSwtLSGfzyMcDmNtbc0oQnpsxWLRHPdBgUzYrNvtH/Vx6NAhLC8vI5PJoNvtGq9LY1i8NwUqn1VjXFQy9AZUqbhcA1o039f4B0kGZI1VTbFtXgAAsXZJREFUKhVHVQY2Cmx6awoFJRIJtFotozQajYaJi7AYK49z0dwjKnsyB6kw9dh73pu/qcjYD6BPLuBx9DxTyuPxGA+IClpjYgpXUtEAg5gcoUGmDvBZ1YDQ54xGow5GJeNKXA/0QBhLIkRK5U5Pmcfp1Go1EzddWFgA0I+ZLS0tmeNdxsbGsL29bSBhrg0+m00t9/v9po5kLpdDoVDAzZs38eyzz+Kxxx7DV77yFVy8eBGzs7NmLFqtFpaWlrC0tORgEgJwrCN+Xg0T3XM2GUO9X2XC8jrq6Q/bvW2ouB7wRhhErX1uSApwhbRUAWkMSAkZNoOQ9wEGx84vLS1henoaR44cAdCveLC9vW2EZz6fN8KGFeGZu0RFxfp8NrurWq1ic3PTCH0KQMB5YjCFEZ+Fz6yBcr4PDBS6KjR9nY3/qwerrDqbRcgxYx+UmEGIstFoGO+LpX6oLJWaze/rmLOuI8eWhWAZh6GHoQxChXc1tkRFA8DQ/TWeoqxCm9zCv7nG1PCxqfOENAmdKbtT50fXIIU0x5iHTqoXyTgaAGNAAAN4eWFhwTAZy+Uydnb6pzXT6yV0qd4j+0zDhYZgvV5HNpuF2+3GzMwMpqam4HK5UCwWkUgkjJJfWVkxHqOuO86B7S3xPc63GlmKGujYcOztfTxsu7fvq8juH/7hH+Lhhx9GNBpFNBrFk08+ib/7u78z7zcaDfzCL/yCOULggx/8oMHi2ZaXl/H+978fwWAQExMT+Nf/+l8Ps8S/R6Ni0qRPelPKRuJm4PuKp9/vR+FH3Yw+nw+rq6tYXV01AmtlZQWFQgGNRgOFQgHpdNp8VqnyAIyFTWGu3g89kEwmY7yQsbGxe2jFbKpo6SnQ6leFolauemgUYHoyMZ9blSSvQSWmP7aypOei1HeteG5fl59XxpumODSbTVSrVUOd5mGOClGpt0dIVg9kZH/otVFQa7yKfVflpOOqLD16TXweeoYKh2puGa+rc03lpNU/CD9SiVL58nrlchnVatUQIRSy9Hg8mJubw5EjR/DQQw9h7969mJ6eNutBIWmF73SvKDRJT7VWqyEQCGB+fh7T09OIxWKYmJhAOBxGo9FAOp12eL1qDPJvG5LnWlKlZe9JPj+vq4aZ7slhu7d9Xx7X3Nwcfu/3fg+HDh1Cr9fDf/tv/w0//uM/jnPnzuHEiRP4pV/6JXzhC1/A5z73OcRiMfziL/4ifuInfgIvvPACgP7Evf/978fU1BRefPFFbGxs4EMf+hBGRkbwO7/zO/9bHvDN3lRwqtKhYOGmBQaCEoAD0qHwolejbDIVjPS2PB4PqtUqvv3tbyMUCqHT6SCbzSIajaLX6+HixYtIp9M4fvw4wuGw+Q4ZZB6PB4VCARsbGw5Bz1gIDx9kjMztdjuOxbAhURUKGidhDUB7DCgU/H4/yuWyEXr8Dr0iKgMVOBRyPBjR4/GYChkaW1NPlZ4EvSMqKb5GRWN7t7wOhZw+K48C0bikelxsHo/HHNPB+VFGHVl8HA/OE70eCl6FK3k/KgKNmZKgw9qErPTOueeYUYmqEKZCdLvdhpWoyAA9b81zApyxw0gkgkQigWQyidnZWSwtLSEQCGBpaQnr6+uG4q6wnOaBcWyIHjQaDVNR4/XXX8fMzAxisRiuXbuGGzduYGtry6Hkdf5s6E+VEKFSPh/XpXpp3L8af+X3OX/Dtnv7vhTXj/3Yjzn+/+3f/m384R/+IV5++WXMzc3hj/7oj/DpT38a73rXuwAA//W//lccO3YML7/8Mp544gl8+ctfxpUrV/D3f//3mJycxOnTp/Gbv/mb+JVf+RX8+q//uuNI92HrNwoNQjd8TQO4Kgj5ugoNFYy7YfD6GxjQimu1Gp5//nl4PB5zHH2r1cL29raDsWdT7imECFvpvWh9awUBxk/oKTLmoomkqqi1pJHG33gdelqkTyssyLEgZMV+UaBobImfBwZ5Zja5gJ/ROaKHx3tRWCsJgUaFwoZqeLBuHo/TYLyIgpBQZDAYNMnFnHOOmQpc9bKV4MK+sb8qPPm8XFNKbOl2u8Yr7PV6JsGbHpgdY9LyY6qE1aPWNaTQLtcGn4nrcHx8HABw4sQJYwBtbW2ZYsa8JvtAD5UGRTgcBgATY3vllVcQjUYxMzNjTnymgtf9prFcG26n0uZ3uGb5OY67eqW6x5U5PGz3b//LMa5Op4PPfe5zqFarePLJJ/Haa69hZ2cH73nPe8xnjh49ioWFBbz00kt44okn8NJLL+HkyZOYnJw0n3nf+96Hj3zkI7h8+bKhwtqNAWQ2HmD3w9BsYgQwsEB3w8FVmNpQmsY6lO2kAlsZTz6fD+l0Gh6PB9Fo1NC+eT3CgaxdyO9QWFMBaX0/AEbwKYxCb4DJs/QcqIRspctrUQhqsiufqVQqmVw0/b56TTq2KkR4ffVI2UdgcAQ8x5iClsQJKgJWXaDCteEfjoMqDSq+SCSCeDxucqc4tsBgTzBuY3s4CvupYLShKc4Fn0NLPWlfuC6U4cjxUOHOuVGYlPRwrgVVbLpu2T/1bKkIFGIF+vGpZDKJiYkJHDx40BTp3dracniqCqNqCkO320UsFkOtVjNJ0Hfv3oXX26+7ydOmOZ5UKDrXbDqnCvVxLfA62h/1tnZb40PF9b3b9624Ll68iCeffNJYLH/1V3+F48eP4/z58+YwNm2Tk5NIp9MAgHQ67VBafJ/v3a/97u/+Lj7+8Y9/v139gWgqGG0hp4wpxpvUM7PjPlROmgyrFi+hDa1uQCFcrVaRz+eNQOTx5xpT8Hq9iEQipvYcSw1RiI+M9E/BZQwjFAoZD4klooA+pMMyQgyKM9eJFjcAcyQL0IcAgb5Ao9IjaYBHtNBLU6GoypxHs2tuHAUNiQ68hlr1AEyScbvdRrVaRTQaNblchUIBvV4PiUTCfJ5j53a7zVhWKhWHsPd6vZiYmDDsOlrwHA8+iwpmNQaAQe0/3pPrgIYG86pItOC4afkr3oOxPM2/IkRIhiATr2ngcLwIC0ejUWMoqRGk4004kq/xzDYaUKocvF4v5ufnMTs7i/379+PatWtYX183+YWlUsnsDyp7GsHj4+OG9To9PW0gXaICNnzLcSHcypJh6kET5qanSiNOIW4+JxW57h+l/APOvMZhG7TvW3EdOXIE58+fR7FYxF/8xV/gwx/+ML75zW/+7+ibaR/96Efxy7/8y+b/UqmE+fn5/633fFAalYoqGZuwwGZDh6r0NDCvVrla1wrVULio4qNiAQZB7pGRESP8lNHFe1DAMVDN62k9Qpt5xesCA0YhFZJdG1Ctc2CgwBibosJST4N90/iWeljqZSmkoww+/Z/fU4+SyoEQFqtkcA7s+dIKHNroPfAZdO57vZ5RynaqAD9LZateNT0dhVXVQ1HyCOeJyoTCVvuj60+9Rp1rHkdCQd7tdg1Rh4pP44NUBvRUadhwPXW7XVOYt9PpF2+emprCwsICstmsgQEJKyoSoWtan9t+Jpuxy9gy58PeP3xmRTP4PX1N9xXvtxsiMGz3b9+34vL5fDh48CAA4C1veQvOnj2L3//938dP//RPm8Pa1Ova3NzE1NQUAGBqagqvvvqq43pkHfIzuzWWmPlhbGrV68ZSSIH/KztT8fzdgr2Mb1BQqQVLYWXHZdgHWuYUVExCptegAkGFOb/L63Je9X8VfrFYDPV6HYVCAUtLS/B6vaYaPb17Mu9YnYOHFIZCIUQiEUdch8+tcS4VOlQgVAh8XjUaOF60pnk6L8eX16jX6wa6DIVCjnJFhNm0/BWteTUAeE32zYbnOp0OIpGIGTfmoBE2AwYxHo0D0ov2+XwOqNCO0RB+ZSV8AI6K/irAVZmqclB2qdLh2Tden4qD9w+FQojH43C5XBgfH0csFjPrmfPHkEGn00EwGEQsFsPTTz+NVquFc+fOmbXVaDT657JFIobJx9gcoUJCg7weEQKuWYUyFX5XxEONI11vXB9q1KkxqUaaTeAYtt3b90WH361xgb/lLW/ByMgIvvrVr5r3rl+/juXlZTz55JMAgCeffBIXL140GekA8JWvfAXRaBTHjx///9qVH9imOUOAMxlWGzeCvq7Wqwa47ViIfs62FjWI3Ol0DEZPoWtbpjbmrxY/BaXG1Ajt8dn4DBSSFMxerxfJZBLj4+NIJpMGzmKOD6EentPFRphPKdu2gFDhrWOs9HM9gJAKk5AfPTCFIulpUCnT21AY834eoBobOndanURJC/yOwlp2DJOvUQHSSLETtjnPWhhW14sqcvX87RgNx4SeJhWBHbdVA0zXBeeK463Fimk40OvltWZmZjA9Pe0w8vjD+W80GibxnAYClatNgtIxZFN4UNe8vmZ/TpEONZ54bR3LodL6h9v35XF99KMfxY/+6I9iYWEB5XIZn/70p/GNb3wDX/rSlxCLxfDzP//z+OVf/mUkk0lEo1H8i3/xL/Dkk0/iiSeeAAA899xzOH78OP7JP/kn+Pf//t8jnU7jV3/1V/ELv/ALP7Qe1T/UaLUr/KZWrlq6/K2xEBUiuykuVTJ24F7vSe+p0+mY04wphOkF0IujgOBv3fxUXLTieS2enkuByv4zLhYIBBCPx5FMJnf1IDXPyYbObGKHLdjVmtYxIWRJRaHJu2pIkJnH76rn1ul0HFXWlbBCz1FJKPwuv09PZzdBzDGl96tKXwUtn4X90zw4m1ih17e9C5thqHFWWxFxXOhp6hrhmJMkwedgDJfrXs9J09iu9oPvUzGnUimMj487IFmFQ6m4mJbBPhcKBXMUi64BfkdRB226lpQ0xfFRD12JL7YHrHvVhpKH7d72fSmura0tfOhDH8LGxgZisRgefvhhfOlLX8J73/teAMB//I//EW63Gx/84AfRbDbxvve9D5/85CfN9z0eD/7mb/4GH/nIR/Dkk08iFArhwx/+MH7jN37j/9+n+gFr3AA2ZdyGufhZXfwKNdLyJWQDwFjW/Cw3HQW+3ocxKVqvtFzHxsaMMLh79y4OHjxoSBGVSgW1Ws0IJpIyOp0O1tfX0e32S0gRduv1+uWD3G63iRWFw2EcPHjQKMZAIIBwOGyupwQRwFlOhwqCpAv1dPhZVahK1uB3OUaVSsXkf1Hgj4z0z9piXUF6B5qXxrHVvB493JKKRiukEDZUKFdPqFaGndLTCVNSISg9n7lkREl2qyxCYgXXG8eI80nPUWNoLP7L+VKlx/VIVqQqKz4LhTw9Q2UxEs5j+IFzpCkHjHdxDWixZPaXnnk8Hkc2m8XExASazSZKpRJCoRA2NzcdSoaKRuOYXPf8WyFj9k0VvSogrgMtgWXHUtn02YfkjN3b96W4/uiP/uh7vu/3+/EHf/AH+IM/+IP7fmbPnj3427/92+/ntj/UTWMJ/JuWru1B0Hrj5wHnabrAvZ4Z31fvaDdWIq/l8XhMTAIYVHngpi4UCvdUt2ARXmCA4/v9flSrVWQyGcPIo2JyuwdHa9gWN2E31iRkzEQFolrXvIZCglRgFBrsl8JUWmGBioHXJ2lBx4dCRsdaPR8+M4U+jQ+l6rMfek9tSmTh/7pO2GddE3b5IwpNwprKXrOFrsKAnFNVxry/TXDg2BBOZTqA7ZVy/FXZ6VzyrDKF3/gcCpXze1RgZHHq9WkMAP1DRYPBICqVigMy5dpQL3A3eF5jmkp44dgoZMh1a481n0s9M92fdhhg2JxtWKvwAW9qcVMIcRNxk9mBYgoxhZao7HbD7xUqs61Oemn6PUIq7XYb5XIZkUgE+XwesVgM29vbGBsbQzwex+bmprHuY7GYoYrncjkkk0lMTU2h0WhgbW3NfAfo5yj5fD5Eo1ETZwH6XgvPlQJgyiSx5l273UYikTDKisKWjETW01Poh8Jej6sH4CBAKHSnVrAmi2ocq1armVgYDQoKMwpCEh8UNnS5XOZ15rLR+2BfVEgCAyKB7Qlo/1SxsP+6lpg7R6hRYz00IgCYihksKEyCAw9+BAYCl9XqXa7B+WxUCDQS6HEqtEzPrdvtYnJyEqFQyCRjc174nNpXAEZxkWZPeJLrPxaLodls4rXXXsPs7CwWFxexb98+1Go1ZLNZszZocFBxcf2rR2zH+uhVcm3s5kUpu1HhS1sx6zWHbfc2VFwPeFPPiJ6OBnY19qEWqHoI3ECqrBRTtwPMvIb9mgoJWp4s/cOzu27fvm1OTb579+49cBTzd8bGxnDgwAGsra0hnU47FAThGa2mTkHFww2ZR6OWNjDwDhRSsuM7fD71NDl2vNf9CvQq44yNwodQGI8m4ec03kXlQMVvGx7sn+ba6b05/gqTqYVve2lUXgBM3yhAqcAVYrXnX+N4en19j4qV73PMa7UaSqUSarWayd9SY4rjxu/Q4GJTL5KfZ185Bqpg6O2pglFvMxwOI5fLIZfLIZFIoFwuY2pqCrVaDcVi0bE2NIaoXhCvp3uM60NrVVLp69xr0znX5+Ma3m0uh23QhorrAW+6eNX7UmhClRtjJlqvTkkZNiShcBo/q3kmtlLje7Tkd3Z2TAWCmZkZNBoNBINBLCws4M6dOw5LXxVgKpXCww8/jImJCbzxxhsmAZ0KmgpDFR6tWGUnKtxis734N70WXl/hO9uypXDk/XhvXk+FkAoXQlGqVBnzYsxO0xUY66CgpcWuHg77o4JTFYp62Bq342dVEVIZ2wnWKix5PX1ehTH5OT4vAIeRYAvaer1uKriT2s7rahULlrSyWZ8Kz3FedK4I2bI/LpcLlUoF5XLZ4TXt7OyY6hjZbNaRPDw5OYlKpYJisQgAjpiuDatzvGhMqRHH+VWPUMfXNiIVdtZ5ZXrJ0Nv63m2ouB7w1uv1DGxke1eMYajAogeiMQS1CNW7UEtV4z78UUVmx2roUWxtbWFiYsIorgMHDiCfz+PAgQPI5XI4e/as48jzbrdfiunu3btwuVymskEkEjHlo/RQSQp7JaZo0JzCg3EyHSNN+KVA5vjwWUgwUWq5xjVsggVhPPsMKLIOPZ5+XcdsNmuSjklgUEiWUCLnl+daaVkp24tijIb34/yxjJLWGbQVF6E/jT0BzuojynpjJQw1iDh29GCodBVmpmGhBgK9Z41haoUNEjLIQgTgGC829suGSVW53blzx1HNnet6z5492LNnDy5evGjy18LhMKLRKDY2Nsx6tA01rh/1NPW4Ht6D64P9UiXN8dgtxqeGCGOgVJ5D5XX/NlRcb6LGjaz4OjCwgpV+a0OC3W7XJF8qfVuhGzugrJuT97c9vEwmY2JM1WoVc3NzWFtbw8LCApLJpCMOwY1arVaxtbWF7e1tVKtVjIyMYHp62sEIA2AUFAUb40iqfLU/CmVScdEb4bjYcJMKDlWE+qxKgqDwB5znhCl0B8CMNb1DVYK0rMnwVBKKxjfUGwbgEHxKpdaxUmhTIUD1iPgZNSaUbKJVUWyKO5/XVlDqkfJz6oEpPMj/qfjYJ46L7fnp83Oc+XxKSGq32ygWiwZW5nz5fD4kEglEIhFTIKHdbiMcDsPv95vq8OppcbxUifG69nOogaefVean7Y3qeCkBRQ1Oe60O26ANqSsPeNO4Axe4bjAbHuPnuKm5+FXgsCkcpFCRKjMV3jZU5vF4kMlk0Gw2kUgksL6+jtHRUSwvL2N0dBTJZNJ4JYT2SEBotVoG1tHj5/UICyVLqHVvC0clLTBuxOdQxaJH2GsFD/62yy5xDDkHWl9Qx1jjMOwL6ddUtCr87eRtls1S616hJY3TUclwLNQw0bGhEcC547jyczYFnX/Tm9OjWRSWVdaiGjdqSKgnospR4WnOqT1fus61X7YSsfsGwJxIwPngfUKhEMbHxxEIBFCtVjE1NWXWLA9AZamw3bwt3S8cAz6HPb76/Pac6Dzxf+4jl2tA3rDHadjubUPF9YA32wJXa5QbVllhCq+pgut2+/X+CJ9xA3LzK0Wav23hb1uTLpfLFDV95zvficXFRXQ6HZw9exY7Ozs4fPgw5ubmAAyElNfrNYdInjx5EkePHjUxMiqYTqdjcpGocCiw2VfCSiwOSzhOn18ra7Dygo6rChxeW7+vcBPHg3Xz6J1pLT8V7oFAALFYzChvFUZud5+tWa1WUS6XHdCTPd68n8Kn3W4/P4kVQjgX6sHptTiPNAbq9Tqq1aqBe+mVUmERruKZabVazXhG/IwaNHqopXoWhL8Iieo8cQ2SkGM/d6/XT0rX3DUaPC6Xy0CJHP9Go4HV1VWsr6+btcZxPXbsGE6fPo1IJIJut89WLJfLeOSRR5BKpZBOp1EsFo2i13qIGl/jfLMP6h0qZK+woO15cQ3wmfl9oiCq6Ife1v3bECp8wJuSKkg5VgXC91SxUHhqkN2G/3RzAYOCojZsAThJCDbxYXt7G9vb29izZ4+hlReLRaytrWFyctKUZqJiZQA9nU4bCKdaraJer5tK8ryPegnqXaki5/sUqCow2NRzVGaibRmr92p7XvysEj3UsyC9W+eG404hyvgQMIiHMKbDvmvOlPZdGz+n0Cb7rQpADRxCpzqf6rHbeXwquNlUOfO3xhA1bmNDsAp5EmZUaNMmhLD/qth0fapX5fV6TZoFPSeF8qamphCJRFCpVBAOh019Qp7nxeRl/Y6OvXrd9md0PHbbLzquCg/a88W1ofe0533YBm2ouN4kTeEYt9ttYCa1qFXQKpxhkzPsnBvCdFpMVJWcCmEADpjt9u3beP311/He974Xb3nLW3DlyhXMz8/jC1/4AsbGxnD8+HGsr6/j9ddfN6SEbrdP0Mhms+bMKVLig8GgsWDVm9G4DvtDz0fhPwCO10gooDdCAoXmMpHNp8aAGgRadJiJ0VR+HGP2T2E85jrRY6SnCMBU1lCDg+drsb+MB6oQBODIdQJg6hfq+tDkbGBQhkhjoApJ2vlbhAzJlOQ1VOHYyctUKvSWOSdULgr1kpCyW8oDvbJgMIhEIoFgMGi8Q1bwYP/5LNvb21hdXTXjznQCv9+P06dPo91u4/nnn8fDDz+MZrOJ2dlZw3Tc2toy+4n7R40Mjd2pIlequw2dch1yDfI6/E3DiFVK1Giy43zDdm8bQoVvgqbxDQogpQ9rHEy9CBuy4Pu6uSgAuIHuFzBWy19jbYRodnZ2cOzYMTQaDUxOTpp8mampKczOzpocp16vh7GxMXg8HnMWEoPkFOzsu9K3NS6iyoFwnz6PWu0UbBq3YLMFjXoo6qkoBGQrG4XoOJYKIVLo0yPUvChNVlXISPPT2DftA8eGyslW6HwuZVDq3Gp8jB6RHcvhd7QKiu3Vq6JXL4XCVr0xjanpuNpxM46VKljtj50SQZgwl8uhWCwapUcjhV5/q9VCPp+Hy9VnsjJFYWdnx3hc6slq07qUqnT4vEqIsfejjpO9NvU7Gl/WcR623dtQcT3gTb0dtfYUFtOmTDMNLmvQnpvCFuo2NKGbTGMXFGi8z9raGjqdDubm5pBKpUztuo2NDaRSKczNzRlFq2cokTI+OjqKcDiMTqeDcrnsiN1p7ImWOq11Ci4VvISlVNCqEtd+62dseMYWsBReNpSjglc9W1VgqmTp3drKZ7fyVW6328To6BFriSBdF/RueA32QeeUkJwaA0rEoILReeZcsUAwjQ8dM10b+r8aDlSwXIsKI9pKmf2iV1uv1x2pHOwn13q5XMb6+joymYyjGkcqlcKePXvgdrtRKBRQLpfR6/VQKBSQSCTMmOqBlkqo4LPSg9N9pM+hxoIaePSybXhbiT26x/X5FW4ctnvbECp8wBs3Kjc6MKAS60bRmAc3hkIZtgBjU9xeaxRqQi8hGmAgmAit+P1+pNNpvPHGG3jqqafwj/7RP8L//J//ExMTE3jhhRfw9NNP48SJEwgGg2i1WqjX63C73Ugmk1hcXEQoFMLRo0dx4MAB3Lx5E5lMBvF43NyPm58WNABT5olQlsZa9LRjjh1r5elnKTQU8rKV+m6WcTAYNDUZ2S8KGZvWroQUvsZ+UCizxJOWV6JyVc+PSp2EA5a+UnKJwkqqtDU2xfdshUHyAyu5U5lpCSoV5C6Xy+HRkYDBv9WL59wwBkoFS2KJ2+02hZjZ71AohPn5eeOZUxnZkKvP50M6ncbly5exvLyMZDIJoH+68cmTJ/HQQw+hUqnglVdeMWXJdnZ2zNlc5XIZmUzGQJkcD8K7VJz2eOr+4boJh8MOo0ET+1VxEanQPa17lEbFMMZ1/zb0uB7wpgJWNw9wb2ka3VBUYmpJAk6yx24eiEIcFJ7cYPq+Uqo9Hg+uXbuGRqOBffv2IZfLIZVKIZ/PY2RkBGNjY4hEIgAGZ4v5/X40Gg1sbW2hUCggHA4jmUzC5/OZ2ncUemoZa/xNn5mHUhKOU2o7P6uUfBsC49gATkKEsvSAQTyQikkZmTr26gUybsNr8/7ss57+y/Hh85KqXavVHPAeG8eASsW2+uktaZyOcTcApu/q6VG4qqdqV7ZQGEvHmM/LvrG/fF8rhfCaeh0luPCcNT1WhuOuhhuTqFkrsN1uIx6PY2pqColEwhhZnU4Hi4uLKJfLRjGw/iKTu3Vt6Y8SQ2xYVWFDG3rW+CDH1Gb96vN/L1LOsA3a0ON6wJt6PbrgbcYXX1fYSKFAvq+YvAo7wJmMq/EGbnBVagoJjY6O4vOf/zxmZmbw7ne/G8FgED6fD8eOHcOFCxdw6NAhHDlyBC+++CLcbjeWl5cxNzeHUCiExcVFNJtNHDlyBAcOHEAoFMJ3vvMdQ5lmH1lPLhaLOZSnxpDUk1DPh4KZ1jED/BTaTBBmMF0NAwb7VZnwtGcqKPU8GHPjCcf8vh0PK5fL9zAZ2T8qop2dHePpcJw5Lnx+FeAkmSgUqMaNsvsIjykc5Xa7zdzRU+d1VFnwOvpdemacGy0SrBVGdAzo+Wr6QiqVchzUySNiOBe1Ws3cCwCWlpZw8+ZNzMzMIB6P48aNG2i1Wjh58iSOHDmCZDKJSqWCM2fO4OTJk3jppZcAAJFIBDs7O1hfXzdFg6vVqoEpue5oJKixYsc97zcGurfsmBfnQY0FNUhsiH/YnG3ocT3gjRtJPShgAPdpgFvLFgHOBGP+5jV3o//qdTWeoHClHd9i/CKTyeDGjRvY2trC1NQUNjY2AADLy8toNptYWFhAKBQyG7VUKhl22NbWFjY3NzEyMoKJiQmTs+Ry9anzlUrFAf1prEiL2KrCUWKDMtwIM/L5+bpCOXwuFd7AoKgrlSA9Agpm9XA5lrZw5vWpBLUvVKIaR1LvUWFD9Xjphdrva1xP6eMaI9QYp3qGeh16lurR65hp201Ycyz4PHYuGBUcIUqyJFWR8176XK1WC6urq9jc3ITb7TbKqNfrIZlMGjiw2WyaSi0ul8vEDdvtNgqFgnkeNRIVZbDJJwr9qfGo6IZ6rbpPNZ6sn9XxUsNr2HZvQ4/rTdC4yG0rj5vLhif0exq3sT0R/k+BQi9CvQdbkHe7g1p17BeFMiu9Lyws4PLly+Y6lUoFU1NTmJiYQLFYhMfjQaPRQDQahc/nQ6lUwtLSksm3iUQi5poUzIxdUMhRoPt8PiNsCWnpeNnwGeMYbDaso+w8/lCoKYmBysTOUQIGsTJlxSlUawsmhab4HJxnVdgcC9sDtyFcNSp0PvUz/JwyMimobbaiKh1+Zrc8I2W/2nCmrkVeQz1VrRzC5Gp6dfV6/R425sjICAqFAm7duoVSqYRUKmX6rutiZGQE29vbuHr1Krrd7j2wIslASopQVELHjHOlClkNClvx6BrUPaRjoogIm4YEhgps9zZUXA946/UGJ9+qB2VvAAD3CBrdiGy0eDUuQ6uS19OySzx+g42xIt5DFUWj0UChUMDBgwcxPz+PWq2GtbU1LC0tYX5+HmfOnEGlUsHq6ipqtRp8Ph9mZmZQLBbx0ksvwe1248knn8TevXuxvLyMUCgEAEin0+j1eojH44Z0wj7To1BBxziHncPEz7O/JAdQ+PB7HGP+kITh9XpNpQ6thaexGQpo5mQpPMux4/V5f/Uq1FBQyFe9OBX6+jqfj94K54RKRj0BwopK0ef19HRkO+VCq1zoGKhA11gXr002KY2MnZ0dR9yO5bhCoRCSyaSJd5IwwjlXL/U73/kOrl+/jvn5eUxMTGB9fR1u9+DUbuaTraysoNls4tSpU/j2t79trpXJZHD37t17jLXdjBw1CHS8qdBYcUTHikaWDd1zDdNYtL1kZQwrFDlsgzaECt8EzfaYbIhC31PrmbEK9RyU7KHKj68pCUOvyU1px2Rsi7DbHRzgF41GzUGRPp8P4+PjmJiYcJAiAoGAiWFks1mUSiWMj48jFoshFosZej0L8irrTuFPNlXUGtuxoTTGj3ZLDuVYKExkj6F6H5r7Q+Ful5LSM7D0+jqHOvZ8RvZb6fe8rqYLqJCl0NV8MCpvGkG8P6/NH40fcT6VzKPjqn1TIgMhT/VcaGDYsK4++8jICILBIMLhsDmUU0kRqqQ7nQ5yuRwAYHZ2FslkEoFAwPTL5eoz93iMCWHpYrGI2dlZtNttlEollEol85y258O1Y3vuumf0f1XchLA5b3axXe4dnffd8uWGbfc29Lge8KabFXASLGyFAgyEtMZHdJP1ej2HUGFTq5OCTuNaKmhtWIz/1+t11Ot1w9CiB5BOp+FyuTA2Nob5+Xm8+uqrRgloP9vt/onKx44dQ7VaNV4J4xM8gFJjBwpdad+0zzpe+mwcK4XCbKGtCsMWNoTEqODUo9Hx1hiX0tDtWKOtKHkNe86BARuQY6yesua6aRyQz6YQMPvMZ1U4Uj1xJvVyjNSLtWFZMhmpgG1lrs/L8aLCikaj95BMtPYi+1CpVNBoNBzGA70e9oVloBqNhjmBu9VqYWFhwaQXVKtVR56dDd9xbami5dzb8DzXsJ2gzLnWNcI4qc0iHEKD/+/aUHG9SZp6Whp3URiKG5gWrc0uoxLTeA43GDccMCgNxe9QeFAoAQNLXO+3tbWFpaUlfOADH8DJkyfx13/91zh58iQuXryIfD6PeDyOM2fO4Etf+hIajQZWVlZMjtXW1hai0SiWlpbw/ve/HxMTE7h58yaazSb279+P7e1th/VLmEuhLvaNwpfnc+lZUExmBYBAIGAEMYWVKnCOO8dKE55VcHM8VCFQMTLOooqG11RFpYQFwl30fujFKERqHwfC+I3Gk/gdEh7YT9sY4lqhJwoM0hZsAwEYHB5JA4ielFYCcblcBgr0eDxmrHmAo3ojgUDAVLiYmpoyfdWKFhwPn8+H7e1tXLlyBbVaDV6vF6+++ipCoRCKxSLa7TYOHDiARqOBTCaD69ev49ChQ4hEIrh9+zaOHj2K/fv3I5fLYWVlxZR74hiqEuJ6IrSqtR4JAeoe4prT59TGudS4qBpKwOA4nN3QjGEbtCFU+IA3CkC14DSWQjycm0lhNA3ua0LtbnCakgnUEt4tVqaQlgp8UtZbrRb27t2LSCSCcDiMcDiMra0teL1exONxJJNJE3+pVComkXljYwNbW1vI5/OmAC+JAmQaUsCowtBmew2A86A/9dAUSiPsZkN4tORti5nCB7i3diDHSr0RzhPHklAl6e5aO1GFFhWkzRjkNRVS1CojzJWj0lbSCf/md7QmJNebEktUEeqzKvzK/lN4a84Vx0UZgeopkeYfCARMf5UmTu+RTMz19XUsLy/D5/NhbGwMlUrFHCA5MTGBQ4cOoVarYWtryyidUqmEW7duYd++fYjFYibxuFQqGcNH542Nhh/gVPTa1HAE4Ehk1vnkWtA542doMNkM0WHbvQ09rge8qWLR49l3dnYcVis3B4Ufm0I+KvApfPldCkGtkUe4RrF2hbnUYwiFQiiXy1hcXEQul8PMzAyee+45nDt3DkeOHMGFCxeQSCQQjUbxzDPP4Nvf/jZu3bplzuLau3cvbty4gcuXL+NP/uRP8Na3vhXPPfcc4vE43G43Ll++bE5I1riHeiOAM2Gb0BSrFBCSGh0dNUqTxA5t+rzqRbndbkeNO44NT67V+oNKFFEGJIUX+6AecblcNvfRIzbYp2g06jiJmHAXPxeJRO7x9OgZMK9K43HdbheVSsWQcHhvQr2qiBhzorInpZzjzWfRhGKOH712m1jDUl/xeBwTExPmgEceV0NlwLJggUAAL7zwAp5//nk0m008/fTT2NnZQbFYxPb2Nnw+H5566imzllyufjWLV155BWtra0gkEnjkkUfg8/lw9uxZXLhwAaVSySgTNU4UWeD8c90xd0/hes4R541GEqv/c79x7yoMy7VhGydDj+v+behxPeBNPR79n/CMvm9DHSqg7FgEr6W/7Zp6GgfRoDGtb4ULuRlpxXY6/dqF6XTaHHVSKBSws7OD2dlZHDhwwAjoYrHoiEO8+uqr+MY3voFKpYJIJIIDBw5gYmICIyMjRkCqYOE5TUpEoNWuicJsIyMjCIVChglImEyfFxhY0lp1IhwOw+fzIZ/Po1arod1uGyUBOCuoq6ekxgANBeaB0TMiHFmr1VCtVs1xL3w+JUJoMjTjWzQ+2B8+t3qNfC4KaQpUKmjb2yPUqHCYwoeaEsAx5lxowVulwnOt0miIRCIIhUJwuwdUfDveyj5cuXIFKysr6HQ6prSUx+MxlTJisRgajYZhFvZ6PeRyOYRCIRw6dAihUMjA1LlczoEe6Hyp8aKQtO2J6nhq/JNNySi6rmhE8Bl1Pw09rX+4DT2uN0HT4LkSJpRgoNRvfgeAQ2EBA2FMIaqkBg0Yq1LTgDeVmO3p0TKvVqsoFAqYnp7G2NgYarWagRFLpRImJiaQSqVMHTpgwJBj1YZ8Po9z587h1VdfxUMPPYRwOIyHHnoIy8vLyOVyjnva8R72md6nel70ivgazwljnI3ek44Xx50wZyAQQC6XuydWYQsbWzBpbIxzxD6wr4Th1OLW6ib5fN54RloHUUs48dmUNMLX1XNQhaAQp3obfJ/KXWN0VERK7VZIEIA5X00VnRJrQqEQYrEY4vG4IwWDz6Ckll6vh2w2i0uXLiGbzSIajcLl6rMEXS4XYrEYxsbGMDo6inq9br5Dr3p+fh579+6Fy9U/AoUHTtqeurJDbUWvtQd1r+k+oeLiXrIhezabOWgTXXQdDdu9bai4HvBm59io8NMgt7KfVMnohuPm4DVZ2sZmSOnmtBVgp9MxtGMKY3oKQN/afuONNxAKhbBv3z5MT09jdXUVkUgEr7zyCkZHRzE/P4/Dhw8jEomYunG5XA7JZNJYzu12G7/927+No0eP4tFHH8XP/uzP4syZM/j617+OtbU1x2nOXq/XnEfF1zQGxabKiKQNACbO1G4PCr9yfPl8gUAA0WjUQJV79+5FMBhEu902x7pwvNxut6moQQiQipnjZpMter0eYrGYuQbvWy6XzbOSWDIyMoJIJHJP7AWAQ4lQGFNhcy1oJQyOAU+g1jwtekBK8uHz2fE4FcI0AkKhkIlRcVyZAByJRLB//34kk0mEQiHjOXNd0gji2l5bW8Prr7+OTCZjxqZYLCKbzQIA5ufnsWfPHhQKBWxubiIQCGB9fR2VSgVvectbsGfPHkxOTuLSpUt44YUXsLW1ZZSjrg+NAaui52++p6dtq3Khh8l1xj1iz5NWUlGUQD06m7gxbIM2hAof8GYHcFU4cJPZwV/AmRdEC55NIQlbGdo4vwb0bfhGlSGhFp/Ph9XVVRSLRXi9XoyNjaFcLuPkyZNoNBp4/fXX0W63EQ6HsXfvXgeDKpPJGGYY4yKXLl3C1772Ndy+fRsulwszMzPGS+EzUXkpYUGVFskPZOkpwYHEEMYPlYxAQc84Sy6XQ7lcxujoqDnZmQpSoUIdZzseBzhzxBjPofJUqIjEBVLFCalp4jSb9lUrlFO46vxzTSkkp89BaJF9VIHN/vOeHEP9X70ILd5LZcgkY1a4p+Gjfe52u8YYajabWF9fx40bNxyxqEKhgG63nzfIA0pZOqzVaqHRaGB6ehrz8/OIRqNotVq4cuUK7ty541AYOgbst65zPoc9DnxmNh17e6z4P8fT9uB07BSuHbbd29DjesCbLfw0zsQYhMJ6StXmZzU/iYqCgoFVFtQDYEAZGCQys1oGhbrGSYDB4X87OztYXFzEkSNHcPr0aRw/fhyLi4tYWVmB1+vFzZs3sbGxgQMHDuBHfuRHUKlUcPv2bRPz2N7eRqfTQTQaRTQaRalUwvLyMn7/938fTz/9NN73vvchmUxibW0Ni4uL5t4aFAdgkm1JaqGXQxhJ85GotDqdDgqFwj25cKVSyfRPK93z+6lUyiS00gJXhh+TpvkeCRC2J0TBpzlfHGPOJ+9bKpXgcrkQiUSMlc+1Yh8DQ6ODz06BScXo8XgcngOFaK83qNrC69A4UGKBGgz0sGxYjAbC9PS0I65lk1h47VqthlqthkgkgkuXLuEb3/gGrl69auKD6XQaf//3fw+v14vnnnsOyWQS+XwebrcbY2NjuHTpEs6cOYPTp0+j1Wphe3sbt2/fxvPPP49KpeIYU+4nzicVNsef8LJ64kqe4NySyq7FiJUMZRuLej/OAa+nCnHY7m1DxfUmaGrFKlwDDOriKeS0m/elFr96Vkrs2C1Az8+rh8eNRoXn8XgM84uw39ramqnmPjs7i8XFRXg8HszOzqJcLqPRaBjIMJ1Om3p0fr8f+XzeCFLCSIVCAVeuXME73vEOTExMIBKJIJPJGOiJOUV2HpuSBtTrUIIJvSXAeRaSkiL0CA5CX7wf2YJ2CSSdD/2bY8rvK8FBWaN2nAwYsBU5Bzovuj7UU7DrM6oRROGqtG+bHm57A/yuTdDRtafKmISRcDi8a+6c9oVwL5OLu92uIWSQ8EEB32w2EQgEEIvF4PP5sLW1Zejx09PT2LdvH4LBINbW1nDr1i1cunQJ1Wr1HnRByRL2OKoC0X2hBiL3BD1EjX8q2YNjqGQOXtfel0OP63u3oeJ6wJvGHbjZNU6lm0CD7gofqmVnb0ZlvVEY2ZtViQV6b+2TvtdoNLC8vIytrS0kEgnMz88b76DT6ZiK7zMzMzhy5AiWl5dx69YtU5pnZ2fHMMEIX3m9XuTzedy4ccN4Y6lUCsCAts3npNWr3o9CXvpsVL4aSGdrNpuo1+uGRMH+V6tVeL1ec5YWv6f5Xhrz0gRX23hQYUniBTA4RZmKkZ4b70cjgUqAHqHtQZB1yDggvRp9/k5nUFtRrX2NXelrSsLgulJITD+ra5jJuXyPHpz2hfDpzs4OAoEASqUSrl27hmKxeI8B1+12EQgE4PV6kcvlkMvlMDU1hRs3buCpp55COBxGo9EwSuvu3buO/nH8OP9UNJqMT4WmMLKtoPmeHnmiUL2OgzIYde7Z1Oi0YclhG7Sh4nrAm1rr6iVRqCmbkEJArWha84Sh7Ix9PdpCr83NTSFFqFDhLI0B+Hw+QxwYGRnBpUuX8Nprr+HDH/4wHn74YSNUK5UKXnvtNRSLRUxOTmLPnj340R/9UXziE58w0GAoFHJAm71eD2NjY/B6vfjiF7+IQqGAkydPIhKJoFKpoNfrV18gkUAt1na7bWIhmvfk9/sNdTqfz5szoBhjIzzk8/kwNTVlPDcqyUqlgp2dHeNFUDCzOgerjnNuer1BqS0lZ9hFjCmw9BRn0ttJQKEwbbfbJg+L1+P8EiINh8PmuoREGa+hcKX3bHvvu3kLVMpKBtJDMj0eD8LhsKMmIu/B78XjccRiMQOV6lyVSiWjRPP5PJ5//nmsrq4aWBMYKLlwOIzTp0/jzp072NrawokTJ3DlyhXE43EcPnwY9XodV65cwZe+9CUUCgVTC9GGYzXPDHDGj9VTVshex4+fpReu+4hjqQaA/s/G/bzbe8N2bxsqrjdBU5xc4RXbM1KhRuuRyaIej8dAGboxNF6lnppusN2EG5sdUKZXUavVcPPmTbTbbUQiESPMASAWi+HWrVvIZrPwer0YHx/H2NgYstmsEdJ63ZGREUSjUYRCIRQKBWxvbyObzRrvrlgsmoMH9XsUBDbhwWaSqYfGXDN6WeFw2GF9U6jZxAbeTxW+BvMZc7OVGfugFjswOBiTAlUt+V6vZ/LZ1OqnEcMjQphHpWPAGBjnkd4Xx0WVKDCIt9DD4zUIi/K5dQ3Sq4tEIiaGSkUWCoVMWgGNBN6fcUF6aDdv3sS1a9eMwlWI0ev1IpFIYHJyEnfv3sXs7CxSqRRGRkZw7NgxeL1e1Go1rKysmHggx1OfcWdnx5Bd1PNWKJPzqWOkMS/uK123ujcUVud6U1iY19ck5KGn9b3bUHG9CZp6QFzQNktMY1ykb5P6rEJWN4Qd97LxfYUrdJMpDMnXaV2yXyMjI7hx4wZyuRzC4TD8fj9WVlbQ7XZx6tQpLC8vI5/PI5FIIBAI4NixY3jxxRcd3iBp0YFAAPF4HNFo1MCMhUIBsVgMzWbT5Irx86qUARhh5Xb3DxtkX+mFBINBh0Di9+nlqHKnh6R0ZlrdFNJMcFZFoXPE7+ncaVxKrXkeS2J/h4pA42oU6BTEaoRwjvh99aQ1dYAxMQpmKizCfDSG6Fkx/mdXpx8ZGTFKn0rZ7XYjkUggHA6bZ+U4UrGzrmKj0cD58+cNqUchN871zMwMotEo/H4/9u/fDwCYnJzE7OwsdnZ2kM/nsb6+bvoIwMTO1NjS/aF7gWuESp/jq59VmH63/aJemq5tnXteU/s0hAm/dxsqrge86QaiJQjsXmFbcfp6ve5ggCnpQAkFGmdQaIRxLd20wMAyBu4NYNMip2eyvb2Nl156CW9/+9tx6tQp7Ozs4Jvf/CY+/OEPY2ZmBn/+53+ORx99FJOTk6aw7uc//3lHrs/4+LijIsKlS5cAAJlMBh/4wAcQi8UMbAfAwVRTgU8BPjk5afpZr9fhcvVLKe3s7JhKHUA/r8nl6heK1UK+mljKxnwjAEbA8xgNxskAGCWgTVMOlB3I/qtHokYC416ZTAatVgt+v9/kv9kEEzaulXq9brwmKvFkMmnWyvb2tomx8Z6E79TrmJiYwOjoKJrNJgqFghHCHKe1tTUAfQNgfHwcMzMzSKVSJvZGD0WPvllYWMDGxgZefPFFXLhwwaxXjU+6XC4EAgHs2bMH6XQajz32GAKBAM6dO4fDhw8jHo9jfX0dV69exfXr1w2Eql4T1z8VF408KphgMGgSwnXc7T2oHiY9L+4lGgWcQxZR5hqgocTr08Dh94ft/m2ouN4EbbfYluLhGuSlomNwXhUclRQ3ngbfeR+9DoUGFRnf12oDqrx4XQqHYDCIq1ev4siRI5iamsL+/ftx7do1ZLNZTE5OolAoIJPJIBaLGaLG5cuXcevWLSPsXa5+fcFer4etrS2TsExL2u/3mzqJgFMYqEJmn1X4UtDwGXkqrsvlcuTtKBxGIadnnRF6UyhIPSlVfArr8XM0LHq9ATVf50fXADCo5t5qtZDNZg0xJBqNolwuO+KRhKj0WfjcvJd6EyTCsGwS55n3ZrFjHjtDwkilUjGeWa/XM3R2eoCpVArxeNzAsuoFsS5hIpFAoVDAtWvX8MYbb5ix03gu12cqlUKj0TB5dblczkDNvV7PFNHV1A7On65nXfeKKhCp4Li43W5HRQ7dmzZyoYaSDRcqCsDP2/FcG10ZtnvbUHG9CRqtRQpgVVgKQ3CjKcTBDcnPUoBRQANOBcYNSGGrJ/YCMPg8/7ZhFFrQVKxf+cpXUC6X8W//7b/FqVOnEAqF8F/+y3/B/Pw8Dh06hKtXr6Jer2NhYQHz8/P4wAc+gE984hMGJqN3uL29jc3NTUSjUQBAPp/H8vIy5ufnEYvFsL6+bmI6brfbFGXlmPEZ2Xc7bsVcq2q1auJyJGlojIxjTFo2YSaNlam1rSw+kjHoCek41Wo1oyw0flKtVk0CcrvdRrVaNcJ4dHQUjzzyCBKJBGZmZjA7O4tcLoetrS1Tx29lZQXlchmdTseMTSQSMQqF3lcmk4Hb3c8vm5ycNFU+2L90Oo1ut5/sOz4+buJTmgPH/jNOuXfvXkxMTJhkbZfLZQwMAKhUKqaqyNGjR9Fut/EHf/AHuHjxIorFIgKBACqViuNYGo/Hg3379mHv3r3I5XI4evQo0uk0Ll26ZPISd3Z2cOvWLaysrJj54jyS+WkbYOqlKvnCRhs01sa9xDVApUlv2UY2uI/0b+5DVXDqWQ6V1+5tqLge8MbNo2wmtdQVO9eNqNabDWPxrCDdmKq0qKS4kSjk7WvTIwMGMKPGS2jZX7t2DRsbG5ibm0MymcTc3BzW1tbwzDPPoNVq4ebNm4ZgkUqlTHVvChMqDjLkCoUCGo0G0um0gbgUMlXmG/tGgaPPoEoegIG9gAEsRCWvKQBka+p1+Fn2lUqNgkg9Lio+l8tlSCUs/kohGA6H4Xa7UavVEI1GTYItae2s8XfkyBEEg0H4/X7jMVFpNRoNB/TJMWI5Kv5PAka73UatVkM6nTYVO0KhEHZ2dlCr1RznmBH2ooJutVoGFmU8cmZmBvF43HjMGrchwcTtdiOVSqHb7edrXbp0CaVSyUEq4Rp3u92YmprC9PQ0ut0uJiYmMDk5iXPnzqFarSKZTJqxIDuR99IYoyoIVURcv2rsqJfL+eP//Ly+xnvxHgpZ24aeHVPWGB6V7VBx7d6GiusBb/ZmV4Wlm0pJGzaEpxtKBTjfp+DWAPhusSv+rVAjrU5N4lXvY2RkBNlsFjdu3IDf78fo6CjOnDlj4giPPfYYCoUC1tfXMTk5idHRUZw6dQqVSsVAPTyWhEF7oA/lrKysmNgJyRBUNExWJcSkypcw0G5jQWhKjQUKH/2bx4RooJ7eqS1w1cJWIczcMCoOKg8AmJubM4qU3uPW1pYp8Ds7O4tIJIKZmRkDzTHhOpFIGFhrYmIC0WjUFD/mnGh8i7EpPl+9XjfeE+Ol1WrVeEx6urFC0kpY8Xq9pmiyKg3OEY0SEnfOnz+Pr33ta6aQcDgcNjl0/Hyv18Phw4cRi8VQLBZNfmA2m8XIyAgmJiZMlXnGHdlH3T8KC9rzzDnVWKQqHioYhcWBAQSpa0R/K0rBttv19N5DpXX/NlRcb4JGYaxeApUFrXpSfdn4WTLt1HPg50jeUEyeli4/r8qJwttOIiUcRiuR36OS6/V6+PSnP413vvOdeMc73oHjx48jFArhs5/9LN7+9rfjZ37mZ/CHf/iHmJmZwdve9jY89dRTmJqawl/91V+hXq9jbW0NzWYT1WoVxWLRWLo3b97Ezs6O+fz6+rqJq1BIakCcfbQD/SqECKHZnhWbeicUQnzmYrForhkOhx2FWDUPi+M9MjJiFBDzyHiPeDxuTt2lp5NKpcxzcH5YZopxLCULjIyMGC+EJwTzuJRGo4FCoeA4NZnQlsZ2qtUqcrkcgMGpyJubm6ZaBfPmwuGwiR/GYjHzN8eoWq2i2+2avDuv14uJiQkUi0W8+uqr+NSnPoVisYhUKuUoj8Viu+12G5OTkwiFQtjc3MT8/DwikQiWl5cBAIcOHcKBAwfg8XhQKBSwurpqYEsyM+1YE+dCj63hWGjOHfebIhR6HSosZV5yTvSkZP2+Eoe47jin3FvDdv82VFxvgmYvYqVs20QNtdY0YKxQIq8BOOENhRf1b8X/AWfdNb2XejXsI+HN5eVlnD17FnNzczh16hSSySQikQi+853v4L3vfS+OHTuG69ev4+rVq5iamsLk5CQefvhhcybV5uYmKpWKYaORBZbL5ZDJZJBIJOD1etFsNu+BN9kooOwx1GdnbE+9WbXEeW9NWFUvgh5ItVp1sMzc7sGBiIwB0eOKx+PmfDB6qlRIfB4qAs4blaXmNVFgapxSYy7JZNKc/ku2ZLVaNfdQ5qomDesYsFix2+02Bz8q/MX0At6bY8HvcC3FYjHU63XcuHEDL7zwAgqFgvken1uF++joKGKxGPL5PCKRCObm5lAul7GysmKSwEnLz+VyZvxUuajRp3EleqFqoCjCsNt7uzEdyby0oUiNaymUqHtTiSHD2NY/3Fy9N+EIlUolcwTED0PTpFduCD2Sg/GSer1uNo4GfQEn3AfcW6+Qn9FGgclitaocbXq4bkbdrJoM3ev1MDk5iX/zb/4N5ufnUS6X8dJLL+GVV17Bz/7sz6JUKuHb3/42pqamcODAAcRiMYyMjCCXy+FTn/oU8vm8YaMptEU6vcfjMXk/PKBRY1M8pJGCkPElWrvAgLJOgU2CBpUCYz9aaJbjySrvFLoa91JDgsV6k8kkjhw5glgsZk4C5n2U4k/iiBoYvE4oFDIKJZvNGkahVslXBcgYJ/vJY1M4b0zCpqAuFAqo1+ummC9h0mg0itHRUdRqNVQqFeNRud1u4xkRvvX5fMaTYlJ3t9vFJz/5SXznO99BOp3G9PQ0fD6fqXLidruN1/POd74TwWAQ2WzWkHh8Ph++/vWvo16v4+mnn0YikUAqlUI6ncbrr7+Ov/3bv3XEtJSSzvVAZU2lyrFT2JbXUMWir+nnFGbkmud+1T5wb9HLVWgZcEKTPwytWCwa0tX/2zb0uB7wRoWhkAUFquLjXPRaa1BjWGqfqLXJTbWbJahel8bL7CRMO3DN1zT21m73z7rKZDK4ceMGIpEIpqencfLkSWxsbODu3bvYt28fnn32WfzlX/4lAoGAiVfQK8nn8+h2u+YIEJbYyefzKJVKJkZGr4AChOwthTD5jBpIV0uZTceJCoKEBI0PaZxCjQQm7OqYAP1E2Eqlgo2NDZTLZXMwIj0OAA4PGYDDE6RBoGNOqE+fj7AnAKNQ6QFpPUf1Qmh00FCKRqPYs2ePKZfECv6qpDVOWiwWTQyQ/aQiHRsbQ7fbxa1bt3D58mXk83ljZOh6Afrw4sjICBKJhDEmpqam4HK5kM/nUa/XMTY2hvHxccRiMYRCIaTTaaysrDiOmdFr3o+gY9cOpEfF+dX4na4LjWWqMagxL91vvDb3l0Kz6r0N2/duQ8X1Jmhc6CoclYChUB09GwpiDW6rQFV6PJu9GakwlRzCz6kyvR9+z35w09OyvXjxIpLJJGZnZzE9PY3HHnsMf/d3f2fIBn6/H9evXzcJriMjI5ibmzPndVEZ0Ous1+vY2NhAMBg0icqsMA4Mjp3gGGnlBEJz9E74fMpI1NJKVF6kllOwUQhpnMgmLPB6FGStVguZTAalUgnlchmhUMhUleAYUumxzp4dr9O0BioIjo+dv6W5Q61WC5VKxeRQKaypuWCRSMRU+Pd6vajX69je3naUnKInxbVAw4IUfGVOBgIBbGxs4OLFi0in0/B6vQY90f6qd7u1tYVGo2GuVavVsLy8DI/Hg0QigWg0atiTN27cQDqdNs+pa5jX5Xvqveo+4hpWw49zoN8B4FBc2lSR6Y/GfhWSp4emxpOtyIdt0IaK6wFvdqxKiRi06Li4SXGmILaVmSoa3VRqhdpBYwb7KUDVulRFRgWlbEdueia0cuO+8MILuH37NuLxOBYWFnDy5EksLi7iK1/5CmZnZ/FjP/ZjuH37Nr7yla/g0KFD2LdvH9761rdibm4On/3sZx2xJj7Pyy+/jMXFRTzzzDMYHx9HPB5HrVZDoVAwhA4VXEpwYD6V2+021j/LQLForqYUkPjA7xBW1POvtCI8TyvWRF6OG0tWFQoFuFwuTE1NIRgMOk50VlYkyTbj4+PodrvI5XIG+oxGo2g2m9ja2jIw2/Lysqm2zqbwVSaTcXiFVMYs0Ltv3z5DEsnn88hkMoasQe/O5/MZxcF1ZnuxMzMziEQiOHv2LL72ta/hm9/8pmEeEuZWuj3JHl6vF9FoFKdPn8aePXtw4cIFk5z82GOPYXx8HIlEAq1WCxcuXMC5c+cchYf5TFTumidHo4VrVSuuqKJTo8WGB5W8Y3vrbBxfRUioILluGIOm8h4qre/dhorrTdJ009hBZjtepTRsbhhl2in0pVakXk+hSdui1M+yb7Q8lXEIwKEI+dPpdLC2tobz58/D4/Fgz549OHr0KGq1GjY2NuDxeHD69Glcv34dt27dQiqVwvz8PBYWFnD48GGsrKygWq0aBQ30obetrS2T/xUMBrGwsIDx8XGsr6+jWq2iVCqZMk8ul8t4HYFAwDyX0ruBQV08ZYYRouN4auxClSMFtxY5VlIHYTQy8yqVCorFIlyu/hEwHo/HMA05lkxiZrxJ6yPSAyP5QmFB9eC63a75XigUMkw/eotjY2Pw+XwGvqvVakbBVqtV069AIOCIj3E8SdDgWHBdlMtlfPvb38b58+eRz+cRj8fN96jgJicnkUgkkEgkkM1mzVySSLK0tASv14t9+/ZhYmICiUQCALC6uoqLFy+aNaGKQvcK1yLH017HCtnZcVuuC9vL4j103Sv9X+Odun8V4WBfNHY2bPdvQ8X1JmjqFXFx6wK/n+KiILMVj8bK1HtS5ahWs8ZmdouHUTCpN6YWJeNiCt14vV6cP3/enIY7MzNjvJ/r16/j8ccfx+OPP44XXngB165dw/z8PAKBgDki5ebNmyYpVo+Zp4fR6/UwOztrEmCLxSJWVlYcNfc2NzfRaDQQDAYd3iUAAzPqGKt1rqxMDaxzTAklqodlW/QATMkkCkVW1FDhxngNPSEqWgCmEgf7XC6XDaFiZ2fHkCbYN0KoJIOwqkWpVDIVRJTUkslkTCUReprBYNB4WPTseKQLz/8KBoMG2otGoygUClheXsZLL72E1dVV46kR0vR4PIhEIjh27JijOkogEEA6nUahUDCKdHp6Gnv37kUikUAoFMLGxgYuX76M27dvm3HSdc51rd6RElx0H+j+UYgeuNcI49zTQOF11OADBnE1jXXZylPXiMKJw7Z7G7IK3wTNjskQE1eFQi9A80oUYuRZRoxlqMcFOA+MZCIr4Cwsqptf42BK1SYLj0JXGVf8rfTiaDSKJ598Ev/8n/9zeL1erK2t4Qtf+AK2t7fxz/7ZP8POzg5eeOEFrK6u4qGHHsL+/ftRLpexuLiIP//zPzfPQWGrivLEiROYn5/HU089ZUoB9Xr9cktra2u4ePEiPB4P9u7da56NHg69IADIZrPI5/OoVCpG0cbjcTNGajjQQ7OPqFDFzv4BMEnZVL6Mwc3OzhqlQkUfj8dNvIgKwuPxoFKpYHt7G7du3TKkCxJUWGJJvQ3OKRWQWvf0/FRIM9ZF74jxJ5fLZRTj1NQUdnZ2sLW1Ba/Xi9nZWezZswculwulUgl//dd/jUuXLuHy5cvGa+S1PR4PUqkUDh48iAMHDqDVamFrawtra2sGumVpKR5MOjs7i9HRURSLRfzZn/0Zbt26hUKh4DDsgIHnQ08ZGCgLjfOSrWrHwnTt6h5RQgrnmIWP1SPjHHHd05hUb42f5z7i++rJ/yC3IavwB7QpbKXWo8aelDCgFqRuIPt63HhqPe4Gm9hW4v08PYVBFHKxlZ9u+kKhgIsXLyKTyWBmZgbj4+M4deoUzp07hxs3buDQoUN49NFHce7cOVy7dg379+9HLBbDgQMHsLCwgJWVFQCDtAAVRrdv3zZVFVKpFJLJJObn5x1KikdzfC9ohoqACkfPDONYadyi0+mYPCK32+2A+zh+FKLKKNMYWblcRiKRcFDklcpN1qTL1a9gzyKzFJTaZxumolDMZrPIZrMAYI4HUYXLo0lYCooxJ9Lzw+GwyZ1iLULChJFIBD6fD/l8HouLizh//jzS6bQ5bgfok2r4+ZmZGYyNjZnz1RhbYgkpVtOYnZ01ccD19XUsLS1heXnZQJYU9urx69xqHh/XvHpHimRo7BcYUOmpvNRwU0SCe1XnVhURDRF7H/6wKKr/P9rQ43oTNE0yVgxdvSplzAGDc5YU6uAG1c2rr/NvFeT0jngtvqdxNJsFpZYtcG8tNt6br42OjuL06dN429vehhMnTpiiuZ/5zGews7ODt771rRgZGcHrr79uavTNzs6i2+3i6tWrePXVV5HP57Gzs+MQjHZ8z+fz4emnnzZsRT5vpVIxBx9ynJU5ybynXq9nBLwaCBobo7Ck8GUlCXphvCeVAOeHHhXjaaOjo1hYWMChQ4cMvEcvgdcA+go7nU5jc3MTKysrJq5JCI9sNVbIcLkGhW49Ho853JIHdZIswQK6wWDQsDTHxsYwNjZmGIcTExOO51hdXcXGxgb279+PyclJnD9/Hq+88gouXLiAfD5vPBUq91arhWg0ivn5eTz99NMIBoN444030G63EYvFcOzYMUO2iEQiOHPmDA4cOICRkRGsra3hj//4j7G1tWXIM4QddT9wDLi+qfA5fro2qdyVZMHfusapeDRGpcYbvTcyS1Vx2ntOlZvCw71ez8H0/EFuQ4/rB7TpgrY3gx2rAuBY/JqAq5vZhrEosLkRbXagelw2jMLPU+iqEKDgUFYb7+H3+w30dO3aNQOVPPHEE5iYmMCJEydw48YNXLp0CW9961uxb98+3Lx509CxT506hYMHD6JWq+Gll14y8Jg+N+NC9Xod+Xwely5dwtzcHKampjA+Pu7wRtUw0LiE3+83MBIFlu116pgD/XPBNPhve1kUfnyNByhyDHdjuKk3wDEsl8uG1k4lxIK3FJLVahX5fN4ocRobLpfLsBcZ56OX1mw2zaGdhAZ1bPi8/J/rKxQKGSH0+uuv4+rVq8hmsyYZuV6vOxicPBE5FAqZ9cy5KJfLRoDv3bsX8/Pz8Hg8yGazuHLlijnaxl5vnHeFtXV+OReaw8a51XGmUlGjUY0vVVScMzVebI+KfdTntK/JvTls37sNFdeboNkEALXgKIy44NvttqOqhP09GwLRjaRWKH9TMFDA8vu7eVM2Y0qFADAIhGtgmgKiWCzi8uXLcLlcOHHiBCKRCA4ePAgAuHnzJjKZjPFKstks7t69iyNHjiAcDuPQoUNYWVkxNQ1VGVFA0tOkACe0SKUEDIgGfB47fkiKNZU0x0vrIdI4IMTGeIUqKY63xzM4YVi9ZZfLZaBIPVxQyQac72q1alh/fHaSJKigWICX48A+M26k3rutyHl/1ook6YIeK9ccWZ7RaBRutxvpdBpvvPEG0um0USKaNsCqH7Ozszh06BBcrv4Za8lk0vR/ZWUFrVYLs7OzOHHihGGI3rlzBxcuXDDKWdl+WgWF46pnn1Fpcp3ydTXMuEaVdKExLn5GG8dVG6/BedOUAxtaVNTDJmwM271tCBW+CZoKNDbb+gWcR47YysOG8Pg9JWsoBLibt2Vj+VSSJHRoLEC9F938vBcFilrtTHD9kR/5EbznPe/B4cOHUS6XcevWLbz88svodrs4ePAgRkdHkc1m8dprr2FychL79u1DMBhEJpPBN7/5TZRKJRNTYHIsn40Kwe3un/rLE5apjJlYS6gsGo06jqBXYgUFYjQaNUnHfDaWYqIXZFe5oPBmwF49OK/Xi8nJSUMX54nQsVjMUNJJqlhdXUUmkzFJ2I1GA+vr6ybetbCwYOBNek0KFZOEooKYUCgwMJroIQIw8cJEImHGNJ/PA+ifWn316lW88MIL+NrXvoZAIIBgMIhyuYxGo4FUKmVOCz527Bgee+wxHD16FJ/5zGfg8XjwYz/2YyiVSrh79y5WVlbgcrnwcz/3c5ienkatVsMf//Ef48KFC1hbWzPKnsqz0+kYggS9JVsh2UqD88VxUSPL9qaofNQAYUoCE695XdadVM9P8ynV2NQ+9Ho9s38UpfhBbkOo8Ae40bJUuEetb/2holArTmE+9QwU3tLv6+sAHPejJarvqeWq91ZhrgrW9gwpTIPBIC5duoRUKoXDhw8bC/z69evIZrPY3t7G3NwcZmdnsbi4iPX1dbTbbRw/fhzhcBgHDx7EysoKtra2HOxHZbBRIOXzeROvIXuNn+WYq4FAT00hVc37si19elm8t8YHlUWo/SJkGIvFTAyKDEKfz4darYZ6vW5gRdZR7Hb752+VSiVkMhlD+2dlCY1t2ueX8Vn5PPY48XlZ8xAYFCxmTUKt+sH8Oz2MlN/jGlDSx9LSErrdLk6fPm0Yktvb2+a8rYmJCXQ6Hayvr+P8+fNmzrWQr+YdasyKc8emEKw2Vdw6V/ZvNlWKJIYoE1e/p96abVRqjIuQ+pvQl/g/3oaK603QuMgpUAAnXs7FTladspOo6HRz2Dg9MGBBUdDbgWpWquj1eg4qtsYQVEmq16ZCEBhAMQrz6Cm3Kysr+Iu/+AuEQiGcOnUK09PTeOqpp7C1tYXLly/jwoULGB0dNdTpzc1NXLhwAUeOHMHRo0cxNzeHfD6PCxcumIKxFFi1Ws1B3c9ms1hbW0MwGMTExAQOHjxoWHFqIPC5+ExaPYMW/ujoqFHGkUjEsO6YgKxxIXp2IyMjphSSVgMhIYQKnnNOz0LJHmQVLi0toVgsotFoIBqNIpVKmTgi50e9OwCG8cj5ojKktU/SA4Vxs9k0cUl6cp1OB1NTU0Zpfetb38LW1hYCgYCh5wMwZA8qdLfbjcXFRSSTSfzjf/yP0Ww28fnPfx69Xj8H713vehdSqRRqtRpefPFFfP3rX8fq6qrxtGh02KWsuOY55lq1ReNabApf8zuas8e1q/CojiVrZlK585o0Bur1uomraaxMIUoqYFvpDtvubai43gSNAt9OBlayBXBvgV1ttlemFqYNFSn2T+VC5aPxFjtGwPuql8PP2nlBFCLAIEakUEmr1cIrr7xirj09PY1IJIJOp39EyvLyMrxeL1KpFA4cOIA33njDwI/tdhuhUAiHDx/GzZs3sbW1ZZS2TVZhPyqVClwul0nM5WnL7Luy0ezxo8BJJpNGSQWDQXOQIoW0stt4LRIUAoGAQ7BqzEoJIYSgmLemMUUqSXpswWDQnHxMJatWvkK3mvRMD8ZeN3wGepOk7dMLrNVquHjxInK5nIPdCAyU1tTUFNxuNyqVChKJBCYmJrB//350Oh2k02n0ej1MTU1hYWEBsVgMo6OjuHbtGs6ePYsbN2441qi9TpVwwc/wtyIBajjpXKgnpspM4T5+XhWOKkPuyd28V4XtNUbKtcT/hzGuf7gNFdeboGkgWRWEegK6IQnNAXBYcfrbDvQrbGQHrnlt/bH7oApUoRKFWTTWoCxGeloKKfZ6Pdy8edN8dm5uDmNjY+h0OuZIjTt37iAajWJ8fNzENrLZLHK5nBGSfI2kCvU+aVXztWaziY2NDVSrVYTDYUSjUUdNQz6zeo/qATOxlmdtUWmpsuQ16L1q8jHJHPR8d1MWzJ+it0WSAwCMj4+bUk5MC1C4lH+rAKa3QMVlQ2n2mqFnvrOzg/X1daNgu90uSqUSbt26hUaj4YgleTz9CvPJZBITExOGXn/gwAHs2bMH0WgUN27cwPXr15FMJjE3N2eeBeizE69du4ZarXaPIuVv9k/hNv62FZQadXwmNUTUANS9wTWk60AVlypDTVLmWOj828rT9uqHiut7tyE5403QlFRB61sFqSoCeyOo0OTmUqFrx6R4Ld2UdpBb4wO6gfm3DR1yE6sQ4X3YV43/qHKg9/RzP/dzOHPmDA4fPoxOp4NcLodvf/vbWF1dRTQaNYJTSQJud/+ww0AggOXlZSwuLiKfzxuLlzEkCjzCrX6/H2NjY4jFYkgmk0gmk+Z5ycQjsYTFbVmYl9AfyRNUNmTocVw0vkcPbXR01MCDVKSVSsWwD3nMvVaALxaLqNfrqNfruHPnDur1OtrttimsS7afxhRVqWilEDtfUH+4Dt1utzm88+bNmyiVSqYWoipJKloASCQSeMtb3gKgv3fHxsYwNTWF48ePA+jXGfzmN7+JqakpvPvd78bk5CTGxsZw9+5dvPLKK/jUpz5lYnbsv3qFXIf6txJQVCnpQaD8LP9mAr+SIkiSIGyucVo1Jvnc/GH1GTUYSPIgJKvxQxqHdvzrh6ENyRk/oE2FugoSLnhd7PxtB4eBe49aAJzWJTBIdlZYUoWdCgS7P8C9NGGbUqz90NgXBStZdnyNdO4XXngBzWYTc3NzCIVCpgpGoVBApVLBwsIC5ubm8PWvfx3Hjx9HPB7H+fPnUavV8La3vc3kKb3++usolUrodvvHzVNw6diMjIwYJh8A40HZUB/nhPEmCkUqRSoXjZ/oWJPOzvEhzNhoNMxxJyyhpMqU8TMKU16LtH4qEjt3jn1nXwAY78j2iFVo2lAv87uoHHWN8HMkhoTDYUxMTMDn86FYLGLv3r3Yt28ffD4ftra2kMvlcPPmTczPz+Po0aPmbC2Xy4WXX34ZX/3qV9FsNs26IONO43GqUGxhr16OjgXhb13nVIa6Z3TebC9M/1ajTb9r7wVdZ2q8KVxoQ9HDdm8bKq43QVPaLzCApQA44Av1Zgh/adkfVSIqyDSGxe/Z3o8NTSo8Q0Fnw4ZqTerG1hgd76+enyo23o91+FivkOd55XI53LhxA8Vi0ZRzInQ4Pz+PXC6HXC4Hn8+HmZkZlMtlLC8vG8q8LZA0gZksul6v5zgent4Ei8jy+1RcFKQ225LkGT67TYJwufrlm7a2tnDhwgVkMhlztpTP5zNsyomJCczPz8PlcqFYLJpTjBU2UyXM/hE65Flm9OoIGXIOmMjdbrdNLI2vdbv9qiBaJZ4MQ84Vjzk5ePCg8UTpOZ45c8aUgjp//jxyuRyazSaeeuopzMzMmFOV79y5g6985Su4ffu2GVOuHRoDCg/a61rHXRWGjSBo3Im/1RPietbra26Y7guNk90PIufeVehejT/tx7Ddvw2hwjdBI9ZvW9DcTEqTB5zZ97tZo5onwrOWVLFRMNgwCzfgbjEeFQSMN2mMwd7UvD7/V9adnhhsxyAikQhOnjyJ97znPXj66afRarVQLBbxP/7H/0ChUDDJq41GA7/0S7+E0dFR/Mmf/AlyuRy8Xi8WFhbQ6XRQKBRw7do1U5pJ4UIV0m6329C9A4EA9u7di1gshsnJSZPLFI1GzU+tVjPXHB0ddZzkrIaF9tPr9SIQCKBQKODKlStYXFzEhQsXjBfKzwL9ONb4+DhmZmbgcrnQaDRMuSrCLYQkafDwWTqdDur1uoEze70etre34fF4EAgEHJ5HuVxGNps1ECI900ajgbt37xpGJD/PGFkoFMKzzz6L8fFxFItFlEoluN1uPPXUU6YW4fXr13HlyhW0220cPHgQhw4dwqlTp+D3+/HGG2/gW9/6Fs6fP28IOBqr41pReFzhOmAAD3LM9cBLfoYnZdO7Uro7vTmuWb/fb9icXMu8D3DvOXYce0L7CmlynSnUaJ91x3qRwzyu+7ehx/UmaOrNUDmoUGKjElGFodab0sDV4tPirTZsxnvqdRTyo4VPWI+vU8CQsqwensI3NgRKoaGeGQV4r9dDPp/HuXPnEAwGcebMGaRSKcRiMTz33HN44YUXsLi4aOj6N2/exNTUFJ588kkUi0XcunULa2trJq4zNzcHv9+P9fV183w2e4xVISi0vV4vyuUyms0mSqUSqtUqDh06ZOJUPp8PzWbTHG9vQ4AUliRgUABXKhUsLi7i6tWrWF5evudU5na7jXq9js3NTRQKBWxsbJixDAQCiEQimJubc5SQIjxaq9VMrUKgn8isDDzbE6YiqlQqKBQKcLv7ZbNarRaq1apRUjRg6MF5vV6Mj49jenoa3W6/ZFMsFsPMzAxGRkaQyWRw+fJlLC0toVwu45lnnsHCwgImJyfh8XhQKpXwrW99C6+99hrS6fQ9XriuLfs9W6mp50KjjuvMXs9cuzZrl2uAjeuYY6SvaWUZvbcqNxuqV6SE68DOLxu23dvQ43oTNMI9VDK20ONGVCFnY+2EAxUG40anQmu1WhgZGTHWvW48Wqsq3GyKPBWXHqTI72iBWcXzCZ/xCHneSwWETRih8n3ve9+Lt7/97Th48KApD3X79m1kMhlsb28bAfjWt77VeErr6+tIp9NYX19HpVJBLBZDPp/H5uYmKpWKUUYkRNADUziQXinQr0nIa585cwYTExPm7CoNuPM7hBmVRVgul5FOp/GNb3wD29vbRtlR2CmzkRY7zyJTNifjbW6321S+93q9pkBvJBLB6OgoxsbGAMDEqjgHFJpra2vI5XIm/qYKivlMbrcb1WoVvV4PwWAQR48eNQdAcrxOnz6NTqeDzc1NvPzyy+h0OsZbnJubw6lTpxAKhTAyMoJvfvObePXVV/HVr37VKCHmxbGIrsJuCodSIbjdblPFwj6HzobrdF50/Hhvu1akxq8UNtTx0Zgt+6Pog+5TeqwK9dvG5g+LEvs/7nH93u/9Hj760Y/iX/7Lf4lPfOITAPrB3n/1r/4VPvOZz6DZbOJ973sfPvnJT2JyctJ8b3l5GR/5yEfw9a9/HeFwGB/+8Ifxu7/7u45SKsPmbIqFKyxCy43KSIPkdnyJ2Dy/xw2sioTwhr7H76uVTmWnVq1eV+FENv0s3ydksls1ED4Xm0Ivo6OjePHFF1GpVMzhkpOTk5ifn8f8/DxqtRpSqRTOnj2Ll19+GcvLyzh8+LDJERofH8dLL72EVquFeDwOoK+EqGzptdrxNgpEzkGtVsPt27fR6/WwtraGmZkZ7N+/HydOnLin7I+O3c7ODur1Ora3t5HJZHD37l1sbm4aRcWx7nQ6SCQSJk6knmyv169Wr3PFYrutVsvh3bndg0TcbDZrDBUWvdUqFJubm4acEgqFzLNyDFRZ8qiRubk5AP39H4vFMDc3Z7zcdDqNSCSCiYkJHDhwAMlk0hTW7Xa7WFlZwTe/+U1cu3bNQdohEsB1ZXta6g2x2fOmhpJ6OnYMTPeBEpx0z2jenPbjfkQo7iOFKhXGtFMO9FnfhP7E/9H2v6wpzp49i//8n/8zHn74Ycfrv/RLv4QvfOEL+NznPodYLIZf/MVfxE/8xE/ghRdeANAXPu9///sxNTWFF198ERsbG/jQhz6EkZER/M7v/M7/t6f5AW02ddde1Aq3afLibgqAn7MJFArLcYMqKURZWBQYtmDgZ9gn7ad+VjcwvUOFcmzlxfupRcx4zeuvv27q1u3duxeHDx9GOBzG6OgoDh8+jEAggJWVFSwuLmJ1dRWPPPIIJicnEY1GsWfPHqysrJjxiEQixlMhfKj0dKX1szwUhV6j0cCtW7ewsbFhiv3yHKlEImFqGVJJVyoVFItFLC0tmRJHrVbLUcOw1+tXgmBSsR5zQWuerxMydLvdhlrP8SWFnwqNZ3ABcMSm6NXRQ6PyoMCnAOfcJBIJHDhwwECD3W7/5OPDhw8DAF544QXU63V4vV488cQTSKVSplahx+NBLpfD6uoqrl69ivPnz6NarTrWKvvPfnB96zpRZcb1y3Wnno+99nRd6nrlWtM557zpvrLXuO0B2giFDZfzHja6oCjHsN2//S9BhZVKBWfOnMEnP/lJ/NZv/RZOnz6NT3ziEygWixgfH8enP/1p/ORP/iQA4Nq1azh27BheeuklPPHEE/i7v/s7fOADH8D6+rrxwv7Tf/pP+JVf+RVsb28bSOl7tR82qJCQlXpUavkrXML/qYDopSjMohRiwoNKylDrkBasblItfUOrkQFlPXZFIRX1qCi4+AxqgapSZd8VzuQ99RldrkG191QqZVh3zz33HGZmZuDz+VAoFLC6uoqvfe1rWFlZQTgcxjve8Q5zvXq9bnKiKKyq1aoppVSv1+FyDZiBHHslLqg3TChodHTUsBwJE7pcLkMnL5VKRqARGgNg4mXdbj//i5U8mLC8vLwMl8uFSCSCRqNh+uf3+03x23a7jXK5bIQuE7E1jqmJ35w7zg/nnBUw+DwTExMG8mPV+NOnT5uyT1//+tdx9+5dnDp1CsePH0cymTRe4vb2NnK5HPL5PF599VWsr68bAoc99wrlUZmRLMLqKvyeGm6Ak/kKOA+OBAbMW0UbdA+p8gwGg2b/qXLhPlLjj9/T1AQ7pqWEEBvO1D33w9L+j0GFv/ALv4D3v//9eM973oPf+q3fMq+/9tpr2NnZwXve8x7z2tGjR7GwsGAU10svvYSTJ086oMP3ve99+MhHPoLLly/jkUceued+zM5nK5VK/yvdftM2GxbUjapJjnZOlm4kNm5Ohel0k/A7FLKaPKlCGsA937ehPb6mQXG9P/ujQlOpy+wPv2+fj6RWLZX0+vo6tra2cPfuXbhc/SNSHn/8cUSjURw9ehQulwsXLlzAlStX8Oqrr+LIkSOYm5tDp9NBOBzGjRs3DCNQYddsNmuKqQJO5h7Hgp6SegTNZhNra2vmefi+Ckwdb9sTZXyQ8atoNGpIG0pZd7vdKJVKhgAC9L0pxqkUsvL5fMYDoTCm18Y+co5Yl5DsymQyiSNHjsDv95s6hGNjY0ilUqhWq1heXsbdu3cRCoXwyCOPIJVKodfrV0HJZrNYXFxENptFqVTCysqKEezqTXPdcGx2Y+2pN64eCtePKj0aODZCoOuGxhXf15ga9wDvq7ClfU+9JpUXlZpCn7ofVEnqGPwwKa/vt33fiuszn/kMXn/9dZw9e/ae99LpNHw+n4kZsE1OTpp8lHQ67VBafJ/v7dZ+93d/Fx//+Me/367+wDQKbFrrhOQ0eAzAsVGAgVC04UBSrLm57cA3cO8mUoWp76kA5Pfs+6vnBQwYWWrx8h6qvNh3FeLaT4WAqMQpUPP5PF588UWk02lEo1HMzs4iHo/jwIEDphzU5z//eXPGlN/vh9/vx/z8PDY2NgxxAgBmZ2cRi8WQyWSQyWRMX9RC5xhS2RHeUhKGQrMqKKlQ/H6/eV5eR+N/9L44bsyNCofDxnumgUdPiUQTzR3ifPBHPWVgECfSeRobGzM5ZCSHBINBHDhwAInE/9PemcfoWV1n/Mx4PJs9i9cZGy+YEmL2ls1MK9QFC0JRl5Q/UIRalEatSExFCkIJ3aCtVKJWatVNSFVb+KtBSVXSKiE0BIIJxGwGFxuCgxcwhLHHNp7F9szYnrn9w3re+b3PvN8YJ8HOh++RRjPzfe9733vPvfec8zz33PvOi71798YPfvCDeOedd2LZsmXFYcd6Q/P3vve92Lt3b/T39xeJJRqDTt1xXEqcIvTgRuOeWydUXtWaEREl9cL/db+cOp0f13R5EgcDM9ZR/ajPtAWlihLPcmI5Kcf1zjvvxB133BGPP/54kVJ8KuSee+6JO++8s/h/eHg4li9ffsqef7qFC75cVGZ6uSI6fU8kEBHTaDkeI0XqjusZmnxEYaL6mLnF/WMR5YV0Oi3Vi2tDdKa1kjn8R1QRUaOQYHNzc3Fg7eDgYLz88svxzjvvFIe5/tIv/VJxZt75558fW7ZsifXr1xd1uOaaawqDK4px7969xfmAs2fPjtHR0cLwiiqLiBLaIu3Z0NBQbFZW4oeoQZUhOk761qnrapP6RzriHq99+/aV6Njdu3eX0Jv6Si+X5CG7viYza9asWLBgQYHwFi1aVPRXc3NzjI2NxeLFi2PFihXR2toau3btivXr18cPf/jDmD9/flx44YVx1VVXRXNzc2zbti02bdoUmzdvjjfeeKNYe+PYUz2YTMT9S1VbCtTXnm0ZEQV9yLnh84h6kbMTOiatp3qqPmQ0JiYmik3cehcdHbDGveherTHqmRq/qj9Rp7MgWabLSTmujRs3xsDAQFx22WXFZxMTE/H000/HP/3TP8X//u//xpEjR2JwcLCEuvbs2RO9vb0REdHb2xsvvPBCqdw9e/YU31UJ37h6JooiNd8kyfUiOgGPHBkhykCRiuH1/hkzqXyB2qk/TnjWM6J8FI9HrfpehlPtZVRKdCVhfYjoSB/OmnX8Ve+Dg4Oxb9++aG5ujnPOOSeWLl0aK1asKIz9nj17Ytu2bfHiiy/G3LlzY/ny5UWyw+DgYLEPas6cOaUXMh46dKg4H5COl86LmYV0XOwbGT39rbYLscmAy7By7x0pMa7DyHjq2UQMjlYioli/uuCCC4r6ae+WXkQ5d+7cuOSSS2LWrFnxzDPPxJtvvhnj4+Nx4YUXxrJly6Knpyfa29tjdHQ0NmzYEG+88Ub09/cXx2KJFiZV7Mdi6XMmNugzidrtxt5ZBLZT1/E5VY5NgQOpVArRkeah6qexTwZCY0F/V80j9r8HnVmmy0klZ4yMjMTbb79d+uzTn/50rF69Or7whS/E8uXLY9GiRfHlL385brrppoiI2Lp1a6xevXpackZ/f38sXrw4IiL+5V/+Je6+++4YGBj4QA7qTEvO4InmmnxOm0WU03hJQ8kZcF2G5bEsJh1wojExghGrHCGNJJNGuDahexSFRkTJgPkCPR0c94jRiRHVCc35kUCkmBoajic09Pb2xic+8YniGKWmpqYYHBws6MV33323cMI9PT2FUd6zZ0+MjIwUL6FsaWmJkZGR6O/vj3379hXPGB0dLRCU3qCsdk5OThbRN89n5AkmTPbw/Vw0lor6U5raE8d+JkJX/9GYC1ktX748enp6oqOjIw4dOlT0T2trayxbtizOPffc4nDd7du3x759+2L+/Plx6aWXxrJly+Lss8+OY8eOxfvvvx8vv/xy7NixIzZu3FhyvjomieNYyJBBivREx86gikGP09wan3LsTETh2qLqxeCM2bssi3OOjsnry0OAmTiia+gseS+dIMc5nepHWT705IyOjo646KKLSp/NmTMnFixYUHz+mc98Ju68886YP39+dHZ2xh/8wR9EX19fXH311RERcd1118UFF1wQv/3bvx1//dd/Hbt3744/+ZM/iXXr1p3RqGomcc6dyEtGIWLqKCc5CEaqjMA5EZ3fj5gyaBFTKfgykD7hFM0zU0p/+9qFnBQzs2ic6OxoIFhPR11cQ+N3RCFCGzLkeo38U089Feedd1788i//csyfP794ceXKlSujqakpDhw4EMeOHYv+/v5C37Nnz44FCxZET09PvPfeezE4OBjNzc0xf/78IpGhqen4q0YGBwdLCR2k6NinWpeioST6VPuYPKBT7dnH0it/q1yhB6E1OcjOzs6YO3duzJs3LyYnJ+P999+PY8eOxcKFC2PRokWFjnfs2BG7du0qXhvT0tISV155ZZx11lnR0dERhw8fjnfffTd27NgR3/3ud4uzINXHPEKLxl7jjWdr0tgzrva1IN1HNMqgyVkHzReNkZkCNncuckzSp8Y86+gJJKyzj0X9zbqob7nlJEu1/MR3/P7d3/1dNDY2xk033VTagCyZNWtWfP3rX4/Pfvaz0dfXF3PmzIlbb701/uIv/uInXZWPjPAVCBHliVEVpflE4t9EK5y4jDIjokAtQlR0Lk77eSTrESsnPJGSGxWPQGnAiOScBqPhoYFh2/27lFK88cYbMTg4GJ2dnbF06dLo6OiI7u7u4kik/fv3x969e2PLli2xY8eOeOutt2LBggXFKzk6Ojpiz549xVt5I6I4bkrv89IJFETC3Oum6Fz/u9Fk5C19kBYVAhUFSScu5EEKN+I4iurs7Iz29vZig7H2hOnYJu2Fe/fddwuHJWOrU9zPPvvsiIgYHR2Nt99+O7Zu3Vrsl9Mztaam+jgNpnGtTEenkIWIJELVPn45DhW4sTyN+6r9gnqO659jk/3DccvgTHNFSJvzgc5O7VHQKUfl+86y1JZ85FMdCKlCOgVORCZliHbi5FHmk4yJKJeIqUlL2k/P8CiZSSBEdUyh5hFV3LSqz7iRlwvmEeXN1qJ7aIQ8UYXIk85NyI+OXGXKeYi+0v6krq6u6Ovri1WrVsXq1auL92MdOHAgDh8+HCMjI7Fz587Yt29fvPfee0Wm3bJly4r1n6NHj8bAwEDs2LGjMIJ79uyJ0dHRYmOv2sQ+1HoZ1zvkaNQHc+fOLbaGcB1RSSGNjY3Fm4alEwUaKU1lLeqk+8bGxuI1IkpE6e/vj/7+/uJU/La2tujq6orly5dHd3d3dHd3x9lnnx2zZs2KAwcOxPe///14880347XXXovh4eFpJ8/TUTmNS5pP44KOISJK+/2oC3dyHswx5d8djOhUp8PpqHhsGdGbPvPzPpuamoq1T6IntVEBptOPnINVKPNMkHzI7kdUOJk5kZi0ockUMZV664vB5OZ9jUxUkjsHCe/x1O+IqYnuiEqfMQLn346yaCTosNj+iCkUxXvoqNQOp0uFYogalSE4NjZWZCEePHgwFi9eHF1dXcUZfEeOHImOjo4YHh6Op556Knbv3h2Dg4Px9ttvR1dXV1xxxRXF+6eIrDo6OooEDyEQnc3Y3t5eOJqBgYGC/iKKlrHTKeVHjhwp1lDmzJlTBCXj4+PR0dER8+fPL/Z0tbS0FPrWG521uXnu3LmxYMGCOHbsWLz88suxf//+SCnFihUrYt68eUUmYXt7eyxevDjmzp0bHR0d0dbWFiMjI/Hqq6/G5s2b47333iuOiFK/Eg0TxWisqd9I//IaBmE06hyHdGB0bE5newIFnQvHOdEYxelsojPOUQWLdMIMEJ1a1Pcqh2ttZ5rzOlnJiKsORMkMoklooIV0IsrpupzcEVFsWOWJA5zsEVMnYoi6oiGhk4uY2nRZlQhBak5rPk5RqkwJDRTpwYjph4/WcoJqAyNd3q8yVS9HmjLUQmKtra3R3d0dF198cbEP7Pzzz485c+bEyMhIceq6jnrauXNnEekvXrw4zjrrrJg3b17xNmbKgQMHYnLy+FmHStSQ7ok66bzl+CIiuru7o7GxMUZHR6OlpSU6OjpiwYIFcfjw4Zg9e3YsWbIkOjs7S4hyaGioONT3vffei/7+/jhw4EDMnTs3rrzyyliyZEm0t7cXafONjccPrVXShTIoX3vttejv7y9tIFZqv8aWRHUnmnda2ulqv1fjimOHZTKtXcIgjmNAvx3tabzzGqfInRLXmCFdy7oS8daaR742p//PpNMzMuL6iAppNU1U7uvheo9Hk7qHi/k06LqGk1nfucHxqFZG39EREyac2uOanEekEt3jhs0Ngr5zQ8PPGdHzHq0vkCLi2XFyFNpj9fbbbxdHFy1atCi6u7ujs7Mz5s2bF11dXTEyMhLz5s2L/fv3x9jYWHGsUUQUiK23tzcmJiYKB6Q1NW7GlT70xmX1sZy/To1Zvnx5sadM5yvOmTOneKOxDMHOnTvj0KFDMTExEW+99VYcPHiwqOPk5GRcdtllsXLlyli8eHHR/2pzRBQvjdy6dWvs3bs3hoaGiteuMPiR8/XkCaISfaY+9rHiCN1RjpdFmtjXniQcG3Q6vMZpQqFeMhUcy1VrwxynTit6Zm0Vvcn6ZjmxZMdVB0KKrqmpqTgX0E/F4B4tTi5drx+VqYmoCeQpvnRmVRGq00IR0zMgPVrmegITTmo5VKc6ZejcmdEASmgY3JhQd6yz1j5aW1sLYymaTwkKCxcujNWrVxdUIpM6Dh8+HKOjo7Fz587Yv39/8ULGAwcOxPbt26el7OvVI3PmzIl58+YVa3AdHR3F+YSqX2tra4GGdJJ9Z2dngegOHDgQw8PDsW/fvsLp9vf3F/co5XzOnDmxZMmSWLx4cVx22WXR2toaAwMDRTsHBgaK0yJGRkZicHAwdu7cGUNDQyWakptomWTA4MKNs9qvYIfto+NjX3PNiGNWY8qDIwYvHuBonPO5fJ6jQo5zjiPWj22LiGlzjCfEeACoa7j25Y41y3TJVGEdiE6K4OkXmlxESYrWNQlEYxCVVFEX+s1Jr898kglh6Xnam6Oz/egcndarqhMjYp5UwPr6vi5PyqiKdNkuTwTxyFrIpioaVp2Z+TUxMVG8vLGjoyN+5md+JpYtWxarVq0qPp83b16klEovnDx06FDhmAYHB4sDcMfGxmJgYKDYiK91rMnJycIppZSip6cnli5dGu3t7bF9+/YYGhqK1tbW4kQLneAhFKjN6XPmzCnW0kgjNjU1xbvvvhvbt2+PRx99NPbv31+8bkVBhdZtpAPpRvqSPj2YYco31zPpjBhkEJmwXzm+Of48wUhlCTELUXsdGQRxbSui+iSPWvOKQRfHOueMkLOSQTzVn/dyTUxjoA5N848kmSr8CAtPF5Cj8GQKIhAu+EZMGWs6k4jqM+C4d6iKFuEz9VzVy9P26eR4j1N1TnNW0Sksyw2WI0GK6usZarqfzpFrDdKPjKSiZyGmvXv3xv79+2NgYCC6u7tj5cqV0dnZGT09PcVLEmfNmhXz5s0rUXERUaCitra2iDi+uX9gYCBSOr5u+NZbb8Xhw4djcHCwaJfebdXa2lq8AoRnIJ511lmxcOHCWLZsWcydO7fIytQxWDo2SYf2Hjp0KF555ZV49dVXY8eOHcV+Mhp/6pA618noFDp+7llTX0eU33TAflMf8HlV6eFOAVfRi0zQ8UxFD2zUXq6T+TjwOePOh3rRNXJutZgKtoV1ZbJGltqSHVcdCFFKxPT9JFXOSeInvGsCcuJ6hp6u0eTz9wbpGs8C0/98hYm+E63kxkFGifV0gxkR05wxI1NdR4dDpMU6Ow3kC/6kbiQqV5951t++ffviwIEDMTAwEM3NzdHZ2Rn79u2LRYsWxZw5c2LVqlXR2dkZbW1theNTarocV1tbW3HGohJDRNtp3erw4cMxNjYW4+PjsWDBgmhvb4+urq5Cl8uXL4+Ojo5YtGhR8W4xrZEJrWhDter79NNPx+7du4vAiOjSAyE32Aw2qCvvO/YPdcnx42uXrn+OM/7QkdVyBMwgZQIFy2P/C/lUtcvXynxtlfNADt6duBCrnyfpDi5LbclUYR2I9k1ROHk4QWno6dBI2TDrjxGi0yuc5KQMJTQe/J8JDu7AuI7Ag3VJgeo5VVRO1VoBqSgaMV1HhyfjzRPY3XkJWckIcV3Gs9X0LDmziYmJUtJMY2NjdHV1RXt7e3R0dBSp6KKQlOihNS2tYXZ2dhYZiso0pMPWUVFz5swp6Eetyw0NDcXg4GAcPHgwNm7cGNu3by9OxJiYmCjW3kh9EdUIedGQMsGARp36U1laJ6T+Hf3obyJe1YenqDtdqDJ53qOEAQfHPh0J9yBKn6RD6dAUsDni8pPgVXduQZHzJ+XJ8azn0pG74z1TJFOFH2HhBImYWgPgwjUnvK6RM5LRF9rR31rfOXbsWBHx03jTQGiCt7a2liLKWutLniocUT4Al3SlDB+dHR1i1foBHSINr3/PKN5pQt7DCJoL7DSCjIi57icjJyfCV4Ps27evMOp6hk6pmDNnTrE/qre3tzh+6eKLLy72XNEJkFptamqK9vb24jOdofjyyy/H9u3bY+/evfH666/HgQMHirrQSSvBIiJKm6M5lvzNw9JjFU3HYIEIohai5X3MNNWYoY59zOs7Bi9E3eqPpqamGBsbK+mejkz1JYPgz2CgRefFRAqyFBpXRKQc38wgrTpA2RF/lumSEVcdiLICeXAuI36JU3O6lg4gIkpvPNbnpO588yupPjo/dw6kAavWnvQsGmJNdK7hMfr1aJ/GyZ/na1s0eLxGhkUvYBwbGyvKZ0ReRVc54uNaHZ3n7NmzSyd/0OjqlRx8GSOf397eHuecc050dHTEypUrY8mSJcVGaJU7OTlZvInh4MGDceDAgXj66afjvffeiz179hR1am5uLiU0CA1zvxiTKdzptLS0FGPAqWHpmMhVnxFNO1rybRfUb9XZgwrYdI2+J2PAMjjWGGzQwXBMqu10aCqX20GICLXXkY5T7dbcEcJzZzpr1qyC/uWYoq7OJMeVEddHVOhUIqYfUqsfnoRNasL5c90nuiIipjkJTVAZM6chVR9eT5REB+GRKQ0E75ET8owqGi6nbfQs6iaijJ6qImo6HpUhOo7t8aicBrcqRZq6p/FR9M8Ej4aGhmhvby/2celZSs5oamqK/v7+YhNzd3d38U6wI0eOxMjISLz77rsxPDwcQ0NDMTAwULS5ra2t9Moboi0FCgyGPKPPaTE3ro2N5eOb9DnXqvjqlVqZnRxHvE7BEq+dmCgfJ8a6yKn4OHAn5X3ndCPnB4NDR+K6xyl831KiMjk3iTR9vLK9WWpLdlx1JD7g6SwYydKh8Lw7RbROX0SUD7blOW1VG4RVDiNZp3/orLx8d1r8jrSS/q/6XGUwMme0KmqI96pN+tyRK9duWG9SZTRy0itpLqJeIhWdYMGyjx49WiAaoraIKN7/dfDgwRgYGChl3DU0HH9tijYyOzpg8ojS6vWyw6qggf2o8knV6TqOHRpzOiTqXKifZVcFAlXISOOJY4iGnZ9zfLLv6SzZr0LzGj8M7NTHHqRxrKV0/BUyEVGcHMI6S5zxYNagr+OpfdRVltqSHVcdCBeDI6YmvSgn/e00ncT5dk1qLs7rO/5dZQQYbTPRgkaRdJvq60KHKMPhUXNK5TfzChXpHkrVvh4aFP1PepQL+Z6BSKFRY2YkjZn6gFSUggZt2KWBjDi+rsSsP9XFDZ2cmCcFqO/kFCcmJorECO5Lo2EUylK7aJjpSHwvXUpTL/bUsxw9ykkSRXn2HJ1/FX1HeleIn/3CtqoMrRlpPmjs8S0BjtYZkFSNT0eIrifpR0HCrFmzii0KQousz+TkZHEcmT53B6w2nUk04Y8q2XHVkdSidTQZmfYbESVjJ6GBrtrYqzKrImWPDOkcGDnyhYG6nlRk1boIN3k6gnMDIqHD8cw4R6NVkS0TMCLKR/K40SbqUtvc8aoMp5X0zIjyGXqqm5yV1hTdsPvCPVENk1+Ypcb2CB0zQKBDY797kKJ6cPz4/i22kQGQ9zH1Q134+CIibGyceskknY36nPV0JEkqVOPFmQAGO8zaZDkMUNgOD6bogDn2uJbl66zUB+nv7LxmlpycUQfiEaYbY/4vNMR9UzRmEt3LyewRutYUZDwiypsmI8oOR+gvYoq2kpHh+pEOsnVahNl7bvRJX0aUKTrSeFXZam78dZ3rV/fK2DHq5/MiokCcerZH+E4ZuROootqUhCOUIrpNCQtjY2MF4nF6zctmm2Us9RwhNVGYalsVvepGn/Qd0YTawsxXp5m9vlqrq7UPsQohOb2o8e5rWVXjSsGBB0HSCV+0ye0lTlP7PUTY0kdVXdkW6cjXIfW3tiScCZKTMz6ioskj+mFycrI4MZ70CyN2RwVEIFyY5nqFG1td4+nYckSk4bjGoTUbCqNiIkSPdh0FEUnR6EVMOSxG+nTIuob/0xDx/6qAgMiM0T7RktfN13z4HEcH1F9Dw9QaEvtPqIrOR/3CctRW1pd1Yx1YNjeLs46kQqlj6of1Vp9xDFUhzio0TyeheuttBtKPAihmYBK9OtXoiNL1UAsNVgVm3rc+r/SbW0c4nlQHDw7Yb/rxADNLtWTHVQfCBXhObGaKcV8U6SAmHHAiRUw/zYBOSJPKI2/WxcsgDelHK/n6E52AaB+VT6OghAantWhYdY4j76Nhc+pMxkNGUHrk+pJH2TS4Tmv5uhFRniMsiq5VvRR48LlVlCOdE42gO2D2G/u/ClER5RI5ep8RJTLocXHU5DQb0biXw/Va1o3jVHqrcsp0ZF5foi0PhpQoox+2hU5cz2JwpjHMdpKqdBSsQFHlci5k53ViyY6rDsQ3T6Y0tXjuxlZvn40on+4eEdMmjhs9UhZEDdwwGRGlNQdOfDcKEv9c0bWckg6VZSTMHzknOiCWy6QIOSw5clJ5itq5RkJjxoiftBipVtep7leZeoayzTwxQfeQlpTwxApuAdC9OsiYqfMyfKy/TtyQY+Z3LE9OV39L31WJKrxX1zoKYpnUNU9jYZYd+4b6bGhoKPRHgy79kFkgstT4UXKKHF57e3vxok21xVE3yyQa0t+zZs0qzS1R57pGNG+VvumkWEd3nKx7XuOaWbLjqgPxyJLGhBGmPpNwYmjyMXqk8Y6YQjssX789AWGm+lHoLOkYImLa2hEjaRk8UodeBo0CDYDaQudAGk2f6R6u0+nZahfXPnif6qTf+o60qkf5TlER5flJ5lyT45qUOwKWR2fjjsqRnxtM0q5qr6OkiKk3ApDW5TXSA9GD6l+V9CH9+7FedEh0qFy3k04YvLGficoZBDDg4hzimGAGJ2ls1ZnPI9vA8eGJSNI10S0pSachs9SW7LjqQDwCdNqBA93XtvQ3J6WucwOm36QhycnTebFsd2Ssi65z1BgxlfJcq51+bUT5hA6+yZmL5HQ++t51FlHOkHNjSuNI6rShoaGUlMDPPZLnZ6KNqg5LVj2rUA4dihwc17BojLmB29d12D6nG/V8GnE6Yw+AiCCFbByZqZ1Cy3R8DIS8f4kgq6gzoXShfvaz2kR2QHWkzojc5dzYRp6i4WNT1+pcSM4Nd/o6+kvPYv9yTa9qzmSZWbLjqgORAa16txaz95jVRNqmanLqXhdNcBlnnY7A6JcnJpD3J7JgGrI7XdWRxtANBevAMicnpzbYTkwc37fE17DQ4Shji+tfNMy6VnplBC89eAKAaEjq01Ef6UMiW77RWPqqejM1dSZdKPuODkrtEcJhOjwdCJMCWDduxPW2kuKkoU0pFa8mIUXoDocohKiZAQj1TOqPzj6i7OwYmNH4q+5E1+ob7qMTxSnhmFVfqAzVj0kTqjfZAPadxubo6GglsvXXuURMHcGm8yJrBYJZpiQ7rjoQTa6I6QfG0uhrQvG6iOkbl/UZI8WIMh3H67mG4MaHlJe+59oVjXIVUlS9HV2R6nOH5pSN05hEL3RM+o5nPtJBONpjGe74SWepzkQVPHuR7SNqYaDB77yfuObkdVC5bAvrwnIYBFBXRE763p2aZx6S2vIxxPHFOtNpsG/pjJlUpDrLidLJVKF91puJD+7MOdYZRHgQxnHvSJzfc+3K5xEpVepD65Aca5wTHJdZpkt2XHUgnOA0Or4ewL1buo/oxOkULqIrepahoBHh39p7o4nrzpNGw/dQsR2MqpkgQEQZEcWeJRkH7VFjnehA1OaGhoZiMV5GqSoV2ZGiylUUzGje6bLGxsbCALkhFKIl9URHrbZIf0Qf+ptOgOgwIooDgkdHR4u6cU1Hn3mdI6I47DUiSv0uik2vfWF57DsPXojOjhw5Ujrg2Y29IxDVhxl4qr9eeKnEHR//Eu5F9IQWInA5Nc9A1YkWLJ9rv3S8pPJ8/UoMAM+TJENAmpi0Iq+TPrLMLNlx1YF49BwxNbEYtY+Pj5cmrCYyz8ijs4soH6KqicMyNfEjypG8vmcauNNxnJyMSp22clTASLoKjVAvNLhuLElZSTyqpyHR9/zRZ3S8EeXjeXi0k66TsaKRp8hZVTlSRwDUDXXnjknCNR4aQToKf58V+4+OWN/RcJMCdINOOoxORmXxjc0KDrgeJYqODkzX0pH4Oph+9LkjOJ6KHzEVEKkPmZATMXUGobMdDKyoIzlE7x8P4PS5nDHHl8pxB5llumTHVQciREKHElF2ZPqcE5lrKnQONMKMnGnoud7hRpK0lydsMPrV8/SMWmfHEdmQGpKRpBFwg0HajLqYmJgoDkKtWkdR21RHSlXkrvLZhsnJqTVArr/oOkcWdOystztm3sdoXohXa2NsM/vSkULVc3mdnjMxMVHaf+fISmXSIdOR0RGzXl4Ogyb9TTqQDot15rPZRqeOPfBglmNE+bBbIlt9x77y/uCaqcY2z4VUvf01KWy7O1mOJ9dflmrJjqsOhOhJg53ZSn7UkAyCjKqoPTo0TQ4hFJ5eoHc4aUK6gaJBUERJqicipl1Dyo3OTeXTQZGmioiCkuNRSFXrXKQuI6b22jQ3NxcGiWtP0h8jb0XHTIQgZerZYKQCVTc6drWR2W6kbuns6OTZHk+Z13VOW3JNkYfAqk7c3ya90hGoPqTs9FktBK56M51dARAPgSbCcwMtOlBjw1G4xj8zHN1JOzJy/UuYlahrucbE4IxOhvrlvGGikvbZOfKjs+bztC+MQQ9pzCy1ZTqHkeWnTkih6X/SgZzEHvlxovhE1v/Nzc2lFw7KSAix0CiQBvQoXM/RbxlKnn6htpC+46Tmc7i/x4VITddzI7LqLQN65MiRYi1B9VW0LjTLZ9FhEFGofdxe4OiPDtk3EhMtSGc0bnRMEVM0lu4jrcWxwaw/9hH16TqmE2GfelDA69zx+A+dhCMf9QUTb/S5AgvP4GM51IeXTefLzb2eAUqEq3YzEOJ3ZBRct0RvDE5UPj93mrBqfjoqyzKzZMRVB8IJSIMpqkrXcNJJ6OwcncmQCFmR59cCPSkqrm3QGSolXcLEBr5GRM/XvSpPkSwNhBtYHs+k8jxSjijTZM3NzdPQJmm5KqfqQYKMkP/NVG1fz/BXbzDIcKqMCJiRN5GSOyoJ0/dVB/aXnqG28a3EzAokqqLBd5qYQQ+RGYMYnqHp4in4KluoRWdxsh+dqnSjrsBAWx+0zujrqGwfUaYHHWoP+47zgjQjxxznAscJ+1qna6SUivoePnx4WoCTEdeJJTuuOhGmHNPAOj1HOoYTQqKMMhp9GixGxUQvEeUEDqILIgZSJXROus8j+Sonxft93YSGlMbFUYDKFOXJstge3e/rNIyGJTTy7mz0LNaHTpS/ZfzUrzSMTm25EXOkyD6Qcax14oie4Y6FCEK6cMqLr0YhgtB3/J9jkIGGozIfP9Q19cSXNfoz9LnQ+djY2DTUxLb7nFB7da3QNKlrjRkGMNQt+4rBoeagns39htS/o16i0SzVkh1XHYgGPd9zxRf4uYFwA0CjxCixymDKccmgOAKhsXC6JWLKwTodqHq4wVSZblxo5IRieC2jYzdO+p+HtXJ/j9NArBtf40KqkX3BZ9KZcY2JCSFMZkgplRJmaJCd3qNe6KT0TGbvqR2k+zwgqEItpHWlJ40PXUsazstwhyK9SjR2Wltbi+QPPtez+fg3n+eUHcennqOxIuTFsjhGGEyp76g3UrqkHlkGx7zK1/N4Qgrpczok6UEHRLN/spxYsuOqA/EJTiMm40xkUUWHOe9OKk+GS+XzmZqE+o5ZZ6JouCCv11GwLJWnid7S0hIR5dRoGkJFvO5giOo8ciWFyoV0pr5HlNGFFtPHxsaisfF4Asj4+Pi0fVZEQTRw7BPpmPqdnJyclujCyNoNMVE0deaOwSm8iKkDlnkP9cG/q96tVoWuvU8cLfMwX1+joSEnfcoAwRkCT6PXZ6wn1z35Es3JyePbQRR4cI5ElJGqxoueJechp8d9bgx+vF/8+Cmna3W/ns97eaZh1X7HLDNLTs6oAyHlRirCo0AaIKfFUjrOv/NV8aTqqqJpZSg6RVO1FqJrGWkySYLG01O7I8rvPXIEpd9KoFD9SRdx0Z5GnYkrynLjgj1pH0cuTkH6dTJ0XM+gwdezmThBmq1q7YqOSG2UkaMuSMX6vioGH1yPoT6kO+rQ9c06+enppKilUwZVjtKr6GkGWD4mJQxYVI50zvFLx8754s/j2NaY9XuZecm+UX2qkDN1x7KIzhmcMKB0NJkd14klI646EBpKfyOxvidt4QZOk4IRJR2hxI1Z1ToNv3OD4EcrufBefzbFKbyI8gnspOVojFgnP7PO12DkbBU5y+lSf45qnO6hnvUMBQ08H4/94kaJxtv7kkjHjbqMotAl9aWxUosKZvv5t9pY1T9ss4IOjUE5JddJLWfN50ln3uc+hqkT6klOwFGp2qLf+p71lI6ctnWnrb95XdV6nK87OqXsLwQ90TzIUluy46ojaWiY2pNFaopH7ESU16+Ezjx7TiiFKd9VJ0BETBkARagUnhbgZ+/pXk5eTVg5HlE/nnyi7/wMPR6qy31mXEsg+tB9qsvY2FjhwOUI6eC4X4yZlMzIo/NqbJw6LosJDHR+zL4T6vNyqCv97TSlyqbxS2lqP5DS/n0/mZAq9VIrCcHpTumPSCUiYnR0tGgTtxmo7qTBGNSoHdIN+4d9r/HtjkAH4dKp0wnwzEanzEV7c/zrWjkeXa++dKfOujta5fcqk4he/cBjtujg5Uwz6jqxZKqwjsSjc9JzEuf2nbLR5PBySUvpWtI/njgg0cST4+FaUhWFw/JEyXi5pI4cBardpGLUZpYnw8Y1D9ZLz6HRoeHjmpQ+cwdJfUVMnbmnIICp39SBR+TSBR209w1FCIfrJFzLY/Ago+5JEEQsvNb7nn1CB0HHyDFZhVaqaGnpnFsSIqbWgjimHVFpHPN0Ct+4zL9nz55djAN3zKSwqRvpk0lQvi7JtnN9S/r20/a5zkUKm21yvWeploy46kAYXWpy8Jw3GZ7W1taImHpBIyejojxdX4VwhOb0TEWJ3NCpSU1jov/5ZmTW3ScijXbEVDQ6MTFRHHhKh8y1Ionq7M5RkT0Rkr5zIyono+ieKHZiYqLUHo+CRVGp7RFRcg6eaKC/hRQZIMgJCDnr+TKC3NzNpAF3wOpT37SttjoaIWLgO8b4vCoqk+t/RDREbY562F618/Dhw6VxzTYIyUq3pOJI2Tni1nhhgEDH7AhWwnHviMzXKtl+onWOBSJsndyi+aUUf9aBz8lo68SSHVediNNetZImIsoZYZxIvj+Lk74qcibVoewqCWkcIh5dKyEF4usqKntiYqLYnEmnKyGCYfIHjZDqpGeS/nKnRR25wSCdpXu0qVaGyO/R3imnwmptVHVHWEVpOkVahVwiymciku5iHxOhkPpyh6QyPANOzoz1pCPh/R4w6XuhKn8f2eTk5LStDqwzHZSE1LX3neqq71k3tpfjz8eO6kKqmGPG+0BShTZdN0ScbFd2Wicn2XHViTD6lQEl5SHDRGPs0a+MltAaJyuNkp4lwytH5AkdNJBcB/Dol+VWTXy1J2IqxbnKmDNyJ51DI+H18siZZx2S+qHBdcRI4826OIVH1KG6koZ1A8xnsE8jpgIDP6mfjk/XuXF3pKl6KfuPB/R6HzuFRWrN20Ba1g+epbPjGPA1Nd7DMUEqsqo+EVEaxxznarPS2vkcD3rUj05fus7ZXo7Lqr85B/QcT0bh2rKP3ywnluy46kA4qEntcPLpmqpoutZpCxFRWuBmIgINLieujJQmJ7OyeA+dHGkg1stT21k3oSxvO0VnKdKQ+sZhGQiiRyIK6Ux0JRGVFvSVPXfs2LFiD5qSBGQg9XwZtvHx8aK9ylr0RX4GIqqPjFwtY8u+pb54ndpIg85+1XVM4mAZPIqKWwe47kPHTWei+xobG0snXvBe1ctPbXekRWfELQf6zSBL97a0tMTExNQp937MlQd86kN3LOpvpyNVX6FwMhHufDiWnc5msgipeGcbslRLdlx1IDK8iiRpWBnpaiLSqFRFdU4n0QHpeyIPfs+o1lGKjAEdhoyK6kKKkt+pHqQZachUJ08vd2emunnkS7TmdYko7yNTGaSe3ECyvTT+rke2yyN56lZ/s+3sK9bVkYmjWxp1b4sjTVLHjj7Yxyyf/ebnLaocp9g8wYLle39QP+obXc8tF1X9rnrKcVXpVmUyyPPyql65QuTkyJNtYbtZN9/UrM896BB1mqW2ZMdVB5LS1OsTmGp99OjRaa/ZkCjadHSk7zRhFBVXUWVV62GKWp0+8YksUWRNxKW/lcatDD4emURDy4nNtRbfp+RpxmozjTQRDvVCxEGUQeNNdMC0ZUXffDP05ORkcTKHytR9NO5Cz7pfxo0Ig4iWqKkqU1DtV/voBNgm6aClpWVaokfVeNIapMog6lJb9EzR0dpa4C+BpBOreh5pNN86UJUuTh07RRcxhew5lrnm1tLSUpTJvmdgpzrorcw6bYXBGc8idJ0y8NBY5WtS9FmVQ84yXbLjqhPhRK3Fi3OiaPJwTYg0jK4hcogoryUpwlXEzMnHyF2TVlEs6ceIqTfYkjLhBNUz5ZgczaksGh8JrxcCpZOgvrjuojKromPVST+iCokIaGz1uUfOLFcZZ0RsfIav5dDpUC+il/TbnVcV3aTv9Hw+l0EIx5ocAeldImU6KwYTTsWpTexv/a/+UXl6npzD4cOHp9GFROA8kstRome96jPplmttRHmewMSAT98TiTFDUNdUsRWuf84DjUcGRllmlryPq07ET5yuQiGNjcdTqrk2xGhRk1zX0tjpWqKBiChNdkdZNChOL8rpqc40DpqkpJnc4PN/GTkiLV/f0DO1L4hrW54Rx/topN3guHOhcWQZip7lTNhOR43Siz5TJqUcm+qgcujQaIy9D9UPDFSoR6IR1p/PcafJ+6vQnSMSjT+2UdfSOekz7a1iOY58SVFzvHLfln6EWo8cOVJ873WWXkhl6m+i/qo1Qr5Rm/NC51EyIPJ263/OVzr2nKRxctKQ6lBTw8PD0dXVdbqrcUqlqamplDLuTocGyR2AvvcsPEWuND5CT5xsHr3z2CUthjsyIe3CiFuoyA0WDyr1tRrVi5Euo2MubtMoiHrxdRc3aBJ9p6hf5dNhySAyhVttJj3lho86odMhZcT1Sx4PRN178ODI1wMCOiG1wSld9i+/d0cuHXJbhCg37ksiunf9+Tjj2h/PZJQT8n7i99q3ODY2VkJspOz4m7pxFOrXca7oPumSWzvUFvYd60qH1NjYWMwtjU3SzAo6iODOBBkaGorOzs6TuicjrjoRGmpRb9qsq+9JvWiyKGLlGpVEk4noiZleRDIeDdIBKsKuiuZZLk98UBlOq7GOVc8n6qKjcqNIh1aLOuMznSpUO+SkJYzyvX9IA9ZyDnJICkDokB2hsV9kBNWW5ubmIrOU46OWjoi2qupIxE69uiGWcxDCJNpSmRwDbBcRFccMxxLRNPXs40/ORPXwPXN6rmdyMiCjc2VAQNRKdkNtE8omDelJL3o2aVGVwWvFCPim8SwzS9ZWnYgmuoxLxPSUYDckREuaJJy4EVHQNTJGEWUqThGhb+qUVGX7MXLlupCu4wK76sFkBEdWvF/lTUxMRFtbW+mcwKoUeicUWIb+Z/IA6ynxtHGW7U6V+qYxZN2qUKj04ht7aeS8/jSQvjdPOmYCQBUaJHql06M4AmFbFRixfkJSupflOJXGegmFuAPiep/TmRMTE0USjL/mxKlBR9qqj36TSeDc0tzhmKliJNi3pCrV96RO1c/j4+OluVCHBNhpkey46ki4edbTwmUsSOlMTExEa2trycBFTG2yJIojYiMqU7q91g1aW1tLry+RQeeRQTTQpAVlmHUoK5ESo1OnLiVVTtkpQq4BSjf6rb91DQ2l00ikUnkmIFOVnRLVczwRg4ercm8Y66/T1tU3OhZK6ypEUb4+p3Ulrh/pGjpN1UHfO22r/nKjTd3rPiVQaDOzni+DzQBC49I3l1NfTU1N0dLSUpysIT3REWgOaDxqrPBNCQzOfN4wDV26Ub3cYTo6Esuh9kg3VU6dTksiKrBqnDo69+Awy3TJjqtORBOnKir0hfSIKHHmvIb7V5zeYZSuiSiHRIPui+ISoj/9TYMnY6NnO0XJ+6sMAhMEZDRVFp9Jw6w2E2V5lpmcPE+KVxuJRJ3CZN+klEovSpSwXXQIdE76X86goaFh2l4eN8ZsL/tdhl56qkKA7GsGC8wilNCgM8hgxqquo0HmuHL0xPFHY+0olcjb1/+qkHRKqXDMDD6kFx+rGue+ZqX6sP1OexK1skxHkfrc2RGnLvVMd3hZqiU7rjoRoigOfEb2nExyCqIiIqJAO3QYNFykoThRSaf423MljGBJB/qiNg0gDSIdiQxQ1ZoEUSczufR8UZt6tvYSRUyti+hZNMQqnwZPCGJ8fLygYeXEmD3HNulEeiEqGnjpmA5cIr1Sp0JD7kikb1KuPMOR40N189M9HGlwfc6v0bhxRD42NlaiO1U/vqdLzp8INiJKST10tG1tbXHkyJFp6eqetamx7oGYOz5mcArFOd3Jenl76HxVX67/cdzyfs4t0fHqh5RStLS0lOYSafosJ5bsuOpESL+QFvLFbE40Tl6f0IwOtT5S65zAiKl0fNItzATk5NW97hzpfEh9sd5VQoTATZpu/FWeymJihKJqpujT2EaUHQVT6Iksmfqv//U9UQMNkDtfOleVIepS5XkKPQ0lderlUNequ/9NQ89tD3R0DGR0rY8rOXe2TWVRryxDG5L1N8ev6sYgQm31dT4hXF83knPwbEFdQ33RWWvsMGipQnVVY891RgfFz+iMq9a2qsZzlmrJjqtOxI0fI2V9J8PpadA0AERPPlnoRGo9nwZM0WQVbeVIzSel1sJICeo5fKU51zaIBOVIabj8VHpSf27gpReeLKJ6sb1uNPU5tyT4PiOn4OiIpEMvjzQSI3pfy2SU75Qg10oU6BBt8ho6JRpkfwuAxgPPcWS9PaAQpc3giEhOOuVRZXQ6OsmF6Jz60TPJDHB9l86S9+i5nn1IhoKUM/dped9qXJPW88Qg9iWds5fh/VsreMtSluy46kiINkgtOTpQdEfjIYcQEdMQmA6MdWfHyco1F5bL6J0p8YxaOXn9zD5NcK4PEQXwOaL+6FxYZx6HJIqPmXqqtwwM92uldDyDUnpV/YhgpENSO9S/ypTTUDlEe9IlnZtSq4Ugjh49Gs3NzaX2OXKWzvkc/aYzp8NQ23UN20YqkYhB7fX1H1FmfM+bnucsAI00kSn7TrrT8UvSkcYlnV9KqXS8FuslJ8T6c92QdC3Hs/Sv8ngCi67RM9gH0innJJ0ds141xlWG6stjrbJ8MMmOq06EUWAtKoSOScKoWkJjRqOqCafTzGtFfz5xaSA9Q0vGhwZTz9Vv0nuOzpzWkfjakVONisRlKGXQdG8V9UYHXqU7IjePwIkuKSdabCdyIjrRdwxCiCZk/GiM2a8RUXqLs9rBv+kUea8cqH6IZIgsHF2zTOmDyIZ9VQuR+Rigw3Oko8+Jfp0q1W+Wz77huGMd2R9Eq6orz8XUSS0ck2RFdB3RP8cVx1amCz+YZMdVR0IqkIvzpEtkoJVKPTY2FhHlDaw0XlVvLa6iS2g8OMGraLCIKYOs36RRnI6LiNICNrOrSCNxf9Ds2bMLBOpoU06YFJJ+6MRULxovtcENr1Cct1Wnmaiu2lPEdG0mmtABOIoSNaoUeG07YN2pE93jDtXPiiQiIAKk4W5rayuukcPTM+noafxJz8lIux7Zj3RKTq9KP8oU5Xjh2PaMRJWlunJOMKBgmr0objokBV2qq5fvgaNS930cS1cKIjXelWDiQQnLJ0WeZWbJjqtOhFGpR9akriRcD4oov6yRaw1VhsXXn6qia9J8NF5VKM2pKUbdpI9mch7uXFWOZ5QRJak8Uj5uLPXjGXotLS1FGXQSjJa1VkODLh2rXK7fRUwZNjl06lQ/RDm6jllvRLTsO6IO/5/jhXombVuLDnNnS31LeI+eTeTFMSU9keL2OugZRDlst481bzPHgKMtb1vVuiYDNDIb7Ffpj8GHjy2fg9zHxSAiIr/O5GQkO646ETdCNAoSn5iKMvUZo0gZfRojTn6igCqnQKOjslQ+1+KcmqGRpSOT0KHxOqIx0kYyHNKJ68ORBXUkh8C6Uj9V19MA6vn6nghKa1Qqk/pjtK1yuKbm9Bn1qM+FGISiarWzyni6vqv0yv7xZzsid4rNDTz7is+U0abDr9p0zMCCzoR64hxx50WHwH7U9/pM63kejLgO3Xm7fqkDBotkQ0ZHR6fplXrPMrNkx1Unookg2kcnIYyOjpZQA+k5OgmnOlQWjZUmlvYgaYMso+Vjx46VTsmgUWZ060jMkQgNYpWDUiIG60sqRyI98CQKPUcIiRlvXDdSYgbXx+i0dD/br6SBiLLhkv4jooQuU5pKJFCWo6Nhbvimkaawf2l8lXxCA0rDzf89E1PtkrGm4XcDzwQCz/R048x6cuwykcP37NGREKHRoWrsKclhbGxsGmJk4gjZAV+34vwQutamfSJlojbftK3yNM71HdctRSX7HOG8ViIIx2+WmSU7rjoSUhQyoprkvjeGTknXO6VESoqTn4aOxkdOgsZXBlmJDaonI089X8/ytamIqewsrkOpjvqe9BINnAwG6+rrMfqe6fuqq37XonckQmh0WJOTkyV0FTH92CHqwlGc68H7ij8MQISWieQYLFQZbG8nr/O6EoWrTfpfOnJK0YMZoggPaui8WX9+rt9ViMmdEvXC53v/Oyrj2pjGm9/jaNbrIv0oy5L9pbYJiStQYl9QR1k+mGTHVSfCyeNUgiJMN6pVGYNyfkRQnOR+3mHE1CSX4yC/79EnP3eqSeInruteRrm+DkBU4/SSG9+IMl3F7915s30eCet6ojJHh27QVEeeUEJKk3rS8/gdEYyupVFle9zJSjekbb0fUpqiMYVgmLBSCxHTyVYhCL9G49LRDctjEObJGhqbNOwSBjZeb7WbiRBK7vCkB0fJdPJ8pvqAG9T1DB9z+k3H6sGHnk0kJz3p1JUsM0t2XHUkRE+ShoaGaSiCBoPrP4zYGR1XpYeLVlIEqf012iDqBouUFY0QnRkdoBt8Glo3WDQQolaUNcnIn9QSDeysWbOK9QvVX98zSYLRs+gbZjTKEOkZdNoR1W85FsKkA2EfEmk6Zabf7nxl4Livjc9Wn5Dmk56Z4q5nqh50hnQCGgcMHtQvRCS6h5mqjsLYP3Kgqg+DhcnJ4+/boq6Vbk40w7Yq05RUKNssB9bQMEW5E4kxIKO+qSfP2NT3ZB8YXLre1D7VmfrgHMkys2THVSci5EGaLyKira2tZKTdaDFyJCXBExI0cXTSgvP7en4VUlH0y8muuvkamkRGl892Y8nonSiSUTOdAdvrkTAddxU6IO3HDasRU2iIUb7KJPIgxekIQ3V1p0Rn4vdUOS5SkHLe1BUdCftIz9cznbpTHaqeyf72RBQ6X0eAdGTUTRUN6pSn2qgzCxWYkVL0wMHL4qkpPE+S+tA9CspcR+xrOjefGxwLHswQZZL2Zp9KV2pvlhPLSR1FfN9995UiyYaGhli9enXx/djYWKxbty4WLFgQc+fOjZtuuin27NlTKmPXrl1x4403Rnt7eyxevDjuvvvuaYYmy3Qh7RAxhVCOHj1a7L1RZElxistpPlI+nDgTExOls/NI76k8GU+eRJHS8T1BVXRgVVQr4foW667vnGY6evRo8cN7uF6htrluOH5VPnWiv2VMiByE3hhIyGmoT0QN8n8aekefTJHXCfF6EwBRCp2t7heC1DP1Q0QrA8lna3+WvlfSQ2Pj8b1pLS0thfGnUZYDIsXM09uJ/IQ21BdsgxJq+KoX6VTPZt+706Rz0Qbg8fHxacdNqb3SD8uqGjdEfrrPk23oaNkXTLCYPXt2tLa2lsaT2sN3pzEoy/LB5aQR14UXXhjf/va3pwrAqw3+8A//ML7xjW/EV7/61ejq6orbb789fuu3fiueffbZiDg+OG688cbo7e2N733ve9Hf3x+/8zu/E7Nnz46/+qu/+gk056MrRCacgDJqjio4+SKmL2rrf3cwpDQYhZP+U/lEB3So/IxraVxz4zWOEvgZN896lE3qjIaZ9KQjK6driCRlpOiwfV2RjoPUkwyjdEWD5IaW9BgTLeQ4iPiqkIbqofp6JE9jyrUdGtuqZAM6Gd9KUUX9VW2lkHh/OnrndRzXRM5K4qk6A5D9q2czccjF+1OfSUfqN6+r/ncalmwC72G7qU85Rl5HdO7reFlmlpN2XE1NTdHb2zvt86Ghofi3f/u3+I//+I/4lV/5lYiIePDBB+P888+P5557Lq6++ur41re+Fa+//np8+9vfjp6envjZn/3Z+Mu//Mv4whe+EPfdd1+R/pylWpwaoWGh4yCyoWEgnSjxiRpRjhz1TBmyKrqLk9ejcdXBDaw+ZySv7/g5HQsdJdGZ2svr5JRVHtchaECJnGjwaHTYXn7GtZkqekl6c7RIqksIicjGdapnse/4LHeO7iT5uZ5PB0HHXEW1ss3eTtWNjsvpW9WXiT0RU0Ev68StAUSc3id0QI7SHQFV1UmJKfrb5wDvYeBTS5f+nW/2V31UblUfU89ZZpaTfmvZm2++GUuXLo1zzjknbrnllti1a1dERGzcuDGOHj0aa9euLa5dvXp1rFixIjZs2BARERs2bIiLL744enp6imuuv/76GB4ejtdee63mM8fHx2N4eLj0c6YJoznPptPkljHkIa50JBQaOxoule/30KHofjod1uXIkSNFJt6xY8cKysipTFIujILpfLnO4WgkopzWTKOttSm2SwZFPzTW/pvrGrpX98thqT3Svdoth0UqTnpl+2jI+doY6YzIj+jVkR2No+7XvjZfs1ObPLDRGKITIu0oXTM5gfqQMAjQNSqTG3tVB44JOXJd78EOkbHqLuRTtf7JbFDSytKb9Kyy2VaV74GE6k6KV+NYz5Uz4/2Tk8fPwhwfHy+tC5N65XjOMrOclONas2ZNPPTQQ/HYY4/FAw88EDt37oxrrrkmRkZGYvfu3dHc3Bzd3d2le3p6emL37t0REbF79+6S09L3+q6W3H///dHV1VX8LF++/GSq/ZGRqsheE7lW1FYVwTkCcBTmtI+udcTitJTu9To7UvS/3XjSqdZqA+tV6zp+XmujsSeC8D6n5bydHmXzOgYD7iCJHHRdLZTiwuifiFPls0/8fiIFiZyr65xt9Paq7v4M1l33UA+8l4ksrB+fSSfv7fD/OYb8ebyHgQA/5/qdU3gzzQ3XUS09S3y+VSG9LCeWk6IKb7jhhuLvSy65JNasWRMrV66Mr3zlK8UhnR+G3HPPPXHnnXcW/w8PD5+xziti+sSQ0aEhq2XEazkaX5viPe4I/RqfiKwTjboblojynhw+3yksRuW1ymXb/DpfHyI1yLUatYlRNOtGtOD6EdKq1Ue+rqTyqnSo+pI6I6Ighch1Nra91tFb1BWNLe8lwtA9rEvVePAx5ihF7WHAwLqxn4gIGSCojry2liNjQOAo0J9b1S795rqo61L/Vzm5Kn3z/6p14ywfTE6aKqR0d3fHeeedF9u2bYve3t44cuRIDA4Olq7Zs2dPsSbW29s7LctQ/1etm0laWlqis7Oz9HMmyomQ1ImkimJz1HUih+eozxGgOzCnULweVc9guTO109EF76fhrIUeayGKquvpHKsiebaDz2c99dxaKNERiwvvZz9UBQRuLKv6m+2fqe+9Dd7Hfq3rsaputZxHVVlVCIr14t8zIRrRgz7eXTdVzvCDzrcf5b6Z5l+WavmxHNfBgwdj+/btsWTJkrj88stj9uzZ8cQTTxTfb926NXbt2hV9fX0REdHX1xebN2+OgYGB4prHH388Ojs744ILLvhxqnLGiBsBflblhNxQ6ceRzgd1YH591Xe16j3TxKxFi/n/bmS8flVGq8rRkPakUa5Vtw9afsTUIrxf49dWOctazkD/ewp2laGlI3M6jmXVCjpqXefotspRVwU4tfq9qs2UKkc2k/w419VyvB7k1PqJiMrrWOZMgUJ2WCcp6STkrrvuSk899VTauXNnevbZZ9PatWvTwoUL08DAQEoppdtuuy2tWLEiPfnkk+mll15KfX19qa+vr7j/2LFj6aKLLkrXXXdd2rRpU3rsscfSokWL0j333HMy1UhDQ0MpIvJP/sk/+Sf/1PnP0NDQSdn/lI57/Q8sN998c1qyZElqbm5OZ511Vrr55pvTtm3biu9HR0fT5z73uTRv3rzU3t6ePvnJT6b+/v5SGW+99Va64YYbUltbW1q4cGG666670tGjR0+q0tlx5Z/8k3/yz0fj50dxXA0p1R9GHR4ejq6urtNdjSxZsmTJ8mPK0NDQSect/FhrXKdL6tDXZsmSJUuWCvlR7HldOq79+/ef7ipkyZIlS5afgIyMjJz0PXV5Ovz8+fMj4viBvZkyrBbtdXvnnXfO2O0DM0nWz8yS9TOzZP3MLB9EPymlGBkZiaVLl550+XXpuLTfpaurKw+aE8iZvO/tg0jWz8yS9TOzZP3MLCfSz48KPOqSKsySJUuWLGeuZMeVJUuWLFnqSurScbW0tMS9994bLS0tp7sqP7WSdTSzZP3MLFk/M0vWz8zyYeunLvdxZcmSJUuWM1fqEnFlyZIlS5YzV7LjypIlS5YsdSXZcWXJkiVLlrqS7LiyZMmSJUtdSV06rn/+53+Os88+O1pbW2PNmjXxwgsvnO4qnRJ5+umn49d+7ddi6dKl0dDQEF/72tdK36eU4s/+7M9iyZIl0dbWFmvXro0333yzdM37778ft9xyS3R2dkZ3d3d85jOfiYMHD57CVnx4cv/998eVV14ZHR0dsXjx4vjN3/zN2Lp1a+masbGxWLduXSxYsCDmzp0bN91007SXm+7atStuvPHGaG9vj8WLF8fdd98dx44dO5VN+VDkgQceiEsuuaTYFNrX1xff/OY3i+/PZN1UyZe+9KVoaGiIz3/+88VnZ7KO7rvvvmkvbV29enXx/SnVzUmfJ3+a5eGHH07Nzc3p3//939Nrr72Wfu/3fi91d3enPXv2nO6qfejy6KOPpj/+4z9O//Vf/5UiIj3yyCOl77/0pS+lrq6u9LWvfS393//9X/r1X//1tGrVqjQ6Olpc84lPfCJdeuml6bnnnkvf/e5307nnnps+9alPneKWfDhy/fXXpwcffDBt2bIlbdq0Kf3qr/5qWrFiRTp48GBxzW233ZaWL1+ennjiifTSSy+lq6++Ov38z/988b3eGbd27dr0yiuvpEcffTQtXLjwpN8Z99Mo//M//5O+8Y1vpB/84Adp69at6Y/+6I/S7Nmz05YtW1JKZ7ZuXF544YV09tlnp0suuSTdcccdxednso7uvffedOGFF6b+/v7iZ+/evcX3p1I3dee4rrrqqrRu3bri/4mJibR06dJ0//33n8ZanXpxxzU5OZl6e3vT3/zN3xSfDQ4OppaWlvTlL385pZTS66+/niIivfjii8U13/zmN1NDQ0P64Q9/eMrqfqpkYGAgRURav359Sum4PmbPnp2++tWvFtd8//vfTxGRNmzYkFI6Hhw0Njam3bt3F9c88MADqbOzM42Pj5/aBpwCmTdvXvrXf/3XrBvIyMhI+tjHPpYef/zx9Iu/+IuF4zrTdXTvvfemSy+9tPK7U62buqIKjxw5Ehs3boy1a9cWnzU2NsbatWtjw4YNp7Fmp1927twZu3fvLummq6sr1qxZU+hmw4YN0d3dHVdccUVxzdq1a6OxsTGef/75U17nD1uGhoYiYupQ5o0bN8bRo0dLOlq9enWsWLGipKOLL744enp6imuuv/76GB4ejtdee+0U1v7DlYmJiXj44Yfj0KFD0dfXl3UDWbduXdx4440lXUTk8RMR8eabb8bSpUvjnHPOiVtuuSV27doVEadeN3V1yO6+fftiYmKi1PCIiJ6ennjjjTdOU61+OmT37t0REZW60Xe7d++OxYsXl75vamqK+fPnF9d8VGRycjI+//nPxy/8wi/ERRddFBHH29/c3Bzd3d2la11HVTrUd/Uumzdvjr6+vhgbG4u5c+fGI488EhdccEFs2rTpjNdNRMTDDz8cL7/8crz44ovTvjvTx8+aNWvioYceio9//OPR398ff/7nfx7XXHNNbNmy5ZTrpq4cV5YsH1TWrVsXW7ZsiWeeeeZ0V+WnSj7+8Y/Hpk2bYmhoKP7zP/8zbr311li/fv3prtZPhbzzzjtxxx13xOOPPx6tra2nuzo/dXLDDTcUf19yySWxZs2aWLlyZXzlK1+Jtra2U1qXuqIKFy5cGLNmzZqWqbJnz57o7e09TbX66RC1fybd9Pb2xsDAQOn7Y8eOxfvvv/+R0t/tt98eX//61+M73/lOLFu2rPi8t7c3jhw5EoODg6XrXUdVOtR39S7Nzc1x7rnnxuWXXx73339/XHrppfH3f//3WTdxnO4aGBiIyy67LJqamqKpqSnWr18f//AP/xBNTU3R09NzxuuI0t3dHeedd15s27btlI+funJczc3Ncfnll8cTTzxRfDY5ORlPPPFE9PX1ncaanX5ZtWpV9Pb2lnQzPDwczz//fKGbvr6+GBwcjI0bNxbXPPnkkzE5ORlr1qw55XX+SUtKKW6//fZ45JFH4sknn4xVq1aVvr/88stj9uzZJR1t3bo1du3aVdLR5s2bSw7+8ccfj87OzrjgggtOTUNOoUxOTsb4+HjWTURce+21sXnz5ti0aVPxc8UVV8Qtt9xS/H2m64hy8ODB2L59eyxZsuTUj5+TTi05zfLwww+nlpaW9NBDD6XXX389/f7v/37q7u4uZap8VGVkZCS98sor6ZVXXkkRkf72b/82vfLKK+ntt99OKR1Ph+/u7k7//d//nV599dX0G7/xG5Xp8D/3cz+Xnn/++fTMM8+kj33sYx+ZdPjPfvazqaurKz311FOllN3Dhw8X19x2221pxYoV6cknn0wvvfRS6uvrS319fcX3Stm97rrr0qZNm9Jjjz2WFi1a9JFIZ/7iF7+Y1q9fn3bu3JleffXV9MUvfjE1NDSkb33rWymlM1s3tYRZhSmd2Tq666670lNPPZV27tyZnn322bR27dq0cOHCNDAwkFI6tbqpO8eVUkr/+I//mFasWJGam5vTVVddlZ577rnTXaVTIt/5zndSREz7ufXWW1NKx1Pi//RP/zT19PSklpaWdO2116atW7eWyti/f3/61Kc+lebOnZs6OzvTpz/96TQyMnIaWvOTlyrdRER68MEHi2tGR0fT5z73uTRv3rzU3t6ePvnJT6b+/v5SOW+99Va64YYbUltbW1q4cGG666670tGjR09xa37y8ru/+7tp5cqVqbm5OS1atChde+21hdNK6czWTS1xx3Um6+jmm29OS5YsSc3Nzemss85KN998c9q2bVvx/anUTX6tSZYsWbJkqSupqzWuLFmyZMmSJTuuLFmyZMlSV5IdV5YsWbJkqSvJjitLlixZstSVZMeVJUuWLFnqSrLjypIlS5YsdSXZcWXJkiVLlrqS7LiyZMmSJUtdSXZcWbJkyZKlriQ7rixZsmTJUleSHVeWLFmyZKkryY4rS5YsWbLUlfw/RpZ1LohzRV0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5Cl11km/tx7+/bNoW/fznGmp2e6J2iSRtZIQpZsgRE2trF3wbUsCxRlqlibXdYbWLMsC5tc5V2WZC/UVlG4KKCALdY2TsK2hC2HURhJI82MJk/nnG5OfcPvj67n9HPP3JFs8M9W4++t6uruG77vfCe84Xmf8x5Xo9FowBFHHHHEEUf2iLi/1w1wxBFHHHHEkW9HHMPliCOOOOLInhLHcDniiCOOOLKnxDFcjjjiiCOO7ClxDJcjjjjiiCN7ShzD5YgjjjjiyJ4Sx3A54ogjjjiyp8QxXI444ogjjuwpcQyXI4444ogje0ocw+WII4444sieku+Z4fr4xz+O0dFR+P1+vOlNb8Jzzz33vWqKI4444ogje0i+J4brL/7iL/ChD30I/+k//Se8+OKLOH78ON72trdhdXX1e9EcRxxxxBFH9pC4vhdFdt/0pjfhzJkz+NjHPgYAqNfrGBoawi/+4i/i3//7f//dbo4jjjjiiCN7SNq+2zesVCp44YUX8OEPf9i85na78dhjj+HcuXMtv1Mul1Eul83/9Xodm5ub6OzshMvl+v+9zY444ogjjnxnpdFoIJvNor+/H273twf+fdcN1/r6Omq1Gnp6eppe7+npwdWrV1t+5yMf+Qh+4zd+47vRPEccccQRR76LMjc3h8HBwW/rO3uCVfjhD38Y6XTa/MzOzn6vm+SII4444sh3QCKRyLf9ne96xJVMJuHxeLCystL0+srKCnp7e1t+x+fzwefzfTea54gjjjjiyHdR/i7pnu96xNXe3o7Tp0/jySefNK/V63U8+eSTOHv27He7OY444ogjjuwx+a5HXADwoQ99CD/90z+Ne++9F/fddx9++7d/G/l8Hj/7sz/7vWiOI98FcblceD0Cq3peLpcLLpcL9XodjUbDvMe/9Xr6Hn+73W7zv8fjMa/XajXz+bvdQ+9zt//1/vyt99Q22s/eaDSanoNSr9fN30xW87P6nHa7WvWvtqVV+7Wf+F3en31iP4N+rtXrd7tPqzbcbT606i+73/W5W42TI//w5XtiuH7iJ34Ca2tr+LVf+zUsLy/jxIkTeOKJJ+4gbDjyrYm9mPV1W5lRKVFaKRq3220UvK189V7263xPFaD+1jbZCkr/ZjtdLleTArYVcat7qFJ9PXktY8T/VYnr6/p5j8fTZGDse/AZ3G53U9+0MozaB9rP/OHr2ga7v+122P1n39c2KDT0+r62h+/XarWWzkOrdryWIdL5o3PTnn/6eWDHIdGxea35z/a3clL4vj4rP2e3136eu93bvn8r+VbnqSN3yvdkH9ffVzKZDGKx2Pe6Gd9VsRdPK0WtlFK+X6vV4Ha7zSIHmr14Ggleq5Xit5VGq8Vqt0c/rwpbP68ev0Y+rQxYtVqFx+NBrVa7o01qDNkuj8cDt9uNarXa0vjwc/Z3AbQ0ROxb9qet8D0eD1wuF9ra2lCv11GtVlGr1ZqiPbaVCt82Xvbz6DPSkeDzt7e3mz7le3aUZSv1trY2EzG53W7joKjCtiNAtkOvxfvwOvystl+vpQZO+4rt1mflPdXY28ZZ+1ENqv7Wtuq8vpuRt8ec/aPt1/bYkbveX/vWvtfrRdKc699Pkk6nEY1Gv63vfE8iLkf+bnK3RQrAKAuKLjS+rp6kDfuo4tPFa3ugdpRlf1aVsR1d6Wuq8IE7lRufQSMMKkpVXKroVWwD2uqarRSHvvZ6SlH/tx0DbZf2MT9Lpabt4j3ZJ/V6Hdvb203joP3FcdHxU4Wqz6vOgT2e9pzxer1N80f7me3XdnH89Tr1et201Y6SbEWvf7fqI3te6pxyu92mLTq3+H17/unY8vNqYPT79nzh57SdraIxezxava/zh9LKuXKktTiGa4+IQjT0IIFmD53/828qKS5Ovtfe3m4WNhc979HW1obt7W2j5Nrb2+8wWPwshcaRUdFrKX+NtGq1mnkOfR6FgFQR2xGFKg5bOekz85pqXNlWXlc9fTW4ttJkRAXAXFOjDm6UVwXNPrGVu0YT6slrJMO+aGtrM8aK7bWVoj4Do71WRlCjUW2TDaNphKLPYxtiO5psa2sz32GflcvlpgiMc4tzmf1kR2I6tvytTk6j0UAgEDDtr1QqZuzZVrZH/9a+431pbO25wz71er139Dm/d7dIVyM5r9fb9LzaLv3tyOuLY7j2iCiMQOVle2y2YtTFaOcDqMwrlYq59vb2dksFSyNnQx5qCHhNKkw72uGCfb2cRCvv2u12m0Wu3rVem8+vSlCVhHrXCmPxXnZuhc/RymDrsyksZBtSbYdtEFtFiS6Xy8B5VJDsS1WirfrYdlL4PG1tbU3GjnNIr0ljw3Hf3t42/arjYY+LihovdQrU4KhBpug9+HkqeI1a7HmhTgqfR/tCx8EeW4oiER6P5w442m43x0cNfivHSSO2SqVi5u/dCDN25OvI68ue2IDsSLMBsCEaGwaxISc78qlWq6hWq3dETephq9LlQlajQK/djk64aHXxqqgy0EhKFaeK1+tFe3u78Xh5DVXEthLns6sh1OegAqKxsfN66v3bhlz7145WWpFSbKhKjay+rwZW+5ev298DdiMaNeQ0fGqstG12W3kddRB4b4/HA6/Xa/7Xz9uRbFtbm/ksn4vzjHNN55eNDNh929bWZtrCv71erzFsNoy9vb3dNL52FGdH6sCOUW9vb2+6d6vxYpuYe+I81L5SI8gx4P98Bvv+dq5T57Ejry0OOWOPiCpbXSjqrSlUxPdsuMP2YCmtEvFqHHThEU6k56+Jb4UXeV22X712u/28993yJmyL3+/H9va2iQqoGBgtEs6hsqfBsw0s36f3bPcjjYEaADVs2i/8LvtFx4wKiYaT16tUKkYhM0piW9hejZwotpNAZarKmfewHRZG1bYi5/MpjMb3fT6faQef2+v1mvvyc3akqHkhhckAGMNM+LDR2IGveU11JLT/9H8ATQZR4ep6vQ6fz2eiKObB2KdsN40O32O7dX6qc6R5Qf1+KyeQ37WdN3UM6axpdFyr1Zrqsn4/iEPO+AcsulBUMfN1VZ6EAFtBeq2gOoXQABgFpouLEJ3mnrQNGgnYyruV4lcjoUqPXmelUjH30GgL2FUMCuOoolTDpArPhhf5XcJDVDTaZzbESYWqCon9r4rNzl/weTUaVUOteR2bCakQm92H2u+af9E+psdPBdvKUANoui+FSlSNCd9XiNGOVNQQ6ByhIbGjXPa/Olk0PPwOx0mdDc5XHSsKP6tRnMJ8dm5K+7LVWNu5qFboh64ltkuNLdvEv3kfO1p35LXFMVx7RGwsnF6irWhUUdqKUBegnXugcuPn6WG+Fuav8Ak/Q0aaUrRbGS9ez4ap1Hvld6nUarUaCoWC6Y9arWbgqe3tbRMJ2IaGykINFa9BI6lwG/uIn7NZa9oPtnHjM6lh5LMq8UVhPDvaVAPI6ET/V+dBIV7tb/s67D9GPmyXHbFpW+zIU+eBjrXtlNgQqM41n89n+lyJLmrodD7pe7y+bWD0+TQa02tqzpBkESXs6HgoNKoRFWFKAMYxrFQqJsrX5+Qc4vVLpVITaYX9sr293QRnOobrWxPHcO0hqdVqLdlQNgNKPVYuaoVF+L1WSovf5TUJX+hngdYGUhUA22dDR6oQqWwU0qIR4t98bjXaNpSjZAC2Ua+pfaaK0o5gVdlSyaiStJWmPr8aKo1KtE0cB/s7dqSgDokaSH1GNQh2pGN78Jw3Cnep8bb7RQ2REjn08zrfbAq+Qmu28dRomXOxVa6O46YRjSp3fa0VnV3niBrQu0WyfH7OSxu21PmqCIYdcdltvlsUTCNIw6fr0ZHXF8dw7VHRxWnnq2zFdbdIQRWxKm9Vatvb202etw3F6KIFmvfY6KIlrERvVz1djarU+2ylsFThq7et+27UcNowjioHNb42dKUKyzZehLDsa9DIq9JUx0INto6b3t/OifB6StluNc7aFgqjWAAm4rTnia3o7fbZe6ns6Mt2nux5oI4Mn8eOeO0ox4bgeH++b7ffNmZ6XxpW/Y7df3wenS86JtoGtk/7ws4n0uGzjaA6kpoztu/pyOuLY7j2iNhepC4KWwFQCA3xPcIzqvB0nxBhETvZrNfj9zUqU29avU6fz2cUB+E2jQQV1tG8iXrcwG4ezKblK1zGNtswpn62FVSpBkO/S+iR36W43W4DLarC1ChPlSE9a3rrvJ8aPjWS2jZgd9+YwmEKB9oRN/tK+1Ajg/b2dpRKJfO6GnxVnHYEpp+zGZcatbJ96tSwb9l/OgZ2XykEzjaRuNFoNMyY6Py1DWwrRIFt55xob283n1HnhvfVPK0aHF5HK6SQmUj4UdvPsfV6vU15YjpvfGb+rU6RI3cXx3DtEbGNFl+zladCXhQuPC42G8rQaITKQaEvVQqqZGwPWFlWGhlpxEGFYCt8Pg+vY0ulUmnyiOv1ujHK/L9VHoqGRv/n/e3v8m81ona/8jv6eSomva5tVPQ9vYYaUx1fGx6laJRgR80KQ+q8UWOnZAXbkGsUzPe1DzUvZhsujpvOFXVs7CjchtjoVGmUbUdi5XLZHG9kG02NjpRopNEMf9vXVSRCHbjXiv51PAn36TORBKKfJyyqxCZKKzjYkbuLY7j2kFBhqVfHDcR2EtyOWrgo1LBpboHX54LSxUoloYvNVmL6tyooeo/KHNSojJ9vBeuxHZqr0siI5IBWiXjNaVCojBXe4vPZBkLhLF6L5AobXtU9V3xOpVi3Up46VvrsarA0J2aPixpDW9npGKtxVladPpNGBjTCjARaQZFqVBQ243scs1bv04HS+axjo4aCUbZGpbxvqz6znQ8+n0a39tipo8H28zcj13K53DR29rrQ6Mp2MNXRsBEEHWPd0uHI64tjuPaIqIJS71fp25o/UA+Xnq/mJdQ40Lv0+/1mH4l6sB6Pp2lvUaVSaTJgyg67Wz7DztXwWmrYNPIjnKMwI69FpVUqlcz96SVrTofKgRuYqXSUzKHtViNK5Wd71/psVFIsqKsK2u/3N8GXauDUAbDzH1SWJC4opKfX2N7ebtq0rTAi2ZXKhtN+1YhEIzA+p01MsKM8e/+R5pKo8Pk3x1CjNzUO7D91TjQy5XX5/PpMnH+cP60idzsyVQiTUTu/w3vxfzqFeg3OJ36GY0GkAthl/CrcWK/v7EFkn+t7FPazI68vjuHaI6LeJtCsVOzciHquXHTEzvk3F5sqCKXp2rCg7e0r3q9evBqyVl6qRjzqhdqwkj635sV0YWsEZ8NefN9WOkqZV4+ZylUpy6qc7bGg1Gq1O+o58jmBXTq1tpftoEHSZ7cjUc2l2YpX9zepcfJ6vU0GUNui3r7dT2wPNwYrvGiPlY6/Rhk6V7XttuG3X2f7NSpU6NFmp/IeWmtTIU46bGybGkaK5sJawXS6Flr9rfPYjqIVdlX4WTd5KzrgRFrfnjiGa4+ILlSNWKg0FUYDdg0Bk8K6YNWTVEXJSIuLmErEhiL9fr9pCw2BwoUaZbHtbAvQDGXR0DHHAewqWO598fl85n3Nt2gURkVZqVTMNaiUFFayoTwqcu7F4Q+vr0abz6CQqipezWdx464aKY2+bMiUwiiU91YvXo0+FadCYUDzdgKFxnhfm81GJ4NGQve0cTx5LbaHbeQ80SNWVEHbjgYjHI1sOD90Dtl7pTT6Zx/ZpAy2VSNUNRL8nM/na2qrnYtqxQBkm4k0cLxaQanqSHJ+sp3sNzVkduToRFzfmjiGa4+IwiU25EZRFpV6sQoj0gvX9xXy0miLQqXM+2uEQ4VOBUAjZHug+lkqChpQ2/vXzyp0RFHPmJCg3UYadUI5QDPpQSNENcpA8+ZjW3G2gpTsKJD30vbTqPJaNiTG++r42RGwwpZqiJSdSWlFTrAjWj6HbRD1M2rcdR5qJGHnZjh/6DDZEbEdTdnjbztfCi3qGuBrFDUqOlY6HnY+SXNnGs3p/FDmoTofen1FGbS9XKs6Hjrf+J46HI68vjiGa48IFx2wu0AVjtBIpBVkBTQXU9XrAs17XzSprpCPRgtUZqp8NMrh/dRQ8LNapFQVkG0MeF9b+alHS6+XSkRhMWVM8rpaAV+NVSuDY+dIbHYl+1f72o7C1DDaSriV523vcVJoUPuIovfn/bRSih4nws/bUCydCI6NRijaZns8GO21ci60TerA3M248nOt8oqtjLvmIG3ok9e0t4poH+n3ta10gvR6NnyrBktRDp1L9jYDAHcQdvRzem1HXl8cw7VHhB6veoe6IGhI1MgAzRBPq7wWFZx69VykvK5NVSbLSpU/21Wr1ZraqnAUsLNgCaMphKbC/2u1msnXFIvFpusAzXCgwoZUCIwGqIyo+NlOPrMqXiWU2OQDjRJofO3ad7ZBoyGxcxx8zXZI1DgrwUSjUDsy4zPz2hqFqWK0o3X+rVEMlb1dPFjbZkfPNvTHyEHHwXZibMPCfVU6/jZEqPNaUQMbaWg0dost2+ugWCya5yPsqwZFr639zPXFdcG+rdVqBn7UfuH8VAeQz87+VMiV8+hueVVHmsUxXHtEdO9MK69dPXwuBKDZONhRiHqIaohsrJ7f12tSWbXa69LKuKhxoqeueQ0+F6M4Gy5izkKNL9vmdrvN/h4aW/WS1fDYkJZeC9iNSm2joPfi87CdWq9RPXP2hRpFzZ2p0bDhKrtvtW3a9lai0ZLm0HgfHWsaE3UsdNzt52LUSmkVFWmuj21lrlHfs50Nu6/VEOhzs191Lunctz/Ha+jcV4eN86XV+OlzcsztPlSjxP6015Q9J+x5p9CkI68vjuHaI0KlTWXHyW9XytYkPtA678XFpkpDIwNd9Fp4l0pXqe161IqtYDV3ogqZXqd6/5qIZ3vpNWtBVl3w9mZaesNspxp79psmyltBXLrfTBWmGkp7HxGfnaQVjezUuNDgs89VbIXHsVHv3/bI2T80JKxUosZFC+FqFGEbdiXUaESgUak+L/tBjYsqdOZsNJ/DyEpzizTQNGzqzFC0r3gdPY3Yhjf12up8cJOwklfYFp0nNgzJ93Rt6DMrIUjvpetGc6+6PrgWFFVw5PXF6aU9Iuq1254acGdUADR7dq0iIhuGsT1tvq5wFhedFga18112Ml6V2t0ozuoV25EgF3kr6Ij/2xXeNQLlc9lKUftFP9fKu2Z7tY1qwG1jpf2pylvbreeaAc3HyagB4/d1v5oaOm2v3s/uK7bJ7ku7v1vlwVrlOe3jRFrldVpBskpDv9t8VIdEjYlGvYTaeD3e337GVlES22bPQRuu1UjIPnlA+1Dvrfv37LnKcWQlGJv0YhttR1qLY7j2iDDfo0pNFxeVpnrRXPT2ZxUWso2DKhjbmwaaq6rzGvo6/1bloIrQ3rfUCjZR+KYV3KLX02fRPIttJFoZbn0GzRvaMJw+Fz+veRzdp2UbLUYRFF5bla223R4LfQY7X6L70aigPR5P0zEbel8dFx1b5uvYBhoDOiM2IYR9YcO6CsnyM5qH5LUZZdjt0DFQ9p8Ns3Fe28ZUHSR+Tmtz2kZe76dzSK9lrwOdD3wmhfd0LGwn0l4j+txqoB15fXEM1x4S29OzYRjbU9cSRbr/xo6AqFjsnA8XklakUOYi0HzaLpUDmWx2NQygGbrUWoO2ctdFr9GPGhcqWI0w1LvX/Wa8jq28bYXJexF20xqJVEjaRjsysY2wwqh6CjDHgtfifjj1uvU328I+5efK5bIhYyj9XMdOnQZtq/3s9pYHikbKagxyuZwxIPpjG1Rg9yRlhUBtx4jzTGE+RifsJ96f7bL/V0Om9SPZZraXWzGAXTiV73s8HpRKpTsidlZDUcheyUh2zpZt1jbZfaubvRVtcOS1xTFce0hawTLKSFOFqXub+F3bo1MPXuEaW7Hb0QGVoQ09tYpSeE3NofDeWqaHC5cKoZWBVkOh3jy/r89iPyc/o68rHKXGUqt4sx/0h8+n/6uoV28rZluUoMDP6Zgpk1KNpSpAtptEBTvyU4Wufaj9r+22+1KdAvanKnSNWDg3Nb+oxkX7k/fUuWb3n70lQftNHQ+OCY2rzjd1eNSxU3SBxozzz87fad5M26h91woRsY2z9hfbzOdR9qkjry0OhWWPSCvoSyOMVvkpoHlfkpIibNjJ/p6KvUj5mi5oG14ha9A2ItpG28gwmlBFA+wublUEtlGhYqSXTQOk0JQm2tlOKjAbQlOWGV9X+E6fSQ0tlZ6OlT6DjiX7gtfUvtQx5Xt2BKqRpJ3/0espOUDHzobQ1ICqA6FGmKKOjo6ZMif5OseVyllPgbYdEo1U+L8abIXW9FkVitN5qfMc2EEMNGJq9TnmEG1DpZUy+Bn+retSx8xGJuxn0bHW53HktcWJuPaIqNetHq19TAgXPCEIXei6YFSRMRLTfBSrTmhBXYVsWrEWbeVBmE69Tc35qFfv9XqNx0w4Ur19ZfvZcJZ+VtvI7+jZR7ofjcZJDRmjLa2/SCiO/UeYi3uB2Ed6HIxGwjZ7Uw0H2wfsliNiuzRSqdfrprgr96bxb0bBVNgadZFJp31JA8Now4447bbaLFE+uw3Z2SQIhUn5jABMmTKOlR3Nq1FTp0SdFcKKbK8SVzS60nnJecF5pK8rTKuQnxJx7DWmRkb35fE9dWY0X8g8JMeP93w9B9KRXXEirj0iqug0b2F72QoR2dCaRhd2tAQ055ZaQR28PhWq1qjTtgB3wnNqZNRo2l60fhbYzQWp10yx4Uj924aK1CCo0tbraNs0ktUoz4a9+Kx2BKftpRev/cco2B43ux/tZ6PoWKki1ZyTGhyNKvh5jSa0v20DaxMLaJS2t7dNVGu3XyMatsWOQLS9GuEqTKswoDpA2me2AdK26N92lEXnxoa6W42Jzgl7vtqf1/7jvZh/5PVsQ28jGo68tjgR1x4R9eTsXAW9Oj1CQis6AM3ljihcXEoS0NdaLX4qHz1qhIpHiRIULWCrbafCYBu1wrqt3GwjwEiCyk73R6ly4d4wVXDKMqMXbLPD+DzAjrLTY2TsaEoNlrZT90/Z/asOg9KgGZXYBpD/6+Zru6I5n4l/a7/ZToNCdWrMFBolOYHjr89v7+3T+amRFAknNBC6DcLlcpkxV/KPtoH9phue7TazL/ScNI2aNK+rBZcVMVADrvfWSJzPxt8k7+g4qDOic4Hzna8rE1PJODqvHEP22uIYrj0gXIDKCLQjDODuE149fMKAQPMhk/xfvXg7d8VrUQlRWdjwoxofzbEoBGZHg2yHRnf8LpWUkgIU/lLPV6MdNYB2TgzYVU5q4NlWXtOmlbOfVPHZERY/o8+jbbH72h5LNUL6mkZ/9viqIVTD1SpS1TFTaJDXAu6s0qGRGO9F50Ovow6M9q+OuyprnXt0Cmznp1XUY4+nPed0nWikp7CoDRdqf/O5bejQhhz5mkZ12lb2v0aT2rc2XOvItyaO4doDootFlapi//bRFq1gDPtvKhVVRjabyoZItC28t60c1NjporQ3e2qUovToVrCQPpt6rGyDGjmgGQZTSJHt4/dsBiOjSX5ODVsrZavPo8+tsJA+h+1c2F65rYBZw4/Kr5Wx5/96X5vQws9sb2+byFzHVj+jDoJeo5URViOrBlE/Z+ff2G825KrjoAad88TeE8j/+Tw0DnZ7+JoaNO1LHT87l2X3s73pWq9vR7H6PyN7hevtz9pj7MjdxTFce0Bs6E9zDJzwSo8nvKXK3DZEQDMdWsvgALsLVb3nVjklLmI9a0s3rJJIoJUtgsFgE6RkK1EtL6WRg0ZSSlBQ46LKhtfVsjtUbnakxvuQiKHKhn2okZY6BbwP+5PPoJGjHUUS6tTxUEPOa3DvlkY1qjTV0LONOubqxdt7pCjat60UKq9DpUsng+OnZ5zpHLpbZQ2FDFVsaJvPoQQgnctKUFHDb28v4FzhuW62s6XPr0ZbizNzPNl3JPzQaLa3tzftqdP78NlsJED7gP3L9jry2uIYrj0mpPJS8dpesG7+VJiIC5CMJiULKKSiCpByt+MrVLmoMlTDoAQO9ZRVyVIhAGjySIE7y1bp/VWRAWja4EtRQ6MHaOp17E277EcVO+rivRXa0r5QJayRhPaPGineU42oQrz2GLLdNtXcdii0DRqNsU0aDfFZbEjQNigK0drjocpdnRHbCdBITfvVJs28FoSm+/4UquT1NMKx+1rvy/cUwlRIj/1ms0b1GXS96VxphUK0Gh9Gjw5c+K2JY7j2kKhSU6UAtPZQAZhjQcj+Apo9Xl6DykWVEACTD+Nrdq7DVvSqWBXeUQ+/UCi0jFzYflbUUCOtXjXvaysm26irkqDBpvHSPEMwGLxjXxSfmzCmrXRsOElJD+pUkAqtUKhGMHo9NQSqHFXJqZLlGNgkCY2oNdfG7ys5Q6NL2wC1gtD4rPqMGomq0VJDRaq/QrKq+LU/NdeluU01okpqsQ28wujqiLlcLvh8PjPOCsvpWLS3t2N7exvFYtFcQ/N82kcklvD6hCw5n9UY6TjYeVV9dkdeXxzDtQdEPVmgOVkN7EYlmq+yIxmFJ7SCuipjKhNVYqowbeVtK5JWURI/a7eL7dGyUKrIVMHxPc3daRtU+dn9oUbbznXxO4wG7CigVcSq79kGRRlr2u/K5iSkqn2klc51rGwDbEfW7LdW50TZDogazVbRuuZdtB22IdYx1/ljR/Dav/p3K8fLjgLZP2Qd6nf0nmyD3Z9sB+dWq7mke8jsqLIVlKhGRZ0eNV46dmyb5vGUiGGzRjV/p+PsSGtxDNceEPXSuJBUOapyaeV560Lke/rbNgYaDbWCFPker6HRmho+3RPFz9uesq2YqQjoNWuUp8rHbj/QfOKywn4amdjGXKE9fp85uVb3UQ9dPXkdHzWyyibT/lOGJ/tP26x9y/up8dB5QdFotBUhRSMXVep2G3VslUih99MIXw2KbeA0+rLngo659rFGIGy3Omm8v10iyWYk2o6T3ltzjHYhXmU42s+sdSHtdtmRs0aiamz1NY3GlKXryGuLq7EHeymTySAWi32vm/FdE05wPUpEFR29djVAqnTUoOh3uBApmnOyFY0qTlViatA0amhlxCi8Br1efZ1eKu+p8A8/o0rNNtqq7Pic9h4r9qdWx/B6vfB6veZMJPWC9Tm1v/hMrFKiBkMNlV3bkc9jt9uOblQpazRNw1ytVs24c2zVcOveLxpmRp6EkKvVKsrlctP4ahs0f6RjTgJCq7nK/uUcsyNi9q0WWdZ2KtTHOUl2JR0KdT5sh0wdF16Lho59RMiw1ZjUarsFmm3jxOdTaFFFn1UZsLZhb+VY6jX2oFr+O0s6nUY0Gv22vuNkAveIcBHppNboS71+vkfhIlLFay8wLiRlgiksw43ENhmB19J2KAxkQ5J2uxUus3MBtiJVxaFKkPfQ72q0ROWk3qwN1fA6VDZa1slW3q0Ui+Zj+Bk1fBqF8Tp0RtTL12tzLPj8do7FTuS3irjtqJFt46bdVjCz9iHv2ypXxn7U/lFjpUgB+5alomg0FRrU8bOfka9xnuic13soAqCG347ybPhQ37MNjEbRrwWx2wiAijpldiSp17DXiiOtxYEK94jYHrgNhzBPo8qCf9uwlC5I2yCqgbA9QVVevAZwJ/vLVii20nS5dinKqvjYNo2ybCiISolK1lZ4tkGxjbzulVLFzvtpxGlXT1f4SPNWtqLRvJ8aLj3F2TaaNjWc31GFSVIF37OVN59TlSg/y77ifbUAss4ZjVDvFhHYfax5JDUaqoj5mtZ9ZB/SIVKHSfuPzoTC0TakZsO92n/aXwCafjNytD9Loo8dZer9Wjlg+hw637WNvJ7OQV0njuF6fXEM1x4QTmx7QfI1JuWp/DWPpF6lUp/Vk6fiKJfLZi+KQh1AMxmASkSNih4qqBXauQgJ8VARkeGnkBfQnCtQZh/Fjs7YPwoLtoLhVJlqX2gVEL5G+I35Pb2/bbDU+PHZFO5Uh4LwmO6/0/HQ/uI9tYyXGgIbvlUDqIaCbD4lnzDqVsKBMip1awLfVxhS9zfRiNMg3S1iYnsJS+pPtVpt2hStkbtt+GxCg15bjxVRsZmtHGPeg1EQI1C7L3WsuRZs5IIRZHt7O9ra2poKOytE38pI8oft14LEjrQWx3DtAdF8gUYmtheo3j0XIPdsUVmrd6yihlDhNxv2sOEbNYwasai3rIpcr9Mq6uF7raIQXo/Px8/qb722RqnsK+1L/Y7CXfy8HaXR8ABoigDsCFajCR1DGxriM6kTYbePxk/7pFWEy+/QGOi9tFaiGgN1iGwYkLBeuVxuarNewyaDaFRnR8JK37dhMu0vfoYwKq+h84qv6djp86nBVcOgDo3OxVaMU10DdqRriz3PtG06ztpGfSa+ZzuDjtxdHMO1B0TzUyRm2AtAFYMqDmWF0SNWz5ReoMfjMZUF7JN4gebEtArvx8WtypveOLC7H0wjORIk1NDx+qq4aTSoZHXPGFmASlxRZaqRqvYF76HKvxUl3iZb2PCffp59rKfk0ujxnhpl6pjx2mqsdV+Y3suuUGFHbUps4P1a9YM6QnxWGzLms2shY20vK1JwjBQOtA2mrZT9fv8dsDAp8DSm6hxolKSRINvDaI7t5dzWcdSohn2qe8x0a4FGQnbRXRv243hrAQBlFTYajabyXXp9rjXbgXDk7uIYrj0gevaQKndVXFxUqqAUBlFloIpbISAuOioDhQd5v7tBQRRNkPPzehaRKlle3/aCFZJhO+2IU3MTbJsdvWk+iddmBMNr8Hn5HpWj9iEVkh2R8X8+g+47otFqxT7T/TwaNWv7bQNuK0t9Nr5PR0AVcCuFqBGpws98Fo6FVuLQ7QEcA72Xzi1Gpkqi0HvZUZ4aT3urghpTOwLXduhz6X11/tI50XsqgqHrguOpTpndTjty59yhwVTDpmtXkQP7UM1WKIcjd4pjuPaI2FCEKk1gN/Gr3jIXmipJ4M5SNAop0bNVI2bTwjXaszF+VQqtPEf1Nu1EtR79wGdS+MyGOO2ozIYQ7e/YBABe3zYWVKqaT+HrdATU+DDKcbt3D97k/2o8bEV6t9/azzqmqjhbOQ9a41HhLe0r/V/HxI6w1VBybNW4aQRqGyC+ZkeLGmG43e6mqEeJEDqvdQx0nHUO2s+nhkPbqIZGc6qtSCBKzNH5rzCrrhG9v0a+mtPSeadRLr+v21GcqOu1xTFce0B0AZJKbDPr7EQ9F0apVDLX0ZyELnKFy5hA5+IjLGWX0NEIpr29vQka0lOZ+Tq/12rfGJ9PGX82S8xW7vZxIlp2h/cGditVqOdfrVbvOCNLowH+Vq9alQvfZ1+yr4rFYtNYaLvZdj35lm1XJW9DXfq8CtcqwUOVqj47+0XnCK9FUUYnDa/OL7v/eF32g+4j02dk+0j2sSMy21iqEeMz6HPxb3Wq2DdsI7+j/a7RF/td0QCdrzof+bo6K/pZiv2eIhu2c+Dz+ZqiKoV3dd47Ruv1xTFce0Bs7xVozmsozq8LVr1ANQyajLZJE7rgbBhN8X9V5o3GDsZPqKSVt6uR091gNy5czXdoBKERDO+rMAuNnEJGvL5WiKdoromfV+iMCkbzdwr1tIL/mENR71sjYPalGkSbjad5Jr2HDRfac6TVb/szfE59Httwa1TIfiPzU6MIRjY6NzWy1Oe3HS0bZlPlbcOHGl0q3KYGgPdXtp8Ng2r/6rzT57Wjep0zzGNpjo9MQh0jtoMOAtukDhznjI0Q2I6aI63FMVx7QGzYhAuo1WfsRU7IQoUGQpP4wO6GVz1dGIChGtMDtSE5NTRcfFQcGmkpHKkGSaM1hdnYNoV51IhrDs1O7qv3y3by+ho1tnoWtlsZjHpvVtmoVCpNUV6j0TBGW4k0bW1td+S/mE/TfWGsq+h2u80JxPZJz0BzFXlV3HwG3dSskZOdE+W11EhouSu3222q+5PmzYhcnQONwOm4qDFTI2MTUnR+0BiwL30+H4DmaMzO/2jf81mUFMG/Fb6zIWh+33aE2C86Z3UbBb+jc1fnra43dfS03/k6P2cbTkdai2O49oBwQuvGSY0CgN19VK2O9lBYTyMJhWJ04fLauqD0e6qwdJGTwUZlywVtExRsGEgVmN5PIzsaNypkO1LQfWt21KRerCpa3ePE56fSt42VKh3NN6lhtWnreg32t0KudvRsG1IdP3vM7AiOotfX6ICi7VZozFb6bLv9fK3ayOvTKNlRv0aOdiTcyrHQaB3YNT5abUPbrc+oTgdF54sd2WlfKRnIjv4U2uP91KmwDZI6ba0cBhuF4NjROXTktcUxXHtAbBjDVkrq1ermWXqyNubPhaisPl1UqvCZD1JIh5/VXIWd2Oa1lKHI7yv0oiQGRhtKNNEIi5+z4RWFflRJav/o8+kz6+c0QrWp3LqniJGWKl014jY5wY4aFS7T8WxV+0/FHgMbJrPhMVuZ23CaRjc6d7TdSvKwc2h2n+rcUbiT99DPU3Q+sV/UULeCE/VZdH1oVKdEBz6TffwL+0tzYDq3W8F1ek87r0zRKEqdF52XtgHT53JgwtcXx3DtAVHYw04s256/XQFdFYl6cvodfk49TKCZEMDoR6MPWznymvo9jWQ0YuJ9VXFQMdHYaqSkhA/NldnPY0N1CuWwr9gurTjCftaoVKM5PU/L7d5hxClhgNBfKwaa/k8hXVyNlRp87T/2HfuiVtstAksYTT1329FQmKrRaKBUKjVFTDQUuufJNq6MpgA0nXzMeeXz+cx4tcqBKuyq12WEq+OrG77VqJVKpaZ5Z4+rRuech9p2Rmh6H52jdp1OZaHaa4CVMSj2OmPei/dsb29v2ieo31UI824G3pFmcQzXHhD1rLmIdFGpcrANlhorjTBssaMGKhiFCe28E3D349ZtKMvO09mQjXqpGs0pDEVFZhtg25izf2wGoMKF/Fwr71dzZ5qv00gPQJPis+/P62kf2e2zYVfNN6kHz+dXr13zLuw7Leml/UgmKksJKRyqfWK3k6/ZY6pwoEYJNAaMnG0Sjs5fG0ZTxa1Km2PHv+3P2GOn60K/r46ADfnxc3xfoyXCu7oOgOaTltWYKppAg6QOGeF03lNZivZzOnJ3cQzXHhD19Dm5Ofntc6N0AQN3Vi3ge60UnB1FqQerSutueQL7Xnotinq46tmzrcCuUtDn0HvYBofeN5WDKhFV0DYMpArYVmRKurDhNzui4mdt0gSvaxsi29AqlKfGUz9vK3Ql6NgQk9LZ+T4VsFZFsY/H0ehd+5ARBq/FseF4aESqcJ2dG+K8VYeIz6XGRee4Ohq2sdfIiMLxpbSC6jSS13Zof7FNrMqiz2c7c+pk6bYJHQN7bjJKtx3FVk6LI3eKY7j2gGjlCTLRCInpInw9KjevBewaJS42hd2oFMko4yLWPTA21KQVJ7j4+Fn1OhuNBvx+PwAY5hzvoUl0NTIAmpLztlfMvtD7KVTkcrkQCATgdu/stVIFY0NaaoAbjV2WoO3NqxKlqMLXyMlWYoyC2O98vdX5VHZEyrYpbMV7qNK0cy/qyBDmsqNiij5TvV43VHg72rUNJu/Jgrn8jB0FtXKQ1FCq46OKXaG/uxl++5m8Xq+ZZ7aDx/vazENlJeqeMf2+wqQKd+qc4/fZ/0qn172SvCbXm71XzJE7xTFce0BUCakhIRyjC8BWAqq8WkVJGmkBu/CFDcfwhwrYpoprdKQKiorMVvAa0bRKpmubVGylAzTnhjSaabUNQJUdjaG2zY4gNTdoR2qqLDUKUOXJzzFy1fHUMQVwh9Lj8ygcpQbefi47GrKjR+0bJWZwDPhdjR50DvK37pWyYTg1sPa2DTV8HB/OYTWCOk72GGp7dH7bfclntQkZ2gaFr3W8NOqx15BNaLENIj9noxZsm76vbVGHx3YkHblTHMO1B0QXCZWn0r9VidGj002iwJ3eq8vlaoqgVGloORyFFlVh6ntaZFUXpFKD1Ti0oh1TsbtcLhSLRQB3FsNVj1rbxe/r/VpFQ7yOKhy3e5eUoLkFKlybacc2aJV4WzlpdKF9r8qabWAkqFFkqVQyRAQ+Z1tbGwqFgukPXpf306jRZpLaxAjmXjgH9Nm5nYFsUpJAbEIN26Hzhs9FWJH7sNRRsUkeNgyq84D3UIXfKsLVPKTCd5yX6lQpo5J9oM4J+0K3hLhczTDw3RwQdZ50Hej6Yh8zArMPEnUM1rcmjuHaA6LepSoILhCd7Op5qrK1IxVbYej3WuVU1EBqzoKLvpV3rgtYjZSdG+L1bSXDawBoys3YCktZdHqmku09ax9p9NgKtlJWow0N6b15LzunpPdkf7e3tzdBvWpgFXYKBoPGcBBWInSr52ZpFKUGXBmLdn/b46eGnmOnEbwy97StOm/sSJn9ptEdYV7dXK7t1k28LtduRXY1CGqw+VvHQOeRPovOLZ3D+jrbrY6ebTztaJ330L1z9nzTe2ofa0SnzpMyGx25uziGa4+IPZk18gDuJDao2IvUjt6A5kobvB9f52/NodiKj21SBWp7oqpQ9Jrado087O8TelJDqP3DtiqdWg2mKlXe14bc2C49XsOu5KHPYJME7KiL9/B6vQiHw+bIE5fLhe7ubvT19Rmve2pqCltbW/B4PPD7/Whvb0exWEShUDA1/9huEiv0VGs+t03YsSEsG1q0nRk+F6Mnhev0WupkqAFTw6SkGBUbcuS40ajTINFh4DVs58nO1anTQWOom/LVeOvGc302nZ9sv22AtK/0+XXc9X1dq/rMWn6tlePmSGtxDNceEE5kVdqEM+xktBogQkKEatSAKNSnkU+jsbunRksMAXee+8TFR09VF7h6sDQ4uphVgSrRgG1gu9hukgM0wa0KTyMjGhylfVMBqpJQqIgGWL+vEa0y+AAYgoNGOXwGjc48Hg86OjrMOWeHDx/Gvn37sH//fkQiEfj9fjNWuVwOW1tbyGQyePHFF3H9+nW0tbWhp6cHxWIRmUzG9LcaBM3n8P58Ls4RnUd2rs6upcfn5LX4npIi1DkBms/W0j4HmrdMsF8U6rURBY1g9fls50Qhb76mkBz/VrKD5lu1X7Twso4z+0sdLF0PNhKic4kQr50X1r624UR9HkfuLo7h2gOiDCcbeuOC4j4dezHRM7dhQzuy0uhGP6ORHRcXFa0Ns7hcLgN52J4sRSMqG+JR0oM+n3rGVEq2KExjKzltL3+rktbn4PcIa7H/WykYNcZKklHl6vP5sL29jXK5jHe84x0YHh5GIBBAPB5HIBBAuVw29wqFQmhvb0cikYDf78eBAwfwmc98BltbWwgEAggGg00MUrbXhve039Xg6ne0TzQ/aD+njrtGIrajwWvSACiTlGPQKlK2o3UbqrPnkN5LnQ6dr3o9NZraXzrHFf61jaftlNi/tb81qtO53Gp9qbNlQ++OvL44hmsPiC4wTnaNKKg4uRiA5jOu+F1dIGoYFCLR1zTvQrKHLnRVQqwaocpE3wPurMqtyl9pxxoJ0HO3DY8NQbIP+D/QvBeLhoobQEk9VuMJNENQNv3a5do9LVdf12vQ669Wq4acMDExgbe85S2oVCq4fPky3G43HnvsMfT29qJQKBgyCo1MLpfD4uIi2tra8Mu//MuYm5vD008/jaWlJQBAoVAwRW8ZVQE7ZIhqtWrIEXxOzTex35X4on2oOT+Ov77GSF+NHiFFzU9xnhAWtceQRqbV9flMWnhXo3iOrTpZapRJfmAkp/PYRhrYPz6fr4nhp1E61532Fz+nKIP2K0WrxWiUaUOQGsHyfUfuLneej+DIG06oANSoADDerSoI9fi5AHQR2Al29YSVHq5KhaJeKYA7FprmfXgtG05TFhXQTMfm+woB8lk0ilKjpUKDoW1TOMiGKu0CrZpbYPttA8nvqjJiW1n2yOXaYQuyvx5++GF0dXXhlVdeQSqVQr1eRzgcNlFyqVRCJpNBPp83ij+dTmNubg7VahWHDh3CW97yFqTTaXg8HgQCgSb2nY5Xo9EwhoNtJsOT/Wh/p1Vu046MWkFw2jf6fYVxbcOiBtHedqHjrLUhVezomPfStrEtNg2d46FGW/vFPueLwrnKHNzdROen9ok97zQa1PWpY+PIa4sTce0BUQVsL0KNQvi+wg02FKGKQqMtVSoKl/Ca+n178aoC1ChPozK2Uz1mG37U/JJCQPr8reAkGiE+p7bd3vzcyhBqhMjIUj+rbdD8gx1BUBE1GjubrD0eD/r7+9Hf349UKoWtrS3EYjEEg0F4PB5sbW1hcXERuVwOuVwOfr8fQ0NDBrrb3t7GwsICurq6sH//fiQSCZRKJYTDYeTzeePNU9hvdA44XjaMpvOEyljZiswD6ef1fzIENWqyYTkb8tJ+tvNkrb6n17ZJHK3gQ72H5vB0nihkbs8le97rnNH5zqhK16GuKRuN0KjMJvIoa1KdSEdeX77tiOvpp5/Gj/7oj6K/vx8ulwuf+tSnmt5vNBr4tV/7NfT19SEQCOCxxx7DjRs3mj6zubmJn/zJn0Q0GkU8HsfP/dzPIZfL/b0e5B+yaMREBUIlz5I0hD7UKNm5JFWwPp/PFP6k16esPo2UCDm53btH07MdmrB2u90GMtze3m4qilqpVAw7TqMcGqzt7W1UKhUTOXq9XuTz+SZygZ50S4XLaIL1+JQNyP7iZ7QfeI1WZ1fZxt42/PZeI/ZLNptFoVBAo9FAOBzGfffdhx/6oR9CKpXCtWvXEI/H0dHRgdHRUWxtbWFmZgb1et0wCCuVCtbW1rC8vGzgw3q9jrW1NVSrVbznPe/BwMAAstks/H6/UYher9ecQs2+VgfG7/ebKM1W9ow66AjZJwwz6uQ9VDg2GunxMzSi/L7mz3gvKm11UDRfa+e9WkXHihQoTKuGyH6PR4eowVByj8/na4qW+Cz2HOIcbG9vN9At5xJ/E6q0IW4toaXOp42aONJavm3Dlc/ncfz4cXz84x9v+f5HP/pR/O7v/i7+4A/+AM8++yxCoRDe9ra3NR0h/5M/+ZO4fPkyvvSlL+Gzn/0snn76afz8z//83/0p/oELFwmwG0Hxb4VL1MtVrF0VrZIqqKxtT1ajDTvasT1JWynZRApdjOpZa16DCkMNjG2stcKFGmeN4vS6NtzSKvqj0m6V11HDptdUR4H3YKkfYIe1Fg6H0dHRgaGhIUQiEeTzefj9fiSTSXR0dBgGnkZ/7e3t6OjoMP0QDofR3d2Nnp4elEolbGxsIJFI4NChQwgEAk1tsCE9Vao6vjq2VOZ6vpVGLpwz/OH4qfHRMVAjrw4NxYYKOQY0CDSCrfKcCmXTOdIx5rOo8tdn0ChOoyR15NSQ6pywI0dFF+j0KVSp46BzlX3FvrAhfV0jjtF6ffm2ocLHH38cjz/+eMv3Go0Gfvu3fxu/+qu/ine9610AgD/+4z9GT08PPvWpT+F973sfrly5gieeeALPP/887r33XgDA7/3e7+FHfuRH8D//5/9Ef3//3+Nx/mGK7ZGqhwg04/6qrDQqspWbRme26EK3E9ZqLG3YRRUTv69t0AhQoRylC9NL1f02VHA2XKhVHQA0MQGB3ZwElZF68KqYaJwIBWo/U5QKrgaW7eHng8Eg3G43Ojo6EI/H0Wg0kE6nEQgEEAgEDCkkl8thc3MTGxsbpoLEwMCA2Xzc09ODRCKBWCyGzc1N5HI5RKNR9PX1YXBwEPPz8/D7/SiVSncQHDTxz/61YWH2p84tfpcGQp+PhAxCXFoxnYaXY6vRjSpzrTWp80fzkAqfqXGq13criHCsbeNg5470+wofMkJWujrfsyvs6zzmvdTo0kDyPZ0LOhc1atR8oK7BVvk1R1rLdzTHNTU1heXlZTz22GPmtVgshje96U04d+4c3ve+9+HcuXOIx+PGaAHAY489BrfbjWeffRY/9mM/dsd1y+WyCa0BmP0s3y9ChQI0H/kBNJ8lBaBJiRP6oXdIUfhC2YCq2ChcXPa+FPVObYhDPWQuRvuMKIVRVKFo9GRDPjZ5hFCkKkLmqNTTVsiI1yuVSsZglUqlJiML7B5LoT+EVvUoeWA3j0aIqVwu49ChQwgGgyiVSgb2a29vRzAYxPb2Nr70pS/h2rVryGaz5t49PT3o7e3F4OAgHnzwQcRiMZRKJUPICIVCSCaTSCaT+K3f+i2zDyyTyRi2o44vx4FbFAKBQFN/q4HQSvH8DpUv5x/30NGx0Jwef7fKwfL7ND7qiPDZ6Qyow6BzkvNBDaEaD84xfk7LPbndzfU31WnhfFEHjdfg82thZ4UO1Znks6kxt51IJVDxe1rPUee5I68t31FW4fLyMgCgp6en6fWenh7z3vLyMrq7u5veb2trQyKRMJ+x5SMf+QhisZj5GRoa+k42e0+IGgRCPRrt8LfP5zOL1vYc1UNVmIpiw40aydlt0OvxHvp9hdwUprOT2jZJQKMjW7lqxMP/9bP6rLxuq8gI2IVPNeqz+0Kfn4qGZZsUbrMVTywWQzQaxfb2tiE90BDyiIzp6Wlks1l0dHQgkUggFAphdXUVMzMzuHnzpqkezjxfe3u7idh6e3vR399vDBYNsSo+u+/oFKhh4h4y9if3ioXDYUMu0bGq1WpG0duRtRJqqMh1zNmnapT4WY2udH7b466Qms5pdS74muZsdQ7o/FcjqPk/e63oetFISp9L5xifRQsE3A1abfV9R15f9gSr8MMf/jA+9KEPmf8zmcz3lfHSpLQNJdgnyKriUi/Tpga/1nUJmdBrVM/RzgOo96pwiraFf6uxAtCkoHTjsg3n2ZARSRj5fN4QAjRioFLi636/v6n2H6MBzaOwPeoRM6qgAtKcD7DrlXO/1vb2Njo6OnDixAkkEglks1nUajXEYjFsbW2hXq9jZWUFN2/exObmJpLJJMbHx1Gr1VAoFJBKpZDJZDAzM4NvfvObmJiYwNzcHBYWFhAKhfDII4+gWCwiEongve99L7761a/i1q1bpjKH3+9HsVhsaqsWzGXUpAV2aXRqtRoCgcAdxpjfZckqMhBV6XPuaZTb1tZmojZV2ncjyXg8HgPfqdFje3VPlTobRAw4b/m3IhRKzlACku0MqkHktTWPaDs3atAV3m5lcNk+vbbtaNjXceTu8h01XL29vQCAlZUV9PX1mddXVlZw4sQJ85nV1dWm71WrVWxubprv28Io4vtZFJYCmr1GXQBKjtCFqd4ov6+Lys5zaH7E9rDtRalJe6C5Lpvtcdp5FLZDDacqEfXieQ31pjWKoxJT0gEVop2PUBhKPWiNQDSKsD1qtke951gshpGRERw4cADRaLTJeObzeeTzeaRSKSwuLsLtdsPv9yOdTqNQKJhK4dFoFJlMBtPT0+jo6EAqlcLGxgaWl5fxwAMPGNh8cHAQx44dw9zcHDweD0qlkoFxs9msGQfmnlRZ65i2tbUhHA6jt7fXkEdisZiB7lKpFPL5PGZmZgzUFQqFUKvVUC6XDRSdTqfvyGMyOrFJIqrwORe4h4/9aRfYteeuzk2NWLTKhZ3X4nd4DXXEbFSB8KkdCdrrSeegwpCaQ+ZvjYL5WcLMunYdeX35jhquffv2obe3F08++aQxVJlMBs8++yx+4Rd+AQBw9uxZpFIpvPDCCzh9+jQA4KmnnkK9Xseb3vSm72Rz/sEIJ7MmpxUKU4+Qn1ejorkAXXCtoi3F5zW6ovdpw2nt7e1NCkYjKm2netJ6T7sN+r/mvahIGEGQpco8RaPRMG2kQuDrmptRWEvZcowyGflpzkI96FabotnugwcP4vjx4xgZGTFtYLTn8/mQTqeRSqVQLpcRj8fR1taGdDqNSqWCUqmEUChk6Nibm5vY2toyxrhUKiEajcLr9WJjYwP1eh0DAwPo6OjA1taWMVA+nw+ZTAaNRgPFYtH0V6Oxs7esra0NpVIJ+XweoVAIJ06cQG9vL/bt24dYLIZQKIRwONzUt6VSCVNTU1hdXUUmk8Hs7Czy+XyTodItFZyHbJPLtXtIIvtRmZiNRsNUwKfTAezWoOQc1LnN9aAGSKPhVsZG82pKwmB7OX8YjdKJaRU1afSo60nXoa4p/a25QZ3v/D77wIm87i7ftuHK5XK4efOm+X9qagoXLlxAIpHA8PAwfumXfgn/9b/+V4yPj2Pfvn34j//xP6K/vx/vfve7AQCTk5P44R/+Ybz//e/HH/zBH2B7exsf/OAH8b73vc9hFN5F1Psj/EehguWRF3bJGTvHoMrDhjf0fyoCwkB2rkeVhk2P5vX0Pry3wpNU6B6Px+zbUUOg1wBgjKRdrsiGtTRv4vf7EYvFzOf5fHw2GjY+m8/nQygUamK4Mbejhlqjzkajgf7+frz5zW9GR0cHisUiXnnlFcTjcYyOjqJSqZhogkSNeDwOAJiZmTGKfWlpCUNDQ+jv78fc3Bymp6dx/PhxHD9+HD6fD/v27UNbWxsWFxexsrICv9+PN73pTXjppZcwNzdncmGk0NdqNWQyGWNA1tbWEIvFcM8992BwcBDJZNKQSJjT8ng8ZkxYP9Hj8eCBBx4wEOG1a9cwNTWFJ554AqlUCgCaKOrFYrHJOHg8HlNMmBFGvV5HNps1xoNGSs8h05ygRjNcDxxnlmuiAWT0rQ4b5ylf51pRw2vX9bSPh9F2aZSvyAHnlpKRaMw1v8s9iXoeGj+rJ2E70lq+bcN1/vx5PProo+Z/5p5++qd/Gp/4xCfw7/7dv0M+n8fP//zPI5VK4aGHHsITTzxhjmsHgD/90z/FBz/4Qbz1rW+F2+3Ge9/7Xvzu7/7ud+Bx/mGKeob2hNb/NS+j+SUueEYT+nmNyPiaXkujC95PvVgbftKFre8pm0yhHCoavmYTJth+Ggx9ZlUIdlSpRAQqY6/XawgIVNb1eh2FQgGFQgH5fB5ra2soFApGufj9fkSjUaMsy+XyHRtYOzs7MTo6ikgkgu3tbXM0CVl/pVIJ9Xod+Xwe5XLZ5KMID3IzeDabRbVaRTQaNXmrRmOHbRiJRAzDkIZoe3sbnZ2dGBkZQa1Ww9zc3B0EGUZNgUAAp06dwtDQECYmJoxxAmDGgNEk82QaEdD4hEIhjI6OIh6PI5fL4cKFC5iZmQGwS3fXjbi8hzoJZF9qRKVQrw3F0QgyqtaxVtaeOmGc6+pg6XzX1zQyUydI145ChAq7M0Lid2xYnWtAoW6KQpW69hzI8PXF1diDPZTJZIwX/f0gmo/gImAiG9jdo0Kx6dAKf/B6hL2ULq8GxM5bqUetsIbWBgSaMX9VTJFIxPyfyWSMN61VP+wFS+NDo9EKZqRibm9vN/fI5XLwer2YnJzEwMAAjh07hkgkYowVlU8+n8fW1haWlpaMp1uv182G30KhgI2NDUxNTRlIr7u7G/F4HNFoFPV6HYFAAMePH8fw8DC8Xq95tsHBQaPAS6USZmdn8dRTT5n3Ozs7cf36dbO1gwQOkjui0Sg2NjaQzWbR2dmJAwcO4OjRo4apWCwWUS6X4ff74fP5UCqV8MUvfhFzc3OYn583Bu7kyZPYv38/BgYG4PP5zCnKrNYRiURQr9extLSEjY0NpNNprK+vNxX/9fl86O/vR1dXFzo7O9HV1QW/3494PI5yuYzV1VX8yZ/8Ca5fvw6Xy4VoNIpKpYKtrS1Uq1VTdYVjyCofPOpFoxEATY6POkDqCKlBUyNDEgdfozG0WXuaO1W0QckltqOka0rbx7yqRl2MLHmemUbonNeEsDXSsx3I7wdJp9OIRqPf1nf2BKvw+13UECkpQD1aoJmWrIuIYnvQ6gEq1m5T05UCbF9fjZt6lVovj0pB8x+8jzLcNOrStgJ31hZUY+t2uxGPx+FyuZBOp00U8sgjj6C7uxuDg4MIhUJNR8nX63VTwWJxcdFEqowsBgYGUKvVMDIygpGREWQyGWxubuLVV1/F1tYWHn74YSQSCXR0dGB4eBjhcBgzMzNYXV1Fe3s74vG4iQ6oTCuVCkKhELq6ulAqlUykEwqFEAqFTFmsfD6P0dFReDweTE9PY3NzE9vb2xgfHzfKmobJ7XYjEokgHo9jfHwcPp/PVODw+/04cuQIuru74fP5kEqlUCqVsH//fvT29sLr9WJzcxOpVArT09NYXl5GOp3G2tqaocr7fD5Dw2eEzD7i3AsEAnj00UcRj8fxzDPPIB6Po1KpIJ/PGwWuG4+ZG9LIlXOQY6uVUlrlhIBmmE2jdHXAdE6pseJ9arWdyvBtbW0oFotmPjFytIk5ikTcLdpTaN/r9Zr1VC6XjYNmE1c0mtN+cKS1OIZrD4hi4jbZQfNC/FuVPBeBGiYuEntxKMRkf16NoE0C0SiLbbWjM91nxGfigqcyI7uMisqudqH3p2IhEy8QCGB5eRmHDh3C0aNHsW/fPoyPjyMYDCISidyRe/N6vejp6UEgEEAmk0E2mzWV2tUgut1uw7YbHh42kRLPzeru7kYikUC9XsetW7dMRYtoNIpwOIxQKAQAmJ2dxfr6OgYGBhCLxYzhZn7L5XIhHo9jfn4eKysrePTRR+FyuZDP55HNZlGpVHD79m10dXU1MdEUGu3u7jZV6TmOgUDAkDEAIJlM4uTJkwiFQshms7h+/TqWlpawsLCAra0tFIvFJpo/HZb19XUUi0Xk83mEw2HE43GkUilTf7KzsxMPPfQQYrEYPvOZz5gIlIp4Y2PDKGqF2OwIyYYJdd6R1ahzh+1U46if4byyIT77vuowse84z7me1JhqLozXthm+zIkqMYgOGqM0Piew6/hpsQBHWotjuPaA6CIltKGLWE8qVqyeXqFNf9ZFxr029AC52Gkc1WAqLGMbJi2uy8Vcr+9WKmd06HK5DHxSqVSalIN6xQCMsmUeiFELAAORRSIRVCoVxONxPProo7jnnnvg8/malAo32+bz+aYCtMFgEIFAAENDQ8b7p+KemprC+vo6VlZWsLS01FSW6cyZMzh+/LgxmNw/1dfXZwxkMBhEe3s7yuUynnjiCTzzzDNGWbW1tWFsbAwTExOYn583cGVvb68ptnv06FHcvn0bBw8exPb2NrLZLD7zmc/g2LFjOHbsGNxuN9LpNCKRiMmbFQoFE1kWi0Xzmt/vR0dHB06ePIlYLIZCoYALFy7g4sWLOH/+PMrlMoLBIOLxOHp6eppYl6wjmM1mkclkTBFhXi8ej6NUKmF6ehrhcBgPPfSQibyq1SpCoVCT0ifESpiQcLFWJOFc0RytvdG7Wq2aSiCc49VqFcFg0Lxv55oIzylphAV9FdLT+cx1x/vyh+vCZqnaTMdKpWLYnV6vF5FIBLVaDblcrmlNsI3qeDpyd3EM1x4QLj47Kaxiw378rJI6uFg1p0DlBOwea64Lm9cB0LRolRRh5w2oTHQBU4lQedOz1D0sbCe9ZFUuavw0otvY2EAymcQ73/lODA0NGeNJA1+pVMxZV9wvVSgUkMlkUKvVjIGhYiRsNz4+ju7ubnR2dgIAlpaWkMvlsLKyYggMAJBKpYyx3r9/P4aGhpDL5QwZpFwuY3NzE/V6HZ2dnQZC7OjoQFdXF3K5HMLhMC5dumT2X2WzWRMpJhIJNBo7zLnZ2VljQPhchBwzmQzq9brZg8XDJicmJpBMJtHV1QWfz4etrS2cO3cOV69exdzcnFGqoVDI0OU5fxQe5mnNVMTAzikPrJ+YTqeRy+WQSqUwNjaGer2Oy5cvGxJIIBAwDhcdIJJP1EGy4W87qlSKOp2iYrHYlHfSXCjnLx0TG0pkpAbsEjIUquZ60FJjilrY60+/xzba817zzhr52QiKI3cXx3DtAdFcko3zA80Gg6I4ui4k+4cK24YNbfhPF6nmIfhZKgQ9FkPzXzSKAAzD1Mb11QhSWdg5sGAw2AQVDQ8P4/Tp0zh27JghfvAIj2q1imw2i9XVVePhF4tFZDIZZDIZQx9XJZZIJDAwMIChoSEMDAygr68PPT09uHHjBm7evIl0Oo3t7W0DfaVSKSwtLcHr9eLRRx9FIBBAsVhEoVAw3jzZf/feey96enoQCoXQ29uLXC6H27dvG+VVKpXQ1dWFjY0NuFwuRCIR5HI5AxcSUmTkWK1WsbKygq2tLaRSKUQiEUOqqNVq6OjoMPmvYDCI2dlZLC4u4vz581hZWUEul0MoFEI0GjWkFfYxI1rCW1S8wWDQRMrT09Nob2+Hz+fDxMQEZmdnsbGxgVAohJGREfT29mJtbQ2RSMREXoRkOWcbjYbZyKywKQCTc6rX66a0leZTbbjOXi+6LnRua2Sja4T1UBWOtyN3XQMUXY92vk63lxAu59zmvNbPO0brWxPHcO0BoUJXLFxxcoUq9DsaPdFIVCoVBINBAM0VKEhl1o3GxWLRGCcSAbQ6BQ2T/ZtKRPNWNGZtbW0IBAKmnYR4SBHnfWg4qSxYuoltaGtrw4/+6I/izJkz6OzsNGdbTU5OwuVyYXNzE1euXDGKn9UrFhYWDCRFA0rPFwA2NjawtLSE9fV1dHd3Y3R0FGfPnsWRI0dw+/Zt/Pmf/znK5TJSqZQpkZTNZk0OqLu7Gx0dHQgGg5ibm8PVq1extbWF48eP45FHHoHX6zVECgB49tlnsbm5ifvuu8/s/wJ2ohlWqLhx44apIr+1tYVKpYJjx46hs7MTxWIRpVLJGCwy+QCYcd7Y2MD09DT+5m/+BisrK+YkZSpkQqSMakKhkHEoGIVxPxX7rVqtGmPe09ODn/mZn8GZM2dQqVRw8eJFRKNRvP/97zdwZKVSMUQPLd+kkDXnmUY8dICU5UdjQEPj9/vN1oZ0Om3mM40hWafKxlX4T8uX2QxAda6CwaAxavqj7eXctdERkltKpVITWUSjLK5fwuJ6aKkjzeIYrj0kGp3YRkqp8aqQ6FVycenipDfaKrrSv6lc+JvX0u9wIQK7Vd21bRp9lcvlJsOq8IrCOWR8ud07G3dJH/b5fOjr68OJEyeM8i4Wi4hGoyZ3lslkTL4qn88jl8uZHA0AozxVKVIxVioVEz1ks1ljzAOBAJLJJDY2NrCxsWGUem9vLzweD9LptGkbALNRmBDh2tqaeeaBgQGkUinDCiTE+OKLL8Lj8WBtbQ0dHR0YHBw0FeTX1tawtraGQCCAiYkJBINBRKNRdHZ2olAomH1gGm0znzI1NWXo9zz4sNFoNFWf5+ubm5uGERiNRg2UqhGk7vHb2trClStXcOTIESSTSYRCIRQKBXR1deHgwYPIZrN47rnn7sgBqbKnotZK/coAVPhYc74K5wF3L1Jrw+cKX2v0pblkzlc6XxpBaW5Kc1Rsu6IcFIUwlanIuUjoU8lRjrQWx3DtAVF4UPc7EUPnIqQ3yZwIlRaw6/kxQc1FROYXr6n5Id7Phim9Xq8hOahnScVEhUklqiwphf14L3rZNCCkrVMRsPJEOBzG8ePHcc899+Dee+9FOBzG0tISCoUCBgcHTc5oeXkZs7OzJi/FqhIADMOwVtuphsFIk/kb9iWV46VLl3Dr1i3s378fPT09OH78OG7duoXFxUWTy4rFYujv78fi4iL8fj8ikQgymQwSiQQeeughuFwuzM3N4ZlnnjHKnRBjLpczdH5WoQiHw1hcXMTc3BzK5bIxhLlcDtlsFtFo1BjzhYUFLC8vo6uryxjstrY29PT0YGJiApVKBS+//DLOnz+PpaUlAM1kByp0t3tnz1Eul8P6+rpxhCKRiCG7VCqVO4oh+/1+NBoNfPrTn8YLL7yABx54AOPj48jn81hZWUFXVxfuv/9+rK+vmz5j5BwKhUxua3193UT8CrMpVMm2U7lHo1ED/7I9mrelUeLxMrbjpM/B77A9FDoBwC5BiUbGzu+y3a3qLOrJ4boWda0QQtWtJI60Fsdw7QHhomiVc+IE10rcCkHY+1CUyUSIhguKXiYNkO6xUUPGxUVlppCkEi6oDNT7tHMmbDONlU0aIT09HA6jp6cHjzzyCMbHx9HT04OlpSW4XC6zN6rRaBgW4NzcHKamppoMp5I8SqWSgZCYZ2HbCWnybxaYJcGiu7sbm5ubBvZJJBJwu91YXl5uOsa9s7MTbrcbL7/8Mq5fv47t7W10dXWhr68PpVLJlB0iUYQ5EFb3YO4qm80ilUqhWCyiv78f/f39xmCsr6+jt7cXJ0+exOc+9zm0tbWZjcXBYNAYjEwmYw6p5FjQ26eDoJ4+xzmbzZoCvpq/IQmGztP29jYWFhZw9epVTE5OIpFImP1n8Xgchw4dgsvlwoULF0zUrPlXOyLSzcecC2w3X2P/K3Rt54k49xkx0VHRSI/OmRKCdC62Ik/oPdhXms/ivOL64nPxmuw7RSpswocjdxfHcO0B0cmsixto3rulC48JdPX8FH7ggtGFpRCgDSUqhML7K1SihkkVoBoLpfNrTUUqUCoACo0isHOm25EjR3Dy5ElT/qhWq5lahB6PB7lcDvPz85iZmcHt27extLRkNuKyjaSJUxmzD2ncVCETptzc3DQJ9Xg8jlgsBp/PZxh2bW1t6O/vx/z8vFGirGZRKpVw8eJFZDIZHDx4EOPj4+js7MTs7KyJXrLZLLa3t01k2dbWZvZ6eTwe5PN5pNNpwxqs1+sGyiuXyzh48CAGBweNkW5ra0MkEkF7eztu375tWI2hUMjkspQEQ4WuY6J79Tjmdm6ITgXnXalUwvLyMnK5HLq6ukx1ewDYv38/KpUKrl27Zg7xpLKnIaFR0fmhpB+NZggJM8ri3KGzpnCjRnLMb2okpffRPLINiSvyoeukFTnKnvd2BMY+0wjWZvE6cndxDNceEBtLB3ZL2XBhcKGoJ0dvmAuai9OOyKi0GFWoN64JdGC3YjcT4wrPkDgB7OzB8ng8pqIF6doazVFR83q8B8katdpOGaaBgQH82I/9GO69914Eg0EsLS0hnU6bpLzL5cLi4iKmpqbw5S9/GcvLy9ja2jKRnJ6ezeiwXq8birbSoOv1utnz5ff7zWc2NzdRq9XQ1dWF/v5+Y1A8Hg9mZ2cxNjaGt7zlLXjiiSdw5coVDA0NmeoSx44dw8LCAkZGRsw+I5/PZ6qwc68UK6jzzK3+/n5cvHgRvb29JgLMZDJ46aWXzGZrt9uNoaEh9PX1obu727D6Ojs7Ua1W8corrzRFgizBRGIK98ppHkujAnU4bLYdr0GFzVzatWvX0NbWhr6+PrS3t2NrawtjY2NIJpO4desWbt682QTdqZHg/NOcFQ0XDQ7HkffWgrV0NrgWbOhOTwpQBEOZi8yzaZ5Q1xTXBNcPv89+pBOl5BJ16Pg8tVrNjLkaXs1fO9JaHMO1B0QTxRQlWyhEovkpG/ZQ2E/3cqni4PdsVqLCi0qosBcmjxtRT1TzAJr3UuXBfJfS891uN2KxGA4cOIDDhw8jmUwaiI6Gls+zsrKCqakpLC4uIp1Om3JFfFZVLnxNo02+zv6mI0AI1ufzoVqtYnl5GbFYDJFIBMBuRfpKpYLJyUkkk0nMzc0hFosZQ37q1ClTDZ73SyaT6OnpMRESsMuO43VDoZA52oQEkVQqhXg8bmocUgm3t7ejq6sLU1NTTVRrUsq1r+0N5nxNowuOIbBbIJf9qDlIVeDVatWUxuLpzsFg0ByBkkwmsW/fPqRSKaytrZlx1DPDlJSh+VWlpms0o46WKnyF8zQ/qz+6Yd+exxqBMTrTNahrRNuk7yvjkK9pBMt7c14o09DJcb22OIZrDwgXrZavYQUDYDdhbZM4AJi8iV5Hq1twYVJxkWHGZLHCbKr0qNzVE1cGIb1dGjJGGTQGhNpsFpfCPMePH8eb3/xm3H///UgmkygUCqbeH6OBnp4eNBoNfPKTn8Tzzz+PQqFgqsBrNEdISk/5ZR9ptKoRJJUPqdUAcOXKFQDA4cOHzRE//CwL4X7+85/HuXPncOPGDXR2duLs2bM4dOgQQqGQqWvodrsxPj6OQqGASCSCWCwGl8uFQCCAcDiMjY0N7N+/H8FgEF/+8pebmIMejwcnTpwweTTuuRoaGsKNGzfQ1dUFl8uFVCplDK+Oc6FQQL1eN0aS7zPqZaUSVrbnWKpwTxejD86vcrmM6elp9PT0YGBgwFTYz2Qy8Pv9eOCBB+D1evHCCy9gdnbWGFdGemynx+MxFfQ1QuKc4XhxbnFM+YxqoPgZNWYKiwIwZCYaP2UIcu7rnOE19R4a6dmGlHObxolGlzR9tseGHB1pLQ6gukdEPVEugLt9DriT/svf9uv8n4ZLoUE7Sa34OxestsnOedFb5vX0GajsyaDSzcYkKNx///04fvw4enp6UCgUsLW11XSfjo4OhMNh1Ot1U6KJUQ6vpx60QlNa/JSfZWSj9HhGFTTYpVIJm5ub8Hg86OnpQTgcNs9XrVYRiUQQDoexvLxsCtJOT0+jXq8bUgWJIDz2hPcPhUIGOuJzjo6ONvX7vn37MDAwgMHBQcPMC4fDJnLxeDymrFChUDDtViOte6L4GiM6WzQCsH9zrDnv2F9aG5F9xwofkUgEIyMjBkakc6GOlP6oEqdzwwr5em+dk5y7WiaKbeZrOr+5f1CJGOqs8bl0TmkUpzlSCg0f26jt0Lay/RphaS7ZkdbiRFx7QKg8lAShigdoLgOli0I9T5thqK8DzYQNTd4zWtJIxFYIvC49Sypf3QPGe1D0ORQKajQaGB4exrFjx9Db24tKpYK1tTVDfNANti6XC6urq1hcXESxWDR5I41GCeVov/A9VW4UO3+hhIDt7W1zbAr3UJHGzIjO7/ejUqmgv78fXq/X7N9KJBLweDwmyopGo4YGT8iQsBkp78Fg0LDqDh8+jPvuuw+RSARra2vIZrPw+XwIBoNNkSo3HrOEFMeJSlefWZW8rXw5T3S8OGbK1rQjcUbrhGNJ4kilUvD5fOju7sbhw4dx7do1eL1ec34Z55s952l4lRiic5nPxI3urdaAklAANM1xe9wVUlZ4XecTDaed+9I+1ftzjiujUa+j0LptyBy5UxzDtUeE0QuNBPMT9lHzuiCA3c2O9Kg12axKSGm+WoZGcz28vpZ6oqLSBa8sKsJMXLT0rjXHxTwLI7GJiQk8+uijGB0dxfb2NpaXlw2LjkVj4/E4tre3sbS0hG9+85tYW1szBAPeh94+PWX2BZUgPX47IlMFrAqfyqRcLjeVNjp//rwxOn6/HxsbGzh+/Lhp+/j4OKLRqIG8CoUC5ufnMTw8jImJCczMzCCVShmCQCAQwP79+02dv/HxcZTLZfzGb/wGKpUKnn/+edy+fdvk2UgL5/MFg0EsLy9jZmbGHN1CNqFNSGAODIAZK/vQTlX2qpyVoadbDnitfD6PfD6P1dVVrK6umlJbBw4cwOTkJF588UUUi0UEg0EsLi4CaHZ8gB0SEjeYc24xp8foi69zzNQIMH9KZ8suAu1yuZrygApZcs7QCDOCVidB1xjJL7qVhOuUz8ZtDGTM8jokarDvHMP12uIYrj0gdtJXoTmFI+zJroYEaE351SoXmkjmazahwU5S23CkRoY2G03/p5Gkp00DHAgEMDk5ieHhYeOtM/dCiEjzL6lUCpubmyaXov2i97UhLfYl22z3nRpxKkIaMY9np7IF+4yQHI0mDzotlUqm7l82m8XMzAyGhoZQLpfxwgsvoNFoYN++febE4WKxiEAggHg8Dr/fb2C0RCKBeDyOYrGI559/Hl/4whfMtUdGRkylcT5PIBBANpvF5uam6eNyuWwMIZU9FTPJB3ydY2iPOyMrNWzaV3YEn8/njdEhi3B9fR2hUAg9PT0YHBzEzZs374gy7E3vNrnBvl+9XjfGhWNij6saNjotfDZFDDTK5rV0H5mSQbRNNpLAvtU26j00SlOSjN33jrQWx3DtEbFhQipkoHmvjb3hl6IGBWg2NLbiUNjIVhq8B19jWzQnZEMsmtPi57n5Vq9LOG1iYgLd3d0ol8vIZrNN0JB6sawkwSiMNd74fIyktJo8FSthUYXHmPuioVTDtr29bY7/YFQFwNDOWW2Cymd+fh6rq6vwer0YHBzEysqK+Xw2m8WXv/xllMtlHD16FD09PUin06jVahgaGkJnZydqtZ2qJ4VCwbAaL1++jK985Su4fv06ent7kUql0NfXZwyX5rFY5ooMQDIo2ee1Wq1pE7BCyFSoNqSouTIVNX7Abl1LkkO47YE5OUZKExMTSKfTmJubQygUMk4KjYduw7DniTpWmodUIlMruFznpu3Q2UZJ57VG8jrP7XWg6xLYzXWx70g20W0HzPMy0nLyW68vjuHaA8IFTAUMNO9HoiLWDbxcgHbuiItLPXT1EKmw9Lwh5gOomNXrtT1ZKhxeuxWtmEqA36OMjo7iB3/wB3H69GlUq1VcuXLF7G/ipmNWRs/n88hkMuY4DTt3RYiHio3PqfuV9NBELT8F7CpEkiUqlYqhosfjcVOuKRQK4dixY/jKV76Cf/Ev/oWJmKanp1Gt7tQkfOihh7CysoJisYi5uTncvHkT1WoVf/EXf4GxsTFDbw+FQjhy5AgGBwdx4cIFbGxsGMr44uIirly5guXlZbO5eXFxEd3d3ZiamsKBAweQTqdRLpfNJuVoNIq1tTV0dnYiEAhgc3MTnZ2dqNd3NjBvb28bpakOhkLCPB9M9zZRuD+OkbDb7UYgEMDg4CCSyaTZrxUIBMzcPH78ODyenQ3yExMT6O3txblz5/C1r33NnALdavOxGhkaEAAmr2WjBYyAtf6fGhXd28d5a9PydT1pjrRVXsue64RdGeUCu84Doyz2p83atHNvjtwpjmnfQ0Lloh6kRjA2hEIjYnuuFBojLiLNkdErtL1UjeK0LQqj6HuK4fMzNtPN4/EgHA5jcHAQIyMjAGAOQaRSorLld3muk81a1GfTn1Z9acM3GoHxOwpvMkehfZLNZjE+Po5sNguXa/dojHvvvRenT5/GiRMnEA6HzcZjbtAlm5BVM0hkYNT36quv4sKFCwCAWCxmjkBZXV1FrbZTHsrv95tajNwqkMlkTJQViUTM/GAlDkKthAw5ZoyM+MOqHzw+RZ0U9h/3r2mkEAwG0dnZCY/Hg42NDaRSKeTzeSwuLuLq1atN0XGlUkE0GsXk5KTZhK1wrw35cjxsZ4xzVfOVOv84xzTHx+NY1Knh+8zl2XNDIzF7HnHOaP+w7zlHFeLnazT6Gg078vriGK43uNATtHNamiDmnhctnKp/A7gjOuP7TKxrxW8bHtLFyAXJUkpc/PoZkh74Wb7GwxX1Gny206dP47777kNXVxcymQzW19dNpBePx7GxsYGFhQVzACNhLlLANepkdKpeOPuIXjXhQCrbYDCItrY2k4uhUgZgSjy5XC50dHTA5XLh2LFjGB4eRi6Xwz333IOOjg6sra1hbm4O1WoV+/fvRyAQwMrKCubn5xEIBFAqlfDiiy9iZmYGpVIJkUgE+XzeKK10Om0qs1+9ehVf+cpX4Ha70dHRgXq9jv3796O9vd2UUdre3kY0GsXU1JQ5j8vj8ZiTmWu1Gt761rdiZWXFwKsulwvRaBThcNhEkyxRpbAh91cVCgUUCoWm/qJx47yhoqcRCgQCWFpawsrKCkqlEnK5HJ5//nmcO3cOn/zkJ3Ht2jXjiOTzeQwNDeGnfuqnkEwmTZ3Ger1u5jQVPOewbmWgs8G5y7nHtcPvcF57vV4zZ/T0ZeYYlS1IUaPGdcLntnPORC84H3lwKfOHtqOlUKQ+k5Pfem1xDNceEDsprQtIoxh667ZnaDMBdWHY+L96jWrINA+m+SZeUxeuQpE2yQPY9X41CT88PIzu7m4D4XEfEEsu8byreDyOQCBg8j48sZhG0SZiUMlo1ElFp5tWVTECMEds6KZv/t7c3EQymTR9TSbg1taWOQ/r9u3buHXrFvL5vDlNmVEkFavtIJBQkU6n4XK5DCRK4+33+xEKhZo2qzJnlM1mTb9HIhGzYXn//v0YHR3F+vo6EolEUw5P927Z+5To9HBuqbFiHytszCLIXV1dKJfLWF5eBgCTE8zn84Y9eOvWLZMj5KGXx44dw9ve9jakUimUy2VDANH2qMHStWDnl3QeatULhaXL5bI5okXzfurgKVLA/tYIXuFwZTPyO3YeWRENJTVpm+316UhrcQzXHhClL9ssP4omlW1PUyM1XRzAnZuTKQqV6GKl8iBUpFU3uNj4XXuBa5s1EnK5XBgeHkYikQAAk6Qne5DHd2SzWWO0XK6dWnnhcBjhcLgJLrKNMO9LBUNDpfkOJS/Ym0fZX1T6PGOL7W80GvD7/VhfX8fW1hbq9Tpu3ryJxcVFk8dj/USSSdgvNKzlctlEJyyR5PF4TPmkaDRqIgp65e3t7cawLy0tmTJQwWAQyWQSbW07x5ucOnUKgUAAPp8PPp/PRBZtbTuHerpcribolfNMYS6lvNPwKnzY3d2Nvr4+hEIhU/bJ4/GYPWbqPMzNzWFmZgaFQsGc7tzX14eTJ0/i+PHjBjYlDEk4W/tb26oQps45paTzezQK7HdGSJyHdMpswpKNNvCa6pjZhkfXnz23VNgedZwcw/Xa4pAz3uCii4VKkKQBWyEzgnG5XEahca+NEjWoSLiolTwBNBsezSMAu5CjRn78rK3sAZgit8y70Ghw0ReLRRw8eBAHDx408FG5XEY6nTZ7tW7fvo1nn33WwHTcE5XNZhGPx5FMJpHP51EqldDd3W3yM4zAFN7RCJMGl31BZQfA7JFin7e3t+Oee+7B0tISxsfH0d/fj5dffhnxeBzpdBqhUAg3b97EpUuXUCgUMD09Da/Xi6997Wu4efMmksmk8cq3trZMDT8ABnbt6OgwFedJonj11VcRDAYRDocNRMiSVuyHUCiE559/HuPj4wiHw6hUKujp6THEjHe84x3Yt28fPvrRjyKZTCKZTJrzr3gaNZ+R0bmyAcngBHYMB2tBcpO03+/HyMiIKb915coV84yLi4sGwi0Wi/D5fFhaWsI3vvENk0+KxWKYmJhAZ2cnfuInfgLr6+u4ePEivvjFLxpyBgkyJIuogSL8C+xG9mSYcr7pdWhwaUj0pGF1vvQ1RRHU8BDKtI2oUugpugHZzgtrVNcqn+xIszgR1x4Qm0Rhe5LKnqLQ0CgGz/9VcdtUdjtKUpICoy2FPdRY6X3sz9jkEH6vra0NQ0NDJq/BfEkulzPFWHlUxsbGhtmITKMUCATQ09Nj6u7x2sCd5YbowVO58X1GGxo9AruecKlUgs/nMzmp06dPo1gsIpPJIBqNol7fOTIkm82aslPFYhGhUMgo1lAoBI/HY3JoVOasJcn6gNXqzonNiUTCwIW5XA6bm5tNjDtGTIz25ubmzKGPwA7t/tChQ1hfX0d7ezsOHTqEM2fOoFQqoaenB93d3fB6vU3ngjHPxTHWKF9ZeNXqTgFjQo8avXm9XmPIS6USstks8vm8iWyYu0qlUlhYWMDS0hKmpqYMIxIAent78aY3vckYexoYbt4ltMfoWtEBzSFxfgEw0alN9gB2UQRCp2qYWiEHJFQoTMn5rp/TdWAbIXUIuUY1MnTktcWJuN7gwgmuBkI9P4UslJ2kmL8qIeDODc1Ac3VqZW3RS9TXNKqysXpeS7+vFQVsbzIWi2F8fBxut9uwCBuNhlF6AAxhoVKpYHl5GT09PcaIeDweDA4Ooq+vD8vLy8YYs91sjzIDKewjVY6sF8jiwITkWJqov78fhw8fxvXr1+FyuZBMJuF2uxEOh7GysoKVlRVMTk4aw+p2u01tQo9n5ygUlqUi0YLGKRqNGhZeX18fOjo6zHiTjk7FnMlkTPWIUCiEtbU1eDweQyLp7e3Fm9/8Zpw/fx6JRAKxWAwPP/ywef6hoSFUq1XMzs4ag8GNwpwrNLKcU4RTE4kEBgYGDKzpcrkQDAYRCoXMic5+vx+FQsFEljQOzGmxjBeN5/r6Ojo6Oszm7f7+fpw6dQpPP/20iYh4fRIqNNpRI6ZzU42QPX/V4Cg8qHAhr2lHSYowEEbmfe0csuYydT3b8D7/9vv9xolzjFhrcQzXG1wUI1eqL2EWeqHArvEg/AWgaXOjluXhgiZ8ooaN91Wcn9EHvX7NIaiHyehBae+MLuj96mI/deoU7r33XmxsbGB2dtYw/DY3NzE1NWVKTTFy+uu//mssLS1heHgYKysrcLlcGBwcxKOPPorz58+b6u1U4jxTi8IIlf1HOBXYUYzM+bS1tSEcDmNgYAB9fX24evUq1tfX8R/+w3/AQw89hC9+8Ysol8uIx+Oo1WqIx+P4y7/8S7NnKhAIoFgsolwuIxAIoKurC3Nzc4Yqnk6nUalUzCnHs7OzeOc734lGY4di39nZaaJQHgS5f/9+s5eNpwNcuXIFx44dQyAQwPr6ujF+nZ2dOHXqFD72sY+hv78f9913H8bGxtDW1oZPfvKTiEajOH78uInKyDwslUrmZOlEItE0Z2gskskkFhcX0dXVhfe85z2YnZ3F/v370Wg08NWvfhWlUgnT09P48R//cayvr+PVV1/Fvn374HK5sLy8jEKhYIxOOp3Ggw8+iM9//vN4//vfD49n53yzaDSKxx9/HCdOnMAf/uEfYnl52cwzRuWcx4yk9PwwheA4Xxl1k02pRAqFyenEcM8ft2EEAgFzXV6DfaIIAq8DwGyopmNpR2l2ewE0wbetNnw74hiuN7yo4QB2MXxi/WSIcXHSeNFLtPfgKCSoTCt+B2jOcfG+NHz6OV2E/B/Y3azJRUyWGCNBtoOGwe/34/bt2yiVSgiHw6bd3JcUiUQM9LS6utp0lAghxf7+fgwODuLKlSvGC3e5XE25NbaXz0WlxfxXsVg0zL3+/n7EYjEkEgkEg0EEAgEMDAxgdHQUsVjMRA70sN3unUMe9+/f3xSpAjtkCYWhtra2TH+y/p3CRIQs29vbsb29jUgkYvaJeb1eBINBpNNps4l4aWkJoVAIN27cQCAQMIy5RqNhjqgBgHQ6bY4XIYEiGo2ip6cHfX198Pv9qFarmJ+fN+PPaG92dhbV6s6RKFeuXIHH48E//+f/HIVCAZcuXQIALC4uYn19HZubm9i/fz8AmNJUhBTX19fNXAmHw9jc3ITf78eVK1dw4cIFJJNJbG1tIZPJoK+vD/v27cOpU6fw7LPPmtOrqeyVzMC1YRMmOLfpsLSqCEOjwXysznuuBzt3S+eMoggDx5D/a7TPdUFykG5Gtp9Lr+9IsziGaw8IvTouBHpvTDATcyckoVR0Lii3220IB7lczrzHa2shVSpj4v7KeKKCVSo7sMv2UmUeCAQQi8XMsfNUOmwTjy3hnqNwOIxoNGogq5MnT+LixYuGGNDe3o7NzU28+OKLSKfTGBgYALADNz7zzDM4ePAg3vrWt2J6ehoLCwumreVy2TxfOp0GsKOAlBzhdu/s5zp27Bh6enoQjUaxtLSEpaUls2mX/cSKHNyoy6iXeaNUKgWPx4NisWichlKphGg0ilwuZ9h/9Xod4XAYPp8PfX19hp4dCATQ19eHsbExzM3NYf/+/Uin07hy5Yrx+iORiKmEcenSJZw4cQLPPfccHnzwQfT39yOZTBoyxMLCgonQ3G43crkcVldXUSwWMTY2ZpQkocH5+XmUSiXTd/V6He94xzuQyWTw9a9/HW63G+985ztRLpfxf/7P/0E8HsetW7ewubmJ/v5+jI+PY3R0FI1GA+Pj4zh58iRKpRIKhQISiQRu376N9fV1ZLNZeL1eHDhwACdPnsQnPvEJvP/978fg4KApRBwMBvG+970P999/Pz796U/j5s2bTVR2rgXOxVAoZHJHnIvMwXGeKpHChuK5AZpnxqnTyEK/nAOaa9aco+bL2H90HPk3nQSl7FP0no60FsdwvcGFXjbzGRrtaFkmrYBNGM5OKlPoYWpOC9itzM2/GaEo84qLSqM3zV8pJKh0al6DG1UbjQYGBgaQSCTQaDTMfh+v14uVlRXkcjkcPXoUyWTSVJTgpk9WhxgYGMCVK1cwOTmJlZUVtLe34+TJkyavdPv2bdRqNSSTSUNcYHFeAE30+2AwiAMHDmB8fBxtbW3I5XImKtLDMKnQGRnWajVDZe/u7kZXVxeCwSCmp6dRKpWaqOXALoNQT/9lFAXAsPj0TDH9Po0LFS77ulqtYnh4GNFo1MCjLJW1uLiIjY0Ncx8SUgqFAlKpFHK5HJaXlxEOh9HV1WVg0lAoBLfbjcHBQZw5cwaXLl0yjk6xWMRf/dVfIZ1O44EHHjCHjsZiMTNXe3p6kEgk4Pf7sbKyArfbjYGBAbS3t2NjYwOvvvqqYYWOjo7i0KFDmJ+fx8DAAJLJJBYWFpBKpUyk++CDD+LSpUvo6OjA1tYWgF3ol3OXbFuF4sg61DJQNEJ06uicKe1eoyDOZ82P2bkqrif+cHyVBMV5xHFnnpZ9SmdUGcOO3CmO4doDws2XajSAOwvvqpAyTMWneTCgueSRQiu6D4rerGL4/JxGcpozU3iEm3hpuNjWaDSKUqmEeDxuFrbWR5ydnUUulzOVE1gFfWtrC0tLS6jValheXkZnZyfC4TDOnTuHAwcOYGpqCg888ACSyST6+vrQaDRM1FQsFtHV1WXO0AqHw2ZfVjqdNq8TfkulUqbiAY0VoyySOFTp6X4jrYfI/mLB4EwmYyAv1hwke5DPyntpfxM6ZA4sEomgvb0d5XLZMBZjsZhRyiREdHd3Y3FxEVtbW4jH46hWq2ZDMBmMKysrWF9fRzweR19fn4EN4/G4MdLVatVEqwMDA6hWq1hYWMCjjz6K3t5ec+YYx71er6Ojo8Pk6QhdBoNBdHR0wOv14urVq+bgzZ6eHtx777343Oc+hx/4gR/AwYMH0d3djdnZWczOzqK/vx/79u2Dx+MxpaLIMCVsrg4ZCTGESzl2dI4YMSkkbsOOrfaJKcHCZsgqs5Hv6TYWtk83KCusznF3Iq7XF8dw7QEhKYL4O+vlMYKh0meJIipO5ieA3WK5iveTjaWK0WZnAWjKTQEwORiXy2XIDPwf2DWaXIi8Fxl6ZJHt378f5XIZMzMzqNfrSCaTKBQKOH/+PMLhMNbX102O68EHH0Q6ncbNmzfx8ssvY2VlBa+88gqOHj2K3t5eXLp0CcPDw7h9+zaCwSDm5ubwy7/8y/D5fPjyl79smImEk2KxGDY2NoySX19fx9TUFPr7+00UxfJDrALBnAy3BnCvGHNVly9fRrW6Uym+t7cXo6OjqNfrJg9EBeb1enHy5EkzrowImE8j83BiYgLT09MIh8PGG2dh3K6uLtPO/v5+tLe3Y3FxEY1GAzdv3kQ+n0ckEkF3dzcuXryIVCqFtrY2k4eLxWKmigercQSDQZRKJXR1dRnDlUgkzJlaBw8exMTEBG7evInPf/7z+Imf+AkkEgmk02msrq6a/XpHjhzB8PAwAGB9fR2rq6tIpVLG8JLCTybo+vo6AoEAzp49i6effhq///u/j3e96114+OGHMTAwgFdeecUcCfNv/s2/wac//WlDwlGSULVaxdbWltmkTeOiVT84B2lAgOYTErh3jcQIjjWwe0Akx16hdho6ljZj1JTJZAxEqCW1CJuznYQUub7sPJsjzeIYrje4qLGgKMmA/3MRKOynnh2wC6vQwCnbz95HQmiPpZT0ekBzQVE72iNmz+vq3rNarYbNzU309fUhkUgYpRKLxRAIBMzxHvSoaVSp7Oh1X7p0Cbdu3YLb7UZvb6852DEWi6G3txe9vb24ffs2Tp48iaNHj2JjYwPlctnAriQ+bG9v48qVK8hkMoZJt7q6iq2tLUQiEbS1tWFubs4oFVajVw+aUVsgEEAkEkG1WsX09LTJl7BSxtDQkIky+/v7jcKMRCLGAeC5YpFIxECVwWDQnJjMavla+QHYcRY2NzeNcerp6TFQIfNXJLQwKgRgNjITHgyHw+js7DSwWyQSMTUeY7EYKpUKfvu3fxtutxvJZBL1eh2ZTMZEcMFg0BBbeJgknaft7W0Eg0ETIXEcNjc3AQDxeBzveMc7sLa2hm984xvYt28f/H6/mYuLi4t48MEH8YM/+INIpVJYXV01c10jVEZWfF41EnQWOKeJDijN3SZFaGUYzmfWtaTxotHSfXA0fDRiGrVrpE7DxrHRkl4OQaO1OIZrDwg9bXpiZKJRqQO7uREqMl3MCt/p+1TivAapu4ScuLAU8uIPFyINHRcnvdVGo2GYd9zTxLxNOBzG2972Nmxvb5uCs0eOHAEA49mPjo7C5/NheXnZkAUYBZ04cQKTk5N45plnDJ38bW97G65fv45isYjl5WV0dXXhf/yP/4GxsTH86q/+Kjo6OrC6umoiy1AohL6+PtMuVl33eHYPhkwmkyYfQzbc/Pw8rly5Ygwp+4MK6Pz580bB0aOPx+PIZrPI5XJoa2tDR0cHcrkchoaGEIlE0NPTg+3tbWxsbBjlxz7TM6oGBwexsLCAzc1NbGxsYHt7G729vSa/2dHRgWKxiOnpabMPLBqNolKpYGFhwRiCQqEAl8uFUCiEzs5OhEIhhMNhtLW1IZFIYGRkxCjq9vZ2RKNRRCIRrKys4A//8A/x6KOP4ujRo8jn87h9+zauX7+Ovr4+TE1NYXR01FT9YAUT5o54tlgkEjGbt3t7e02/JJNJPPDAAxgeHsaTTz6Jp556ChMTEzh8+DCWlpYwPT2NK1eu4NChQ/i5n/s5fPSjH0V3d7fpCzUsFNt503wVf+xDHJUswXlOxEKhPr0eHT/mQbnvjpGgsn5piNVYKjHELqHmyJ3iVM7YA6JYOtDMOuKiVHxcKe/8HqEH5h/sHfvAbiUJLn79nhIy7L1lvK96vQoV6mttbW0YGBjA4OAgcrkctra2DIkhlUqZjaiJRAJ9fX0Ih8Oo1+smj5NKpQyx4Z577sGBAwfQ0dGBeDyO48ePY35+3tTAe+CBB5pqBrLeH6OkXC6HUqmEzs5O9Pf3o6enB+FwGPF43HjOGpFoG1lSqFKpmIhoaGgIR44cwUMPPYT9+/cjHA6j0WhgcXHRGPBEIoGenh5z1tbm5iY2Nzeb9tnxe9lsFh6Px+T2VNFyXEmyKBQKph+ZlyMbMxaLYW1trWnbAitRtLe3m5qPoVDIKE/OCUYHW1tbOHfuHP72b/8W+/btQ6PRMEeq6IZtRmVsDw0650uhUEA2m8Xi4iKOHTuGyclJszHb5/Mhl8shGAzinnvuQSaTwdLSEjweDxKJBDweD27cuIGVlRX09PSYLRKcz1r6iaLrgo4Wmbi6p4/X0HytTZ3n50huUQKTvddSEQlGXVxjdCrp6LFqCteJXSrKkTvFibj2gBBX1wQ0RQ0JPXzb8NhUW76nzCVNUttHSNjsKt7PrlvIRczSRWwnFSbbMjw8jN7eXkN7J7tqaWkJGxsbGB4eRjAYRCKRMJtLeZ1isdhkUGgMSacHYKo3jI6OIpPJ4C//8i/xjne8A/39/aZ6ORW32+1GX1+fqTm4urpqCsOy3xXyY76GipQVL/x+P0ZHR82ZYiREZLNZPPfcc1hdXUUymURvb6/JsZBEMDc3h8HBQfNcgUAA+XweW1tbZlNwKpUyOTfOBYV0NSLl3jUe4tjf34/r168bJc9xYoTudu9U2ic0SBiVY8bTl//qr/4Khw8fNtFToVDA1tYWJicnsbS0ZGoncsO0RotkUpI0wcr1fr8fN27cwNraGkZGRswWgtHRUXR0dGBxcdHk4sLhMObn53Hz5k10dHTg2LFj+NrXvmaiGSVNcK4pVKfIA6NrIhi12s6J0BqxKbyt60dJSwqT8/OMVBk9adt0/aiDwLFUkohjvO4ujuF6gwsXGCE9Ghml3OoekVptp5gpSRbqDSpzjdGV0tVpzNLpdNPeMGVXMUfGRQbsVqPn/zySgt4pqdIkGdxzzz3o7OzE17/+dWxtbaGzsxPz8/O4ePEiqtWqYbMpQ43U7f7+fpP/InzH3E+j0TBwGdl79913H27cuIHf//3fx8TEBH7lV37FRAPJZBLAboFZ5sAY8eRyOVN/j8/96quvYmxszEBca2tr2L9/PzweD5599llcuXIF4+Pj5jiRRCKBs2fP4sqVK/jyl78MYCei2r9/Pw4ePIhcLoevfOUrSKVSuOeeewwtOpfLoVwuI5/Po6enB2NjY/ja175maO48P6yzs9PktVZXV41xA3aipY6ODpw+fRq3b9/G0tKSYdh5PDuV21k1xOv1IhqNoru7G2632xBZkskkcrkcfvM3fxMHDhzA29/+dtRqNXR0dOCll15CLBbDvffei6effhput9uwPhOJBLa2tpDL5RCJRNDf349cLodsNotwOIyhoSG0t7fj4MGDcLlcuHz5snEgSqUSxsbG8C//5b/Er//6ryOdTsPv92NoaAgzMzOYmppCoVDAO9/5TsTjcfy///f/AOzmhGyHi05XpVIxbFDOTxob5g1tlq7u4eOaISpBWJd75Hg9Qr1cDwpj0mHQnBsNI18nvOjkt+4ujuHaA6LVq4Hm0k702DRi4kLVzcoURmZcFPQ6uVjsRHWrSMuGB22GFqnPFC5mRgc9PT3weHZOyM3lckYBcGMujS69VebN6LkHAgEDL/He9JbL5bI5DZgR6iOPPIJQKISXXnoJ+XzeKCndH8bnCAQCpr/IRCOExFN7SS3XfAgVWCaTMezHWCyGnp4eDA8Po1arobe3F7FYDKFQyPRnNpvF1tYWisUiDhw4YN6r13dOLR4YGDD305wmx12hXX6Ppab0oMhwOIxsNmvGgdECn5nVSVgJvlgsmvfn5+fRaDRwzz33GMPH3F8oFEI8HkcwGMTq6qpR+tzsnkqlsLm5ifb2dnOki1ZsZ7He2dlZrK6uYmRkxMzbe+65B0eOHGk6xDKRSGB+ft7c6/Dhw8ZwEXpTeFCNEfuH/aiRj+atbESDr3EtKAtRt5MwwuKcsdcO769GTk8sUEPqRFuvLU6O6w0umuzVRLNuamQ0RaWhJAwuYtuwaOkc3UOii0ejOIU69DMKF+p7uph18QNAT08P2tp2jq3X/FYul2vKG5AAoTXoisWiie4ikYiBzliqifdXCnQkEsGZM2cwNjaGV199FZVKxbDtqGiYg+JGaDXoPEaESntlZQWZTKaphBCT6z6fD9vb21hZWcH169fx9NNP49Of/jReeOEFYxgIxWYyGbz88svY2toyEC2fPZvNolarYWJiwhgPl8tlolnCrMzTsZYeAPMax6Ne36nIns1mkUqlDLxK5R0MBtHZ2Yl4PA63e6eyBg1aPp/HSy+9hBMnTqCvr88Yhmq1io2NDaTTaWSzWSQSCaytrSGXy5n3Q6EQKpWKIbdwjEqlkiFncJ4VCgUsLy+bnM/W1hb6+vpw//33Y21tzVSTTyQSBspcXV1Fd3c3ent7TQ5JHSQlOXCO2lVmNLrSnLDOX84TXptzmtsRFEpUJ1BfJ0LBUmacdxwj/lYiiSN3F6eH3uBCz407/bnglMVE6E4hBy1xQ6VLrF89RZYtYnkgKgUaK3rnNAjqTXLBqWHTygVK6iAhwu/3I5FImNJHbW1t6O3tNbXwuCmWRnl0dBQjIyOGXLC+vo65uTmTR6nVaoYazWPgSSVfW1szCs7v9+Pd7343/uRP/gQf+9jHsLKygkOHDmFwcNAkx2OxmOlf3Qbg9/sxODiIffv2AYCpdtDX12eOSiEJgQc/sprG9vY20uk0ZmdnceHCBXzlK1/BF7/4RXi9XszMzOD69etIJpM4evSoYfxVq1VcvnwZX/jCFzA9PQ2Xy4X19XWT26KydLl2zvZaXFw0ObByuYzFxUVsbm4aGIpHoiwsLODGjRtNsG40GjUbtqPRKAAYCLKnpwdPPfUUPve5z+Gtb30rurq6zGbkp59+2mzo/tSnPoV3vvOdePe7342bN29i3759aGtrQywWM8bg+vXrKBQKOHLkiCkDRlh3eXkZqVQKN27cgNfrNfUK8/k8fvzHfxxTU1OYmZnB3NwcLl68aObt888/j3Q6jR/+4R9GV1eXieSY8+OBmVonUuF2zScxn6mOFv/mGCspwyZn8JpKZ6/Xd8qescoKDSbnFuea5qjr9Tp8Pp9xyBxpLY7heoOLQgaMjpSIwfd1Marh0IKdNEQ0UJoT0MQ2hfdQmEMjPZt5yM9qMlphx1KphEgkglpt56h5PXWY+4y05I7L5TJVFTKZTJOh1BN7ARi4jwcl+nw+rK2tIZvNmiiiVCrh1KlT2NzcxKc+9SnD8mOUFQwGjdIjPFkoFAw0RvjL6/UiHo+js7OzqWaknfMjTKu19Ri9rays4MaNG031EBmp0DkoFou4efMmisWiMUp6ACgjSxpIjjlPFWZ0qtCpRtLMc/FASEbj4XAYkUgEjUYD58+fx4EDBwzrjdHQrVu3MDAwgMcffxyTk5MmqiUzkYaAm5p7enqwsrJizjYDdoryZjIZ87zsJ56dtbGxYfJj3NxcrVaRzWbNRt+VlRUcOXIE4+PjBhrV+apzW1l+fJ0/dlV3JTbxbxo/XR/6ea5HRnbKElRKPOeIQv40xg4x41sTJ8e1B8Sm51IYAWktNt07AjRXv+bCU3iDyojXo/GgEuVmzVAoZEoV2acvM4fFazLpzxxSo9EwxikUCpnP67EsVKRerxf9/f0YGRkxEFi9Xsfy8jIqlYop18RkOyMiMt24SbnRaODWrVt48skncc899xhKN+sRXrhwAR/72Mfwj//xP0YsFjOkAh4bMjo6ipWVFSwsLJiDLvlshLSCwSDm5+dRrVbR2dkJYLfKiG5J4HP4fD6Tm3v55ZdNman19XVT+YOe/MMPP4xAIIAvfvGLTdEtaeupVMrAmBzDQqEAn8+Hzc1NLC8vo6+vz8Bb4XDYQHXVahWJRALJZBKdnZ0YGRkxkaLH4zF0/aeeegoHDhzAvffea0hAmUwGf/AHf4BarYahoSG0tbVhfHwcv/ALvwCXa/fkbUYpAwMDuHDhAra2trC2tobz589jbGwMhw4dwm/+5m/ixIkTGBsbw8mTJ7G+vo5nn30WZ86cQXd3tykq/Pjjj+Ov//qvkUql8CM/8iMmouzu7sb09DTe9a53Gafj2WefNXR323DRaaNDoXR3RlMKsdtwO42N1hLkdVkRxb4n965p/lnhfK4NEkoYmTmU+NcWJ+J6g4tGT4qva2TERaF7Uvg6sBupKdynojkqzYVp3oqLTH/sRWonlbk4NSKjQuNhgeFwuElhuN1udHV1ob+/35zrdP36dWNwWaRWK1+43W5sbGzg9u3bhq6ey+Vw7NgxhMNh3Lx503j6hFXPnDmDp556Ck8++WQTRbtUKqFSqSAcDqO/v99UrudYRKNRrK+vG7iQESMjKVLyARhlqM6A5tU6OjpMzol9xT1QhOp0LxRp+drv6sWzbBBrLZKMwciVG6oBmILDsVisqUoJjeLzzz+PV155BePj48bgut1uzM3NIRqN4uTJk0ilUrh06RJeffVV9PX1YXJyEo899ph5Fkauw8PDWFtbQyAQQC6XM9Xq29vb8eKLL+L8+fPmzLLl5WUsLCyYZ97a2sLo6Ch6e3tNpYrh4WGzX4zwbE9PDyYnJ40RsvcxKjVdIygaHc0v2vlcm5SkW0gIL9LQ8YdOGK/JiE7HTNc03+P/Clk6cqc4husNLrp5k5NeJzfQTIig962MKd0zorg6sGsY+X1GbWRO8W/duMyFq4uS96ESUOVB5cB8QSaTgcezUxS2Wq1ic3Ozif7Lkk2rq6t4+eWXsba2hkgkYnJ3mn9yu93GmFQqFZPvSaVS5jynJ554ApcvXzYEDMJR8XgcX/7yl7G+vm6MM3NTbrfbwIE0HpVKxRABSK1mH9I4xONxAGg6Jp59r1sQCCHGYjEkk0n4/X7zerFYNHUjuX2B8BlZg9Vq1RhZQmzAbp07svmAneM4GKlxwzHrXSaTSdNmkj+uXr2K8+fPo7e3F+Fw2OzFymQyOH/+PB5//HEcPXoU2WwW09PTuHXrFiYmJvCDP/iDmJycNHucWLNyZGQE+/btw6FDh1CtVrGysoLl5WUMDAwgGo2anKXP50M+n8fc3JyBA9PpNHp7ezE5OYloNNpk1FlphI4NjSxLmnH98NkYzbSCwLl2WIZKv8t5qd9RdIKv343CzvmhOTDbONp5YcdovbY4UOEbXDjhCc/RgFC4CJi4J2Rne5uKzdP4Eb4Cdgv5KuRn57YU7uDeMv6tZXL4WXrNwO5ZRo1GA5cuXUI8HjcVJbhPhpXDx8fH0d3djcuXLyOdTiMWi8Htdhs4jJFErVZDV1cX4vG4qbyQz+dx3333IRaLYXNzEx6PBxMTE/B6vfjGN76Bf/SP/hHy+TxyuRwefPBBXL9+HZ/4xCdw6tQpjIyMGM98dXUV4+PjOHr0qNnkWqlU0NXVhYcffhi5XA4HDhwwxXNdLhfi8bgpDkxGXa1Wa4ra2K+NRgOvvPKKOfYjm80a5clch8ezW4We+6EIIaVSqSa4qVKpIB6Pmw3auVwOm5ubcLlcyGQyOHLkCDY3NxEKhdDR0WGMAll+r776KlKpFGq1Gm7fvo377rsPg4ODWF1dhdfrxfr6Os6dO4dyuYzf+Z3fwfr6Ov70T/8UqVTKkA+KxaJhMHZ1dZkSW8yh5XI5Y1g4NoODgwCAz3zmM3j44Yfh8XgwMzMDj8eDgwcPYn19HV1dXXjzm9+MXC6HCxcu4MCBAzh27Bi+/vWvo729HV/96lfh8Xhw+PBhTE5O4qWXXjJzr1XOl8ZDafaMftiXzOmRYGETpBg9a91PMko1QufasBmDSshg1MZInFG8I3cXJ+J6g4tCbTZEqKw9foaGTSMgepQKByqpQfcrcZGrsdPktm5UpgFVY8rFTuH/utE5n89jc3PTRAlsExU182AulwtdXV3o6uoyf3s8HkM0AHaNKgv07tu3D319fRgZGcHNmzeRSqUwPDyMU6dO4dChQ3jppZfg9XrR0dFhzvRaX1/Hc889h+npacRiMcRiMdO/ZCjyWdzuneKyc3NzcLlcxpiQXk4ok33KNipsykME2ce5XA75fB6hUMjsR6NCIxzG3BuvSYKNbpzlWLAdzCXyc4wOGMEBO0WDb9y4gQsXLuDll1/G+fPnTTFgrbRx+fJlbGxsoKenB/V6Hd3d3aaqPM9NKxQK5pBShbS9Xi9isRji8TgGBgbQ399vIEkyMHO5HG7cuGHm6ubmJhqNhmFatre3Y3h4GNlsFqurq3C5XIjFYsaRun37NrxeL4aGhpogOv4wgiUa0Wq7BvsH2HXuFFK01yT/5nhp/orjbq9fPp+dByXsqEbMyXHdXRyz/gYXTdoqfs58FgkUXEg68ZksVu9ToyiFIBVX58ICmjc7q3CxAjsKnQcUqlFUYghPk2XV8Hq9bjx1t9uNVCqF7e1t9Pf3AwAWFhZQq+0cQbK2toaHH34Y/f39uHbtmmkf81ybm5uYmJgwxAKfz4fh4WFUqztHjNx3333w+Xw4efIkPvOZz+CVV17BPffcg7NnzyIUCmF7exu3bt3CX//1X+Of/tN/ihMnTphoUJVnOBxGoVBANBrF1NQURkZGMDg4iPn5eXR1dRmCB7BboZxwJvcq0UGIRqMmQnS73ejs7DSFcdfX1w0Tj0bS7XabqIxRAABzijDZfvV63RyLQuixs7PTRAuMVlmBfnZ2FgsLCxgeHjYMxWg0ikwmg0AggJ6eHrz66qumFFd7ezvOnTuH48eP41//63+Nz3/+87h48SIOHTqEdDqN+fl5pNNp9Pf3N+WSOjo6zN65SqViclk8xysejxv4sLu7G7lcDhsbGxgcHDR5wImJCfT19eGll15COp1GPB7H1tYWfD4fFhcXMTMzg0ceeQSLi4s4f/68mavMa+p8VNSBc5W/FUEgCYhz3iZW6DXJjAV2jaDmfblmeE9eT3O8/I5CiY7cKU7EtQekFWVd941wUWpiWQ2IsvaA3QhK8y/6HV2gKkrIsNujdGw1hBoRMmHNzdQ0jto2RiOs+r6ysmJK/mhFDoV+Go2GyXtUq1WjpDs6OgwEyc239957L4aHh3HhwgVDHvD5fOju7obf78e1a9eMASUFHYDJe/n9fgAwlHYAWFtbM3mm9fX1Jqo+jYFuEGeeLhgMoq+vD2NjY4byzYr66XQapVIJExMTGB8fRzKZNHvy4vG42ZenZ0NpVME8VqPRQCgUMnkqOjVU3GwvoVg6E6T8b21t4fr16zhx4gTGx8fR399vNk8fOnQIjz/+uOlP7sfKZDLIZrOGPKMUb46XQtgsC+ZyuZoqvc/OziKTyZgIKhQKYXh4GI1GAzdu3IDb7TZQd6PRwPT0NJLJJMbHx02UT1HkgblHziXbADGK5/d1CwiFf6sR4rW0UoyiHbo+dA1qWwCY6Nhef47sihNx7QFRthKNAhl2uhlY4T0qCY2kdCHYsCO/o8ZQKcG2YeI1ADQZUTVm/Aw9WNbZS6VSJtHOvVG1Ws0cc9FoNLC+vo6VlRVTd5GEC+6FAnZZewAMRZ5Kh5Ep93VVKhWsra0hkUhgcnISuVwO58+fx/j4uIk+ent7ceHCBbS3t+NNb3oTyuWyOYCShAhu0o3H44b8UCqVTKWLWq2GXC7XdGK1KjL2BckkR44cQV9fHwYGBgyhIpPJmH12rNEXj8exvr5u6hT6fD6Uy2WkUilTOkuPziCTlJVDeJCjHs1RLpcxPT1tFDP3svGYEwB47rnn0N3djYMHDxrDWiwWMTc3B5/Ph3g8jlOnTuFLX/qSuQcdK+Z76Axxb1qttnN2VWdnJwqFgtmGEAgEcPv2bSQSCYTDYSwvLyMWi+HgwYNmjoyNjWFhYcGc2OzxeDA7O4vt7W1MT0/j6NGjpnYkgCaDY6MNmge2561GSlxH6hSqM6bQKA2ODQ/TQHNs2D7du2XDkk7EdXdxDNceEU0yM3lrM5lIeafSIuZu58XUiOmGV/2sXoef42v6vh7NbhtPxfxpuLxeLxYXFwGgKQ8Ui8Vwzz334MyZM1hdXcWFCxcQDocxNjYGt9uN2dlZuFwu9Pb2GoPK56Xx4tlRlUoFN27cgM/nww/8wA9geHgY6XQa6+vryGaz6OzsxOOPP44vfvGLePHFF/H2t78dw8PDhn5+7tw5pFIpdHZ2YnZ2FsVi0dCvM5kMEokEBgYGzBlR/f39mJ2dRa1WQ2dnJ2q1GvL5vCFddHR0IBaLmcK42t+sIJ/P57G2toa5uTmsra0Zo7i8vGzIK1tbW6YfI5GIybENDAyY3CFhuXK5jLW1NWNsycBzuVxIp9PG4PF5uE+NZ4ytr6/j8uXLOHToELq7u/HZz34W8/PzZv8YWZRtbW2IRqPo7+83Fe0bjQaCwSAOHjxomJqpVArBYNCMH+dHJpMx1VDYH1/60pfwwAMPwO/342//9m/R2dmJoaEh1Go1HD58GI1GA1evXsXhw4cRj8fxv/7X/0Kj0cDc3BxeeeUV7N+/H52dndja2jJzlUabBAquF80nETnQslF0yBilatSmUZOSPOhYch3YzqNGfOoc0uAT+ncM193FMVx7QHQSc9JrtKU5JWLoNEIKQ+hiUZageqea59LNxcTndTFpdKZ5Nt3Tovkxl8tlqj/QU9VKFclk0uS0lpeXTR6I0BEp8HpUBoVecHt7O6anp/H1r38d73rXuzA4OIhqtWpKTdVqO8efeL1evOUtb8GNGzfw4osv4syZM0ZBtrW14dlnn8WRI0fMwY+komcyGfj9frNvi0aFcCCZjux/wqPFYhGrq6tNSotVIUgA4VljmUwG5XIZGxsbaDQahtnn9/uNI0GlvLa2hra2NoRCIVPaixR2AE3RJyn0PJU4m80iGAxiaGjI5GgajQa2trawsrKCzc1NXLhwAZubm4YgkUwmjbPC/mfNReYXyco8ePCgOSZlfn4e29vb6OvrM8zCQqFgNkQvLy+bPuHG73vvvRdLS0u4ceMGotEowuEwfD6fqcLBGolaQHhxcREHDhwwdHmuEeaJOT91O4cSJTSi0siKEC+wS8iwoT+uCV2Lmg/T79AI8rM22aMVrd6RXXEM1xtcNDrSRaJenm4uVo+QC5SfIUPNZg+qoQKa968ofMjP6d+6+BTO1L8pZMeRtADAHKY4MDDQBP0wf8Tj3wGY71ERMTpgjqTR2KGJMzHPPUXcXEuYi1FLIBDA5OQkXn31Vbz00ks4e/Ysuru74fP5MD09jdXVVRw4cACrq6sGumP0wJwTK9srQ5CGi8qd1Gv2PwBDriFpQ2vgZTIZ9Pf3w+VyYXZ2timp32g0mu7pcu3Q0FnLMRwOG8YkWX8k+GglEt6Px83QMJVKJaytrWFrawvlchnpdNrkjTgnSBWPRCLweHbOJHv++ecxOztrIMBarYaFhQWMjIw0OT5UynxWt9uNcDiMcDiMfD6PSCSCbDZrzvcKhUK4ePEiEomEOcGZ0O7169fhcrnQ3d1toqNcLodqtYqBgQHDUiTBopUjp/k3nceaH1OovhVBQ2uAUrTaBteQ3oe5SFbh5+c1D6rtc6RZHMP1Bhcaqrvh5Uxqc1ECuEM5at5Hc18AmhhTvIdGVrZHymtxAbOkDXCnJ6pYfjQaRUdHB7LZLCYnJw1ECQBDQ0Po7Ow0eZ4vfOELmJubQ19fX5NyCAQCJtphEVLWhAsGgygWi/j0pz+NWCyGt7/97bh9+zZu3ryJl156Cevr6ygUCggGg03KY21tDRMTE7hy5Qpu3bqFf/JP/gk6Ojrw1re+FS+++CKuXr2KQ4cOYWZmxlDINzc3DeRHuDQajeLAgQNYWFjAzMwMarWaqfe3vLwMYBc6Zf+QBk5iBwkb9Oz7+/vN9+v1ehMsyzHj0S4koTQaDVy5cgUHDhzA2NiYySV6vV5ks1lEo1GTVwwGg5iYmEA8Hkcul0OhUMDm5iampqZQqVQwODiIiYkJFItFAxG63W4EAgEkEgmMjo4aNmkikTCFjufn501F95deegl9fX04fPgwQqEQ0um0IZ/wiBv2XTqdNhu7b926hWw2i2PHjpkKJw899BCOHDmCYDCIAwcO4JlnnsHTTz+Nw4cPm6iuUChgfX0dp0+fxtzcHC5fvmzYtY3G7nYRLdvEs+70cE4aFn6HMCLXmu6V5BxlVMsybGTSqmNJiJ9nv9l5Nr22nYN2ZFccw/UGF054G0+nMWFdNq2moZGODVVonsz29BR/B3AHHGnj81yUFF5LhYs5FAqZ6CIej5vK8CMjIwiHw0gkEmbT8MbGBlwul4G9aCR8Pp8hDVCBezwek5+Zm5sztQrz+TzOnTuHlZUVVCoVRKNRDA0NmZOXy+Uyuru7USqV8Ld/+7fI5/NwuVyYmZkxJJEjR47gG9/4Bmq1GmKxmCEQNBoNQ22nZ87KFMwtut3NR7AAu3AmjTmVKJ+V121vb8fm5ibi8ThCoZDJt/CoEt2grHAU70VmJT9HRc1+prPi9XrNycvc87a1tYX29nZ0d3djZGTEHDdCSJQ5LRJEWNEklUqZ6yYSCRO5sZxWPB5HT0+PgRfr9Z2jbACgs7PTMCY5p3t7ezEzM4NTp06hWq1iamoK3d3dOHbsGFwuF6LRKOLxuIED4/E4VldXkU6nsba2hvHxcQwNDeHGjRtNDpXmoXSOaiRorx1dHzbCwGeh2Dlie93yunQAlciiUZrNNHSkWRzD9QYXemsKUzC5T/jFprlT0TPnQmVAL1MrV9sFQ4HdA/m06gMp5vQE7SgPwB1Kmew/XrdSqZhzmdbX13HgwAEcOHAAU1NT+IEf+AEAwCuvvIIbN26gu7u7KXcUCoXM+Vv5fB7pdNqUL8rlcjh37hwikQhGRkbw3HPPIZvNYnBwEGNjY6Y6RL1ex/j4OBqNhiFCdHR04Kd+6qcMzJrL5ZDL5ZBIJHDixAkcO3YMf/zHf4x6vY5IJIJIJILOzk7k83msrq4aBdzd3Y3+/n6srKzA7Xab56eSYnRIYoAqKEK3/D+Xy2FmZgb1eh0dHR2maDGJA7w+IVOlXgO7xZfz+TxmZ2eN0WLFDJaAovGZnZ3Fs88+a8b92LFjpu+npqYQCARMEWEaRkawPT09GBwcxPj4OKLRKKanp7G4uIhoNIpEImHm6K1btzA3N4djx46hs7MT7e3tKBQK5ocbmzlnY7EYnn/+eVOzslKp4HOf+xxGRkZw+vRpRCIR7Nu3D7lcDi6XC319fSiVSkilUrh+/TpOnz6NBx54AIuLi7hy5Qra2trMHOaGbBaQpnAclP6uaIc6e1qii+tHEQ8aJIUZ+Z4SrQjj8768pw09OtIszkaBPSB2bUK+poaDi4D5C11E/J4mp21ChlJwlWGo5A/Ng6nhUmhSzzSyozsys0qlElZXV81G6pmZGbS1tWFqagrf/OY3jXdO0gfLQrF9PGLE7XZjZWUFV65cQUdHB7q6uvC1r30N2WwWvb29SCaTJr9EJZ9MJg2ENz8/j9u3bxv6OZVwIBDA0tKSiT4eeOABEyXyiJB4PG72iQEwubuenh6T46EB0fqNVJoaGauiUueEikz39GiOUvfwcVx1HxcrkGhea3Nz0xz+2Gg0MDU1hZdfftnkx/r6+gwJZXV11Rg9ZZeyGDEPd7x16xby+bzZsByNRpucKdLsAWB+fh5LS0soFApIJBKmMgojcs6vtrY241y43W5TRPfrX/86lpeXzWbz9vZ2bG1tYXt72+QTeRBmLBZDV1fXHds16AjqoZhaqon9qMQiRTFoZJTKDuAO8hI/qwQozZ+xHRqV65px5O7iRFxvcCHMo5g3lRnQvBBoOOgJ8vv8npZdoiephkiP5AB2jyKnV6lEDn7G6/Ua71WjN2VV8fo8EoUMuv7+fgPtpNNpvPLKK7hy5QpOnTqFRCJh2kgCASMOKtPbt29jenoaAExepK2tDYcOHUI0Gm3ynFlUt9FooFgsmtOWC4UCpqenTYTW2dlpyhFNT0+jXq9jbGwMfr8fFy9eNHkYzbPxuPt6vY54PI6hoaGmgy7ZL7YBAmCMN8dF9/fonivdDKuwr16TY0j4lNUquFdKK8azL27evIn19XX09/cjHo+jVquZAzjr9ToSiYQxKjSaCoMVCgUsLi6arQh+v99sUmZVjEAggP7+ftPfZCkmk0lTYov9yPnEHNFzzz2HsbExVCoVxGIxXLx4Ec899xwikYg5/JKkEIXuyJjs7e01r5GgwshOWYRKQtL1xvdtI8ax47ym2HsZCecqSkGiFOeBRmN27syR1uIYrje4KBuLioOLhYtAqe38YUJaCRdUorpvRWnuirG3ysPws1qXj22yCRqELKkE2trakEqlMDk5abxwALhw4QJcLhdeffVVPPXUUwb+I6zm9/sRj8fh8/lM4p3MvqmpKbNnaXFxEQMDA2afj9K1C4UCMpkM1tbWzAm6wE5uhfuj1tbWcOPGDRw7dgwDAwM4duwYstksFhYWkMlkEAwGcf/99+PixYtYXFzE/Pw8fD4fEokEotEotre3DVGFR7Zks1lzECX7Usk0AEw/sn/pbZPAkEwmjeNAmNfuZ44XHRdWvSBUuri4iLm5OQSDQUQiERw9ehTxeBzZbBbr6+vmROr5+XnMz88bOJTHxzC6YKkojfoY0V29ehWhUAixWAyDg4Po6OjA5cuXzeGR0WjUREgbGxtNe668Xq85EaCzs9PsCXzPe96DF198EX6/HwMDA9jY2EAymcTf/M3f4Nq1a/hv/+2/4cyZM3jyySeRSqUwNjZmqoeQdMMtDcyRsrYjgCamoVLd6fAQRtSx0TJRHD+iABoh00DacLGuJSV8eDy7Z4XRYVGn1JFmcaDCN7golKdMPzu/BKAJkuKkVziJBkYTy61eo/JU4wbcCZfwtypbLm6NArhwg8GgOSwxGAwiGAyafUipVArpdPqOxUqDwOS1HqVRqVQwOzuL27dvY2JiAkNDQwBg9nOR7LCwsIDFxUWsrq6aPWDBYNAcrhiJRMxhlOl0GoVCwZwvdfjwYQM3bm9vY3BwEKOjo8bY5HI5ADAQKA0LS0npJmmNqLQyiVLhNbqlQuTJvsyHcD6o8VBPnf22vb0Nn89nYFaNXmmcWJVjcXERCwsL5gRk9h3p5Tr+VPLq1ABAPp83dRaBHceAURjzksFg0BTazeVyWF5eRiaTMfR9KvdisYhIJILJyUksLy8jEAhgYGDA7FlbXl7GxsYGEokEAJiN3LzG6uqqaYNuKGY/aDSj+V8iBRT7NdvZ07XDtaD3USNFg6ioBw1WMBhsisp0DTlypzgR1xtcuOC4gLiwtSoFsBuZsTpCsVi8gwGosIgqOYU2bENFQ9Tqs4yI6GnSgNGg0jtl7uHUqVMYGBjAlStXEI/H0dvba45ff/nll5uK5TK/RSr44cOH4Xa7cfnyZRN10btPJBLo7+9HvV431HO3221OJw6FQqb2IEs2sUIBAEPeoMKZnp5GrVbD+Pg4BgYGcPbsWRMBXbt2zRQCZiULVsZYWloy+8/6+vqwtbVlxkL7UdmYjFgIHzG/onmYaDRq9mnZ42RDTcyNTU1Nwev1IhKJIJ/Po1AoGMPC54pEIlhdXcXly5exubmJWCxmWJc8I62rq8scvaJGiqJ5IW4OX1hYMGMfi8VMzpC5sGPHjuHQoUO4fPkyFhcXsbW1Bbd75/yzer1uallyM/fs7Cy+9rWv4fjx4zh9+jSWlpYwPz+Pv/qrv8IjjzyCY8eO4dy5c3jmmWdw4MAB+Hw+3LhxA6Ojo9i3bx96e3uxuLjYtPFYoyzmHJmzYr/TgNDgKAGGToVCwco6VEjVfp1RHdeNnuDNa+tvR+4Ux3DtAVGPzt7xz/dtofHR/VtUPAovKeGCClU3KPOHBVvtIql8Tb1DeuWah0kkEqbcT7FYRFdXl6mLl8lkcPXqVUQiEXR0dBhGXKFQMEywUqlkPHQeBHno0CFzmGMul0OlUsHCwkKTUiLMxPaz/2j41TFgmwuFAi5evIilpSUkk0k89NBD6OvrM6zGjY2NO0pu8UgNAEilUiYPV6lUzB4ojovNQFNHRKMbrYKin2MEBqDJ81fYKp/PY2lpyVTf0B+SLXK5HK5du2bYlSRQEKrTYzbYJjWcgUDAnGjNNnKLQKPRMKcsM5rM5XJYW1vDxsaGIeBks1lkMhm8+OKLGBoaQnd3t+kX1uPs6+vD0tISurq6cPDgQUM6uX37NsbHxzEyMoJvfvObyGQyWFpaQnd3tymhNTQ0hI6ODszOzpq5qTkprgdGiQCa2LBKXOLzEcrWtaAOGw0Z1x+/r+xBRUvYZ8o+dejwry3fViz6kY98BGfOnEEkEkF3dzfe/e5349q1a02fKZVK+MAHPoDOzk6Ew2G8973vNV4oZXZ2Fm9/+9sRDAbR3d2Nf/tv/20TbuzIrtj5JWWJAbtGQr10/Q5Fk832Xi9g10PU69osRsIXSnpQaE+VFg0b29bZ2WlKG7ndO2da8boulwv5fB49PT3m6AuWH+LerWw2i5mZGXOgIg+bdLlcyGazmJqawtTUlGH+cVNsb2+viRa4p4j9RIgI2GXrMVdUqVQwNzeHixcv4qmnnsKlS5dQrVYNlZvXyOfzmJmZwfz8PIAdaKqzsxNut9tAcjTQSl1nnUalW7Pf7f09JJbouGllBY4DNzKT2KHPyvxOR0cHotEoarUaZmdnsbi4aBwT3etEJqCy8NRwkRLu8/maInKNClkWi1T8WCyGQqFg6jH29PRg37596OjowPLyMm7evGmObiGRo1KpYHx83Bxm6XLtnNo8OjpqImCWBgsGg4aI0mg0DGzZ0dHRlCsGmk/+VvjbXkvsa/5wvpJQw7muos4lx1D1G+/L8eQePTpDjtF6ffm2Iq6vfvWr+MAHPoAzZ86gWq3iV37lV/BDP/RDePXVV43n+6/+1b/C5z73Ofzf//t/EYvF8MEPfhDvec978I1vfAPAzqC+/e1vR29vL775zW9iaWkJ/+yf/TN4vV789//+37/zT7jHhWV5uAiUPEEYgwtFiRe6P0UjI5fLZerJAc0GjZUCeISH5oro/fI1jdbsGm4ATAmmeDyOQqGA0dFRsy9ocHAQg4ODuH79Omq1Gvr6+tDW1oYDBw4gkUiYvVDj4+PweDymAkOj0cDP/uzPYmRkBB6PB1//+tdx69Yt5HI5kwsaGRkxioz7nTKZjDGi3OhLeE6pz2y3y7WzL4hH3edyObz44otIpVI4efIk+vv7jYJcW1vDN7/5TVSrVYyOjpp6fQDMZl0yKZnLYlTkdrtNyR9GproHaHt7G/Pz8+ju7kZvby8ymYxxXHw+n2E2ulwuQ/mnwhwbG8Pp06cxPDxsth9wE3Y+n8elS5fMmqQxZh+wP5Q0olE/5wlJBHxfHRsAZqM3r9nd3Y21tTVjMI8ePYo3v/nNiMfj+MxnPoPbt29jaWkJ+/btQzQaNZuo9+/fj3w+j6tXryKTyZgSVBcvXsTNmzfNUS8ssMwN1JlMBpVKBWNjY3jhhReQSqWaqvYrQYIb+TXSpYOiFTNosPga10uj0TBnpCkiog4i9/bpYZbKYNQ1yes40lq+LcP1xBNPNP3/iU98At3d3XjhhRfw8MMPI51O4w//8A/xZ3/2Z3jLW94CAPijP/ojTE5O4plnnsH999+PL37xi3j11Vfx5S9/GT09PThx4gT+y3/5L/jlX/5l/Pqv/7opq+PIjigkqHt21Bjxc1SQ9CYV1qHBU6iQylK9R11wCrmpx6gstmKxaBQB3+PffD8YDMLv92NjYwOpVAqHDh1CW1sbVldXzYGLXV1dTUfA0zg2Gg3kcjl4PB6MjY3hzJkzcLlchtnHChzcXJtMJptqGPIZyTbjszDys0kufI+GOhKJGGVfqVTM8SWhUMhs5KXDEI1GjSLiFgFWhKjVaoZppmQKpUtTqDxJRmE0ocVzWWUCgKkuHwqFkEgkkEwmMTk5iX379jVFyIx6lpeXcfXqVSwvLyMcDpu8n7JWlaDA/9XY65YLzk0ljyg6oHNGo4y5uTlzjtqhQ4ewvr6OpaUldHR0mKLBHMOBgQHMzs4ilUoZuK63txcbGxumCj4jTp64zC0JsVjMzCf2q64PG55VVEKdMV0jOs/5OTqGwG7eTF/jvbVf2e+ch/odZz/X3eXvRVtJp9MAYJg9L7zwAra3t/HYY4+Zz0xMTGB4eBjnzp0DAJw7dw7Hjh1DT0+P+czb3vY2ZDIZXL58ueV9yuUyMplM08/3i3CR6R4mLjDNzQDNrD/ds6UbipUxSGPG6zKi05wY70Ejoh6prZxU8SmTitAZz6BKJpNwuVxNx7MnEgk0Gg2zQZZ7cRYXFzE7O4ve3l6cOXPGnBB85coVQ36ggYlEIk2VRvgeC7N6vd6maiJUPton7K9SqWSYdqwcEQqFsLGxYXJsgUDAwN1+v9/k46j08vm8OZvL5/OZPBLHiDkNrZyhUQ2jA55FBuxWfeA1eP+xsTHs378fhw4dwrFjx7Bv3z50dnZie3vbsDVZfJe0dxa1ZX1EpdRr3qZa3akqz6hO+0433XL8eQ2ScnQMdH4uLCzg0qVLuHXrFqLRKGKxGFZWVjA7O2s2f3P+d3V1YXJy0sDFtVoN/f396O7uNtsOtMRWMplEuVw2J1aTAKEwusLc6tjp/FVRp8NePzYsyL5TQo46eOwvmyxlR7eOtJa/MzmjXq/jl37pl/Dggw/i6NGjAHbODiIer9LT02PYXsvLy01Gi+/zvVbykY98BL/xG7/xd23qnhY1GGpEgF1ojt4dIxMqEC4KTd4DaDqEUhPDdjTXymABu8eTULlxsSt8qDmuU6dOGRy/o6MD/f39WFhYQLW6c8hhT08PwuEwZmZmcPXqVQNlbm1tGVbhe9/7Xhw7dgyf/vSn8eyzz5qj2/m8pHkrXKo5K6U76wmzJJawD5iTCQaDyOVySKVSePbZZzE0NISenh5jROLxOOLxOPbt24dGo4FoNIrr169jZmbGnLjscrlQKpWwtLSEcrmMeDxuqPfc5KtVNIDmYzE0p1QsFk11Dm4wHhgYMLBke3s7BgcHEQqFkEwmEY/HTVS7vb2NUCiEgYEBVCoVXL9+Hel0GtFo1ERbvC7Hv1QqGcICx5hV6RkReL1ekzfksygUpmw6wm7T09OmTFOpVMJzzz2HS5cu4YEHHjBHoMzNzaFYLJq8XiqVwtDQEM6ePYvf+Z3fQalUwmOPPYbe3l7EYjF4PB4sLCxgbW3NnEzNg0B5evPw8DAWFxebjATnLCE+wr+t8rw0VArn6n5I9hs/S4KFDReSrMHrkc3odu+c5sw1puxhR+6Uv3PE9YEPfACXLl3Cn//5n38n29NSPvzhDyOdTpufubm5/9/v+UYRXQBU0LqvhxCFspfUC6YXSO+eBkWjDfUiATQZO12EQPNiVqNFxVer7Z595PHsnEA8MDBgYCWSFLa3t82BiF6vF5ubm+YY+VKphEKhYM6n4n0XFxfxyiuvmD06ajAZ1bDNNjWfyoOfqdfrhhFH4WuE+Fg4d319HfPz8wZh0HI/rCNYLBZNPb+FhQWEQiGMj49jcnIShw4dwsTEBKrVKpaWllAsFg2pgYqJOSv+KHGARplj4fV6MT4+jkQige3t7SYyBtumrDduSCaRhbnH3t5ek/PT/qTjwz4lO5D70lS5st2qvIkAaN/zfzpA9XodoVAIPp8PpVIJc3NzKJVK6Orqgt/vNyWl+EzcAnH06FHDhGSbk8mk2aJAIg/nL6FDQo9KmrDhPhomm1nL+6gDp4aZzo9GWQqL8vvsH3X4AJh1y7HTdepIa/k7RVwf/OAH8dnPfhZPP/00BgcHzeu9vb2G/qtR18rKiim90tvbi+eee67pemQd8jO26CbK70eht6tQBhcLPWAaJhohYLe6O5Wg7i3Rhauevd6TEQkXFhcx80MaxWnOg4bJ7XbjyJEjGBkZwfnz5+HxeBCLxTA1NYWrV6+a7y8vLyOXyyEcDmNkZAQrKyvI5XLm4MWOjg68+OKLyOVyWFhYMLBTqVQyBkZzOZqzsPuR3jUVou6nAdB0TIhuMuZZXkeOHDEMt2AwaComAMDp06eNgWUVfL/fb45zOX36NKrVKubn5/Hss88ikUiYsalUKgaCJGOP5BJCdS6XCyMjIzhx4gQ6OzsNfBiJRBAKhQwcysizUCiY/N/o6Kg5coTkB7/fb+oG2mQdt9ttyi9xHlE4D7hpGIDJ/SnUyGciuYenQnd3d8Pj8aCzs9MY083NTbhcLnR0dKBWqyGXy+Hy5cuYnJw0e8ump6fx1re+FT6fD1/4whdw8OBBZLNZXL9+3eyB4kGUqVTKHFhJdieNCVEKni6Qz+fNGWOcNzaSwNdJrFHChg0XMoKiE8K+ZSUXhVvtiIpwtu4Zc+RO+bZMeqPRwAc/+EF88pOfxFNPPYV9+/Y1vX/69Gl4vV48+eST5rVr165hdnYWZ8+eBQCcPXsWFy9eNF4zAHzpS19CNBrF4cOH/z7P8g9SaLSZu1FiAbDrwal3pl4lIynNPWk0ospdiRt6XfWSFT7UvUhaNUOrOqhiJxHg1q1bprI6ocpgMIhkMmmUGnNRhJ82NzdRLpeRTCbNhlhgt1Yin1v30mguyaaHA7hDIbH9zDvxPToNmUwGKysrKBaLxrBojo/3ZUUOlliigXO73ejs7MThw4fR29uLdDrdVABYCRfscxrper2OAwcO4Pjx4xgcHDR7rdjOcDiMgYEB9PX1GaIKrxuPx825WW1tbeZ4ESX38J4cT44hgCZnSOEwzhmSXzhWmuvkNUqlkiHddHZ2IpFIGMPX1dVliiaT+OL3+5HJZLCxsWG2EZCVeejQIQQCAXNy9rVr13DlypWmivyEABlxMYqlIWFExvlCx47zn0ZOIyNFG7TPlLzBz/F/ex0pBG9HqUqOanUvR3bl24q4PvCBD+DP/uzP8OlPfxqRSMTkpLg7PhaL4ed+7ufwoQ99yNRw+8Vf/EWcPXsW999/PwDgh37oh3D48GH81E/9FD760Y9ieXkZv/qrv4oPfOAD39dR1d1EYTlVNKpAbNiDHiANA/MRfE8VlEZNvKYNodg5AY/HYxQnX2ckpxAJ3+dBhmT8vfLKK8jn84aF53a7DdGBRoz5HDVSzA+xQkOhUDAwlp1nsJ9H+0v3oemeKvaVklWAHXiTkBwrkw8NDRkoitfe2Ngwe4m4d4t5RJIs3G43+vr68Oijj+L69etYX19vUn4KCQO77DS3243jx48bSGxhYcFAcqFQyLDz6vW6iQhyuRxCoZCp1k5ok0e3kNTQKtpSw802aV/aUbjmNAEYyEvzsxxDGlV1ItjH1WrVGKqFhQWsrKwYYhKZmZ2dnThx4gSWlpYM45P5OkadjMTX19eNM8Lx5tpQREFLcnGtMHLSdWXndSl2PkodIYUCldiizhXnks5RR+4u35bh+v3f/30AwCOPPNL0+h/90R/hZ37mZwAAv/VbvwW32433vve9KJfLeNvb3ob//b//t/msx+PBZz/7WfzCL/wCzp49i1AohJ/+6Z/Gf/7P//nv9yT/QIV0c81NuVwuU/SUhA0ABqohvNNoNEwhUfWYlXDB7+qeJmWT8fNUvgqrUZnwc/zh3iQm2ElZ37dvn0nQ+3w+jIyMmCoGbW1tiMVicLlc2NrawsLCAiYmJsyG5EAg0ERpD4VCBqZShavRJD+vsIsdYRLSIhzo8/kQCASalC4Aw87LZDKoVqs4fPiwIXFMTExgZmbGwJihUAgHDx40BWMzmYypOM9czlve8hbcd999ppQTowHdBsAIg7ATjxyZnZ1FMBiEx+PB6Ogojh49irGxMWSzWWxtbcHj8RjGJQkO2WwWGxsbyGaz+OY3v2k28w4PDzcVTSbhgn2p0SgjON5bc6xKXFBCAiE5Gh/dX1iv143hpLFmO6LRKNLpNLa2tvDSSy9hbGwMHo8H165dw8TEBN785jfj937v93D27FmMj49jY2MDg4OD8Pv9ZqNzNBrF7du3zVzweDyGwKR7H2mI2NeEZfk+jZrOB65JEipoCNknytLld7lGKZobU0dA56zmYB3ZlW/LcH0r9Ey/34+Pf/zj+PjHP37Xz4yMjODzn//8t3Pr71uhN6hwhEYVuieFi8fOXWnUpJEGALMwGDUBu4uSuTSNyGwGnHqQmqxm/b/u7m6ziZnFaqnQ9PP0hLmnq16vo7u720RDNIb0nPm8dkTIZ1OyiUZcdnTJ99mXvLZWOyBURseAR9mTEs/tIGQKAjCV0qksSfGnsubfup+MwihaYUqXy2XapOSAkZERjIyMoKurC5lMxkSfnAvMe6bTaVMCilR4niat0LDdtwr7UWy40O5HGjkaNW7QpZHgNWgwAZhog/ev1XYOk6xUKtjc3DRMyWq1ilQqZaj9r7zyCu69916Uy2VsbGxgZGQEnZ2dKBQKJjonDMh222xaLfHEuaNjb48J285n0TwW14fmljUXpnOVfcXfyup05LXFqVX4BhdN0DIH0Gg0jKenSk9zEVyQ/x97fx4cZ3afh8JPL+h9QzcaC7EQ3PfhcHaOJFvLaPPIVkpyYl/Zlp1ykiqVbKsslz+XvnI58hLLcd1ynEpsJ65yObpJybJHN4ktWdvIVmY0m2aGw+FwhiRAEiSxA41G7wuAXr4/ep7Tz3vQlK6Sz7mk1IfFAtDL+573LL/l+T2/37G9IlVQZNndjoWnOWAULGTlad+46ShcCcHE43GcPn0a2WzWVLfY3t7G3r17MTQ0ZM6HAjoKZWFhwSiHRx991MBF7Kvb7UYsFkO73cmR0rGhslFWmB1r0XgdBRerjVPQkO1XLpdRr9dNsqvX63WQMW7duoV2u22YfZFIBG9961uRzWZRq9VQqVTgdrsxPj6OYDCIy5cvY3193dQDLBaL5vpkuy0sLKBSqaDZbBpG49jYmOl3pVIxOWvxeNxQ4t3uzoGapOBvbGwgk8nA5/MhHA5jZWUF58+fx5UrV0yyMoVvpVLZxWRUVpx6AFSE9pzzWmrAeL1ek/sFdBKmlbCggr/RaKBUKqHRaBi4mKkSoVAIKysruHbtGsbGxjA+Po58Po/l5WW84x3vwLe+9S0AwL333ovV1VWcO3cOIyMjuHLlCk6ePGmekScyZ7NZ00+Ou9ZaVBhdjTKgW0iYv3NfaHyKCIhWiKdHasexbHhdIViuz37r3fqK6w5vyj7STaVelnoWGo/QTH3dgEA3ZkZIjN4Vm5I0ACeRQRUWN6NuQvaDcZ5SqeRIRmWFDFLdSedmAD+bzWJsbMxB5yZUqPXcyFhjvwitaf1BwlOqhPX4EJIKyIpUz48wpnqtHA+mZjDexxOU/X4/crncLoo4mXUAjBfVarUMiYPxm2q1aqAlHmvPnCx6qYTD6DFVKhWHV85E72g0ikajYcos8aRgAA5lxflVhcWfvK7GYxQaZtPrMm6pMDQbiRxut9swAe31rnAb0yy4LnhIZblcxvj4OPbt24fZ2VkcPnwYQ0NDprwXD8ekR8+TAahIuK/UsySCoAQKeoV8v5fxp8Yer2XHu/js9j0VMdCz1mziVL85W19x3eHNZpn1itHwPYUa7LiWvWG4ESmcSUpQvB7oWtZqIWtel25Wu19aA1DJISQekC5dKpVQr9eNoKXFzficx+MxrDNudObmMAFW4UsqYI4HlR7HkoVoFXblmChESLYi4Up+rtXqHG3PkkL5fN7kbaVSKQwODprjSPQ5aHmzwoedasCjVShAt7e3TaI1PTW+Nzg4aEpA2TBVrVYzjMR8Po/5+XmsrKzsgsdoTFCZaF8oPG3Sz+2EqfZbc+VUaAPds68AJy2c86OQJe/p9/sNnV7rIzJOeuHCBcRiMYyOjhrIFIDx4En0YQ1LjpcSctQg47rmmNIbt6HkXl4Zv8O1pXC2wq0ak+X+VY+tDxd+59ZXXHd4U2iBlm8vz0mJCWzc8LyOxhfYlPLMDUoFptCkkjr0nkBXuABweCkAHPkuVAChUMjBogoEAtjc3ITX60WpVMLDDz+M0dFRLC4uGu9iZGQE29vb5pRhlk7S02IVulLLPhaLGSIHhQSVFJ85HA6j1Wohm82iUqkYGjVZi+129+gLjsva2hoymQzm5uYAdCrA3HPPPTh9+jR8Ph/q9bqh8QeDQTM/wWDQsBQ5b0xi5mcpgCuVijlUkfNN7w6A8VrcbreBYqm0/H4/Xn31VczMzCCfz5vafzyNmNekEuN86bEfWtmDY0yFp2xEJsUrASMYDDrWFA0Oevka14rH4yaWSQ+H/UkmkyZWt7m5CbfbjWKxiKmpKcMknJ2dBQCMj4+jVqvhzJkzuHz5MtrtNm7duoVUKoWxsTEzr6TKK3FHlQsNIPXOlEavJx7zmBNCrTQMuE44TnqStRbateN/Gpvut96tr7ju8KabCnBi6/o6FYoWxVV4S+Eu3RTKmNLEYs0B62VV0hPyer1GeQBdoU6lwmsSNuQmVSu73e7U0aMHuGfPHoRCISPkKJx8Pp+hOwNwVNVQYoYqHAplxjPYBwDmCA0aBAAMrKgHS0YiEZNUzTmg4CIrrtVqYWZmxrAdR0dHUa/XUalUzLMqNEcBynHXOAuLBfv9fiwvLztYeVR+KtxVsHJMyPxjrpjCVzzahDEbrRTB+/O6hP34Nz1pTbhV4Q10PalQKGRisWpUsC80moCugiSRg+Os62d7exuVSgXBYBB+v9+cPp1Op3Hz5k1sbGyYpO5AIICJiQmsrKxgfX0dPp8PkUhkl6KgF2rH7/hTCUnsM8dE2bb8vO4x29uiR2rvW/W+OHZ9qPA7t77iuguaKhsKGi5qWm5aSYNsLqXSquLjBnK73Q6lo16Ulu3R5EzAySrTftme3NbWlqEWh0IhxONxA68wz4bXHhgYwOLiInw+H/bs2YPt7W2j7MjOU6VFQU+BSOHr8XhM0nYwGDQxJD5PLBYz40nFRWEEwDAFgW6leL0PP+P3+43gC4VCaLVayGQyuHr1qslr5CGJtL6pNEkAYbkokjQ4TwqNshAxx5hQJgW6lgeiIm2328arrVarxjjhvKZSKaMIVOGrV6VzbMPA/Elhq+8R8qRy5xpST0bXDa/P5yCUx+tTMVDR0COlx0QFtbCwgJWVFYyNjSEWi6HVamH//v0IBAKGaMM8QH0uPj/7oDl+7K9C1HYcjHtNDUNNRObn9Xc7tsW51bgzf+/nc/VufcV1hzeNwRDCI6VcLTIKHm4ACmLFzCnYmStjCyVeXxOa1Zq3mWWEzxQ2osAiuYECVhUtA+6E1ADgb//2b+FyufCOd7wDjz32GBYWFozXxWfSmBNL+dATYt/e/+L7zXhRCek5SZf+8SUAMAJKhQkJJQMDA6hUKqjX60bJUKCHQiHjzfD5BwcHDU1+fn7e9Cufz2Ntbc2MRzqddigVFXperxeJRAI7OzuIx+PmvtFoFC6Xy7Ayg8EgRkdH4fP5UCgUzHNScVLRsYagEjXoxaVSKQMpsqnlz7XAcVJiCIWtxluVaUdjSAtCK0xMRUcITb1MGgL8rkJsNER4MjYPIi2Xy5ienkYwGMRLL72Eer2Oo0eP4sqVK3jkkUfwlre8BV/4whcMVf7YsWN45ZVXAMAoSXpHrO5PT4/riGuDCoXGGA0uGgDqudpGo8KDNsuX48H1TWOp327f+orrDm9q/alVpwuejd6UkiuA3Xk6wG6viZ4H72dDFoRHVGEqlq8xAIVJKLza7bY5CJH/SfnmJj948CDuv/9+DA0NYWNjw0HVbzQaDvZfs9k01PidnR287e/f1nlWrzNnRscOAI791THj5Vw/cN0ITSptfodwlFLr9feBgQGjVCjIGI+qVqtGiRQKBQODKmOR1S20DBU9MiZiq3JtNDrHw9Cb49Ek+/btM/lNZBdq9Qoq/HQ6bU6M1mfl2Gh8RT0uKiwlVSh8rcqLSoqxIcKhChtzfHWsFVLjOmafGBfje1QuhMqpBFKpFA4dOoSrV68iGAya2B8ZmawSsnfvXszMzJgDJ9mHgYEB4ynayodwor3/7Pw2XXNUdsok5NjZNHfdV0q577fbt77iusMbFzIXt3o7JBio0LDhPGVFUai4XC4jRBRLpxWo8EQv4a+wksbLVHnR8s7n85iamjKEBBIWdnZ2jEDPZDI4evQo3vGOd+CBBx7AuXPn8NJLLxkihhIPqCBarRbe9+33GWHajjqTjdXK19NqGZNqNBr40Vd+FADwzLue2QXlDA0NmXuzfBEAU9CXAoykArIjeWoxiQYAMDk5aUpahcNhJBIJ4/Wsrq6a8kxLS0uGafnGG2/A5eqcxEyP4oUXXsAzzzyDTCaDd73rXUgmk3jppZdw8OBBuFyd/K2BgQGMjo4amNDr9ZoakJx3hVs1VgZ0UxwUFgVgxl7jdGzq+dMLpRdMj1urgNCbUqVNRaCkGioSlhfj2LhcLpP/12x2TqGORCKYmJjA008/jWaziWKxiNdeew1DQ0NIpVK4du0a1tbWcPToUaytreH8+fMol8vGGFFyEqvS2DR+VfYayyXiQGILvUeFFJVKz5JmqtDsdUZlTQXdb87WV1x3eFPrUxWUbanauDsFAa0+bjzdULalCzitRm1qZWtSr8I92i8AhorM322rk3GKTCaDkZER7N27F263G+fPn8eNGzdMrIrCk7Dkzs4OHn/5cTSiXSoz+0NFzb4qkYExEvVkgG41Da2woGNKb5PJyuwL70HiRSqVMq8zCZnKkgm5FL4bGxtGkPMwyHA4bI6br9friMfjeOCBBxCLxZDJZPD666/D5/Ph1KlT+MAHPoBWq4W///u/N+dt8Tk07kUSCcdBqe42PGgrFa4/jh3n2hbK/C49KSX2ULgrnMj5V+iQn9X4kCIIXMe6Fnh/eleRSATDw8PI5XJIJBK4efMmcrkcxsfHsbKyYqrTT0xM4JVXXtmFLOheU6RDYT1bebHvumdY3Z3v8Xl67SW9t65bNSb6bXfrK647vKlw0GNL1AJUT0s3Axe/bk7AKWT0c/yu5tnYXhVfVziJcRBeWzc/vS8KGm5KlibK5/PIZDK45557kEwmUa1WcevWLVOYV3OgeIbXj77yo2ihZax4enmMAaniYf80tsDn5rOrQNYKEBw3Tcy1BbaOWzqdNocR7uzsoFarYWdnxxw/cvPmTYf3zIMww+EwDh48iOnpadOfUqmERCKBdDqNQqGAN954A48++igOHDhgKmowt4leFAkjzWbTQQip1Wq7PGubhKCQFiHGdrtt4pEcPypEfW4VuPq6KkquDYX9uB65lgnP2UpVP0dvhmPL+2xtbSEWi2H//v04d+4cwuEw1tbWsLGxgf3795takjs7O0in0wZSZR/1udg3O/2Da0B/t5Wt9lfXv8bK7BiWsgn5eV1f/ba79RXXHd64MShQKfQY7wGc9fcUlgC6MTK1qlVIqzdHSEchEn4HcBal1ZgXzz1iPCUYDBq2ohbcZb/JDlxYWMDzzz+PfD6PT33qU0gkEnj55ZdNUVo91JGC4kMXP4SWuyMYyuWyI5YGwBS5DYVChqJdqVR2VQVRwsqPvPQjAICvPPQVM+ZaLZzHirAYr3oCOrZKu19YWDBKLJ/Po9Vq4eLFi8hkMrj33nvxkY98BKdOnTInEq+traFQKKBarcLn8yEUCiGbzWJ9fR3hcBj33nsvpqenMT8/j+vXr2N1dRU3btzA1NSUUXbJZBK5XM54IDwSheuHgprvK8RFCI7zqHFLKkU1dKislNLONUJlVy6XTXUTQow0RCjAARiau9vtNoYH50mFeCQSwdjYGObn57GxsYHNzU1ThWVra8uclLy9vY3r16+jXq/j3LlzeN/73ofl5WWjvCYmJpBKpUyJLN0n/G+ng+gaY4yQ/df9wrqchLnttcIx0jgk76dKThGKftvd+orrDm9KqGC8gMJDmV0KxyjzjxufP1UgK3tKLWf1lnTT6r1V4enGpCCnVcqEUhUKFKi5XA6lUglut9sUqqViALrkAvYP6CrpdruNVrsFF7q5RoQCCevpcfR2LM72pBgz+/KDXzZWuOYeKQTLuIhWEGHfmOPEcaTw397eRjKZxMrKChYXF3H16lW0222Mjo4iHA5jenoaXq/XUdcxFovh2LFjiMfjAIBLly7h5ZdfxqVLl1CtVrGwsICPfvSjcLvdBgajkuUzsymhBugqHD4DYylk8NkMOD1dmtez4WRdR5x/O75K2FRr8WlciYxLKlE2rkemNpAEo3PIa8RiMVODkQngVJxkFw4NDWFtbQ2hUMjsi17Uc/UG6e3xb44l2Yn6nkKq6sHrflavX5WVjRj02+7WV1x3eKMwtIWuwjBkq9VqNSM4ldigMJvtqVEgk+XGDaQsRE18BbpCkJCU4v68NgXF4uIi1tbWzDO0Wp1CtsPDw8jn83C5XKaCw9raGlZWVgB0iQMUHP/k8j+Bx+NBHXWg7TwKXQVBu902pYG0RiEtaFXKVEDa+DdLILVaXfozvUtVDuoRajkiEk+azc5pvhsbG9i3bx+OHDmCRqOB69ev46WXXoLb7cbExASOHDmCt771rTh16hQGBgaMt/Wtb30L6+vryGazeO6558wJyLFYDD6fD/fccw+azSZKpRJSqRS8Xi+KxaI57JKJukrPprfDeJ/m6GkMk/NJsgU9CHpECqVxzl0ul4GFKeipHBknU2iXzL5KpQKge+AkDQZS8ev1OkqlEqLRKAYGBlCtVlGr1RAMBk2lEKBTSSQcDuPBBx/E1atXUavVcOnSJfj9flOwN5vN4u1vfzuWlpaMIiXawGen56SKWlM7dP3xuRgf1PftGLTGf/l97lkaampEkuDTb87WV1x3eFNLmXCPBrZp2VFgarzJtvpU2PLaCgHpJrOFkR2UV6UIOHPAtD/ZbBbZbNaU7SEtent7G7lczpzZxWvpc7CP/8fs/4Fmqwm3xw23yw244BAgRmCgDRe6hAwmqGp8QYVIL6uWXpcKGgoSJS/Y8I8q71ar5Sicy3gMva5EIoFoNIparYannnrKlGQibd3v92Nubg6zs7O4dOmSGYf3vOc9eOihh3Do0CGjTBKJhPE8eG96bRqX0/XUbDZN+axGo2GgWzv2qfNKBU3CjHqiatBQ2djVVKg49bRqGkUKWfNEaABm7ji+aqjxOZSQo17L2NgYisWiUfrMjWu1Wrh16xYefPBBjI+PY3Z21jybrhGOpz2v3Fe6N3spKzUGlDykHrrGj9XzInzYb7dvfcV1hzdVTApxaVDZZnmp0Ae6gXf9jo3ba5yM7wFdL0YxePaL7/M7utmZd7W9vY1SqWRq45HKXqlUkMlkTIWMYDBorGsyB1utFn567qfRxJvWqevNALqr87uOUbPZBFzOKiMai1MPUuN9HD8VIrYg0mLBJIQoS06hRT4/SRdA12omSSIYDJqqDgMDA7h48SJmZ2fxhS98wVQJmZ+fR6vVwr333ouRkREkk0k8/PDD2LNnj4N9yJwwVgQBgOvXr6NcLjuK6HL+aNgoGcMmXWi+lVZi4Xzr2qLSUCYi50RjOVwnWk1D15Pm7NnsUK4nNnppjNWxJmIgEDD1HmOxGFKpFGq1GkqlklG28Xjc0Of379+PmzdvOgoE2/mL7Kut/Omxu1wuR7KyEjd0XSn0rDFrzeXj8+p3+6136yuuu6BpfElpysq8UkFis5o0JqbXo2XM6/H6FLxaz003IJWgBtHZF34/HA6jUqngxIkT5nA/ltSJRCLweDzmcMVoNIqNjQ1ks1kAQCqVwurqKv7JlX+CFjpxLEJ3BmLxug2c02q10Gx1Xm+2mnChI2RIR+dx8aqQga6S03ECgPe/+H789b1/bcZWLW09kgSAg+bOihpA99gQ9iMajaJareL69euoVqsYHh5GKpXCfffdh1OnTqHR6ByQWCwWUS6X8dBDD5nxp9J55ZVX8Oyzz5qDKAOBAPbu3Wvyw+655x4cPnwY8/PzBq5jvli1WjVUfSZX01ujN0/PiPEurgGWuOJz08PTeJbWKfR4PKZ6Pz0gKm3NN1TDidenh+92d8tVcV0TdgU6ymtlZQWxWAyJRMI8QzqdNqdZJxIJDAwMoFwuw+VyYWRkBOfPn4fX60Umk8GJEydQqVTw2muvmZiZxlLVo2+1Wo5EdWVeasFcPgOrfyhDV1mL3J+KANDQUhJHv/VufcV1hzduBHo99qLmJtfYFOMKNqSh3pm9ifg+iRT8np3Pw8/p9WwrUz2wyclJjIyMmPdqtZr5PNBlti0sLBhGHJ8VbQAuoA0hGaANtIFW25kL43a50UYbrWYL7Tf/kRShCl4D372sWo1dmHuKt6tCl4qa46OV0dVbo1eUz+eRz+fRbndYh6VSyQj6SCRivu/3+5HP51EoFLC0tGQ+RwWpTL8bN24gHA6bmFc6ncbIyAhyuZzpA6+rHgD7RnICsJuWzXXE5+NnCDEDXQhPY2hU2grzMc5q52mpwWBDt1wHXq/XnHSg8TqeLE1vr1wuY3Bw0DAaXS6XYadSiR89ehSrq6tYWlpCOp3G1NQUXnrpJYRCIePB6fq3jUPNhbTTAHSdqDGpz6PEE92XiqZQwatB0G/O1ldcd3jTDaCwjgogwKnA+DeFs/2aCmBuEN1UvQS7KjtVbnxPPTIqWr/fj3Q6bXKJyCqjV8brtNttbG5uYnNz09TQUyWN9pv/AbjgQtvljAsAgMvtghtutD1ttFtvkkdaXTKGKhVgd2HT20EzfG4SMChMbOFGD1YFPAURyRxU3tlsFsvLyygWi1hbWzMkl0AgYJTt5uYmKpUKcrmcGRPNQePzFItFc0giz6caHR1FKBQyuWQKA5NMQ69K1wyfk3HPdrttCBwam9KkcACO69ED4bUIjbH6hcZ41PhSYc11zs9qv+nJuFwdEki5XDZzSUo9+6aEie3tbQwNDeHs2bN4+eWXsbKygqGhIaTTaWxvb5s0hl70fo1j6vjrPlIDTteXNhJh7GbHoXXP9Vvv1ldcd3izPSC1iHXTqCXLpjCGWo56lIluGI1jUNDSUtfP0Lvr9X1u3q2tLezduxfxeNwBRzG4r5W43W63gbFarRY++OoHUSqX0HL3LptDD8zE8tDuxL88bgy4BjreWBvwerpJ0cwPqlarxmthnhWFG617jhH7qY2Ck9CWVo8nRObxeMzzkJbfarWQTqfhdruRy+Vw8eJFE8+q1+vIZrPIZDJGCTLuQm+NtRGpODmeJBa0Wi2cP38e586dw+nTp7F3714kEgkAHaZesVg0z0MGpOZ7kQFIw4MHVzImyefmM/GzjUbDMP64VpPJpMnnY5yLldnpdamRoApK85449vTSCRezEDHPQ+N8sMQYWYgkOfD3oaEhJJNJhMNhLCws4ObNmzh+/DhOnjyJCxcuGK9O42tKwlElRmjPTkrWPauKSGOKXM+q2HVvqhfab71bX3Hd4Y0bXD0sYucKZymBg9a/KiLdILZy499qDdqf42cVHlSFxs3LPrVaLQwODsLtdpuj7TX2oTUXeb9Wq4V3PfMu1FHvxKnepL273C60W28qLs+bHhZcBjYkNNhqtcxrCtdQsbhcnRp3FGjmZGMX0Gw0TZxMn0XhQIVtdTzIftP8OJuhxrGNxWKo1WooFArm7DHCWYVCwYy15uFpP/hfYydUDhSmN2/eNGy9eDxuIEpa/PQWGDOk4aMkCK4xxhFJIlDvgwxRHstCw4WGip7bpZ6rjRioQabMO/Woba+GBYlZ2HhwcBAul8txACi/o3l3y8vL2NjYQCQSwcrKCpLJJA4cOID19XXkcjlzX1Wu6kUpxMnPav9shdML5eC8Kiyo11dDtN96t77iusObLniF/OwYiyofjVVxw1Jo2TEowlDcMAAcRIZe1G+NA9FSV0FPVtfQ0BBWV1eRz+cxNjZmLOFWq4VisYh6vW4UGYP+FMp+vx/VWtX0s9FuOIQbXB3l5fK4Oj9VMLi6TEr2q9lsolarYXFxEUCHDLC9s+0o99RutbHt2YbX48V7v/1efPHMF82hjvQyyuWyMQwoRDX9ANgdiKfHxXyjoaEhVCoVFItFVKtVRCIRBINBDA0NmRgOoTdNruaR9G6323hEVAhUwlRcjJGdPn0a+/fvd1TwYHyFuXucX01KJrlD89aUcEDojsrLZinydXp4PAxTFRrhQ96THi/H0I6v8fo+nw/j4+PY3NzE+vo65ufnEQ6H4ff7DSGH5bRqtZrx8pvNJm7evInFxUXcf//9qFQqmJ2dxfT0NM6ePYuvfe1rpn9aTopGH9CluqtXpR6SGo+cPz6PQqH0VvlZGlKmaHTbebZXvzlbX3Hd4U2VhVKTbZhONwAFK79Hwa35L/wsqef8rE0EMYoCvatPAF1KuNKqeTw687go/HlfWuVkxG1tbeFtf/82NNE0ytCcO4a2obrz+2Z83mQQttoteFweh4fCRgt/e3sbjWa3Av7Ozk7Hk2u/aSm3AQ88RhHzaJXBwUHjeeghiTQE7MRmnQeFxOjtNZtNk8dVq9XMWVyjo6OmlJGSWPhMe/bsQTQaRTQaNXlhhDQBmNJWXq8X5XIZKysrOH36NAKBAKLRKHK5nMPDZuP8Mzala0DXhdLGe42x/k3BrDEpep7qhfGzzN9So0g9Fa2FSW9leHjYwKDVatUc6EkWJxWPXek9HA5jdXUViUQCoVAI+XweoVAIBw8exJUrV4yhp0QbhQh7kS50r7KP9lj3iqHSKFHP8Hbx1n7rtr7iusNbL+aVBtQVTgF2byz+rcKGr+nGoiWrMA6/Q2Glwkzxef0MrxeLxTA4OIhSqYTNzU14vV4Eg0ETE2Fli1gshmg0ahJqFX6rVCsdokX7zbwtNxy5WgrL8Jl9A75d/aYA297eNt4ZlRUVlyFZtDr32Wns4B9f+sf47PRnUSgUHDlFCgnZ8R8lavDzbLlcDvV63ZRm4gGXsVgMY2Nj2LNnjzmLjDCYlgE6duwYxsfHEQqFcOPGDeTzeVQqFTMPNAYikQi2t7eRzWaRy+UQDodNlXgqIZ1P9l8VDNeYGjg0ctTTIMSo647jTq+NLEMqRp07GlX07Pkax1DXtya5b29vIxwOIxqNolwuOyqHKHxKeFpzAwcHB3H58mUMDg4CAAYHBxEIBHDs2DG0Wi3MzMwYD0gVkF1xxoY8VbmxKcKha+E7KX+9dr/1bn3FdYc320NSAoRuLgAOOIMbRgWClnSiQmQeF+MCrDhB74ieFK1wxeG5wVh9gS0cDuPDH/4wTp48ib/4i79AqVRCPB43saB6vY58Po9oNIpDhw5henoaD375QRRdRXNdr9eLRDzRKd+082aumdfTiW1RULg78S8XXCY+xcbrMOC+tbWFXC7XEaruLizKZOZ2+0024pswo8ftQRsdOI1lgZQ1SI9IBTPHlmPKezCfKZPJmFJM+/btw4EDB0wS8sDAAEqlEiKRCAYHBzEyMoJsNovLly+jXq8jHA4jEAhga2sLtVoN6+vrDqIJK8VTYDMv7Ny5c9i3b58hYGiiMPtOoapKmYdottttsx7YqFSUqk1vj140iSMsQxaJREztSM6Hwo4k6xBKpgei88lx5TMEg0FMTk5idnYWKysrSCQSGBoaMsYBr72zs2MYm+vr6xgYGMCZM2eMR/Xaa69hc3MTjz76KB577DEcP34cn/vc50x5NDUeCKlyj9GLtGPM/FuZs9wvXCcAjPfJZ+rFGO633a2vuO7wxsWsRAgKGo1L2TAFrWKFX5QJCDgrACgcyPvyurYXxuty81LwMNYxNTWFQ4cOmcRi3dyEhXK5HEKhEJLJpIN+TUFJBlwgEECz1S055HJ1lZV6eHx2fS7CXgBMpflWqwVILVVV+q12C2644XF7DGswnU6bCuQca40jqhGgnqBJlH5z7Fj2iQIwGAwiGo2i1erUQlxbW0O1WkUqlcLg4KBRHEzWHhgYwLVr18zz6WGQVAQcCzVWCNNGIhEkEglsbm466PFkLCqdXdeM7R1pPh8AQ+DgGBOao+fGceDaoDLUNct5pFFjV6JQ6IzX5ee1An6lUjHMTS0mvbOzY6qLsJ8HDhww5bUajQZmZ2exvr6O6elpjI2NYWpqCgsLC7sSrXt5RVRufM+OCeu6sWFaJWtw3fbhwu/e+orrDm+K81PJAM5yTvycQnncALay4XcovFik1M7t4WalVcnNSCVKAaQkEcKN73//+xGJRMyRJYcPH0ahUEC5XEYoFEImk8H6+jr27duHVCqFzc1NrK2vodlowuP1mNhNKpUyOUMbGxsdZeV2GSbhb33aBcqBdrvzu8ulZ0y5EI974fG0kM3Wkctt49c+1erS5Qe6XiWfIxwKO2rxseqGjq3GsDQxmDEWFbKNRgNzc3OGpp1KpTA6OopEIgGXy4XNzU3D+qtUKg5moXrMlUoF1WoVQ0NDmJqaMrX45ubmDPGBFj7ZcSy4u7S0hGg0iuHhYbTbbXMPKi7G7lQpsP9cS1pTkB5dvV43nlMsFjP3KxQKCAaDxtNUhUUvSCvEa56apkhwXZLkQUIIFQH7PDg4iGazaTxWKmJ6swBM9Y89e/bA4/Hg+PHjxiv7kR/5Edx77724fPkyVlZWEAgE8Na3vhXXrl3DlStX4HK5jIetdHaOIcfajgsqJE/jQ7+nMUDdk2oY9Fvv1ldcd3jjgqZ1accUVKnpkRqMLwDOmnxs/I4qPH5Gg9JqSdIqpCXLvrD5/X7U63UcOHAArVYLly5dQqvVKXharVbNgYqMxbAq/MNffRjrO+udONab1TIULgoGg+aMr9/8DXToGK4OLcMRT2g24XoTxrK9ylarhVazW/OQsTImNrtdbngGPEaYaQxLx9v2fklC4HeoPNgajc6hkK1WC8lkEqOjo0gmk6jVagb6CgQCSCQS8Pl82NraMopQ42rtdhsjIyM4dOgQpqamTGyNx8FwHHh6MiHkZrNpKkwwl4pVJXopKaWja8yKc6ExViqvZrNT4osxTM3102tp0rkqfq4prlVdl3xNY6ocZyq4QCCASqViWIp6LZ0Hel6EXfm6z+fD2NgY3G43FhcXsbGxAZ/Ph8nJSTQaDbOO1YMktMk1wXniWNrkDN17/IxC7nwWG4rvt96tr7ju8KabHNidz6UbQKs79GIzUehygzFuoBn96mkpU05P19WYiEImJAaMjIxgZmYG169fx8DAAEZHR82hgo1GA7VazVj7W1tbRoAbqOVNsoQeGfJ//n4YxWIT7UYD7h6QCwA0222g2T39V8fNECpcndgYALRbbZO87B3oFvi1IUile9txRFu46JgRIgQ6gm58fNwQCEhNZ+yJBYjL5XInFUCSownl7t27F2NjY4hGo1hdXTWKi/Ad4dpCoYBSqWTWQb1eR6FQwNjYmPEm+Z9zrYxCoJsfxuekIqRxpIqICoHv0+tRD1VjtMpMBGDSHxirU2OD8TStIM9rAjCVPsrlsqmkQfhT54YUf4/HYyBDwrc8A2zPnj1wuVwmxy6RSODAgQN49dVXd+0dMl+5ZzS+RYXcS0Hb60WNg15VNfqtd+srrju8KbFCE09ppaqA2d7eNrEOFap2zIXfV4WnljHjUPqeUnxV8PAeVGyPP/44NjY28Jd/+ZdIp9NIpVKYmJjAtWvXjHBcX183sZG3P/V25Cv5TtKwu+v9ueAyrLo/+D+jiLgjaLVaKBYKDvhFvQZen0KSpy3T+3S5XPjtT7vxm7/T8bSarQ6MNZgYdIwrlQWteXoQ6mXZQlmp8QpxEZZLJBKYnJw0MZexsTGH1U+FTkOAsGEwGDRxrng8bggGjUYDsVjM9Mfj8ZiyRadOnTIeyMbGhkl4pqIk845zznO72A/GrPi8VE4ADOSlycyqoF0ulzmmhuQRmyFHY0UNBf1Jr5VzplU9dKzZp3A4DJers16WlpZMhQxdwzz7a9++fYhGo7h06RI2NzdNbMzn8+GBBx7A0NAQTp8+jQsXLmBwcBCDg4MIBoMm/YCGoQ0D6j7ks9gsSdtzV0hZ95MqMfXe+63b+orrDm82nEPFw582OcF4FugqJ7UGqXQcEJvFiFL4gz81EVPfZx8ajQampqZw4sQJzM3NGaLBgQMH0G63USwWkU6nAXRo4XoqralS8Gbsih7Rb/x6E4FAE9E3vSjChVQMdmUGJrvymnqWGK321vY2fvvTbvzL3+r0nQpUn009EjYVOG6323iJNvNNYUQlSTBGwxJQvDZLDFHp2jHFRCJhIDgtL0WGHktLcY6onKgglWhRr9dNMV6y9xg/0vp+dnULjg0Vns67Vt9QWEwFd7vdNkpEPSd64DrWuib4k16YDbdRqKtwV7Yi7819pMpxY2MDhUIBOzs7uHHjBhqNBtLpNI4cOYLBwUGk02lTYisajWJtbc0xPmr4KURo7yWF09l/NXq0Cgdb3/P67q2vuO7w1gtCYMCb7/XaQAoPqtDV93Xj2PEIFdqqDDUmpkrV7e7kGU1PT+OJJ55AMBhEqVTC+Pi4g+Zcq9VQLBYNBMTrO5Szy+3wZPie3+9HLBYzQX3CU/y+UtIpaGkRBwIB1N+sled2ueARxWwrYRXAdjDermygyl4taApml8uFQCBgKjvwebQALPtIxcB4ZSgUctRK5BzZOWIKF/N9PhdhsVKpZE4QDgaDRsDTk+d5aPpdhe50HjRvjWOtRpVWW2EjJK3FetWDIbyn+Wb8HPtApaPKgYqNY6LKmsqOxgnXRqPRqSSfy+VQKpWwvLyMnZ0dvPrqqxgcHMSePXuwd+9ec/BpJBLB6uqqWS86F+wjr829qh5TL4NIY4a69nQv9GNct299xXWHN9tD0lI0Ss3tBU0wdqEQllqj6qFRWAJw5Ibxdb2+xsNcLheCwSBOnTqFxx9/HOFwGDdu3EAoFEKlUkEsFsPCwoIRTCyZNDY2ZnJ9ms0mopFOpYNmqwmP2/MmKcNvIEjmKPHQQLvvanUrrMlnIaV9582///VnBvD/+VTN1DVUpcPnU+KFxmMAZy1B9ZYo1Dc3Nw1Lc//+/eZ5XS6XKXBLQUfqPw2CZrNpDtdkbAboMEB5Ly0XpAqL88PncLlcJq9qdXXVKERCqM1mpxRWJBIxipXXoNAlRKcFeukBUhGooaHrlmPH71QqlV1elZISSEBS5aRVRLhmmMDebDbNuV2tVgsrKytwu91IJBKmf5FIxIxBq9UyieBMjmeS9nPPPYe5uTk8+uij+PEf/3F4PB5sbGwYb1n7pAqH46wKnlCxwvC8P+eG7ytEyHHpe13fufV5l3d4s9lZauVTgNFqV6iMn1PBolYqBZ5tEWrjZ5Wo0eszAHDgwAEkk0msr6/D5/OhUChgdHTUsOpisZjpbyQSQTqdxs7ODv6vff+X2fBut9t4W4ylADACjwVV6SUoFGdyvFzd0kIUJnxGr9eLUDgM35s5UqrgtNneE71DjaFxrBXC4n2BbkySXg/hSF5fIUwqdRX+JGTwM36/H8Fg0MSF9HtaSotrht+hF8NjTni2lyZUK0yq/eM9+F/hNlU89lrgmHLtUalyPh3w8JuNtHibuKGwm3rCXPNcH/xfLpdRLBYNDKmlsYhQeL1exxlm0WgUxWIRsVgMS0tLeOaZZ3D9+nXk83nDwNQ+6bNqH9VAZCFn/TzfVyVnx8zUGOl7XLdvfY/rDm+6oO04AvF2O7agSkoTmNXi47U1cdiOVbTbbRPwV+iN1wNgiASnTp1CtVrFV7/6VWxvb2N4eBgPP/wwZmdnkcvlDGSYyWRMDKFQKJjCsSYO0G7B6+oIR3pbfE4KT/aNQkCFqQpXBu+Vdj4yMmJOyPX7Oh6dxpY43l99+Ksd4d/yO5Q2FSwZkVrXjkVrWSIqHA4jnU6bKvn8bLvdNjlOttHA8WVlCioYKhmFdfXZ1Zjh3xqTi0ajaDY71TvGxsZMpRTWCGTiLyFX4PaHatIY0CR1KnCF0ngoqMvlMnlUSilXIka1WjVjSCWnRZdpkDFWxnHg/akEstmsSe5uNjuFhZmgTXg5GAzi4MGDSCQSGBwcNId7bm5uGqPr05/+NPbt24eRkRGHwaf7UY0aeteKkOg8qZes46qwtsaVVTH32+7WV1x3eFNcXBUU0IUeACflXYPEGn+xKcW8Pr+vgWIN6us1+F2NVxB+Wltbw8rKCnw+H44cOYJYLIaNjQ2zESloIpEI3O7OuVQsQwV0TzXmfSiQKNAIWdrkAX7Hjvlozo1CgExQ5TXtsba9LQ2wq+VN74gCqtFomDJHjKvFYjEHtMnr8DWF27QP9vOpl6JQGueYc6WxLvUE+ZwU/PQAOS9bW1tG6dtQnhoLVDRKTiEkq/CkIgKMbSoTkYqG71N46xjzP5WzQsIcO9trrtfrqFaru6BLjhGVRzAYxOBgh006Pj6OtbU1h2EBAJcvX0YulzNJ2kr04LrguKhhaUP3fGY1Cs2ab3Ur4ei6spGNfnO2vuK6CxoXMi1iG2e34RVazaqENBbCz6hysBWXQhY2vZcCw+PpHBsxNDSEgYEBrK+vY2trC8PDw5icnHR8n0IwEokgHo8D6JQjqtfr3fJNbZdDQNGCV5KGWvVsGhvQ/lPIaQkiQI+W39l1LcCpBDWOyH7ZkJxCVoQyCSeS8s5KEfa86rzYSktjH9pP25BQZauKVvPz6LVR6dB75Xf1gEfSz7luNE7DcSWsZysE9VyVPEPFxcLKrGpBr5Xz2CvWqJ6wxsQ0Xsv5ose7s7ODYDBoaP5UjPTu2u024vG4qQrv8XiMJ67xtGw2i3g87oDztI80WPi3bXTZpAw2fSb1UtXg6iuv27e+4rrDGxlfVAC62NXrYTBYIQcVgoQMafmppaqxFPVgVHCQXq4kAG6yQ4cOwe/348aNG/B6vUgmkwgEAiYJln0cHBzEwYMH4fV6TVmiRqOBncabhxS6XfB6ukqyUqkYy9ztdu9KTtXjWNQbpDegyliFHuM/7Xa3tp7deK1Wq2Xo6/QsNEakcca1tTXzzBTOgUDA9INEERW2tvHBOdNcJXpM6iEpIUPnT704hVPdbjfC4TAqlQqy2axjXihk6XkBzpw4OzZDBaMkHo0xsv+E/fj5crlsTizWc9h0LJgmocgB8/A0JYCeUbvdObiyVCqZ9ZjJZJDJZHDw4EHEYjEsLy/D7XZjYmICOzs7uHLlCvL5PE6dOoU9e/YgEong6NGjSCaTuHnzJjY2NszBm1xPhK35vBwnjVPpfNpohcbYtP9sqgx1Tfdb79ZXXHd4o6fFTWEHfAEnmcCGDu2TdO1AMK1qFYrqZdBrYCFcOyfF6/VicHAQW1tbph4fYxHlctl8jgV1eShhNBrF9PR0p1+bbmzvbJu+qgejz6WxII0fqNJSxctn1u+z2d6Mjqvb7TZnXPF9VYD8DN+n0cDSTlQirIavn1FlYNO+1aCw41/2c+i4KCyssJkhvLi7R5MAnZJbpL/zdR1L25NTool6EfypkLWSKhQeJgrAosC1Ws3UorShSF3n6v3aHi/XL2smKvyayWQwPj5u5lQJIkzJKBQKGB4ehsfjMYnH/H6xWDTPZSdbcz74U496sSFbzclT5a4J1jbJR+dbK/D3W7f1Fdcd3mjR66msKoBVuPM9VXIq6NSLoKBTS5on49K639rawsjICCKRiLF8d3Z2jPVISnIikTCFYpPJpOMEZQCGucWE2UqlgmAwiJGREVSrVXiue9BsdKpluN2d6uxsttWpMRyNC6gCUuVis7bsnBoVQGxfP/t1BNA9tZjXUi+U3ie9LQp3AObUYOYksX+8DoUdPWS+r/OjHqW9HvhT440a69I+qzfJvrNyBWnXttLjc1HYExrU2Bc9DY2JqfFApcVn0DWq5ZdcLpcjt0vnjvemElXjRRUClTznoNlsYmlpCXv37jVFknUMyDRkvchSqYRAIGDg7VAohJs3bxom5vb2tvG61dPT2JUd3+Lz6Hq0PVZ7PhXa1bHot92tr7ju8EaBrEJaF7UudLX69Bhwbipaq3zdrjzAuAzjY9PT03jggQfg8Xgc1cvn5+dN3CISiWB0dBRvvPEGWq3OWUwTExOIx+OoVqvY2tpCJBLB5uYmXn/9dSwtLcHn82HPnj2o1Wqo1+tdQd7Y6bAKvV74fX6HIga6BwnSA2XjsxOa4muE0VR5ULj+xqfbqIo3ysbYkMb0lLmnXhTnJhwOA+jmv7FMEA9zjMfjDpIBFYEtgJUIoc+sc6gelApAKjpNCObcqgHh9XpNPUS/32/KSamCK5fL5ln4bPQ2dnZ2UKvV0Gq1HEWd1ShQ75EeeKlUQj6fNzHAdrttalYyDkhjiMqQXquOhyrYSqUCAOYg0vX1dQNRzs/PY2xszJCEarUalpaWzOGRjUYDoVAIPp8P29vbqFQqRoE9/PDDCIfD+K//9b+atcF+c8/pfiIRh2uH/6mkaQzyGQnx67wTeraZi/3Wu/XzuO6CZsOD6i2oxQk4S0GpcFWh1wuSAbp4PUkUw8PD5gBIMvsYb2OAOxQKIRqNmk3fbHaOpVf4qNFoYH5+HteuXcPKyoqpYL66uoparYbPH/l8R8m436T2tzuC8Dc+3fWUVFizUVgqfKnWrUJfKuB/49NdKAzoVl9vNpv48oNfNoJXx0+FKZULjYBIJIJwOGzGnt4Mn1O9GFrw+gxqfetcaapDL89T4yj0nJRyrcqE33G73aYYrR7+qHCp9pf5UBw7Cmd63To/qnQV9lLITc8P0zJQKth7Pa/toWiOGPtLrzAYDKJer5tEY6YeVKtVk6ag/Y7H44jFYshms7h69SrW19dx77334sSJE4654r3Ua+fv6qXaSseG9O24pm2s9JXWd299j+sObwr98G/dxJpfxc0DOOud2QF2Ki9eSxl7PBL94MGD2Ldvn6NsEinE9XrdVH5PJBIIhUIol8uIRqPIZrMYGRkB0A1q1+t1zM7OwuVy4cCBAxgbG0M2mzVWO4vhwtWp2N5qtUyFeJerC62pN6QwpwbI7ROhVYEDwG//Ky/abidDjNekINODESnUmXAMdAUYWXPsWzQaRa1WM8nSJIGowrUVBKnbqhA1bqV95Hdcrg6dG+jGQBTmU5o/WXKa80bvgR4kE3LpnbLWIeE09bZsQgnXXygUcihr9pX/qTyUOENF0263zTjxWe24ozb1hDXmpIqhWq1idnYWPp8PBw4cMJVcEokE9u3bZ4rs1ut1ZLNZRKNRHD16FN/+9rdx/vx5HD9+HB/84AcRDAbx1FNPOdAO9k37a+8v5vRxTDneaoBR2TP2GQgEjCduow395mx9j+sOb2p52hi6/lRhYhMR+BkKSI0FKYGB14hGoxgaGjJFRgl1UBCzPBC/q7GUer2OSCRiNisribdanfOoDh48aJJL9YgMh6f05gnHdiyPVj7HhYKYSsX2GOiNqdehQscmAXzp/i85oC5+h38DTsID/xOOi8Vi5uRi9Sj4PVLQeQ2gt+fAPtveMt/TfmnlFE1Utqt4sC/sL6tJ8OwujiEZjDQo7Bw020voJVwVruT4EvZTRqp6zLYnokpA16auASWX8Iwtjg0NpvX1dfNZPiuVPsft1q1beOONNxCJRBCLxQyxKJlM4sCBA47nu51C1X2l6RdK6lBIWhWYrbDVW+233q2vuO7wphalDe1RyHLz26wyemuax2IH71VpUOgx14oMQABGkHFj8lq07gOBgCkq6/F4UK1WUalUjKCs1+sIhUKIxWKmVp8mcv7F4b/onI/VbsPj7iYY/8vf7ApHm1FHi1WFhh0AtxW/tl6CgTE05hcpAUAVvV6Xv0ciEXMWFRNha7WaITPws70YeHxN50vnXmFEAA5Fp4JevTY+I5+Hn6HiqtfrhqCgilyThG1hq38rFKvzox4ujRoaGDp+Ktx7fb+XkuCcaIyPBpUqLr7Po0sIkdbrdUcFFrfbjbW1NczOzpqjX7a3tw1Ddnh42CgTrn2uWd6L46WpCdxjNAT4jLYRxf5zn9gKvd96tz5UeIc3eiwAdgkRekLqNdjsMDvJVC0/bgy1jpvNJiYmJhAOh40FSKVFCCgWiyGVSqFcLmNkZAThcNgwwJgrtLi4iHK5jNHRURNraLc7x5vcunULW1tbSCaTu2IX/J2Cp9Fo4P/76y38q9/2OgSlfk4Ff6/mdrvx6d96U+BjN2QHOGMxhAiBbiCeZBTGr6g0lf3G03VZM49WdLlcRjgcdjD5GJynAaDzaJM0+Lys4KCKQUtWsV+ai9Vut40HwfgP1whJCVRuvA77QiXaS2mqRwfspm2TIaeeHFMnSMAwEDGctR2VQq/ePNc7r0dlTM9xZ2fHFPFl/9fX11EoFBAOh+Hz+UyF/FAoZPo5PDyMer2Oubk5o+jYgsEg4vE48vm8SWam0lXCjBIyaBxw/eiaJbzMnERlZGrRABsx6Tdn6yuuO7xRcGlVC74OOGnRCjuocKdFV6vVdr3PRsUGwAg3wFl+h5AHC76y+rvG1igESXcGunEWkjrIJGT/GFP6wokvoNls4qeu/ZTpE/vZUTwdYfRbn+6+rkQANoWYAOBf/iaAHqiLQq1fe+RrcLW7x9fbn+F9OEaa56WKhPdWC7tSqRg4TkkXtkelc8YYFY0NKiX+zu9qXUEdCyoyelXVatWU2opGo0axqGfay1PSftDb4XqyvS/bK9XG68ViMVSrVQDOIz/Yd/Vu7aRmjgvXmzIvGY/js6uxVi6XTS5itVo1c8fnmZiYMAqJ6zgWi5l4ID1SrX6i8TT1FjkWen8lAun31ChS40th037r3fqK6w5vXPQ2O0zjF+ot8H31rBgk1vp0JBUoNMSNFg6HEYlEAMB4WUzc5CnLPp8P1WoVw8PDJkYDAMlk0sQSmLe1srICoCOoWDHD5/M5lK/GRf7rqf+KD7/+YQcUqEmav/HpNtzuFlyunV3j4XLxnDCSNwC4dwsB/c6X7v8SWo2WEZbsDwUk89sUvlI2Hk/6pQBWun6r1cK1a9dQLpdx6tQpQ0JgzInPrRU8dI4U0mKgX70rFeq8H5WEeo8sdeR2u83BlC5Xh+RB74NClMpJT2hmMWSN69F7ZKySz+5yuQzBg4KanmUoFHIoKBo1NAh4TVVYbHwuGgMejwexWAwulwulUskoLiXwNBoNLC0tGRLR8vKyw1Nrt9s4ePAgWq0WFhcXMTo6isOHDyMcDmNjYwNra2sOD0wTsJXJyXGnEuLv3FdUjBwfPj+NGTYlv/S9rtu3fozrDm82gQDoCg87cK/vUXnZJWbs/9yA/A43EwPpaunS+qYSpPdFaKrRaJhzkAh90OJX7N/j8RgBDnTjOqps/++T//euOJL+t1l39jjpf20q5F0uF75+9uuGqKB0bQpmJU7ote2SPQAcikjfK5VKWFtbM0WF7X6px0olbZM01GixIVL1MAjj3U6RKZnD7e6cU8bYEF/TclZKzlDoj2PBa9rkEq4TuwSZphLoNeyYHhWdDQPzM6zEkkgkjDHF+WWyPp+TtQv1mcLhsKllyMr1iUQC09PTmJqaMsSO9fV1hwdkx4W1X9r4nBxLPo/9HHYs1o5p9lvv1ve47vDGjabCq9VqGcWhsAQ/r5tLIRg2hS5U0KiXwPdVWZGsQQhKvThCfslk0lCe/X6/UQQ804lCV4PyvSCmdruN/376v+PH3/jxnjEs9YDspkJEx0cFh9vtxtPveBooOxOw2XdbUKki4Ps21EehGXjzpGUd72KxaBJktWirxrK0EoNWnFB2pO1dsY/adG6r1aqBZzv1GbtpEDxhmXEwCldNsrbjgJw32+iwjSgdMz4HPS/Ou22Y8H722uRz835ca1xPlUrFERdUooPL5TK0d56gTRJNNBo18VmPx4OxsTEMDQ2h1Wohn89jcXERCwsLDnhQf6rRYK8/9ch0b9rKS9elrqm+t/WdW19x3eGNMSNgdxUFCjsqNm5YCkQVrBrb4ne5Yex4weXLlxEIBBCNRpFIJADAcQChwpSJRML0a3BwECMjI8hmswA6tPqlpSWUSiWMjY2ZxGQGwLk5WXCVjf31+Xz4ykNfAQA8/vLjRomrd8AxsuMINoTG9556+1Nd+rjHa5Kr1TCgQmYjrNRLUfI03larZbxIeimEECmAb968iWq1ir1795oCszo/ClPq89EjpPGg9f0UmuR36FVls1lcv34d9XodXq8XiUQCHk+nLh8PUdRKFlScPGWac9Nut41XQrIQ4UHCwoSrCS9yXXHsqdB2dnYQCoXgcrkQj8dNObGbN286YFCuLyUYcX1ScfFZS6USAJi4K0s08YTkpaUlrK6uYnp6Gvv27TN9Jf2dVWFOnDgBn8+HlZUVfPvb38Ybb7yBjY0NByTIfUMDQ5WSskcJE9brdce6sREC7kUaSDZ1vs8s7N36iusuaFzQCgnZcRHdQOoV0CpU5aWbjNYy0IV21tfXzYZNpVIA4CgnRC+uUCgYr4peIP8GYCx89pOCz2bMKRmBz6AkBgD48oNfhs/nw/u+/T7zuV4wqlrrtOLt3CG+R0VBD4BjQcYbr6VVInQcqQDr9fquYLzW36PAI8WeBgD7aXsZ6n30gkNVMSuUqGuBZIV6ve7ID/J6vRgaGkIoFHKwHKmgNE6lYxwKhcx8lMtl01edL51LQoh8T/P8qAhDoRAikYj5WyFHFdg6b0qp1/FlP5k4rWNUq9VQKBRM7mCr1TIKd2dnB9VqFTs7O6bySz6fx40bN5DNZs01OKY2wsF1rJ9TEo0SMNhfVUx6HT4Xr9f3um7f+orrLmm24KTQV6sPcFYtB3bn2vA1bvJe0Fc+n0culzOnyHLzKRTDz/r9fmxubprXCbe53W6T28VqDHrUvC2g+X0KJ76m8RSXy4VvvOUbRhF84NwHdj2vNlr8APD0O57uxBo8XjMWKtwoaFXhqFXM+6jCAboeD7/D52VCrNYH1Dmgp6xKUZ+Bc8z3aOWrYULW3+1qUAJdmrp6d+Fw2DHmjF9SqSpcSmUXjUbN8/J6CkHr+lEGrBoCXIfsn3ovJPvwmW2IViFD7Re9LjtOxvngnOTzeeOZ6euk0dOwqlQqBibc2dkxBow9/gofKjSva4rzomtb9x/H0YZUdc/2W+/WV1x3eNPNqmcyac5Lu93N5+LCpwDe2tpyWHKA82RfwLlZqtUqvF4vlpeXEQgEkEwmEQ6HDYWYXsPa2hpisRja7TY2Njaws7ODWCxmSv9ww1+9ehWFQgHBYNAIbtKMqcja7U7BVTvwb1udtgD/xlu+4bBo1cNsNpvGkvb7/QiUAggGg0gkEsbqZu4SWXa0/GmlK7GFY0hhpNR2MuP43WazaeJHVOS5XM7ks928eRNeb+fcMo1fKsFAjRPeW3O2KARJLnC7uxXn+TchsHa7jUQigWg0ag7xZM1EEhRUSVKg03MMhULGG1E4jApD6f3tdhuBQMC8p4m5ABAOhw079caNGygUCiYvcGBgwBAp+MwaE1JjodVqGUjT5XKZ5GLOCT/P51lYWEAoFMK9997rgEN5JAoJHhsbG7h06ZI5bFONFmW2ch+xtJNC05w3xgzV2+L8EsbU+dVYq22Q9puz9RXXXdCUamsLc4UO1fLjRqJg5He1eoZa8zbUqEwtfkaJGfl8HqFQCKFQyCS4Tk5OGssa6MRmNjY2jPBh3TuFerjRbQqzHbwnDZrCkDCfQoSE6mxCCoUNFb5dyUA9AtsAAJzkDXoUPM9KrWp6LgrNUuEkEgkjIHO5HDKZjIlVqfWuc62QIvuu46BjBnS9Eirl7e3uQZk8WoaxRHo7hG9VadqkCKYE2LCzkib4GY6DetM6T1S+jP8wdkolycRsTXDW2CN/1/FJJBKmoj0hYF23AExhYb7PGBjQOZ+MRYcJK7JsmY4rf1fFZcdQbcIG15PuXVXGqtj4t3rM/da79RXXHd4UzmPSqC583Qi2ENMNoYF7O35BoeFyuQx0VSgUkMvlzP3pwZVKJbPBp6am4Pf7UavVTGkjWuRutxulUsmctqu5QBQc6tHQA+MzMqbATcwisKz+wOM4ekGiFGq0+qmsWq2WISMoIYNnLWnRVioMNgoerd/HZ2EVB00yVsEfCAQQDoexZ88elMtlIyQ3NjaQTqcd42DPb7VaxdraGtbX1xEMBk18KpFIGEXNPtNLKhQKWF9fx/LyMoaGhjA4OIjh4WFEIhGHBxkKhRxFgBkXo/dLmFPTG5QUQaWrcSaNUWmFDIX+eDI0c7qU9MDjYFwul2FnUkFRYdLDIeU9Ho+bHK5CoeAw5mgAsVo8T1je3t5GKBQyc05lybkLBoMGHr106ZLpg8LsXKOqoNWA5DxyL9p/c91yb7Mv/fbdW19x3SWtF+QAwMSLaBFy02hMTK9BS5l/UxhQmPHapLEDztJQPL222WwaRhhjWNVq1WxAbmLCPkAXWuJ/ehya46KeEpvtYfJz6pVRgSgRQz0PVTwUaHp+l3pkKpA5xrwHFbhSwAn7KCGBz8A+EDJjgWIKdo3VqNdL6G91dRULCwvY3NxEIBBAvV5HIpEwY6clg3jPcrmMzc1N7OzsYGRkBIODg44SR+wjv8vxoiAmg5F9ViFMD5JjwrlTj4xelULR/KmUfvVGuNbU02LTfDBVAIoE2OuZ9+Kzsj6m1p/keqQCA2BSOkKhEA4fPoxGo4HZ2VmH120bh7aysY0oNl0XvI7GuBQ96LX2+63b+orrDm+9grf8SUWk8IkKPxtKUjy9l6KwlZ9WN280OmczVSoVxwGRLNbKA/kUGqJgICGDfcpkMmi320in00bIMeGZ3osKFzbd0Hpcur7H57PjdiQpMNmWylbZmrbAUOWjY0ihyNep0OwKGxxTPo/S5ekpFYtFU15IBXCz2USpVMLi4iI2NjYMO7Dd7hygyNjK8PCw+Q7hz3K5bAyIoaEh4/HwWTRuSk9H14HOF8dFP0uFr8nFykR0u93Ge6ZRpMKc/wkZ6v1pGGj8h8+m60AViO4Hvq/z12x2KnRwXPh9rl3Cvs1mE7FYDCdOnECj0cD09DS2t7eRSCSwvLzsiHVq/3St2UpI4Xg7CV+/qzCivtZvvVtfcd3hTb0sCiYKDcBZ8okbR9lVukHUM6PQseNYQLew7MbGBm7cuIFwOGyOIlleXsbm5qajSsbKyoojKE6adblcNgKJDLvt7W2srq4C6BA9aL2TAEChUq1WUSqVjEdDmIsBdZIQSBrhc2mFEKW1VyoV5HI5R8WOSCRiBKdWA7EFDe+nQpQwZaPRcLwPwMBwfEZClSpYQ6EQGo2GYbvxbDMqmZWVFczNzWF1ddXB6lPjIR6P4+jRo4jFYhgYGDDngG1vb5sK/4T6qKi5DmyGIqnzHk+njBLXBBOTCSW2222kUikzb8xj29jYMGxSxqqCwaDjtGONvVJp6WsADNTK+2nCs3rAKuD1EEqNfWmx3Z2dHRQKBVQqFYyOjhpvFgAeeughRCIRzM/P48iRI3jb296GxcVF1Ot1FItFU7iXzT7VmPdWZUqvnbAk1yabKnMbZbAN0n7b3fqK6y5oar3xb9u6o6DWxU5By41BxacBZdtC1OtRyZBVWC6XsbS0ZBh3FD5k7ilDrtVqmTqHmpeijDHCYYQfKfSYY0RlyEoO2k8KJKVnA11YT2MR4XDYQIZ6DhhjXZpsTC9RYSf1PkjsUAo8n2FgYMB4kOyDxsRsWJMKhAqQEB0A4w0oi09jI1QYOzs7qNVqRgkyx4rVITiXSkbhuKoXpkQOrhl73uhR6zVV2dtrSr1A9l8/p54gDYxesJ8qKl1P+hmOB2FFenz0rlUZUpExBhuNRjEyMoK5uTl4PB6k02kUCgVsbm5idXXVHMHD+VECi65LnR/Ou3qLGgPsFZtV778XBNlv3dZXXHd4Y34NAIewAZy0WYWwuKGpsNSLoMAGnBi9WsAKb9y4ccPck+QKbjINcDebTcOqCwaDKBQKRqAyrsP7j42NIZlMwu/3o1QqGSiPcA4tXIUSNZ+Ggl+Ta/kzFouZ0lS8P+MyW1tbKJVKBpojVVyVjdbxs5Uh4IwFKbTKPvWCgxjD4bhRCHL8+Hla94FAl7q/vr5uiB/si3qSVCqsgt5qtRyem0J7jEPRQyNpQckQ6sHSi9je3jY5UCRM0AAJhUKmCkihUHAwJBXeoxdkx/VIvrCrY3Dt0rDg2maMiixGQsuVSsUc3WJDkEocIYmDMHcmk0EwGMS9996Lubk5zM3NYX19HW63G/Pz85iZmXHAnRof5D7SOCefnUqOyen8nP5k01giv09vjvPeb87WV1x3SVNWFi1MO/hrC11VZGoVA7s9LCVsqPJSq9/2EAj1qael8NrW1paxyvk687noRRFCBDpwFYW0Yvy9gvuqnAlpATDxCqAL17BfVJ4aGFdoUWNqNkGAn9E4B79DIaOVvmk5k32mUKztMfM1TRYeGBgwB2+qh6pQmiZyq8dN5UgvW5+F71H58j+FL40QHQNlFbIyBZUa54mnZevBmfrsNqmC65afseeVikargdixSHo99JL1c3oNTfKu1WpmXOjlVioVo4C9Xi/i8TjW19extraGTCZjxk3hYvVcuT5t40f7SWWk/VNIGujmXNrrvt92t++p/PCf/Mmf4J577kEsFkMsFsPZs2fxla98xbxfr9fx8Y9/HKlUCpFIBB/+8IextrbmuMb8/Dwef/xxhEIhDA8P41d/9Vf7eQvfoSlspcpHvSz9rP29XkFxOyAM7E561GoEFA66edvtLkmAHgu9CgqDer2+Sxgq41DnnblRqVQKw8PDiEajDsFHNpwy6NRj5Pv02niEB6/h8XhM3hmFv8YXOMZq+avwtaEbWslUBFTgqhQ5dvQ0VekQ0uI4aP6V0sPT6TSmpqYwPT2NiYkJ7NmzB+Pj4xgaGkIkEjH3Ukzy0gAArcxJREFUUGWja0UNEXquQBeKpEWv3ryuD2WGMq7F79ETKxQKJg4XjUZNbpgmHiv8XKlUUCwWjfGlRoTGZ0mesRWderZcq+yfHjRJBICfbbVahvlKA6ndbht0oFgsmtdXV1dx8+ZN5HI5R7xTSTe95lmNDIVMbaVt70e+p+tN93O/Odv35HFNTEzg937v93Do0CG022189rOfxQc/+EGcP38eJ06cwC//8i/jb//2b/HEE08gHo/jF37hF/ChD30Izz77LIDOZD/++OMYHR3Fc889h5WVFXz0ox/FwMAAfvd3f/cf5AHv9sYYgTKkNK5DgUMLkt+xvQ0KBg0i64YGnJtKPQdSxCmIqMQuX76MVquFsbExrK6uIpvNYnNzE8ViEfl8HkAH62eCMmEmWtgU5gAM844KhiWTKGRYFYHHcAAwnoJ6FTw0kddxu90oFotGuZAOT4o6AENK8Ho7Bx0y+ZqCiEKKMGiz2TT3oAeiY89x4jzRC9SjNnhvhRCpFOjlNptNJJPJXRR8hXW3traMpU74kPfVPCwWniX0xzHl55Q8wvgQ40Aul8t4fhw7Jb3k83lsb2+byimahG7H0ujFc/w1n4/PSKXDQ0o1OZrrttVqGe+djE0tXaWFhzWfi2OTz+fRarWQTCYN2eXLX/4yisUiAoEASqWSI4eM86TzrDE7GiGKOthGp80mZLkurfihRka/3b59T4rrR3/0Rx1//6t/9a/wJ3/yJ3jhhRcwMTGBP/uzP8PnPvc5vPOd7wQA/Pmf/zmOHTuGF154AY888gi+/vWv49KlS/jGN76BkZER3Hvvvfjt3/5t/Nqv/Ro+/elPO4Lk/dZpVCLKWFMoRK01ZYrZgXAKHaDr9aiFx/eA3RUK2ChAWq0WwuEwisWiOVGWAtwOxJOkodClQncKN9kKWb0zfY5ekJMqAO1vr/OvNJaiCkZjaBxzvSe9Sz4n7814C6+rng0tcS1iq1Ahx5oeBgBHBQheR4Wg9pUKhvEm9QzUg+oFE9uftSFHPqeWmrLZlSykzKoU/KxCZeyv1+tFOBw248DnZTyIz6Pwr8Kz6glynAE42KX0+OmBcxzZB61WQpja4/EgEomgXC6jUCggn887PEWFk3XPsA82DMw1oeOq8S3uW5u4ovu5T874zu1/OsbVbDbxxBNPoFKp4OzZszh37hx2dnbw2GOPmc8cPXoUU1NTeP755/HII4/g+eefx6lTpzAyMmI+8973vhcf+9jH8MYbb+DMmTM970Wrko0kgR+ERu8G6Coxl8vliIfwdRVyylrS+IJag1QQvDY/rxuLFqbX6zUVFdjUIufmVGWgcCOvrbEKhX1YPomCQje6CnBeV5Vts9k0ZzLRq6Cnpp6dTW7hvVVB8Xm19BM/p3Ag76tzoI0Ci/2gR6XQIBvvo8QCrTpBIUwhq0rTJgxoySl7/GyBqwqIfbVZbxw7fZ/f0zyuUqlklIaeFadsRsbtOGb0ZBQFUGiQTFM73qixI4+nwxrlETLM1dI4E9eEKnc1CP1+P6LRqKMUGA0mjifXv0K97JfeiwaYEnT0Xr2UEb+rcKOuj37b3b5nxXXx4kWcPXsW9XodkUgE/+2//TccP34cr776Knw+nzm/iW1kZMTkS6yurjqUFt/ne7drn/nMZ/Cbv/mb32tXvy8aF7GSIqg8bKuWwoUbAICjgCqbVoUA4BBGfB+AIzcMcAp6BrlzuZzDOne7O9XHCYEoQ5H3oIdCQUVLXIUaISKt9AB0j1fRoLZ6aBwnxipYJ1DztahM6ZFRQVAoUSjTwqZAY00/xu7Y7HOjFKpjQeJgMIjx8XEEAgETH1IFrcopGAwaJabeIdmSbrfbeD4sfcV+0gPS9UPSARU5x5dKgQZKq9UyKQNAR0Gw1BbfV3IHvVDCjzp3um44RoQJWZ8wGo06FCT7y+8xxcAuDMy1xWdOJBKo1+umQK96mF6v1xgcfr8fqVTKGEE+nw/1et1xdhfXlO0J2YQKrg8dTzv2xuurYcdrqoFmMyC53ujh9tvu9j0rriNHjuDVV19FoVDAF77wBfzsz/4snnrqqX+Ivpn2qU99Cp/85CfN38ViEZOTk/+g97xTmu0tqceh0BGtXY0BUEnY3gQ/r3g7P68xMZtaT8GvgptC3+v1olqtmhwv9p330pI52tTT40+NQ/H+epgmLX2Oh8fjMWQOPrPSxu17qmWswkf7oAF0jhMFu7LY1KNUYUNjg0xGKlLtuyo7wJlDxn5pDJIQolrjCuMBHaGo9HH1BLhGdF7VA+ezKkVdoVwKWF2b/AzjTaps9bPsW71eR7VaNTEq+3w2ejn6Xa4dfUYqUfX6PB4PBgcHAQArKys9yUr0vrju6A3TiNG9o2tAPVP2QRUSn5vf0cryfE+Zk7wGvVkdO4Ul+613+54Vl8/nw8GDBwEA999/P1566SX823/7b/ETP/ET2N7eRj6fd3hda2trGB0dBQCMjo7ixRdfdFyPrEN+plfz+/0Gw/5Ba7YXRKtMFzg/RyuQG1A3AwPYTBamlwQ4qcatVrdEk8ZteG+tAL61tYVQKITBwUEEAgHkcjkUi0XjOZXLZbN58/m8OQGZ19Ln081LpUgYp9VqmWA5IZ2BgQEHVZ+VNfjsFH5Ueso041jx/gqjKWxFS1pzaSiYCE3t7OwgHA4br6BSqRh2I2GzVCplPAISRFS5UMHRW9Rx4TiwX8rU41xx/FidgtfVHDdCb/wMK5XQmyJhgvdTj1ahLPV+qQAIU3P8VLHSk1RomMKanqCOO+8HwHhK6rnTGGHzer2GKTowMGC8/ZWVFTOGXJ9kPXKeGG8LBAKGUahGDokeWtORyl4hTl0X9Ow0HqiKj+tRc744X6z9qQq033q3/2XqCmGZ+++/HwMDA/i7v/s7897MzAzm5+dx9uxZAMDZs2dx8eJFrK+vm888+eSTiMViOH78+P9qV74vm254Wr42hKSbXyENtQ5p7QHOGJjGM2woQwUlN6YKLsBJJOB3lQXHfttxOEKLJBfQ4rXjB/S8ADgEG5+T8JgqRG5+MvSUYq4ehCpNtY4VruL7HEMKZoXDeM6Vkjh4PIfmsjWbTaPsdLzVqucz3K5/OjYcEwpthVP5zOqV81oU/qo8lXnHedK4IueIOVw6D7p+OHZ27FDjmXaskeuH9+Tn+Vx6Xd0TXN+sct8LKufzJBIJJBIJs5ar1aqBXgkT0tCw9x+vw582e1cNLTUauFb4t20I2MQgjc31va3v3L4nj+tTn/oU3v/+92NqagqlUgmf+9zn8D/+x//A1772NcTjcfz8z/88PvnJTyKZTCIWi+EXf/EXcfbsWTzyyCMAgPe85z04fvw4fuZnfga///u/j9XVVfz6r/86Pv7xj//AelTfrRESUVhC4SPdzHZWv8KAGmvixrNhQHoiysayMX/ek8Kbiov/FQ4DulUQ1DNkf2ysn0LD5XIZocWNT5KAekrM87HP0OJ39FBFNhuKoQer8RuOkY6ZLZAUOuP9GUOiV6VHwlORAXBAcZxjvb7OsypzzoN6Nb2C+BxfhTPZPB6PqZDB2BTjQiqIGTNkX+n18Lk1h40GDvujioP35ueUiKPQtQ1xK1GD8wY4UzY4FpFIBNFo1MS4OCeMiZXLZaTTaQdbkgem1mo1hMNhE3fTvWaPn64Dm8HLfUdDjJ9Xz9mGb9XLd7lcu6pk9JXX7dv3pLjW19fx0Y9+FCsrK4jH47jnnnvwta99De9+97sBAP/m3/wbuN1ufPjDH8bW1hbe+9734o//+I/N9z0eD770pS/hYx/7GM6ePYtwOIyf/dmfxW/91m/9//epvo+aWni2wKUCofBSq5SLXgPAqlQorChw7MKhFABqXVKgsE+tVstYsefPn0ez2cTGxgYmJiaM8CYUtb6+jsHBQUSjUbOh1fuiAqTCDYfDGBwcRL1eR6VSMQKPgpXnOfE7LHekwoE5X3bNPo6fssKUKEGPTRUNPQ3+pCXfbDaxtLTkICxoXzl2ChNtbW2hWq0iGAwCcBIAqEjV+tY4EL0p3kMr+HPeOT7sn1a6CIfDCIfDcLvd5nBFjoUyCDXGptAda0mqN+X1dk4UZt/ZDx7uqF6F3+93QJM6Lmy8JhWmvf7UoAoEAjh48KCBoW/cuIF2u20M4UqlguXl5c4p2G+OSb1eN89Sr9cRj8exsrKCdrttjA+Ne2ocUhWofkbjZqr4VBFq6TYqPL223s8mUPWbs31PiuvP/uzPvuP7gUAAf/RHf4Q/+qM/uu1n9u7diy9/+cvfy21/oJtuCIXsesW4VNFobIt/U9nYn9HP6kbUgDLvz8brUkBQ8W1tbTkgH25KVh9nLKparWJwcHCX5dpsdqrKM3BNT0XzoTTmSaVClplasApNcZzUA1ToRsfStrDV++L7tlKjQKenR4GkCbFqfbPOnrIHqQxJkLC9DZuEQQHH32l0kCxDK579Z8yIz6BsU/WgqGz4WXq3dsknrhPel/MXDAbNWtTP6n+dD65N9Wh0Ltl0Hn0+n4lbJZNJNJtNpFIpXLlyxRBAuHapwAnX1Wo1+P1+RCIRAB3DhbUY9bl0j6gXbM+PQoRcV/xdjRy+rlCrXteGwvuK6/atX6vwLmiqANSSo1XGjaMsQfXK1ILTIDevAXQhPLX07A3Gz+n1arUa0uk0tra2EI1Gsbq6inQ6jeHhYSwtLZl+FwoFlEolcxQKK2vE43ETZ6CSYQzC5XIhHo8bEgGFJJVCsVg0BA2WIaLXoOV+CO3wPVrVHDu9N5+TVHw7bsj5oBJhNQ1a8Cz26nK5TAFiQliRSMR4oeVy2RBZeCIwoSZ6Tb3GX48TIeGi1WoZIc7n0OryJLlwbEulkiO+ouxHhZb1/UAgYIS/1iNUaFr7SsWlsTv13vUoEkUKqOx0DTMWR8VDMs7Ro0cRDAZNhY3h4WGUy2Wsrq6ao2K8Xq8pQ0XS0K1bt3Dw4EEHvMvcUBs251rnmCpRxp4bvqd7Sj1zja/aBijvQQVoIyf95mx9xXWXNTvYDjgTYQHnCboa8wG6hWd1w2icDNh9SCWFhyag8lpUWPV6HcPDw5ibmzP5fPwOAMOqS6VSSCaTxptivMHv9xu4iRCiWtx2AjHhPEJ6hOA0/kLBQw9EK8yrV8mSR26320Bv9JxsSFEFMcdZz31in+mFUWmo8UEoj+QRjqUe36KsMgozNhX0hPboibpcLgcpxVbgWgqJHqFCbxTcujZ0DTHVQPPYaByp8aNeFZWAxodoNFEB24QTQmu6FoHuCcWjo6MYGhpyQKc0AhQ50DXDscpkMnC5XMhkMuasOXr0CttSgej4qweo86P7h6+pEUmlpNCojrXGmvvtu7e+4rrDmwZx7U2sAsxmemkFi15whE1SUOuPjRCO9kU/6/V6jWVbq9UQCoVM5YJoNGqYdNyU2WwW6XQax48fRzwex9bWFm7evIlSqWToyRSI6gGpdQ90WY/KhlPWoCot9bSU/aVxJ2VOaiIt70O4Uj1WzoEyPvk3LXla/CSRUPF7PB4T32IxYjL59Dk1j43wlHpCbrfbXEfJLKTiE+KzoVilp3NMtP/6/KqQlMShsKWuCc6PzaDT6i9sqhBoOOiaVqIHFV8qlcLExASGh4eNJ8PcwVgshng8btaNzYhVj3NgYACZTMbAjNVqdVfsU5UZjQM7/sexUW9KFZHG5vS5Oebq0fM9RVP6rXfrK667oOki5sahUKSSsq1yAIbZZsM19Lr4GRub5wZlML3dbjsOduT9o9EonnvuOezbtw9erxe5XA7hcBi1Wg2JRMJ4Vq1Wp7ZhuVzG66+/jne/+92Ynp7G4uKi2bRapZweGHNy6IVREdnsO0JHPEGZQoV/k0HGY1goHNg33lstZCoSJUsolV3zpxhvoRfVarWwurpqvjs0NIRAIGByvzjGLEhLcgrzvOg9kcTAOBDhN7X61Ytk5XNCh/T4qNS1GDDQrYzSaDQcRYU5tgoh8hqaJ8fGcewFXauSVS+Z46YCn4pF85w4BvF4HKlUCqdPnzY1DpeXl82z0gsbHBx0JOLTcEgkEkilUqhUKlhdXcX4+DjK5TKOHj2K9fV13Lp1yzGnelq0HZvjnlPGq64bVX62MtPPAd06jfq3Gkv9yhm9W19x3eGt2Wya+AL/ppVme1QAHBtA4SndNJqfo8Fi3XRKUGCjkFOMfnl5GblcDhMTE8hmsxgcHESr1UI8HkcymXR8z+12o1qtIpPJoN1u48qVK8jn8yZORGHLuI16ObTEFVLihicFfWBgwAhnvq5jBnQFvVr3veJ32pThZ1vWdqxMlQaFLr1RQoZUgm6328TvWFCWio0EF1ZytwWfeqI0Jpgwrke3kJKv3qJ6iXY8C3DGnWwvXOOmOg+Mc9nevXpwvL8NrenzUAFyXJkUHA6HsWfPHnOfSqXi8Lw551SMqjxDoZDJ42J+H+cnlUqZMSa0ysb1wP7Ti1XYz96r6nXaUCINTUK09vv6nq7Lftvd+orrDm/cCLYCsqFBNhUMtrBl4wax6byEzXTTcZPasAg3crFYRLlcxp49e7CxsYFEIoFarYbh4WGMj4872HcUMtlsFltbW5ifnzdCiUQGCga1btk0xkbBwf4CzpOK2+2247gIHUeOh8KmNgHGPhZDP2ePsyoFKiN6XxSyVM5sOsYKhVFws86iliOyY5t8Ns6HkkU4XnpKtN5L4TD1llTIUtBqrEshRmXWcYxvZ0jZY8Z785qafsDPchwSiQTS6TRGRkbQbrdNfUw+tx6GSXq/zqfX262FSUOCRJ7R0VFzH+2jDafah2dqDE2NCT4zn0XjVnyt0Wjsyi/U9BT1/Pqtd+srrju8EUaj0NQNy42vViEFOoUNPSjGSDRuoIJIYwlaZFU/q4La7XajVCrB7/djYWEB9913H5599lns2bMHTz31FD7ykY/g+PHjiEQiyOVyBl4ZGBjAzMwMTpw4gXQ6jWKxaBQDq0xogiz7Swub8BohIH1GEjCobCqVCgCYQrF8HhISaEEro65XcFxjexwrWu0sW0QvjfBaMpk0hyYy7sdivySmULmyUeHs7OwYr5P1/NhvQn40Mgjr0ktzu93mJGn1zDV2xHsA3Rw69l3jgm6320CfXIt2RQ1lwCmpgutV15sSWahU2TSepongrVYLhw4dwuHDhxEIBLC4uAgAJm7IHL9Go4FqtYrV1VWzhhqNhinBxZjrhQsX4HK5DPt1bGwMmUwGKysrCIVCxmPnWuezEKnQOKPGl5WRqjE/oheqvLgOubZ0D+s9bei/37qtr7juokbrmFYg/7YD3rpJtIoFhYcGgxXCsUsE9RLkKsSBTn7WwsICfuiHfgiJRMKcabS5uYlIJILBwUGUy2XUajVz7bW1NRNgVyFLD4KKySZeEA7TRmFIS1iPv9FxUFalVtrQMdDvqcfBnCAVUKroNUbGn+r9kVpfqVRMfIYeFr1M2+vVs8/YZ6Wdc7zsnDySFfg89vUBmPHURqWvfdA11cv6Z5yV42SPYy8om6+7XC6Te8f+AbvLjXm9XqTTaRPza7fbhgJfqVSws7Nj2IQ8xJTPyHnhwaQulwtzc3OGkBGJROD3+83ho8qcpTGifWPfdd3Ye0U/b3v5qqzU8NR51hhYLyOq3zqtf8zmHd64oDU2wwWt8Q2FNhS6oLDXYzQo4Cj0uKFIKdeguW5MoIv7sw/1eh3nz59HNBrFW97yFhSLRRSLRZw7dw6tVgunT5/G8PAw/H4/7rvvPjz++OPY2dnB66+/Do/Hg3Q6Dbe7c05SMBh0eEblchnVatVAZVRkzFEiFMd+s4gsk52Z20Uh0Wq1HHUN+Ux6jD2vr0F5VZyaTOxyuczx9SRRECZUq3xoaAixWMzAhoVCwXgCFHg0KCg4w+EwfD4fSqWSOdxwZWUFS0tLWFpawsrKClZWVow31253curK5bIZT1bIUOGoz8V5Z/K0Hu2iOWxKqOD6YiyPwp+nCOsYU+FyvFnrUNMG+BqbltQCOnl+e/bsgcfjMflxkUgEbrfbeOs8tfratWvY2NgwCp2GUCKRQDweNwbB6dOn0Wg0jLdcKBQMcYb7Stmoinao96pzzGfiM+g40TBUD0xf4+9KSGGtyX7r3foe1x3ebIiBv+vfFETKLlRKsR1ct6+tTa14JSqod6CwGACTYMuz1SKRCBYWFrCzs4O9e/fixo0bWFpaQigUQjKZRKvVMgnIWiBWla1argzS0yvgc2jcTAUyX1PIxY6f3Y5ubHsOCseqsqeXsb29bfKydD6oAAGYShJKhtGEXQbkbciWc6BCnt6bpg2oBQ/AkWysiksL5JJwQgWj46gCVe+hnhifwSYA2flcGivUeaVXobE2jVVy/ZJ0A3TjQBTqVBChUAjr6+tYWloy64P90nge+82YmpaFUrYmx1sVvL0PdV50r9E45HUU7VDjT41PNSIUMu17XLdvfcV1hzdlTSmLzrbodIMAXYiIwlNxdI1bUckx5kPlp4w7/lQPjH3zeDzGw0kmkwbmW1paQi6Xw9TUFKanp3H+/HncunULwWDQ4R3Ra7QVqhIvqCCALhynhAIV2vy8TVVWRc+mHqvGJ2wDQUkKJECosOGxGYxF2vlW9JoDgYDxXrQ6hK3wADiOj+H9laDB9ACNNykT0PaugO6BlxT+NEbUaOB3lKTBcWEfuQb5jFyXCneq10DKt3rqvLdtVFE58ieVPpl/nAd+PhQKodHo1MJcWFhwPAvHicxNJZIw78vr9Zqaijpuui712biuVLlwfrivbAWlHpoSaTgOduz6drHWfuu2vuK6wxs3ix2noIBTq46bT6ENWvO8lkIT3HRUjAz0qzLk+5rIqYLQ7e5Qrufn53HPPffgAx/4AL7xjW+g1Wrhs5/9LH7rt34Lb3/72/HFL34RS0tLuHr1KiYnJ5HP55HJZDA6OopoNGqUp1rH7AsFvVr7fF9zrJhnRS+O19U8K46BHi+vsT2Op8bE+KwADHGEpYKCwSDi8TgajQay2axDeTAXh0qIFTra7e55XlSE6iG63d0zmwgRDwwMmDqPOg78r9AYSz1RCalQpaIjHZvwoCZIk5BBOJD9oUIIBoMOhabkCzU4qHRZykpjXvTmCWEHg0GHsdRsdmoPTk5OolarIZfLoVwuIxwOm+dtNpuIx+OYnZ3FU089hYsXL5r5zufzcLs7jNXp6WlEIhETyyJ8fvDgQUQiEWxsbKBUKjmUve4zPpPb7TaxR/uMNu47PqONIHAtUbExnqZrj/urH9/67q0f47rDG4WBHSCn8FZIx94sahlSyFPZKJFAoR6FjlQI29agCpl2u43V1VUAwIEDB0yFjPX1dbTbbQwPDyMWixnl6PF0KkcUCgXzmi2EbXyfCkCtWfW2lL2mlTK07BOVABuvoc+j3hbHUIUtvYl2u22K/bLau3qNOn+AE37S5GPtu/6nt0KFzFwujg9hQx0fvmaTJNRL0dgNmZvqRdOI0ZhiL5haSTFcK/S2ObYU+BqH1eRiKhAaAZwPPkcwGEQ0GnXkbdGjrdVq5jmWl5dx8+ZNMx4KwzERXufjueeeMzFEXptrS2FV9ex07yjhhffRPaawa6+54Hf0OrZ3xrXWb71b3+O6w5tWFVePSZULAIelppYjNxMFMa+jzCh+lvklpBLTy/B6veZ3haTohQ0MDODFF1/EsWPHcOzYMUNEiMfjuHHjBiYnJ3HixAk888wzaDQaJqj/2muvIRgMIpVKmesy6ZYwn7LlWB6JAl89LwCOCub0LihIqQQ074velMY36vW6g9FHhcnrlctlUzCXcS3G6+gRURhrrFDhIo4pv8/31WOmctB6j/QyFM5S2LJarTpqFgJdSJHClFR6wMlu4zpRWj3HgB4CGz/LuaGxoMQOKl8qWza9Lj0+zoPGJ5vNpiFVrK2toVwuG6VLQsf09DQajQaefPJJ3LhxA4ODg+ZcLZfLhXQ6jZMnTyIQCKBcLqPdbuMnf/InMTMzg0QiYViamUzGsT/sPaLQKr1mrtfboSDqdem867rj83LslLSiOXL9trv1Vfod3uy4AK1C9aoUJ1dhrkKAApIbTb0N9V60croNCapitKHKTCZjKmKMjo7C6/UimUxifX0dW1tbmJycNJYvYbKtrS3k8/ldXoIqY44BrXv1SAiJ8dn03CoADo+LnoRawUoaUEKHejZUJlTSFMr2uKlHotAZvQo1JBjnYh+1gLA+q1ry7Jsy/NgUYrLJLsrSU0XDflAJqKKlJ8NxU+NGCTo2Q9Cm2ev3bA9YGY3MyeKz0zumAqURo5VHgA5xY2NjA/Pz8+aanCe/34/BwUFTyaVYLGJpaQmrq6vw+XyIxWImsZhzoWOjhAxdh3xOvkfvV4kt+h0dC15D17GudV1LSlDpt92tPzJ3SdPYFOCEbGi1KnxoM8TsILFe14Yq9DA9fkdhNBtic7lcyGazyGQyqNVqJg40OjqKxcVF1Go1TE9PY2pqCsFgEJubm8Z63djYMImotOIpeNm8Xq+B1vjcFLyEZigU7eC4Upo1JqbEDiUEcGyYIKsVFUhusOE1FXD8Pqvd63liCmva5AlVWj6fzzADdb7tOQW6pylTuap3R6WpsTT10Bg75LhTiXCtqYenHrgSDPi8vbwqXSOcGzt+w/nR+Jg9BvR2WbuSXuHOzg7m5uaQz+dNzIxjFovFMDo6ing8bhTz6uoq5ubmsLa25khbIAyr+0C9db5nE4bUaLRJKhxjfY3rg2uJ19Z101dW/89aHyq8w5t6WLbQsq0129pzuVyG8ktBpTEHhQC5wWzLj9aleidKLacSyGQyuHLlCu6//34Eg0Fsb29j//79+Lu/+zuMjY3h1KlTyOVy2NjYwM2bN1GpVHDs2DFcunQJtVoNjzzyCICON8ZKF+y3wqCVSsVY8BSg9XrdMMdsD1Qp30AXetUEWz1GRWEzCnyNuxGGU8OB96pWq2Yco9GoGTuWnlJFq3PLa2giNcecHh/7pukJzD/TAyKZv6aQEwBzArAqZCozr9eLWCxmCCsbGxum7/SGqOB4CCNhWc6R7ZEzJshmF4tVmJvzyTEkKSQejzsU6sDAAIrFIqLRKEZHR/Hcc8/hL//yL00fA4EAstksWq0W9u3bhzNnzmBoaAiZTAZ+vx+FQgFnzpzB1atXMTY2hlQqhZWVFWxsbJiTDbgelKWq+4LeH1EIPqtNmFEyE6+l3iIVIJUYx1o99n67feur9zu8KU6uuDvQ9axohSqsCOyGK2yLkNfQe2lQWOEttQhVmOumZsLwnj17UCgUjCC6cOECms0motEoUqmUSVj1er1IJBLIZrMm/sRYj3p9hLM08ZjWtUI2WkVCn0G9EsZJ1EvitVU563W0vp0KWVredi6Uxjz4HNpoELC/Ogc2SYVjYR9sqZDp1taWUUb0orS+IT0x3lO9TD3uReFUGiZaXovkFlVK7Ad/Vy9Om3pn6mWql6PQNvumMV4aIel0GqFQCK+99hpWVlYccSQ+czqdRiqVMmkeWly3UqkglUrB7e6ULSPRQw1BTQBWiF09fo6hwn80TLhnlJGoylphYDVGdXz67fat73Hd4Y0Lm4JCoQndsOpFcOPTc6CCU+GgnhzgzCGyoUR6C/xdv68bsFaroVKpYGpqCqFQCIVCAdPT05idncXOzg4SiQSmpqbw6quvotHo1JaLRqPY3NxEvV43Vj+VCPtCIcJ+EFq0IUugS2DRcWE/KWhsS1gV9O28Ni21RKHEcdZcMQoyKh1W99AYlsvlMsqUjEqdB/WuVVlpU2tfIUwqIY0tcW1QqRAKA7oJzvV63eFZqwfFZ+L3KYxVuCsEymYbSgqP0iPRueAa9fl8hnKvrE6gQ4AJBoOoVquYnZ3F1taWKaOla31kZATxeNworUKhAKDj6dRqNUQiEbRaLRQKBWxvb5sqIxrfsuFD9lsVDZWTft6Oe+p3abRwLepnbQjZNjz7rdv6Htcd3ihMVfko/KXCUC1phZsIZSi2bgeeVRjzWmw2e6wXYQQAstksbt26hampKTzyyCNYWFjAu9/9bgQCAVQqFQwPD+Ohhx4yh/2trq4iGAzi5MmTuHjxIpaXl1Gv1w07r1armef3ersVvoEOJFYsFk0FBCoLm2pNur3f73eccUT6Mz0bACbhlQYAK61HIhGEQiG43Z0yQ6xdSO+P40PYTZUmjzOp1+vI5/PmzCwlUtgxp1qtZjwBVQZUklQq9IC0OjqriwSDQQSDQVN+ifevVCrw+/2IRqNIJBJGENdqNVOui14jx1SJGywPFQgEEAwGze+EEQn1keVYrVYdNQk5N7qWqKCBDqTJCit6yGWr1WEgDg0NYXNzE1//+teRy+UwPDzsqJbBtTg1NWUYiPV6HZcvXzYFdcvlMvx+P7LZLGZnZ03um61sdAyU/KH91lijQvjKFKXxoekA6v3y+fgelXlfcd2+9T2uO7yp9QvsLtOk1plaihSI3HjciAqDAc7jNfSMIPVg1PK0YRCgWxqqVCphfX0dALB37178/d//PUKhEA4cOICNjQ3EYjFEIhEkk0lDK2fQvVKpYH5+HoFAAKlUCqFQCJlMxihaehV8Jt6XkBIFFOMdHDsdR/2bwoVxHvXI9ORm3o+fpdLiWChD0I7jEGrjmPLIDZILlITCvlGokZKvikoNEV5TYVCbpNNud3Oi6KUqs+92Bghfp5GkLEl6vepdut1ux4GTqri1KTlIvQveE+gm0bNuJSFkn8+HRCKB7e1tzM3N4cqVK4hGoyYfkGshl8uZeWRqA6HovXv3YmZmxlTuz+fzhmWoMHMv5KHXWuKzaHV9bToGNCo1dqzQocZx1RPtt96tr7ju8EZLTS1BnvXEv22lpHEqhbwIk/F76s3wXhpA7hVf48F+Wu2B1OW1tTVcvXrV5Ng8+OCDyGQy+OEf/mH81V/9FX7sx34Mo6OjeOCBB9BoNHDr1i0sLS1hcnIS99xzD9544w288MILCIVC5siJer1uLHev14vBwUEjOOjN8D8hI3oiNrzWbDYdJwMrS47PT4XCShKExiKRCAYGBlCtVlEqlcwYqnDla3psCuNOZOvR0mbB2Hq97qCv2xAwTyZmrMmOMVLBsV4i44pqvbNfg4ODhvhCj5EV1jn3HEeOCceB68rlcqFUKqHd7p4S7Ha7MTY2ZooC37p1C81m0xSxJTRKg0pjihx39tfj8SCZTGJiYgLtdhulUgmJRMIcpvo3f/M3eOmll7CxsWEUUDwex9jYGBqNBhYWFjA2NmaMmUKhgMXFRXMsytraGj7ykY+gXq9jZmYGr7322i5SiQ0Tcu3oe/z7diQivZbG8xQh0Wty/u0+9Fvv1ocK7/CmFhiA2y52/VvjMmot83oKcaglrRtPrXqFE22ihjZ6XQyCHzx4ELdu3UKj0cDm5iY2NzfhcrkwOjqKsbExuFwurK+vY3NzE+FwGBMTE8ai3tzcxPj4OKampjA2NmagPrLL3G63Qwn5/X5TDYHPRo9HhT77rX3nWBG6sXOROIZUPiRraCBeWYEK4WpskrlI6hXSI9IahprXViqVDNymVSe0XBLnhzUg9TWOTSQSQTgcNgaHklzoPetZWxrDpBeisDMFL1mKus4Iw3Itcd1qrURd0zSIGo0G4vE4hoeHEY1GDbGF6MHa2houXLiA1dVVuN1uxGIx4/mxGG8gEEAymTSGyerqqsnnunnzJo4fP46JiQlsbm6a07uVJKMetjabtKSIhe4LGiYcC80t1H2o82PHr20CVb/tbn3FdYc3biRCTkoqUJiHwkep7vyO7ZHZSkmFiQpjNhsqUviQjffM5XImjjM6Oor5+Xnz/Vu3bqFer2N0dBT79+839yG8GI1GEYlEMDc3hxs3bphYTDKZNNCRXcbJJiPwmvRSlLqtAliD6prXZTPrdNwA9FR+msTKvtCruF1sh8e4KMOR9Hd6dcVi0cSNyNjUCumlUslUE9nZ2UG1WkWtVoPb7TbxJx5voikGVI56jAfHkutHY6sqkHVtqSDnsSYKcfJa6vkSelSYTGn+IyMjGB4eRjgcNt59s9lEqVTC/Pw8bt26ha2tLcTjceOJUUnt7OwgFoshHo+j1eokHd+8eRMHDx7EwMAAXn/9dZw5cwaDg4OmTBTHlPOj/3vBqMoo5N/2/rCbKjauMV1/t9vHfcV1+9aHCu+CRijFFswKA9LLItONTdlMhJ0URmNwn7/z+73iE0DX8tQNzN9DoRBWV1dx8+ZNRCIRpNNpAMBrr72Gs2fP4oUXXkAgEMD73/9+xGIxfOUrX0E2m8XOzo7Jv0kkEqhUKpiZmcFzzz2HvXv3IhqNwuvtnHbrdruNUNMcJz4jFRu9LMJitPb5rEwQVpIA85U4TlSU9LCazU5R3XA4jEQiAaCTd5bP5zEwMOAoI1SpVBxkGcZR1Gux4UOOvx3LAzpCrV6vG69pbW3NcVK11mIMh8OOU505Z1Rw6hFxrpUar4nPPJXaTmTmmmBclOeCNZtN4x0DMMqOOUqVSsWsX3p+jUYDIyMjGB0dxfj4uKn47vF4EI1GDYPwmWeeMRBrpVLBwMAAxsfHTRK72+3GyZMnceDAAayvr+Pll19Gq9XCjRs3cOnSJTz44IM4ceIEqtUqvva1r5k0DT6DEi2ozGkkKImCfed+sN/jd3Tv2AxJxoXVCKSnxbXQhwpv3/qK6y5pGjQGusFsZdFRUHJj2YFhtXAVb+9FyFBLktdXXJ7vqTKlkFpdXcW+ffvMSbUzMzMYHx9HrVbDjRs3UCqVEIlEMDU1hfX1dXg8HvMzGAwinU7D4/FgZmYGbrcbe/fuRTqdNrCa0p8ZF9G4FNl3fFbNr9HKGaqcKXiU4s3nVIguFAoZRdRudwrtUqBr3hRZnAodsmnuk56dxetpzFFztfRQRipGeqmkiVPxUfjaibEKAapSU8IGPXWFHDUORoalbTRojFXHlY3jr4Ic6Hhnk5OThnxB5eT1ehGPx7G4uIiVlRUsLi6aHLpSqWQMDLJBY7GYgQWvXr2KUqmEsbExzM7OYnJyEg8//DDq9Tpu3bqFmzdvOuo22rEt9l3JKLpHdK/xs732RK+YlSo5DQXwmvq9fuvd+orrDm+tVufMIYUZNK9FrTW/328EDpUPBRQJBBTsZM3ZMI5ahnaCL9BVoPweBTgtyIGBATzzzDMYHh5GKpXCwYMH4XK5UCwWMTIygnw+j9nZWRw5cgTvec970Gg08MYbb2BjYwPhcNiU4hkdHcXNmzexvr6OkydP4rHHHkMqlcKNGzdQrVYRCoV2VZWnolCoTz1OpSST3MKYDNAVuBxbwnCNRsP0C4ApScTfARivjPR8nvVEYgLnUgUaKeNUGpwvXlOJHOVyGZFIxOS/Me9tYmLCoXiazaYpYQQ486v4fPSUtHAu1w69McYEOX5KxGHfeIgm+8txjEQijjVMqjzXJeeDCeixWMxUWyG86fF4EA6HkU6n8cILL+Cll17ClStXkE6nzVwuLi5ieHgYJ0+eRDQaNWzNYrGItbU1jI6O4saNG3j88cdx+vRpxGIxfPnLX8bzzz+Pzc1NBwxskyoU5lSY2VZgqqxUYdljTY+Zr+laBbpKUvdsX3ndvvVjXHd4sz0e3Rz0ohQatGMKfE1/8rp2vExJGeqtUYmx2ZY8AMMSo0BZXV3Fzs4Okskk9u7di+PHjxuSxcbGBiqVCoaGhnDo0CGkUimHgmSVimAwiFqthitXrmB9fd0IPgpj7UOvOIKOmfaVjR6bemV8BmUzah6YMjS1nh3HlwKeSkerfWh/SDjggZq2dwt042i8nsZRmF/Ge6jCYa1IGiGM/6j1z/ghhaoSMXQsNS+MLE4V2ooC2B6mTXnXNcb58/v9aLfbyOVyKBQKjtJTfLZbt25hfX3dAaU2m02sr69jbW0NyWTSxPDy+Tzm5uYQjUYNhHjgwAH4fD5ks1mcP38e169f3+U56d98jZ6rHRvmT1Vi+p5eS/eQHf9SJafwbJ+Y8d1b3+O6w5sqotspJFqv6o0phKheGS17ZS7ZG0YFkAauNfaiwWq9XqPRqVt48+ZNlEolpNNpc3REMplENBrF2toa8vk8xsbGcODAASwsLGB9fd0I+Xw+j1gshnA4jFqthmw2i6tXr2JkZMRRaFcbN7oNU6ky0PGxYUMlJQAwQXuXy+VgL/ZiDKrQ570o8JrNJmq1mpkjKhfmGSk0qTUHKegYu9ra2jLKKBAIIBqNwufzGSuerzNWxedTmFM9bCouZVMqBGrDXKq0FULU9aUkE4Vnqag9Ho9hD6pnyTVGosXW1hZyuRySySQ2NjZw9epVbGxsOOJCrVbLHNxJz7bRaGB1dRWFQgHRaBTr6+s4ceIEQqGQ8fSvXr2KcrmMYDBo+q7QuW3k8Z5qHPGzfJ9Kupfhod6T7dWxKeRor8N+6936iusOb4SadFMQfmBMxc7zUoGqG42bjZ/n+4SZSK9WIdwrYKyxBX2fwqnVauGpp57CxMQEHn/8cQSDQfz93/89xsfH8e53vxu///u/j2aziR/5kR/B/v374ff7cf78ebTbbXNg4OLiIvbu3Wtgp9dffx1LS0u4//77HXCgCtNWq+WgvyutnKQLKhEAKBaLJs5hewkkgfD+hMX4N5UPSRm8P8kPCjkFg0G0Wi1z72AwiOHhYbTbbZMbxt/5PDyR1+v1GiWuBz8yh4pNyzHRWyR0xgMZE4kEarUa1tfXDbTJOdb6gvRs1HPk3/QcWZWDn7XP61LDiGPLvDOuX/bb5XIhHo9jYGAA169fN95YIBDA7OwsXnzxRQeMrZ4OiRyNRgP5fB75fB7hcBgLCwt4y1vegoceegiXLl3CuXPn8PLLL5samUpU4vxvbW2ZNW3vKcBZTJgoBEk3nCu+x7mx46VsnGeND9J778Xs7Tdn60OFd0lTz8uG+DTGw9cI5ynkYAeAuRHpPShkYUOGQJcdpV6X/ucGHhgYQKlUwqVLl+DxeJBKpZBOp3H58mUsLS1hbGwMt27dMrT5VCqFWCxmWGYUdLlczlS0Z9CeysgeDz6bwn20+vkan4GNytcmTwBdOJRJ27yXjiv/MwHaFtR6D84T0K1ewTOjkskkYrEYgC58qcnGtuWu11AFSk+PBo3f70cymcTw8LApTKuHXWo1dN6bVTYomO3SYjRcVLBrv3TtqYdBRUlDivPD79CooAc5ODiIfD5vFBljcmpwBQIBx7htbm6aOOShQ4dw+PBhAMD169dx/fp15HI5c0+ubTXo2Bf+1NQIjT2xqaKxx0HhQr2PenVsil7Qo+xDhd+59RXXXdAoOGwBRmFlx3aUmKBwiEIWWhIKcB50p9fUTatCjBtb4xwUUNzst27dMifXnjx5EpFIBBcuXMDp06fRbDaNIgoEAti3b58jVuDxeFCpVEyZpHa7ber46UZXC1w9BT2SRBOx6RV6PB5TFy8cDpuzs+it8XskOtiGgCpFjhvHRg9B5HXoWTC3jH1jTlc0GnV81o5dqsBj37VEF+cGgKk8wgTu0dFRQ15ot7unGdtEDKBrFFExcTz0IMhesR/OAxWTvk4lSS/SXqfsC9MbIpEI3G43Zmdn8frrrxvCBqFWzrvP5zPPpRBzrVbDiRMnkEql0Gg0MDc3h/X1dce6to0VjiPXj8aq9HBOzgP3lh4LpPtM95ZCh3b8Sg0sjg2Nkb7yun3rQ4V3QVPhCDgriGsuSK8NRctZ4Q/dlPSUFAbhhtHrqmCi5avsN8aCqGBcLhfm5ubw3HPP4ZFHHsHRo0fh8Xjw9a9/HT/6oz+K8fFxPPHEE3jLW96C/fv3433vex/i8Tiefvppcy8K5mazaYQZPbZkMrnLo6JyoVBT8gZ/V+GnSbKqgNvtbtkkJQwAcOROcbyoDCncKHj0ZGFCXX6/H81mE7lczghQKqE9e/YYIgfrNHJ+WdOR+WuMnZGNuWfPHtx3330mx4wMTfY5k8lgbm5u14nONARU+Ws8h/OpHj0JI4VCwRBBeE2l0lNpcRwAOM7xsolHHM9arYb5+Xk88cQT2NzcxMjIiKNCB7+zd+9eTE1NOdIpvF6viZ9ubW3h2rVrmJmZMWQf9Z416VyVjB1n5JjQe1bvXj1Ihd3Z1MhS6F7j0lwHqqgYW+vDhb1bX3HdBU1ZTmrl2gmMfJ2CjlYc4CQqKNRGqrMN+ylExevy2gqHqNVKr4bX9Hq9mJmZwZEjR0xFhJGREWxsbGB6ehqbm5uYnZ01UNmhQ4dw48YNrK2toVwum6KxZPW1223k83kEAgFTO9CGKYEuRZ1eEIUNlZMqFyp0HUOOFRl/SoDgM5JIoGNKYWQzLtVLVrIEx6zVahkKPeNljUYDlUrFVGungK3VaibZl1BrNBrF+Pg4Tpw4YQ4OpWfHsknsE8dKBaJ6PqpEGF+1SS1UiNp/Ki0SSVT5sT/8jBpNeh1Cgtvb29jc3EStVjMFjxWy4xwPDw8jFothc3PTFHHOZDJmrCuVCjY2NhzxLBuhUKIF14KOCZU0599mDPKaOsdKxNH9ptCvvS/t/dtv37n1Fdcd3hTaURiCwlfJEbaVrBYi/6anpLAaAHMUusIoZBWqglMhp3RnflbzWgDg2WefRTgcxj//5/8c09PTeNe73oX/9J/+Ex555BH81E/9FJ544gkAwDvf+U7s3bsX73vf+/Anf/InjqK5hLRISGFeE89Q0nhQo9FwlC8CuoViNc5FBUvBA3SECD0tekdbW1uGPBEIBIyHwrqIVAg2EYbCTAWkxuTYeH0q6FAohEQigcOHD5sKGaurqyiVSlhZWTGVLNLpNHw+Hw4fPowjR45gcnISkUjElIris2WzWaysrGB5edkIcLtShB0jVVhU46n0LhXK0hipClxVUqrMtQwW6yYyT06fd2ZmxswRi/oCHS/J7/djYmIC4+PjaLVaOH/+PI4cOYJIJILnn38ehw4dgt/vx/Lysin4yzXKcbaLVKsxxvWiY0GvUxWXQn/cTyQ5cX8QZuWzcx8pyYM/9bqq9Pttd+srrrugUQgq5dYO4Npwg21lKhSj8SleXxWOWn/6E+h6D9o3hZDs72SzWbz22msoFAoIBoNIJpMYHx/Hiy++iI985CM4efIkLl26hGq1Cp/PZ2Iz8/PzxhMhYzESiZjznsiao7Lis+uYqGfD/qmApXDSqhHKoCN7TwkjNARINadCVY+YwkeVmlrrAHadUdVsNs1hh81m01SSSCaT2LNnD8rlMubn503FjJGREcRiMRw4cACxWAwej8d4qhqPoaJnnhSLEavCtmM99Mr4N8dRY62MzXHcKax1Haonw+cirEwWHyHERCIBn8+HK1eu4Nq1a1hdXXV40+olBYNBjI2NIRqNIp/PY3h4GKOjo9jc3MTo6CgmJycdhJ6BgQFzX43/6vpV40X7yNf4XY1VanyVn+NPjhvXiza9F79jx8P67Tu3vuK6C5rGcAA4LHduDt00Nk6v8IMKSl6DwkEL1upnqKxuB2eoxaqKst1uIxqN4urVq7h16xYOHz6McDiM++67Dy+//DKazSbuu+8+XL9+3dSeGxgYwOnTp1GtVrG5uYlms2niNl6vF6VSCdvb2+YQQaXGaxV4mwCgAoL9VW+RgioYDJrnUiHCMaYiZbyFXkUvDxboein2vfUYD/a1UqmYfvL6ZB22Wi3s37/fVJJnzUS/328gMZ5LxVgj1wFjUJovpeQQXRckxTBeY3srGivUclVUXLwnX1cPRfOlAJgz2ahoC4WCydmi56z5YBzPwcFBjI2Nwev1IpvNGkWVyWSQTqfN0TcsTKyKQyFl9TA19sR+0xPSw1d1LPh9HSP2UT0yjYcpyUo9WjUIbGXab7ubq30Xjk6xWEQ8Hv9/uxv/2xoXNQPfCp0p3KP5XrY3RuHAGnZ2zTiFtqjEVFFpfEHZVRrABrpFR9WDC4VCOHr0KN7//vfj/vvvx87ODtbX1/H1r38dP/ZjP4Zms4k///M/x0MPPWTiXYuLi/iDP/gDuN1uRKNRnDp1CuVyGQsLCwA6zLkzZ84YOJECW5Nw2Xf2gx6DekwATLFbJuC63W6jIEiW4HMTEuXRLawmQSFEMoZ6G+yjnv9Fwad18Or1usnb2rdvHyKRCA4ePIh4PG6uw77yTLD5+XlkMhlsb29jdHQUHo/HcfKwntY8NzeHra0tR84VvSbmVwEwaQgKt/IZlYxCZa3kDj4fx4NeEquh0Egi+5TElMuXL+PGjRu7Et5J7KDncvz4cRw9ehQjIyOYnZ2F290prHvt2jVcvXoVb3vb23Do0CFsbW3hq1/9Kl555RVUq1WHQcU9ocpCPXc1aPSz3Feq4OidMT6ne8I2Htnsvuh+VdiQXu/3eyMB6ntpfY/rLmhc1ISm+L/ZbBrSglqR3Bi2YmLTDaEKSYPKNgvKxvSVum4TRNSqplB84403MDo6iomJCYyOjpoTjl977TU8+OCDqNfreOWVV3DmzBkkk0lMTk5ibGwMy8vLqFQqWFtbMx4JhcL29jYCgYCxgOlVsC/0DuzguhIOXC6XEdpKbWZjrMa2ghkrUco6x1+9ORuGUyXKnxxzrWlIhVMul42y5KGKiUTCzA1PBgZgvMFsNmtiXRsbG+Y8LibequLUeKbtlXLsOO9U+lwv9trRv5VdpyWnyDLc2dkxccJCoYDr168jn8+btAAaYva9pqamEI1GTZrEoUOHsLm5iYWFBVMNhPEtVtDXOePaV4KETXris9ssXIVX1aO3YXudb92b6vlzzG1Grw1v91vv1ldcd0FTAgb/5obg+UsaUOcGIBRE5aHKCNidHMngMYWarbQAZ5V4JR7welQAupn586tf/SpKpRJ+6Zd+CUNDQ3j729+OF198EZlMBp/4xCfwzW9+E1/84hfxcz/3cxgaGsLP/dzP4fr167h48aKhO/Nk3LW1NczMzGB6etocn2LDVSzEC8DkZAEdC5jxFa/Xi2g06oiRcYwYx6Fy43lX9HaVOUbiCBUmlWiz2TRwFfvD6ys0S0VKhZzP5+FydXKaSAzIZDIoFouoVqs4fPgw3G63qaheLBYxOzuLcrmMfD5vPMVisehQsCzqS/YhPSueMMxCulxvPEqG76uwpvekpCG7MamZ36GnGI1G4XK5MD8/j8uXL6PVaiGZTBpiBMeEkOHo6ChOnjyJsbExZDIZVCoVPPTQQ4jH4/irv/orpNNpnDp1CqdPn8bAwAD++q//Grdu3XLA2ITV1RNUxqWucdtTZ380XqxeprIK9Rr6us3ItRESVZj99p1bX3HdBY2egU2KoMJRa1BjPEDX2wCclqVN3wWc+WEaUNemVmEvKFHf44anZdloNHD58mWsra1h37592L9/P2q1Gi5evIhIJIIf+qEfwvLyMrLZrKGHHz58GJFIBC+++CLq9TpcLpcRyi6XC+VyGfF43ChcDXKTScm4leZUscQRhZB6kmokKHREaAiAEfz8DOEmZWxqCSXCiBRmhJXYVwb8NW7idrtRLBYN/MkyS4Czkn+1WkWhUEA2mzXeDOedUKDdD0J0dizFjl/acRyF0fiMZGFSYVMBKqFImZZM+l5YWMDNmzdNPhhjWuwTnyEcDuPw4cM4ePAgFhcX0Ww2zQnapVIJXq/XpFuQwLO8vGwMGTX0OA7ap14EDY1nqSfJMbNjurZ33Yt00Wsf87P2PuQ49lvv1ldcd0HrtdCV0k0BAWCXwlHhrB4UrUw9AsMWWLfbYAqd2O/rZlMBxFgXPaVkMolUKoUDBw5geXkZN27cwIEDB/Doo4/i2WefNTX23G43pqenUa1WsbCwgGw2i0qlYiC8nZ0dFItFRCIRh3AgaUOFNq1cm02ogomFbDU+QUVAZaKQn8YyGIdU71UVARUnx16VLT01TRwHOh5SpVIxtQapcKh4meu1ublpKlPw1GSFHvVYEc2ZUmKJKmvNnVIPXmE8fY3EGHqaHA9VDs1mE/F43KQxrKysIJfLOSBL5qhxrQYCAYyNjWF8fNxAndPT0xgaGkI+n8f6+jqCwSAGBweNd5zJZLCystITxlMFxLVsl69Sj4p9I0uRHhu9d15TkYteELoSNVQxqtfGdcr10Vdct299xXUXNGWjKYyhQogwEz0KtXA1eVMVmw0LalxKi88qtKjf183Ivuim43X9fr+B6kKhEP7Lf/kvWF1dxU//9E9jenoaoVAIn/3sZzE9PY23vOUtSKVS+OpXv4p3vetd5t5nzpzB0aNH8cQTT8DtdiMSiSAWi6FcLiObzeLw4cMYHBwE4GTytVotk4TLOnyMDdHCZ/FbjgFPRma1egDGmyUMqkpdr2mXlKIQo4FAD4XKjkeLUNFqsnG73XbkZB04cMD0k/dYWVnB6uoqKpUKMpmMgTQp/An7cb45RpwnenB6MrFWu6BCcbm6+V/spxYF1sr2evQJ1yLXEQlG2WwW2WzWMDlpVKhxBXTg3+PHj6NSqWB5eRlnz55Fo9GpAn/u3DkUCgX89E//NCYmJhCPx3HhwgU8/fTT5jgaEo2oiNkP/q4kHoUHCeWq0uX3GDtWaJFrzY75ad6awoHcM7w/DSQao/32nVtfcd0FTSEMm3Bge0G9vmM327oEuhAgBSg3kFqj+jmFJlXQ2P2mx0UBvrOzY3K71tbWMDQ0hGg0itHRUVy6dAmBQACPPvqo8RoGBwdRr9exvb2NSCSCPXv2YHl52QgiCmrCi0NDQz3ZXGr1si9a0BaAA2bVGB6v12h0zgpTWAfoWvGEC/kdMvGoOEOhkMNToTLlXDIWpmw2Ph9zr/TgzlarhVwuh0wmg1KphFKp5Eh/0GdmqgGFqx2PUZp4vV43sKfeT70KMjDZT77G69FrUziUQn97e9vEulgCi2sqGAyacfZ6OycgU/jv27cPa2trmJ+fR6FQQL1ex+TkJKanp00JsJmZGVy9etXch3Npp3/omuCaVwNO+63wtz4rv8f37BgYIWdND7D3qR0n0/npt9u3vuK6CxqFjJ6JBDgXvQpSte4UQlQITS1M3kNhHTtW1stq1E2quTYaG1ABprlQc3NzuHLlCo4dO4ZEIoFjx46hUqnglVdewQMPPIC3v/3t+PznP48zZ84gFoshl8vB5XLhyJEjcLlc2NzcRLlcNkpgdXXVQFF2EVlbYdkUbgp1wo9aKYHPwwK/FLgUPvwMn1cZjBrnI8FBaxgqiYX9oReg46aeH4vNNhqdYzz0LDPOvZIxCE2qEiJkqR48LX4aGl6v1zA2VTirR6AxGXqbVOr6vXa7bYwPoKMYK5WK4xqq7Bi/TCaTJodtfHwce/fuxTe/+U1sb28jGo0inU5jcnISqVQKHo8H2WwWFy9exMrKimMv0PjSMVHmpCoz9cbU01K4nY2sR/XW7WvZe9KOpymT1b5+v92+9RXXXdA0/qGKA3DWCyS8p0FyVWBaEV4tO24oCnzi96rACHXZ1bDVaue9CMGpxclrAd26dP/5P/9n3HvvvXjXu96F+++/H0eOHMHNmzfx2c9+Fu9973vxkz/5k3jyySeRz+fxzne+E5VKBSMjIxgdHcXa2hq+8Y1vmFgPD5xcWVnB2NgYpqamMDIyAqCTJ0JhQVhQS0op04+KQ8kYmhfFcWTCsK1oaF0THtPgPAkIqhgJxymDkcqKc0sq/M7ODkKhEHw+H55++mlcvnwZs7Oz5ll4VpjmkSm0xXWjeUucJ+ZZuVwuUweScCqFOdci4z8aKwyFQmbtaGyt2WwaliT/ZmyKDE1eZ3t725yXlU6n8ba3vc3cM5VKGQr86OgoRkZGcPToUaTTaRSLRbzxxhv49re/jQsXLhjFrYiBvWe4HjQxmHPL/cG1y7nkvuB3SEjhPlDlRvSCBBqbqKMKnn2jIdNv3731Fddd0NQ70o3C99Ty5Ybja9wY3EzciICTkkthqjEtfs+2Fm2PTi3MXni/UoHV41ldXTX5XSdPnkQikcCePXvg8XSqyP/Kr/wKPvShD+ELX/gCyuUykskktre34fP5kEwmTeysWq0aJZTNZo3gTKVS5rRgxpaUacgYFIW6bf1rFXMqISYBa/1I9Vw4PzqOKih5LdLn7e/y/koqYMIuC/42Gg0sLCxgbW3NeIkqAFUY63MpBMz36GXxbC7WDNSahEA3JqaCl89mE1ko4Elqoefr8XhQq9WwubmJXC5n+qmnIrtcLqTTaZNcns/nMTQ0hHK5jM3NTbhcLlORfmhoCIFAAFeuXMHLL7+My5cvOww29YY1lUS9WRtS14RinXuNk5HcpOvfZiyyKSyr+07Hkn1Qg6nfvnPrV864C5oN2alQUyFEpaUUdAbDAezaXPwOYUi1oqnMNJ5Fwcugt1Lj+Z1em1iXmAp39ikSieBf/It/gVOnTiGRSCCfz+PSpUu4cuUKHn/8cYyNjeFf/+t/jUajgbNnz5pitCsrK3j55ZcxOztriB+aZ0Tm4kMPPWQSWzOZjCFgUPmQWGAzMtl3ehG1Wg1bW1umBBWhQQpghd80L4xMRRvCIyxG5aEMQ1rr9CaDwSA+9KEPIZ1Oo1Qq4Qtf+IIpk8XGOBiVm3oFgDM1QlMCqGACgQCCwaCh0Kuw5nXUAOEaoALk9arVqoFDSUDgszz//PPmbCwaS7VazcQvH3vsMUSjUVPp49ixY8hkMpifn0ej0cBb3/pW7N27F0NDQ9ja2sKtW7fwp3/6p5ifnzesP86BepnKnlRmn0J3vZL19XOqfDTXTWN0nEfdk3yP8VQ1kPiT+7UXzPj93vqVM75Pmyoum8mkgWfFyQlVKFPJxvRtYa2bRWNiAIyy4qZX1h43tXouGueyla7GVbxeL4rFIp5//nkMDAzg8OHDSKVSOHr0KL71rW/hySefxPve9z584AMfwBe+8AWsrq4imUxiYGAAExMTxsq/evWqyU+iAGEi7tWrVzE0NIRgMGgSblXB6JgpdKUWMgU3ixerN8ODIUlBVwGnbE5li/F9xpH4HHx9c3PTfK7Z7NREZA3CQqGAYrGIdrubxGwbEWxkCCosBnS9IcazWLqKgp/X4/lfVGSE0ggbcyy0IgaVGAADN9brdUMk4drUc7oOHz6MvXv3YmBgALlcDlevXsUjjzyCcDiMb3/72wgEAhgdHcW+ffswOjoKr9eLixcv4pVXXsHi4qLpSy/PR40u/m0bVfyuGnX8npZaU+IMAIehx3nU/WgrJ1137XbbVDuxc7xsg6/fnK2vuO6CRitX4wu9Arm92EjqnakAVWsZ6EJegDPozvdUYKmAVFhDhYO+pu/p/SkgwuEwZmZmjMf00EMPIRaL4fTp07hy5QqeeuopfPCDH8QHP/hBfPGLXwQAc/rt3r17sb29jevXr5tYHOMbFDjXrl1DNpvF8PAwEomEofsDcDwXrWMKVs3D4TNQyHB8eB8qHo4xY0Ma99J50LlQa5v3LBaLBtYcGBgw5ZG2traQzWbNWVX0gtSboMDd2toyZBIVmqR5a6JyL4+T/eez8dmZ0K1EFH6Ga4Xjw2uura1hZWXFEXclezGZTOLQoUMIBALY3NzEysoKCoUCIpEIlpaW4PP5cOjQIaTTaQwNDcHtdmNjYwMvvPACZmZmUK/Xd7Eo2W/OnxpLun+osFTxc165fzTPTr0o/b6t8Ow5tpmoXF9qiKpHqxBiv+1ufcV1FzQt/qlCBehuAIX2NP6gm5WbkexEWvgUJvQsuCGVWk2LVi1t/uc1+FmgSwBQ4cX+q5fTarVMJYxvfvObOH/+PNxuN+655x6cPXsWU1NTeOWVV/Dkk0/i0UcfxenTp/HGG29gfX0dhw8fRiwWw549e/DQQw/h8uXLWF9fR71ed8ByuVwOlUoF29vbSCQSRrCSqRiJRMzz0qukJ8QxorJjvcR4PO4IzlOg81qE4JrNpom/UYkQNqRSopJjf1utloFMM5kM4vE4YrEY3G43FhcXcenSJeMJqCHBvq+urqJQKJh4YCQScdQAjEQipljv+vo6tra2DFzDnCr1iAEYgkq5XDZjo7Ern8+HeDyOsbEx7NmzB9lsFt/4xjeQyWSQyWSwuLhoiuoSWgSAvXv34uzZs9je3sbq6ipGR0fNOVvPPPMMVlZW8HM/93MYGRmB1+vFrVu3cPHiRbz66qt47bXXDIypBhT3i9Ya5J7R9QrsPoKEn1cmIusd0qOyFRDgPJ2c86vJ7jY8z9eUDaqKsK+0vnPrK667oClezgWtbDXdCLr4ga4XppvN/puCioJYA87cbLTSNXCtkAvQDeDTY+n1GQoUKi8KAiqJSqWCq1evYnx8HGNjY4Y99uSTT8Lv9+Pw4cPY3t7GzMwM8vm8gbCmpqaws7Nj2GskAtBabjY7BWtLpZKB3dgXUs11rNQb1WKvCu2x/zQMbJIHn58xLMZ8OJ62d6qCkTUKvd5OtfiRkRF4PB4Ui0UUi0XH59lvxuHW1taMgZBMJhEOh009Qnq4FK48bVjXlU131zw2QoLKtnO5OkzS4eFhTExMoNVqYXNzE1evXkU2mzX1FVVwNxoNpFIpHDp0CIlEAleuXIHf70coFDLxrvn5eUxNTWF4eNhAas8++yzOnz+PpaUl84xKu+drOv42TZ1NPSsb0tY4pe1BqTeue0SVJ/eQ7lO9L5sWC/hBjG/9z7Y+OeMuaIS81FK0ISzF8TU3yBaOtCxt2E9xd41bKdX7dpAI4KzXxzwc7Yc2fY1KRhUYAJw6dQqf+MQnMDIyglqthhdeeAEXLlzA2NgYDh8+jHa7jSeffBI+nw8jIyPmKIsXX3wRi4uLJinX4/GYclDb29vw+/2Ix+PmkEa/32+gLz4vPScqG3pZVHiEAjmeGtMCukeZ0JKvVqtmjPn8FPxa85AKlp4diSAnT57EsWPH4PF4cO7cOczNzQHoHsfCONTi4iIqlQqazc45XoODgyboTU9AKz4AMMnA9XodwWAQwWDQobiomElM0ULG5XIZPp8PqVQKp06dgs/nQy6Xw+c+9zmsrq4akgaNoWazk4S9tbWFVCqFH/7hH0aj0UChUMCBAwfQaDQMRJrP53Ho0CE8/PDDSKVSmJmZwblz5/Df//t/N2tFy2txrfF+9ISVJWgbe6pwdL1qySkaGQoPcr1zHasXpmxfu5gx956Oh64Lfv8HTYH1yRnfp42bgRtHISUAjg0EwPEZG37Q6tu0rhXmo+Wu1wW6cTaFFW2lqIFnNntDa59UASrkBgCXL1/GpUuXzFEVLLb71FNPoVqt4vTp03j44Ydx4cIFU7Q3HA5jenraKBcmuapS3N7eNocuFotFDA0NYWJiwqFM9LmokDkGWt+PApC5YbyvQrf6TBxD9omGgnqsSqaIRqPYv38/pqamEIvFsLa2ZkoYcRwpAGksBAIBhMNhc4yJQrN2PIZ9Ys1HXWO28FQmKGHrXC5njpYpl8sol8u4cuUKrl+/jmAwiK2tLQPZ8rq1Wg3pdBonT54EAHP4ZSgUMtcoFAqoVqs4cuQI0uk0lpeXceHCBVy8eNGMoR030tgZ1yff133Ry6Pu9Z6iC7ZXpuOoBp8SLPhdzWnjTxo7NiOXXrtNlOq33a2vuO6C1stS16CzQjqK2WvAuldMjNfWa9gwH3+qsFOBoRtYlRq/24utqMqNEAyVqH7v2WefRTAYxLFjxzA8PIxAIICrV69ibm4OLpcLjz/+OIaHh/HSSy/h9ddfx+joKMLhMPbu3WsC/fl83sRlaKGTYs44FAu0KgTEcWDuFsfXDtDTw6S3RsWm48jn5PNzLjX+aAuyaDSKwcFBTE1NIZVKOY6f9/v9JhmazD+mPkQiEUQiEYehQDiVc63kE1bI0Nw/29jgmuN/9cjoeV27dg0rKyu4evWq8Xw4TlTEADA8PIxTp05hcnISN2/exMDAAE6dOmVqbLLs1b59+7Bv3z4z56+//jqWlpZMf1Q56LPaa5hrS70sKgg+g46/KmdVUprUrcqQf9txM91TOrdKvLBRE85TP8b13VsfKrwLGgUL4DzyQJWXellq+WnA2SZHsCnxg5sQ6Ab7VaCpVWi/buP5FOaEbNQ6BZzV6HkdVZaMg5w5cwb/7J/9M8RiMRSLRZRKJVy4cAEzMzM4cOAAhoeH0W63cfPmTSwuLmJ8fBwjIyPY2dlBJpPBU089ZeI4eiYWq4GMjY1hdHQUqVQKyWTSPDuJE3riL/umZZNqtZqB5+gNaRyIzxSJRBAKhUySb6vVMueCsXIFYcr9+/cjGAwiGo2aGFUmk8G1a9ewvLyMQqHg8KI0MVZz90isYWFft7tzVAqfj+diqRev9G9eUz34UqlkcrYYI3z55ZfNGMdiMbhcnbJcjUYDwWAQzWYTQ0NDeN/73gefz4e1tTVEo1GcPHkSAwMDePLJJ7G5uYmJiQk88MADhnjz+uuv4zOf+QzW1taM0uxFHedPnifG9cY1yOelUlDFo4Vu9TWufZJcqIw15mcjB9yTRDa0YAB/6ljbxXrdbrepKPKD0vpQ4fdpU6Fve0NAV1Gp96PBYzalO/OzVGwUcArbaezGvg4Vi+0l8X2lE/MZFJqxN7s+lybhbm5u4sUXX8TDDz+MEydOYGhoCPF43GGJh0IhvPvd78Y73vEO/PVf/zWWlpaQz+exZ88epNNp3H///ZiZmcHi4iKKxaIhAZCcwMMXg8EgUqmU6S8tcfaPisKGmNhftcp1PFjpgUQJKkOOq3peTAJOJBKOmAvjYeFwGKFQyHgmHGMmCyszlMqnXq+bHDePx4NyuWz6yfhbNBo1rzHhulqtGhag0syZr0UYkFU91KPjs3FdjY2N4dChQ/D7/SgWiyiXyzh9+jSADlU+k8nA5/Ph5MmTmJycRDwex9WrV/HCCy9gfX3dAY9qvpSuP64r26u06eW69nhNO96l6SI2ZG57VFoWjdfTWJfeU9eF9tNWfPrdftvd+orrLmiK2SuURcWjEAibbhx+j59Ty5PC2RbIvC/gzAXTeJkKBt5LBbe94dlvbnSFeSiA9PONRgOhUAjFYhHf/OY30Wq18Nhjj8Hv92N8fBzvete78Prrr2NhYQEvvvgi3vrWt+KBBx7AhQsXsLq6io2NDYyMjODgwYMmSZgVFgA4jrPP5/OmRh5p5uwvhTu9GSU5MLep1WqZAxEjkYiD4p5IJBAKhZBKpUyRXDUeqMj0SBT1AuhRBQIBJBIJlEolbG5uotXqJD1TcXEu6SnRI9JYD2NovB8VAF/jNUnG4HzqwZA0cAYGBozSYoqEHn3CNeD3+3Hs2DEMDQ2ZKvaxWAwDAwNYXV3FtWvXEIlEsHfvXnPMTalUwrPPPouXXnrJrC1d13xN4TlFI3Q924aVrSD0NVVmCo0SUdAqJIp42P1SpEL3oKaO2H1Vxan97rfdrQ8V3gWNDDatfEDh2Wq1HEeAc2PYsB0hjl6EDt0squAU46dAUgq7Xos/9XVuVPs0XL2/QisqNGxPjAVmf+InfgL33nsvDh48iFQqZUgWzz77LJ555hmMjIyYQxcffvhhzM7O4qmnnsLExAQ8Hg/m5+eN50Whz1JJLpcLY2NjSCQSGBsbM2WheN6Wwqis9E54ant7G5lMBjs7O/D7/di3b5/xsHgAZCwWM3NJL4jKza5ewXnQfKw9e/agXq9jc3MTMzMzKJVKuHXrloMOzjlSz5uklNXVVVPaSb03jZ0CMMql0WhgcHDQ4YFw/r1eLyqVCm7cuIHl5WXDMCRECACJRMLEs/L5PLa3tzE4OIjR0VEEAgF8+9vfRrFYRCwWwz/6R/8IY2Nj2NrawpUrV3DhwgV8/etfN89AZcj1o2kO6lXp77om+bu+r/A2n4nK3z5kk+Nq51Pa8V3OA5m7qvwVwVBEhL9r7NqOeX4/tz5U+H3aVImoF8Om7+lrNoRiw3b8nk2U4O+6ATVwrddVAdErZsWfmuDJvCh6JXpf/Z5aufQEnnzySayuruLs2bN4xzveYZJm3/nOdyKVSuGLX/yiSTiORqN46KGH8K1vfQszMzOIRqPYs2cPYrEYVlZWcPny5V109s3NTUMpj8fjphq7wjz8T8GmuUz0SJrNbpkm+7k5ViR90OMhUYL9KJfLWFlZMcrQ4/GYE5DT6TQCgQA2NjZM7prOG/u7vb2NZrNTyZ6HK2qMjwdZqvfCZ6jX68YrJQRJwV+r1UyhX0KPzPOiED558iT27dtnYlqpVArT09NotVrI5/PI5XJIpVI4fPgwpqam4Pf78corr+CZZ57B7OysMXhs9iXXhNLW6Qmx2cpLlZAqLeYP2kiCjiPnupfhZXtL9jzcDgLnNbS8mG0I9tvtW9/jugua5ozYykM3gS58ja/QevN6nSf40rLkibWsEMDPcXNT6PJ+SgpgXzSuYntTrVbLVGSg0LNjXKRk66ZlP/k+f2dB3Yceegh79+7FyMgIHnzwQSSTSSwtLeHq1auYnZ3F0tISDhw4gLe97W1ot9tYWFjAV7/6VYRCIYyOjqJSqWB+fh4LCwuGYUiYjgKO9HIq8NHRUSSTScRiMRPrUUIE88YOHjxoKlTE43FHTKvVasHv98Pn86FUKiGXy6HZbGJ8fBwDAwPY2NjA3/zN32B9fR0rKysm/+zYsWOYnJxEMpk05Z8ymQwqlQpqtRpqtRrK5TI2NjYc8CA9unA47Eigdrm6FUA4j+12G7lczhxKOT4+bmokkkiyuLhoFA9jncVi0UCFDzzwgFGshC2PHz8OAHjhhReQzWbRbDbxnve8B4cOHcLIyAharRbeeOMN/MEf/IEjwZpGBZUmaf/qUXLNMxlZoW+9ho6/jQ70gst1PXPM6IkxnkVFpIQlVXK6ppWVyqR3rfChz6WK9/u9/W/3uH7v934Pn/rUp/CJT3wCf/iHfwigA4H8yq/8Cj7/+c9ja2sL733ve/HHf/zH5mwkAJifn8fHPvYxfPOb30QkEsHP/uzP4jOf+cwuq6nfOk2hP2D30QlsVCAKPWipJoUlNLbETcIyNbQOe1mtqqz4Ob7P7/AaQJeoYQsBwEml1+NVaEnzP69J4TAwMIBarYaXXnoJFy9eRDweR6FQwMmTJ7F//35EIhGMjo7iS1/6Eq5du4apqSlMTU1h7969OHbsGC5evIhqtYozZ86YE5YpTJvNpknsJUGBCciEfghb8nkJKbrdbnPvkZERQ4xQJiEFPf9vbm6aM7m2trawtraGmzdvYmZmxtD5lYSwurpqPEEAxkPjHHBubMufc6GQG8daBTIbj3yhF1Uul5HL5VAul7G6uuqIgZE9FwqFkEwmjVFZLBYRiUQwNjaGSqWC69evI5PJIBQKYXh4GPv378fIyAgCgQCee+45vPDCCygWiw5IUte2wnOKAqhioneuykCTfXWc9JgXjhXf13XP+9ND0u9wD/Aedo6lrXy4NzgXdkyLzw44WY795mz/05ripZdewn/8j/8R99xzj+P1X/7lX8bf/u3f4oknnkA8Hscv/MIv4EMf+hCeffZZAJ3JePzxxzE6OornnnsOKysr+OhHP4qBgQH87u/+7v/a03yfNhtGUHiKcRL1hNrttvGiarWa+Z4N93HzKXSnXhmVFT+rJA3dkIRbtOSRbn5egwK6V0InrVY7DsG+UxjxPY/HY5RKLpfDV77yFSwuLuKnfuqnMDIygnA4jLe//e14+eWX8c1vfhOHDh3C4cOHcf/99yMWi+HFF1/E5uYmEokE9u/fD7/fb6o9ADDjx2M3+JzZbNbU3GNuWCQSMUorlUphdHQUQ0NDyGazJia1tbWFwcFBY60TUmO1eZ/Ph/X1dVy9ehUzMzNYXV019GuOy8rKCtbX1x3Q3dTUlFFk7LOOrx5ISeVKRcX+06PlWlA4q1qtolQqIZvNolAooFKpmOoWalhMTk5ieHgYwWDQ1IWcmJjA4OAg/H4/nn/+eWMsDA8PIxaLmSrvmUwG3/zmN/HGG284igazqQfC57ZTOPg5hebsdar7yU7MtpWGjRwouUj3oRpsvJ/Gom24XJ/Ljvvy2jZTst92t/8pqLBcLuO+++7DH//xH+N3fud3cO+99+IP//APUSgUkE6n8bnPfQ4//uM/DgDmePbnn38ejzzyCL7yla/gAx/4AJaXl40X9h/+w3/Ar/3arxlK7HdrP4hQob3oGU/hhrJrnmkuD9DdFBT6Gr+iELKVDX+qt8T+qCKxP0tFo7i/CgQSPQjN2XEDVZ52UjPvTUXL3yksjh8/jkcffRT33HMPjhw5gkajgSeffBIXL17E2toaTp8+jcOHD8PtdmNmZsYol1AohJ2dHZw/f95UXu/lHfL+GsuJRCIGIqQifNvb3mYUVbFYdNQpbLfbBj7MZrOmrNSXvvQlczxLOBx23JuKhwWJg8EgBgYGUC6XjSKamJhAIBBAKBRCMBg0JAySR0hhZ14gc7DoXZZKJVO9gs9YqVQcCqHRaDgOnYzH40in00gkEgA6Z4I9+OCD8Hq9ePHFF7G+vo5ms4kDBw7g1KlTOH78OJrNTjHja9eu4fLly5iZmcH58+dNPUKNvdKbUxIF/3P+lWCkyISShHQOuYbtuJTuAfU+NSZGBaSnZvM19fL0+jS2NDHa3m9c/+pt/aB4XP/boMKPf/zjePzxx/HYY4/hd37nd8zr586dw87ODh577DHz2tGjRzE1NWUU1/PPP49Tp045oMP3vve9+NjHPoY33ngDZ86c2XU/YutsxMB/UJoyxW6HgXOT6AZXJQJgl1LhaxpkbrW6CcZ8n9dTKxOAgZrY1Htiv9k3Qji0WlUJqcKzj+mgVcz7aK6UnbfUbrfNoZLZbBajo6MYHBzE6dOnkUqlcOnSJVy4cAGbm5uYmprCsWPH4HK58PTTTyObzcLtdmNychKFQgHr6+tmPLTAMJVupVIxfaIC3tjYgNfrxfz8PLa2tkzFj0gk4hB0JD/s7OxgcXERuVzOeFuaOwUAyWTSIcR4iCbjVvF4HLVaDYVCAfPz80bB8aRmzhH/ezweBINBtFqdih8khZCMwX61Wi0H61HnlLDy2NgYBgcHzVyMj49j37598Hq9WFtbw+LiIlKpFNLptNnznJuNjQ383d/9Hebm5pDP5804ch7Zb10LvI+9Fjk3wG4lRQ9fmYQ2pKpKRP9z7fI6inyoQaXGGfePemzfKa6mhp/u477H9Z3b96y4Pv/5z+OVV14x+RXaVldX4fP5jPXFNjIygtXVVfMZVVp8n+/1ap/5zGfwm7/5m99rV79vmiot20pUq5KbSfF/O6al3o0qNNvz4ff4vr3Z+RnbI+sVBFfFqIqy16ZVIcXP2ErZ7pctgObn51Gr1bB//34cPnwYiUQC09PTiMfjWF5exq1bt7C2toZIJIKJiQmcPn0as7Oz2NzcRDAYxMjIiCkVRYVjn06rc2HH+3K5HJ599lksLS1hcnIShw8fNoxBesfNZqe+4IULF5DL5QztnVUydF6VmEDByHuxKHAsFsPGxoajCC4Vk85zs9lELpczHi/HmZUwqJSUOQnA4Qkxn4wepc/nw6lTpzA1NQWv14tXX30V169fx/j4OE6ePIl4PI54PI52u41Lly7h+vXrmJ+fxyuvvOKAJtUz1zVHyFQNHHud8CefUb0dRSJ0vajHo1CkwtFAN8asCkrXQi+lpN/Rz/eKo2mzFWe/9W7fk+JaWFjAJz7xCTz55JOOoPA/dPvUpz6FT37yk+bvYrGIycnJ/233/3+7qeVPgcIyNkysVWhNN5IqMCVkcHNooiihFzKebCsW6B4qyd8VPrOvqfAeX1O4hZ4KX1evTGM7LNZKj4HjoTE7LcPTarWwtraGf/fv/h0SiQQef/xxnDhxAvv27cMv/dIvYW5uDnNzc/jqV78Kl8uFM2fO4MiRI/D5fHjttdewtbWFkydPmjJMq6urjj6Uy2XD0utVFNXt7hT4ff3113HhwgVD3iD8yHHlOViE9HjIJcfe5XIZSno4HDaeJ+eDnhGVCj0seltutxuFQsHUNeR1+X2Px2OUoa08VIHwfzQaNdX1/X4/hoaGcM8992BsbAyFQgFzc3O4ceMGqtUqDh06hNOnT6PV6hTjPX/+PDKZDM6fP49CoQCgewyONts70ir8VKS2F2YjBPwMPWU+I9cOyT18Ru4r29Ox40/qeSpLlPdWUgkVKFm9Ou/2vubeZakqO8bbb7vb96S4zp07h/X1ddx3333mtWaziaeffhr//t//e3zta18zRxKo17W2tobR0VEAwOjoKF588UXHddfW1sx7vZrf73cc//CD1jQ+1SuorN6NYvxAdyPb1qUNtdhVBXrFq3TzKVxI9qJ6UsqE1CC69tkW0ra1ye9ozEOtcpuIoH1zuTpxm83NTTz//PMolUqo1Wq45557MD09jaGhIbRaLVy5cgXnzp3DjRs3cOjQIYyNjaFYLCIajZrjPnw+n4H/gsGgYQvSG1LhpRUw2H9Wl1BFz/WstRD5zApTtVotlMtlB4Snc8tn1lhftVo1hkIulzP9UnanXp9xJI6bwvJULsPDw4jH43C5XAiFQhgcHDTeVC6Xw3PPPYdcLoetrS28/e1vx+TkpCG8LC4u4sKFCygWi6hUKga+Y0zI9kLsNWZ7S1z/mjTMNasMTF1LaiDZa5/Gjk0KsT08fp/KxkYTbEahzgufQw1JXbeKLPTZ1d+9fU/kDGbqa/un//Sf4ujRo/i1X/s1TE5OIp1O4y/+4i/w4Q9/GAAwMzODo0eP7iJnrKysYHh4GADwp3/6p/jVX/1VrK+v/z9SUD9o5Aw7UOxydcroqBWqG1RhK24cCixubr2uvTn5OQozVm5gwF5zw+wYlAar6UWpcqUVTYFBQWInRfeCOdUyZv9tGNJmZmlMJhQK4cyZMzhz5gwOHjyI4eFhlMtlLC4u4tq1a7h69SrK5TIikQgefvhh+P1+FAoFLC4uGmo8SyZduXLFCE4+r+bOERZkv9vttkkGbrfbxvvS/trnNGnyLRUMYUbOD5vH43GciKykBc4RK+LrPBMuZP4a55DfYQWRUCiEeDyOVCqFyclJ+Hw+XLhwAYuLi2i1WpiYmMDIyAiGh4cxNTWFer2OZ555BjMzM+ZUas65zr166EA3bqnGlooohY1VwbGoMdedjQZwjdlwMz/Tiwmon+Pc0FhS+FLTC2wI2WY90oAghMt9xf5prOwHxeP6BydnsJqztnA4jFQqZV7/+Z//eXzyk580SZq/+Iu/iLNnz+KRRx4BALznPe/B8ePH8TM/8zP4/d//fayuruLXf/3X8fGPf/wH2qv6Tk0FDZsKbaCLtVMQ8TN8T61M/rfhIG4gxeW5oSlIVInyuwpDqbJQ2NJ+FjZVeBSWtgDRALh6dSrY7GMnbIHHAwtffvll5PN5rK6u4uGHH0Y4HMbBgweRTqexZ88eU6X8lVdewf+vvXOP7bs67//j29ex4zhO7MSOQy4woCTlshLW1NuqSSMqY2iXjj9QhTS0TZtog9RuqFq7aYNt0qg0adM2TfyzDf7qUDuVbuoFlUJhlAUIkKwkaTPCEhKai3PBcRLfYvv8/sjv/fHr8/bHDmlp0m9yHsmy/bmcy3POeS7v5znns2bNmuKoJmXi7d27txDoyq5T/YovTU9Plz73rrZTKOs9CTBBWOojNwXPxT8aGHxe95jsEBFFWr8bBFJ6iucJAm1sbCyU8DXXXFMc1TQ0NBSDg4Oxd+/eYt/aunXrirT8wcHBOHDgQGzdujWOHTtWQGaTk5Mlb47eFg0rzkmPBRHS1LykMnL0wOe0lF5VfYShyR+P4zLxiZ6ToyDiLWPOepYGHq8zHpdpbnrffdK/+7u/i8bGxrj77rtLG5BFTU1N8bWvfS0++clPxsDAQCxcuDDuu++++Mu//Mv3uymXDXHxEooTOSwSUT6pXYu56j1u2NQ1V5TcpxJRzv7yrCqHFnnSgMqoSnRQfRRCVMq+oAljUsC5MJHQ0PunT5+O3bt3x7Fjx2JsbCzWrl0bt912WyxevLhIn3/nnXdi586d8e6770atVou+vr7o7OyM7u7umJ4+d1xRY2NjcZ6fsvGUci64ruqgXLWPcKjDfxpnCk7+Ty9WVrrSselxyIjhdXq79BJUT1tbWwHZp5SKz72sWrUqmpqaYnh4OLZv3x6nT5+OpUuXxrXXXhv9/f2xYsWKUsKJPr8i73Jqaqqk2Dl2HE/OdbWZnikNHPVL/fB5oLp0j56c85WenPjvnhfnI2Ob82UFqv1cK7quTecq22H+THNTPvKpDkhQU8RMkJgLnIkRzIrSu/SAPDuKipCfKNdCojfjkKKELmNObilLyHDDKD089xwjZm8klaDwo3FIVAouONifiBmhNDk5GQsXLowNGzbEddddFytXrox169bF9PR0HD16NA4ePBgHDx6MHTt2xMmTJ6O1tbWAw3t7e4vY1dDQUAwNDRXHL8m7GxsbK84YZPIMA/DauK3/xVPGSzx+J96Lv+K9hCQFNE8k0bOdnZ3FeIg/K1euLM4l1D6w9vb26OzsjJGRkXjuueci4lxM7tZbb43+/v7im2ENDQ3x+uuvx7Zt2+Ltt9+OgwcPzoKo6SFReGuM1U5BZw77qgz1sbm5udhczXgq5zPjjqqXkDTnMz0/lSO+S/ERfteYUikxjqsxoRGn8umVaaw0J7Tm+PHNy53yIbuXKWkCS5jTqlbWFa1GWo/MliKU5pATBYwffsuFSCVED4gwCffO6DkeMFsVQzif5UpFqjKq0qEZ1yDPCN/oO1IR5zL7du7cGYcOHYoVK1ZEY2Nj9PX1RVdXV3Fc0dKlS2Pfvn1x9OjReOedd2Lfvn1x7bXXRm9vb3R0dMSyZcvi9OnT0dXVFUeOHIlTp05FW1tbjI6ORlNTU/EBTCkmKTwqGQk5nh5CoUqYkX1R4hKVlI6Xijh38kVHR0csWrSoUJoRMxBtY2NjtLe3F6eHkFc8pqm5uTl+5md+Jq666qq4/vrri71pQ0NDcfz48XjhhRdiz549MTw8HLVarchYVB0OGTu8zLnoRgvHltAgY0xS5DS+9K7H9ZgcMhcU6x6gx4X5jTzuLXPIkPOdikprg2uA4+98yVSm7HHVARHecNiQ0BMxfl1zqDCinHJMxSchoCQIZZtNTk4WcI+UJRWbhBJjBDwRnQFsKicGrtUfleUKjZap2jsXj9Q2Wu+6rmflxakdEnRKQLj11ltjzZo10d/fH2vWrCmgwMHBwSKt+9ixY0UG34IFC2Ljxo0ly3FsbKw4sHZ6emabgT4t0tzcXHwQUp6pTn8XL3nqxsjISHHKx8KFC2NkZKQ4IWNsbCwOHjwYjY3nTvIQj/jtsEWLFkVnZ2dxwsfChQtj//79cfz48Thw4EBxYobGpaOjI1atWhUrV66MX/zFX4yurq6YnJyM7du3xzvvvBPbt2+PgwcPFucpNjQ0FJ9lGR8fr9wHpiQU8V1jRSHvmYKa15qbms+aYzSQODeYfejzg3NP7SHEzPIFxxKKphFGQ6oK4ub/UrrytNU3Zlk2Ns5k6V4J9KN4XFlx1QEx847Kh3AHF/hcVqt+U/FwcdG6ZNl6h8KnylpUooDucTFXeWZ6xttJwUV4SAJDfWVmF+tUG12YuEDh95e8jUuXLo1ly5bF6tWrC6Hd1tYWra2tMTY2FoODgzE8PByDg4Oxc+fO4tBZfX/rpptuira2tpJVv3fv3jhz5kxERHFOIDMz9UFGKv4TJ06UDmaVha8Mw87OzqIP+t6XTtaQMTE+Ph5jY2PR3d1dZKNKqW/durU4GV+8a2triyVLlkRPT0/ceOON0dPTE93d3TE8PByHDh2Kr3zlK3HgwIHi3EZ+fVkQmvrgngVhTM43j0tGRGE46TrjVfTICf05TC1+ca7SG+IcJBRIw0axQq4Vbt7WXFMMT/0mpK/6VCZhTipo9/CuBMqK6zIlKSlRQ0NDaTMyn5Gw98+MiKampoqTvxmjojdDIaL/faMtf9OD8wwvttkFhz/rwoaxOPfmIqLYS8VFX5XyTOuYvGRcSaSyGEv50Ic+FFdddVX09fXF+vXrSxtZJyYmCoW0Y8eOOHr0aLH3q6urKxYsWBCrV6+ORYsWFd/NokXNGBzjjBKC2kg8Pj4eixcvjq6urjh58mR8//vfj+7u7rjuuuuKDb1MoBgbGys8heHh4RgeHi6SSfQZlenp6Vi2bFnxcUfuLevs7IzOzs5Yvnx5NDc3x969e4stAy+++GLB67mMJt/D5xAnhbgUFJ8l7EbvmnOZ847jzWdZFhWojAUaLvTgGG9Su5R1qdgkk2w4z3wO6R6vyeNSGr9D644oXM6UFddlSr4YeIYbBYGIXgmfo3cmZcSTE3wDJYPInu3nHoorBwpnBtAFwTDuwPazbsYwVC4TNPQ8lSCFHYUQE1MkgPjNMUI4EWVDgF7uypUriwzEvr6+WLhwYeGRNDU1FSejS1mcOXMmfvCDHxQxLh2tJF6uX7++EIxXX311LFu2rDAsRkdHo7OzMxYvXlzEcTo6OmJ8fDy2bdsWbW1t0dXVFT/84Q/jxIkT8e6778bQ0FABXUow6pSP1atXF4fw6ndPT0/hkSn2p9PrR0dH45VXXom33nor/u///q/kCbh3wvnl6eYyNjjmVNqMm7I8xmT1DPc6af7RGJFxxRPkeToM62XWp9okIlTIeJjKVfyS79Aw07xSfYI66ekxqUl893l4JVBOzriMiYtnLriQ2H4VPKL/aSFTQTD7TgpP2U2uIB1K9HL0DJWfiILKoRG2iZAOlZW8Rv1Ny5l7ZlzBMn5AKJVEoULPU1b2/v37o1arxYkTJ2LhwoXR1tYWt9xyS6xduzZWrFhRJGNIIYyPj0dvb28BJSpONTIyEocPH45du3bF+Ph4NDc3x7vvvlsc/7Rs2bLiu1+9vb3R3NwcJ0+eLI6d0qboU6dOFe9PT0/HwoULY926ddHd3V0YJk1NTcW3shoaziVvtLW1RVPTuYOBjx8/HocPHy4MF30HbGhoKLZu3VoYNTJypPjlFZJ3VGL0cGh8SFHTGPL5pbicvE167PyCs97X8yqX64TzSmOr8aSS5Ryhp6f5KQOH3j/jW1RkbEOVgUc0Q7D3XJ5jptmUFVcdEC0zLn6RBAsDulpQtFwjZoQEkyro+RBedIUSUT5rkM9HxKzfIioXen/eHofyVJZ7kIQA1aYqweExFNahut2TpOcgPvr2gKmpqTh8+HDx3KlTp4pMQ0Fsvb290dR07jSK1atXF3Vor5c+Grl169biOKixsbHCYztx4kS0tLRErVaL48ePR61WK30VQUdASSHpEyOCD9vb20tKmtCyzhkdGRmJXbt2xb59++LAgQMFj44cORKnT58uTvqo1WqFh6EyOW8YZ3QlQAOCxg3nNOcD4T3OO/5NpeLzgRmDVcYPvWjFCVWn6q/67Uki7J/Iy/fYnrxOzn21i6eHZDo/ZaiwDogxnIjZyQu+yBnfkhDQwvRkCSo4enAkYvMS4mqTZ3dx0ygXuWAZ7glj+1RPlQekgL/+j4hZljLvqSwqbGaReVyGz1GQURARrnJBJwhQFn9bW1t0d3cXMam1a9cWafM66klej5JexsfHY2hoKEZGRmJ4eLhQJAsXLiz62NPTU3g+7e3t0dXVFf39/UWW4bJly2JycjJOnToVx44di3fffTcOHjxYnM5x5syZGB0djSNHjhQe1cGDB4vN4TSKfC4RipNQ5vYExkjp8YtHVGD0tmkkyXPy+akxUh0cE46hFBbb5UaUylGMT0YfjZbp6eni8GpdcxiQXr5D3lJSWh/0LgltOwpBRVeHYvlHpgwVXqbEhUjYxZUOrVfCKlqkhHjcWmRdHovgPVrKzHLUtYgZ4Saqsky5+JlpRk+OHhFhSPdAVedc1jX/J1QVUU7cYD16r6mpqQSJuQemo5LY7pGRkRgfH4/BwcGo1Wqxd+/eWLBgQaxYsSI6OjpiwYIF0d/fH8uWLYtVq1YVKe09PT3FmYg9PT2RUor29vai3vb29mL8u7u7o7OzM5YsWVJ4UDpU+PXXXy8+3XLo0KEiUUPxIR2Gq74ru5H9E6+YOCLlwL/n8kIIGdMI0HsU1BwrzV+Pm1Kou3dOj4bbOOiVsRwmGXm5nHtzeYzumftziqupHP44wsGT7cnvK0lx/SiUPa46IMIrnnrL4WP6rYSv4ImzZ88WcSEJML1DoUFlQmtY7aBQofUqz8uhG091JvRCISVi5hYVrNouz8uD9xExS6nRsyMvKYjFD3pgPCKIQpMJJkwm8HakdO4TIxKsGisqxK6urli0aFHxMcbu7u64/vrrY8mSJcX5nzyeScaJNhy3tLTEyMhIcbTSO++8Ey+88ELhafmGZReIFObiAd/heLnX6waEiGPvikB1c4OtvsiscWX7WlpaZp1MISNCbZb3qv4pNd+TNziO9ATdC2RslErVv4DAeaS/GSN23okX2oNGSN2TVujJXSmUPa7LnCgoaU3qXhXEwENc/QBeWtcqg/e1GJX2Tcs5Ynaavi9WCQR6Tm59Rsz+rAmFpcp1iHIuxUo+UeHTqpXF7xtT2Q+11QUU61Y59AJEtLhdSSjh4PTp08XHK7UZWBmK69atiyVLlkRbW1tJmE9OTsaZM2fi4MGDceTIkXjppZfiwIEDxRFVErRtbW1FVqHayjkg4exGSkQZVmWignjHecR5SKPKY6s8WUJEIS4FpvRwVwbkIZUY20f+c04IPqRCoBGhMtUfzs0qBazn1E7yisaPPD+uL72nMplp6PM409yUFVcdEAU6ExJ8wvN3leXHzY4OWVChcP9JRPnjgyyfEBE9KG48FQylMmgN0/JUuVrYEVE6JYFtoVCpKteFAGMaLIdQFq1z8pH1sz71M2ImnVr9lIKgha5EjaamppJneubMmThz5kycOHEiTpw4Ee3t7dHR0VF89r6rq6s0XjrAd9euXXH06NF4++23Y2RkpFD0gv4kHJWtRkOF0KbzlZ4Fk1GkEMkXjRP77Z5V1WkS/ts9W/KcxhGVE+E6GjOE8qoUmdrGRAm+x03HHn8jlMcflSvDwuFFttfboznH5zKdnzJUWAekybxgwYJZECGhDio3pu96ejjTeWl10lOhsqNioACllVqr1UoxBpJbuQ7jeTtYn96n8nZBR+Gh/jU2NhawEmMqbJuu8+BVXff4CpNT9Jx/i4vKj8dmUaCzXvcY6RU4fBkRxXFKVBg6XZwCnh4gDRh5NfqfHpS8F59b9CbcM+Z8kTJI/x8alVdEWNqNH8ZdPVlCXqmMIHqDmgfil+BBzRP2zw0UeuJM5KDBQqUj3vJgZM4PbuJnWzlu09PTxYklaqPPMTeWMlQ4P2WPqw6Ii6gqBsVYEuEILkguBC5wCvoqSKRKmXiQ3mMeLvRVjmdSybKmp0QBUpXl6JY7rWvFDFhfxMzJDCzfLX5+3sU9Codw1FYpRvJHP0x2kIJQf8V/9xIjyqe+67pON+dxQdyErnYKZqNxQk+aY8FrnCfOI841eXL8IKb44UJfhpPmRJW3L6+mKkZI3tBoURluqPn8Zj30RlUWN4GTD1Wet+rjuuG7bI/WA5NVHJbmOBCN8A+JZpqbsuKqE9JiY1zFhZGeEwwSMSO0uRmVgk3xCmYeMvbBhVdlwdJTonVNq5h9kJKh4KXwlxCTx0QvgJZqSqlIWWaWGwWSezVSAlWKXv0VfySk9ZwECnlCfpMPFLZSiDoVwb0hCkhtiNWePI2LfhhnZJuZNKG5wHFjexk35H4sGh16joYFsyvdG6DX6cqU3kRVPI3ogM8hjg89bRENtCqomN61Z536muFvlh8RhYGieUfjg/wWH5R0QiRBnqhIbdV65ppwAy/TbMqKq47ILVJahC7guYh9EdD65G8XyPTCqMjUFglG1knoLWJ2pp+uMwBP5eLBeC5+la1+828JMbaZAkVl6zrfc49UUJ+EIk9lcAhOfaRA5DgQUqVy1nV5UbrPI6f8eCtBfa741HdldkbMnHjuPOJcYd3cwE6+e5yL841eBaFH1elGFXlPA4fP8Ngxh+/4rkOB7g37XjLG+HzuE8J0D46Igu57RiUVvCtTGjI+b9hmetqZzk9ZcdUBuZXpAt4huqp4FIVcFVwmb8vhH1eEtKrdY/C2RpQXvsqRpa9yqCS1wPW8BEHEjODW9arTBigcCINRGDHGp3fYb8/6YhspJB1W48bvuQQiFXZE+btU6ifTwGmcuCCmcNQ1zglPanFITHODp2pUQbVeB+vi/GB/eH0ugS2ekP+cy0x24LucT/rNLQz+fBUEzv9d4YikRDnv9JtjS69QP4RAXYGTnyqvyiDKNDdlxVUHpIUlKInCgEqqCsKLiOJDgzpNnQuQ0Jlb+BIIqpdtiZj9uQeWK2HEILSOH5I1rLZPTc1840v181lZ934qQkSU+uyKyQ/MpRfiAo2KQCdZMIuO8FAVZKXn2AaPiUhR6Fm96+NYBSfqfZVJ70t950GwUrD0gDwlXH2iIUEDhkrV56LHuPQlZM0jvssvCzg8VyXcm5qaoq2trWgrN+n6uEnh0OjRGLtXRE9L815QektLSwGlk7cppVkZhjIM1F+1j0YB5y35RsOChgnXc6bzU1ZcdUDu9XByVyUwSPjoby0W9wgiZk7A0KIRLKZ7hI4YXxO5FUnhq/v0VNwy1TMSWEzFdjiJQlrtI6TFVGT3hhgDY70uTMkbCjv3UClk1CcX5g7nsR4qI+5/YjvZfnoHzkem+rMdKouei77Dpb1WVf0h/Msy1R6NJ/sgxeJZlOSpX+MYuKc/PT1dHK5bdao6PSRXsOyPrjGGRu+WCsPXkGJvEVHaQkDec37J2FI9DoNrHNh2zoUqaDVTNWXFVQekhVgF3Tj0R+GiZ91Dc8vOBYKuuXXLuqkw1A56Dh4zooBhuynYGxsbo1arzToxwWEUCUoKDwp8j8fIC1GCgQt+F9L622HBKn4QqnUrms/pmict0IDwDa1VEJna5acweN0qi3EsKli94x4elRKTXTjf9JsntXBjs8dr9O0pV7D67bEgjRHLp4deNW/FL4998Tm2ibyiweEZfVI4VcqI/Y2YgRTplTrvqw7aFS99rmSam7LiqgNyC0yCmAJbC0B7fXTiuO6dPXu2FBcjns+9XiqfyoGpvhEzgogWZJUXIw9KJC+K0A4VHIWwBDiTGCTU9IwErDY5UyCw3dxbVqvVinfp1UjYKfuPAlYeLN+jQNNzntygduu+w1fqhyvbiYmJwjNSuwnhyWNyb07vqJ3Ok6amc19DbmxsLI5UIjzIw5spSFmPeEX4jnNIXrnmW0TMUp5K4hAUSIU9NTVVgrYbGhoKhUDBL97pt/qsMaCyUaINj7Ui/OdIhngjfuhZzlHB595vlcNx4Hpyo7K1tbWAwcXbrLjOT1lx1QHRq6J1KgFJmEOWnsNMhJi0+KlwRL53iTCPKxaHgGgR0xpWDItWO/tEJUlByUXsnoXXqbaw3+51TUxMlNL91U96TlJ4hHOodCRgHUJk3MLjfRTwvC4+eZm8zxihyqL35RBbRJTG1j1J8t2VqHtBvjeP91zIVrWD4y0+utfK+e08Vf/pSdGzIwrgUJ/mMb08toNKT8/xYF4pJYcqyQ9fV+Sx2ugeHg01joeUH73cTHNTPjmjDkhCUZPchXPV94HokcnCpBAkOTyoMrWQtZgcXvPnHeJiPVQufpo6U5epJD1tX+R/y9uJmIHIImYgNW4UptJT3zs6Ogpvqyqjj2W6gqbAZLYi2yjBytMTqp7zkzhUpsqnd6WyuNfNFZEns9DT9QxCekJVyoFjIkHr3o/KJRyqNqktDj3yb3l6bojpvEbCvOINeckEItXNBCJ5lpxrbLvmonjmR0JVxf74U6V8aQD5PkytG84vzWUquMud8skZlyn5QnCho2e0KLWQdJ2BcxLjKhIWXJQulEUUElXxNkKPErYe+6pSImqT7vM3Fzs9ILaFAsIhJrXFkwokqKkUPD5HQUlo0fkvxePfjKJV7t4FjQFPjXdoSfVUKW73OPSs+kCDx/ckkXe+VYEJB+49uiflik7PqC56tR6LclSB77hRo+vsM+c86yXfaGzwPE0pWyp15zPr0/jQQPL5y+0cbDuVIMe1sbFxlmLONDdlxVUnVAV9aTEq3uCBY4eJ9DcFHXF+CvUq6IeWNPf+UFjxNGxCJRFREhYu8LxOZkCSB+y7LH5POVZMg8qiSiFRYfgzVFjOhype6rdOKfHYXpVAZP8ZG6LlrzFhexQXq4KJvX0OsbKvnBsS3FJUPueqFC6VAXlDTzkiZikG9/h9TnpZ9Jqq5iaTOMQTxQOrjDGNiXtHKlP8oWLlXObc9X5Q4TuM7cYaY6xZWV0YZcVVJ+SCJqLsnRDOk0AhTMSUaFm73Mui8hzCYoxBi0vfxhIUJ6s1onpRSyn6kTcSaBQgDGgrCUCCoKGhoXRwrgu6iYmJUkBdwl/9Yh8pNAh9efYb9+lERCk7kR6fBBG9GbaN40Vecq8YlR3bJX5IGDPlXH1k/+lhUiGoLHpPTA6QwFcb1X7GXjS+Soihl02FxoQF8YPZirVaLcbHx2dlMNJT5n2VIeOACtCVjnikd6jo6WVznlIx89R/8UAJM5qLahfXpdYB1xjHkAkpVIRcp64MM1VTVlx1Qg4lUQjy43oRs+EK92xEFKoUaA6BUej7s/qb2XMifgyQFjGzyFi278MivDIXxEZvT8/SA6FCdKjOjQG3rNV/Wsl6nvVFlPfT0QtgG9gvlk0+00OSN00lqnvMGHWvT+XR85gP/pIBQiXJvuk+Y1QO07kHQX6rLhfOUooievT+W3OG2bHu0XGu+Nxl+TI8OKfVJypJGlHiU5Wycxidhg+9ZZ+P8rBVJudM9sDmp6y46oQoqJjMEBElS5ELhELcFV9EWShr0URESSlwAfJ0cl3zxU5rW+2kZ+aChEJBbVJ7VD4/BCilwDLUNlnGVCYSdhK49FBolTMpwGMsInl8VGTkL+Ep8Uf8ZN/0LGNYPi70Mp1Xruz0v8aQsRKm2pNv8iTpwcqL8kNlU0oxOjpaCFu1lf1SeTJAXLmorRLqmsfskyDW8fHxos/iETcO63+1V2n/bkyoDYyfqU08zYMKidmI4pkOzVX7PUao5BGuGcayNAc0R1U225fSuc3h4lWm+SkrrjogF6ARs+Mm/uNQT8TMQaoSYBSsFESe+RRRFvLejoiYpRR5zWMmVV6QW9mEtqpiPAxmUwGL6Nm5QvEYW1Xb2AcKRLaXP+Q1PULxndCZW94cZ3qaTMtvaJjJQNN4sB3uGbuHqX6L5ClI6WurAGMuLM+FvhQUeU0DhN6vG0A0qqiMyGv3oN0r1piJ3PP0hBTyggkf5L34qtip9rbpczHiOceQc5trUe3gWvPxID/0ozIyzU+N538k008D+eLlfh6HoegxefCXSnBycrI4+oeeAyE5WpAR5RPeWY/edW9O9frmYPbJ2+WKwDP49AyVSJUglyXOWI/iWFIGjDuwTYSnOAZsv8Nv5I3qr1IAhJ0otJw3VC7OL7ZJHo4rer2r335qu3vA+s4XvQAqRSoO9yq9D/4TMWNsSVnq46Msm3ys6i+V41wGCHlH5UgvlPOMc7BqLXH+sH3cPqCPcTIWynGv+syJ6nEj043UTLMp7+OqE9JiJ+QlCE6eh/b2EKobGxuLiLJSqYIQGUjm13s9saGpqan46i4hqogZr8w/qUHlQ0+LyoqQFd8T0ZtRHX6GHcunoJbQqoID+R7/p/DgffFdZVV5GPybgp4CUd/7ktBzz1HjzXeUcSivh/ATvR4fN5HawgQM/aaX7d5IlUfb0NBQJCtMTU0V2YiEH2lEeWICx0zjrJiP+E9joypGp7bzGucZ5z15RIhO9zj/q+KnjIt67FD3uJeRMDXf1+/R0dHSZnjOK/HgSqG8j+syJofuIsp7tLRINOFdwelvX2wSKhQOzKqSYKKH416EyqmKsYkIk1CBeHaW+kILlx4e4160YJnEoHeYIShBJEHPY3bcIpewpDdXJTA5Lj5OzBZUfzymofHyc+pUnlv4hEsjooDsWD8Fs8ZwvvlEocvkCBoBEVFSUjzhnt4qFbna4RlzbC+VmCs18s/vcTyrPDMaOJor7t3QMOCGXyoqtpHkRo7f4/NUwOy7e3FqU4YK3xtlxVUn5JafBP5cQkrWq8d3CPP4ItU1eSyEelQGLXuHdGhlMsurSqmyHlq2FHY8VUD32AeHeNzLUTslIJQu7kqCEGVV/MEFF4WyC1DxkL+5H4j1VXm0aj9jh1Qwqoe8IH8o8CNi1hef3XOg8PQ4JRNmGB+KmPmCMseexokUspQix5snc/gY8nqVwiOsrXYocUJ10PP0pB/3fujx0VDij/pE75nPuldFciVNw4j9Tmnm9PhM56esuOqIHIogDBYxe+MprVdmQ0n40LPiXq7R0dGiHMbSeEisID16T/LcaBErsO1CV4uXC17Crkq4NTTMZOKpnW7Fsh3il/OFikPPiz/M4lMf6IUK2uNXeukJMfNRB8TqObZD3pYrG/eS1U6NHYWdypbnqfEcHx+fBUFJmDM2Ssh0LmiNipnJBXqWhhLnG/vBz+S48la9fjqHFC0VCo0KtY2QHT0z/U2olXA4s0zVTtWjv6mcaERxnDUGUpy8p7nJ9tJYUp8555lGn2l+yoqrTshhlohyplJEORbBexQqjM+Mj48XJ4pTObEcF7709lin3nWvRe+6YGS6OwUQ+0P4Uqe6E+qhd0WPTO2TEGL8hZavex5Mr66K/+hZWtiEfuaCtCg4GfNR+VVxGi+LykX10VuhEqFCqvISXFkxlkhlybiX2kPDgWVybNR+n78ql7+dyE8Jc7WZ3qKuUQnrfY2/Gyzsd1UbmRhRBQVT2fJZKiEaDBxneq007CJmPO+stN47ZcVVJ+RZhFISCvLLY+DiiChn/jmkpUQLKpKI2eeySYhQadCybWxsLLwhlaeYCAWh2uOxGy5YKjF5ObrO/ToeS3JvRTyisJ/LC3QBJH6oXu5Jo2DjSRZqi67xYN+I8gkZHD9ep6fodcowYFmMJ+ldjYOX5Z4TvSO2gYk9usfn5HXSYGG59HK0AV2QNTMImWFIxMATe+iRc4MzeUnDS0qcSkq8ZnniI40+QroOTdLzVwKT+KX6aPiR/24gqL+Eoqenp0unkWSan7LiqhPyYDEzsWhZV+39ceuci5HBcy4ih4tUNz0v1u9elWP1VXCmb4iNKHsbhEaZZkxo0+MyFBq8J09Jnhj5wP1ILojda1F5Dj9JWXJ8CGHqt3uy9BipZJmyzeepbMVnlunxGzcw9By9P9VLiJE8ENH7VHkS1jSsWIbDjDSi6MGQd5zzzheR3ncUwg2VKsNICpLekRQy6696j8rPM0qZEcu5xHec1+onDbtM56esuOqEqDy00Kanp0snORCim+sUBwpMLjZXXBGzkwz0Ny1lCh0qQC1cTz+OmPGKPJlE7ZMScC+TSoJ8oSD1trN8F0R8luU0Nc0cCURFSAWiMlzREQpVP6oEs/pB4ca2VPFYbZBHR6Lgc6iREB7jcOK5f2uMHoz+piflykJziGWnlIoTMMQLebrsM9vpgp5zzv+vmjP6W89QuZKHHH+Nrfqga6xTPGdKvhs1nI+qn/f0jntzXLM0/jLNT1lx1QkxpVcLSVY5D/90oUQ4joLa4wVVqeEUCBFRWtRSSsrU09+6R6hNvyVEGDOKmIHo+DwFPAWUICsKEglNChYKN7WJZyfSY1XZ8vKorFz4u/IhvMU2EvJhFibhLPJfPKMwlxcgr4b3qSwlDKWACJuqbHo7fgoKPUbOMcGhHHtmEnKeqc1Vnp3qUtacjjbifKFBJHJPV8keVNoae42Z2lar1UptdRhR60Zt1pehRe4lsh00RqSUGxoaSu1yBEGKkcZIY2Njkezj2xgyzU9ZcdURzQWdUPALAmEMTIvMBQGtYy78iNnBcyo9/4koCyEpJ5VDRUmrkrEz7l/hYqd1GlGGOhXPoXAhnyTEXQG7h0OLX1S1zcCtbcahJicni1Pz9WxVnMT57Va9hD0zCano3Irn+LjX5O1VH+l9aqwcNqTC1ryoUtpV84p99DF3j9w9eIcSWR4VNn8T+iRMLj6yD+Rblafr810Gj9YZec1EFRpArIft4bPqKz/ZwrhZpvkpK646oVqtVoL0mBCgyS5BqkXlC4OQG9NzRRQqekeLX6dy0MrkZ0QILcmC5WdCVK632z8F4gJMHpIUMAW0LFzCi/ybSlSKwD2eiPImailcbiGo8gjUT93XiQeEnvQsU/vJK6a4eyajKzm9Kx7z5AzGAlNK0draWvCait1T/imsqyAqh3r5HD1DQs5KXFD/yBO9R4HPa9PT04UXpPmsuaL+K/mHc5YJKOKPToxpapr5fA8Nhunp6QKh4HioTN9CwjMMNV/UVsL1ntpOtEMKkAkbQktyZuGFUVZcdUK0yCl4adU7tEGIyC1EWXf8rAJTdwk56R1a4x5YJjQZMeNpcbE6PCbBQEXGdvBEcNVLpeQbNtlPCVz1x6FDKgTftOteAvtJj8a9QQqdqngcx5FCW+8SoiWxXWybe180PAhT6hkmIZCnel/95ByS8uD3zZyn5LN+kxcORYpohDgK4FCup+FzbGjI6bp//Vr1kx+674qVsLD6zniYj4EbAOy7t4kK1J/xuGWmuSkrrjohCk3H3KnAIsop11rAzDr0WJBb4CqHG14Z+5Gl74qIngE9H8JMfj1iRqCqzQ5v0fL1vuqa6vfUb1FVEJyCvoqfbC+hTtap2J7H7fQeT41QG/UeLW2VzfRzWv5SKKxDgpCbwP2HMB+TAdzAqEq4UDvogevdKuEsfjHGRiWheshHF/xUMHqeSovQrN6jUUFI0NeDt0VtpDdN3sljlwFGPjB+xjF3heSGhbeLSpIQe6b5KSuuOiGeJcdYgwvZycnJkkUtGEPPalEKSqF1y0CxK0LPANQiVuYYr1O4joyMFALFs90EQTp0J0VFD4SCV0KFXyFWu6kkqADdK3KBIj4yndkhUAnNpqam4svB2qPEGB1hKBfKEdXnR6rdhB817hFRHKYsPtMocc9PfKmKIXmygbxWQqDii2dG0oBoaWmJWq1W+ogpY480CESElTUnXDHpPSVx0GBpaCjDwzJ03ChgnXzfsx75jtom+M+TJtQujpfHzWgM6T7Xjb5p5m2ksstQ4XujrLjqhAh5VFlu/KHH4Z6aCwp+Y4gLmoFwWppcsBKeFNoUIlRiLkDo/VFBOFTl5dIDY+xDUKRDmkwS0fuuvPicCxGe8KF2sF0UXFXKVXUTklSfZWFzPN1rFB9ljLBs9Zf1MLZGwcl75Knuc4w9jieBTljWPV4pBd7nuPMa//dyuMGcEK5DwlKQDQ0zcVxX1DRW+JkRzi8afuyzyLMtHXLUGuJ4cT6Q6GExZkzjiMhAprkpK646IVqLblHyfwknntxAwTnfgvXFQ2HmAoflOOTmsTWHUAhXudDj4meyR5X34OVTWLA+h0bZBgojt5ar4ik82YFC3yEi9s83CcuTUf36kZVPg4MwJvlB6El1Odzn96g8HZLlhlz3fAiDuuGiPhBqYzKCe9hMflECjxtgDie6p876VCeVF8dVf1OJeByYfGOSDJWuZ14yNsty1YYqI1J9ZH8cIXAvLVM1ZcVVJ0TPiZlkhPF4pE6V9afYAL0DCn+mNbulzmQQZslJ0CrOQ+Wq/wUJ6v+xsbGScKZ1THiQfdQ99woZf6Iwd6ubnon6TWhL7zikqGcFdRL2c8+I1jJjR6qf5emaW/jiK/9Wf2WMcPylXHhkl8aPikckvqs/goxVl7dTcB2fY6yJXi/Hu8pL0j0pK2WKqv30mOVlci5rH5f+Z8aseOZ71Dj2hILlrUVEsYdLe78EEUqJT05OliBJ/mbdHrfkM4R/PR5XhQxkmp+y4qoT4kIUSTB6bIeCvep9LibPOnMPgzi+wxh6j4JLWWtUjhFREkJqo9fN52klU+lQObkCcu9EgphQJgWfezBUgOQv61IbKIwUJ6L365CnewtubdOTodXPcdA7hHp1jUqCJ+xTGXMc2CaOpStTCmb3zlVGlYchBav6mXko5SC4jMYOvRl6RRxT3lP5VfdIKtcNJa4VwebaqO7znHOB8TmHHvUsjS8pXXpaGlfnY1Ze56f8BeQ6IQk1LmQueIfjfOFK+Hs2lBaOZ/pJ8GhzMxWK4/Ks2xevBAKVgn8iQvWrDlcuEeWvK7Pv7F+V4PJsRHqMHqzXfd/PI8VAz7MKBqLC028KOUJsjG9RmIk/2otFAUolEhGFwlQ7yUP1SYkSHDtm/RGm1Xxg6js9aW5uV9lSSpyDDnep3IgZxUmYmgqA2yKqoDfWOTU1VUoEUZ+mpqYK74lzVMpBXhTrI4983XAuy9hjfbovz00QYkNDOZnE16iecyPlSlNc+QvIlzkxHkBlEjEjHHwBUphSMdBajSjj/npGkBTLcaLyEd7v3tV8e4YI9bl341asFBwFtbeDwonPkwceCyIcxX5SQZLvhAfd03DvlKn+FPBMBvF4iZ5vapo5P8/b6x4ojQ/Glvy0dc4XlUuF7H3nmKgtc3lj9Nbcs2b5blj4vJRCoodJRU+e01v2eUnlx5ihe9JuyNHgmMuLI2zJOe1zSnPBjQf9717gXOssU5my4qoT0mIjNEHPR88wzdqtfCkhF7j0IiLKCsIXFLF6XqegVNkMxovoMQqSofJSOQyas79MFGDAXP3y9jQ2Ns5K63YeiF+sS88QSlT7WYcrV/GIsToKUPJZY6lymDlIr4/10ljh+ZXu9bCPnB+85/z1vup5KirCyZx/DhcSxqTnxLI55jptw+co578rIW8TeValKNUuZcMSRnbjw69R8dPo01iTr5yLhDmrsiQdGXDvK1M1ZcVVR8TvbXE/jQSzoAopBP9+0Vz7ZvQ3rUz3iiQgBM1IAOi91tbWSGnmJA4KTfcOxsfHZ8UY2C4dwhoxk4BBAS0eeKyFqeu0xpkqr3oozHiQrPjk5z9GlIPq/tkR3Ve/pVSYBKD+MuamMqampmLBggVFAg3LqPI0KLir0sHVVu3pcs+IhyA7VEajQ/yS18RPwxDmotJxSIzXeESZyhUkLd5HlD+uSA+aio3znxu9lQDC0zSY/OBGgvOGmZSaA9wbp2fEC8KfGm/WzTLIZ6IC4qH6nml+yoqrTohWIOENQiAM7jqeT8+M3ppDZ1UejAQO4UmmeOu9qjgTLV/CkhGzv6XFTcRSDiyLylUxBbWTbafQpOcoIkxHRcJ3KWBdGQr+U9n0GMlfve8n5ZMfhDxVB7PzWL7aTriOm3o5prynNjtEJYODcUjy0+E4eknuyapf7EvVfKDnRAXsytnHXUQ4UvPQ20wPSeNE79T5xPixynAIke+5Z8nx9K8LMI7ocLx7s67sM81NWXHVGfkmVC1SCkguMM9aYlyInxx3uJGWvizIxsbGIj3aPTktTipJ1cs4TUNDQ3GK+vj4eNEffrZDnqVOpeD9iYmJksJTmVQOjLHIomd6OGE3CmS9xzR8WvmNjY3R1tZW8kZcaVQluzhM60rOrXT1hx6KTpKgocGYHhNNVL48GQpijje/uCvlJp5pDni2IuNOIyMjJQ+FRo82pns80XnLGBWVICFmP0SY7WHSBBW0iMiB5ofHwwgzEslQ3zwhRzxx1IBbA5zEU9XtCp9GZabzU96mXUfkQV5ab7rv1qlbcVxUbg27RSg4h3XqNwW3BIcUlMpyb4fv6zetZ5ZB5eseCQUxoSB6hPIIHEqTIqPXQMveYxEOzZHvhLB0n7EQtVP3mahBxaP/W1paCiVGZcL3xFf1S+3wMdLYebyN+73URioFKjZ6phLg9AzULvFMz7tBQSVE78Wz8xwRYNvIY7WNnjbr4/yk8SYjQe+3tLTMyoDkvOR8JlyscfCsTCpHrh210z1QtoPlZzo/ZY+rTsgt6IjZgVwqKXpatCYppKosU+6tipiJNcja1h4cliGcXwvRg/70AghlepYkPRGWofYxBkdBzWuEqNROxdT4nt5161vXKfxocU9MTBRtVzvpzVR5dXquSgFKwEVELFiwoKiPHqjeZ5zOeUwFyHY7HCXiPY6N5gu9c84HluHerXs37L8L7KpyfEwcZqax4X3wMfX5o3tMp2e7qYxoOLjhReWudkmByRtjViR5XwUL0pChUs80P2XFVSckgU9IT5Oc372KmDnzLWLmEya0RpW4QWtXAkyLTdaoezUOaUn4EkYSdFSlKLhPh4kcFPQU0hHlU0PkQRCWUtJAxAxco+sUYuqrhM/U1FQp6E4SD9RuEvscUYa/BJFxjMhb9kuk9o2NjZWEo5JECF/R43OvkwqIfSA/ta+ISsQhNnkhblxoTikRhzQ+Ph61Wq10ComMHEG8hI99TulUEJ2mQZiRClDfr1L7xD8R924x6UHlqQ/8nA/54WtM88jRCJXJOOLExES0tLREa2traUuIjCCV5Z5klWGZaX7KiquOiNZg1Vl5FOZc9CJ9+NEtUQkUP+8toryg9Q4tU5EHpbWoGUerErSsw61SelNMYabFylMi6P1Q6DAGpLbTo6C1z5ib7ulZQnsM6PPTMd4nClDnrer0/up/XtP/KkvKxY0O3VMMiwksVDY+X7hnjLCre3FUkPwyAPtCHmnsCP9xDxTbQQUlfkq58n3Nf6+bkDPnJseKcKb+5hzVGPmYUcHofc5pzi/3+Nyj4hpl2dnjeu+UY1x1QlzAEWXrmwuGeL57EoKgmIlIpURYROm+spgpYCmcKQgoXFQWha6EuHB9lcF31R4tXnoPrhgIv7kyZrn8VEsVvEoeOGREIUKIVLyMKAs28pRj53AaITaPg/GECvFKbeeYcrwpBKlQZTwweUHvciyptJ2vbLsUHJM63DNhfFPXOU8jZpQJDR56SoxbkTeMG7nHRI+R40sFTb5yrXAOs27nB/lCL5WGjpJxOLcmJiZKa4/vco1lj+u9Ufa46oQcStLEJ5YuQeALLGJGeFZ9Xt4tWEJIXl9KM4ejzvVlWL3PRAUGrlmHFJn6qHbpb0EuLrSouGj16vMb/B4WBbwgnYgoHfJKWNL3BqmP3nYKXrZR96pOLBdJAUSUTzIhfMoMxSpPSPykwhRkLEHpJ6BwTOWtundFGFnjIj5yjsl4olHCfgpq5De/1J+qzFDOD3mMzFikJyP+OQxMOJzj4IafK1HOfdXPucY1xbiW4FcaWlR4tVqttG6pJAUFc6zd28tUTdnjqiPyAL+ucf9TRDlpQ8Ke8R5a9hHlwDEFKi1u94BURq1WKxY5kxgo6FiH2smU8iqFpH64B+fWsASpBLY8ISo2eppVsSyRyiUUK2UgyIvtYaYfr9Hj5TiJv/wApPOfbVJ/JLRpiOiayPmu95VM4hArlYDPGyoAzruqMWaiA/vsQprjKT5RYTBzkopaylVnD7IM1qP2EEqlwcKsRe+TnidKoPuanw7D01gkLKh+0ut2mFpzTGs3IkpnUmY6P12Q4nr44Ydnucw33HBDcX9sbCw2b94c3d3d0dHREXfffXccOXKkVMb+/fvjrrvuivb29li+fHl89rOfzTvF3yMxlZkKSfciyqdjSMgwdkGLV4uutbW1CHoLHiS8RIUQcS5Wdvbs2dIzDrfI66nVakW2HONfUg5ugXrftOCpSNx6pXLUobBS5gyeE6akp6av+SrpgIkJ2jvFWBkVJmE+8Uh7rigsqTy4t4pjxZMy1B8qFbbN6ycpvkijgkaD+iOlxoxQens6wUT1sn2MoTpkJ5qcnCw8P47Z1NS5U17kCbW0tBT/S0k1NJxL2NBck+dFCI6KrampqbQ/kP0j1Mo5Td6JL/LIOZY0mujZshx5thHl78yNjY3Nikvqxz01etKZ5qcLhgo/+MEPxre//e2ZAppnivjDP/zD+PrXvx5f/vKXY/HixfHAAw/Eb/3Wb8WLL74YEecW1F133RV9fX3x3//933Ho0KH47d/+7WhpaYm//uu/fh+6c/kTLV7CFg7Z+KnZhEYozBhPqRKyIi5wWq4Srv5pD1dk7inQIqWVzjKr4jC0VMkHhxNVl5dPheeeBK+pHAovtouxQMacJNgo8JhlSL7Tqtd9KkIR4Vw9ywNpVa6uSWl7rIl1kZc+N+jl8T75RR6rP1VzdS5vkjEdetv03GQoEQFgKjznNmN3uq8+Ck5XGe4lyQP2NHuPGXKM/FR5j6MRmnSFpGt6VuV4wlOmuemCFVdzc3P09fXNun7y5Mn4l3/5l/jiF78Yv/zLvxwREY899lisW7cuXnrppfjIRz4S3/rWt2LXrl3x7W9/O3p7e+Nnf/Zn46/+6q/ij//4j+Phhx8unVGXaTZx8UXMCBkuEgruiLIFrHc93sAydY3eApUkhZDuUdhSSXk8xt+rgpeoqAhL6m8JFwoEKWp6QuKNK+AqnojUb/dymELP+A9jGc4Dxu5Yr/hclWno3hvvq78UvKyHvFJdPK2Dc4Zl8lxEKlJXlGwD55zuVY0VlRLnqBs+nINelisaVxS6RnjY9xlSec6X4Vk1tzk3vDy2h3yWMvQ1QQU1l2GW6b3RBce43nzzzejv749rrrkm7r333ti/f39ERLz22mtx9uzZ2LRpU/HsDTfcEKtXr44tW7ZERMSWLVvipptuit7e3uKZO+64I4aHh2Pnzp1z1jk+Ph7Dw8OlnyuNBDFFlFO0I87h49xkS0iFGUsUIoTgJOC4oHRPcKAf8KvyCUe6ZyE4RJANlZja5nEN3YsonwKhv9XeiYmJEtxEOEntpxUuxUY+6B31kQLJvUbxnYKS/KYSICTm3oTecS+EikPCjXE7hwTFV7ZRfJycnCwgKheaGidPDCFvXSizj/Ts6H36XBLfqajmgn3pJXndVFAO1dHQkbc9OTlZQIUqy+cf6xBPOM/5jMPgHGu1T0SjUXOf37/j2qKC15x3/mWamy5IcW3cuDEef/zxeOqpp+LRRx+NvXv3xkc/+tE4depUHD58OGq1WnR1dZXe6e3tjcOHD0dExOHDh0tKS/d1by565JFHYvHixcXPqlWrLqTZlxVVWXoR5SNxqDjoIcha1vNUIvSmuADpVYhcqKlcWraMaUkQV3lxXl6Vl+J9pMBTGQx6s0xa6oSHXGhQuFQpTnoa7pFR2Xnbq5QABaG/Q89qPgucHlBVnKsK2mQ7KSipqCnQGfdiJiD7z6OgfIw478gThyCroETnM8fVjST2mUknul/FG15zpEDXfAy9DH/fDR2W60YZ+0vDJHtd740uCCq88847i79vvvnm2LhxY6xZsya+9KUvRVtb2/veONHnP//5+KM/+qPi/+Hh4StWedH610SXsPdsQP4tSzmiDHtQKTkUqb9d4Im8DrbNYS0XThQMVAhzKWZ6XbpXFaOq8jDYNz1D4ebJEA7jkAfef3paDnG6slA71BfCVhRuEVF4U3rOFQt5TkXkY6T+Uii6IiH/SM4/F6rikcc1fRtAlaHgXqdiclWGgxsVVeiB/nYv09cCPV6+Tx45f9l2V6z0rKmwhE5wDFhOFTzoUGWmuenHSofv6uqK66+/Pvbs2RN9fX0xMTERQ0NDpWeOHDlSxMT6+vpmZRnq/6q4mai1tTU6OztLP1cqVXkKVYL+vZbBhXOh5bhQYNluZVZZri7Uq6xeKQ4XYiwjImYJCSpLtol99Osu0FW+Q5xUGBS2DkdVvce2VvWd5Xt8zj0P1uOKmb/padOT8ngS++68ck9qPk/EvXP+9nHj/6zTjRufV/PNU/K1ar3wus+rueqsqm+uOs5HVWv2QtZdph9TcZ0+fTreeuutWLFiRWzYsCFaWlrimWeeKe7v3r079u/fHwMDAxERMTAwEG+88UYMDg4Wzzz99NPR2dkZ69ev/3GackWRT3jCOH6fApTQkAtmFxxVwms+wc/77wdVQS9+3wW9911luPIjURDOd59lej1sj+5R0FORViXPuBdRVc98Y+AKsopncwlKKrcqZeV9dL6z7c6XqrKqlMNc8+Z8ymmuZy5kHs5leMzVH6+j6n7Vdo6q2N1c6EKm90DpAujBBx9Mzz33XNq7d2968cUX06ZNm1JPT08aHBxMKaV0//33p9WrV6dnn302vfrqq2lgYCANDAwU709OTqYbb7wxfexjH0vbt29PTz31VFq2bFn6/Oc/fyHNSCdPnkwRkX/yT/7JP/mnzn9Onjx5QfI/pXPa/j3TPffck1asWJFqtVpauXJluueee9KePXuK+6Ojo+lTn/pUWrJkSWpvb08f//jH06FDh0pl7Nu3L915552pra0t9fT0pAcffDCdPXv2ghqdFVf+yT/5J/9cHj8/iuJqSKn+/NTh4eFYvHjxpW5GpkyZMmX6MenkyZMXnLdQl2cV1qGuzZQpU6ZMFfSjyPO6VFzHjx+/1E3IlClTpkzvA506deqC36nLz5osXbo0Is4d2Jshw2rSXrcDBw5c0dsH5qLMn/kp82d+yvyZn94Lf1JKcerUqejv77/g8utScWmfyOLFi/OkOQ9d6fvezkeZP/NT5s/8lPkzP52PPz+q41GXUGGmTJkyZbpyKSuuTJkyZcpUV1SXiqu1tTUeeuih4sNxmWZT5tH8lPkzP2X+zE+ZP/PTT5o/dbmPK1OmTJkyXblUlx5XpkyZMmW6cikrrkyZMmXKVFeUFVemTJkyZaoryoorU6ZMmTLVFdWl4vqnf/qnWLt2bSxYsCA2btwYr7zyyqVu0kWh//qv/4pf+7Vfi/7+/mhoaIivfvWrpfsppfjzP//zWLFiRbS1tcWmTZvizTffLD1z4sSJuPfee6OzszO6urri937v9+L06dMXsRc/OXrkkUfi537u52LRokWxfPny+M3f/M3YvXt36ZmxsbHYvHlzdHd3R0dHR9x9992zPm66f//+uOuuu6K9vT2WL18en/3sZ4svAdczPfroo3HzzTcXm0IHBgbim9/8ZnH/SuZNFX3hC1+IhoaG+MxnPlNcu5J59PDDD8/6ztwNN9xQ3L+ovLng8+QvMT3xxBOpVqulf/3Xf007d+5Mv//7v5+6urrSkSNHLnXTfuL0jW98I/3pn/5p+spXvpIiIj355JOl+1/4whfS4sWL01e/+tX0P//zP+nXf/3X09VXX51GR0eLZ37lV34l3XLLLemll15KL7zwQrr22mvTJz7xiYvck58M3XHHHemxxx5LO3bsSNu3b0+/+qu/mlavXp1Onz5dPHP//fenVatWpWeeeSa9+uqr6SMf+Uj6+Z//+eK+vhm3adOmtG3btvSNb3wj9fT0XPA3434a6T//8z/T17/+9fS///u/affu3elP/uRPUktLS9qxY0dK6crmjdMrr7yS1q5dm26++eb06U9/urh+JfPooYceSh/84AfToUOHip+jR48W9y8mb+pOcX34wx9OmzdvLv6fmppK/f396ZFHHrmErbr45Ipreno69fX1pb/5m78prg0NDaXW1tb0b//2bymllHbt2pUiIm3durV45pvf/GZqaGhIP/zhDy9a2y8WDQ4OpohIzz//fErpHD9aWlrSl7/85eKZ73//+yki0pYtW1JK54yDxsbGdPjw4eKZRx99NHV2dqbx8fGL24GLQEuWLEn//M//nHkDOnXqVLruuuvS008/nX7pl36pUFxXOo8eeuihdMstt1Teu9i8qSuocGJiIl577bXYtGlTca2xsTE2bdoUW7ZsuYQtu/S0d+/eOHz4cIk3ixcvjo0bNxa82bJlS3R1dcVtt91WPLNp06ZobGyMl19++aK3+SdNJ0+ejIiZQ5lfe+21OHv2bIlHN9xwQ6xevbrEo5tuuil6e3uLZ+64444YHh6OnTt3XsTW/2RpamoqnnjiiThz5kwMDAxk3oA2b94cd911V4kXEXn+RES8+eab0d/fH9dcc03ce++9sX///oi4+Lypq0N2jx07FlNTU6WOR0T09vbGD37wg0vUqp8OOnz4cEREJW907/Dhw7F8+fLS/ebm5li6dGnxzOVC09PT8ZnPfCZ+4Rd+IW688caIONf/Wq0WXV1dpWedR1U81L16pzfeeCMGBgZibGwsOjo64sknn4z169fH9u3br3jeREQ88cQT8frrr8fWrVtn3bvS58/GjRvj8ccfjw984ANx6NCh+Iu/+Iv46Ec/Gjt27LjovKkrxZUp03ulzZs3x44dO+K73/3upW7KTxV94AMfiO3bt8fJkyfj3//93+O+++6L559//lI366eCDhw4EJ/+9Kfj6aefjgULFlzq5vzU0Z133ln8ffPNN8fGjRtjzZo18aUvfSna2toualvqCirs6emJpqamWZkqR44cib6+vkvUqp8OUv/n401fX18MDg6W7k9OTsaJEycuK/498MAD8bWvfS2+853vxFVXXVVc7+vri4mJiRgaGio97zyq4qHu1TvVarW49tprY8OGDfHII4/ELbfcEn//93+feRPn4K7BwcG49dZbo7m5OZqbm+P555+Pf/iHf4jm5ubo7e294nlE6urqiuuvvz727Nlz0edPXSmuWq0WGzZsiGeeeaa4Nj09Hc8880wMDAxcwpZderr66qujr6+vxJvh4eF4+eWXC94MDAzE0NBQvPbaa8Uzzz77bExPT8fGjRsvepvfb0opxQMPPBBPPvlkPPvss3H11VeX7m/YsCFaWlpKPNq9e3fs37+/xKM33nijpOCffvrp6OzsjPXr11+cjlxEmp6ejvHx8cybiLj99tvjjTfeiO3btxc/t912W9x7773F31c6j0inT5+Ot956K1asWHHx588Fp5ZcYnriiSdSa2trevzxx9OuXbvSH/zBH6Surq5SpsrlSqdOnUrbtm1L27ZtSxGR/vZv/zZt27Ytvf322ymlc+nwXV1d6T/+4z/S9773vfQbv/EblenwH/rQh9LLL7+cvvvd76brrrvuskmH/+QnP5kWL16cnnvuuVLK7sjISPHM/fffn1avXp2effbZ9Oqrr6aBgYE0MDBQ3FfK7sc+9rG0ffv29NRTT6Vly5ZdFunMn/vc59Lzzz+f9u7dm773ve+lz33uc6mhoSF961vfSild2byZi5hVmNKVzaMHH3wwPffcc2nv3r3pxRdfTJs2bUo9PT1pcHAwpXRxeVN3iiullP7xH/8xrV69OtVqtfThD384vfTSS5e6SReFvvOd76SImPVz3333pZTOpcT/2Z/9Wert7U2tra3p9ttvT7t37y6Vcfz48fSJT3widXR0pM7OzvQ7v/M76dSpU5egN+8/VfEmItJjjz1WPDM6Opo+9alPpSVLlqT29vb08Y9/PB06dKhUzr59+9Kdd96Z2traUk9PT3rwwQfT2bNnL3Jv3n/63d/93bRmzZpUq9XSsmXL0u23314orZSubN7MRa64rmQe3XPPPWnFihWpVqullStXpnvuuSft2bOnuH8xeZM/a5IpU6ZMmeqK6irGlSlTpkyZMmXFlSlTpkyZ6oqy4sqUKVOmTHVFWXFlypQpU6a6oqy4MmXKlClTXVFWXJkyZcqUqa4oK65MmTJlylRXlBVXpkyZMmWqK8qKK1OmTJky1RVlxZUpU6ZMmeqKsuLKlClTpkx1RVlxZcqUKVOmuqL/B0tyqcGQPhmCAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYys6VkeDl+1V9fe1dXV++mz78usHo/tsbE93uJYBBwZR4Q4liUjZEcKlkLiiBBIpJgsShCJE0RAgJVYIBA4YIzxgmHs8TD7eObsp8/WfXrfau3auqq+P/q77r7qOXVmMPCzp/F7S63urnqXZ72X614eX7fb7cIjjzzyyCOP9gj5v98N8MgjjzzyyKPvhjzB5ZFHHnnk0Z4iT3B55JFHHnm0p8gTXB555JFHHu0p8gSXRx555JFHe4o8weWRRx555NGeIk9weeSRRx55tKfIE1weeeSRRx7tKfIEl0ceeeSRR3uKPMHlkUceeeTRnqLvm+D67Gc/i/379yMajeKRRx7BM8888/1qikceeeSRR3uIvi+C63d+53fwqU99Cv/23/5bvPDCCzh37hze8573YGVl5fvRHI888sgjj/YQ+b4fRXYfeeQRPPzww/gf/+N/AAA6nQ6mpqbwz/7ZP8O/+lf/6nvdHI888sgjj/YQBb/XL2w2m3j++efx6U9/2j7z+/14/PHH8dRTT/W9p9FooNFo2P+dTgcbGxsYGhqCz+f7/7zNHnnkkUce/e1St9tFuVzG+Pg4/P7vDvz7nguutbU1tNttjIyM9Hw+MjKCy5cv973nM5/5DH7hF37he9E8jzzyyCOPvoc0NzeHycnJ7+qePRFV+OlPfxrFYtF+Zmdnv99N8sgjjzzy6G+Bksnkd33P99ziyuVyCAQCWF5e7vl8eXkZo6Ojfe+JRCKIRCLfi+Z55JFHHnn0PaS/jrvne25xhcNhPPjgg/j6179un3U6HXz961/Ho48++r1ujkceeeSRR3uMvucWFwB86lOfwkc+8hE89NBDeMMb3oBf+qVfQrVaxUc/+tHvR3M8+h4TNax+Aa39vnM1sm63C7/fD5/Ph06nY9f4fL6e+/i3fq73tttte7Ze82rtCwQC6HQ66Ha7d13H/zudTt826zvUGd3pdOD3+9Htdnuexev1XaRgMNjTDl7bbretf91ut6ctfIc+97XG3x1Tty96vY4lP3u1Me33bL3WfWe/Nr7WOHv0d5O+L4Lrx37sx7C6uoqf+7mfw9LSEu677z58+ctfvitgw6O/Gr0Ws3+1zdyPYSu5QoL/63NdRuV+7raBDLQfuczVZVLaHp/Pd1db+gkI/d8VdH6/3z7rdrsIBoN3MXV9Rj/B6AqjfmOq46Ht1B9XaGnb+s1LP+GjY+4+v1+bXebvjjvng0LeFfz93kNh2W+u3ee77XbH1117/fp3r/v79TkQCPQoLe77+gluVUjcMb7Xen4tgewJ1r8ZfV/yuP6mVCqVkE6nv9/N+J6TMjh3g5HJucxb/+amJSMKBoPw+/3Y3t62Z+km1WcGAgH4/X7T6Hn99va2bVz9nM/S75QBsc2uVaBWFIXI9va2tZ/ChW0E0MNAtR98J/tH4jh0Oh0EAgF7vn7XbretHyoo+1lb7LfLsPUz7SsAhEKhu4SIjg0tu3tZU65l5Vpe7ti6gpFj2Gw2bVy03a4FqP3hvRw3Zcgcz2AwiO3t7Z72vVrIs9/vh9/vR6vV6lFeOL/uvdpfHTddB67yxDXdj3R83D7pWLpCSsdU26Hrj+vTHWdd6zpH91JW/q5SsVhEKpX6ru7ZE1GFHvVq4f0sI2B38/eDUiikXM3YZZ76Dv2u34Z3NXMKN1dw8odarmrl2iaX+Wh/yMi1f7wvEAhYHyl49DmBQACBQAChUMjaqIxYr9W+sV8qONyx5rXss1pvypT0f7aRAkAtNe2bfs9+9BOMHHt9l9tHHW93/lxh5TJ7FWD9rDd3rt21446XjrU7zjqm/DsYDN4lhNy2+P3+nutcoav7R9dVPyva7a8rGHV+XaXL3aP9rEt3DnTcOI8evTp9X6BCj7576qeVqyYPoGfD8HsSNwS14HA4DL/fj0ajcRfzohXF99FqCYVCCIfDaLVaxsQpLPhZP83YbV+73UYoFDJLSBmIWnrNZhPBYBCRSATNZtMYDq+jICTT4rPC4TDa7Tba7XaPYOrHINgPfqeWjo67jhGfSYutn/BToUArhRZrP+2d3+nn/E0LhvMQDofR7XbRarUQDAZ7xqHb7SIUCvWMjwpO9p3vUkWG46tj4n6mQikUCt1lTbTbbUQiEfj9fjSbzZ7xo9JAS43PZltpTfO6fnPuWo6uktRP6eKa5/i5EKwqUrpf9JkUUlxrfKaua1e50TXlClS1mtX6+kGztv665AmuPUbcYGRYqtEpE1Ltn0Kg36bWa9Va0efwWv7mZuR1/YSqyyRpFei72H4VFmq1Ufj4fD5jxsp4wuGwvVMZvgu5aXv0+35QjgsvulYsmS7vDwaDaDabdzE+V/j0E5qdTqcv8wdggoUC2RUcaoHxmn5WEceqH7TGZxCe0/XiWnY6z5wDPsu17vpZMa613E8IKRSt86RWjH6mc8zxUjiZAlGFn2v5uc9g+1Qx47vc/aGKAdeMK0z1Ha6g1jHXteIJr9cmT3DtEVIh0A8q0g3gQnsuBKYCQBmrC/no/aoVUwhRuPTTdlWgun/rBiaMx+9IKryA3mi+druNQCCAYDDYUwpMLRpadK4woVarzO1eUX18rzIotZLYFldIq7bu/pAoGGmdqFXgMnkyzGazac/m52qNtVqtvvCXC2G5/XEh3n5+SP2t86ACku9iO9TidK9XC0WtPY6NClq9pp9fzbVsVTi6QoTvoI/RtUrZjlar1TMu7l7pt451jIFd4cf5pIXMdrhzxWe4PlmP7iZPcO0x4obRgALCeFz06vdQLZBMz4VK1ALqB2H1Y4IqAMPhsD2H16jmrQKCjEKtCVosLmwUDod7+qMBDZ1Op8dSYBtUk3UZgwahUAjQaiKT0XFVCEktMWVgZHCuxg7swk1sd6vVsrbrfNH3xjFRwb+9vW33qTauFh6tafZfGbsqB/oc0vb2tikOVAYUsnKhaWXa6nNTZqtWBwU6266Cy10XroWnkGG73TbomHOl8+AKPb1O1zLb4EYVqvBh4BL7xbbHYjFb89pvjq1asQx6Ybv4Hq7Pfv5SVyB7dG/yBNceIrWq+Fs3v6tFa+QZsMu4lWmqpURymZ6rHet1tGx4Hd+rkWcK4Wj7XahI/U4UGtoGFcBALwzoWj4AejR/MiSFK5W5khmpVca29mM+7A/9TQqHad+63a5VfSGjUwuD4+NaZvosYJfp8jON8uQ6UOGgCodaIjoXvJ6/Q6GQ9U/7wfHRtaDCT9eDzpMqQlw36n/j+HMNqSBQpUHnmooA+855Vf8ehQiv14AH9Um60JwKNrXwVYlw4XB+5yqD3Jf6DipfHGO2zbXkPHpt8gTXHiLVylxhoxBaIBBAo9HosbxUoJFxALsCQ60jMoJgMHiX/0PboUyS19Ai4cZVxqfEYIVGo9HTRloFvE83ugY2KATkWngunHQvf4N7La/XMeA9yjjV/0TGCewyVzJVColarWZCju9hv3VsVDGg4Nf2K+xGgUlmyPFx50ctB1p+2nZau2wbBYerDPWD2/qNpytsdXx0zRAN0Lnm/LnwHa/R8dfn9RsnriPOiyoNHGugN9BG15IrtBSmV0GnPkIKVF0jbttoiXEcXOTDo78aeYJrj5Bq0QpLuU571aBdoQTAtNF+zm59j2u56XdkzGrVkRR2VEiJ0BzQy3BcZkVSv40yCr7DFZ58Fn+rFuuGyLMv/K0Qp/aBf7vMhTAX/1cNXN/vQrSulcfvVAFg3/ksDYRw/YocV51LDZpR60IFkdsGvVcZt7ZJrwN2hbQLeVHwtdvtHmvUtf71Hl0HOq6udcj2qEXltse1lnQMuW6pNKnQddGMfugG26+5ZqpQ6PW6lnR98m/16akPzxNefzXyBNceIm5kNwSapFaDWlf8X3F9l1HpRlJm4jqlgV3rRwWJblxlltouZRzUgO91Ha1G17Jie5Vh6v3siwuh9vPVsa39LAvXStO2KmSmz+HY8TnsJ8esn3+Kz+9H/YSujgH/vlfADsfbtR5VaCuTdyE0ZcIK9bqQrK4VhoqrYsExU/hRhaz2X/2B+gyFj925JOle4HvYXleZ0HWjkZv3svS2t7cRiUR69pdar9vb2z2ogr5PoeV+8+e2zxNer02e4NojpEKJ+THuBtQNx2i1Wq3W439SX4bCLgqhKCSlmiw1asIi7iZzn0EGpHlh/TRN3cgk+hNUCNBRrwzTZdDumLGf/FEYiGPiQnuuVq/CQceCOXD3slZcgcfwfWXsGnbN/ynctf0KfWk/IpGIMXZXgPNaHSP2W3OkOBecDw22cQU40BvEweepMkXoksJHlQINkNHQdfadFjbfq8EM6ucjjA3AfGSRSATdbheNRqMHYlakgHsnGAxaO3Ws1NLnGGjwzb0UtFAohGaz2YNYqELRT8lRHyDHFEDPXHvUnzzBtcfI9QG4fg1ew02kGrsbZcX7+J0KNH7nOqmVaZIZ0DpyoSWSMnYAd4VL6yZ34UtudtXWXcuI7yNjo3Cghuxqwqo16xiyrXwPGagKd22f9kkFBH0p6gvj+5TxqeXD73kPhZtq6q4VpFCVziEFmdtu10JyITgVeGqhK9Sp867jqmkR2j9X2LvfuXOpkKIqZny/jrf2DdhVdlTA6ZjqWKsPUeFzvk+VKPaVSftq8fez/FxLk8/sVypL36PKkUevTp7g2kOk2qb6hFzfkTJYLYOjWr5qocrUVLtVQeUyFb7PZTKqZeqmVKbXD1bT56jgBHAXQ3X9NjoGrraujMCFf7R9CnHxO7Xy9B5q5NTEdZzYRoVjyXhZXUTHz/UV8b20PFxrWgWJvkPHr1//dI7dBGJdG2673FB8jo8rJNRq6vdMXQ+utUZB4M7Vvfqic6uIgK7PfkJWFTFFFXi9a5Wyr+p3UyWA7+S494McXaGs61DXOu9zUQOP+pMnuPYIuWHc3GTA3T4iV9NVbbjfpiED0I3Zz3JSDVGfp4EabmAG0L8UFYUvmY1aA+yPRsFRu9fSTiqg2SZlSMq4VGgrXKpQFEOp+YxAINBjwbjjwHaxb65gZpvI6DRiktdzzNR3496vFgCFpQpT1xrmOCmz1Ig4l6G686rv02do2SnOK6/hZ7pOVRi5fjF+roETqsgoTKhzoJUsOAauv9e16ChU2adQKGRRnZoSoknJen2j0UA4HO6pkMJ2aPCSWr4uFOxWfmFZMqIPvM+jvxp5RXb3CJGhKAzhMixuJHWEE9N3GVUwGDToA0CPL0Y1Zj5TmZlquyp8XGtFrY3t7e27mD/7pdq1Clzeq9fxO4V19DP3fg1M0D7xmUqu9ajjQZ8I+88ffq/avisM3P917sjMKEzZB7ctahm4NR6VqWv5p3tZMDoffFer1TLITAW8Ur8+6drTNqv12a+av2sd6ju4Nl0homuQY8jv2V72mftAP1NLk/1UeNlVuNz3uHtG1xDnhcqJ5i+q8qjt0nHTH49emzyLa48QNwEhLYUjgLsLhXJDaL4MmYF7HaEnhUpcrRrYDSBQBhSJRKzskDISFaSdTscK5ao2DfQyWDcAQQWO+hd4rTI+hQzVClPLzufzIRqNGmSnFoTPt5Nb5fqt6vV6z/Nc6E7HSK0Z3q+C240QVOtDLRv9jNf1e5eujW63awE52medB7UwtB2tVsuSpP1+v+WdqRBVa0F9b2otk/mrlcN2uNdynBQ1IIRIa0iFMP9nUImuD+0PhYNaUhpo465BWlr6nSpsal2rRczPdF+yX/os3sfPueYYMesqfB791cgTXHuINJEY6M301+9Jroaqgke/U6ao3/OZQC/kSNiDzIzMSq0bYLfCBBmFG5ygP3qdKwDYfrbDFU6uX0OFilqn6qjvx1T0tzJpoNeZ32/MVHPW73We+GzV9tVCVMHFdinMSyhLGbX6ItvttiUau0xd2+dGebrWu2uVcn5UaWGb+UNhoetGlRMKU3f+daxUOdB3qoB3LW93HeizdN25lr2S+v54r6aSuHtCC1wD6FlT7pzrfCuMruuRbdAyVR69OnmCa4+Qy/SV2ZDRKLNS3F1hMzJroDfRVi04l1mR4blwmH7GYAW+020HsGs5KKyjglV9UcqcAPQwWxVqhF4oQNWfQWajmr4ruLRd7IeOmfaXgli1dRciU+uEbVWByndqcVxXkOp4u4LdFcQ6F7zfnUvOBdujULKOlR55wznhNXy/wonaBp1PFaT9+q2k1pqOST+rXwWKa42qoqB/62cU/rreFUrU+eI1KoBcYa7rwkUxVKi661yVHlfYeYLrr0ae4NojxM2izFg3kya7KoNTaEhrFar2yHv4mxq7CjuNZKTfTB3qGmCgVhc/V0jItZjUguM9/RiCq7WyTBEtDTeARQWMauN8H5meVnsgpOkGi6gA0Lar5UNqt9vmfOf/brI3hS3z4QiTqi+E17lWpH6v60OFoL6L7VS4tNPpGAzqWrYqMNUKZpQlhVe/fED2gcEuajX5/bt5eIT9tF9ci2phqYDVNa9zrOMfiUTuglz5bFWCdN1r/Uifz2ewqeu/VSGpQTm6XrXqCQWRBtTwc/ZbkQY9jdqjVyfPE7hHqJ+1oZva1XjVAnOhEb221Wr1JDTzczfIQ31XGn6tm9Rlzto+bZNqpPxeowvVetF3aF/6WWv6LmXyrpWnkBTfq2WAlFkzLP3VYC796SdktL3qr1JlQYUQP9d3cmzUItO14VpY6tviffxM4V1eGwqFepLK+1n3GmCjCoP7LHeNKhyp1lM/f5uOgavwqCLjWnr9YEQdf75PLT7tp/aX46gWtjvvbIObigDABLoqRy4y4qIBLszv0auTr9vPrn6dU6lUQjqd/n4343tOtBTuBYXoyb90OiuzpiVFrZdMTDepC0kCd/sr3LBhoPdoBl5D6wzo749QuE0tGBViGmbdD/Zyw435bL2ODMKFV/mdJoYq9OYycdcPp2NFhkoro16v2zs4rlpYV/vPOVDYTNur46eWoRtI4zJrzTNT4e4GOHS7XbPC3NOtVeHQaiZ8H8dd3+1aZK7AV+uF1qkG5vB5WsXCVcK07TqvrmLjCs57KQ780WNM3HZqHwincjwBIBqN2rUakOJar+460vnS9faDQsViEalU6ru6x4MK9wi5vh+gN6mUGqli95qTREZAUkiIz+JGUxhRtWK10niPaznx2W4UnasRqzar5xspQ1UBpm3uRxpiTXLr3vGZ7jPIlFU7dv077hEp2l89bVcDWFQhUDi12+0tc+TOAckdd/6t7ePYuUJeGa1aQzpv7DvXCq+nkKBfUa1sVQ7YZxUA7u9+vjTX76VWlAowDfbR9yjsq2PGa1Xp0PHTdqjgUOGuAk+RALXG1Xp0hZMKJipFrkXIZ/J5buKyR69NnuDaI6Ran1oE3FSEQVxBwQ2q1QpI6sgn6eZ1LQPew+uUkbkh265fSN/rarG8RvumEB4FhwvV9GNYGtmm71ergPcrc+e9QG91dpfBu9pyv7FW35W+3223C4Oy36714L6DbeXckzmqhacQm2tNAHfnUmkirMKROoa63vi/G8Cg4+72TcdIrW1VYvgZ73dhSNdidRm9tkX75/padQ1y/DgGLmyn+0rXmWsFc41qcjItUl2/um/c8eHcePTq5EGFe4R0Q7vaXz84AugNZdbcFt2cugFVk6S2yM1O2Ecd2y6MBtztg1K/hDKSfv4kavVqVeg1ajWp5u9CP4REGXzgatxsrzrlNSKy09nNJeK17ItaPSQdK9dCUmHktlfnlm3TMdXDCGmNqBWjfi7tm869FpJln9lHv99vp0yzvVqRg20nk9c14p7V5vrcdH0wGINCne2jVeoW3nVPgWabXCWGYxKNRk346jM5X2rdsi9cIwqN6vxp1Ra1UNl/5i9qUjNwt0LAtaXvdv1yuu7cefxBIA8q/DtOLi6uGj4Ai7Ijw1CtjkxBfV4ujMO/FbrR0GqFdri56Fdz71Ht2BWkbiKzWpB6nQtRaW4NmTlJo/EUqnI1XFeA9YMyVZNXIeRCbtp2fZ8L+bnX9bO++Hk/y4VEBkghqm3j9a41oOtFw91dy86FRnWNuWHq7ppxYWx9N+fVvVetED6D80hmr9AnyVUAXEtYIXDtv2t56rjp+OoY0HpXi9Z9prZLlQyF7Pm5KyBdpUYP9/To1ckTXHuEXGjKZc4K47jWiDINbnKFyVwi4+Az6bNSC44MXp/raqX6PLaV3wO4S5C6wkKFGQWYOr01VFw1XdcfpUJDyRXWar0q9WN0tFqBu8Omtc+uwNT+KUNXIaJjo+PZD0pyx12tBh1ffk/lRp+rDFbXhLbZFWz9FAIqJRR0arG78LEr0HjkCy0gnWuF21ylRwUc54prXMdb51WfzXl0LXl3vCnw9DNXiOq61XHRfuvY6x5WqN2j1yZPcO0Rcp3k3MSqQWr+ETeQ+nxU8+un7RNSVM2Qmx7oZfBqnfSzrrQNrqDhs3Tjsh/sq2rgZFZaCkgFmI6P21Z+3g/GUybjOv8VStQxIvSk8KD2Vy0/Uj9YyLVygF1oUAWKCkBlwK5VouPprhNeT9jQ5/NZ+DvLOykcyucReiOcyLazr9p+FVRMLdB36Rzp/Gj/de0pJK19ctcNYWwNTHJD0IHdEPV6vd4zX1xjaiHyfC/Oiav46f1qBatSwPlptVo9EYiugHThZ9f35VF/8vK49gi5DJRChsRFz02hmi6ZvSYRu1q8ao16FIpCL6527kJBaqkpE2Tb9VgPCj1gN2xba9OpBUABpAEm4XC4p7SRa/EoNKSMju3VdiozVDiLv91r+H+z2ewR8v2gIwDGyHWc2J9+489xZW3Je1lAamlw7FVw62+1bLkWlMm696iAZ3vUold4Tsfo1aI+ORZ8p46HRmTyWSo81GJWC8YdH+2TKlPuGOpaVUSBz9S+ukJR0wx0jev4uxChIhbuezg+asV59OrkWVx7gLgpuMHUWa8+KNWCyfTUCgB2T4tVrV+hNtUI3areriXBz/hbzzzS3CLVWl1Iyq2WQOoH2fB5Ct1peLsyGD5Tx4v9JUPS2n/BYBADAwOo1Wo2Jq7Pg9dqUWEyr36wnzJLQl5so4bIqwBXAeZWGNe51LnQqE/OfbvdRrPZNOiO7fD7d4JWmHSufXQtCGXOzPNSXyMFCO9RpUhTHNQSdE9XVquHjFyt+E6n03PCAX/4Th0LVao4jlxHrj9Nx0sFnAayqDJG4dMPVeCPVsbQMVJB10+hUJiQQS+eAHt18gTXHiHXn6RQkgoszXlS7V2hm34FT3mvCgbVvJWh8fkkl2m7lof+uBq5+jPUolDGqZ+rhqqMsV8uDq8nk1TfBwUDmR59KPxfYUJ9lyblulaG689ymZwyTrdor1rI+k61BPtBh/oe14+k71Vmyjar4HOtFb5DrR93XBVWdC0vfu76JjkHKpzcuWWf3P6rVe0KAo6fu05dy0zf4So5un71/n4Wm2s16b5g9CMVD4VM9fn9xs0TWH818gTXHiHVINVSAnq1ZX6mIcSuI1yZHHA3rKYbkf8rg9BrlNnqJlemr/e5Vgy1Uq175woAtdT0M2Wm6vvhZ64D3NWU1dqiZt/Ph8P3aZuU+ahWzv65wl8Z472EnVotOhfu+/Uz9ceoheTOG9B78rDOvY4T3+GuLX0mv6c16zJcV8BRcOncuAqXtpfjRt8ax0rnRtebjo/2Wde82zZdjxQwLhypFrorwNwCyWo5a3t0jasyyTlwFSGdB4/uTZ7g2gOkC1phJ6DXd6BVFDRwgPX21E/hMjQAPT4F1RRVA2cbVHN2rap+Cbxq+ak/QZ+tgReuRcF+st98JhmCwp8cA9cXwme5DF6rRqjw4/u0PcrI2W6On8KHGtDgWkEcPwq0fn4hlnRSRUHzuFT5oODUUl58h/rBCGVplRC1mlQIc51puSXth/ok+TwKKD77Xj4wbR/vc/MJuQ5cP5X6o1R54Fpie/m9u74UBnSFto63jivXuK5N9Wc1m8272s+50L5TMeJ997KQXWHr0d3kBWfsESJDcIMyuAk0sdRd+NyA4XC452RZ/V4rPSizVEjLtcZ4lIkydb1OtdF+WjLfRWbkhhgr49N3UKhqxKQym34OcqAXRu0HpapA0Xa771eLwu0LlQS2SRUJZcLq/O+nmKiW7sKf7ljofNMSYhvUStne3u45tkXf6a4rd+2ppaaC816kAlaFlas0uf4wd6zdoAZe51rb7lzoCQdAb4CHu161L67/SxVFXS8cS1VguF94jWu165jzPe7Zaf0EmUd3k2dx7QHiQubmUA3RzUEhg2LBT7f2m97H65UxuZCFaqZ6vQoxFUxsr1oTLixGzdU92FI3Of92LTNaDerTok9BfVFqaXCMfD6fVdNQbVcZeSgUQjAYRKPR6In641EXrkKg/jkyLgowjp8qFwpPqT9LrWHeFwqFek56VutF/SVq6fp8vp6kcBUe7pwrw1bFiG3XcdH51blS2NAV6HpGGhWjWq1mhYj1Hq4TRQRca5l9pOBwa/wxsEHHVNek3++3fDH2T6FDfT7bv729bSdLuwEnblCN/t1oNGx82Be3diav5zXuAZUe3Zs8wbVHyBUgZLCEaQgVcUP028Bu+DQ3jOZXuUzKLZ2jjnYVYu7ZTK5/qd9RD/yun+aukKLrT3CtHfUtqXbu+t74bo1y7He9WjH9oE4yNZcx8l59J8dQhSyJ79FzxdgfPS9K28r7+lla7veudahWgKucqAKjAtRVmrSPSipc+Uz+7mdV9Qt/57y4fj5to5IKHM6PtlcVPK4nWjiudaOWP/eTPl+DdXQsXOtZaz7qPOt9oVDIfNCuX8+916P+5AmuPUK6uAHctelUAKiQU3hH73NrrLlanjJ0hbnUqtH73Ta5Dm036k/75MKIvF6tOW54FQLKtPnjMmxthzIzbaNr7amw5+dqLbnCtF9EmlqkWsnDFZKERPmZzhn7pnPMzzQiThUTWjLU7vk9rSK2Wev36bpyrQ5aB+qL6je2LqlS5M6XBluor88V+rSO7uWX0nvVstc1zL7yeo1i1fni+KvwVIHjKkJAbwqH23bdj26UI9+jbVDh59Frkye49gAp1ONqnmTmbn063kemA+yGDOumIazkwmdAbzkd3eDKRNgWapBkQCrUCD/x/+3tbYTDYYNUOp0OIpGIMbmtrS1jvlrcV4WaG7IOwE7VVf+YCjT22a2KwDYqbOQ+l8zMFWAKsfYL6XcFm8JhtGbdquQs4OoKdoW4XEGoio1CcUBvHUe1TPRvVXr0Hq4PzTHTgBLXN6hrp9ls3nUml2vN6ZlbfA7RBPUhcXzdXDdXUSIy4CpZ/SwZDTDR9a2WEf9vt9sGd+oe41hxPrn2KPhUEBEF4Xu5Hlyl1KPXJk9w7QFSKEeZdj9tVzey+jSA/pYZGSe/Vz+HCzO6EJs+WzefQjZq1bjCRNuu2q0yGW5sBoLwGpdxKZMnA9TnuUzVZdquleoGwCj82e127zp2ngxVBZm2i+OtAkw1bTI+FYjuPfzftQZd5qch2Ez4dUO1NTFbn8W+uu9WQedaQa5Q0TB5tVh17HVsNcKRVT10PTLYxLVONKJVlQbXInNhx3590nWjkK4qSxxHfq/jxLnjPSrkXYtN+67t6HdAq0f9yRNce4T6hZgDvdq0OuOVWfYjXkcLxYWdFHLic1Tw8b39kj37MS0yN17n1thT/x2f4eaA6XX8nM9wfQWq6bpatzI13q+CWK/T4Aa269X8S/xbfVnKiGgRcNxc31w/35lrUalFqwJDFYJ+OUWqWPSDtlwoU+FFFY76LFdR4j2q9Oh9rkWvgSC6FigIVDCq1dgPcma/tO8q6Hmt9t1dR66FrP1T61zHUuFsXa+6hnXOXSufz2d7PevrtckTXHuEVGPT38pI+UOGQAiOxM2jjFTD4LnJNGRaGbYLo5BJKDNWZuAyKba72Wz25By5goZt8fv9PW1RaFC1VTeyEugvsJXxsR28luOmwlU1aoUSmdulzIVtocWg+UT6bM4jIxd1fPUd/aBIBuOoz1ITkHUdaNtoVdP6cgWQK8j0bDGtzM7rXR8gr9WDFJXxu8/WZ7TbbTQajbssVlVuGDXaT1hpCTM+j6iBWmNsuwpx13emChAtfNey64cwaJv4TK5Fjp+uS1UwVcnR/ebRq5MnuPYA6YbUja2aKHB3ORrep9BdPzjN1bhdzZv3qQatDMu1UmhFqMbpapt8nkJP/eAUbbNrybj+mX7jBtwNkboWjAshaZg+AxX4Lk2edsdbBbsrtN173LHnd8ro9b2uJa394nPIhMl09Xqdi3sFAqg1xmsU/uPnnF93nbiwrAv7at91fPqNC9eRe7/6SvVdruXiWub6fL/f35Mgrn5ihUE53+6+UEhd3617getNFQMVnP1QBFUEPXp18gTXHiCFUFRjU82VVhb/VqvLDS/mfQzLdX0zZETUFtkGMjPmqNACUD9Nu922XCm1TvgMFSL9mBtwNwxFoU2rTv0NrvBwoTfN+3EZnQozbZMye37nhvizHd1u1ywZWhz01agAUqZPC0b/13aplaAMj+Opn6ty4gYQADDLNhAI2LEwruLDNmiwCtcZ+61+M46zG0CieVU6F/rOfkEdOg4Ko/F9qtyowqVCToU836PjoNa57ilao7re3FMKGN2o8K4KSs6lBoOof05hRrWWgV2h6SIKHr06eYJrDxAhB/5NIaIbFugfBu9CQUAv07kXlEJSBqzwDd/vngmmMKZqkvcKOlCByf71sxzV4mI7uOnVMtKNT8HtwjnKnBUmcq/T9uj3qtW717j+FL5Hx0PztNz+qUB14VrOlb7HFbRkwjrfrnWjbVFrXGFfJe2TrhGFP92x0+e6KAE/c49W0ftUGOv6Vr8X13A/2FL3iBsFS8vNHV/2idfruOs7VOjpPPNvHW8dL51nhRBdi83dgx7dTZ7g2gOki1m1eWqQrjBwQ+NdrJ5MQ/N63M3NTeVWaLgXqTbKSglaIFWtFm2rhocro3OFbT/h6sI3QG9ujcusXObJZ+hzXaHmQnzKeDShu59mrQy0H1TkzrEKDtdSUHhPlQ1gFwZU35S+T5UBHVe19rTdOr5sC61sfq6Wr45XPyVAEQJdZ+wv/1YrSdcGP1Prhla0+k5d2O5e73UtVfVZ6n7g89QqVKtO132/sXYVNR0jtWaB3ZJU+k6P7k2e4NoDpBq7q9nrxlJtXTeQFmcls2IFAZ6kzGcxd6rVaqHValnYN78H0Pf50WgUwG7tOYVLVFCwDcqMdaOq5q2M0IUWXejKtfj6WXcUCi5z1hwyFeZ8HsdFgy44pirM3ZBsnTsVshr+rWPAChraDmBXwHDcw+EwGo2Gae3adtXm2Q4yQ4VN2V439Lzb7d5ljej8KxStKRL6HrXQ3ERn7ROFhZZq4j0abt5ut3sgT7ZX89V0Xejcch24Vr+Ok/bXVTBIzD10IUO2xY1kdPeLjqsW69X1yvaoQuRRf/IE1x4hVwNVjUwZIz/XKhPKuLnptCI60Btx6DLafhYK/3Z9bUCvY9ytR6iMzGVwKlC0f/0swH6MAri7rJULYanmq5q9fub6s8hMVKi48I7rO+J3ZKyuRabfq0ADenOF+jFBWjuuBq+MVJki7+H4qABi290wfHf8XctULXmOoSpOuka0z66l6D5Xi+Gqr6xffUtVZvi/u3Z1bel86VpTH6Rr4eoeUMHrKmZuQrGOkY4F36mfc15cVMKje5MnuPYIqROdTC0QCPScDquWjDJfd6Ny01Gz3d7etqKynU4HjUajx0JzIxdZ2UHrGKrW6Wq9KnDZFxWAKuiU6SjDANADhbnwjFa9Z9vJkMis1XIhk+A71UGvDEuhN5cxuz4OtS5VcLBN6p8ik1RYl2HhfJYKIwA9AtPv3wmS4fEnamnrnLiKg7ZJLRINrNB3q7KjY92vajvHIhAImPVQr9d7wtl1zl3/qFolOp6KMqhfiNfru/u1X4WCKikuhKpWuUKSkUgErVbrrvHn2lI4ku3gOOi4sV8s3BsMBu3EbX43MDCAVqvVA816dDd5gmsPkG54hc36+Tm42fpFOrlWmQoa3fyudqmMQzeuqzHrsxVGZB/Uya5tUiFH0nffy/Ijc1QGrO1TQeWOlQpRPk/HRwUfx0itUbc9quGzLTpf7rtd6IyMViEpZaZ6nY6H9ldrIvLdbLc7v26bta8qpPm3WhQqPHQuOC4K27rWmgvlun3RfEAVKi7krILBhY81h6rfmma73Hmhta7CiP3RaiCu4sR1pO2+V7+B3WhcRoCqgkjY06NXJ+88rj1A7oYD+ucw6f8qbPg/fyvzCAR2zumKRCI9jEiZFN+rQRfqAwLuPghS2+OWz+H1ygDUya4CUK93A0D4mY6FHm7ojpsrWFzrw2Xoynj4Tvc6tpU/WtqIzEwj1VQQArAx1efpvLuMUMdcx4t91/XAvqo13i8gQK1Bkut71HGkdar+Lj5PUwPUL6fzqMJS594VTjpXriKgc6GKC9utsKk+i9bfa82jCmcV/Lqv1MLS57iCTa1F9ptCStcmLUhVsjzqT57FtQdINyMXOQMoyBiJ/7v5P65Wzb+pIbvwBzdYv83MxFZac+47+G6tnMC2MPCAjF3POGIFC2CXQbr+DJfJkIEqEyJ0SoaytbVl7VHLQ/08Wn9RmSrhIj6bbdQxBHaE3sDAQI91AuCezFOrV6jmr4qDCheNplTokOOraRIuBMo+UDCw71RC+Ey1ygH0CDllsjrXfr/f4FmuQ7aBbdSjO9SKY3+0X9petkFTH1y0gHOhlhavVYiz290JvqFSoXAt51fP6GJwEiF4jjkrnQQCAYPKdcx1njXi0rXade775V26Qs6j/uQJrj1CypC4odRP4UJYrjaopOHxCiG5fg1leHyOe86XC/H0Y1TKsNSac31kbj/5DBe6c3PJ+vkbXMHpJo3yc46VMl4X7tKq3/pcjqVCZO6c8RrXOlUhqt+7PioNEtAx0bHieGr+lbaRf2v4uCodOiaqgOh7Vajpe9UKVEvchfVcWM7tp84P124/eM+t/K5j4r5T94Xro3TvdZU3FeY6Huor1KhItpf9VMvfhZ37Qf0u2uHRq5MnuPYA9dtAaimRdPGrxcRnKHPij4ZD99vYQG+whUJsCh2psNL3qwWlQovtuJfWqhaMMiVlWG4ACskVQgwEYL4OBRXboBaOCjENDtD26ri41pi2j6RWnY41rTJlrDq+2gYVVupr0bbq/LhWG9/FMaAPSIWK2+5+a8AVBtoevt+19N37ldgu95n9xsvn8yEajVq73NQFzoEL5fWbX/ZZg4/UAtW5d6G/fuHqOifsF8dQA2xc69YVYB791cjX3YPivVQqIZ1Of7+b8T0jQhkKtTEPSyOylOm51pdq9wrhaBi6Bne4G08hG16j2qQGBigj0vOx2Cb2hQxdmT8tB7bJZWoKwaklBNwdBq7XKxzFvqqlwL7yGoXG9G+2nRAd36PXKgzIuXDHmvepBaSKBMfNbS9Jq+uz7WwT71UB5pagIjzFqD/XkuU9fr8fzWaz536+TyExZb7qz9P26VjoPWqZukV9+bnrq2IgC9e+RtTynQo1qrIVCATsHDhewzHVtvAzhRJ1zF3YUvvDSEQV1grl8x5FB7judH5/EKhYLCKVSn1X93gW1x4g1c7I6NyAB36nVpZ+pwKN97rJo8DdFR3c+4G7/RNkBm7YuxKFilYI0GeqL8GF+dTqUc1XBRbbohaka6kAd1e4UIHg+iP0WtcqUUHGvqig1OezXwqzuUqEjrVCcWqJKsTHNvaLilQhz36poqAM1bWOtW+u1aZQJL/X/1UgqQKkY0DfkQoSd65VudH0gH5td9c2n8lIQD5Pn8trdb673d0oVbWK9D5GAXY6nR7lwJ1/HTu17Ehq8amlp2Pp0auTJ7j2APWDQphrpZ+5TE4ZpW4WYNfPVa/XbQPyWSosuKmUCbhWis/nQzgc7lsnTwWNWn3c2GrBuTAPmbdqzGoB8ZlkzBoAoj66dnu3+KyGNatlRLiTQS/K0PhebaPmBrnWK8dLLQAGjahgDIfDSKfTPT6fdnunSoT6wNguPrufEFbBo0fZcLw13JpjyTlkf10BrXPTbrct0EPf5fqulNlzLVLg6bEnurb0GfV63SwvtofvVYtR36drjf1l/yj82G+1KnV/sX2cG4WhORfccz7fDmSpa7Pf87j+OH58t1sLUudBn+PRvckTXHuEXCsK2IXxVNvjNfq9/q/MVEtBAbvRdy7jdq0jJRUgZBAuQ+Vz3Haqz06FiauBuxq19kEFkvqJFNZzGanrD2I/NIrwtfqqcCfHisLHHe9udydyTROoAfS0neMfCoUQDofRbrftvC6OrWryaj3xXaq46Pv1na5g0TXhrh0db7Vkde5c6+de96vloVYeP9MIRn0noUr2U6Mo9V7to+bI+Xy7JxRo6gTXlSpP7tyqleRa9xxXtYRdC05/7uUXY9v0/DaPXps8wbUHqB8TcK0tDUZQhsl7dEMCu2WMyCzIXF3Yiu9S/N59Hxk2N3I/CEotMfVBaftUw+b/FMyayEwKh8Pmf3ATnZVhu5q4Mh+3n67Q0jaynxS0er1WklBhyzELBAKIRqMm2JPJJNLpNBKJhL2nVCqhUqlYcmowGES9XrcxVWtB368WlMv4+ikz2k4df3c83M91zbkogCs8XF+jCi6FIN21qmvNbb9aXSpMNVxeoWZVStx7Vdlw+6MKiq4X3uvCuO5e45iooqH7z1UUOIeaauLRq5MnuPYAuRvH9UOptsoN4EJdnU4HAwMDBjP6/f6eCg0AevwtwN3JlrxWBRI/0xI16nTmbzds3NXiXV8W267WiGut0cnOYq/9tF3ChHSMUxCynTqehBv5PreIrIbpa65TOBzu8efQH5RMJhEKhVCr1eDz+XDy5EkcOnQIo6OjOH36NILBINbX13sgrWaziVKphBdffBGzs7O4fv06APQwNSoZOk/A3aHXymQV4lTFh310i9oq4+W40dJjYWatkO/OsbZNlSSdQ1roXAsKZ6s1yWu1/ibbx/brGlBBoWtTlRq1kjQlgeOiQTKaJ+auE4W82Q9FAHS/0KInUYnR6xRa9eje5I3QHiAtbaRwCtBbwqcfDEJyk2HpbFaGDPQ65rkRydzJCNVHQWblRp2xbeqrUk2T7VX/jmqkbLMLy7BvPp+vR9AqTMh+KNTDz9TqU0ZGcqG5TqfTkzTMdrE/9B+pU5+BCHzHyMgIpqam8Ja3vAWZTAadTgcbGxvodrtYXFxErVYDAMTjcUSjUYRCIZw6dQpTU1MIBAK4ffs2Go0GMpkMtra2DMrV/C9XIHO8KAzV4nQtKhVQypw5xjpWtGrYPyoP97LM3AomKqTVN+RCbq7VA9xtUXK+FUZ1YWA+hwqMriHXGtJ5da0vVyArpOmuL71fx5Tt0b2plpf61Dx6dfIE1x4gxdIVDiGzAXBXRJRuHN6nzmcyV90kKnheLb9LtXa2jf4aWiAUcAoxqvVFbZMMUNvJ97mh0W5Um5ZKcqEdhX/c2nnKPIHe3B/XclVhq2PBCDlXY1ZBFgqFcObMGXzgAx9AqVRCoVBAp9NBpVLB/Pw8kskkRkZGrLBqsVhEtVpFKBRCpVJBvV7HO97xDkSjUWxsbOBLX/qStZ/CTq1xBqVQa9eIPGA3+EAtH84L50EDXygIXJhR14AqH2qF8xoSx5BpHDqvLrSs1p4LWSpzVwFEcus16ppWq8mFOtVaomXqIgFqDbopFBR8Orb8jL9dwaqKh7bTE1yvTZ7g2gOk0AgZv8uEXNwd6K0vx2uUoanG6UKRyjzI2PS5rq9CYSxlfCpIFb7rV1mAz2ZbWErIhbbca5Xpse3KDDgOvE6tKV6jYfr6bGVeKqwUPlULgs/O5XI4ffo0Hn74YQQCASwsLGBrawuHDx/G0NAQwuEwkskkhoeHbcxVYF66dAnr6+tYWFjA4cOHcfDgQZw4cQIXL15EpVIxC5dt1tOe1arQoBX3nn5M3CWFyfQeF/ZTBs6xdBWSfsqJawVzDbp+IA3kUSGhVjDf77aJf+v7XWHLtaVWvr5T9wXbpM8G0BMur9GrJApEfX+/dX+vufBolzzBtQfIhTEUT1e8notf4QYVSFoux4VmuMGUmQG91hmZuDJDClK19oC7tXq2xdVyuZlZxUHvBXotP/o5KKT7WYj822U2ZOLaD61ErkEg6q9Ri1JDytlO1ZqBHZ9ILBbD2bNncf/992Nqagp37tzB0tISxsfHcfjwYeRyOcTjcZTLZbOcfD4fBgYGEA6HEQgEMD4+jkKhgJs3b6LVauHkyZM4d+4c6vU6bt68aQnbynTZDv3R9aJ+HPqFVPBxrtw8JvVFURi5ygjnoh+sptAl73HXg8KY/eoi6trS9/BvVwi51+hYqd9JrT19hu4rTdDWNeXuPb5TlUj1i+p7dZzZNl1zHr06fdfhK0888QQ+8IEPYHx8HD6fD1/4whd6vu92u/i5n/s5jI2NYWBgAI8//jiuXbvWc83GxgZ+/Md/HKlUCplMBh/72MdQqVT+Rh35u0zczGSaupm5aVgclJtCGYFaOtvb2z0h1KqB0ndBAaHwH7/nfcxD4rW8z+/fyQ0DdoWJbmYyUA0aIBNVC4jfKVxH4cFn8AfYDUUnQ9GCqsoMVKCrANS6iQxaIZypEJxq+zqGZHBTU1N429vehne9610YHh7G0tISVldXMTo6iocffhjpdBq1Wg0rKytYXFzE4uIiVlZWMD8/j+vXr+P8+fN48cUX0el0cPDgQbRaLbz44ov46le/iqGhIbz97W/Hu971LrPadD4U0uKZToSneEK1KgsKe7rWDr/Tc6g4ti7c5/oeOd/8TseW3ymz53pw368WCYNBVPhxLbNdhKk12VutbQ2oca06rg+uI75bLWnOvypYVB4p3LTwNfumcKuiC6r0qJBTYetRf/quBVe1WsW5c+fw2c9+tu/3/+k//Sf88i//Mn7lV34FTz/9NOLxON7znvcYMwOAH//xH8eFCxfw1a9+FV/84hfxxBNP4OMf//hfvxc/AMSNp9F1GgCgjFYdwsDd51+pZu6GiCvkQ+iEkWTqX+iXoMl2quDgs1RAutq461BXi1JhPfaPxHFQQeJCR7yuH2Ny+wvsClsybB1/FbQKcbFf+XweR44cwbFjx9DpdDA7O2tK2/DwMNrtNhYXFzE7O4tAIIChoSEcPHgQBw4cwPT0NIaGhjAwMIBms4lKpdKjHFSrVWxvb2NgYAD5fB7j4+NWJsftiwsFK5ypTJ9jSutNmTSVGAoCtWRc5q1WlFI/KFetJP3cvU8tdfcz/WFfea36fVVwue/Wvui8UwnUeeVacMfA9dNxXLi3uD9VIaTySGVA/1cUw6NXp+8aKnzf+96H973vfX2/63a7+KVf+iX87M/+LH74h38YAPC5z30OIyMj+MIXvoAPf/jDuHTpEr785S/j2WefxUMPPQQA+O///b/j7/29v4f/8l/+C8bHx/8G3fm7SW4oum4QhbOA3bBx158A3A3VqbVAInNQRu3z7UbwKQSiEEu/2onqA1NS7VstFzJO1ViV+brJtrQIAdjGd8PYVZulMFRLS/1nJBVKZGgayKFzoHM0OjqK/fv3I5fLoVgsYm5uDsViEblcDrFYDOvr62i1WgiFQkgkEhbKT8smHA4jkUiYtUIrg/1sNpsIh8PIZDKYnp5Gs9lEoVDogTsVCtSxY71B+unYF/X96djSknYhXa2n5woYZbxsg65VJXfd3msu3EonvFeVFY2IdJUod73zGS5ErkqI68tyYXftO/eZ3u9GJ6rCpnuKz9V1z/9d5dOjXvpb9XHdvHkTS0tLePzxx+2zdDqNRx55BE899RQ+/OEP46mnnkImkzGhBQCPP/44/H4/nn76afzIj/zIXc9tNBo9eUKlUulvs9mve9JABvU9MYKKDFuZMTeHVsfgRnKDE9SiUSiD2iawC1cqA+F7eb8yTt3UbDvbAfQKB7UmyWwDgYCVo2J/yTRZIXxra6uHOegzKCC63d3j4FUTdgUemQXDv1nCimHUOmZklLROkskkMpkMzp07h9HRUdTrddy5cwc+nw/ZbBbpdBpbW1vW9na7ja985Su4du2aWVLtdhv79u3D0aNHMTIygnQ6jaWlJdTrdQwODmJ4eNiEQCQSwcmTJzE4OIhCoYDl5WUbq2AwaAKx2+3amVnsG+d1YGDAhBjHSyNUu92dfD/XV0N/JP9W+LAf1KVzzHHm/KuvTGFl16KiIqNrFOhfIolz7MKRatnrGvb5eqNktUKHjiEVJ1Vg9J1co91utyeFgO/g3NBfyP6pD1Vz5FzFyKNe+lsVXEtLSwCAkZGRns9HRkbsu6WlJeTz+d5GBIPIZrN2jUuf+cxn8Au/8At/m03dU+RWTFAtVa0oMlluRoUEXR+GwizUAvU9mpOkmjG/d9/vOvRdwaWkFgs3pwu/qdNbf/O9ri9MBRHfoWOl7VLhrtqvvpPMlP1Q/5nLXJPJJHK5HAYHB63WYbfbRTQatWoZ7BP9W0899RSq1SpisRgajQbq9Trq9ToqlQoOHTqEBx54AMBO3cFsNovx8XE0Gg0TyJFIBOl0GplMBpubm6jX6xatSWHVLw2ATJJ95jzwmWqtKPzlWh267tQvpdaVhqwDuz4dXQe6pvrNA5+vsLBaROwXyd0b7ty71uG92sbvFX3Q7xUG5/2u1aXjpHCtCk1aW4oKsBCxR/emPRFV+OlPfxqf+tSn7P9SqYSpqanvY4u+t6Qapm5AhdtUeCmTj0QiPVYMmT43vzIxbhYyOGqgCs3wGhVKyrRoCTIggL4xlpNygyOoTSvc44aWs2/sP2Evav7KpJXJ8NmE3/S9tDAUYvP7/YjFYjamalmwDdVqFQAQi8WQSqUwODiI06dPY3R0FIODgzbWyWTSxo7VF+bn5/HSSy/h8uXLCAaDOHXqFCKRCKrVKra2trC5uYlbt27hxo0biEajmJ6extmzZxEOhxGLxVAulw1tmJqaQi6Xw7ve9S5cvnwZt2/fxuXLl80vOTAwAKD3GBf6mXmSL9cH0AuVaTAKhXsqlbJ1RSFJy8xlzFwftMLU8o9Goz1CQRUNrh1XYKjg5HpVJEAVM4UDde3wc91DasFybWt9RI6dJj6rkCHioMiFChwGk6hlqooElUXuEa559tWje9PfquAaHR0FACwvL2NsbMw+X15exn333WfXrKys9Ny3vb2NjY0Nu9+lSCTSU/H6B5EINbi+JY2UUoEF7OLzCrVQK+fGBXYTV8nA6c9yNVb9Ub+Hyyz02XqP9kWFmMJ52k4Adz3HhfxarZbdy2cqtAfslrJS5zgZnhu4oEEpOoYKEfn9fgwNDSGXy1lAxuDgIAYGBlCr1XrGAgCSySQajQZmZmYwNzeHRqOByclJRCIRLC4uolqtGuQYiURQqVRw5coVDAwMYGxsDPV6Hd1uF5lMBuFw2KCoUCiEAwcOIBQKIRaLYXZ2FpubmwBg/iydv0QiAZ9vJ+y+3d4t4kvrLRqNmsXGfLV6vW7MlVCszjuvUeZLJk2hpEJOLTkljfRz157OP/vGd7i+IFchcwWgWkZ8PtcB51kFjCIDbsCP3q/Cm3vKjWx015XCp4QQdd14dG/6WxVcBw4cwOjoKL7+9a+boCqVSnj66afxUz/1UwCARx99FIVCAc8//zwefPBBAMCf/dmfodPp4JFHHvnbbM7fGXI1MNUuVVBosqhaYLqx9RpgN3qQAk0tHQDGsNRaU+tLn68CzIUqdaMrsQ/K2Nz2kRFpG6g5q+bLNrG9amURiqzVaj0MloxK/WDNZhOhUMh8QqwE0ul0EIlEEI/HMTExgbGxMYyNjWFychLxeLxHaFFohEIhDAwMYHNzE4uLiwBgeVzVahUrKyt2LQMv0uk01tfXcePGDeRyOWNqmUwGQ0NDFnXYaDQsibnVahlEv7W11bM2NL2Blle320UikcDk5CSy2SympqYsgjAej9tctFotbG1tYXZ2FltbW6jX6ygWiyb8KeBUeXBhNQD2TLVeKSjou9TvaP3o81Sw6enN9MVxfbvpCm50K+9T9EBhTbXC9VpFNhQuj0QiPXtDEQSuhWAwaDUrlVz4UqFqDy68N33XJyBXKhXMzMwAAO6//3781//6X/H2t78d2WwW+/btw3/8j/8Rv/iLv4jf+q3fwoEDB/Bv/s2/wcsvv4yLFy9aLsn73vc+LC8v41d+5VfQarXw0Y9+FA899BA+//nP/5Xa8IN2AjI3TiQS6dkUhExcP1K73cbAwAD8fj+2trZ6oDeg1wJRbdMNpFCcXuEa1UpVC1VYRSERapKuJaKMju+nRu9q0a4WzneQuRHu2d7eNl8QrYehoaEe4UmosFgs3pXTE41GLbqP1/LzaDSK0dFRjI6O4tixY1a0uN1uo1arYXNz05hxPB6H3+9HPB4HADz//PN44YUXbA4XFxexsbFh40foMxAIIJPJIJlMAgAefvhhjI+PY2BgAIlEwpjkzMwM6vU6QqEQBgcHkUwmEQgEzFq7desW1tfXUSgUjHFmMhlkMhkcOXIE6XQa8Xjc2jcwMGACLpfLWUQhA2EajQaq1So2Njbwwgsv4M6dO3jmmWdQLBatviKPH6lWq+ZLIzNmYIJaPGo9dzodO5WYwoa+OkKtus5UqHBN0jer60cVIc2p0ohXWktENFS48HrXJ9ZvHfMzF0ZU5ZIKou43VTq5zu8Vkft3kb4nJyA/99xzePvb327/0/f0kY98BL/5m7+Jn/mZn0G1WsXHP/5xFAoFvOUtb8GXv/xlE1oA8H//7//FJz/5Sbzzne+E3+/HBz/4QfzyL//yd9uUHxhSAeFaJGqpKI4OoEcwufCIQhsUMkpqUWkQA78juYyAm05hOBVk7vP7OcFVwyUz0kP8OCaEvjRiDtgRAtFo1Bg1sKNwVSoVlMtlExL5fL5H4G1vb6NQKKBUKiEcDiObzVrQRSKRQCwWw/DwMNLpNAYHBy2oYmFhwawO9aVQ0DDij0Kx0+mgXC73BMBQWWi321haWsLw8DACgQDW19dNiNVqtbusCb/fj0gkgkwmg0QigWaziUajgWAwaNGMsVgM8XgcR44cQSaTQSgUQrVaRbvdtvJRmUzGivxyzDWXjfORTqdx9uxZHDp0CMlkEhcuXMDS0hJqtZolROv5V7q+aN2rb4lrR5OU+T61glSxoXKkwkzhOn6nECHXhVpgGuhBQeNC3WqZccyB3gAhhUdVOOkeUkGu+8AVoNoPj+5N37XF9XqgHzSLi1CSqw26sB43CaEtF15R/4QrZMgUgN0q3Ex+VTiR7wF6/U5qbdESUcanDnD1odEa4Dt4v256+gb6RThq8Ecmk0E2m0Wz2cTa2pp9dv/992N0dNS+B3YCFCqVSg+DZAg+4USN3AsEAojFYhZwsrW1ZaHknU4HiUQC3W4XKysrWFtbA7ALCd6+fRvXr1/H2tqaBTfMz8+bNcpAA/qCEokEAoGdsk9bW1tIJBKYmprC4cOHrd/hcBjRaBTDw8Pml7x06RJ8Pp8J62aziU5nJ4eL1pLP58PQ0JAJqn379iEejyMSiVgy8tramkGRAwMD9nwqBJz/dDqNSCSCWq2G3/3d38WLL76IYrGIkZERVCoVbG5u2rVMA1BfZjgctndqYILW/FOrhGtOA3lIqhi5CpMrrFzkQIWdK5hcRVDfx3t1D7gogxu0ocoZ/3d9cRyXH5Qgje+JxeXR94/I5Mn8lYnrhtOIKN3cer4RNws3nTqSNQFSs/y5KRmuq8VUNbiB7XA3NDVbtQxdQawMSIvsUnABvUfWAzsw18TEBFqtFubn5xEOh5FKpfD2t78dR48exdGjR3vGTaFEWh0UQByjeDyOWCyGSCRiPhT2e2trC36/H8PDw0gkEuaDq1QqFjVH6KvdbmNhYQHlchnxeNzmB0BPn9jHUqlkvqt4PG5MsFQq2Rjy/3a7jcnJSbTbbRSLRdy6dQvJZBKJRAKdTgfVahWrq6tYX1/H2toaGo0GBgcHcfjwYUxPT5vAYsTjxsaGRS4yui8Wi5klQqFNRQMAEokEwuEwHnnkEYRCITzzzDMAgEwmY9GHGnbPsdIAIa4lPlf9XhxLjXJ0LSL+VsuKFjrXif4welH3gd7Pz9R3quua/VAFSvPLXKuJfXJ9eBSWHF+uC0VUPOpPnuDaA6RRbQDuyfhJ3OzcAK6PCOiNXKLF4TrOVTNUgaLaITenlmdSmIibU9tEZsDr3HwfMs1Go9HD5AgZdrtd+5zBD8ViEZ1OBydPnsT+/ftx6NAhnDhxwuCora0tVCoVtFoti1BNpVImrIrFIiqVClZWVrC9vY1YLIaBgQFEIhETWMzRajQamJqawvj4OGKxmAnDQqGAQqFg7WZE3urqKmq1mkXN1mo11Ot1C/Qgg2bKQKFQwIkTJzA6OopKpYL19XVUq1Wsr6+boNzY2EC1WsWJEycs8IJWYTgcxsrKCpaXl3Hr1i3LERsaGsLk5CROnjyJdDqNdrttbbt06ZIJN10DFJahUMgSrfP5vLW1Wq2iXC5jcHAQDz74IDKZDL7whS8gFAr19I1+L3ddu0EPKmA04d71+bjCjsoV51aFVj+B5MLWChfTEnMhcoUtVfCoT0oRDt1nipa4kD6Au4S1J7henTzBtQdIhRa1MuLlmteiwkyj+NRSUwuNz2WlBfpfeKIvYS0+n5taYTzVIDWUnd8r7MN38jNqoWQ6vJd91nZzI/v9fvNtBYNBDA4OYmhoCO985ztx+PBhZDIZ1Go1NBoNrK2toV6vIxgMmmXBkHNgx+9FJhYMBjEwMIDR0VGL6PP5fCasyLhDoRDC4TBGRkYQi8XQbretYC4rXRAmajabWF9fx8zMjAmBwcFBRCIRG89YLAZgR2Pf2tpCMLhzcvKRI0fQbrftoMlarWZRhlNTU4jFYpb3NTU1hcHBQZw8edKgu9XVVdy4cQPNZhNbW1sYHx/HRz/6UaTTaZTLZZw/fx7z8/O4ceMGWq2WwbcMaGm1WibwANj4xGIxlEolZLNZnD59GrFYDJ1OB3fu3EEul8OxY8fwwAMP4LnnnsPv/M7vYHR01Ji7npWligyJzH9ra8vWFIWF+jvD4bAFkxBKJrzMKEeuJ9eKV/+YCiUXinSrq1CwqRDUfUlSBZBKGsmFPSmg2GbGAfygQIR/E/IE1x4g1cyoYeqmA3ZLQLmamiaEUnho2Ltm6eu99Ef001DVic1qC/xfc8aA3XB6tsXv9/eUoeJ7NQ9NNWW2j7lHFAaxWAwPPfQQjh8/jkOHDuG+++5DOBy2I0RarRYGBgYQCoUwNDRkQoYCo9FoYHNz095Ji2VwcBAAzF9ESImWTDAYRC6XQyaTMUazvr6OO3fu9MBFS0tLZhVR0G9ubvaU9QF2EpoJXZI5JpNJ+Hw+lMtlrK2tmSa+urpqJaKOHTuGdruNmZkZNBoNxGIxsxx5IKXP50O9Xsfw8DAeeughxONxVCoVPPPMM5ifn0ehUDBhGYlEzHKjohAMBu28sFqtZmtvZWUFxWIRQ0NDOHDgADKZjPnR6vU6Dhw4gHA4jG9+85tYXl7G6OioRQjqemZVEUYTMnFa/Tuun0nhRc6nu1fU2lGFh3uEApN7QS2lfv4noDfSVp+p/mMVbPq9KpTqG+PnCoVqmz26N3mCa4+RLnZgVxvUUF+XQWg+kwo7bmAXyqP/jPAYi6v2i37SaDG+h5+phUfhxWu52fV61awVflGm4/f7kUwmMTU1hXe84x04efIkhoeH0Wg0sLKygrm5OaunNzQ0ZFYT/XXFYtHCtjXMmhZeIpGwyLutrS0LvGBYOAWf+sNWV1extLSEbDZrAnJubg7lchmBQMAiBJkHpRo5c7/YXwp21xoJhULIZrMoFotYWFjA5OQk/H4/FhcXDQasVqtYW1uzJGQGRPAgyo2NDczOzuLZZ59FoVDA9vY2UqlUjyJCYUDBpTldtG7q9TrK5TIuXbpk625ychKbm5uW4zUyMoLHHnsMTzzxBObn5zE6OmowqyoL/SxyTdtQZUznks+hoKHio0n6nFf1s+ke6hfApAqh1u50hZn62FTg6LWq+PSD99UvzPHlOzx6dfIE1x4htQooSIBd6IMbRPF5AD2huepTAnYZATcxN5ZuMM2HoiBiIqXr0+L7Cf+pcNN0CIUECU+SUZJpUUCQqVLD/9CHPoTDhw9jdHQUuVwOPp8PS0tLeOqppxCNRnH48GGDIxndyGf4fD4MDg7aeK2trZnFQUE0MjKCEydOIJ1OY2NjAzMzM7h8+bKFjzMC7s6dO8YkV1dX4ff7DRbb3Nw0X1oqlUIul0O73cbw8DD8fr9BYYRSKQgJZ5bLZczMzCAWiyGXy2F5eRmBQAAjIyMYHBzE+vo6lpaWMDY2ZlGAhCfpf1pfX8f29jaOHj2KI0eOoF6v40/+5E+wurpqEZGci+3tbQvPJ9GvRQtarVXO0+XLlzE7O4vR0VH8yI/8CIaGhpBMJjE3N4dAIICPfOQjeMc73oEnn3wSv/Vbv4VcLtfzznq9btGRXBP0halA4TW63tzADbaPkbCEmblOuV+YnM21QWuXa1cVKAp+rTWpPmMVSoog6P6ihc01rWgC79GyWz6fz6KCtQajR73kCa49QNyc6ltyN5HrJCbpPa6TmlaIQnR8plYOcOEZhTv4PLXa9Pn9/lZ/m/q4XLhEhWoul8Pp06fx6KOPYmxsDMFgEAsLC+ZfqlQq5oOigKFGT2vJHR/mYbHd29vbqFarlsNFf9jS0tJdlggDPdh3DbNnZF40GrVakdvb2xgdHTX/yvDwMMrlsoXkE9akorG4uGjBHHwnk8mz2Syq1WqPxViv1zExMYHh4WFsbGyYb2pkZATtdht37tzBzZs30Wg0LF+r0+mgUqkYM1cIDNhh5ByPWCxmofsUXoQmW60WLl26hIMHDyKfz1sycrvdxvj4OB5++GH80R/9EVZXV63Kh64tF0rjfDCwhqRrhp9zvdDnW6/Xe+A8+pzU1wTsChE3IVrvuZcl5QZXaL6kKn9sH32oGo3LftNvrMqlZ3G9Nnl5XHuAuKj7lcZR/5NbNkmJ/hNCMWTC1Dx1o9Mi8fl8FlqtzMLVQnmfMhyXCQG7jId9UcjFjQ6jVl8ul5HP5/Hxj38cZ86csfDvhYUFfPWrX0WpVDJLanJyEvv27YPf77eIwHq9jqWlJZRKJSwuLhqU6PP5LBqQVoXf77eKF+l0GiMjI8hms3ZCMdMMstmsacntdtuYpd+/U/19cXHRwumDwaAx/Ww2awz06tWr+M53vmMWmub9ZDIZrK+vo9Pp4NixY3Y/AJTLZbRaLZTLZYyNjSGXy6HRaMDv9+NDH/oQ6vU6vvCFL5j1eObMGSwvL+M73/kOZmZmbF7or6PgppKgDJjzy3GhVUooORKJmIUzODiIQ4cO4aGHHsLRo0dRq9UwNzeHWCyGoaEh3LhxA0888QS+9rWvWYoBLXdad6pYqJLEH64bEq9l+zudjkGIXE8UGPweuNsfrPAi55FrRJU6KhW0QDlWun5UcWN/KKg0YpPCj4EwbCvv5174QSAvj+vvKOnG1c2rAgHof0Cja1GR1C/AZ2jklpbo4fcKgfSLsuKmUybA71lpXQWVG/mlffX5duoKjo2N4dy5c3j44YeRy+WwsbGBzc1N3L59G+Vy2bTpwcFBxONxgzVDoZCdVXX+/HkUi0VsbGxgdXW1J9qLDIx9JyMuFovGaKLRqJ191el0UCwWkU6nkcvlMDAwgOvXr5vvqtPpmMBiMMaRI0ewuLiItbU1DA0NIRqNIpfLIRqNIpvNIpFIoFwu9wiobrdrVT6i0ahV3xgaGsLW1paF7x89ehTLy8uIRqMWfMHIy0wmg2q1isXFRXs+C+JSy6eyowKB46FzQgFPQeHOXaFQMF/W8ePHEY/He6zfkydPAgC++tWvotPZiVxlzUT6VSm8FFWgUFFFSQOOlMmrj0j9RxQSXH+0ijRfUYWV23fXd6zP0Xfx3Qo3si9uSov64FRRUEvUo3uTJ7j2AHFhcyNQswN2y+so7EIBovcDsDp3KnDIuMlMAPRoemRY1LK5qfk3NVnVjhWaJFN0mYdGjQHoEYR85uTkJM6ePYuHH34YY2NjaDQauHz5svlpyMQymQxGRkbMWgJ2fBk8IuT8+fOo1+tmYSk8pImqhJpisRh8Ph/W19ct9D0SiSAWi1l9Q5ZUYjg7I+oIA46NjeH69euYmZnB4OAg7ty5YwIon8/3CD4Kewq8ZrOJ+fl5G3eOVbPZtAokHK9IJIJgMIiRkRGLEmXtwGg0ipWVFSwsLBjkxzB3kioXwC5DpdBwAzPUN6NIQL1ex9raGm7duoVqtYqBgQHkcjkrs5XNZnHkyBGcOHECMzMz1g8qEUw25xrSxGyF31QB07+5ZtXSUX8vhZKWXdLnqu+Ja5brVA/j1HXt5h/q/lN/oe4LhUVd61bv9QTXq5MnuPYARaNRi7BSoaTwBICeAwRJ/cJ4FaZzfVLMKeHm1xqAWnZJHdLUOlXTVL8c26EVODTUXjd6IBBArVbD5OQkfvInfxIHDx5EOp3G4uIi7ty5gwsXLljbBgcHMT09bQEXfM/m5ibm5ubw3HPPYWVlBbOzsybk2G6FhDSvjNBfs9k0i21qagr5fN5qDQ4MDCAcDmNzcxMDAwPIZDJYWVmxI1ZarRai0Sje9KY34S1veQtu3LiByclJlEolPP/887hy5Qp+8id/Eq1WC9evX7fk5cXFRRw5cgQA8I53vAOtVgtf/vKXLbKP88TQ9263iwsXLuBtb3sb3vKWt2BhYQHFYhHlchkDAwPodDq4dOkSFhcXTRAwMIGWjM6/RqYCvcfPUHHh5+pbYyBEvV7H9evXMT8/j6mpKUQiEWxtbWF5eRlbW1vYt28fPvaxj+ErX/kKXnzxRUSjUWxtbfVEU2qwCgUx/+6X1+f6YylIeWq6Wl5EEdSfqn4uBkU0Gg3bS7ouOH6KVPB/jotr7ani5u41tWB1L+o5Xh71J09w7QEiDMJNq8xFywdpWLkGROj3qtXSZ6YanvtbLSUldS6rpkkGpNAHcPeREnofteNwOIxwOIxIJIKzZ8/i4MGDSKVSaLVaWFlZwcrKCqLRKCqVCqrVKo4fP45sNotut2sWBbCbV7W4uGgBDWwzrQ0mEisDUiiV2nW9XrdACwZQkJFVKhU0m03k83lrn8+3E+V48+ZNJBIJ7N+/H9PT05brRAY1NTVlEN7q6qpVu2AIPvtCyJTJykwKjkQiFvyxf/9+pFIpXLt2zaI3G40Gms1mz6GPXBfuAZlk3oQLyazVH8PPdT65djqdjtUw5HjVajUTQgAM3pyYmMBDDz2Eer2Ob3/724jH4waJcl2779H50QAi/VuhN7ZZ76UgcdemCyXqe/k3UQeFBlUIkVQ5UEiV0KzrN3R9wLzGhUc9ups8wbUHiCWEgF6tTgVRIBAwR7tqd8BujUP1B2iABBmbCzGqoOS9/fxiJBZMJRPktc1m04JAANxlxRHCCofDKBaL+PjHP45HHnkEyWQS3W4XpVIJFy9exNbWFtbW1pDNZnHu3DnkcjnU63XLSep2u7h69SpmZmYwOzuLQqFggRpkWuwXrQtCrWQu7Jv6Jer1OtbX183yXVtbswTgcrlshWq//e1vY3NzE/F4HM8//zyazSa+/vWvY2xsDGfOnMGb3/xmHDt2zIJJGLTQbDZx6NAhXL9+3U44VqiO1egXFhYsNPzUqVPYt28f1tbWTJgzSGJkZASLi4s2LlRSNC2AfiWG4HPNaFCPWhIcX7VE3HsYgLCwsIBMJmMlsYaGhrCwsIAbN27g1KlTeOSRR3DixAkL6/f7d1IE1JJSoce132w2UavVrE2aosE0Ba47wtiMhATQsx80alD70E9o9vMBKtyn65oKAp+lIfAk/Z5t5V7xYMK/Gvlf+xKPvt/kwgsamu0yHVcL1I3thrLrZlWG5UJFFFC0Nsgg7qWV87fCc5pDppudDJXh3slkEkePHrUztHjYYq1WQ6VSQT6fx6lTpzA5OWnWCAV2rVbDwsKCVZhg+zRpmEJVNWB3PHTcOeasdchDHFnLkJAnD4BkMAcjCAnLcY5qtRoKhQJWV1fNF6VWECPjWHZrcHAQ2Wy2p+qD3+/Hm970Jpw7d858WQyy4LNY/Z5jz+oU7BcFt0K7/b5n9KG7FikMFQrm+FJYaCBRsVi0ElO1Wg3Dw8M4evSoVdVXZq3P7hcYoZaSC1Wr9Q/sJvnqD0nXL9erCjfOh8LiXC9sj+vnUj8Y96OuObZZ9xq/1/Z7wuvVybO49gDpJuJC5//q4NXF7iYiK1yhG1s3P9B7SJ9qf3yPJgUro+emJKm2rtAKP1P/F/0PzWYThw8fxvj4OMLhMEqlEubn53Hnzh3T9k+fPm2JvGTGasGtra1ZoVsyA9bhIyN1o9cUZuLnGk7NZ/Dsqm63a8V12a9IJILR0VGzILLZLDY3N60c09TUFKrVKpaWltDtdrG0tGT5UbQiyPRrtRqGhobsLC6WRhocHMTY2BiOHTuG++67D4FAAN/4xjfM98b+MFS/VCrZuLbbbQsEYf+BXgtD1xmv45hoqTFXydGEYLXmuC45djzuJZVKIR6P4+zZs1hfX8fq6qqlaiipwqbrxg1yIIzu8919aKm2k9+zT67vivvFDdzg/bpntK9q4XGPKOzp+rNcWJPjy3w6vcaj/uQJrj1A3Kw85I9auev4BWCYOpkQN6mG5vK8H60jqI5orXqhxHeodk44rdPpmNZP2Ib+LjIWbmhq46yaAezALD/0Qz+EH/qhH0I0GkW1WsUzzzxjVSHuu+8+6+vS0hK2t7etNJMWg52fn8fKygo6nY5F3DGvjEJH/X7hcNgSQ8nYCG2yDwxYYah9MBhEKpVCqVSyqhM8OZh+nmq1imq1imQyiVOnTuHMmTMol8s4cOCA1eejNUYYlYLM7/fjscces5PDNzc3USqV8LGPfQzDw8OYn5/Hb//2b2P//v2Yn59HtVrF4OCgwaGJRALJZNKSmNfW1lAul3ssOwo3MktaeN1u1/xstFaBXSuHygLXB4OGmCysilKj0bA1wijMcrmMCxcuoFar4ZFHHsHo6CgSiQS++MUv2hjrWuW6d60orhn2SSMeacFrAIZah5xzTXxXaJZrFeiN2uW72R9exzEKh8M9uVqqYKrAdFEHpjqo9eoJrlcnT3DtAboXzKHwoDqXuTmo9akGqBvOjRBUR7cmKgPo0XR1I1P4aIFZarGuZcZ3aHtp1UxOTuLEiRMYHx+H3+9HpVKxBNWhoSEkEglsbGzYAYzxeByZTKanLQqJsq3UhBVmVeuLv5VZqOXItmsZKzIkPndra8usmEKhgGQyidHRUayuriKRSOD48ePIZDIWDVgqlZBIJOwZtKjUuqIFxSoZ0WgUyWQSGxsb+OY3v4lr165ZHhuDNxiM4ffv5HFRSUkkEiiVSjb2qthwrFRgKJOn8OGcabKsVrbgugsEAj0nPQcCAVMgBgcH7d2EMScmJnD//ffjz//8z62AsAaLaKKvBkfQL0Zrl33RACWuZ/XvUeHTta3r0c1VdINBuAc1WlfLTynUx+fqGKmlqNA+x4prTtvk0d3kCa49QKrFqmVEAaXCQTU5MmXi6wDuEnLc0HTAq1+CxI2rVQ14v2uVkSlQYLqMRJM+FYbZv38/pqamkE6n0e12DerLZrPYv38/CoUCLl++jFarZf4kMg0yW7VCGfHGwBOFa9QK1fBqWh5kmqrl698AzAkfiUSwvr6OVquFoaEh82MdPHgQ7XYbyWQS+Xzexi2RSNizK5UKBgcH7YgOBkqwHFOz2cTq6qqVaFpaWsLt27dx8+ZN1Go1K6ZLJlqv11GpVADsHoTp8/nsDC9CqhwXJYUL2R7XH+NGwvWDvSiIA4GABRXRMotGo8jn8zYPhUIBqVQKR44cwcjICObm5uwe9SvpuKuA7BccAuxC6lyzro/OhSWpwOn+4vM0ApCfqZJHIatKUT+fGq91n+H2Ud/v0b3JE1x7gFQr5v8qqLgJtGyOhrlzc3OzqzVCJsnnqsXGPBiFXfgeCiUGJ1BAEk7ie1S7Z3tVoPGgxkcffRSHDh1CLBbD+vo6ZmdnMTg4iH379qHZbOJzn/scFhYW8M53vhNjY2M4cuRIzzlizN+ij8eFeACYYCLcR+FA4Q2gh0mS1Mne7XaRSqWQTCYB7PiRZmdn0W638ba3vQ3Hjh3Dd77zHRw4cADDw8NYWVnB5cuXTfOn9fP0008jHo/jbW97G4LBIEqlEvL5PLrdnTJcr7zyCtbW1nDt2jWkUilMTU3hueeew507d1Cr1SyUXyNJm80mSqUSOp0OcrkcHnzwQXzzm9+0Kh08DoYh82wTIydVkVGYjXOqEawunEflgEKSB0wmEgk0m01cuHAB1WoVjz76KEZGRhAMBnH+/Hns27cP+/btwwc+8AH8yZ/8CS5evHhX+DjXjQawcN4BGDTNElSugqJ7QNvN/rvJwkBvTqRC5BwPKh+0QCm8KIgUQgd6/ae8Ty1cFaiaa+ZRf/IE1x4h1cJ0Y7jJkKrlETpxmTIZFJmN+w71VSjz57MVLlMNkdfyvf0EJe+htUSBNzIyYmdura6uolwuY3p6Gj6fD7dv37Yag/l8Hvl8Hslk0rTzSCTSU8ORfg8K8n7jo458bSN9OAoV8RpWHmH9RsJ+nItAIIB4PG5WY6lUwu3btw3qm5qaQrFYxK1bt1AqlRCLxfDWt77VigBnMhk7QuX69esmtOr1Om7fvo2xsTEL4d/e3u4JISdTZCBEJpPBxMSE5aDxOfRFAug5F41MmqRrRa1tHT9lssAOc04kElZkV/19CwsLKBQKdtTM8PAwfL6dqv/1eh2HDx/GmTNncOXKFVO83CAJVSoUCiepcGDbFYHg2mOis657Pk/75/rVFNbjuKuAZHvc4BVd9/oZhaAbbOXRa5MnuPYIUQjoxtGACP6vEJhqcFqYl0yFzIHaOxkZ/6cWr5oqgB5IUa0/V6tV5kMYTOEjnnn12GOP4ejRo+h2uygUClhaWrINPTs7i29+85vodDoYGRnBwYMHMTIyYu0bHx9HOp22hN94PG5Fa12NnWNBoo+GSbrqn1Dml8lkkEwmLZJxcnLSSjwVCgUkEgkMDw8jnU7D7/cjk8lgdnYWzz//PG7cuIFwOGxHmywvL6PRaGB9fR1nzpzB9vbOGWFra2sIh8NWkX5mZgbPP/88BgYGMDExge3tbVy7dq2nirzfv3M2GX1ZhNgqlQoWFhbw6KOP4p3vfCdeeeUV+P1+TE1NoVwuY2try5KXNcSec6RBC1oqyRUSjFSMxWKIRCJ2KnK5XMbVq1dx/PhxhEIhrK6uYmFhAZ1OBy+88AJu3LiBI0eO4L777gMAK6v1+OOP48UXX8Ts7GxP0WFgt7AzS0VxjjTQgYFAug6p5Gngh0ZKMn+Qe0oDJPgcphswEMWF5tViVwHvhsqzSosGk7DdujbdwzE9ups88b5HSLU83QwKg/SDudrt3Xp3bpitq8GqExy4u5qEaokaAs371fdGUn8bn0ltlsxyfHwcAAxeCoVCiMVixuAZEacwj1YoT6fTPSf4so20wrTUFLAbaEFGxsAGtV752fb2NhKJhAUAUDgqgwwGdyrAk5kzWCMajVpwRjabxdraWo+TP5vNmvBj5Q++l34iFu9NJBIIh8PY2tpCq9Wy/LVEImH949gzFL9areLgwYOYmpqCz+ez9rCkFQUOrUethEGq1WoWNOEyd/rM/P6dJO9sNot0Oo35+XnMz89bhRNCuBQWW1tbmJubw8rKivW92WwiHo/j8OHDViyZQlXXniIIqsjpOqYSouuxX/BEv33gKi8KvauQJ+SsaQgaeOFab7oXVAl1fb269zy6N3mCa4+QbjyFUChEXi0KSQUNIRGN3ALQs1HdjaZWHv8H+p+srBuSRK1Sc2x4/cDAAIaHh1GtVrGxsYFWq4VUKoVEIoFarYZGo9ETpcZjNWglAbBqEqFQqCcYRVMFdLxUULmCX30UFAYMViiXy0ilUggEAnY/rUpaL41GA2traygWi4jH4xgfH8fIyIgFbXC8+Ez2mzlinU7HCggzNJ7njWWzWTsnbGBgwIrZbm1tWc0/n8+H/fv3o16vY2FhwSp0UNjyhGaOLceM86mV45kDxqAXjh/Hn2PGiMhsNgu/34+FhQUEg0GzJBcWFuDz+QzS9fl8ZhUuLy+jUqmY0nH69GkcOnQIrVbL8s4oKKg86HpVhUiDblQ46D5w9xP75OZK6l7ol6cG7CbPu3C7GyClgRxsOy0s3SuuEPPo3uRBhXuANPjC1RY1kddN4CTTVqiHm0ZxdmqpGohBogOcgRrAbjKzRuW5NQs1Kk+d0Z1Ox5hnu71zrPzhw4d7qkm0220UCgXLzTp58qTlPi0tLSEajSKTycDn26mc4ff7LaJvYGDA8n7oHGd/FC6lZUSnP8eYUBSd/7lcDoFAwHxZg4ODAHYYHEP2GdE4Pz+P9fV1LCwsGLNvt9s9FSOi0SgmJiYMblxdXcX8/DyKxSIikQiGh4dt7hgaX6lUMD8/jwceeMAiDAHg8uXLWF9fx+3btzE1NYVWq4WtrS2cOXMGa2trePLJJ/HGN74RU1NT6Ha7uHXrForFIh566CGsrq5aSSzChpxjnlTMQzEZdk4GroKNa2D//v12OCYtxlu3bmF7exu3bt0yOHBubs7WUKfTQbVaxde+9jW86U1vQrPZxIkTJ7Bv3z4cOnQIv/d7v2d95Ry6AoDzzGTpWq3W18/EuWAuHmFFrnGGx7tBFHwX14gGFnGOKSjVIlMlk5Y4A6EYvKTPZTu5j90+eNRLnsW1B4ian1uqyA1X5gbQaCbdhK6PB4BBILSG+B4KI2rC/I5Mi5CcnmelEKAGNVCb1U3MPo2OjiKVSqFarRpMRYZOKAmABS2srq7asSZaLJYCOhKJWMKxMjRaBqzeTquBjJhtjkajVs4pHo+bIIzH43bYHU81LpfLJhjL5TLq9Tqi0agFZwBALBazU4bpr9q/fz9GRkZ6ErA7nQ5WV1ctKpDtoZVM/9rKygpmZmbsnuXlZTsnjAnqsVgMp0+ftnD88fFxjI+P44EHHkAul0MqlcKhQ4dw4MCBHkFdKpXM+qMiUSqVUK/XDaIMBAIYGRnB9PS0tcnv9yOVSiEajaJQKKDZbNpZZKxdmclkLOGagiIUCmH//v0IBncqy4fDYdRqNQwODuLBBx+0ueFJ1a5g4drS8mOcQ865BiKpJa5VQSjUdB3oXlKkgQJcIUzer4KG72EOmxuZy/njMxS18Oi1ybO49gAp3OBi9BRIGqGkG4BCQwWTaoSa8El4hM5/aqQubKEh0woXAjubkVaaWnF67hW1z8HBQUxMTCASiWBpacmKvrZaLVSrVTv7amJiws6yqtfrKBaLGBoastDnVquFQqGAQqFgeUhMnNVQfLaX93C8lFkxz4oWl0bKbW5uWgDF+vr6XZXc/X4/RkdHMTY2hps3byIYDCKZTGJlZQV+vx+nTp0y2K5UKhnEyAr4lUoFS0tLFuTB3C7mZm1vb6Ner2NmZga5XA6FQsEKD3e7XTuIMhKJ4MCBA8jn84jFYhgZGbHIxlarhdu3b2P//v0YHx9HJBJBtVrF3NwcSqUSQqGQJTZTmeCa4E8ul4PP57OTyGOxmFnRS0tLqFQqJsCbzSYymQxyuRzi8TjW19dNqeF48tyuVCpllufY2BhOnz6NCxcumBXONeBC3iQX4lPYTtcnsBtcokFNbtqG+iMZMMFncU8waMO18LhH1P/ltk9hTn2u64v26G7yBNfrnHQTbm1t2efU4BSGU2yfMJObqMlNqOG/FCZ0NGsiZrVaBQCLWuMGZv4TiZYHN7rCc66jm9r2uXPncOTIEdOq+ZsWwPDwMGZmZrCxsYFisYjbt28jEolgcHDQTjTudneiAi9cuIDV1VUEg0GMjo4in89jcXGxJ+S90+kgnU4bI2SxXFpI1IyBXQc6j02Zm5vD2toa3vWud+HkyZP4i7/4ix7Llwz86NGjCIVCOH/+PICd2omZTAZnz55FIpHA7OwsqtUqKpUKJiYmMDY2hsnJSRQKBZw/fx7NZhPlchkHDx5ErVbD2tqaCXKe88Vq681mE0NDQxboQEsRAHK5HM6cOYNOp4Ph4WGUSiU0Gg2Mjo7i9u3bBreyUPDExISdSByPxw0W4/jRAq7Varh27RoikQh+5md+BrOzs3jxxRcRDoextraGWq2Gc+fOYXR0FNeuXUM8HsfU1BRSqZQJ4cuXLwMAlpaWMDs7i3w+j29/+9v4wAc+YMI7n8/jYx/7GK5du4b//b//t1lkuqY0OESDbXiUDdczIWcNWVfhQUtM+0trnuuC65OCUCMZNaSd32lCMvemwn9aAoqCyj1uhsqXR3eTJ7he56RYuwYMqENdNTcKEG44hSc0uoqkm1HzePidbjwGR2hypjq1VTvVkGQKTH0uLal0Om217gBY0EW9XsfDDz9sMFWtVkO5XMbKyorBUslk0uBPnuzLk4oJS62vr2N5ednaMjAwgMHBQcRisR4fF8eNgjmZTCKRSCCTyeDixYt2xtTw8LCFxpMJUhADu9Ara/PV63Vks1kL/S8Wi/D5fCb4Y7GYWXSJRAIDAwNIJBIYGhrC2NgYCoWCWV7xeByhUAjDw8MmdLkGNjY2rOahVq9vNBpIJpN2LAqFN4UAT23OZrN2hpf2hTUXWZmffdq3bx8ikQguXbpkvrWNjQ34/TvpAFRAMpkM8vk8qtUqGo2GpSDonPn9frz00kvYt2+fCaHl5WUcPnwY09PTGB8fx+3bt/uGrOuaUxic86OBFBqZyP2i8Lc+X98B7PrBaEHxfq5n7lX+pnClEsC9w/3MJHgmfits+WqBVh7tkCe4XuekmprWbqM2R2bFKDdNhlXN0HU6awIyoRegN2GSIdTBYBDlctk2XD+BpNojNUYyIc29IbS2tbWF06dPIxqNYm5uzp5ZKBRQq9UwNzeHN7/5zVhaWsLly5fxwAMPmDWxtraG1dVVTE9PIxQKYX19HRsbG+b4Zm4Ryx5FIhELHyezIGOgpUnGxIhG+rE2NzexvLxstfaOHz+OeDxu0CcDGSjAFxYWcOnSJSuMm0gkMDIyglAohLW1NbTbOxVJDh48iLGxMWxubvY47FnZYmFhAfV6HRsbG6ZcbGxsIBwOY2Njo6fUVbfbxczMDCYmJmzcU6kUTp48iZs3byKfz1uxXQqzmzdvWoRksVjEk08+iXq9jlQqhTNnziASiSCXy2FychKxWAw//dM/jaGhITz33HP4xV/8RczNzeEb3/gGUqkU3vWud+GFF17A7du30e12Tfjed999yGQy8Pv9uH37Nnw+H86dO4fh4WFcvHgRCwsLWFhYwOjoKLrdLn79138dn/jEJzA2Nobl5WU8++yziMfj+Mf/+B/jlVdewVe+8pW71iD3BC1ERmtyrZA0YlQDPJhawSAJrdOo12uaBdc1hQwFl6ZIcA9q0V3eS0uNe0PzKpkn5vm7Xp08wbUHiNaI5utoqSKFrFytTS0yFTaERzR3ycX1aRmogKI1pZopmQmd9W4eDaP19KiLUCiEVCqFTmenZl0mkzHNvVQqWUDD+vo6Op0O9u3bZ0Lx1q1bWF5etoi+hYUF5HI5tFotbG5umi+MDHR8fBy1Wg3FYhHAbjFeOs+TyaQ565kv1Wq1UC6XMT8/j0QigUKhgKmpKStey4oQjNgjlFupVFCv1xGPxw3WZN5UpVIxhhWLxRAMBrG4uIhqtWpCnUxsZWXFxprQJhNgS6WShZazIv3Nmzfx2GOPWU5bLBZDPp/H1atXbZwYjs9Tipl6QKGfSqUMuszlchgbGzPri1Gb165dMytke3sbb3rTm5DP5/H888+bX9Dv91sRZAbKMFePlhF9ae12246EmZmZMZ/Y1NQUrly5gpWVFRw5cgRnzpzB4uIinnvuOdsXCrNReGhyuwoBRSGIFHB/UIHTMkxqPQG7UY18L5VHRRbcXC7dR36/36rZ00Kkta+FrNXXxud5dDd5gmsPkPqNNLJQN5huEK0aoULHFXC8TzVMXqcWEjVDraTg9++eQKsbjhYF362HT3JTk2EODAyY74Xaaa1Ww507d9BqtbC6umrwUyAQsLwmWmzLy8toNptYXFzE6dOnLXgBgFkP8XgcBw8eNN8R28sEXDI6Cg2XcZTLZcRiMRQKBezbtw8ALCLRPXK+UCgY7En4sVarYXV11foHwBh8KpWyyhnqX2P7fD5fD9REi5pzwKjPZDKJubk5K2LLaEfmeNEXxHJWFMx8d7FYRCaTsfdTwSAcW6lU8PLLL2N9fR1PPfWUHb8Sj8ctMjEcDmNsbAzRaBS5XM4O1eT641rZ3Ny0Qsmshj8yMmL+zGvXriEcDiObzZovr9FoIJ/P48EHH8STTz5ph0+6gotrlbCcVm7RXEf9H0DPOnaFBaFGRqJS2BDqVDTERTYoILXQsAZ1qEBl+3U9enRv8gTX65y63W5PTTpCGQy+YBV1anxkagpfUJCpH0A3ssKEhDm46RnyrpooLTP6hFgkVrVdzbvhtUwmbrVaePDBB82yAGCh1Cz5dOLECWxtbSEWi5nls76+jlwuh4mJCdRqNSwtLVmY9he+8AUcPnzYkldbrRaOHDmCfD4Pv9+PcrmMZDKJ4eFhGxPmLs3Pz1tOTiQSscCO1dVVK7F04MABPPzww1hfX7f8JiYNUyCsrq4iFoshm81aQMXm5qYFClBo0PczNTWFlZUVU0gAWEh9KpVCt9tFPp9HsVjE9vY2lpaWrBYiA1FYnDcUCqFYLGJwcBDf+c53kEql4PPtJPpub28jGo2a4MzlclZ2qFKpWP4Y869GR0cxOjqKkZERHD16FJVKBU8//TTK5TLGxsZw584dzM7O4sMf/jD8fj+uXbuGUqlk1+fzeUtQ5hplfhWVEkYalkol5HI5vPe978WZM2fwMz/zM3jxxRfxzne+E4cPH7YIzoGBATz66KOYmZmxwBhGoGqQRq1W67FcKUjow9I1TTiPwk4VLM3/0/B5rp2BgQGDXVUR5JpXi419575otVqIxWLodruoVqs9uVxURjx6dfIE1x4gCgqSwn2EjyiQtBIGNyGJm4NCSzcin6nJjxoEok5ubkz60zRiUHO+9LcetkdNvVwuY2NjwwIEGByQzWYxNTVlwQjc9GREyWQSY2NjSCQSCAQC5nO6fPkyjh49imQyiU5np7YhSy1RoKdSKbNomO/DdjL5NpvN4pVXXrFqFcBOPhaDDiisFfKitqywrlq7WnYqFothdXXVYE0K0UqlYpYULWgGSGjZLlf5YPRjoVBAPB43KJDh42o19AvOocVAa+ncuXNIpVIYGhpCPp+31IWhoSHUajX8/u//PoCdAJa1tTXMzs6iUqnYfNA657tofWxvb5slFo1GMTAwgDt37mBpaQmJRAIHDhzAsWPHcOnSJVy5cgWDg4NIp9MGwcZiMTzwwAPY3NzEs88+exfEzXWqfmAAVsRYaxkSoqMQY7i9tlv9t7pXKHw0iEPXulpQhPNpxap/WIWbttkNkvLobvIE1+ucaCmpw5YMiIcEMjmTjFMZFIWKkpu4q5oorTBaCD6fz3J9NKJRLTEycDJVthfY9UPo5n/ve9+LBx98EDMzM1hdXUUqleqB/s6dO4e3vvWtGBsbA7BTw5C+KEKhDOem74gJsZcvX8bZs2exf/9+y7FhCDyDLwhNsqAtSwuxSn0gEMArr7yCWCyGI0eOoFwuI5PJYGhoCN/5zndQr9dNS2aVjkqlgqmpKeRyOXOyDw4OYnBwEDdv3kSr1UI+n7dox/Pnz8Pv92NwcNCsgmg0aiWWGHjQ7XatGsXY2Jjlt01PT1sAAmHPW7dumUDf3NzE4OCgjX+pVLKCwOqP4TuBHUE0NTWFY8eOGbzXbDaxtrZm+XZ//ud/jmQyife///1IJBK4fv06bt++bQy80WigUCig2+32VKMPh8Mol8sAYNbf1tYW8vk8bt26hdXVVWQyGXzoQx/Cs88+iyeeeAJjY2OW2jA7O4uZmRk89NBD+PCHP4xkMoknn3zS1rCiDgq1MfGY0CGVBzdC0E3uV6idglcrZegxMLReVXnj+LqKg/q4gF6YkoiGQqAe9SdPcL3OSZ28JNeKcjVO9X2RNDDDDY+nBs9naBKzRmPRElMhR4aggSLciOoIVwuPB0Zubm6i2Wxa5QxCbwwMYLCHtp1toyBkW+jk39rawo0bNyw6sFwuY//+/Uin0wB2fRX0Z7h1DymEtra2MDw8bHAi/WVXrlxBoVBANps1X0ogEDCf2sDAgFkJ+Xze/DEqiJrNpoWjc26CwSAymQzq9TpqtVqPIz8ajaJUKlmtQp4MTeuCxYALhYIlKytUxqoYTBjmfNNf0+3unKNFQasJ1ZwXWm8vvPACzp07Z6dPr66uGkPm2JXLZQwODvb4klhLknUJOT48GXpjYwNTU1NWCX95edkiESnst7a2UC6XMTIygjNnzuAb3/hGTzSrWmC0YLhm1RdGXyznvJ8F6+ZraRShK2BohbkBSxRm3IsUrtw3iiSwvRoc1W8fe7RDXsmn1zkpk9YNSmGgoexAb/FQ3qPWGjVU/q0CgJuF2iewW22CGD83LJmtQpP8rfAi/Tuslu7z+azyQrFYRKPRsBBvWnWZTMaiDGu1mkGG1G5TqRQGBwctRHlgYAB+v9+O61hZWcHFixdRqVRQLBbNuhoYGEC9Xje4j74XwnUcp3K5bH4oatPpdBrJZBLXr1/HK6+8Yr6qra0tY4QrKytoNBqoVqtIp9MmvOPxuAmZWq1m/iBaTArN8mgRCkWG9xOCpBZ/8+ZN3L59G8ViEZubmygWi6jVaj1VNshIa7UaFhYWUCwWTdPnvFCgZDIZZLNZDA4O9oSEs2ZkMBjEnTt38PLLL2N6etr6vLi4aMfMsFQUK8Nz/dDCjcfjPRGu+XweR48eRSaTsaNsGA157tw5LC8v49atW1Ztg6dAb29vY3p62tAFXfdqUWlABAWKJibrumVb+RzN++LzSW4eJaFG7h9eq6iD7kE+kwLLDaH3oglfmzyL63VO3AhqKemi1ioXiuMzdwrorXWozyXEpxozsLuBCT8ymooMQK0BhUgUyqRQIeMHdv1jPExwdXXVoKs7d+6g0+nY0RZjY2NYWVmxvtdqNdRqNSuuS+e2379zzlQoFMLVq1dN4Ny6dQvj4+OIx+OW3Do0NGTH2WudQga6sITU2toahoeHkcvlLLR73759Fha/uLhoEXdzc3MYHR1FOBzG5cuXEY1GceXKFfzoj/4olpaWcO3aNYyNjVmxWlaMn56etvEng6XQIxS6uLiITqdjZ25dvHgRACwicX193cpF8Rm3bt3CuXPneorIsnagBskwKpBFijV/jQoE2xwKhfDNb34Tn/vc5zA8PGzWJquZvP3tb0elUsGf/dmfmcJUKBSQTqdRqVQsAKTT6WBjYwOpVArDw8P4y7/8SwwPDyMYDOKVV17B+Pi4rb0zZ87gwoULuHjxIgqFAg4ePIhUKoXr16+jWq3i7Nmz+If/8B/iD//wD1EsFnsUKtf60VMJGLjB9ahWE9tI60f9n8Bu4rybcMzz67TuJ++hgNccLeaNacQjoXdC8yqIPbqbPItrD5Bqa8AuxKMn/LpBEQqRaPkZWlNqUVEYqgB0YRHVKtXPxb8VVtFgDb6/09lNDg6FQpaYScuFwjEWi2FwcBDxeNyEcr1etzDq7e2dI0lqtZptdOZjRSIRbGxsWBDGzMwMNjc3sbS0hIsXL+Kll14yzZ/RjdTymfjLkPp4PG7+OuZkMf8qFovZ+5kPxdw6CkDWEaxUKhaEMTg4iCNHjmBkZMQEMccvGAyiWq1ibW2tx2pidXTNkQKAUqnUw3j9fj9yuZwJIgZDcL5YcgnYPeoegMGSjJKjz67RaGBzc9P8nU899RQ2Nzdx9OhRW4dra2vmXz1+/DiGhoawtbVlvkiuRS3SyzWqVUey2SyazaYlWLO9J0+eRCqVQrlcxuzsrJVyYgHgw4cP48SJE7YuXX8q94j6kCi4VBFjW/W3Xu+miyh8rpCt1v3ktZoOwvnSPa2fU0i5FppHd5MnuPYAcYHzbxaS1Ug7hT+IlWsEkwoQEnF4fYf6jfg5AKsu4VbZ5vtd4acaI6+p1WrI5XJ2YCKtFgpGAFadPRAIYG1tzc6ZYuFXZUTsayCwc64VDyDc3Nw0i2V2dhbATkHXq1evYn5+3qBDCikyOZZQqtfrPSceE4qs1WoG2/GUZVpuhA15/MlTTz1l1gKFOEtVsf8LCwt35Q4RHuT/hDIpYNlHBj0Q7my32xgeHragGlpwnHNWjtfCuVQKACCdThtEG4lEzNfGnK9XXnkFw8PDmJycNKbPWpBbW1s4fvw4zp49i2azaRYoGTyTuTudjvmxeGLy6OioJSdvbGxYGax4PI7p6WnLLyuXyygUCkgmkwCA5eVlDA0N2SnLbroGlTmOlSICKuRodVMRU0jcRTd0zVPZcAMpuH9IvM4N/lA/M79TYe8JrVcnDyp8nRMZjBaL5WbkkRG60TR7X//mdxQYCvWpL4zv1GACxex9Pl9PdBXQ69ciw6CfQHNkgsGgFdWlEGPkICPegsEghoaGAABPP/00qtWq5RgRJgTQw6A7nZ3qG+12G/F4HBsbG1hYWDDhNTo6iv3798Pv9+MrX/kKTpw4gQceeAATExMolUpWvT2RSFj03fj4uOWW8Yyszc1NTExM2Dgy8IHzsb29bXDl/v37AexWdO92u7h+/To6nQ4eeughC3YoFos2VswB63Z3cn+2t7fNggqHwxgYGDDYj/4yWsKs+8dAh263a3lxa2triEajdn6Yz7eT2MzggGw2i7GxMavhuLm5idXVVXS7O3lG3/rWtzA1NYVHHnkEBw4cwNLSEr797W9jfn4e+/btw/nz5/GLv/iLmJ6exn/+z//ZqneoZXPp0iWk02m89a1vRT6ft2oda2truHPnDr7yla9gdXUVDzzwAIaHh7G9vY3Dhw/j9OnTWFhYQCgUwu3bt3H//febZb21tYUHHngAf/AHf2C5jlwX7XbblBKNPCR0rblzhOq47t2QdY6T3kMlhydEa9CF+tN0ftTS5P5RAebuKY/uTZ7FtQeIm4JMm5FkhNIYqksNVy003q+JmPxfs/w1WpAJvGq1Aeh5j2Lz+k5er/lgZGIDAwPmx2DVc2L+DCbg2VetVsusIwBmZTYaDUukdUsssV3MiWIB18XFRayvr8Pn8yGdTqNQKODGjRsIh8MYGhqyAIVut4uNjQ07boNjx/JM7fbO+Vb5fN6qPnAMlalRMLtpCY1Gw4r+RiIRTE1N2fi12207Adrv96NUKqHZbFqxX8KYTLBVzZ5aPy3UUqnUwxjb7TYSiURPsAzbHY/Hkc1mbZwpADnm169fx1NPPYVjx44hm81aZOXc3Bw2NjZw5MgR5HI5XLhwwRLGCWtSWWHU5fr6OhYXF1EoFKx01ze+8Q18/etfR7VaxUsvvWRRh37/Tm7aqVOnDCIeGhrC5cuXrVI+gzaYgqBrm/tEEQUKNipWrk+Xa0t9Yhq1ST+VIheEFd0AKQ20cCNzVVC5QSUKPXrC697kWVx7gBR+o6DiJtV8FUJu1BCpWVLTo6BhODYtJW4ooPcQSmBXaFJ7VoHH52k7CGEFgzsHBlLQtdtt7Nu3DydPnsTKygpeeuklLC4uYnBwEIlEAgDsWBDmUV24cAEHDhywmnxDQ0MWsKEHWRIqGxgYsLOnCoUC3vSmN1le0csvv4yBgQE8/vjj8Pv9WFlZwbVr1+zkXjrMr1y5glu3buHkyZNoNpuoVqtWU3FhYQGrq6tWhYMllRimvbq6ameIKQxULBYRi8UwNDSEdruNa9eumdBgEdpGo4GZmRkUCgVEo1HLw9q3bx+azSZWV1dN+HIOqCTwXTdu3MCxY8dQKpVw6tQpm7dsNmuV10dHR9FqtSxJO5FI2HcMgmFU5cbGBn7t134NExMTOHr0qFljL7/8Mj7ykY/g137t1zA4OIj3vOc9+Pmf/3mDRT/wgQ/0CI9wOIzJyUmEQiHMzs6iWCxifHwcp0+fxtzcHAYGBvDggw9iY2MD3/jGN/CGN7zBKmu85z3vwec//3ksLy+j3W4jl8vh6tWr5sOMRqN497vfja985Su4fv16T1QsBY9WvaBlRuIccZ8wCpG5ZxQsRDcYxMHnaLAGn8d+q59Xoym5h9W/pfe5YfQe3U2e4Hqdk1o2qmFr5BLQeyw9mRs/B3bDeXmvhr/rpuFG5bUKoSgjcN/rbjK2QbXNVCplPi0mDjNHioEPhImWlpaQyWRMGEejUQtU4EbPZrOIxWJYWlqyOoSMUgyFQhgYGMDw8LAx/FZr5xBF+liq1So2NjYsPJ7h8swbIgzJ3CRWiOBhh2RkDDxgcV/WK/T9/6MXGcnHXDLWCGTtRVqyPC2X11BAc07o4yNspcoDAKysrGBqaqqnHd1u1/xyGpTDChsMyKDysba2hmvXrqHVamFxcRGJRAInT540f9rMzIwFt6TTaVy/fh1nz57FO9/5TszNzSGZTCKdTpsyQUEyMjKCeDyOubk5lMtlFItFg1NXVlaQSCSQSqUsEvPQoUOIx+MYGxvDyZMn7STmEydOmH+xVqthfn4e+/fvx4EDB7CwsGARkbp+++0pfkeLySUKNPoBFVVQBILrX+dKfWNuwJOmirj7j8/x/FuvTZ7g2gPkLmSNOlKIzvVFqXBSBkcNk4JFgzfU+tJgD4bNuyG66vTWDc128D0+387pwizPBOxsXsJ5AOzcKPp+mKdD6ArYTY5m7lG73Ua1WrUK7IwWpH8tHo9j//79mJubg9/vx/z8PDqdjuUilctlrK+v94QyA7ADFuv1Om7fvm3wJoMrKHjYD2rpFAhuRCfhLTInDX2v1+soFAoWes8jUEqlko0Rn0ltnXNNiIlCgsnTpVLJKrrTL0krhEJ9e3sbiUTCLN5Go4GFhQX86Z/+qT13amoK2WwW7XYbc3Nz+Na3voXh4WFsbm5idHQUly9fxrPPPouzZ89ieHgYnU7H+sX5YoQmfXXs7/j4uNVrHBkZQT6fx5UrV3Dz5k0rHpzP5/HQQw/ZiQChUAhTU1O4ceMGWq0WNjY2cP/99+Pw4cO4dOmSCRkXkuNvtkNLaClUp34nV4ioZaSwH4n7Si0sN2pXFTlVPtz3eNbWq5MnuPYIKR5P5qehvLrwaaX0EyoALHSbG1pzwXg/n0utkgffuQVJgd1SNnwGIUq+v9VqIZFIWOTa9evXzQIpFAqYnp5GOp3G2bNnMT4+jlu3bmF2dhaDg4PW51arZUfUE6Zj2SCWhBoZGbF6eqyXV6/XcfDgQRw4cADLy8tYXV3FnTt3sLKyglOnTiGXyyEYDGJtbQ1Xr17F5uamjRcDKL797W9bxB4tPdbOUybFzxm5p+V+eHAlsCPo7ty5g/n5eYN0l5aWcPToUdPI0+k07ty5Y4nUzKdSK7bZbCISiSAajWJrawvhcBjz8/OIx+PY3NzE8PAwWq0WlpeXMTs7a5XeWVOwXq9jfHwco6Oj2NzcRKPRsBy1sbEx+Hw+DA0NIRAI4Itf/CLOnz+PRCKBo0eP4saNGzh+/DjGxsbw3HPPIZFIYGpqCq1Wy5QE+g4JMbII8NbWFur1OhYXF5HL5fDGN74Rv//7v4+PfOQjOHjwIK5cuYIXX3wR+/btQ7lcxiOPPILNzU383u/9HmZnZzE8PGxwKtfnfffdh7W1NaujqLlcmlyulo4GRjB4gwKFZaI6nU7PwalUAphaoPtOrS1+rud4cU9S6NEKZl4ZfXBuUQGP7iYvOON1TtwA97Km3FBcrbChYc/qlwJ2ky/dd6m1RZ8WtVIVkO513KDqg6GGTWZMxziDEOiLoBCbmJhAPB7H+vo6isWinQ914MCBHtiN763VahYuPz4+jiNHjljiNaGtarVqodi0CCjYb926hVu3blkRWQ0v17az/3osCN9D/wcd+BpowvEivKfVGCh0C4WC1VPkUSm0ABnVyAg6CnDOLYnMktYM31GpVOD3+7G2toaZmRnzORIaZSg/YVtGHDL6LhqNYnh4GIFAABcvXoTf70cymexJh5iYmMAb3vAGPP/881hcXLS0Bj6Xa5DBLgMDA5YIvra2ZodrxuNxfOlLX0I6nbao0o2NDdRqNfPD5XI5rK6uolKpGOTMY2MYyenC6GpJqaKngUnuPuB+0UhZhfsI27rfafCGKm66tzRqkO/WnEwNiffo3uRZXK9zUuvKDZsl7KNwBwDT7qgl0nfCvB5uSm40voeMldCclg1S2IRCVIMEtG38TqEZau8MV2d7hoeHUavVcOLECRw8eBDb29t48cUXsbi4aNZVIpGwfjCUn4yajJCa/dzcnEFGS0tLKJVK5veJRqM4duyYQVX1eh0zMzPY2NjA6Ogo4vG4MVhadRSiPIl4YGAAuVzOwtF5OGQgEMDW1pa1m8EsrLpOqFWZlc5lILBzEjHnG4Ddl0gkLPmWTJmwFKMXOS+dTscq2UciERSLRTzxxBPw+/04fPiwQYaM6vzLv/xLS3heWlrCSy+9ZMWaDx8+jG63iz/5kz/BY489Br9/J5eN52cxefjUqVMYGBjAX/zFX6BareK+++4zK5DRpEx1YDBKNBrF1atXMTs7i06ngze84Q1YWlrCl770Jdx///1ot9v42te+hpWVFfyjf/SP8Mgjj6DT6eBXf/VXAQDT09NYWVmBz+fDiy++iFarhYmJCRw4cABXr161GpOdTsfy8LimOS9a4YWChJYaFSvmsWkwDH2Muic0UIP+UQYPAbtBTkQrgN1yarwfgAUJ8XsNlPJolzyL63VO1OY0tFiDNDRstp9lRM3SdSSrxudqha4Wqj401Qh1U3EDqlZKy4AJvszvYb4RmXq9XsfExIQx1NnZWSwtLRlsw82vFTI01JiWQDQaxezsrJ2oTKHO0Gz2P5FIYGRkxMbh9u3buHHjhll5g4ODqFar8Pl8VlKJ/WOJKB5CyUMjGa7O6DOSBlbQh6ZzRCFE3xwAE55qVRE+4rM17JsKhlrYPD4mm80iEokglUoBgJUTKpVKVnyX0ZM3btzA5uYmJicnsW/fPqRSKTz11FNoNBo4ceIERkdHrfL8ysoKNjc3sby8jM3NTRw/fhxve9vbMDY2hosXL1plDzJvBvVQmWKFfQBWgWRqagqXLl3CpUuXLOn88uXLWFpaQiQSwenTp62GJYN9GDxx584dNJtN7N+/38p6uYWfuR5dX627h7RqhrufeJ/uR92nrm9MA0VovevpCer/UuHmWV6vTp7F9TonDVlXuJC/lbkRCnE3DzcjNUXF/HmfOv01SVLDzvXd7vt0g/KdbL/P50MymbQqCDxQkkfJr6+vY3x8HNvb25ifn8fNmzdRKpVw5MgR66MGIHBTVyoVdDodO/mXIeuJRAL79++3YzRUs202m8ZwMpkMNjY2EAqFrEIFz4taWlqyShcaSaZjxbQECkUGb1A4kwEpo+LYsB0cI5JWZ2CwBZltPB63JORyudwzf1RoWEWE8NuZM2cMagRglggPN2S/bt++jY2NDUxMTGByctIq9i8vL+NNb3oTgJ0yU6urq7h58yb8fr8lLE9OTuLkyZMYHh7G2bNn8eUvfxm3bt3C2bNnbf6KxaLlvbHcVTKZRCAQwMbGBpaXl5FKpZDP5/HSSy+ZD2hlZQVXrlzB0NAQhoeHzUfKnEAmam9ubqJSqVhNypWVlZ5ThjXgwl2nKsR0LVPh4H5geLyiCu4eU2RE3+VC7yrkNHKXSqY+26O7yRNcr3PiIncdtnQY0xojPKU+LW4cwhtafUOjnnSDEULhRlIBRIaqybZkMPSXaJt9Pp8lH09OTiKfz6PRaKBSqaDZbOL06dNWBHd6ehp37tzBl770JTQaDWQymZ6D/RSSZNvJdMjMr169ina7jQcffBCJRMIiAzlukUjEIgEDgQCmp6cxPj6O559/Ho1GA6urqxgdHUUul7MQ+EgkYmWqGOG3trZmibYsvTUzM4NkMolsNmtRk6x8X6lUekLROWf8Wy1nniSdSCQsOo/h7JlMxgoBk1HS2mJYfiAQMIvR7/djfHzc/IMM2SZDpAV448YN3LhxA/v27cPExARCoRAWFxfx9NNP4/7770e5XMZv/MZvGHQ2MjICAHZ+2iuvvIL/9//+nylYw8PDaDQauHLlCsbGxhCLxVCtVlEqlZDJZJBIJKyIMU+JvnbtGhYWFnD69GnUajW8+OKLljv2h3/4h1hbW8O73/1uvO9978Pv/u7vYmFhAcePH8eRI0dw/fp11Ot1LCwsYP/+/Th+/Djm5uYshYJCmgEYhG25frknFIHgGqcAUp+sKoxc40xU5tp3C1r7fL6ed6pQ4t6iJah/e9SfPMH1Oif1L6k1pTkyWnJIN6Lr96Jg0YADbhQ+H0CPQKRfxtVW6QdQv5YKFr0G2D3QT8+hyufzFjHXbDaxuLhomnIoFLJAA4U2+RxGOupJuufPn0c+nzeoiMEV9ClpUIXrzygUCsbUksmkQWuqXUejUTuNOJvNGiOjkFOLNhwOm+Wjx4SQ0TEYhEKIeVecW0KfPDYF2ClqS3+lCmA9/oS+Oc4Hoxw5J5qewHqGc3NzyGazGB8fRzKZRLVaxerqKtbW1vCtb30LKysrJkRYIopJ0VSaFhYWrOLKtWvX0Ol0MDo6ikqlglwuZyHx0WjU4FgqPLSYV1dXrRjxmTNncPXqVRw6dMiSng8fPoxTp07h8uXLqFQqWFlZsb4COweOBoNBi4ikb4qCQCNrNYdL0wvc4CLgbhhc14XuC7Wcdd2oD1hJo3O5/3QPenRv8gTXHiD6LhQiVEzdhen4two6/RzAXUJM4UFuJsXftR38ns8lU3AjrXgPQ4fplwoEAuarWl1dRSgUQrVaxcrKikFaQC9TINxH6JJ/x+Nx+Hw+vPTSS7hx4wYeffRRawMj/La2tqw99Espo2B0ImFBHgpJpkZIcnR0tCdwgpZOuVxGtVq1aERCoIQgU6mUhT0r5EihyvFj8jTHSiMk+Vzmq/Hk5Hg8blYZx4sKDQBLyKUPTq1XTWc4fPgwJicnEQgEcPv2bavi0Wq1MDY2ZjUaU6kUJicnLVqT/jkKUPqeWH6qVquhUCjgyJEjSKVS5teq1+sWydjpdJBOp61CPJUHRlQ2m03MzMzgqaeewhve8Abcf//9mJubw8svv2yBK1QUGo0GRkZGepQ5rm2uaa0C41pCnBvXx0QLWQWWQu58Nt/F+Xd9vlyb+i53P+te8QRYf/IE1+ucyKDVegJ2o/Y0MlArp3Mj0GJSRsnIKj1eBLj7bC/drIq5a4CBCjw+XyFNPos5UGRU29vb2NjYwKVLlzAyMoJr165Z4VbmGbVaLTvKg1YTrROenFyr1XD16lVcu3bNmB1Dym/duoVwOIzR0VEMDg4imUxic3MT5XIZ9Xrdwq2Zl3PgwAG89a1vRbvdxq1bt0wQEx70+XwWHEBmRB9MoVBAtVrtCWLhUSmEdQnVMbGakZK0MBmuTmHv8/nsGby31WpZ+DpD9Hk//Vs8pJJFZpmIXCgUTIkoFosIh8M4fPiwnSjc7XYxOzuLF154AZVKBSMjIzhw4IAJ5vHxcdx33314+OGHsb6+jjt37lj1k+3tbVSrVQDAyMgIxsbGLOijVqvZ0S7dbtcEPBWKcDiMXC5npx+vrKwgHA5j//79uHnzJvbt24ft7W386Z/+KR544AEcOXIE733ve/HCCy/g5s2bPekBGxsbyOfzmJiYwO3bt83qohDgniCEzXXFuXADaBQ9AHqTzfk/17wboch9qdfxe9c/rCkU3Dee0Lo3eYLrdU4qCHSxuzAdsXjdYEBvyRn+T+JmUgexan4qgGgp9bPu2Cattq1to9OaZXo0l6hSqSCbzeLSpUuYnZ01WI0Cls9kaaJms2nh+rVaDYuLi7h+/bolK8/NzRnsxmoO+/fvNz/V8vKyVbcvlUooFou4efOmWXpkYCxPRYtia2sLq6urOHjwoPmMWAdRFQE+Qy0a1xLib8KeZFy0AjjuDPcnnMiAkE6n03MiMktKcawYbVculy26stvtIp1OW4g/faaHDh3Cvn37LPn48uXL5oPKZrMmKEdHRzE9PW2HgOrZaPRzcl5ZKHdgYADxeNzWCdcti/HqkSMMfqD/rN1uI5vNYm1trScv6+WXX0Yul0Mul7PEZh3nQqGAsbEx5PN5O5yUgoKRmxrMohCiWsAaWaj+L/VdqTVFYca50hwwJe5hjU5k27kG+D6Og0d3kye49gARctDgCjIe+oy48EncVP2EkPs8LQUEoOc5CrMo5Kiao2q0rmVHZsXCpAxpZ9UJn8+HcrmMW7duWUQYD1ikT4VM0OfzWcBCo9HAK6+8gs3NzZ4Iw5MnT2Jqagq5XA6pVMqSkO/cuWMh7keOHMHhw4ctwo3W3/z8PC5evGgRa8w7m56eNkuP7VlcXOwJ4EgkElhdXbX8KuZGse0ArLwSLSgyLwp6zqnCVIwoVB8YsOuzZFBAu71TZDiTyWBkZMQEF7ATlBIOh+1YmOXlZQDA4cOH8eCDD6Jer+OP/uiPsLa2hlAohPvuu8+EMsPQE4kEyuUynnzySXz961+39sRiMTs5mVbWysqK+ckIHbKKPCNHl5aWLD2i0+kYJMgz2liw98iRI5idnTXL+1d/9Vdx8+ZNfOhDH8IDDzyAubk5bG9vW8RhqVRCo9HAqVOnsLS0hFu3bpmSoGueQoJWFq1dPW9OA5GCwaBBwAoTqpXkntDgwvgakapCj8oj14kKao/6kye4XuekFhGwa/lQU1MrS2EG9xnu5+49aqnxfW6Ah+tnU8arQk21UF7H9oZCIauMoBYVGRahM7/fb7lIZC58DitMsEBuvV63klJTU1OW5LqysoJCoWCHOzYaDSvLxBOV2+02RkdHceDAAYyPj+PixYsWFMKgh5GREav/RyHC+wk1xWIxs+R8Pp8JWgaEdDq7Jy3Tj6ZMkaRBNxpEQgGmUYT8jAEIQ0NDyOfzPcEZAMwSYk3CYDCIVCqFgwcPot3eOU5lYGAAo6OjdtIz+zcyMoJoNIqFhQWsrKyYQA4Gg0gmk5Yjx3VJQRUOhy3oplAoYGlpCcFgEJOTk2i1Wtjc3MT8/LzBmt1uF1tbWzbvGoDDtZ/JZBAIBPDkk0/ivvvuw+HDhxGNRg3KHB0dtfPNMpkMhoaGcPv2bVvPekCnjiHfyehD1++lMKOu635Qnoa7u/vNRSX0czdgyMvjenXyBNfrnBRjVw3OXeia9MoN5gZo6MZTwedi7Vr1gozShRP1PXq9tlWLjqqjOZvNmtWkApM12xj4EA6HjdHr2VaVSgWrq6solUpWp/DYsWNWVaNcLlukIJk+mVSpVMLNmzfteBKfz4dz585henoaIyMjVoqI2jMPsGRgBgVhuVw2pspw9Xw+j2KxaBXvyYDJeLUKO4WQloLSWnlArx9TLS0KLK3KEIvFDMrTIsrhcBjNZhO1Ws2SgrPZLHK5HLLZrEGcU1NTqFQqKJVKKJVKAGB181ZWVjAzM4NGo2HXa3kxWjG6NhOJhEUoBgIBLC0tmd8snU4jl8thcXERnU7HoD8qAFwbxWLR4ERWlHj00Ufxx3/8x3jmmWfwEz/xExgdHTVFgspJtVq1OWOqBGE8Ch2F37lGFAqnFczvVYHjWlc/ryvIOF8KBapSqHtVhaX6yrxw+HuTJ7he50TN063ozu+4wFWT03I0hP/cKCaFDjWwghtRYSktUaMVKDSk2MX/+R1DkdfW1jA/P2/19Or1uuUk+f3+nqMw1EIhMyKjvnDhApaXl1EqlRCLxfDwww9jamoKW1tbWFlZwYULFwzOU6Gnh0/yyHnCRTdu3EA+n8fBgwfx9//+38fp06ftnC1GHNKKmZ+fN8gR2IX/AoEAHnnkEYuWW1paMosqlUr15J6x/4Qq6/V6TwFjClp+xnbG43EEg0HLmdve3sbIyAhGRkYwMTGBqakpEyQU+q1WCwsLCygWiyiXyxgbG8Pk5CSGhoaQyWQwPj6OSCSCb37zm7hz5w5arRZOnjwJv9+PQqGA8+fPW35YLpez3DjOO/2N0WjU1hAFOsPhu92u+dD++I//GIcPH7aTApaXl7G8vIzHHnsM4+PjyGQyKJfLqNVqVmYrGo3aqdapVAoPPvggXnrpJbTbbbzhDW/A9vY2FhYWcPXqVUxMTODll1/G+9//fpw9exa3bt2yU6lpuXMvcW1zjbkBGSTC8RTc3D+a4qD3qjDUd2lEKeF+WswkVpnhXtIAD492yRNcr3OiwHEXsFpbwL3hQdXUNYGSn/F7taYUAtTN5obsqo+LVgSwu/l4P3OdeJR8oVAAAKunp9Ai26cH+TEYYn19HXNzc5b79dBDD2FqagqhUAhzc3PY3NxEs9m0nCFacFtbW9b/dDqNbDaLUChkxXEbjQbW1tZQqVQwPDyMqakpjI+PW0i6Wji0MFUpYMRkIBCw2oqM6qNVxROr1fqjzw6AMSq1XlTZ4PhQsDUaDcRiMRw4cAD5fN7C43kdfU/f+c53zCpVRYT5b81mEwsLC7hw4YIFYTCHjn4mnr/FNrrWh0Jb/fKQut0uUqkUms0m5ufn0W63MTExgWw2i2q1iq2tLSwsLGBoaAhDQ0Pmk+M65TEqW1tbuH37tiWzz83NIZFImMV46dIlnDp1yg7jHBoaQi6Xw/Xr120cXZ8slTDXauI+UEvMDaFXi5Pfc3w1HF8tN46fWl26B11kxKP+5Amu1zlpoIRqcwr1qSNZYUD+rwwP2BV6DM1WRqrPcSMSueE1IdOFM1xsnxbU4uIi1tfXrap3IpFALBZDOp1GpVLB8vIyDh8+jHA4jJWVFQA7CcqRSAS1Wg1PPvmkBVjs378fjzzyCEZGRrC4uGgVHBguT58OAEtIZVIy2zMwMGD+p2QyiUajgfX1dTsBmUekJJNJbGxsWLUP+uKGh4etonupVMLw8DDu3LkDAFblgm1hNfytrS2r0+eOG+dWfZmNRsOqeDCMn/6z48ePI5fLYWpqytYBmeTIyAgCgQBu3bqFo0ePYmxszE5QBmDWXr1exwsvvIBvfvOb8Pv9OHPmDJLJJK5du2ZngbH6BCMI3cABVXb0vDG2h5YF0xdYQaNYLOLkyZM4fvw4Njc38dxzz2Fubg4/8RM/gcnJScvFWl9fx/DwMOLxOF555RUrdzUyMoIvfvGLOHHiBFZXV3Hy5ElL0M5kMlhbW0M2m8WRI0fw7LPP9ggQ7pl+icX8X/umBXc1n1CtM43yVT+YCnJGNVJ5UcWE7fL7/aZweVDhvckTXHuA1Bms2i0hPgquflF/QK/2qD6lflGB1PhIGjbsfu76CtR/wB8679l2RgXG43E7ObhYLGJoaAitVgvz8/O4deuWOdMjkQgqlYpVZjh06BAeeughq7RAP1YymTShrsKa1SQAGLRVr9dRrVatesXIyAhCoRCmp6cNumNC9Pr6uhWipVKQyWSsukYqlcK1a9cwODiITCZjgR20TujvAdAjtMjIeI3OF+9n2DsZIytDZDIZTE5O2mGQukZ8vp3cr5WVFaysrODhhx824cEkXVqahULB6kIeOHDASjCxqC0ro9PfqP5S9cFosJAKAB0HCo7BwUFL6i4UCkin08jn8wgEAlhYWMC1a9esun06nbYjadLpNA4cOIBr166hWq1aisLs7Cw2NzfR6XSQSqWwtbVl+XrxeNxOneYYqnXDNeyiFewD175aSq7vmEWVuZdcJZDv0v3H5+q9avW57fDobvquqsN/5jOfwcMPP2wnk/6Df/APcOXKlZ5r6vU6PvGJT2BoaAiJRAIf/OAHLfyWNDs7i/e///2IxWLI5/P4F//iX/RYFh71kkJ03DyaKEmitQTswhHcCMoYSdxMGhWoWiQ/U6FIJss2kQG4kCWfzbJM9DeVy2WDEFl9oVQqIRAIYG5uDs8++ywuXbqEa9eu4erVq7hw4QKef/55tFotJJNJPPbYY1aFQRNYNUiA4c+xWMwqYPDASR1TjdgjjDg9PY2jR48il8tZQi9LUdEHB+xGhaVSKWxubuLmzZtWzkjD+CkYDxw4gKmpKbPiaPExgEMtgGAwiIGBAWP6rCTBY12y2SxisRi63W5PjchwOIxEImHls1i1XmtPMu+p3d4pfMujQRjpuba2BmDHZxWPx81iYDs5lhqer2uGEXq8nmPA7yORCOLxOLrdLlZWViwilP655557DufPn8fc3JxZRoR58/m8RZSyaC/TEqrVKmKxGOr1OuLxuKUmMMKUaxLYVbrcPcH9pIFQ9N1yPzA4hd/xua7QUQhdlUVaohRe6qfW5ylU7NHd9F1ZXH/xF3+BT3ziE3j44Yexvb2Nf/2v/zXe/e534+LFi5Zo+NM//dP44z/+Y/zu7/4u0uk0PvnJT+JHf/RH8eSTTwLY2fDvf//7MTo6im9/+9tYXFzEP/kn/wShUAj/4T/8h7/9Hu5x4sanI1fzfKjhUVvT6EAAPddqcVZg11Gsh/1pyDo3MasLcHPppuLzXUuNVlc0GjUfBA/5W11dtTDqpaUllMtlpFIpvPjii6jX6xgYGMC+ffusaCqDQd773vfine98JyKRCG7evIn5+XkLnKhUKsa8E4mEMZlYLIZIJIKNjQ2rasEAA/qAtre37bwqVpkYGRnB8ePHMTExgbW1NVy7dg3FYtE0ZAZj1Go15PN5HDlyBDMzMxYxx/6rX5FnUpVKJSwvL1tlDhZmZSQdHfPVahXFYtEYZbvdxuDgIBKJhOW6dbtdxONxi/Jj5f3z589je3sbBw4cMH9WKpXCzMwM1tbWrEwSAx7i8TiazSbW19exsbGB8fFxE1r0bRFa1Ny8TqfTEwFHoUU4uFKpoF6vG/OnwpVKpdDp7FQduX37NsLhMD74wQ/i+vXr+J3f+R1sbGzg+PHjOHfunDF/1mIcGxuzhPEHHnjAoN9SqYTBwUHMz8/j1KlT+Na3voUTJ05YTh/zudy8RDeogp9rTiPnk+uba1uDj9Rq0ihEPlur1KiSRcWJ76BFpgEbHt1N35Xg+vKXv9zz/2/+5m8in8/j+eefx1vf+lYUi0X8+q//Oj7/+c/jHe94BwDgN37jN3DixAn85V/+Jd74xjfiK1/5Ci5evIivfe1rGBkZwX333Yd//+//Pf7lv/yX+Pmf//meIqwe7ZZ8UihOnbd0MAOwYAaFJTRk1w3HdQMz+L1qibyXG5T+NbUCyfSBXv8Z7y+XyxYQEQ6HDS6i74i+ong8jk6nYxF5+Xwe4XAYa2trOHHiBCYnJ3H58mXMzc1hY2PDatkRSmKeFCFIAD1BEd3uTmUF+r9CoRDK5bIlyvp8Pqyvr2NpacngqlAohEwmY/CaWmkMuU+n0xgeHsb6+jpisRgGBgbsHcBuYioZUjKZRDKZtLBzzoVCWTwhmdYbAPM3aSRnMpk0plepVCwROx6PmwDhs1kXkuOyubmJSCRi488Tk30+n5We4jqg4tTtds0vqtY+1wkVKNfi5/d8BhPRGZhx7tw5HDhwAKOjoyiVSlhZWbF1TcEVDAZx8OBBlMtlEyjxeByxWMyUio2NDYNh19bWMDg4aJCsCh4SK5cwmKefb0qtLdf/5Qah6L5VS5Tf6z7WaGB9B/ev5+O6N/2NDpIsFosAdvJyABik8/jjj9s1x48fx759+/DUU08BAJ566imcOXPGSrsAwHve8x6USiVcuHCh73sajYbll2ieyQ8CkWG4MIdCMMAuNMiE1n6OX/6vlQT0M41+4iajlsp3qMZKmMPdnAySYLIu/UmEwAYHB9HpdDA/P29aOUsYVSoVax/fV61WEQ6Hsb6+jkuXLmFhYQGFQsGYdCAQwPj4uIVTp9Nps7zIgMkY6OPa2tqyCEcKYx6jwmrkPFgxl8shn89bwAUDNQhb0e9VLpfNL0dfh1ZqYJg3sLNnWFKKY0thqLCm+hB1Lgi7UVAAQLlcthOHh4aGMDAwgJWVFSwtLWFhYcEqTLDdlUrFqtDz3C8qKAyiKJfLlhpA/5gLJVOxcYWWCjISy3yxf41GwyyvTqeD/fv3IxgM2vyy7xybkZERy88CYOef8XyzcrlsPq/19XUr2cUxIylKoZ+r8FDlTdc71zmvp3LowucuHK2wutYmVJ8a964nuF6d/trBGZ1OB//8n/9zvPnNb8bp06cB7Bz9zdIySiMjI1haWrJrVGjxe37Xjz7zmc/gF37hF/66Td3TxMKqbv4WAIPR6Dgvl8s9kIdGADJEnYJQMX5uGG4uhQ65gQifcENrQV9ClgrB6LMee+wxxONxbG5umoBcWlrC1tYW0uk0isWiVfZmGSFaTKurq8hkMrhy5Qq+/e1vY3Z2Fs1mE5FIBNls1uBIFbwDAwMWjs4yTdT2KZTr9TqKxSK2t7eRzWYxMjJiofm0RsrlMmKxGMbHxzE2NoZMJmOVNZhjxHeQea2srCCdTmNiYgKrq6smdOnToyVGbZsVNhSa5bEpmipABh0KhezARQ2AiUajKBaLGBsbM+ZarVbxxBNPGFR35swZjI+PW54ZS3AxaVqVHK4bzTMiPJlOpy3QhXCi+khpUZEPKJSm0Y2s7L+1tYUvfelLmJqawr59+6yqxuXLl3HixAlkMhlsbm6iWq1ienoaBw4cwNLSkp2SzRJRd+7cwZEjR/D0008jk8mYH4ynMit0q8KB464Clt9pcAZz5xT50KApFVRM/Ob9DLQBdlMImCZBgUjY3k1a9uhu+mtbXJ/4xCdw/vx5/PZv//bfZnv60qc//WkUi0X7mZub+//8na8X0rJIirurNk84jAyQgRtKGoihWmO/iDA3wELhQW5MhkarkKJw5TMpXPbv329Wjkb20SpiTT1g93wpJrnW63UMDQ1haWnJjmdnO7PZLIaHh60QLQUurU4GM6h1ycg++qw0Ko8MhtXKecwIw9gDgQCy2SwSiUTP9VtbW3aqM7CDRAQCATvORCE3jjVz0VRx0CAXhehY1oprQIUYP6NSkk6nTcFoNpuIxWIWAZlOp81/RgGqydn0tQGw9vD4Gb6TbeWRKwB61gPXBNcFBbFa5Czllc/nzacYCARQLBZRKpUMEi0UClaLkooSowc5/wy573a7BklzXCk4GHGq5FaBVwiQwskVHIpQcKwIWfJ/CmmGtKuA41ipj1hTTAj56hh61J/+WhbXJz/5SXzxi1/EE088gcnJSft8dHTUwmzV6lpeXsbo6Khd88wzz/Q8j1GHvMYlbp4fRGIoOjenanBMbuU1ZGSuIKE1oudSKcSo0YrUlglnaMFcbi76IVUzZwCBz+dDIpEwRs7q4zzuPZVKoV6vo1arIRwOm9Ci45o5VbFYDAsLC8jn80gkEnjhhReMaSeTSQtl1xQBFcDUgOkjInOmYKQV4/P5TFCyUgUAO46E0F27vVPEdmJiAoODg7h+/bqNiRZwLRaLKBQKqNVqdooz6xKylBX9KbVazfx+TAamgGQbOC+sNEI/oN+/U+ZpdXUVwI71cv36dRNi7C9rDXIcCoWCHRuifjbCm2wDfzP/jZYehSgFMwMySJo+weg/MuharYZYLIahoSELU2fZr1wuh1KpZAV1x8fHMT8/jxdffNGiKBuNBubn5zE1NYXHH38c169fx8mTJ/HMM89YkEo6nbaxWV5exvr6uikbrFlJa4d/U0hrrUQqYFzTGmShZdCY36VzR3SClhcha/V1ArC9RCQA2D0fj0qiJ7z603dlcXW7XXzyk5/EH/zBH+DP/uzPcODAgZ7vH3zwQYRCIXz961+3z65cuYLZ2Vk74O/RRx/FK6+8YkmmAPDVr34VqVQKJ0+e/Jv05e8kUdC45ZT6hc5qMIaGuWsxUTd4w2X8Gt2k0VZuYAg1VjI13dxqyVG48KgQHrnB+9gHZQas1J3P5y0Emud4dTodi9CjtUDhQehU88iAXYvE9ctxfHWMgN2K7PT5uOH2DGgYGBjogXA5Bjzag/AbiblRDNWnTw3YrWahz1NnfqfTsfJShBe73S6KxaJVDOl0Orh69Srm5+cNxkulUlabkDlxhP80YpBt57ypFaXRrBTutHw5lm7JMP5Wa5DQZCaTsTkmWsDSWFxDFLQ8aZnzTnh3bGwM165ds7HlMSmhUAiJRMKev7m5aUqIKjbcQ2rJqS9X14+uE/Udc51QMVF/nqsQqg+a3yksqxapriWP+tN3Jbg+8YlP4P/8n/+Dz3/+80gmk4Yz0+GcTqfxsY99DJ/61KfwjW98A88//zw++tGP4tFHH8Ub3/hGAMC73/1unDx5Ej/xEz+B73znO/jTP/1T/OzP/iw+8YlP/MBaVa9GGoHkRjTxezJ9ChJd8Lp5+gk8F6NXBzQ3tYYE80fDfzXBWNvDsOlarWaCizk8AMzqYMg0BQh9Zg888AAGBwcNemP74vE4BgYGegQwz+tyc4cA9FhjGm3JMeDBjLSseB3HnEnA9MF1Oh2DuCgQ/H6/HddCvyTfQSGvApPQG6HL7e1tJBIJDA4OmoWg881cLuZ3tdttY8wcn+npaRPmAwMDyGazFqzC8HYN9gB6k2wpmKkEcP4UetaEch1DZdicJ4UY+RwKEV6rz6BFTWGqZ6yVSiX4fDulv1ZWViyfbHZ21pQYQoO0urrdrkVOarqI7itFF7jGVHFw9yL7p0JO95b6hqlIUangXOr+UxiZ//Nv9/0e7dJ3BRX+r//1vwAAP/RDP9Tz+W/8xm/gn/7TfwoA+G//7b/B7/fjgx/8IBqNBt7znvfgf/7P/2nXBgIBfPGLX8RP/dRP4dFHH0U8HsdHPvIR/Lt/9+/+Zj35O0qqHQaDQcPOCVsoI+I1GkFIhqkOclpEKrz4uUaDMXmVwRCE2dxADDcRlbXxNjY2kMvlTHsfHR1FNBrF+vo6FhYWcP36dXu+arTZbBYnT55ELBazyg4sz0RtmjALfwYGBiwwg7lQTJRlpYVut4v19XWDh8hsWe6pVCohl8tZ0IBaWPy/VCoZtEUYLZfLodPp2JEaWv2egR4K8wWDQfOf0ddGWIn3qm9MNXkyQfaDAiEcDuO9732vMfmhoSGEQiEUi0UsLS31WEDATqJxoVDA+Pg4/P6dQsPtdtuOkaFlxdwyMlXCcTzdWAN01GpXXxjbzXmiD4epA9vb26b8UpgzWjOfz2NxcRGtVgvHjh3D4OCgHcPyYz/2Y/iDP/gD/PAP/zAA4OLFi/D5fBgdHbWE9cXFRZw6dcoEjRavpQDVqFOuDVfA04fMfcJ50Oe5ygD3iJaDUoGkypEKPD7D83Pdm74rwfVX0QCi0Sg++9nP4rOf/ew9r5mensaXvvSl7+bVP7CkEKCWEaKmSG0PgGnNKqBoKVGoKH6uMCQj5KgpUgt1oQ5g1+KjYORn6mNj2ycmJhCLxSxHiMKjWCwaBEX/nNZO3N7exo0bN1AoFIzpE7ZjO2KxmAkxattkULSAut2uRRYyEIR9Ua2ZY8F8Id7LcQB2AyuazSbW1taQSqXMAqLVp9cxEIW/+T3HTn1bGsXHSDMAFjVK6EuFLecOgJ06zEAHQncM+adA5TPL5TK63S4OHjxobWi1WgZDunAqx49jx/HTKFYNh1fLW9eYrjkKR123VMAYhh+PxxEOh+2gz3w+b/09fvw4jh07hq2tLUxPT2N6etpOIGCVE457LBazNakCSNcq361KmVpguvY1yEm/Y9/px6QSqCgE16e7D/ls7iOP7k1ercLXOZEBATvMipoYNTzVEnl+km48JW405uqQqBHq0RqEZbjR+kUqKjavFgE11pGRERw6dMisHkI6m5ubPUyOPh8y/FKpZGdD5fN5K7IK7AaB6PEULLyqeTAAjAmrfyYej1u+Ey0ftT4paFhhHtjN7aFgbbVaWFxcxNLSkh1zTwalkXgcM+YVsagwq6/zrK9Op4PNzU0ro0RBrlZfOBw2Rsu5AWDQ661bt5DP5w2OZSmt+fn5nuM4aLnyfYzSGxgYQLVatcrqDMYgVKrvV7+iBoPQouP3usZoxVLxYEkoBkToWmDAAstPZTIZrK6u4vr165iamjLhVa1W8cADD+Bzn/scPvjBD+LgwYP4xje+gYMHD+LFF1+050UiEUxNTeH27du2Rmmtcu2qUKG/y4XrVPCqlcn9psoHn8u/KZS4Hrk3NVGfv1VZ9Kg/eYLrdU4KMahzuZ/fS/0NqtnxHpL6WwhHUTvU9+q7VDPUtijM4ua4kKmp1ksHvRsCrpuZDE3bS0uQgRo8XVcj+yjUarWaWQ8MG1crh0ySQR6M+CLjoQWnvh6dA8Km9LOUy2VLdHUVDS1HValUzB9GweX3+3sqsGtIPMdCBSifRcFFi7PT6WBubg4jIyPodDrY2NiwwzIpdGm9sqbh9vY2CoUCstmswWsMNuBaImyoQUC6PkhcR8rAeU0gELB2ckw5V/0Ch9gvDbhIJpOoVCq4c+eOlevimWyhUAgvv/wyIpGIRe4dOXIE8/PzpqQxFUAtQW2fa13xPhdp4Dzwf7/f3wPf615T5VH9WLrHdP9qm/qNsUe75Amu1zm5G0ejAcn8GaSgMI76r9yNpz4ehTBU83Sd2O6Got9DE1T5DA2KIIREpkFGvba2ZnlPzIMCYMKGUXEMRwd2ITifbyeEnaHcwWDQSkrRIuDz2Aa36CsAKynFShgaAk2fixslRqshkUhYUIn6PGj1FgoFyxfjM6rVqgWNqKCmFUSBwXkhg1eIUq0CEudydXXVKnesrKz0JEADMF/S4OCgWYWrq6tIpVJWnX91dbWnJiHnSCPsOJeEOBV2VabNsHJ+TribfWI+H8dOoTsAFpwRCAQsvYbHlbDPPp8PBw4cwI0bN6zmIgCcOXPGAlK2t7eRSqWQyWQs+ZnrV+eYc8f2cO9owA6Je0z9eqo88l4VTPzt7mO9j/vaC854dfIE1+ucWq2WaemaCEyGoH4EbhZlAAodqr9BtXdgN6KJFoM6kPletbJ0gwK9p7vyGh5fT2hrbW3NGOfa2ppBk5ubmxbwwIACCle+g5ZTMpnsidZKJpN2TDuTWAOBgJWOAnZKITFijSWRcrkchoaGUC6XTUgy+MTn82FtbQ2BQACxWAz79u2zMSH0w2odnU7HGGyhUDCLZW5uznKvBgcH4fP5UCqVsLGxgXa7beWeaP3GYjHUajUT1pw39ekxqpEh351Op6eIbbe7Ex6/tbWFUqmEarVqVo0mqDPqMBgMWk3AN7zhDcjn86jVaigWiz2KhgpPYFeZ0og4rQAP7B51wu95IKdG5BGWVktNYd2hoSH4fD4Ui0X4fD4MDw/j6tWruHTpkvlP2+02jh8/jmKxiOeee87aFg6HcejQIdsn09PTeOCBB/DEE0/YvnKDJNSydyFB7jkG/hCuJ2RPRUPXvwbX6PNIXFM61xwXz9p6dfIE1+ucaAEolk5tFdgVVrq5FE93YUPF2F1oUJ3vwK61pT4gklZDUEGqbaADnpUcaFmRUWstunQ6bUmqLJJLv93g4CCGh4cRCoUsMo+CaWhoyKwtwn3JZBKxWKzH+iKjos+DR2DwSBWNDtP0gmaziXQ6bTlW9IFR497e3rakaL9/57j7arVqAk7Hk2NarVZ7wtBpMaumTYGlc0E4lxFzZPAMQqCiwBOflfmpBU1BRmFTq9XQaDRMkHCMCPGpUGI7gF1hxHlWPx/7rla2Wmm6BinA2X9FBvgcrpN2e6eY8Pr6OqamprC9vXO22+DgIFZWVgzaVOt/e3sbkUgEw8PDdkI2izNTQVKoG9j1PVHYumHqFEgafaj7w83NIpzNdeYqfxxf3Yce3Zs8wfU6J1oXXMjc7AoBUiOmj0A1cFpQuhFUo3PxeNcpzA2l2jOtAv2/X1AIK2+QCSrkGI/HrQJ6vV5HNptFsVhEJpPBqVOnrChsOp3G0NCQRYXxXRRuPLyR5YKCwSCSyaT51nTsfL6d0HUymVKphEajYblJKjwIyzWbTaysrNj5WYzGoxXFIASevFupVAxmJBPns3RcCoVCD9xE4ty5pyTQ2mOh23a7jUwmY0EgbAdDzHlgpz6Xz+Zv9XOyzQB6ojjJmLnuNGKRz1XfIeHNTme3/h/Xj/ozm82m+aP4HAoLjpVCcWTyrETCRGQKxfHxcaysrFihYwrxSqWCcrlsxZ2bzaYd7OlC6Pyb7+N60Ehcto3fcYyoUOhz3HlVpVJTWyj0aaGpf82j/uQJrtc5URhwwTNUnExHfTMAejabG8ZLbZqMhUyBzyQD572qFarg4f+q1VOgADAGtba2ZnlAkUjEnknmmk6nsbi4iEKhgNXVVbzlLW/Bm9/8ZiSTSczMzGBmZsZ8LIwaBGDVxZvNJmZmZqxt3W7XygOxj9R0mZfGArGsSk9rgeM2MjJi/jOOHyupMyQd2Il0Yz8vXLiA5eVl7N+/35gvLU2GZjMohYEZDPIg8wJ2g2YGBgYwPDxsFdpp1XDOWN6o2WxahJ2mLrCyRzwex8LCggkfWqJuseRO5//H3ptGyXmeZcJXrd21V1d39d6tbu2SJVuSHVvylthjxziesMT5JjBnCMPJnwkJM8A5HIY5gUDIBA5/gHPYhnOAj5MhAQITAglkxyaRLFuWJVv72q1W79VdXXt1Vdfy/Wiup6736ZJnwgzzSUk95+hIqnrrfd9nu5frvu77aZjxZRoAlTI9e6/Xa+YtFAqZ+BTnnt4foUUqU44h4ViuOSp0ZdeR4KIKoNFoIBKJmP5NTEyYOFwulzNHt+zevRv9/f34q7/6K8zNzeGxxx7DwYMHUa1W8cUvfhEbGxvo6+vD5OQkpqenHcqK407l6Xa7t5RnonJRKJ7ri7+lEUCvivtEvX2F6zWmzH8T0uWe7cS52reO4rrLG4WIBnLtOJYGdm0rT8kFCkPQ6uN3avnq5gJgFBJhJg3Ea803m4lo5+bwO74T7+PxeDA6OooHHngAe/fuNb/NZDKmwC0TdIPBoBEYzNXxeDzGwtbcredfex7VjU3m4Z/t/jMTl2DFDq00wvFgGSfCbc1m0yQ188BCej60jJlETLo/hbPmXynsxfGksKdQJuwYjUYxPj6OdDptyjmx6gQPk1xbWzPClVU26A2wX+o5EGZl//gOwWDQ4ZVSudAQUaWkxBaNZSlRgtfaBhcVtMKB9BYBGOZns9l0JHzruWaci3A4bAyPYDCI1dVV41ERvuQJyDyvrFgsIplMYnJyElevXjVKSMdKx0+9LAAGurbXOPedkqMUQtR9Yd+PilHJVJqrqTHVTnO2juK6yxstNjuniAIJcB4ECbQCyoBz41DI69/cpMpc40Yme08Vj8IrFGZqFermJM2beUD5fN4RM9A8o6effhrvec970Nvbi5MnT6JQKBh4jnlFVJyEsnw+H9537n1wN9zw5/0G2qO1X6wWjfL8dzf/3Wa85prPKOo/3fmnRlBSYLAmIoUaLf5QKITu7m4TL2M1D5fLZYT/1NSUUQis8EFPj+OhgkvZe/Ru4vE4+vv7MTo6ilAohEuXLjk8w0ajgWKxiJGREfT29uLrX/86Hn74YcRiMVOwWCHfWCyGrq4u9PT0GKHKGon0jmxmG3PDNKmb13P+CGcqccNeB4Q71dAql8sOBqZWmec1VIBUkjwrjEZTIBAw1Vd4BE6lUsH4+DgeffRRnDhxAidPnsTY2BgeeughuN1uXL58Gfl8Hg8++CCuXbuGdDqNXC5n6ijakLy+s+acaeyWLEklJhEi5R5Ssga9W5J2lODCdcO0iE57+9ZRXHd5o+VKwUrBqew/m0QBOCnLyoRSYgHvT0hDsXWbdm9TgYFWaRu+h82c4iYm/KLBeipkQk47d+5EMplErVbD9evXkcvlDGzG40FyuRxqtZqxzl88/yJ8AZ9D6KrwdLvccLvcgAvwerxwQWjIaOLfXv+3+Mv9f+lQwArraMCeylATT/mHydF6QrLGdXjsio4735mwoc22KxaLRmGxDiNrKrrdbuzbt88cAElCCb0MrheSOHiwJgWveuV8F03cVuhU45L0SDjnFL5aAcOOc/J3vC/XhypOjWEx0Vk9NhoTXPNcq0wkj8fjqFQq5jyy/v5+3Lx5E2fOnMHExAQikQiKxSKWlpZw6NAhjI6OOqBnPp/PU7Yj0DqTTGN0vFbjUza8aFPe+W+OgxqIXGdkiXZgwrdvHcV1lzcSHFQ5UCjYbD9a2TZbUAkA/F7hPb23wif6Pb0k/q0wlJI09H7MwQqHwwgGg4ZtR8XA75vNponVLC0tYWZmBkDraBEVnD6fD9/36vfB5XKZY0mAFkuLfyj4FMJSdhiFBpWqxjjYF1XGJERQkauXoPEdHQv+zRwtFhwmI5ICH8AWr49QoOY9kcgSj8eRTqdRKBRMzIrJ0G6320CHVKqk7istm++p9HN+rn+0H+r1A62yTVwzqrgUBaDS4TpWGI2fExIj1KcsQ30/KsXu7m6Uy2UUi0UMDw8D2Ky4Mjw8jNHRUVy7dg2XLl3C/fffj4GBAbjdblNCatu2bbhy5Ypj/tSg0D3DdU4WpkL0ugepeDR+p3tFvVV6eboftW9asb7T2reO4rrLmyorCn3NN1LhqnAalQ+tZ42zqHWvsCHp5Eq8oDWogguAESz0RCgUleLLPBdgk0XI//OAw5WVFRQKBSSTSSSTSdy8eRMnTpzA7du3EQ6H4fP5kMvlkM1mzf9/6K0fgifcEgSqOJvNpqPCu8vdil3UG86cGv79/1z8f/BXB/7KWPFUXPRqCWnVajUTU3G5XOY56uVRObCfJDtQEBcKBaTTaaTTaVMBvlqtYn193VTdoEICWozS1dVVlMtl8z4rKytIpVLYvn07fvRHfxTVatWc0sA5YHyNFSMAGIVmn3as+Us6rnwH28NUZWRTvAmd8j70QjhuXEtqtHCdccw5l0rRpyKh8dLf34/p6WnMzs5ix44dhgRTLpexe/dufPOb38Ta2ho+//nP40Mf+hASiYRJyL7vvvvwl3/5l446kepJkeDCuWOtS4XN+RsqUY4V+0EYlbl5Xq/XkbCuniPHul7fPLON49PxuO7cOorrHmjqMdmWvsI+ajlyk+v33Aiao6JBaNt7U0Vlw3CAs2SNxkDoxTBfiOw4jW0wj8rn8xnyw/LysjmnTXF/BvLpYalXZ3uOLrcLzdo/eY8uN+BpQVMNtCjd6j2wTqIKVsZn6BWoVWzHGGlEKItO54rlqXhfPSCSntH6+joKhQIKhQI8ns0jPSiMGbcbGBhAJBIxx9EzDqbzovfVU5KBFlTHfDCt+0hDRz1U9l+9Ed7H9gZYJUPjU2oo2Z6e3lthaxo6ejo11xWvoddCL5MGhc/nQz6fR19fH5LJpDESWHKMpwCMjo6aWCkVNj0kNQT5bCVQ6F7R9aAEDfXW7P2pXrl6V9w/nAc1yDpta+sorru8cTGroG02myYhlpaZbaWppcrfMY7BjcfNS0uScR0qF6XDUwAyxkSBBzhruNGS7OrqMkVb9QDAZrOJiYkJdHd3GzhsfHwcfr8fi4uLWFpaMjlEhAO9Xi/e+8Z7NwPkrpKxVNkoTNxuN+KxuMkTYozI5/MZdiHZbQpBvf/C+9FoNPDFB79oKrgrNEQBqjUPWcED2CQPNBoNkxOmsRJ6ERSO4XDYWPJMhGZeGj3NarWKS5cumZOL9+3bh56eHoyPj5t8Niq5q1evmtgI3zORSDjezxaqGn+jZ0blyHnk2tN55XgQwlXlFQwGzbrS/Cz+nmW7NDGXxoIaUEpW4FpjHiDQiiO6XC4EAgFTwDmRSMDv92NlZQV+vx/vete78NJLL5lTlScmJnDt2jW8/vrr6Ovrwzve8Q4cP37cGC1UXFQsStTgetD9pwqIEC375nK5HJ4cDQN7D/M3GjNU1mmn3bl1FNdd3rih+W9l9amHpB4Tr9d4GK9RQczPlGxB4WGXkgJa1icFnX5H4UPlZxNH+EcL77J238jIiGFtaVCeeVBK2+c767PVCqaSaDQaaDRbOUJutxsb7g3UG3XHPXTsnjv5HL75xDcdgp795nM0sE7hpZXT+SygVW5L348xL437UEn39PSgVCoZ6rrP58PQ0BB6enpMxRCWcVpaWkK5XDbxQ10LhFV1zIBWmSONmbJ//L3Gl9RDuJPHrWOhc8F8JoX+OKZKsqAyJVyp97TjcoooMLGdRBZCqfV6HWtra8YjvXbtGrLZLBKJBHp7e7G2tmZy7k6dOmUo+ao0VZna+0ljwbo+lA3JfaeIga4zrgNVfkoQoUfbiXPduXUU113eFHJRC5pQlcIwusGBVvxKEyw1OG43W0gxPgS0lKYqIYWTqHCUgcgNqCWcSDSYm5tDtVpFMpnErl27ADhzZWjZ08vRvqlC1mC69t32FjQGp4pamWIU2koy0GcoPEulRMVFD4vPZEyM8SRa7Oot6rz5fD5MTEwY5U+PiVUeKpWKySHb2NgwbEIqAq4V3p/zrJCVEghUwbDZMJcqDYXPuP50XlQYcw1Q+agHo8JZP9NYKZ9rC3eFaVXAsy4jvb5SqWSOMlleXkY2m0UymURfXx/y+Txu3LiByclJxONxU2GE64pzqsZSOwKHGiI2K5HXEG7nZwrH2gqJ64f9V8+v07a2juK6y5suco1RaUCXzC6Nuyi2bscYbGVHIafBY/Vq1BpvNpvmGA9CLG6321Q8YBItYbFKpYKLFy8ilUphfHwcfX19yGazOHPmDILBIJ588kk88sgjWF5eRrFYNMVnSW547xvv3XwfX4uxpWOhShZoKSq/34/urs1YktZ1pHBX4ayK992vvBt/e+RvTX6RHYfR+B3HmvdUOIjQE0kxPBuM78x7UDB5vV5TjYNCnaQLWv+MTWkZr2q1ak4XHhkZMbli9CLosdpGC+dUjRPGvTS2yQRgXqdCXo+Iofesn3Ed0hOyFSMhXa5bVcIAHOuR3huhbfZnfX0dmUwGlUoF8XjclACrVCrmuJbV1VWz9mq1GhYWFnD06FG85z3vwZe+9CVks1nH2uG+sj09hY7t/cRKJlSuGrOyWcGcb4VINcaqxlWntW8dxXWXNwoKspIUetHNQ6FpbxAVVGq98hoKMIV3gNYRKkyi1biFel76b/7O49ksljs8PIy1tTVcu3YNy8vLKBQK2L17NwCYJNpdu3YhGo3i6tWrqNVqJv7TaDTwQ2/9kIH7VHnoc/T/9r/JBqQ1r14i+6GCg54RlYOttPSZ6p3aLDxez1gf70klYxMA2D89uJNVI7QYLp+l3hJz4QCYQyo1P0lJJrZxY9Pb1StV2IxNx0NhU36mCkjnigqR3iLZq3qt7eHxvrrGdazZN7fbbcYJgHkOx5mx1HK5jGAwiEuXLgHYLOOVSCQwMTGB8+fPm+upVNWjVi9elQrHgwaF7Z0qGqDf2+iAepic/zuhIp222TqK6y5v6vnoJtDv1PJ3uVwOi1QhHf6htas5TTYcpzEzXqOwof5GhanCavF4HIuLi1heXobH48GNGzcQj8dNodRt27ZhbGwMXq/XnK3l8/kMU8yGsey4kxZltf9Wj8C8d9OZdH2nMbYNAIUMVXgpZNuO0KDKjd9T0FHhq/fEs6kAOJJ6db7pTXGOCZUxX47HldiQocZs+J76bG30nAEYerZCyAqn2vC0HR+kp0blValUDBFE46g6xmwcb4VwlW3IyixkZJI9qF4RPV0mKjMHbn5+HpFIBOPj4zh79qzD0OM7qzLhH35GQ1HZtArRs9lwM/9ND073o329HVPstFbrKK67vNlWnR1/oQAjvKZ5WRSeVDQK69neBxUeFSOVkTIV+RyF15SIAcAcA+L1ejEwMACXy4WZmRmUy2UcPnwYg4ODmJ+fR7lcxoEDB9Df349UKoXFxUVD3HjnS+9Eo9lAHa0qFwoJqnLg33a8RT1CrbGngoHjoAVhG40Gnn/teXzj8W+Y3xLSUyalKn7em56RzShjjI/zQS9IPZt6vW6OFwFg2IMax7IVjNZl5LtpuSEAhm2oEB/7z0bvUt8FaMUAuf50jjOZDAYHB41i4xqgUuHzldbNNAgtrstx4DrWiiWcL/aLcGE6nUa1WsXAwAAGBwdx/fp1U/5peHgYtdrmgZkez2Z5q3g8jo2NzROxP/rRj+Ly5cv45je/iZ07d2LXrl3weDyIRCLIZDLm2Wr0acxJY1vtWJdUsvRGNZFa9wn7RQNF2cE6T53WvnUU1z3QuIm4edoJHyVqqOdDLF0tQrukje3JqZCzhaV6D/y3Bv9pfbIY6ujoKB588EHUajU89NBDmJiYwOzsLLzezWrjLNXDahLPnXwOeXcerqYTxmy4WkdJqOejY2TDSrZnpdepYmsXNwPgEMjqnepY8DO9D70LzgOFu0KxzWbTxL/Uc2PTuKLdP30323OmslTPx+4PhSvp5iooKTzV26jVaqYOIqG5ZrNp6iCqAWNDxxrH4e8VDubfTMlg36mo7Phus7lZxozlq1gLk5CppnTwXqx5qXmEhUIB2WwWw8PD6OvrM1X4bY/PVjjaL36uyIdtEGpclntE96WOkXrA7dZup7VaR3Hd5Y2bQwW15k8p7VnjAErLBpwxGdui1LgKN5oKHIVJ+DvCPFo1gTTvbDaLxx57DPv27cP4+DgmJiZMvcGFhQWcPXsW1WoV3d3dSKVSWFpaMsd+KETIZ3o8HjSxNdnYhvIAOLxBfv/JTzhrOFL5bcqgBn7xl1wOCxkAnjn+DL567Ktm3GwBz+RejoV6uBSoVCDMFVJ6dDabNXUKCetpvpIqTc6tBvnpYWk/V1ZWDBxmewZKwuB64TvzHQhd6VErHH+ejEzPxePxGBKEDXVxXeq7u1wuB/TJJGx6G3wW/1aSBuegXC6beJ6STvr6+kyVft5bPcRwOGzOYbtw4YKp2DI1NYW+vj4cPnwYX/3qV80Yeb1eg06o96cMVzXqdG9SedFQpLLSOJeuRXrUClO3g7E7zdk6iusub2oJ295POw9LLXgKS7V4bc+EnoB6cqoQbMo9729j90px9ng2z7Xq6elBuVxGPp83DMOFhQWsrq46iqtSSLz3jfei7mpZoU00N4vjul1AA4CgJ9pnVcLqKfA6kYEOEoDCY7aAYDzFVlhU2Pxcc95UIOnYqJWu97fnlYJLCQCqvNTTVGXDfqTTadTrdcRiMcfaYbMt+XbwnsbW+Bt6Sex/uVw2x4XY+VeM3fD+fF8qSi1V5vP5TLkkNvVUGc9Sg8zj8RjFyet6enqMEcB8LjZFArxerznoU2FWJnqz1JZCdto3ey5swhPXicaY+W+FGzkeCjcqpNouNtppztZRXHd5s70HG55Q6MFOeFWrux28SGGgMKJahBQ8NmTGzzTuxPsyDpFIJBAKhbC0tIRsNou+vj5HrhQVF9+RnpBRts0GGvV/eg9slnKy+99OodrK4pd+sQmPBQ2yb7zmlz/ewMd+0cmE074qe1HJE7xOlaXODe9HqjT7TyGllUwAZw4aBT7vr8m8vI7j7HJtnjfFWojJZBLhcNjBGtS55v81Bsp51P/r+goGgwbaZQyHnol6SFRIul7sGCTHVROR1SBqJ7R1femRIIQCA4GAgTSZvM3+ax4hIVqmXfAaLebcbs/wfXSP6XrUudGxsOPIulYUbuT1HG/9vNO2to7iussbLXCXy9X2gD0KGsYE2Ox4mLKYuGGocGxas7Kl1DvRGJZai5oXBQCHDx/Gnj170Gw2cf36dROUZ2A+Ho8jkUiY+nG1Wg3/+vS/BtybmzsejxvLHnAqJd3wfGdeo+/vcrnw8V9oGIIFr1c2GwWmxnwIRQEwsKUKYvaZ408hpzELvrvStlmvke/INAMlhVAZcCwZE1P2HMkWpNfX63X09PQgHo87ILBoNGo+V0FK4ctn8jMSC2g4sHguxyMUCpnKHhsbG+jp6TGQHOdQPYt6vW6qfAAw8TCdM14PbMJ56r26XC5TkYTrmeWfFNZlxX1Ch+wXy1LV65vnvlGhxWIxrKysmKr5hKv7+vrQaDRM9RY7WVtJUeqJcew0RtmOIcg/mqSuionzrvfoKK47t47iusubwjrqXQBbLUPduDburpYs/88NaVva7axkhR/1ev7NzVupVLB3717E43HkcjmsrKygv7/f4emRWccistzMGnNhMisD90xG5e/bjU07OFS9LPZBhYItyDdqG0ATxovRskw6J3cSKrYHZcpNCcVcPVj1qPg+FF5UWmRFFgoFB6xXqVQMEy4WixlPa2VlBaVSCX6/H/F43IyDEluoJOzSXVTgdrxFPbauri6EQiGzfmzPSKFpHSfOu8ZYeU+FSXXe1KtXY0q9fo4LDyzVd6EC5v14Ntny8rIx+CqVCoLBIKLRqIEzNd3AZhDaa07JIOyzEpZstIO/syF6fqceXQcqbN86iusubxoXIZuLgkHjLFQaKpA13qCbgZaoQnZqPWrtNq0kr14cNx2/J7kCAI4cOYJyuYzXXnsNuVwO4+PjyGazyOVymJ+fR6PRwOjoKCKRCBYXF5HJZIyFy77oqb0UTqqo+E5UtvSKfvnjgM+3OTZdTe8WQa0xLbLMNj3Yf/q+thlbq9c26wECMKcdq9BUL0xjUvS+WHnD4/Egk8mYuoIam6nX6yapnJ4Hq8FXKhWTlwXA1OPz+Xzo6enByMiIg43m8/mQTCbh9XoxOzuLlZUVlMtlZDIZ430Eg0F4vV6TS8V+2H3g2mLj2mACNSvUl0olFItFAHBUzGCZK/WM8vm8eQcaJPRoa7Waw7uiImf8y/YOqeg4B0yO19gcK3l4PB5Eo1Fz30gkgng8bg7npEERCoUQCoUQj8eRyWSwsLDggLG1ODPnmfOopBs1DmmE8f05xvxM45n0onUeOu3OraO47vJmY/4KkXHx29agHYTXDahei8J+qrzUY1GvjkpAFRc9NgqU3t5euN1uTE9PY3p6GpFIBF1dXcjn82g2m0aQDgwMoNFomGC51mSjMGApI6AVtFfIUPv2S7/YhMsFoOEUfu08Bt6HjK6P/WIdG8zVatTRbDhjd2TvcUw8Ho8D9rLjUIR92A8qdXqe9PAAOOA0KmAKYUKOHItms4lQKITe3l4kk8ktRAUqwMHBQXg8HnOOF8eAZ2Jx7RB+pgJVqI/vr/E9kjcUYuVa4trQ2oSA07hQRa8KQGOdmvKgjFmtRs/x5Tsx9tZsNpHL5QwMaO8hKmvGu3jyAIv10svXgsb5fN5Bc+d7q6dp7z+NXeq6UaIP76nl2myilHpineZsHcV1lzcVvCpEKIBUqamyImzIjUAlZ0M3SlHW+AahGTsBWWMYFFAU1s3m5pElbrcbV65cwcLCAkZGRuByuQykRcUVjUZRKBSMN0KLU2NlmkyrSdE2TPfxX2jAK3E3JRsoFKiCRJUvIcLaRg21+j9BcW6PqbrA33B87MKnSmFXD5bCEtis8pBMJh2Ky+12I5fLmYoZjIupIuNnzWbTwFnxeByxWAxut9ukGTDu6Xa70dPTY0gMi4uL5iRl3lOp+wqBUpBqXpsy4Vi1Xk+eViWn/Wfci3Ol60lhbN6fRoQiDDrP6gFSUTDmyvqM9DBdLhf6+/sdngshZ5KYFD4OBALmu0AgYDzTYrGIxcVF3L592/GuQCslhfe2FbHGqux9x9/o+HNMFPnotDu3juK6y5sywxSW4ELn/9Ujs4kLai3anhoFuCoJLWZq08W5SflbFTZ79uzB888/j1dffRWvvvoqwuEwent7zZlcAJBOp01C7oULFzA7O4sfufYjcHdvtdr1uXwGSRcturYb7lqrxqAeMUJBrFCOepDsY6OxgWajpfDdLreB5IBNkgbjMwBMJQe3e5MmHovFHPEIVa70tKLRKMLhsBHu9KwIDVarVaRSKSwsLBjoFACGh4exa9cuQyqo1+smlqWemNLX/X6/OVXa5XJhbW3NeH58No0PKjWe70aSBuE3hQ/pKXNcaHCo8uPzSezgmNAj1PWqscNisbglcVo9OnpGXKP0EpWI0Wg0TMHc0dFRs34IpXLdcX1zTKjo2WhMDQ0NYXBwELOzs4jFYlhbW3MoL96b3ne5XDZ7kp6U1p/UIrw0NmhcqfFJL7/T7tw6iusub2rxq+dj02ypTIDNjU5FpLAE4Czwyc3Da9Tq06A5Gy1jhXaUTrx7926MjIzgm9/8JqLRqFFWhULBHOfudrvN59lsFj985YfhcreIA6p4+QxV1r/8cQC1rUF/u1+8DxWxelt2wLvZbG6+AzxwuTdPTqZQpbGg91KiAOM2JHNQ4JBe7fFslhPiMSXqlahQpVJjUi/zkbZt24Y9e/agp6cHFy9eRLFYNAJcPY96vW6SegmxejweJJNJ481RyUUiEVMTknFMJo+r8NS50PHUtWRD0gqD6npTkgLvR2+E19kel95fPTslcjBGBsAx1+rVctw1pqXXeb1ehEIho8zJnIxEIgiFQohEIuZd6THa5CcdI+5HhdF1n3J8FR2wYUHOrY5Hp7VaJwp4lzebeaRKyoYDuRnUm7qTF6BCQAUUBSq9AHuzUeDwvnzWwMAA9u/fj1gshlQqhUQiYYSx0tobjQbC4bCjOoH9PkD7kkaf+CXn5raD+ZoLpnCXenIaM6zVavgvH9v0KvFPetAFF+BqWflkpbGf+hwKMF7Dd9VcHI2l2H3UmCEVXCKRMNRxLZpcLpcdleLteA/jVSxtRJiOVSNcLpeBJOl1UXgrZEXDxVlhZGtpI/WG1IjSOVHjQskxeq0yPBX2to0tRQvssVPSjQp8/Y1CvYRUVRGxLJTf70dPTw8ikQjC4TD6+/uxbds2FAoFx3joemZ1et2nmvivhAzto8LVaqDq+ui09q3jcd0DTYUi0NrwALZsDN0M3Mi6YSigFFpST0ShGN5fv1fLl7/t6urCU089hSNHjmBlZcVANyMjI6YGHGGc1dVVHD58GF1dXS1CgNuzRZjbJas+8UsuNEQY2OVyeL16BHoOF/+mV0JiSKlchgv/5Em4XXDBBa9nUzm979z78Hfv+DtDbKEiU09BGWdaMYPvY8c8GFfk98r67OrqwvDwMAKBAC5cuID19XW88cYbOHv2LPx+P3bt2oXh4WEDw1FZaW4Tn0mB7PF4TLznypUr5hBKKjlVRurFcYwZG9IYDoWyrVyUMKFxQTVAKpWKYSCyqbLju9gog67Xer11ujI9XfXyGO+iYVStVo2XSniYRIxisejYP/RA77//fhNPLJVKWFtbQz6fd8B/tlJnXFXf3fbubSKHxnU19qbj0mlbW0dx3eVNIQXAeQ4X4BQYtoel39sWqhIKeL0KIgpkG+Kx4Q0KhKGhITQaDUxNTQHY3JDDw8OYn593KJpms4menh6HMNcNqh6gQnz1es3Ac/bY6D1UWKi3pZ6cxinQBNweZxUHZa1RSTGWYbPuOJ4cZ8bB6PXZBzOqRd5sNh0KmvGaaDQKv99vYji8fygUMixCPk8FqFaxoKLgfAUCAeMdMD/N7/ebWJvCceot8H4ay2IlEL6DQmY2fKjeCQ0uKm5NteDcqDJgU6XJVA17jdO40PiXMhR5vSpsJiSzf6T208Dju/b392NkZAQXLlxwoA+2Mci9YiMU3Jc2bK1xZ+07IctOu3PrKK67vNmCgRuR1hkhLxUQqoz4GX+jQkA9KIU17Ps0m63j6UnYoMVK9tWuXbtw69YtfOtb3wIAPPjgg9i9ezfm5+dNThNJGiRs5HI5NJoNB9OL70KBTa+qUmmlAmiflOKvSsq2gm1Ltlar4WO/WEftn2AiVWwc6y8c+gKwAaOMFCKlklMFzEZ2GqEnXqNeAs+k0kMiWY3D7/cjkUiYcXC7N9mDvb295l4KI/I96GG0SCetHCEASCQSWFxcNLX6qLiY16VQqipYAGbe6eGpoiAMyetDodCWedLYl+Y46Trn2mQCsO39cR55nQ2/se/pdBq5XM6QYjiOTDTmKcl9fX3o6enBxsYG4vE4bt68iVQqhVQqhWg0ipGREQDA4OAgDh48iLNnz5r3Zl/smKBCgZxLrmlCmrbCYp9VuSss32lbW0dx3eVNA82Kf2veFbCVHq8eiO1N6b35d7sNQoFDIW0zCl0uF9LpNPbs2QOfz4fZ2VkjAJkM63a7EQ6H0Wg0jAdRLBaxvLy8mXvT2EoTJmTDzb6pfLyOd76TJ8VrbKvWbvV6HfWGszSPPXZqrXMebHKCNttr0zI+theonhbHn8QOKqpSqYTV1VUjEO38Kb6DxjR1ruz+ElLk/aj0bANHBSvnXAWrjrsaO0qUUKjM9kLs8dS+6LyrsaGeFseAc05PjNcwjsV31zFoNpuGPk9SSq1WQzweRzAYNLG/qakp+P1+9Pb2Goo834NrQ9eLerfsM8dB49A2GcO+luulAxO+feuQM+7yposecMImClnZkNmdyA5AKxZjCxXdhCr41GLUADUt/7GxMdTrdUxPTwOAYWIxphCNRg0BIBAIbIm7qScItIL/aqWr19QudsJ+tCMB6D0pPOr1ulGaOo5sX3roS1tIHirY+T68F/tHL0vhP32u5s0puUa9X2Czdh8VPhWdxsNUCHJMbCXOMVGITaFLjlE7YouOhfZZE2Z1rdnKUxWXevOME1I58h4cB51rXR+ErVWZ6tqgcqUBQC9S9w7HmUgB34eswmg0aggsmUwG169fN+kbXM/0/nT/2TFfjq/OyduNo46lenIdb+vOreNx3eVNYTqyoWxlpla0WqlaVFfhBz3VV4P6tqfGTUlCggpcQkyRSAT33XcfpqenceXKFfj9fhw4cABerxfZbBbd3d0Ih8NIJBJIJpOmfp45iiLtQXWjCj/8jsRdzYUBnEmeFGykd6sAUOFHAaW/txUFT1dWwav3bDabjnOy1MOlla+elQpJ25K2vWO+h+1FU6A2Gg2k02l0dXVhaGjIwIEkg9gxqXbzyGdRqDPnjEqYMKlCrupd8XMqTuY/1Wo1A4fyfbWALK9XRV2v182caV/5GxpG/KOkC64J7SOhVRoM7DOLEWcyGaP8+TlrP1KB8OTjVCqF/fv3o6enBy+//DIuX76MmZkZZLNZ7Ny5Ex7PZkI6UQMdb/ZXmYWMkTHOqUaLeovBYNDAmFxDum46nlf71vG47vJmW2wqgFUA0QvhdWr1Ak7atE2x529sjN2mlDNeowqGOUqLi4tYX19HqVRCb28vKpWKOTWXjXkx+Xze1O7zejYTfhUGouJQT8BWqjarUn+nypsCqp1HwKNSVBCxUdAoVKqMsXq9jnK5jFKpZOaENQZV8AOtJHK+jxoTChMqe49zxsRlKgwlMgCtCulazUM9HCWIUBGpx0AFw2vUc7fjMvyO5ZXs9AL1xBkDs4VvpVIxuWrqddsQJfuoxoQSVdp5nexvo9FAPp83lfTZ2A/GGOl9dXd3I5fLIZfLIRaL4fDhwwaiTafTuHnzJtLptHlGOwKK3X/+W5P47bWra0Jji+3Wcac5W8fjugca8X57U9wpudGG/RS+UG+Nm0Xp80ArkZMMKABbLHI+r7e3F6FQCBcuXDC/C4fDKJVKyOVyxutTAT81NWXgn8/t/xyazSb+7bV/6xBatFr5zi5XY4ty43X8zFZi2h87puByuTZzt5pOJqLtsfAZqrRoXW9sbKBUKjmsaputaStEHXM1PpRhSQuchoFCezakZI+ZQo78na106TEz5kUlRLhNlQLjYIQpOW/si+ZQ8TObsKCCXtevPY9ksvJ6hVKVgs/1rO/Jsec6LZfLprIH6zFqTK1QKJgE7EgkgtXVVdy+fRtDQ0MYGBhAf38/lpaWEAgEzNE8SnjRtaTrj+/FeSZcybXZzstU5UxPreNtvX3rKK67vOkG5ubmBuRm0TwiZcC53W4DQZA0wd9RGOmJsXyG4u4sZ0NYhhufluSDDz6IgYEBrK6uoqenB729vQgGg6Z0EZlZc3NzpqxQKpVy5PPYMQsbdtM4iXqJhGL0t6ooVDDovXh9daMKNGGqevC7Lz74RbhdzpwwKhbCZRzDRqOBlZUVA/uEw2HHNXaskMJb2WUcV43bMWmbrDeOud0v9eZoHDDxm88mlV9rGRJK5btwrVExs8/VahUej8fUROQ6UPiLwpgeHEsrUZHQc1Uvmf2xiR4q4NnX9fV1R14aFSxZlFRKbrfboALFYhHZbNbkcOVyORQKBYyPj8Pr9WJ1dRVerxfBYBDj4+Mmd25tbQ0HDhzAO9/5Tnzuc5+D1+vFG2+8gVgsZgoWq2ekXpwdq7K9RTYaDmSWcv5Z2cM2vDpta+sorru8qXBS4a3QGC00jfEoLKZWLa8DtuaE8Rrel0LU9mLocQBAb2+vsSwZM2Ashu+8vr6OYrGIUCgEv99vSj7xHWxoT6ETXqOQXbuAtypbFX6NRsNRAcRBlqg30IQz3+aLD37R8Wwdaz6/Xq87qOv0njTmwlgSDQSdBxVi2hf1UjgGNFqUBMJx0t/YRA32VeE8jVECcECTvIbPpMGkCoTP5Pvx90pioULU+9IzIwmH4884pg1J8/3pfXEc3W63iTcqJKkCnnBtpVJxlLTierSJEWQgNputgsb5fB7Dw8MIhUKOPvL3ahDoeAMtY4p/20rY9jR5rXrhqvDsgs6dttk6iuseaJVKxWxUWrQqdGiFAjDQDgUdNwC9G1q+KsC5ydSLo3Dgs23h0N3djXK5jEQiYTaX5iyRfp1KpXD27FlEo1GMjo6ad6fwo/VJT5FWs61gf+HjDXz8FxoOy5uCQeMBqtApQCmY1GP7hY83MNtsOKBC9TgoZCm0FBJiLA/YZP91dXVhY2PDHINRqVTQ29troDgeyUKoyfY+9N3ZJyoNJahoAjDnmO+hCoBKotFoIB6Po9HYrFpSq9XQ29tr2HMsCksKOO9DBh/nVGNymtfFhF160nZMikoMgKPfnFcaFMwn47vbhkg7xcZ76lz7/X5UKhXjKc7OzmJ0dBQ7duww8DX3hMZrOW+12uYJ2Kurq+jv78fk5CROnz5t5lfHF4DZj3wfzonCf1zTin5wX3Ffsi+cWz6j43HduXWif3d5UwtUN6xCYza2riQN/l+FD4WibQlyE1JQKsNJm+askF0Yi8Ucp/3ScqxUKigUCvD7/QZ2tIPT+kw2WptaleKXPrE1V01hRE3wVe+DfWR/PvHJVg5co9mKD/3N4b9xeDwAtihGCt9AIGDIJhrj4nP039psr9COUalHwuv5HhwXzrd6RCrkdNxcLpcRyJobZZNs7Dwj3o8wo44r11E7eFb7qOkBSoPXda3zYsf/bIOEMTdNUNaYIuef0G+5XDYV9Wm4kdXI31BRbGxsOMpn6flkfC5JNOr5Kiqg76PrTxW+jhH/1vnnfOn4dtrW1lFcd3mzmVfcPCq8bc9L4UKFzJRibscSADgEYjuBolawWroU5B7P5qF+3NxAK3eGp/+SAUeBQOv+rx/4a0efFQayoU4VsOo58hp+rsLbjjPwOY16SzHcSRGoB8B7BAIBU4JJWXrsM+9xJwYnhboKcj5f31P7aBeTVaPEHicbEiRRQc/J0rXBvCeuLY1X0TvR9Qg48790Pvj+9MKU+q7/VzjMHjMtVKxzx/VPb80mg2gCdLVaxdraGhqNhoEYNSbHuBIVmsvlMgef5nI5VCoV8658Bn+vir7dWrX3Jz1HXRO20cKx0753WvvWgQrv8qbWnSobzWlRq5znEtEqViXGjUdBo5AO4QugVeLI5XKZskTNZtNYpxRArGC+vLxsjsoYHR018JXL5cLS0hKWlpYMPT6bzSKTySAWizmgs1AohM/f/3n4fD6879z7HMoRaAnMX/ylTSqg2w186pMtr4Q0dK2eXi6XHZBio9HAL3y8gbrCqNiMpXz12FfR5ekyQvFOHq4d12g2NwksrAWYTqfNPdg3ehxqSavXSwGmJ/7y2Qop6vVs9vio0nK73VhZWcHCwgIWFhbMOLFyBNAifHAu2Ed6H/RuisWiUWwKY+o78rf6f65FPkc9U/Zb47F2dft2cDg/1zOruCdu376NW7dumbFcWloyJZ20XBnzsSKRCEqlErLZLPr6+rBjxw54vV689tprWF5eNvFa7kPG/1TR6nvqGtH4s20k6rqyPU0l3HRa+9ZRXHd506A5sLUgrW58u8gnBZkNASmkoUJdBZHm9FCg0FKkBU4hmcvljCCjtcpnZLNZ5PN5o/i6u7sBwEAxfCf1JPhM20tSb6jRaODjvwxwjzcaDXzyE05igwqXTYXngtvnNgqd9/t/t/2/GNkYcbAr1UvQeWCzLWm3241QKGQC/PRgqtWqOUqeQo/Qk5JeeE/bi+CzbShVPUBVIhxL3mNlZQWpVAqFQsEkG9PLoGK1PXqdAz5LGXC2l6TwmHoS6tkz9qlwI9BKkleom3+Uccf7815UXFT4fNdCoWBqMdLrqlQqhhhEg4+KWNGEZDKJUCiEQqGApaUlU4yY1eDV0yQZiXFj9o/vq16nerF23Eu9L46D7u1Oa986iuseaGpVa2yAykA9J6BVl46bWynjFE5A6/gN9cRUePB7JXZwo29sbGBwcBChUAipVAobGxtIJBKIRCK4du0aXK7NStw8fZdnTUUiEVy/fh2NRsMoMRWiGxsb+B8H/wf8fj/ec+o95p3VC6QAUcve4/Hgk5/yweulovGg0SCk4zxJ18TNXG404GQ9Eia1K5dTMPE7Hu8OALlczsRI+vr64PV6jQdIBZZMJjE2NoZmc5PcUSgUALRYiXw/xstY3bydsOM8UXkoYUdr+lUqFczPzyOXy5l+UeByDHkPetsAHJVC6JmogZPP57ew5rgOFWLWChWlUsmxtvTkARX6nCO9jxow+kxNDWFfWNGDpz1XKhVzPpzX6zVjxPGlYmo0Gqaw8fT0NC5fvmxSNu6kWBWi5t+6R1UhcS2xb7qn2W8qdIVeO6196yiuu7xRIWmsRIPGXOhAiwKvsBEFHL9X6MWOu6ggUYFpwzq8RzgcNkK4q6sLoVDI3IfCb3193SjRXC7nqAJPD0QFgsbivnrsq3j3K+92jIda37q5bWjNFihKuuC/P73905vjixYTUnPm7LiR7bEqk47XkKHH2E+lUjGKLZFIGGXdDvbj5yoYFTZUD0zXgQq9ZrOVTFwqlVAoFLYw+aik1INqR/7gmOga1Pnp7u52eAx2P3TMFULkPGsaB9eoKiH2jd6ejpeiBjYE5/f7Tb/r9brJb6MitRUOoWG+Yy6XM+d0kaWoaQ00KFThcp+oYcl50f/bZBP16HWf6Xx32tbWUVz3QNMNzMVvY+uqZAA4FJpa7BQWKgwVLrGFEIWKem3cZN3d3YYazkoMhMC6u7tN3IyKa21tzUEJ5vMBOGJT+pyvPfo1PHfyuS0KqF3TMVHFrYqFwuWrx74K32WfA7qrVquIRqOOa1VgqSCm4CWJQWGd7u5uhEIhNJtNY/Gn02n09PQYy18VrcaWFGqjMrLjW4R1FY7TPlPgrq2tYW1tzdwbgEnmpcdCYa2sQR1f9dSBFhWcNShZlNaGsPW3VAoKTdrXqqLiuKoC52f8vaYZKEJAAoZCqWowcRxVCatyqtU2z+VaX193jLEyItWI5FrQOVLjSRWZfY2+O6+341sd5dW+dRTXXd6osAAndk6BoCxADXoraYMbSHOCbLiNsCObJu3a8A0D1hMTE+YepLwDm4y7aDSKer1uCu36fD7k83kDkfH5zOEhJMPvCGt1dXXh64993bz3u1959xbFq7EB21uyPbuX3/Xy5vH1aZ/D+6nXNxNPk8mkKRHEezOvi+9LiIrPTSQShvbvdrsRi8VMFXx6pIVCAdeuXcPQ0BCSySQikYhjHkmc4HP47npgYzAYdHhWqvxUEPr9fuRyOaRSKZRKJYTDYcRiMeRyOVMnMhqNmkRyPpdzrN6NGkJKU1fPslarOWod8jc87t7j8ZhUCMal7PWn0CSfwzgVx5nPUziU9+BzIpEIUqmUWYs+nw+3b9/G/v37EY1GN+fe5zOJ8rVazdScZAmvubk5BAIBM+8kpGhcS5mPXHNEMXQsFZYnxM535/izj1pirRPfevvWUVz3QFMFxU2tissW4vo7tfJUYKhSs4kRbHbsgr8n4aC3t9fhBZIazvty05PpCGCLYCYzkderolECiP1u7SBA/l+/B4ATz55oKXS4jXCnp6SWNO+hY6kekcI/Chmy34AzERXYPOZF+695bjZ0pGOvUK8qBY4RCQwKfSlsSK+YByZq4qw9z1RY+h7KeuN78hBJUuwJN1Kp6PgpZK0pA7qeFQ3Q31E5qrdG8o+SM3Td0NOnkuQ1NJi6u7sdFV54X/aJCrxSqSAej8PlcplK80ql5zvr37YC0/1ke2r6f3u9KrTY8bbu3DqK6y5vNixox0XsWI8NNdnC176Xbhxb+FE4qyCksIxGo4hGo0in00bI0IOhMGHQW6E1+/58BiEgFZRaBJbXf/2xrzv6zmcHg0E89vXHzOffePwbxtL31FoMSgpLHg64vr5u3k8Fteb7cIxs1iGbnSxKq5veEuv8uVybLDcdF/2NNgpBKkC+m/Zb14Z6mpVKxeRt0UP0ejfPnKLw1DiNskn1fvyjylnp4KzwTkWqHgPfk32zIUk2Zbfac80YkhouqtC4zuxYHL1AjiPTMMLhsFEW3d3dxqsn+Ui9oZ6eHni9XuTzeayurjqgRfXu+e4aA9T1reucnpgqJhsCtpViR3m1bx3FdZc3bkZdwLQ++ZlWRLBxc40pKKFD2Yi28KOCUUvW5XI5yv+Ew2EMDw/jxIkTiEQi5jPGsAAgm80aiIuCodl0Fu6lRxYKhRxQpcfTKhdEWAZwVqnXGEOj0cDxZ46bewJwEERojbMvsVgM4+PjyGQyBp7i+KnCYl8UZtV5YNkjPo/9ZL28er2ORCJh3qNcLmNxcdGcrqvQHMcFgCNu1Gw2TSxJyQW2sKQCWlxcxMzMDNbW1lAsFjE9PY21tTUMDg6iu7vb1PGjd8K1wONGmLekHoHCWTzjSintwWDQoayBVvkxKh/Cp1Ss6tFzzvksekv05Pk8/s1ns2o7lTtJMSwq7Xa7sba2hsXFRUSjUQwPD6Ovrw9TU1PIZDKOHESuk66uLuzatctUjb9586ah2HMONBeSe0JjaDpuSo7Sa3W/2dBnp7196yiuu7wpPVbJFbQ6bUihnTej8I8KQ/6t3pYqPoVx9Hta1+FwGOVyGYFAwMTIGo2GUThaI1AhTo3NaCUCJQiQssw+A9hirev7K5ymCaDaN+034SIKPCoDJROooFElrkw+G54Ftp5ey/mih7KxsYFcLmfiTBwLOz7He1PRRCIRQ3qx2ZPsk8u1eYRMsVg0Y0siQzweN3lF/D3XBXO8OJb8TvurwlhJK+qJat/VU+d7qjGiSp/Gme29ct41vmvDg4oqaGkxviuZhcznIlmIcUmyPdnP/v5+7Ny5Ez09PVheXjZGm0KFfBddyzYsz3flPtQ9wL1CA4TvbyMqnda+dRTXPdC0sCmFIJvGmBSKo6dFBaeWHQUcP+N1yh6kQFLBzsoUtVoN4XDYCH4KCj3NNZ1OY3Fx0QTtVUgxgZk5NWRyMe7E/uhps6Ta6x+1cGntE/ahcLMhVoXguru7EY1GHQcx8nkaswJatGmOHyvcK3lBIT0tN8XKGpo/ND8/j0ajgd27dxsvSHPu6DXOz8+bk3hXVlYwMjJiyhIBTsIOocjZ2VnjUQ0NDaGrq8tAu4xNEUJU6Ixlu+jFKBRoK0h6Jlx3hCb5PZU/78v55PehUMisX8b86ClxDes8K4NQK4zoPPNAzEAgYGBmt9uNTCaD2dlZhEIhHDhwwMCH6XQay8vLeOCBBzA5OYm+vj4EAgE888wzZi1ms1k0Gg0Eg0EUCgW4XC7zvlwLJG9Q8XIe1cDk3uTf2k8dMwCOuLJWB+m0Vusorru82UJDIUBuHiUmKMSlpYtUsfFaOxCvkKFCUqrQ+EeTSxW7bzabyGQyhopN9pnCR1SAChNROWrMQ9+L/2Zf2lnbVBj2eGg/9HfNZtNY6DZcZQtqvls761k9SvXKNFZEgcs52NjYQKFQMGNHZaF9LRQK5lyzcrmM1dVVNBoN9PT0YGxszHgv7Csp8IRoaVywP1qKinRvnUP1dDTORIWocT2NzVBYc31S6LLP9Fa05BIhQMaHqLgIoela01icwqIKEaq3yPWqBhrLOrFVq1Vz2CnHivAiAFOibHFx0bEHuPcUptd1quQT7Qv7aF8HwGFQsi80KjqKq33rKK67vNmKCYBDIGoAWBWP3WgB28F3Ffw2xKF1DSm4VaDTotzY2NhS/44UcAoP3qNUKpn+qKDX59qHBir8YrPT9Hd8hiohjYMpXKWMRXoEKiy1WKvCefwdhQoFsXpqfHcqTBoQVFyE7gCY4+I5znz+xsaGicEUi0W4XC5T+LVQKKC/v98QDDh3uVzO1CQMBAKmUgkTjrVaRK1WQ6lUQjAYdAhVNmWEcizVUNCxUi9DvX8KYK/Xi1KpZLwMzmlXV5fjKBzOE5WPesscY3qBXD/2vmAVfNvwINWdMVaPZzM5PJPJoNlsmgowfJdQKIRSqYTV1VVjFCiMRyXGfqo3r3uS19hEHDXCdO3wuw5c+Pato7ju8sYcGQoIFeCqbGjFqbekVr/GoDSeQmWmjCr1SBiQpnBSRaeKTQ/9c7vdxpMhhKZFZ7PZrInBMHGZMROFJmmxd3d3IxgMOhQHFQsbPTuFZfT0ZwoHjommEVA4U7hx3Hk92Xj0OlSZc7xIGFDPinNCijWVe6PRMGNz69YtdHV1IRKJmBgU351wHftNbxXYJL5QWdBLuH79OorFIkZGRtDf349wOGygXMJbjBexj/T4NI2B17HWIufAFtYa8wJg1gljSIFAwIxtuVx2zAOvp0dGwgfHWONmVPzqyajRQOOJMCgVFNCKi/K7bDaLgYEBhEIh1Go1rK2toVAoYGBgAPPz82ZNZrNZ3Lx5E2+88YYZQ8LyPJiS78l30vqNjKHZbEk7Xqx5XPS4Ne2l09q3juK6yxuFtHpear1RUamVR08CcNLc7eA576X3UMaWkg78fr8pNgrAQXd3uVyOxFFa1lSqCpcwNqReGI9E7+rqQnd3t6M8EAUTlYPtCdkQH5/HZ7I/fJYKagoU9ZA4Znov1tVTphqvUaWlHohCbcoCJCzHOazXN0sMMQGWgp6J2slk0uGtdHd3Ix6Po1wum+r33d3dqNVqyOfzcLvdJola4TmOkXrNaoTwb31XKgT2SWFojoN6uBxnKgs98FLjrGqAaRIv35EGlcZ4+L3Gfzj+jI3pZ7oHNF7EseT7c10zuZtV8WdnZ3H16lXMzs5u8Zbq9bqDQs81pU0NRio2jiGNEN2rLpezkHWnvX3rKK67vDEOY7Oz7lQEVuNJ/F6tRN2EtBL5HP6tsQx6IBRCvGZlZQUrKysIhUJYWlpCPp83lm6hUHDQuYPBIMLhsEM5UhlVKhVD9eYGp/KicGFMRpWuJhArFVotdaAFeWl/qYBZVJdNPQrNKysUCg6vltUWKGDpYTAWBMAQHihU6TXRG6Pyo0DL5/O4cOGCMSL4Ll6vF7FYzKFsvV4v0uk0CoUCwuEwAoGAgQPj8Tii0aiB1fRARKYzsP98X1LgOTdUcIxBcYz5PvQylDrP8WO/NG5HZcF3sNdns9lEOp2Gx+NBOBw2J1drBQ+OncYM+Sz2j+utq6vLnGjMGpqsGZnJZNBoNMwYJZNJXL58Gbt27cKZM2eQyWTg9/tx48YNLCwsmHnmu/DdOed8ZqVSMWuaxqaNImgslHE/2/uyYdBOa986iusubzZezs9smIqbQL0vtZA1zqMlonidkjdsIgYtRG44AKYaQV9fH6anp43yCYVCW96Jwo4WpvaJCpgWLKFDKgQqFq01Bzip1uohqpXNd9AYA4UdP6MiUm+D3hWv1xgjhTPQgks1v43KTpU/x0HhH2XJUVFromtXVxcqlQqy2awRvhR2pMdr34LBoIHcFC5l0/em8mg2myiXy+adND6nsLHCe0rIaOfRca7pGen5ZgqV0fNST1m9MR0rnVP7iBCuIzuOSQ+s2WwiEomYPlCR09v2+/3I5/NoNBpYW1vDpUuXDMxH2LBd/9VjUthdEQtVSnqN7mX1xHRvaMy107a27+gE5N/7vd/D/fffb6i1x44dw9///d+b79fX1/GRj3wEvb29CIfDePHFF7G0tOS4x8zMDF544QUEg0H09/fjZ3/2Z7fEKzqt1TQgzP8DzioH/L9uLt3Y3DgqcNv9zd/yD4UYBbQG1fP5PDKZDEZGRkwsRA9ypIBtZ13bxArGUJgMq380hqCeiEJyGhNRuE4Fpu1FKayqY8R/Uymo4lV2m52QrAIdcLI/FXq0oTi+QygUMhU2/H4/BgcH0dfXZ4QklSuVhc6N3+9HJBIxZYz47jZJgU1PA9bYExWzKi6NierY6Dup4qPBQbq+jjVhVyozQrCq8PmdlrKy341zoAaFbdhR+TG2yPw3eu5cK/qben2ztmY6nXbkbKky5xjoWWEKtatXxvln45wrSYfkFJsJq5912tb2HXlco6Oj+LVf+zXs2rULzWYTf/Inf4If+IEfwJkzZ3Dffffhp3/6p/GlL30Jn/vc5xCLxfDRj34U73vf+3D8+HEAm4LrhRdewODgIE6cOIGFhQV88IMfhM/nw6c+9al/kQ7e642bQjewCkKFSmyyhi0wKChVUKniU6XA74PBoBEmJDowfnL58mU88MADcLvdhlqcTCaxvr5uKNwq7MrlMnw+HxKJhNm4qnAAOFh+qkS1jI9S7xXCpKfUbDaNUNSqEAAc+T18Lj09oOUJqTeqCbAcU46LKnUqFHpgHHe1tOnN8pnqNQwNDRmvyufzoaenxygj0r+Z1E2m3urqKtbX1xEOh42y4PyqV6lrSQv/MtdKBb96sqrUqZTp/Wrsxha+igrYnqLGdqj4OBaEpj0eD4LBoMPzU3hVf89Tk3WsOT/MsYrH4/B6veYASXpe9G41JqeQMPuqhhbXm6YKMFarHpMai0Q5uI8IJ+qa0n1IBWZ7zp222b4jxfXe977X8f//+l//K37v934PJ0+exOjoKP7wD/8Qn/nMZ/D0008DAP74j/8Y+/btw8mTJ3H06FF89atfxcWLF/H1r38dAwMDOHToEH7lV34FP/dzP4df+qVfcuSldNpmU9hOGUrtjpdXIaUwnRIIbLgO2FoXzbYYValQObjdbmSzWbPha7Wa4+wn/Z3eXyFKpYXrtVQW/B0FBfunR0zwt/SwFO6jVawJo7ZFa1v07Tw7fbaSQzgXWtVdFRbfUQkH/JvjzHgOlTDLZjFGEg6HDRuRHi3fx+PZTOxm/9UrVEXC8WR/yuWyoY0ziVgJQApz6pgpfMz76lpRr4nza88/31Hjl7ZXrvfj+KkXaENoqpg1mVkZr+Fw2BQ75h/GIfUzhTG5vxSOVMiTz9T3sa9VJc89qlCyenDaPxtp6TRn+2f7ovV6HX/2Z3+GYrGIY8eO4fTp09jY2MAzzzxjrtm7dy/Gx8fxyiuvAABeeeUVHDx4EAMDA+aa5557DrlcDhcuXLjjsxhY1T/fK80WFCrU1QoFnLCixoPU0tfv+Z0qPD6TAktjBfwtNxnztEhCKJVKDqtcLU6+D4ULBb16PqrYbHiIsKHf7zfEDAozCidS9jVmxfOngK2HZyqcquNLZUxPi//XKvZ8P9tzU2WokJRWPeF9KOAV/iItns9X5eB2u03uE70Kelp8H+0bPTWOGdcN43d2LIpjZxsRVIK6nmxImWNPmI9QH9+dRpPf7zewsMLACvfZkCTnX4W95nrRGKARQKOBhjDz4BhLpLcTDAa3HG2jytdGNHR82Sddp7omOS5cBxqHpXLke9sGjr3vO21r+47JGefOncOxY8cMPPH5z38e+/fvx9mzZ+H3+xGPxx3XDwwMYHFxEcBm8U9VWvye392p/eqv/ip++Zd/+Tt91e+KphuTG5nC2g6ks+lGoQBRgaqwoh0LY6NiYQ4Q83oU8lpZWUG9XjcHJ66srBjhrDAbAIcFrMFrenCacEpYk2WB2BTKUQ8KaAkRFfRUDnxvMi9tIaz5bSrgKXTUay2XywCc55WxDh6FJd+d45DJZFCr1RxUf/ahXC4bBcMThUmLZ18IQdLD43gCMLAr/6+5V4TbGEcpFoum8K7f70d/f78R2IyJ0fjguHR3dztYmWrkqFDXHCYWM6bg19grPWP1ojjmVOJ8lhoUKuwZu6I3s7Gxgb6+PnR3d+P69eumNBPLP7GCy7Zt2zA5OYlYLGYIGfV6HcPDwwiHwwYx0HdXY8SG6HXcFRq0Y8Jc55rMrVCsxpr5vA4t/u3bd+xx7dmzB2fPnsWrr76KD3/4w/ixH/sxXLx48V/i3Uz7+Z//eWSzWfPn9u3b/6LPu5uaCmdVUGqZURDbG0yvt70mwHm+lCo3fZ5tfat1rBBdOBx21GijQKMgVk+B3gUFkAbjtR9qrar1zn7bfVIPzR4/vivQSlZWQ0BjE/RQ9Kww25sD4PisWq0inU4jl8s5WIw6P0Ar6ZcC2xZ0fCettqG5bOoF6b+pnJSBp/E5YDO1IZ/PO6jpNgyrsR31Euw1qB6lenc0VHStKMTIvhHaZN845krAYB+5Tnj+F8dclUU0GkVvb6/jQFKv12sKQLPyPZO86ZXl83lHDUfbc6UBo4aVva44zzZBimtN559jx7FVBaV7rEPOePv2HXtcfr8fO3fuBAA8+OCDOHXqFH7rt34LH/jAB1CtVpHJZBxe19LSEgYHBwEAg4ODeO211xz3I+uQ17RrylL6XmsUfOpRKM6uG0Y9EQasCSMxAE7hCDgZT/YzAZjcL25ehTXq9TpGR0fh9/uRzWaRSCRMLTi+R72+WeIpnU4jGo2a/CMqRyYtU0jzpGRVPNzE9AiU1adxGVaJYGkehfwo4Fwul0ly9vv9pioFj13RmAwtea2mYUOKVLSJRALr6+tIp9NGSbPgsMvlchwDwj96nAjnr1Qqmf6Vy2VUKhWjeCj0ydqjl8Oq7gCMZ0bFrIqkWq0im82iXq+jt7cXfX19CIVCJq9JYTGt7q/eAP8m1MjUB1vYa8yNHqMaCHxHzX/jeyoRiPG8YrFoPlfGJJ+ZTCYxOTkJv9+PU6dOGYVC0snq6irK5TLW1tZMxZJsNmvej6kGq6urBm5U4oR6uZxz7asaPbpu2dhvTQGwx02RAzsE0Glb2/+2Sm80NhMdH3zwQfh8PnzjG98w3125cgUzMzM4duwYAODYsWM4d+4clpeXzTVf+9rXEI1GsX///v/dV/mubBrv0cXOTafWKaEW9Zxsy1XjV2ot8lk2Pg+0qnfwD1skEjGVMEKhkLGIlToMtBSkengUbmqJ83kUdKoA9d98J252O76gnoZasPqHis32UChwaNXbgfp21GVWsyBExr7wD70J9fpsNiWNAypbj8djaj4yZ86uw6dBfnpq+mw+jwVjqZRisZjjlGD+ngnLqvxUcCusZXsenIc7UentWBmVg3ocOmZMjKZxof1RL9bj8SCZTJqSYPTENIbEe9IQcLlcpuoI51wrYNiIBY0JfqZQvH3/3AAAo9xJREFUuML2gDOWy3WkSl/HS095sJEM9rfT2rfvyOP6+Z//eTz//PMYHx9HPp/HZz7zGbz00kv4yle+glgshg996EP4mZ/5GSQSCUSjUfzkT/4kjh07hqNHjwIA3v3ud2P//v340R/9Ufz6r/86FhcX8bGPfQwf+chHvmc9qv9Zs+E/FaA2Jk4r1+VqZfork1AtPFVgajGqNanWJaE93oObkXUE3W63gf0Y37EhMlUUtvJi4+e6gfU9KZy0KRTFcQG2Hq1uKzJWJOE9tN9UAhxHFbjtICHS+EkG4fP02XwOn68xNI6RxlVY5UM9UD6L76ZxMM6XjhmL8mYyGUPo0Cr1XGO8B99Vq5LomrHnTokFagSoh8H1owKZRpCt6BQ5YAoDn6nCnO/s9XoRjUZNySsqn0qlYqBY/t7r9ZrjcdbX1xEKhUw8UBWMwuW2N6nKWdeMoiLqveq+slm99OD0Wh0HhcY7zdm+I8W1vLyMD37wg1hYWEAsFsP999+Pr3zlK3j22WcBAL/xG78Bt9uNF198EZVKBc899xx+93d/1/ze4/Hgi1/8Ij784Q/j2LFjCIVC+LEf+zF84hOf+D/bq++ipkpHrX0lByhLT8kHzWaLNq9Wo5bSAZw0ZVqf/LeysFQJAUAmk0EgEMD27dvRbDZRLBYxPz+PiYkJzMzMmJydUqlkcobW19exvr6OWCxmLFeXq1UeiRCNkiQAOOAr9p0n43IMeB1jZsqkbEdkUQ9ABerGxoYpAkzYylam/D3jJxSKLPJar9cRiUTQbDZN7hXvwyM1eA8KWMKDzWbTlFtiX2kY1OubBzCybBOh4GZzs0IE+0TW3tzcnIEIBwYGEI1GjTKxvRvOAw0f22DS33Gs6J0pbMjxIZGFAlpjmPyMcS6Px2PGjs9j/UY1EjQu53K5EI/HUavVMD8/j6WlJQSDQWSzWVN+TI9VSSQS6Ovrg8vlQj6fx+DgIHK5HOLxuIGtFeYEWmXClByj55QxJsr+ADA5d1yPtqHFcdCcLl1XHCNe22lb23ekuP7wD//wbb/v7u7G7/zO7+B3fud37njNtm3b8Hd/93ffyWO/pxs3nxYbpQCk1a6WOtBKYuQmtL0stUK1acAbcJab4qZW+Ih5RT09PaZQ6ezsLEZHRx3FdBnrYiHTfD6Per2OZDJphJjGz5SUYXsbCgMq7KLxPjumospK4UC1rO1mW//6e5tJxvHgAYb5fN6cDK2wlVreVHZ2BQ59DuNxCgNrDJNzzrnhOKqxo4V7qVzU+yM82Gy2ziZThaUQGGE3hXjVC6I3onCuKjM+Q+eU39mMU7677b3o+iUEm06njbfFornsn67bUChk2JUAEA6HUSqVjEFlx5cUXSDiwKYeNfeCemn2+tJ3t9cT4My77ECF//PWqVV4lzf1dmjdKrVWlZZax/Re+H/1xFirTi1BWpkqILlxeX9VaKTDu91u7N27F+fOncOOHTtw4cIFPPLIIxgdHcXt27fNva5du4Z9+/ZhcHDQUI/z+bwD56f1zU1bLpdRr9cdpZFIaiCBQSsb0POkwGNFBFUapKsrpKZJqwrN8j00NqdKll4H+8ACt8ViEblczpABqCzsnCEqZt6P3o7b7d6Si0QDht/HYjEAm8ebaPIzBSU9U+Y3xWIxhEIh8846XvT6SFrh9z6fz1SvoILkcSv2fZgWoakDnFP1wlSQax4bvS4qaaBVCV49c/03vceZmRn4fD7EYjFkMhkDr7JqPgD09fU5qrpwzafTaQDA2tqa2VcK/3KOiEJwL2i9R/aL/VFjSosu23EwoIV+MO1EjZwOVHjn1lFc90Brh6erp6DCgILAtuLtOJLGyfQe+r1t8anV6/F4TP5SIpHA6uoqEokELl26hGAwiJ6eHkdVCMI3Q0ND2L17N1ZWVnDlyhUALTKGXflBITw+kwpFPR0qYY3BkX3Hf3M8tFyUQl5AqzKI1uCjEFEyAO+hHiHJDfyecJKWdeIzCGeyBBLQCtTbMR8aHZoXxDXA/lPhU+hqPUAKcCpQ0r55f86RMt1UAFMxaw1KNZKUhKCCWb0uZYFq8WL13pSez3ElhMprabhpjJEGQCAQcBhB9FRJwuB6qFQqKBaLqNfrpiyZKmuuCzUYdO44Jpo+wrWhc9TO07cb17N6ee32XadtbR3FdZc39YDUulMhpp6Rfq+emF6jQoYCQIWRQiIKcWicA4CpPxiNRrG6umriDYzvkGUHwBw9PzY2huHhYQQCAaRSKZRKJRNnoWdJ70f7QcFqkwq0fJJtoWqelFrRvF6JGWoBK0mBAoq/s1mavEetVsPCwoL5rlgsmgReCnwtScX7ac089b5stiOtfgptQseMS4XDYUcMkcqHzE/2pVqtolgsGsVAj6jdGCpLT5WHJmir4OZv7HXJZynZQyFYu4oKP9cKMeyrjgt/S6+ciAHTBDhmHFces5LP5+H3+1Eqlcwc2QnDXB+ECXVNcp3omrLHgf3Q33Bs1IvX+2m/VGF22tbWUVx3eVNFo4vZji0ok6zRaJjzmWjxarxLSQu0hJV8oYpRlRUtYSoal8uF+fl57N6928AvrKvX29uL/v5+3Lhxw+TNXL58GdVqFbFYDNlsFktLSybuoHAfIUJubH0fW+gpk4t9pcekQXWln1MAUwhSwSljUVlrShLh7zmGSorRvCetBzgwMGCIFhRQ0WgUsVjMeGkADGzn8XgMrKfxOB4dQwXUaDQQDAYRDAbR1dWFdDptCA2M6TCnknlcTFlgHhWVLz0rwoVUsCyLRCOFlHK3222qTzAexzVFJUWChBogqhR4n2q1ilwuZ6BJQsC2MtfG8S+VSo7nF4tFlEolQ4yhkdDX14fe3l40Gg3Mzc3hvvvuM/cKBAIOMgeNF65LNfQ0AV1jwvRuNWanhqPOpc2s5V5Wj67T3r51FNdd3tQbUDqtemEq5NVi1v+r0Od91SJUy9b2uGwvh/drNjcPACwWiw6BUalUEIlEkEwmHbG0YrGIdDqNpaUlZDIZc3igeoW6qfWdbMIIBasmijL2oEqICov31LHhc/UkZR03DbLbc2K/n8fjQW9vr1F0c3Nzpjq+GgVsVIqMCzWbTaMYgJYy1Vwn9Tg4F4S0SqUSisWiUWZUQFrZg14tSQ13grQUwqOC57tR6fE9dB5sCJb30XVIxUBFSaNACSKEOwlpKlzLsaNCIRtS54zCn89n8WKFSyORiCFpcOzvlLemMT5VKnym5pnxc0U3dJw5jwrHKtJhG42d1r51FNdd3uwgre0x0VIjLGJbd0Bro7eDcDQYzM1p19PTTWdDRysrKwA2Pa1sNovR0VEUCgUMDAxgaGjI3IcCi1RxLfnEsjxqYWssyS6oq++g46RxESUsKLSmitpWQPq5xlF0/GzjQN8hFAqZeFK1WkUqlTIsR5fLZVh7qsxVcQGthFWWyAJaZaJ4DftOxVWv1025Ih4myblWhcNx4zPZN44Tn08B7XK5DDNSaen8LSE0wqbqNdvzwzGkN8Z3YhySsS/G6gA42IG6PjlvhETZX4U2GXOkgcBqIxx7j8djvDzCh5pXpcaR5tm125vcg4oK6P81RqrjTQSDz+0wCf/XW6cY1l3e1PqyYS8N6nIzahV1JnXbcKFCbfZG06RStRSVjafY/1tvvYXFxUU89dRTSKfTGBkZwcsvv4x6vY7t27c7Yl1kE66trSESiZgjPKrVKgKBgOkbYZ96vW7YbrRStZIC4S6+mwbuFUokw4/5TOw/vRDCZfYfVVz0OpV5x7FiiSfCpJVKBcFgEIlEAsFg0JxVBsBcC7QUEqEpFiv2+XxYWVnB6uqqqbenysLv95vK8Bof6+vrQyKRQKOxmbxbLBaRz+dRLBYNxBcIBBxxN43z8Tdu9+aJyqFQyLDwCA0rBMYDGrV8lRo3iUQCsVjMpEaoV0zaejabNZBjtVpFoVAwXieVjXpvGltaW1tDo9FAMplEvV7HwsICbt68aYR/rVZDKBRCIpFAMplEd3c3VldXMTc3h0ajgWw2i3379iGdTmNmZsZ4fprTqIYM5173pqZGKAytZAuNxymxSNcWFaSeHtBpd24dj+sub7aFb3tfVCQAHEJIg+k27MDvlJgBtKj16rm1g7j096urq1haWsLExAS+/OUvo1wuY2ZmxiinWCyGer2OQqFghPz09LSj3l69XjdKVskT6u1pnTo7FsD35G9s5UPLXQ+J5DOUZKAlnviHwloZZPb4kw1H4dtoNAyrzev1Ynl52fE+6k3a8UcqAXokNqRI75P344m+nGcKd5uyrvdQSEzHjHEdngEGwMCPml/FeI6uqXZrjfOrigeAo4IFYUzOOz1jJWaosOdz6K2HQiGEQiGsrq4in8+bormFQsHMczQaNeSV1dVVU0WkXq9jZGTExCPVaFPYXPeVDQfyGnuP6f5RWJr90PtoUwNVn91pztZRXHd5I8ymEKB6YFqSSGm5FELtFB3Qol/TCmSNOgppVQSEdlRQu92bJ+nevn0br732Gj760Y/iyJEj+PrXv45isYjTp0/j+eefx549e3DmzBkDC9XrdaRSKXR1daG/v99R+oeNUCFJB81m02GVA5tCkd6WlgsjLKgKjMJOhTXg9FjVAm6Xj0MBqmWIdLxUqPp8PlPFgpBbJpMxpAlCmuwrW6FQMOPk8/mwvr6O1dVVB7zI69PptKGB0/MplUoOL4pCsqury8CYVIQcQ3q8qtx1Lpg3qPR2u69UevRA+BxVBrwPx5nKnixIVYbt4EaNtdZqNePBbt++3RTIzWQyxltcWFgw6zWZTJoK8NPT02g2m8ab3bZtG+bm5rC6umrmmHE8hZubzaYxSjjvahSogrFJPhwf7QvXjSImathw/jqtfesornugqcWmQgVwFkm1C4RqTITXEmJj0/sqGUEVJJ9PCEVZjvl8HisrK+ju7sa+fftw+vRpdHd3Y2ZmBuVyGcPDw7h+/TpyuRwSiQQCgQBWVlZM4F3fTZ/N51FZ0RLn5qZC0PgAGwWFvfHtwLsqHd6LnymNWeEgDdZrzFC9GzvGFg6HTQxKPTm+q02x199SIZBtyfHimVPRaNQYEu28Uj1OhkaKrYiZqEyvTBWTxjvtGBvHxu12G8PGNnzoVbKPqpg4P5rMq0QUKlgbtl1fX0e5XEYoFDIM1Uwmg0wmg3A4bH5DQ4nJ16xqUq/Xsba2ZqC/fD6/pSYk55LrS/eUQvO6j5SIwt+qsagepBJNdLzZOkrr7VtHcd3ljUJQWVxsqmgUMlRmnsauKDx4H1USGphWEoIKa95bmW7r6+tYWVlBo9HA8PAw+vr6EIvFcOHCBczPz2NgYAA9PT2Ynp5GpVJBV1eXozI3LXZa5nwmvShWCNccL1U+VGKaRMzkW4XlbEVj59fwe5tUoMqb3op+r8F1Xg/AxEoYh1PhDsAcR6JKjAYFlSm9HxVu/J73JiTJMbTnlEoDgFGC7CvHiZ4b70clxvsq3KfrQ8sTqbFhM0M5ruyLHUPkb6l4uTaUQKLsRdLlw+EwAoEApqenkU6nzfE6QAtqBICenh5Eo1EAMJ5aNpvF+Pg4fD6f8VSpfHSNKMlClQtjjfTQFKrVuLRtSNoQLQ0KNY44trxXp21tHcV1lzduIC5u27PQhEwbP6fg0g2nQlb/TchDhaTGdDQ3h0KzVquhq6sLN27cwNzcHPr7+7Fv3z5zWN/nP/95/ORP/iTy+TxOnTqFhYUFzM/Pw+/3o1gsYs+ePaZQLgUVFZB6W7VazRS9JXmDwh1oKXeF9ygsVZAAMEVsAThgLhvGAZzHsbCpEGajMtOK6hybrq4uhMNh+P1+c8ikHhJJoUxvRWFCkm0ajU2WYU9PjyFBENqjQiTUq7EsHRde7/F4DFmDZaUCgYCpI6mKT4Ws5gVyHWocSMeEldnts604v3wm41RKXadCU8VIpiOLH/NeO3fuhNfrxaVLl7C4uIhSqWRKbnV3d6NarZoqLi6XC9lsFrOzs+jr60MgEMBDDz2EaDRqDgDlu3KcuNcUyeCaqtfrpog0FS3fWz1L/sZei4TcOQfc62wdhfX2rcMqvMubejq2QlEIkUrMTpalxcy4lw1TKERm56hwM9pQmgoXWplra2sAgPHxcZRKJWzbtg3ApmcxNDTksJ4Zs6Gw1ZgdY2dkD/K5pNLT29PzshRGspU2BQZJAITGdGxtOIfeGPtrQ13ad5s8o1ASBZzXu3mcCO/BmKUmFKv3rJ4I34MKSYvUKuFBk4c13gk4k7SphAi9Mj6m0DIVCmNUfI4aGOwL381edy5XK41BPVQlaJABq+Wu6EFyfXCeNSXA7XYjFAohEAiYivI0BMrlsjl4cmNjw1TQKJfLpmIGk+AJJRYKBUPm0DHn3Cp8y/nRPmtSMueFa0m9LF0z9lipp69klE5r3zoe113e1OrVSgfKZNKNpjAF4CzCa+PvHo/HCHHGvmilU+DTk9CSTFQkLAzKoPfk5CQOHDiAr33ta3jqqacwNDSERqOBvXv3YnJyErdu3TIbNhwOY25uDtFoFG63G+l0GvF43FROoGcHwLyDCly3220s+o2NDYdHwe8BJ/zG8bDPsmLSK+8NtNhkymBUSEyhRl5PAcTn0kMlNV7rEtZqNWQyGVMaiuOqwp5Hk3B+GBdkcq6yDHkuGmvxqUGgMTjCbFqOCmgdkMi8MMKK6m3YcCEbKdw6V8o6dLlcpvoGIVyuJSr0XC5n3qtUKjnIImpUUDknk0mUSiVcvHgRq6urCAaDiMfjmJ2dNbUIfT4fxsbGTFJ8uVzGAw88gEKhgEAggFwuh1QqhVQqhdXVVTSbTaPYVPlw3jnHfB+iApojqOOke0n3J+9tE6tshddpd24dxXWXN2W2KTZuez+6qWxvTL0ZjYUALbhQvwNabENa8GoxquCiAFpZWcH6+jr6+/sNhDIxMWHiDgMDA1haWjIJyDw3iTlcDLhrsjHQsj7JLlShYnub7A+FjXqnSi5pZ9nasQct/EtquMKKap3b82XHpTimVPT8dygUMtCX/p7Js6x4znHWWCaVCudN40ftjnThMzg+NFL4Ob0f9omKXL1w9bzYNyX62DCqrjMqYLIp23keCiuqsOe7Mg7GdymVSlhZWTHEH4XD6YHFYjGzTphorPG/9fV1Q3RpF8ezPSMdC7upsmFfdEw1Vmj324Yi7ft1mrN1oMJ7oFH42gQAhRPafQY4K8mrUKJQoEDg/W1YyIYn+ZnCVR6PB6lUCtls1lCsc7kc+vr6MD8/b4gb0WjUCETGcVhrDoCBhhReUgFAAoG+ByEkFXQKYSrEpJ4Dx0NjDxpn4R8Kb44BP+PnNmxre758D44Tn+/1bp7cGwqFjHGgyaelUgnZbBaFQgHlctnkGhHu1dgKFbqyClUh08skoYAQlw2t2qQUAIbRSS+Jnpj+VteVjq+9NukZKqRJWJJrm31QsgOfoTBpvb55oGahUHAoV1Xo4XDY5BE2m61z4FgNhPlqhBo5VtovNp2/drAu4EwwJpxqe1McD92T9nzZbMRO29o6Htdd3pTJppuHAh6AY4OzqYXXjqSgTD7+XxlUQKvAL+/H7ymgNTfr8uXLuHLlCiYmJjA2NoZ/+Id/wDPPPIO//uu/Rq1Ww8MPP4xqtYrjx4+bg/+CwSAuXryInTt3IhaLmfhLJBIx/dCAv8ezWXxWKfG28iC12/a6yE4kuYP162wlxrHgZ41GA5lMxjwjHA6jXt9M/LW9FMJaJF9QmdEb7u7udsRseD8KKU1GtqE0JSxwXSiMxtwmKiiF4Dh29Fo1Z499UIWrMKF6t2xqVKj3p4QVNXQ4VwAMCYSMRpJlSJRhHNPlahFQmIMWiUQwPj4Ov9+PSqWCb33rW1heXsbAwAC8Xi/S6bSB5yKRiIGoaWjMzMzgXe96F3w+H2ZnZzE2NoaNjQ3Mzc059hCJSFpXUeFKzpPGsBT2s/cv16uW8FIDUmOcXEfK5uy0ra3jcd1DTRORlRigQgKAQyHRIle4zw6W27CH3sv2VNTaVg8ik8lgeXkZxWIRO3fuxPr6OvL5PCKRCI4fP45EIoGJiQn09fUBgIn91Go1zM7OmnwjOz4HtCj49tEPCkWpkrJhQhUw+lul9avHRIGuZaSUrKDPsKGlduOniskum8X+UNnyPVjNnOy87u5uh8ep/VB40/ZWWLyWkJ7mT6ny0hiowpJcN1T4Wp/w7cgEulZ0TNRz02r6/I16Vvx/JBIxVViGh4cxMTGBZDKJVCqFXC7nSFInnBiNRjEyMoJwOGzYiCsrKwaiHhoaQjAYRLVaNceb6Ji2g9XZT86ZKm5C0TZxRteheu62QrIVYUdhvX3rKK57oCmMpbEVJQSo8GkX3LWhPntztIN6FAKz76nkEAoNwoX0oBYXF/Hggw9icXERoVAI27Ztw9jYmBGyrM23trZm8p14bxIJKGhpoeuZVPp/jVsoFZy/p7DV2I6yLTUOFQgEjMJQaM1mM1L4Uokr0cGm1Ou76ZjzvRWWBeDIpdL50nWgkKYq0GZzs9o5Y4gkehAKU1gyFAohEomYElxUXnw/m3zAcVXPm/28U0yM86NzQkiQwpzEDZ/PZ6qBEFqMRCLGgOCcUxFx/FlZhfOYTCYxMDCA7u5ulMtlZDIZrK6uolqt4ubNm+jv70ej0TBHz7B/alTooZdq+HF81BNTj1X3k+4zrmtFQOw9bsddO61960CFd3lTS7hd4B+AQzAALWtQLWL+zfupZWgrKg0O27lGqsTUs6tWq7h06RLOnz+Pp59+Gu9973vx2c9+Fo8//jhmZ2eRz+cxOTmJp556CsePHzdUcMYglpeX0dPTYwS7Wv+21Utaezqdhsu1mQ/DE5f5ewppwKkENOdK4yUsOcTj4BXeojWtBXnZZyZTh8NhuN1uI7wJAamQp1DWM7FYcFc9EbXSOd+EiW0jQhUwhWWhUDACua+vzwj+fD6PZrOJWCxmiuOyhp96lFqxgrEzzgnZerrevF6vUUZqUNkxIRIq7NgQWaHr6+vGcGg0GkgkEujr64Pb7TYFg3nm2M2bNzE9PY1IJIKFhQUUi0X09PRgdXUVAPDII49gYmLCjPXU1BQGBwfRaDRw/fp1/MiP/Ag2NjawuLho3psGjcap2JRRyzHn9UzvIHFHjQ1da4Ro1QvXhGul3Hfa27eO4rrLm8JdFAhsGj9Ryw9wFsNV4oZ6SvzM/r2dzKtQIWEtClmtZJ1Op7G4uAiXy4WRkREMDQ2hWCxi9+7dOHPmDB599FH09vYiHo8jlUphbW3N1JGbmpqC1+tFIpEwQoGbXq1XClNSw4FNAbu6umoEAOEvUu0J/1HQMq6jnoX2T/vJMdJxpFKlYmK8yyY38BmMMWklddLg9fk2ZGs/U6+jIKWCJtWeCprUdh7USe/Q7XYbj0bLQCmEqEYDn6frgYKY88Tq/FojkgYFhTOVog2f2QqYpBS/34/h4WETz+J45nI5LCwsYG5uzhghJPjwXh6PB/39/Sbpu9lsYmVlBePj41hbW0O9vnnqQKFQQCqVckB56vnyfmoM2WtGPUmF7vV7Nfh0fema5rX2Gui09q2juO7yxs2iXhSVUrPZNNYeF7/Gn7iRNGjOppXSNcAPwGFJawyIXgSv1XfxeDxYW1vDuXPnkM1m0dvbiyeffBLnzp3D448/jt/6rd9CNpvF93//9+Od73wnvvnNb2J+fh4ul8vkOJ09exYHDx40sQe/329KI83OzhrrlO/L3CXmL1GR8vNIJGKEMhWXkjOUNq7jDbRKMqnl3Gg0UCgUHF4DYyrFYhHBYNDAi4zfELarVqtIJBIGAiONW6u9K4xHQgE9QQo/rfzOpiQVmwLOnCYlbfT19ZkcuHw+b2A63leVEJ+nMTr+Yf+UoKKeOaHfWq1mjpQhscGOC5K4QAiRMOb6+rop01Sr1XDjxg0sLi4a1io/53qmcbBr1y4DI546dQqNRgPPP/88PvvZz2Lfvn3o7u7G1atXcfbsWUQiEaNYATgUDbD1YFU1IFT5q1es+4jjaMeL+Swek6Pf2VBipzlbJ8Z1DzRbeKo3pVamBurbkS5USQHOXBolBtjP4Xf6f42V8R03NjaQyWTMURuJRALT09PY2NjA3r17cf36deTzeezbtw+Tk5MAYJJNBwYGAACzs7PweDzGK6hWq8hkMgb+0rgQvQqfz4d4PI5kMonh4WH09/cb6r0KXCoVhXLYL46VDWNpgJ7ejZ7jBbQsZY2VKGzLZ/BEZMJhQOvgRj5Xq0RQIOr3NCC0ZiKVdSAQcJTD2tjYQC6XM/GfcDiMaDTqgGP5rrpm2H+Nvannr9+r964EBSoxjhcVmtLEVXExX47zrgc/surFysqKiaNyHHkfepCVSgXJZNLE9NxuN+bn57F7924Eg0Gsr69j586dqFarWF1dxcrKyhb2nh1f0nnWd1Zvi33g7+19pIalPXaawqBjpHu105yto7jukaYQn52Fr9aZBsx1s6iSs2NHGgxWwaRWoQp0myyg0E8ulzMKJhKJIJ/PY2lpCYcOHcLGxgbefPNNU2GDz8rn8wiHwwZCdLvdGB0dxeTkpPGamIMUiUQQj8e3EAroqTA/iO/pdrvNmU2sEK7VNWzBS0iNVG3+2461qVVO4axnaFFw0fNwu91GqTebTfT29pp6fTahQQWpHbDn/UjZVmVGJcOSWawDCGx6p319fYjH40YpMi9MITwVooCziLCt3Bk7VHhQBTvjZhr74ZgoCkCFp2WgXK7WGWw0brQ8Fp/Pd1byy+DgoJkL5ojt2LED6XQa/f392L17t4Ecl5eXHagB76FjomtM14pCwxwnjUGrMaLvrWvH9sZ0PXbanVsHKrzLmwaNgdYm54bSOAQ3H4UpG3+r8SitAGELFApXhU7U+iPspJusVtssKptKpQxrq6+vD8PDw/jzP/9z9PX1wev14u///u/x1FNP4emnn8ZnPvMZc+ptvV5HKBRCOp3GuXPn4Pf7cfjwYZRKJaTTaezatcuUKKKgVJit0WiYUkoUEBTw0WjUoawocAihMYeNkB8Fvu3VcoyZRMuxKBQKADbzjXg9WZJUuKzQsLS0hGQyifHxcfT19eHy5csol8twuVzo7e119I8eLGMyhOf4XK29yJw6Jc243W6Mj4+jp6fHHClTr9eNB5PL5Ux5KCp89Ua176VSyYwxIUhlgup6owDX2pL0TBgPtCtuqKLkvag8GIfq6+vDO97xDiwvLyObzRpiSalUQqVSQalUwvbt27F7925kMhmkUimcPHkS73vf+xAOh/EXf/EX+I//8T+ir68PX/nKV3DixAmsrKwYD0fXtb4b0EIU1ChSuLid124bUFSIjYbzXDk1huipdtrbt47HdQ80WrPcyBqL4mK3BbOSLTRRGWjh9JqHpVCRXqfKSwPPulFpiVJAzc3NmdyY4eFhDAwMYHV11dSDS6VSiEajGBsbM/EJnonkcrmwuLiIS5cuYXV11ZFozWer9a7xFMKAqsABJy1bvRelk1MJaJUNzbtRa1mhx66uLoenwWepF0FvkAYHY2R+v99xfhRjMpxr1h1kbIifa71Gzg0ZisFg0DzL7/ejv78fyWTSlI7SPtNT1GK6jFlRkalHpuuOY0ZSgm3IcNz5G2UitlufCv92d3c7FFulUsHa2hoWFxfh9XoRj8eRSCTgcrlM5REqxZ6eHsRiMayvr2N6ehrz8/MIhUK4cuUKCoUCEokE6vU6Lly4gLm5Ocf+YLPJE7rOOYbtUAc2em7tUhls2LUdbKp7tdPat47HdZc3LnLAWb1CPSUKVFpytFopvCnIVCgDToIFN44yq4CWkOJmBFrMRWU5Uij7fD6cPHkSk5OT6Ovrw9DQELq7u1EoFLCwsIDBwUF84QtfwAc+8AG8+OKL+PKXv4yzZ89idnbWMBFnZ2cxNTWFW7duGa8tk8kA2CzOSwFAa17fmZ/RG9CYgSovKoZ6vW4qNGieFY/xoADneFMxkEzAzyngCXERklSDgjG7QqGA+fl5RKNRbN++HdVqFSsrK7h8+bI5zoQeYL1eRzQaNbEeoFU4uNFoGOXHPvI38XgcAwMDGBsbM8pudXUVpVIJuVxuS9yFh1QqS5BjRliSY8x1yBObeSwKvSqSOZT2T1Ylm8aN2rE3l5eXMT8/b4g78/PzZtyo2Hp6ekwB44WFBTSbTRw8eBDbt2/HP/7jP+LatWt4/PHH8Td/8zfo7+/Hf/gP/wHZbBaXLl3CN77xDUdVfO4XG+bTpvuC/6cxwfXPMST8x7EiJKgGDvebzrfuww5keOfW8bjugaaBebUElRhhEy8UMtTcIG5GxewpPOyq3ry37bEBLatTNyLbwsICbt68ibW1NXMWUiaTwejoKI4cOYKbN29ibm4Ok5OT2LNnjxHMhULBYfGzEgcVBq1rKmyyA8ns02RSvpuSGNTSV0uYnhX7pfXyyEKkR9fV1eWgtav3pfdSL6VdXIQFX4HNpOf+/n6TC6a5YhRoa2trWF1dNfBeqVRCsVg0fSCklk6n4ff70dvbi4GBATOfhULBxB8VOiahg2MCwCh/oHXsCc8UY8yJgpmQpcbi2BTm5rjYnoTG9LhGlTnJMeRv0+k0VlZWkM/nHbE0j8eDWCyG/v5+uN1uTE1NYWxsDKFQCNFoFO9617vMadxvvvmmAwa245ecK+2HxqXs/cHP9HtVwjZKwHtyj/I3TP2wFWanbW0dxXWXN25OZWnZbDN7M+nmoSC0c7OAreWcFEbjPdptMD5D4UtuuFqthkKhgGvXrmFhYQGjo6Po6+tDKpVCOBzGxMQE/H4/Lly4YALl27Ztg8fjMUewA5tC9datW1hcXDRWvbK2bJYaBZB+xve0CQcKOdpjUCqVjPdBL5Mll/R0YIW9WDSW97TjINq07NPGxgbS6TRqtc0iwtu3b8fIyIhJgqaX0mw2TfWHtbU1c9ovvcJ6vW7GbmNjA4ODgxgeHkY8HjfxqEwmY440IasxGAw63l2hVbsiCRW22+12nGmmEDPghK/VI1HlQ+hUIWD1hBnv3Lt3L/bs2WPmgF6dVlFhXNLtdmNwcBDRaNR4MaOjo5ibm8Njjz2GvXv3otls4syZM3jrrbfgcrlMQjD7ybVvw4c2JMg+8DutXcjP9LfcQ1pD096nfGd7LjqtfetAhXd5U4/Hxt4B52F1CnuoMFY4UO/L7yg4tBaiJjJr/Mr2+vQdqTT8fj9effVVBAIB/Jf/8l/w8MMP4+TJkzh+/Dh27tyJ9773vfjSl76ERqOBhx56CABw/vx5eL1eZDIZcyYXk0VDoRBGR0eNwOS7aYCb767KRoveUuHQO6CCUSXIUkIAzDEZtVrNKC5CPhrjU2iNY6EVMZS9x/fk2LFyw8rKChKJBIaGhjAwMIBisYgTJ06gXC4jkUgYhUphSUhYmWnr6+tIJpPYtWsXDh8+jEqlgnw+j6mpKRSLRaOMNSnZ7XabpGQ7FqPKmcqHniWTenXN8Tc8usWOF3KeCN9SYRCu1VgqT3t+3/veh66uLrz66qtIpVLwer0IhULmLDJ6XfF4HCMjI9i3bx/S6TRef/11TExM4MyZMyiVSvjQhz6ETCaDb3/72/gf/+N/ODwkZUPyzDA7dsv31RgflZuWfdIqGLYxyXkDWpVGaJzwc65TrqNOu3PreFz3QFPhantNduBYvSOl8bbbUJpTY1PsleVlM600PsH3U0+N1vONGzewtrYGl8uFbdu2wev14syZMxgfH8fY2Bimp6cBbJ6aTC/D5XKZfCu32228BbskkRZF1few6xcqgUMp4+pdaj8JA3JsaQ3blGbeQ70Nu8iqzp8NF/J9gE2BR/IBvQfmoim82d3djVgshng8jnp981gPnucVCoUwOTmJ7du3w+fbPAl4dXXVkF7U29R6j1phg0V8VfmrUgacVTUUaiW8yu9IING4IdexndSssBzHpFQqYXFxEUtLS+ZU41wuh0AggEQiYXK23G43du3ahYmJCfT29uLKlStYW1sz6+bhhx9GNpvFhQsX8NprrznmRBmPaghyrHTMbChQkRAdC907tmdme/7cS/ocVeCddufW8bjuocZNRYhQPSCFLLj4m82moUgzZqAQiA2X0fJ9O29Or6eyU0GuSbgrKytYXV1FPB5Hf38/4vE4zp8/j6NHj+LIkSM4ceIEYrEYenp6MDIygsuXLxvKMBXYxsYGFhYWMDIyYixUejXt2F1AK0Zje5gkUqjyIdRHga2Cl/fVShKAU1FynFSQcbx5P9tTZSMUSGV769YtRCIRJJNJjI2NIRwOo1KpmPwvAMbzYxJ0uVxGPB5HPB7H3r170d/fj0KhgGw2i3K5vCX2pEqHSokKymY2qkHCRjp9o9Ew5Ab9HT1fpdgr05L/1tioCnyur0KhgDNnzqC7u9vAotVq1VGYuVQqwe/3Y9u2bSahe2pqCr29vVheXjbe59TUFE6dOoWLFy860icU0uS40ODjnOveUO9T76FIiA21637T/DCOpW3AtIsDdtrW1lFc90jjhlMPgX+rR0YBoMw/zbFhrgq/s4U/m20VqiBTqxtw1m3jZmTy55kzZzA4OGhiFcePH8fc3ByOHDmCL3zhC6hWq3j/+9+P7/u+74PX6zUlo0jC6O7uNqSEeDxuiAmMOdmCgXEQegkkW6gXofEvelfsM4VYoVAwMJaONcdMoTSgVb2CHoWy00jsYOknPsvr9SIcDhtFmclkTDHZAwcOmOof6XQas7OzuHnzJjY2NgzNvbu7Gw888AB2796NkZERdHd3I5PJ4NKlS47cMio6oOWVqhet3jkP+CQNn7/hH3pKelK1nWrAuBlZchw7erz0zpi/x3khI5J5XpcuXTLeYjweRzqdxtLSEoaGhhAIBBCJRLBr1y6TUpDJZNDf348jR47gpZdewrPPPouenh78xV/8Bc6ePYtCoeCotsG+kIjDvtjwJuedxggZhDpuXCd6fAz/1t/ocxSq5hriHlJDrNO2to7iugeaWuvtcrLs/1OxEJdXT4WbRgPx7ZodB9JntHs32zMDgEgkgjNnzmD//v3Ytm0bent7MTIygqtXr+K+++7D3r17cfXqVSwuLpoYxeLiIpaXl40Ao2ArFosmF4mWMCnphKPopel7qzdGuIaNAkU9AbIDKVx5f95PD1mkEKKlzt/aZBa+G6s5cHwJdXEcWXMRAHK5HMLhMCKRCAYHBxGJRBzKYGRkBIlEAtu3b0d/fz9isZgxFlha6k6ej00wAGCSrhUC5bsCztylSCTiUNocR61cwrFWr57PpqJm3h4VYVdXl6H8szzT8vKyOQBU42vxeBwHDx5Ef3+/ecf5+Xns2rULXq8Xo6OjiEQiKBaLWFxcRKlUcsSlOC+AM3ma76NHmmgMz47tagxMyR16P41N6ljynvpvft9pb986iuseaOrp8I/GcLh57FNYuZk0D0c3GK/h37ZQViVIL05hDYU69H1owVarVZw8eRI+nw//+T//Z0xMTMDn8+FP/uRP8Kd/+qf4wAc+gM9//vP47Gc/i5/4iZ/A0aNHEQqF8Ed/9EcAYLwhshQbjQYmJycd9GUNlCtMA7RysZQQoTlpqmA0lkRCCCtN6BwAm8KI8aBms2m8AmXGud3OFANVTFrUVhN8A4EAenp6TIWMXC6HUqmE8fFx7Ny5Ez/0Qz+EfD6PQqFg3qVUKhlaPVmKTHDmu1Kx0xOkAUQPwe12m+LBAAyxhMpLlSu9WRIxOG6qyJm/xcb+2rExjitJNzRQCDmyasry8rJhQhYKBSwvL6NWq2FkZASBQADVahXT09O4evUq9u3bh3/4h3/Av/k3/wbd3d24fv06pqamHHuEc8T50Vidrnv1MO19oXCfGghAK7eP46X7iutRjQOuO45ZJ4frf9465Ix7pNlxKBUmNulArWb9rR1A1nuq5cj72gpMYSFVELbXxnfiM65fv45UKgUA6O3txZ49e8ypxw888IDjKIuJiQkMDw+bUkoUJqVSyZTnIdzHs69UqWoflaShUCfgrNxtx3EAGA+AsR+OpVbL0GupAGwyi3o6/L96zxov45hTMbDfa2trqFQqCIVCSCQSiMfj5h347kww5nlUnAd77u3n2tfaHhGVsSphKuVAIGCK4pLpyHO11LOk4OY1dj1HAOYkYoVZSd/n+PA9XS4XwuEwfD6focPPzc0hGo1iYWEBS0tL6OnpMXCkPl+9GV37+n8lSKj3pEQKe3+wr7re7LVlrwHtv8avbW+407a2jsd1DzRVHAr38TuFD+3AOjFzYOvx9hS0CuvwOt5bg+baKJD1vkrb52+6u7uxtLRkDv3z+/3YsWOHOZ4imUxicnIS09PT2L17N3p6erB3715ks1mjuJj4SoYcITktfaSeDd9Bx0jfy1ZwyqhUocKmrEHm2QAtiEmZeLyHMuzUoFAGp8ZINEjP6ygUWRm9VCoZ5UBiBUkb6+vrmJubQzabdYxDu+RzZfLZ3nyz2TQFeiuViolXqWfOnC6FtvRYECWyMMZKSJWeF6FeKnzOF5UiWZMKa3O8Q6GQyQesVqtYWlpCNpvF0aNHcePGDUSjUQSDQaTTaVMlpB2pyIaTuYc09sfx0pgX50fvxzlnU7KGvVfYFxtmt/dzJ8Z159ZRXPdAU+9G/297WHqdja3rhmXCK70WwFnORmE1QiqEWbhJaalyI/N3qug0nqJ5W8PDw3jXu96FP/7jP8aTTz6J9773vfjUpz6FY8eO4fDhw3jiiScwNDSEP/3TPzUQUiAQQD6fx7Vr1zA2NoZgMGiKuAItth0FPgUmvQV+R6ufgoMClGNFT4YQWVdXFyKRiGP8yKxj3k48HnfEugA48sUoiMje43gTKmTTyh9ULh6PB8ViETdu3EBfX5/xBAcHB+FyuXDt2jWj1FZWVgBsCnb2lQQTej7sIxUE55mpAMxlYw3JaDRq2J2Eu0iAyeVypg96kCWfqX0lLFYoFBzjT2+VlTmoqG/fvo1bt24ZxU8vbmhoCIcPH8bBgwfNfa5cuYLHH38chw4dwrlz5/COd7wDjUYD8/PzuHbtmuO8K46Lrn2OteZwcZ6VVMG9p5C8KiU1BHmNxpYVflSCBw0AoOXVdaDCt28dxXUPNHsDKJNQvQTbi+BvAWyxutnUmuR1qvQYT9JzrNQjU0tZP6OgpyK7fv06Lly4gPHxccRiMVOt/MKFC9izZw927tyJc+fOYXBw0BxpMj4+jtu3bxuihtvtRiqVQiQSMYKOwks9LD6TTT1AwjG2slUITBUzBQvHmQqRXoVCSWpx2/On7wG0vDSgJawURuS1hMMKhQLW1tYwPj5uKPTlchlLS0tYW1tDtVo1fVLSgw0R8xqNTfL/9HT4b4UUbTZes9l0VH9Xurt6Dwpnulwu48HRgy4Wi8Yw4fymUimsrKw46Ogc76GhISSTSbjdm8fE5PN5DA4OYteuXUbRDA0NoVqtIpVKYXFx0QHBqRLi3zZcaBt/VHBUZjY0rfex46V8ps6FDV0r4cNeL53WvnUU1z3SuGm4YViuxrb8FGMHnNn/CklojIv3VzhDYRKXy2XYbCqc1EtTSq8dF2DFir/927/FxsYGfuInfgJdXV04evQojh8/jq9//ev48R//cfz1X/81vva1r+EDH/gA4vE4fuAHfgBnz57F66+/jkKhgN7eXlQqFVy5cgWlUslQ7OklqOVKUgqFMVlimkzM/vD4ES3do1CSkhkqlYo51FLL81AJ8DlawJXehhZRJUxGmBaA8TjUU6byX19fR6lUQk9PDwYGBvD6669jamoKS0tLjnqKhPoYG9Rkas0r42dUOuptqAdByJAHUPJdtPRYs9l0xL/oael5XywXpedt0ZMi0291dRXnz583Css2hrq7u3HfffchmUyiWq3iwoULWF9fx4//+I9jeXkZX/rSl/Dss8/iwIEDmJ6exiuvvIILFy4YI8pOGeF7aJxUjRz1tjQ2piQkVco25K5rSZUj9wVJU9pXrtGO0nr71lFc90Czg7gUStxohLC0+jQXvsY47DiZ/puWvY23A05FZluPGh/RTagbnYqv0displEoFBAOhzE0NIQdO3bg0qVLiEQiePLJJzE1NYVsNmsOPrzvvvtQKBTw5ptvGmXBpORt27YZaK9QKJi8L+0/x6udh9TOsqV1TeGrFjiVkB10V3iUwpBKSa+3xwpw5jcxBsR7qsen7+b1epHL5cyxL1S8NFgIgxHa43t0dXWZd1BqulLf6d2wbxwHZePZ5Bxep2PLxvWgMDXfgb/xeDzI5/NYXl42z9Y0DiqZRCKBnp4ec32hUMD+/fuxvr6ON954A6urqxgeHkYoFMLCwgJmZ2cdY63xI/WM1ACz4b92a4XvpExae5/wXnofNSh1/+i61H3eUV53bh3qyj3QFGJSuEOhOgBbFJTWVqPwsAPSummBlofFprCbwk36ez5DhYRamSoMb926hZmZGbjdbiSTSezcuRPhcBjpdBo7d+7EE088gRs3bhiK9/DwMI4cOYJgMGiOC3G5XCgWi+Z8L0JPZJDxfTg2ehqwCgsKeYUP6UmooqZCIQFBIcVms2mqWFDJaJVvhXQ18G8rMv2O86ExOq/Xa0ofkZmn0KQaHIT5ON+8N0kVnBv2lffie9I7pIFE5afXqwdBT4p/1NtnbpdW0ue4MWnb4/EYeFDXmlYwiUajGB8fh9/vR6lUwo0bN7Bjxw4cOHAAb731FqampjA6OopYLIZms4mrV69ieXnZ8by3i/8CLahPlazuL91/Op+ajK7jrmPMpikldk6d/r/T3r51PK57oPFkX5ahsWFBAFvgFaClhGzihlrG/E7zSfQ3tsfB3/A6/YybVy1LCj1VYJ/+9Kfx4osv4uGHHzaK6NOf/jR+8Ad/EE8//TR+5Vd+BQsLC3jXu95lCuy+8MILuHXrFgqFgvE4pqamUKlUTDIuhTrHTJUM33Fubs4cg9Hb2+sQtno0vJ7npbX9lBYPbAofJrfGYjEjtDQu0tXV5YDjCClSUOoYaqUFzhUhpVwuh/n5ebhcm8nM8XjcKNVyuYxSqeQQvDr+9HDUy1Y2oMbItGAxPWW7IoTH0yqYy3srVAvAeHjqwaui5FrJZDJYWFhAPp83a1aRhdHRURw7dgy7d+/GG2+8gXQ6jcnJSUxOTmJqagrz8/N48cUXTc3LGzdu4Ktf/ap5f3qzVOjqNepa5hwoKUO9Z4UEeR8aNu2geO5XoOVJqTGpCmpjY8NxwnWnvX3reFz3QLOJAkrU0NZOyahVzE1JwUhBY1ukCoWpIFGl9HYBZRXSuqn5/+vXr+P06dOoVCrw+XxIJpPY2NjAyy+/jKWlJTz33HPI5/PIZDKGAj4xMYEjR44gFos5austLy9jbm4OPp8P8XjcAblRSJIxV6/Xsba2ZhiB9DIAOJKB+XuFghQSIrRmx4baCUNlOur48B6q1O35Vm+Wc8TiualUCtls1iiffD7v8JxsT4r9tQWnGigUxN3d3eYYGVbiYKkthRE1100TuoFWHUbCmBwXeq6sbVir1UyhYB6+qf1tNBrYu3cvxsbG4PV6DUFl27ZtOH/+PC5cuID77rsP27ZtQ39/P1KpFM6fP29Yjlxz2mfdK5p3p/tJFZAiDeodsZ+ca16nBolCj7bXrXtKDU77XTpta+sornuk0UIGnKVmdAPyOg0y29CDCkgqJv5On9UO81cFZled0I2uipbCCWidkpzNZnH27FksLi6i2WwiFoth7969WFxcxMsvv4zdu3fjXe96Fy5duoTV1VVUq1X4/X4MDQ1hbGwM8Xjc1PhLp9OYnp5GJpNxeBWNRsNUlKcnw/p9brfbVL4AYIQpi8cqlKbxKQosTXxWxaMKX8dDFYYdH9MxtxUcm45npVJBOp3G3NycORIlm806LHtVIPQ46bXpGrITavm3wn6aAsD30BJbdhUSvi+Vvg2bKQzJsScsrAgBPU8mrMdiMeTzeSSTSWzfvh2VSgVzc3Po6urCyMgIenp64Pf78eabb+Jb3/oWurq6UK1WzRzz/TQOy/djUrmuadtLVDIP17vdZ2Vicj3o+PB+9vxzbu011Wl3bq7mPThCuVzO1K37XmiaZwK0PCSb4cfNo5/zN8TWVVgBrfIzXAZKHlDvSmNdahESzuEz7NgWmW5a+42/f+GFF/Dkk09i+/btKBQKuH37Nt544w0Eg0E8+eSTOHfuHL761a8iHo/jySefNLRpFqz9whe+gCtXrqBaraKvrw89PT2YnJxENBqFz+dDNpt1JOhubGwgHA4biJB91nhOLBZzVMEgVMgxLpVKKJVKCIVCJj7D7xg/4rjYv6eXSG+N+WMaW+E7aRyEirK/vx+RSAS1Wg1nzpxBvV53HH1CqnkgEDDCnx4RmajsZ61WM6co6zsw7sTG+aSX6na7HXlifDbXUbFYNHAuK7ZTeTebrfJOjUbD1CK8ffs2yuUyfD6fgXtrtRr279+P/fv344knnsDq6ipOnDiBZ599Ful0Gi+//DKOHDmCkZERHDhwwBB/Pv7xj5t0AB1XYGtCPdeowrsa+9S5VEVlky74LCX0UFG3i7GpQanzzf2pRs73Qstms4hGo9/RbzoxrnugqWKhxaeWswab1doFtnpPFKRs3My252RDgfxMoRa1SvmdWu7cwPZ3/M2FCxfQ19eHcDiM4eFhAJsb+M///M/R1dWFxx9/HADwta99Devr6wiHw1hfX0dPTw/GxsYwOTmJhYUFZLNZ1Go1U8NubGwM/f39RpCw76VSyeR/8R2ocHgNvQyNAyqMQyta6d86trzGJqno82xCiBIS+ButnqBECCb7MglYk3xV4aqHYZN36PmwKK/ddzWM2JR0oaQP3pseAwsJcx2qQFavrV6vY35+HqlUytReZAyUCnnv3r3o6enB+vq6YY1ubGzg+vXrqFQqGB0dRX9/P7q6unDlyhWcOnXKVIBn4jr7q+uW76PrV/vLOVEYz4ZUOb5EEdQrJr1flSfvoZChPkf3hk2Y6rStreNx3QONXoud30EhxbJI6u3YFh2FmOazsKlSodLjBtP78m9uWj5boQ5bAFBIKyypUM3Gxgbuv/9+/NRP/RSSyaSJgb388suYmJjAww8/jGq1it/8zd/E/fffj56eHjSbTezduxdutxvHjx/HuXPnkE6nUSgUkM/n4ff70dfXZyrST0xMoFbbPKxRhT1ZbvSOlEygFjffeWNjA7lcDi7XZq08QkDsl52fpIdaKgSngkpJERRszMsCWlXbvd7NI1DK5bLJfSIMxntznXCOgBaZQtdNqVQy71cqlYynzsLCVORKrKHXRkVF44nrjcxK5psxZkWvNJ/PGyFdKpWQSqVw+vRph4JgP8bGxrB//340Gg1kMhn09fUZgsu5c+cwMDCA7/u+78O+ffvQbDbxjW98A1/84hdx9epV49WyzwrZcd3Z3piOO8fTZvipclOj0Ov1GihRiUA0CGwjRPeZQv3cH5wLRSm+29s/x+PqxLjugaYJkprvocxCwjEqTNi4eSk0+RnvQ6XWLnCscAr/rc+ht6BW/tspRT5bhcilS5dw8eJF5HI5uN1uDA0N4R3veAfOnDmDt956C93d3di1axfeeusthMNhuN1u3L59G4lEAgcPHsTExIRhRQYCATSbTaysrODmzZuYmZlBPp83ZYg0RmdXr7C9WDaNa/A6VdK2cCO8p0QEkj30ORpPseNPOnd8X4W6+DvGaLTuH8klhL7oCfEPlZ+W8OI1hPG071TqjAVprUP2QQU9YVhVkOxHrVZDNpvF8vKy4/3Z176+PoyOjsLj8WBhYQGJRALRaBSlUglLS0vw+Xx49NFHsWPHDrjdm5U2Xn75ZVy/ft1heNCDVGNC50fn2Da2ON+alM41bhszOpe6Buz1z32q19kGpO2ddtqdW0dx3QPNjkvZzD4VqPyeglB/Z288VVKAMw9MIRLeQy1GPpsbvh3hQJ+jBVmpKNfX103li1OnTuHmzZvI5XLo6urC0NAQotEoXnnlFVy8eBFPP/20ia1UKhXMzs4auGjv3r1GUTDOU6/XDc16aWkJ+XzeIbTUyte+2kqfFrNa2qq0VcErBKfXKBRoM/60Grw+h56c/l+NCN6PxAulolMJsVI743KlUgnlctkoccKk9LBUeepas9eBTSLR76hE6S2l02kUi0UzTmtra1hYWEAmkzFeIhWdy+XC5OQkBgcHAQCTk5N48MEHUSqVMDU1hYWFBTzxxBPYu3cv4vE45ubmcPbsWVy8eNExF2w2BKif6f7RNaDrXNcI/98OQlcvTsdI/+b82ftU91M7qLnT2rcOVHgPNC1NoywtWpXqAekGIxSnCZXqPWggGnB6RJq3o7AgLUJbCfI7haoUcgRacRJ6kIrlN5tNjI2N4b777sMP//APIxQKYWVlBdevX8fx48fx/ve/H+FwGH/7t39ratx1d3fjPe95D5LJJP7gD/4Ab775JjY2NhAMBhEIBNDV1YWNjQ3E43FMTk6iv7/fIbA1jmXHlzQRW2E3xmOCwaCj7p5S24FWTpbCPSrU6PHFYrEtbDp6x/X6Jn2f1HIAhkZO7ycajaJerxtPShOxOcb01llvkPNLaJHKjeuJR4YojV0hPWVeqifJsVpfXzfngjG3bXV1Fel0GlNTU+bMLY6Dy7VJLBkYGMATTzyBeDyO9fV1nDp1CkNDQ7h27RqOHTuGyclJ7N27F41GA7dv38bv//7vY3p62gHLcS7Vo7LjvGo88bNGo2GOZ2EKhc6JvRd179D44rM0RYKN+4bepZ0mYhf6tT237+bWIWd8lzZi32yqDGwiAP/mv9sRLnRjcOPR2taAvsJB7Sx+oOVB6Xupp6AYvpaq4m/VGp6dnUWhUMDRo0eNVb19+3aUy2WcPHkSjz/+OJ599llTdPaP/uiPcPz4cTzxxBM4cuQIUqkUZmdnUSqVHLG5XC6HXC5nqqsTylPhwPFlvpda5YATFlIvh7EvjT/yueqVKZEBgONUYgoxLfBLpVepVBz1Btl0HHkP5rxRMbhcrZqIHo/HFLJVGM1mOGqOH2tMtlPGdnxI40msoxkOh40iu3nzJorFouPdNG66a9cu9Pf3m4LB9Npu3bqFQ4cO4cEHH0Rvby/K5TKmpqZw5swZXLt2zVDeKfRZgFiVl8J5fFdVxFSiaqTpPrLRBVVcinjYnp0dA1MDlNewcQ3oPuu0O7eOx3UPNHpVtJTV49Kgslr3dsBX4Q9lW7GpEFISBp9FIWfnw6hVrnlRtrBW74XX8/8AzPOYSPzUU08Zz6tSqeAv/uIvcO7cOTzzzDPYvn07ent7sby8jJdeegkXLlzAv/t3/w6VSgV/+Id/iFQqZQQSSwR1d3dj9+7dePDBBw2RgEQNek2E7uy4BpWdphaosNRj4dkUXqWXpAJQC/Ryjn0+n2HlUZDWajVTDX15edlByqAnRkWXz+eNIOe7EIqjslWFp/NOkgawqbz1dGfOKb0rpYfbXgu9v2KxiKtXr5rTkHl/rR7Cd5qYmMCBAwdQKBSQTCbR19eHtbU1XL16FfF4HB/84AcRCAQwNzeH//7f/zsuXbqEdDrtIPgonKdGBuBkvdL75OccDyp/Gg/qQXF9ar4av1ejUY1ERTXs7xWxIFLBuXC73SbO+L0CF3Y8ru/SxoVOC1WhCVVA7bwsXmPnsvB6tRpVuWjOV7vNZpMXuPH5f42B6DNsD8SOHTWbTczPz+OVV17Bk08+iT179iAcDuPhhx+G2+3Gq6++ivn5eVNN4Z3vfCf8fj9OnjyJd7zjHXjkkUdw6tQppNNplMtlI6zL5TLm5uawfft2czS9joUdT9K+aaxEIUQK4EKhALfbbXKq9J4ul8vBDFS4zbbU6b3xeYQ9I5GIgSnJ/CuXy0b5ci7pBYZCIYeQ5hioENZ35DWacG0XZ1Y4kF4EFTLXjHpcmUzGKFoARhnzXqq0ksmkSTR//PHH4Xa7sbKyApfLhV27diEUCpkcv3PnzmFtbc0Rz6LisQkWnCNdo7of1ENWhabrW40NWznxmTapRteLemY2UqLrXhXrPehL/F9vHcV1jzRuLIWWKKwI9yjEoZtImWO2p0XrndcqGcHlcjmgIjtmpYQApcZrUJvfUXDZwXE2hRP9fr8jGXlsbAzj4+PG65ibm8Pq6ioef/xxDA4O4rHHHsNv//Zvw+VyYf/+/XC73Th16hRmZ2cNAaTZbCKTyWBmZgaDg4MIBAJGOSu7jrEkm/lHJWTn7dTrmyf1bmxsmJgX50uFFOeHUJzmcqk3x7FhzGp4eBjxeBxra2uGuKJeNOfF5WoxKgOBgDEwVOiyT/Zvdd3wHdSzosLV5Ha7f5oWkcvlkMlkTB8rlYrDk+E62L59O5LJJIBNiv7Q0BBCoRCmp6dx4cIFPPzwwzh48CBWVlbwxhtv4Nvf/rY54Znvzv7RAND3sA04+91tT4y1F5vNzaNh1IvjuChrkY3zwXvqftGkcyInOsY2esHvOsrr7VsHKrwHGs9pArBlYyhcwg2sCZbciKrMFOZSkoTGbJRooU3JHxqnsJcRoUOFHm0rlu9FpaxeHmMcExMTeOyxx/DDP/zD8Pv9WFpawtLSEqampnDixAmEQiE88sgjePLJJ3H27Fl87Wtfw+7duxGNRg1NmnlFHMtoNIr+/n7s27fPvCPJC/F4HABM/TyNB1HhsL4ex2Z5eRkrKytwuzcrb7D8kMY2+Bzep7u7G16vF8Vi0VDTi8WiEfLVahXBYBA/+IM/iK6uLly8eBF/+Zd/iYGBAUxMTJhx0rwwKgp6WLVazUB9qnA11kiFTSq5GjUKpencK+mEHlYulzMw4blz5xz1ILmOOAdjY2MYGxuDz+czdPndu3djaGgI58+fx+3bt3HkyBF88IMfRC6Xw2/+5m/i9ddfR6lUchhaqoz5nqpwtCqMvR+opJQMocqoq6vLkG5IKuIe47PYP/XGaIhwL/GeNMi4t2wCBuePMUGO//dC60CF36XNDsq73W5T4Vwp1zaMod4P4Aw2K4bOf2uxUdsqtSEzCg2Fu3Tj2/AIhYhChdovteApFLq6unDz5k0UCgXs2bMHu3fvxuDgIHp7ezE6OoqNjQ2cPn0a3/72t3H06FEcPHgQJ0+exKVLlzA+Po6jR48iFovhW9/6lhFwzCNqNBoYHBxET0+P8bIYJ1LhSI+BsQiOkY5pX18fGo0GUqkU0uk0KpWKoXQ3m03zjEKhYJQZc6a02rp6XkNDQxgcHER/fz/K5bIZs1KphEwmg0QiYZST3gNoecLqndObtWN57JcaKnpEi8Km6oFwPrkG6FEVi0XkcjmzPvlcGi48g41nZmmR5enpady8eROHDh3CI488gnK5jCtXruDy5csol8tbSEoaV1QDjePOfvD/Shbi2lOoVtegze5To0uhcds7UhhS42KqPNXbUqSC76OKrdPat47iugeaHSNSqEk3lr0pbDhOcXdVdrq57Wfq//m3Kihg60GXGkugN2PDLTYDi/1RpeZyuRAKhZBKpfA3f/M3ePzxx/HUU08hFoshFArhscceg9vtxiuvvIKvfOUreOihh/Ce97wHr776Kq5du4bR0VEcPnwYU1NTmJubcxxbkslkMDs7i0ajYWBIVsbw+/1GmfF9NdWAApP9IjyYyWRQrVaRzWYNXZ0VJwi1MfBOAUxiQXd3NxKJBGq1GgKBAA4fPozBwUFEo1FTx4/kjZWVFcTjcYdXp3FLzq0Ws3W73cazUyuffdQSRfRams2m8XyVhadeNMkkrCTPXDE7PkohzcM/19bWEAwGMTExAbfbjStXriCfz+PQoUN49tlnMTo6iitXruDVV191wI7aRztGpBCizpdd41P7q4pHFaP2mYpe30ENQz0CxSZvsH4l54Pvy3HUMeV9tY5mp7VvHajwHmjccMy7UbxcrUX1hBSCs5WGbbny97yH/q1xKrUi1cLldXw+BYXtielS0+8UxmF/NQZDMorb7cbBgwexY8cO7Ny5E+985zvR1dWFUqmE3//938fU1BT+1b/6V9i9ezc2Njbwx3/8xwgEAnjooYewurqKGzdu4K233nLks/G8L8aSdMz5DoT1tM+aLEyvhx7TysoK1tbWzJz19vaaRF+Wc2KNPd4/Go2aqvexWMwosXw+j7W1NaysrOArX/kKpqenUSgUEI1GHcVw1QBR1iGrnqsHwnwuvgu/J4uRZBMqX43tqaeu/S6VSpibm8PU1BRSqZTx5qjoBwcHMT4+DpfLhfX1dUxOTuL+++/HzMwMLl68iEgkggMHDuCZZ54x3tdv/dZvYWZmZkv8j2tNEQIqSi1QS7iQ3pMiB0qyaQeH63dctyw7xbVIJUWSDBWOekuE+am0uIbseDEhXlWc96Bo/me1DlT4Xdq4YZXtpAQNtUR1Y3MT6UZUuI7/V3aWKia1WO1gtt1sa5jX6TuoJ8jnaaMiaBf7Yp8vXLiAmzdv4uLFi/D7/Thw4ADi8Tief/55nDp1CsePH8fKygp27dqF7//+78crr7yCK1eumNgQPS16Kvl83lQnHxwcxMDAgIlFUHhUq1VDQ2delBIuCK9RUSSTSeTzeayvr6NYLBqBFo/HEY1GEQqFMD4+bvKqCEGGQiHEYjGEw2FTnoneTCgUQn9/vykoTEVDA0DHSck1Oo/hcLjt3HH+GGdbX1939JPvR+VAwo7St+fn5zE/P28Og+R8skp8b28vvF4v8vk89u/fj3379mFmZgZvvfUWisUinnrqKUxOTiKTyeDatWt44403cOvWLUdiO5/JPtET4jq7kwFkw4nq9Sv0p+tTEQTei97qncgx7Y6WIfOScDnXMe+tnmG7upKd1r51PK57oNkxKm5OO+mR3osKVm4yVQSqCMlEq1QqBhayCSBK0uCGpJCgUFZFyg2qjD0ADuGjBAzCZRQKqgQVblQhRMGza9cuPPTQQ/jABz6Arq4unDx5EidOnMDc3Bwef/xx7NmzBzdv3sT58+eRSqUwOTmJ7u5urKys4MSJEyaYTi+2r68PoVDIMA9tT6PRaBjviZBiPB43sBy9GZYo2tjYwL59+zA5OYkDBw4gEolsUYyci1qthkQiYQ7LpEBlIvL169dx4cIF3L592+RrKRNO4SYbgqJSJZmCXhSv12NJyuUyYrGYSRugYOVYkexSLBaxuLhoqryr4dFoNBCPx7F7926EQiGsra1hYGAABw4cQFdXF5aWlvDKK69g37592LNnD/bu3Yt8Po9Pf/rTOHfunKNivBpDGmNVyFMhcDYb1lZolOuX91J4W5V7OyhdyU+6P3TtqnHIdW8XAFbEwb6vHTv7bm7/14vs/tqv/RpcLhd+6qd+yny2vr6Oj3zkI+jt7UU4HMaLL76IpaUlx+9mZmbwwgsvIBgMor+/Hz/7sz/rYDN1mrO1ixWpQNL4kCYNU8EAzpppqvzU+qSgUDYYn6UBfN3YFA60rlWRqbAhGUA9AQpCOwCum56Nn6mV22g0cP36dRPTqlQquP/++/H000/jwIED+Na3voWTJ09i7969eP755/Hggw9iamoK6+vrGBgYwOTkpKGOU8Fns1mkUilMT09jZmYGCwsLKBaLjjI+Grux40tUgvQGIpEIdu7ciYmJCYRCIUe+k13QltCb9l8ruPf395tDE/ke6m3RI9RCuBqP03Wkpxfb8SPOIwBHsWCSSRjHu379Oq5evYqlpSWHAuZ8jo2NYWhoCMFgEENDQ9i/fz9qtRrOnz+PV155Bbt378ahQ4ewfft2ZDIZc6JxLpcz72LDgzr+ul5UqaiBx/2j6/lO6EE7RadKhIrRprQrs7Yd0qAoCQ033p/vy/vp/zvtzu2fDRWeOnUK/+2//Tfcf//9js9/+qd/Gl/60pfwuc99DrFYDB/96Efxvve9D8ePHwewaYW/8MILGBwcxIkTJ7CwsIAPfvCD8Pl8+NSnPvW/15vv0qbxIw16t7uOm4xCS+ENDU4rzq6BaoVG7GtVMLGpIuGmJ+avFqTGyOhhaYBbn8f7MbZl/16VdaVSwdTUFL75zW+iXC7j0UcfxcGDB9HX12cU0P79+5FMJvHAAw/g8uXLuHnzJhKJBHbt2oV4PI433njDeCHs09raGrLZrGG9hUIheL1ecw4Wx5sxDsa3VGDG43FTtiqRSABoHbxJoaUsRRIAKpUKUqmUUaSlUgldXV0YHx/H0NCQOQWZ5AgKQi1wS+HarvyWnUvG65k7pgaPQsmEJ1OpFFZWVjAzM2OIHOxbvV5HIBAw8GCzuVklfv/+/QgGg3jppZcwPz8Pn8+HQ4cOYXx8HN3d3XjllVfw2muvIZ1Om7XFdcv3Vu9Em3r86t2z6Weq9NSostefQqGVSsUxfpx7xvH0XmogqkemRoPuU651zoPmRnbands/CyosFAo4cuQIfvd3fxef/OQncejQIfzmb/4mstkskskkPvOZz+D9738/AODy5cvYt28fXnnlFRw9ehR///d/j3/9r/815ufnMTAwAAD4/d//ffzcz/0cUqmU4/C/O7XvNaiQm0ShEVt56YZSpUQPiFAYBT9jE2qJq2BrB8UALZqwLbwV7gOciofeDKm/fr/fCDxubBWi/D8Vn/ZP4S8NnAObwfN//+//PR566CEMDw+jUqng0qVL+PM//3M0Gg2MjIzg2WefBQDMz8/jy1/+MkKhEILBIJaXl7G4uIhiseigMHs8HoRCIRPHYuUKj8eDYDCIeDyOkZERE8uhFxOJRBCJREzMio2eJ8dsfX3d9KOrqwvZbBazs7P4u7/7O3NCMQ9RfM973mOgzqWlJZRKJaytrRklRZhSC+xq/IbjqFb9+vq66ScPbPT7/QauJIS4uLiIpaUlpNNpzM/Pm3mk0uDJybFYDJOTk3C5XEgmkyaOl0qlcPXqVRw8eBCHDh3C4OAgfD4f5ufnce3aNXz2s5915EwpsUNjeRqH4mdaEFhJEDbsDbSgQJ7OrKWdaCTpXtI1zmfaKQI0qLiW9VmqlBSxUGNAFZsNS34vtP9r5IyPfOQjeOGFF/DMM8/gk5/8pPn89OnT2NjYwDPPPGM+27t3L8bHx43ieuWVV3Dw4EGjtADgueeew4c//GFcuHABhw8f3vI8BqrZCCV8rzTF2YHW5uNmUIxcN4oNX2gMgJvKps6r12GzBdvBMVRYqshsy5X34+dKKND3tdmPCmPqO5MwQqXM+1WrVXzjG99AsVjE/fffjwMHDmDHjh04dOgQrl69ilQqhZmZGezatQv79u3D0tISLl26ZGI6Xq8Xi4uLKJVKRkH7fD6EQiHjTWQyGXPcvcfjwdramqmv2NPTg2g0ilgshrGxMSP819bWUCgUUK+3itlS4GtAn8SE8+fP48qVK+YdCD2+9NJLmJmZQW9vr6PuIMdEPXKOOfvC+Jta9GoE2NAaj0ShJ3bt2jVT8Z3KT40YVqofGhpCOBxGs9lENBqFy+VCPp/HtWvXEAwG8dhjj2F0dBRerxenTp3CG2+8gRs3bpgKJ+qlawkqzrOuUSorXS+KDrBf6q3bxpXP53OcF6YIgq5bhVNtZq16p7o/bSheDTUbruS1VIq2UdZpzvYdK64/+7M/wxtvvIFTp05t+W5xcRF+v99BKwaAgYEBLC4ummtUafF7fteu/eqv/ip++Zd/+Tt91e+axsVPaELjIirU1UtRBqIdF+O/23ls/E6hmXaWoMYdtFCoWqz8t72RAWeSrEJTem8bklQhweuULOLz+XDz5k0DsY2OjprKGn19fbh8+bIpG7Rnzx48/PDD6Ovrw4kTJwwcNzk5aWAwAMjn84hEIgBakJPCY9VqFVNTU0gkEkaY833ohTEOQu9Iha8Kt+vXr+P06dO4du2ag81Hr2d5ednkdJE2Pzw8bIriUjATteBz7QRXzg2L31IIF4tF838ApiJGtVpFKpVyFE+moA8EAsZajkajiEQi8Pl8ZswuXbqEVCqFwcFBHDlyBAMDA6jX60ilUvjWt76F8+fPo1AomMLASoLR9cF1rIaRKiQbdlbyhBJ62HeNrdoGHBWYTTZRg9H2knTN67rne+t9dL9pn2x0odPu3L4jxXX79m38p//0n/C1r33NkUPyL91+/ud/Hj/zMz9j/p/L5TA2NvZ/7fn/fzctXcONSAGouDit82azaSAXW0EpOQJw5rAQcmLlct3gWnneroigXpDGn5TVCDiLkGochu9FYaTCn31Q9hf7RwXCZ1JAT01NYXp6Grdv38YjjzyC5557zpSO+od/+AecPXsWp06dwsGDB7Fnzx78yI/8CJaWlnDjxg1HAd+FhQWsrq5ienraCDQ9bZgCdmZmBlNTU3jzzTfh9/sRCATQ19eHgYEBjI+P49FHHzWQmc4hITjmP7366qsmrpZIJAysSOHIZFYASKVSWF5extTUlDkbjNcFAoEt5A8t/8Qx1CLAVHjNZhNLS0sOT5CKgR5RNBo1/2b1+cOHD5sq9vl8Hul0GpcuXcK+ffvwxBNP4MCBA6jX6/j617+OixcvYnFxETMzMw4IXOngOucqyBVdsOOtjFXZa1I9Q95LSTBc75xfl8tlIFzuB13PGveyDT4aGyTnKFlFiVM6rtxnHP+Ot/U/b9+R4jp9+jSWl5dx5MgR81m9Xsc//uM/4rd/+7fxla98BdVqFZlMxuF1LS0tmRI4g4ODeO211xz3JeuQ19itq6vLJGt+LzZl1KmFZluKdqImm20NKhav8IVamtxcGoBWJaj5J+3wfYVAGHdhs1lY7KN6j3oPNhv21GdSmVKgAMD58+eRy+UwMTGBnTt3IhqN4ujRo0gkEjh//jzefPNNpFIpPP300xgYGEAkEkE6ncbKygomJycxMjKCTCaD06dPY21tzSgDCjR6CZVKxShikk9yuRxu376Na9euIZfLYXBwELFYzHEszfr6Oi5fvozbt29jaWkJxWIRfr/f0NC1LBMAcwJ0o9FAJBIxlTDI+HO5XKbCRq1W28JaVGNGYy7NZhPFYtF4r6pYbY9Cj31h/K+3txfbt2+H2+1GLpfDhQsXUCgUcOzYMezbtw/hcBi5XA6Li4s4fvw4ZmZmDMRsx97sXCzOLdcM0EIQ+G/1zlQp83MaNlRkdlxVPSQ7xqrlqjwej1FsHFvuEXvNKvSn7wTAAYHasWL2x0YcOs3ZviNyRj6fx61btxyf/fiP/zj27t2Ln/u5n8PY2BiSySQ++9nP4sUXXwQAXLlyBXv37t1CzlhYWEB/fz8A4A/+4A/wsz/7s1heXv5fUlDfa+QM5v2owuKmUOtM4ToV6vw383goaNXqVkgmEAiYI+hVMHCD87k2zKHPtL08oEUXV4aWWteqjO0NrJ4HA+TtGGIuV6uSu47HxMQE9uzZg+///u9HLBZDo9HApUuXcPnyZVy4cAFerxfJZBKPPPII6vU6Xn/9dVSrVcMkzOfzyOVyhk7PIrIqzOhV8V0ooPQ8Lio7tcKpDLj2GXvhWVv0dpPJpFFKLKuk5Bp9J44nayLSq/L5fCZm5nK5TDUIzgHjYjZ0FQqFzPpJJpMmL40G0+uvv46lpSW4XC48+OCD2L9/PwYGBow3euLECaysrCCfz2+J7wBwzLWODdA6RoVwMJ+pSkYVB2OT6tGr0rPhR+4tNv5e17z9vrzOhu35Hhor0/gj70kjgR4Z9wiRhO8lpfUvTs5gWRZttLj4+Yc+9CH8zM/8DBKJBKLRKH7yJ38Sx44dw9GjRwEA7373u7F//3786I/+KH79138di4uL+NjHPoaPfOQj39Ne1ds1LmxNhgWc+L8KbIXhNF7VLiCs3g83jypDhf8UVmyH4ytESGXTLg7A3wNOQgktUn2+eliqNKnceI0Gz9lPpadfu3YN8/PziMfj2LNnD5LJJPbs2WPYbdPT00ilUnj11Vexbds2TExMIJ1OI51OI5PJoNHYTJjetm2bOduLRXP53HK5bIQUSymxj5oPBcB8TyYg0IKvtCnZYmlpyYyVnrrMhGjGuQqFgnmuMkSVIMBnkoBhjxnJL319fWYdUYk/+uijGBkZQbPZxNzcHG7cuIFUKoWBgQGMjIzg8ccfRyAQwNWrV3H27FncunXLUbpJ14C9jnStqqDXa7UpmmATIPR7XUdcm7qeVVlxDfNetuKyDULOs56qwO+5Nl2uFmuRc9MOAlcYsdPu3P6PJw38xm/8BtxuN1588UVUKhU899xz+N3f/V3zvcfjwRe/+EV8+MMfxrFjxxAKhfBjP/Zj+MQnPvF/+lW+a5oKabZ2HoZan+odUeiTVsyNoomQQEtAUIAqNGhbxkr44HP4meYq2QKHglc3vAoIvYbvpH214Ui9xrbY+Tn7WiwW8Y1vfAMzMzPYsWMHnnjiCfT29uLxxx/H2NgYbt68iTfffBNTU1M4dOgQYrEYurq6sLi4aIQOBXpvb69RSPybR9bzvegdEL5TZUNFT2PEPlGXqQRa8og5VqzAQA+EMCFp+kq7VuitUqmYd+Q8sV861ywx1dfXB7/fj2KxiHg8bhTT4OAg6vW6qVDi9/vx0EMPYXJyEolEAoFAAJlMBt/+9rdx48YN42UBzvgoSSTqYalislmE9vyqV837aFxM54JroB2Zwr6/bci18w5tr1n3gvaFY2vfX++j76L1Rzvtzq1T8ukeaKQ+EzLixiBmzw1sw3RUakCrCjkFlL35VGBoAVK7JiJxfz4nGAwaSEqbCigbQlTPUOMtapmq92cLIN7HPiqFn2k/bXhS2V2HDh3C7t278eijjyKRSMDlcqFQKCCVSuEf//EfMTc3B4/Hg0gkgtHRUQwMDMDtdmNxcRG3b99GoVBAoVAwUN/a2hpKpZLj6HU+i8pLLWsAjpJNCtkFg0Hj+agQ1kRhkgk4Hmp08DOOo3q1vJbP4b3pUSUSCaOIh4eHsWPHDvT09KBSqSCTyeCtt95Cd3c3jh49amJ30WgU+Xwei4uL+PKXv2xqF3K+uZb4bABmTLh+lJijkJsaZlT4ZEvaaIDOuyoejqsqBSp1xh25XlUp8j2UaKR7wlZCfD9FM9h3NQ7sPcF3sw3G74XWKbL7XdpsL4ebXyFDG2pRoambzIY/+Jt2QoPP0lgRG+9Di53xDypIbnoVpBqP4Ua1hYxCl/Z16iXaG5vPoKLUwPedhNbFixcNg45kjImJCfT398Pn8+HixYu4ffs25ubmkEql0Nvbi0cffdRUki8Wi1hdXcXs7CwAIBwOG7IGvVvGqGyYlXAUBSLQqjgCwHhG6mEwcVvnl16Yx+NxVIVX6JQMQCoAKlo+k8pexzwSiWBwcBCHDh0yB1lOTU0BAHbv3o0dO3Zgx44daDY3c77Onz9vmIJvvfWWg5WoykprZ2ryL40NJa9wLjWWp+9JRW7Hkzi/apBp7iHnQMdRm16j61GhPIUllWjCv3Wu7X3Ybv3qZ99LSuuf2zoe1z3QFAZTKARwZv4zxsHrNLjOgL/WELSTj22GF+BkItrPpDDUjapxLqBFX1ZLVJUbsLViPQVKV1eX8V5swcN78zM9aoLf2b+hR0MPlkKfXkg4HMY73/lO7N69GwcPHkQwGEStVsPy8jLS6TSWl5dx6tQp5HI5dHd3Y2BgAENDQ+jv78f6+jpu3bqFXC6HYrFoiB3NZhOZTAYbGxuGUOFyuQxzUL1AKhGt68h4pdvtNjlh9HjZP44fj01hqkqjsVlQV2OeWlaq2Wyauofd3d3o6+szxXVdrk3m3EsvvQSPx4MjR45gfHwc0WgUwWAQmUwGr732Gm7fvo3l5WWsrq6auVOPnIqB8CbXpaZwqAFmkyKINNhekBpdih4o0UcVlx0/bWcMqoGkBp7uF30uvUl9lhpJhEO1j7yOhB4iFeod2zT/7/b2z/G4OorrHmgKMbGpslGMHmjBcVQgejCdHfxXhajBc1rn9v3VylXFxf8rXdguoUOCiRYbtWEtvocKO31nWxBpIN22WBVG47WqgNsJsWAwiOHhYTz11FMYHx831TDYp+vXr2N2dhZXrlwxJIht27ZheHjYPIPkDb5bLpczz+Y86plYWhA3HA6b05Lr9Tqi0aiB0qhsyuUypqamHKcHr6+vIxQKmViaPV/r6+sIBoOG1ej3+xGNRk1prGq1ikgkApfLhZs3b2JlZQWZTAbj4+PYu3cv9u/fb7xH5sm99tpryGazjlgP88l0jdBTsdeCPff2PNKoUFhQ9wDHjt6pTVbierJLYClUSyWicUZVhrpG9f2UKGXHrlQZam4Wx0AhRT2lWY3N7yVyRkdxfZc2Cjl6H9yUNl6um1HLISlbCmh5TBSYWrOwHbTD39jf2xYpBQ2Vj0KPGp9gLIH3orClN8B+qnBQoa/VJKgcVHDxb6V68x7KdNQ+aizM5XJheHgYIyMjGBkZweHDh5FIJBAMBlGv181xHozpnDp1Co1GA2NjY4bQkMvljILg2VwcR2V8spo7c6J4svGtW7dQKpXQ398Pj8eDXC6HbDYLACiVSmZtsG/0tDRmo1Bkd3c3JiYmUK9vVvCg4gqHw6b+YLVaRbFYRD6fNyWsnn76aSQSCeRyOczPz2NxcRGnT5/G6uoq1tbWHEm5ashQWRCGpIBWqE0VhRJOFMbjfNhpFACMd8oyVLwX/9aakFyLmt/F8VPShn5uj6XGu4huAM54rkL1NszNZyhKoTA6n6kK7HuhdRTXd2njxtDcD40paexG8X5787BpTIEbhMfAK7W32Wya87psHF+tUn2uelJ2Eqt+x+u5kanIVAFxw+s4qOVus7nUG2PfWcEAwJaSRfpbXqNeIQVIIBBAf38/+vr6cP/99yMej2NychI9PT3wer1YXV1FLpfD3Nwcbt++bSj0uVwO9Xodhw4dQiQSQTweN+QKVsbI5/NGgFerVeTzeVSrVUxOTiIej2N+fh5utxvJZBI9PT3I5/Oo1+sYGRlBpVLBzZs3TT1FnpNVLpexsLCAdDrtmM9KpWLII4QTu7u70dPTg+HhYaPMdu/ebTyny5cv48aNG/j2t7+NdDptjJBqtWoK1Wpsk4pMjRWgBd0qm1AhQBX4XCPtKOu8l22csZ9UdNwX3C82C1ANPfXwqKi4LrQ4tZ2CofCg7lNd21o0nLl0NvRN40oNNRsZ+W5uHXLGd2lTJaQCVze9QhBKZ9eiqtzA6gWpglAvhIKATEbeS6E2O+amHiCvUW9Hn6mCRK1pvVbfR59je4UKMwKt4quaaM1n2uPI+6jwosCixZ7P55HNZjEzM4PV1VX09vYik8lgYGAA0WgUiUQCg4ODGB4exs6dO5HJZLC2toaFhQUsLCzg9OnT8Hg8GBkZMSWhenp6TKkmYDMf0uVyIZvNolwuY3R01NQj9Hg8iMViCIVCSKfTxtPj6c2EZfP5PABnxXclaAQCAUQiEQwMDKCnp8dU6YjFYsYQJJSYTqeRSqXw5S9/GdPT08hkMmZ90UOnwFU2JJsaE1wL6mnSa+aatMsy6fwr9KbGisZaqRB4P6YT6PN1vXGulZHYDh63Y2y6Pmz6PpsqM00N4fO4/nQP2JD195Li+ue0juK6B5q9oQEnMUE9IFuJ2Nh7O1hRYQ5ep6xAO8algl6foffl9fbv7OoHGqy3N7HtSalAaQdXan8AGG9LLfJ2yk77ogxACk7Ck/V6HTdu3MDc3JxRYL29vdi7dy96e3vNqcnAZvmyXbt2IZfLmdJSCwsLBkJdWFgwyqinpwc9PT2mYgnhSMaU2L+VlRWjUG7cuGG8J8Z6KBS3bduGeDxuCCjBYBDRaBS9vb0AYBRms9lELpczFT9Is5+fn8f09DSmp6dx5swZRzK1QnecdxvC01ipwq/qMeuY08tVJaj3Vm+e16sBp0YLDS07v0uhPjZVIrqv9MgWoOXB22u/nXJWr445dvY61rXNsbLXYae9fetAhfdAIyOQia5c7NzYuimAFiuJm1lzXRSS47XckOopcVNxE1K58B0Ui9dn23Ae7wU4lQWtVvZPYxt8N5uhptdSmKgHyfiY5tHQiqbVbEM3FJr6zoxttPNK7efSwvf5fBgaGkIikUBPTw8OHjyI/v5+cy4XFRbLNbF0VKlUQiaTQT6f3+Ixazym2dxkPfK8r8HBQcTjcQwODsLv9xsPRuEpJcd4vV5kMhlTPJY5WadPn0apVEI2mzV5aalUyowVoTL1gll+SYvP2hCvrcx0HXBeVSnpd5wLjUfyGl3XtuescSr+nmucv7dhQs0Rs40a3X9c50xZoDGhnp2tLPlbNRZ5X/aJZCauI0KSnRjX27eOx3WPNC58hRD4GRWYEiz4PYAtG6GdraLYu20l26V6KHDaeXh2PEEtUDu2ZAs2vpta0VSUKtgURrKD9vr++myNTaiSvJN3p5RkkltswcvrWdD2xo0bWFhYQDQaRS6XQ39/P/r7+7F9+3YEg0H09vbC5XIhGo0amIyKjFR5YLN0VDabRaPRMBR5/p7eVX9/P2KxmPGiADgIDlQw+Xwe5XIZxWIR165dQ6FQQLlcRqFQwOrqKq5du2Yqaqi30mxuxrF4hle5XN5CftF4Kn/HueM8KBrA3ymbU9ejDZlpDEgNBfs91MDQ9anKh2vO3hv2Gtb9pffWPaF95ZrT92yntPksOw7WTul32v+8dRTXPdA03mR7RmzcODZLSb0lCja7ygXgtDJp6aqwbwcd2sQMfRf1HtopCIUHbeXLf9uC1IYiueEpJO4ElfL9NOitsR/+lpApx1f7z2vU4uZ760nArNi+vLxsrP5kMolQKGRqI0ajUYyMjCAej6O3txeBQMB4NRwzKrVSqQSPZ7OmYXd3t4nfkEAyNTWF2dlZZLNZ473xXLt6vY6lpSXk83mUSiWsrq5uEfoqZMlepUfF+VbPWOde4Te+uzLiuAb0OlUyei9eR0Gu3pbC5HeCx5W9qN4cn6tQta4x28DSta6ekhpw6n3TO29nyLFP6vFxzbDPdtK/jWB0WvvWUVz3QNPNC7Q/AqKd1aibnRtQFQaw1ftSxajKxk60bPd+ymAjkcOGYHi9Kgu1lFVoqFVvQ48qkDS/p11/dJzsWN6dhAQ9NfUi2B87eK71/3QuqABmZ2fhdm8e+RGNRhEKhTA+Po5kMomxsTHE43GEw2EkEglz3hcTlDXfi4KvWCxidnYW6XQax48fx/T0tPGs1tfXTW4Vx5pzoJAfx1Dz4SjQlfRARaJkDL4Hr+HvdUw0vqhzp/9WQa+Qo867XqvrTT0dPpvKoJ33pMYGlQPHyO6DrhnbOOK99P30OXZ/bcXEzzW3kkrUZjl22p1bR3HdA02Vh8Iz7TwINrXc1FtQYaVKz7aECdG1owyrMORn/GOTP+iJ8Hcak7OhJrVs2wkeZYDxOtt61grcHBf2SwWOKiLtizb1/BT6UsHPPtmwlXoRvGZxcRGrq6vweDyYmZlBMBhEMplELBZDOBzG2NgYent70dPTY/K3eHgkz/jK5XJYXV3FqVOnsLq6iosXL6JQKDjeIRgMOlIAFIID4PAQOEZ2XNQeK81V4rzahAJVcnrmlM63VrCw17jGf9qtD65LKjntlw212cYb72Ov53b7gdfyvRnHYqzZ5WodvqnrVQkmula1b1xTdv/43I7y+l9rHcV1DzRahLqoCVlpPggXu+1R8RoKYDuGoAFrm4GnlqoKKlVUvJZKw+/3O7wgKg87d4UbXQU9BYQND6kCsoWlCkT+Vj0rG0rU/yu7kv3jGGmcq51y0/ex31+p2KrgCL3V63VkMhncvn3bjBHJLzxh2eXaPAerXt88dLJQKDgSeznPzOlTggarbKgXwbWkyl3nlbAWhTW9RqClANnsEko2VKhV63UdqwfTznunIlBF/P+1d64xelXVG1/TTuedNrUdoLTTIuUSLpVLUYuU0RATmYC18YJ8aEgTiRoNUhLQhggaBWNiSUxM1Bi+qPDJPwEjaOQSSgtVsNxqKy1opaRYYnpRSG/QmU5n9v9D85z5nWf2O20FprzMXsmbeec95+y99tp7r7Wetdfeh6dPMAWdSJK8aOwxKqF+4dFTjBD42pb6RB86OhHDJ//TgHuI0VEg3wCgUDATP3KIrlCeiuFqEfKJGFF/3QnRA706R1KuuJ3olUbUj92RV+mxfhowN340CHrGwyYRMcKTdx58UvN+KgWhCSIsf55rKURS5Ne9en0c9epDr5+hLCaXeOiRDgLXMQcGBqKzszMGBgaqMwAbjUZ1dqLWKcUrDazkQJ6ZPOCOAI0uUbErU/YFEyXYlzTQlA9lTLnSiWG/cMzK6ETECIPHscgwo/e3xlRu3xR/YwIRjQ/LFH/K3OSmfRp2d5Y4vsQviUau0JGpGK4WIHnYnCBUFArheKglYvg0br53SWnMKotIjmXoN74SRUaJBobXcuEcojZ/1tcKqCByBphhH9ZDBUQlIY+c7XGlxFAN28v1oIjhja46SYEITvxq7cKVrGRM75vtkkEUeujv74/29vbo6uqqFLr2BEmufX19FYJgKjb3BlF+dC70v8JgQhA+rnLKXHIiEbk62lVZNO4RUWVWekjO68sZTx9bNLo8MV5zQGNaaFB9wBApUVUuhZ7tUuIQUalkThQYMbwtQX1EhKs62TbP4i00korhahFKKdWy7Jj9JsXACUCFQ+PAhWgagxwy4qTl/e6FUgE7KfzF/WO+D431sx4/OohGlsZGZelD2YgkA3/9Cj1/lkUkQb78JASVm0uWcQTGxAAqLClUR37qc8rd140of/LPM/aYcOBtlpz1XETd8BHVsx+8DF/n0/Mqj2s8+kvjyIQe3cPyKC/V6wrfjRX3RXl5fIbP5pwnjkHJwccH+VDWJ0PRRPHM2s0hLO/PQiOpGK4WIBofIhYiME4m/RUiyYWMqJCpCOS1cmKKNMk8DEhvN6L+8kk3jizTr3Nh3xUk1xrEC71W/Ualy/PzvBy2hzLmwaxS6kQtRFpuGIloHP3yXvan/y8ehdwOHDgQEydOrNa06I3LSHsiAutjhqDkk1uPooy4xpJzVCRDbvB1x4lOD2VPZJgz7Fw7Yxk+Fikr9SX/pyzUDh3mzDU/lqV62S/kz5GXrskQ6TqNsvqS62CesSj+mSRS1rhGp2K4WoCoPDxhgAveirdLQXEzsCMqNwLMjtK9XHOgF+iGUuSKzdGgrjMZxD33iDpa5FoLEaNkkttLpvbTUEu58Nw5hrekgNx402umHKjs5V1r/YnyZFtFXDN0+THcFTG8+VlhLXrpChGyH9vaDifhHDhwoJIlQ19EDXRq3FBQ8VMWVKpM5BA/REVMtKFS5roT+5djwtcyPbFHc0EnT0hu4o39oPC4kjx0zqD4pDz4m8aVnBmVJx4Y9tQ4cQPKNUMiau9z9m1BW0emYrhahDjBRI44PHwhxeOKkqEvlssQXUQ9q8rrFlHJsz4ZwZzy49qSt8cRA9GYFLCe4eZh8cJnHGkxrJMrj/KIGFaW3HQt+VLZukEhEiKqleJjG+m9U6bih+hAhmXChOGDX7nXymVJLz+ivg7FfqEMuI7jfZ4LB1Im5FF1eWhXCt5RHB0qojJHQpSffieSJN/sf67x6lk3oBw7HjEQyQBp3VSZuuKNIUEaYEePdOY4ZjieCzWnksLSAuSKRB/3mHVdz9BL5QZSKQdfB9P/ukYFojKJnHLhmYjhF/zpN/HH9RYaTvdCxaMbErZFnrSv+bgBppGmYfEQlPPoysPlSXSpZ12maouMGhNsdE3kqInydPmoLb4eJLnKQObWLHkfw32UnYeCqex1H5GuGyLJnWVoCwDHGkOwOWXNNxuoHSyDY0/1yZnRGCR65AkgHi7k2KJsGUEQMmIbWRbnJcco5cj6OAZ8ThcanQriahEiWoqoIzBfsxocHKxeouheuP7S66R3rFCT/qdxkSJh1p0mp2jixOHXwjNsqf81qRlWcUNG4j059OSGm+EcecNEe+LHURTDbwzviG8hKyV3MLTmyItOAMNqbKPq40G1EcOKV2FHOgU0egxBuvFSeJGp4uLFswf7+vpi4sSJI9Bro9GIlFLVl+ovrRM5elc4kLJxp8PRN8eOh6v1jD480okH43I8KiSotqtdDJPK8DAiIaeDCNmRrlCuylR/SR6UC+cU76Wx1xqm5lqzjdmF8lQQVwsQlXFE3RN1tBFRVxLKrqJRcITkE9Tj8fQmc5lvVHge96eCc4VEz59tdGPlPIr8NyrCnEw8AYH1sF7x66hGbaJDwDp0XQpeH/WDrokXRxlEIfTY2Ua1i6eLMCwYEbWzBikrlikExD1Z5Ef3qC007CqPTlQORWvsEeVR9rmTWXLleX9rHHIdl7xw/Pm6nI8b3k/Uzf7XvXRgfCw5EqfD48hYspWjw+iGj7dCeSqIqwWIE1iTS7/xDDsmLmhSyAvk22Ijht87pOcZLouI2u85D1JGRRPNQyac8Dwyhx60XitC5U9kJW+ZHnLEsFFhuEvftfbADcpMpJAy8c2oDHsKrTIsJWJWn7/IkOXwBZyNRqP6Lv5pvCQrrouJlFBAB0GITm1zR0WZc+xXKUNf9+PxTy4H8srQHOXPPmMfi1gmHRGGMykLGjZff1TdGqd8xQyfiRg+C1Dt4h48okJHb5SZPkws8f6j00DjLmdAY4mZl+KXzovKLojr6KgYrhYgooCIkQkLRGLycPv6+qrfHA15jN8TCBjLZ3iKisA9aPeYuf/LURCVKdtGj50Ik2WLPKnBw1K+BkY04ujRMxWp6Nzz5/u9VD/3+4i4ZtXf3z8iu5PGICJqXr7WZhhepLIjgvM+oaH30KQnSni40ZE061ZI09G37nekrXqk+Bkuc5QnWeXWuXzc0DA2258lI8rnieyVXCF5+ZqcDFtuDDryzUUhmjlZnA+O1DwykRvzhYapGK4WIE0KrV1w135Oubt3S29aSMfXYVypOhrQhOfEUhlEOKqfqIwKjUqUyMLDNhF179Pvp/dNJUx5uTJhGIhto8KLiNpJEm6gyau/EkVEdCAPW88NDQ1V6zRSjlw/ciTMNTKWIaIBd/n5GCFKpWEmKvIyOC6kpHPK1VGIOyasn/ImihO/LNuNovqezhCjCHQKVAadKEYOdF3rYnL2NJ7cUVRf0WD6OKMBiojaeY10HsQ35ap+KXRkKoarBYgeMdEEw4NtbW2192xpAvtitx/O68cDUTkRtTAWzzKIzlwRMXwiRT04OFghEIV2iFr8d5WnLLH+/v7KqIjkOTvKcAUTETXkQGPGTEq1yRU6Q1GUoXjkPi7VPzg4WO01UqKDyqFn3tbWVkMJSnf39T/97xuLyatOoVDbHSkxtEoEQydDbdSzROA5lEHlTkeFRsyNHQ0bQ7zqLyYzkB9dY2iSe+bEh/j09VpuDxgcPHyAMR0FvguM/DM8mUvy4LhnP9OI+8HSbJv4K+HCI1MxXC1CuYlPNKB7fG2CoQhNCmZQuWfsaywyaPKkORHFg3vH9OZd+eQQgf9O4+BrNTo5nQv7vv4ivtx4emiHPPm6CuuV4aBx4H4nKlMpJQ/LSWl5/VSyXO+gEmZf0+DS8Hl7uYaie2ignTycS4PJvvL+1bNuDH2sSp48vUI8SZ4cy67AWZf3hSNFhQp1nY4ExyP501qwjxGNCRo7H//6zu0XLlP9ZeSAfUfeCh2ZiuFqAdLAd4Xra1yutDxUF1HPvGt2mCcnFxWFe8seumMc33kmaiSS07oc32/E7C0eK5QzxuKP7ZUsiDrED1Onue7E8Kd73DnHQMqGnrqQDpW/6qcc2Hesh3KX4p08eXKlDIXCPLNPZShdW7IjYuA4UlIMlSzL0X1En0R5DN/R8dGBvzK8HgFwRa62Njs1QmOBWXw8KUNokyfiywCoPiZW6Hk3TO4MRsSItH8afbZd7Vd9jCCorQoBayuFIg7ky+cLeSo0korhaiHKIQpHMLpG5U40wetUJkQmLEfP6n9HCPTqc/xwUnKtiIralWdEPVlBxEmt0CE3tsrw5eSh+hkiFb855BpRf6U8kYTucQNFY04Dqo8bRLbLnQLPfhvNkNL4elhQm565d81l7kiHfcB+cWeAIUxP76cB45hg2I7jgcZMiEmGgnvuiKzcWZGxp1PiSIZjxftd/HK7iUcjGJpnP7NdrIN9xLAlf2efsm8KNadiuFqAqHip0GlscsjKFTEVr5Qyz+4TUZlxHUeUMz45Y8h7Ha2oTJ/kUlpCYs6Ty0ETXzKhUqBSzyl9T/EnYmT7VCe9Z9XrqNXRkCskDyNxwZ5KVzw2e8mhyibapJdPuRHp6n6W5+udOaRG5cuDh6nAGV51J0vlsK9FDF37uHGURvnpo3s9DBlRjyo4EiJPjDAoOcfnGMed+GWZjUaj+j/3sk5uNs7JVlTQ1pGpGK4Woba24YVdhvs0mZSyzJCFlJSHNTRZmEjgYRYqMylG/a4EB3nFmsS+tkHPl0kijvT0vFAQEzkcOZIn59/rVvn8q7pUh1Abs/uIgIgyciE6GmBHI45cJDu2mWEtGgXxxLbpPm+nPn5iRltbW/UOL67T6ePKl+3xeunMKIRLY88kEQ8p5mTJdUeNO/EkvpT9yvUzIj85EURIkoHkyb5n1IHp8Lzu6FGoVYbOtyjwxaVCfOJPcuL2BjoILmuPeBRqTsVwtQgxtKHJ7MiIHn2zRWRNuIiR56TxNw/TETG54SCyyHmP9MRdaVKRSmnQM/c1OxpV1uWZkN52DzkyxEVj4kqEbSE6csUmGVFW4sH3wukeKTHd4xmgjrRy6IPhQZIbVhpb7w8PN/I+Gk9HSpQR08TZZ84P6yJqzCl0Hx+UH50lGhU6ZqpXRsQdIR8/3ALBMeqhO/HPTEbNR7ZNBlVrj7m9h3QAiLYLjU7FcLUIMSyXMxJECdyDwjUaeYdUAlTWvt+IxovhN77RVc+zHFeYbjg4sX1thGFFKnG1VzypPK7b0bDnUJH40f0evuQzDLW60SQ6Jc/as0MPnvxz3UcIjwko7FPyTtnmECjHh48ZX8uiYhVPESNPmmAITmWrLnd8PImCxo110TEhiqOMck4DQ3UcR76HTe3JoUXKkWPZx7uuq394H/mk8ROvnrjh49bLJu9ay3MHpFCeiuFqAZJnxvg9w4buvXPy5g4tZfaaJo0mnhsAhk5yCoChtoiR6xVUKlyP4WkKqpNZfgzPMYQmL9f3x9AgsSytfVCpUikrJBVRXzcS7wzFUulx/aO/v78KXcl4OQIW8X+izKGhoRF7zCZOHLlnjkatGQrh+6NcQTsa1mG6SoCgbBnC9NCnkhiI8MWf6tfv7hBQ1gwLazzTANNRcEeE4UX2Ow1qxDDicWfEnQA3QpKpyyyHZpUVy31eEVFt39AY1vqXeJAsmLXYLNu30DAVw9UipAkngyCDwRCPe680VFyDoAHiZNbk97UBTlbyEBEjlCJDlDRO+l2GR0qH7aNC4LoQeVWdbgB0LxWKnuGahLfJjbhk5efuydjpO+UpZUuF7ciKCMez4VQ3jYSjJyInIhr2FY0y184UysyFdtVnrnA5hhwdyYHgOX8eBuN4zKF9ypHODh0HykiOC1Etw48clznD7sifocBcxMDRj4cQfd5wbElmnJd8hgiSxs8di0LNqRiuFiApBg97kIhyXDlIISs12pWqiChGdRFB+LqZ7qeHL6VGT1tKjoqE13UiBhEfDZ/q41FMEcNePttMpUxjSwRGBcRrRFIRw4afSoonO0jR5N4A7Av3jgxknHj4McO9Cj0SoaSUaq/tIOrQMzQWROJqg5AVDQTXgIg21Q88EDml4WQFb6/44AZyOQAM6dJg8VldU908AFgfGWG10dcGeaIFxwUNMuWleiR/timHMmVkiZZUlu7T7+4USfaaf3TQ1HfFcB0dFcPVIqQJJm/QQxsKiUXU3ynl3p6UJD1qJyo2TV4qSl9Pc49Vv/M7icpVyogerXv7DBOJJxqt3LP0uFmOr2npGRovhhRddo4+JW/Wo/sYnjx06FBldNyAeVICkSOdFV+ncpRFVEjEyvZKSZNf1s01KKJcykpGTG1xebBf1B7PQCX/Wutzo+lGgIYrF/5UfWyHj2/OG75oUmFZonVH5yyvo6OjFppXP3Fcidxp8PHHI9MKHR0Vw9UixEmkv5xkHjrTp6Ojo0qJpldL46FnPMQSUU+MoGJguMYVHJUoFamHbppNVpUl5cN3WZF/V5DeHv+N7WDY1HmgbPkc20mk6k6AeJVCzq330ZMn0qFhouNBmRJ1k1f2h9d36NChCnEzVMnzEdn/kr0bMq3lqQ1MD6c8iCbcoSDa8DAZ+09yZGjaQ2t0asSf97nzwL6irFWuZKV7aNDIP+XCPvX6ODd8/IlXOinOe6GR1JZa0Mzv3bs3pk+ffrzZGFMiKqGiY4iMk5deKpWaKOexcjFe5AiH6EkesHjSps2+vr7qOxeafZ2GE1RKjApcSRXNeOZEd0+XyIWKUco74vBp4KMZIyonlUP0pfZxDY1tyhkY9YGSLlift0ltds+f61dMHGnWp0J8THTQfUROup99onAty3HkR4OhMiZOnFgdiMyQoZ7j2OF6GdcWdYQUTzkhvx6uc+Ok+4iwaIDoPLgcVG6ujVoLVD9ofjD8TT44pmkwabhVn8Lm44n27NkT06ZNO6ZnCuJqEXLF5wqV3l1bW1vtdQquwPVbxPCaQMTIVOyIuiLT/1R8MhAKi/H9RlJQORRGj1vE726QHO0xi033SwlKASiBRfLLIYCIGNEe1a0N3doImzPwrvS41uiG+EhGlf3rPPE+T3ghGnUUyz7Q744AOJ7UT1wTZL/RqPIa+aeRlxHjizV1zdGisiojDhsZGi7xy785Y8/QLMe6rtGhcqTKccqQJMsmaqLsaJTIo/qJ96eURryZfLQIRKGRVAxXi5CMgbwxTRROMHrgjUajSp93NOOJEERjnu3HCaUwExWbJquntwt1KdQn752k60ze4LqXiN65X5fhIJrQX6beU4G7AvLsOCkYvh5EbRwaGqqdDOFJHwwj0ZDT6FDZkg+m0LuxZl+pbPabp1Or3QcPHqxSsoUUWLfa4n0hPiQPf8t0RIwIg+q66tV4ZVJDxMijrYhC1T5l9TnCI8JkOJN9ysQY8aZxyTeCEzUxcYL8EQWqDJ8jHP9E70za8RB2bl20GK6jp2K4Wox8crn3SeUlpe6Tn+E/xtZ5cromUmdnZ0QMK0Yqq4j6K0V4UoDKZYaZeKThE//NQjT8S0XNdos/D0VKeXt2mtdDpCmSt89EBFdovvZE5CpDIOeBylP3ENmqnTSO7tUTFeXe56Xr3NhNdEqkRqNO/jyMJrnwGUdfNF6O6rhVgMaX93uIUx9HirpHY7GZMZGMWJ6jeT1Hx8eTLORM0Onwce3zQNc9A1c8cszm1ruK4To6KoarRUjeIpUzDQkVT8RIb1hlyMB4CI71cBJxculeKnqFXKjANBGlYDzsJeWvcnwdxUNoLINIzA0flaYbNleofD4nAyIgKlIZJUdJrhzpYLBMhp5ovIQu/ABblknkKDlTrgxdSmZEZx4ay3n6RK+6T4aS/eaOiMqho0QEqvayLh9rOWdFfct6iTa9b9yh0PiKGPlGbY4L9hPrkzzp8JA/8pNzpvgsjZJ452tXWEeh0akYrhYhhXS4DiGip0eSp+veJJUuX5zooZuhoaEqI5H7v+hdanLzZGzywn1D9FqJGqWQ+O4tPStFqvY6gqNhEmLhetehQ4dqp09Qifv+LcpWr3Fne93oNBqNWplEDkSdVOx+Mjjbx1eP8FQK/dU6EUNv7FMqb8nFjbju1/hgP0muMja6R+WoDKX1HzhwYMRalcuSSl1tUko+5aU2MYwtfvwMQkdq6n/VqVClO3GMMtBpUDmaDzLU+o3ziwad40VjW+NOvHu4Un+1PUDzT+FNyrxQcyqGq0WIk4uKKvdiPE0OxfE18TgZHW3QoEmZ8TXjHtagZ0zDQuSjujzcRUUu3rkm4WE7v5+8E3VI+akMVzjcYE2kwDq8bZQZ+4HOA/cM6VkqIRpI9iNDVXQcuD7CMml4/HUd9NxpnOl0iIgOiYb1rJcp58SNPZWxh2n1uxsHR+KOUlUG+edf8eMOnOaFjxM+QxTHMmnIaQD1G9FlDn1xfNAZYJ/xu88BotISKjw6KoarxcjDEkwe0LWI+kG7mqAMs+l3hs4Y4vNJToUorzyivmdME8/3YXmoiN47Q0XMFKRB8RCXK0L99dAbvf+cMvT2ucFVGblXsjcLwTmyGhgYqLLl3ABTfoODgxWS8T5wubJOJmKIN65bEWmLaPRYlqNiGRidrCGD7MkQOeQrA+jOQc4AqB05ZKNxqed1P/8SIdI54HjR/3zdSG7MEGExNMnkIzpzrMPl6DJmGFa/M9TM8VxodCqGq0WIoY6IYU9cIRFOVikfHn7LSRpRTxHWdaKuiPoLFvldKI9l0uOW4mM2oVCVvjdDPI7+6O3TQxWJp0ajERExIhlCz/nxVFIaDNm4oSfqkJzUPiEGtUt1HTx4MNrb2+Ott96q5ExFTgXIftE9HR0d0dHRUbXDQ1IMQ7EPJWcpZhqTHFoh2qPSVZhN8mFmpJJVdB/7R7KdMGFCLQvP28B3n9Hwc9ywv8kbyyO/RIpyFnIIUm0lovLQr8LLuXGmNvHt1CyL79+SDB0BchwR1aktEyZMqMLUhZpTMVwtQhMmTKilhHsoI6KemednA3qYQr9H1E9YoPJRvSpbqE2TVkpdypLervj1tG0iNP5P3nzdhJOcXjhDQWoHDbWIZXlmmBs4prczRCTycxfp0TPbjWEwD5USwZB38se1P+eDYSUPQ+ZQp/rUx0hOnpIJ07uHhoZqxoAo3xGSIwfKl8iPfcuycokXvk5ImbPfZBg5xnWvrsvwEwGz7TQsrIPOFI0+2yfHwg2WhzA1VtQvGg+Fjp6K4WohcmXnCIKhCu41cs9OzzYajcqjprJSPTr6xhWxlAM9ZF/Ep5LROX08XigXXvMwU0TU1opkmKQI2EYlLlBpUVlRgcnwqiwu5EfECDkwJdoVoGQjg0vvXbzIg3bFTQQguRJ98TUpvM/DYn6UE1GJr0nRCPJ3hjbFN9tJY82DbMUXZaYxwIxTNxI0sDS43C8mopM0MDAwwlmjs6M+0FmCbsjJg9rkWwuIwrimTNk5CuRvOpSYjoUnBvHUEEYXaMgLNadiuFqEuF7EsKG/hoLfOUn1vxuHHOrS//IsU6of8MtrTOCIqGdS8ZR4EuvPKRaSL86rXkeNDJFRYVChKCTIxXA/TZzrfkS2VPSUMZ0F3u8bWnVd8lB/Sq7sIypSPUv0Ix48EUDtE6lcD486GlJb9ZvK0W963kN77D/1vcKvKottd8XPdU+uQzoqpDJn3/h+Ot7nDh75lrGnQ8Z+53hRmVx/5f8REY1GI4aGDmfgdnZ2Vie2sP95viMTctwJKBmFR0fFcLUIScn4QrsrA3rR+q5rvohNo6eJJAVJlMaQiK8pkD/VISXgx0mxHURsNK66pue5T43KXfU1W8Pg+oyHqURUkpRZTrF72IrhJSruZiFRD9/xeSpWPevhUipBojuVx+QO9rkjWrWLKIdGiX2p75STZMusSHeqmCjCuj0xgcZChkDl58YxtwDQ+Pt+O4a62QY3ZqzTr+f63vvDx74jcT7rfaZ+Zxi0GK6jp2K4WoSaeaVUDFSgOvmBax9U5iqTBo17rhSq0sQmQvJJK0XjZ8oJUTCElEMuyrzz1H0aSdUjHiKiynijF6vrPM7HZUAlzpc/6h4aVBoKySG3juZGUfwwEUHhQ4bjdE9E1A5XdcUm/oR+VSfXurTnjgcyC4nKwHINxxW2jJjvGVT54oGhYbZX/UklT0TGsKSQmfqJyJ0ZfwqDSjaOsIaGhqKzs7NC97msQY4XN/wcT+pTrQtqbU/1Clm5w+XbTPiCV40t8s+5SqTIk2cKjU7FcLUIcXJJoUjBe2iFIb2IkadH5EI2VDZ6FQrfAutrE1R6euGhvjvaIGKQUomoh31o9OTR09DpmiY611LcEDpCo/wcvbBc1e2ydk9dvLsBJMLVPZ656IiDfcSwlIh9x75iP+o714novXtYj+2Rw0ClrnrYZs8+5RggWpMMaaBdjjRmMmJE6VwPo8x8nHq/0Gg6aqaxI1IUb0TmfFEm188cfbIvvE8YZo2IynkQTzkU7KivUHMqrzVpEfKQiCagJpl7h/R29dH1zs7Oyrhx3UIJFEQ3jNXTKHCiUSl7mM7Dk64EyKcMsbxu3aMwGK9zkjOkJIWok92V8MBrEfVQlRtYlZlSqlL/VY7kwtdw5NLp2Ufax8V2MwSaQyXikXvIuH7lxz/pXinb3OnmjqjET8TIg28lc7Vd6NvDZnrWDZe+C6Hqfo43Km6hLiITJsJwrHGLhX4TDx56dMPfbB1NdVIWjgBptBmK5NihQ8kx4AbUxxplON7CheW1JuOEuA7AiZlDIPSidT9TgiNihBKJqGfx6RmiAiolGkqWwbRp945dqdDIkl/VIeUpcoWk3/g8j7MiQnQvWQrVj2Miz1Q0lE+uP1hXzktnP6oM1c16qUAlG88c5PFJuXAo+4Sog//73i/x6OFX7vtyBEVjRGTBBAr2G9snWfn+NtXn97EOv84xRyOja0qc8KiDO0JsE/uNfeMG3O9hPzHEybAonT0i1EKjUzFcLURUDhromgBUSvKq6d0RSWliUolxEjdDSERF4kcJAfSKqaR8LU6/u5JUuTSMNL4K7eT22UgR8DemQrMelq820oBE1I+p0j1ERWwD07dz3rSHpfQsFS5/1/3c4OvGVuWzLQp38egnPqN7aNhksMkb14Q8YUObvIkm9L8jR8maaFO/yQhKXkJRRIccA1yz0/05h4Rjk+2hbJl5SsTvTgr7mG11h4Rzivco2uAolbx7v7PPCo1OxXC1EDEExIV8esJUKvLG+Z2erH5TqKWvr6+GWNwTVV1S2BERb7311gg0FRFVaI/vVeJEZ3oxw0VUXgydEE0SfTB0yVCUkkuE1HSiBe+jgqbilVEYHBysQkK+3qb7qbAYFtX6lg7OZRnuTEQcXpBXajyNOJUf5UA0QmVPvrhOKD6VxMHQGhV4DhlpHPBEDRoN/fVXl7BM/Z/L5Ms5BSpXfeCOD501IlLKRmOBp5/QkRFffIu3GzCV0wwRuUHjGFVfae7qXobT1TbxnzO+hUZSMVwtRlRYnPRUHh4j93CI7qVCyIU5SDQQLJMvKPQ6/flcyIfoTjwyO0u8udL37zlE4r+JaBRVH7PI6A3njLLzQDQn5cw9QbqmeidOnFglRdBoenmq09GxyqXijqifZO9hMBI3w7pjknNW3KDleOF9OeOgseloSuX5GpruobJne1SPZ7vSIHJtT9d1P9fFOCa8DJH6yccUHQpuC6ADQ2RJZO4IneHnQqNTMVwtQkQfbqCoBCJGKp/cnitOQIZPcrH73ETkmhcVme5jAoCeo4Jm8kBOGegZtk/k4T332PUb1+dyG1dlGH1tTTzRM3bl7pl7niLPzdeqg8bZ11DYbsmbbY6oGz+uf+maK14afI4dooHcGwOI4Jo5QWwP73Png+tkHGfimWW6kaUSd6fHx4AbYR/jOSeGcvbQnUcFOAdYPsc/x68MkcKclD9RoCcHuZNRKE/FcLUQ+fmDMgBap9B1TSaFxzwGz7MFuY8poq4g9D/DU56RNmHChCrzjWtRVESc/L6/hkqF4RJltclIUjHxHkcGDK0JSel5lUlPXO3SPZ2dnTWHgN/dYDhiJG+OmqQMeZyWI08hD/VdLjTmis0Nh3hR+7RVgckfCkMqXOxlaw8gM0r5+hyNHT870x0NjQ8ZgYjDGa3MZlUfKPTdbDxQ1m4kmU2pfndHS2NTJ2b09fXVrol/8eNhQZ8rkqOHtrXv7M0336zK1/yQ7Nrb26PRaER/f/8IlEZUWKg5FcPVQsTQhiaQb1Sl98f4vK8psBzG1rleRvSh9ZKI+poaUQXDLo7CqFyoiB0hqC4p/qGh4Q2fEcPIjWs0ETHCAEgRCVkxKcAVgxQrQ0/imyEdeusy4FRc6iP9rj7gdfFKZa66FKokiiAq0X2OQJvx6wbav3Pc0CD62KCDwOe9boasuYbIengYM8OANBgce6xL48j7gpSTje7zMGKzay4D/WVIWZuEibA5ftxxU9vdmaJx1nPFcB2ZjulEx9tvv32Ecpg3b151va+vL5YtWxYnnXRSTJ06Na6++urYuXNnrYxt27bF4sWLY8qUKTFz5sy4+eaby2LkUZI8VaIaTmBHIpow8vr0O9dxNAn7+/uzSpZeIOtypapTEPxZKUUiF76yg0ZG/0t5aRO0nmPd3DQrORAFRhz24nWaBFPGibCo6KRcZMC5J0qp1B7GI4pSWVQ8QqRCUlJcamOj0YjOzs4KOat9ko+SOxzhsc8nTZpUOwtPHj334lEhs9/8PEk5MHR8IoYdJLVd19QmP+jXEZKel8In8hYPfm6f+oS8yxHTGqHKV5lMiKAxVr/SANO4snxfh1P/0/CSJ92jMvv7+6v+Vr8wY/bgwYMjZJ4LWRZqTseMuM4///x47LHHhgvAvolvfvOb8eCDD8Z9990X06dPjxtuuCG++MUvxlNPPRURhwfY4sWLo7u7O/7yl7/E9u3b40tf+lJMmjQpfvSjH70DzXl/E71oNxBuHDzDy717KlopIk70nDFgjJ6nQigcpGcYqomop5fTWHFNydeoImLE9RzaoKHyNSUaOraXiNLDUEQirIO/+7NcH3IkwHaKiEycL9ZFJUuDRbTAsig39beQpMuMf/VdjkDOiHgdbAcdA8nb1/A0Rpg6zzMN9bzCwxxzzi8RGPuChoC8cB2JY55lyklQP/iaVcRh46PtH/ydDqMbIcmHyUWcm7rPs1YLjU7HbLja29uju7t7xO979uyJX/3qV/Gb3/wmPvWpT0VExF133RUf+tCH4umnn45LL700Hn300XjppZfisccei1mzZsWHP/zh+OEPfxjf/va34/bbb68GRaE8uWJ0ZcmB75M7h9CYCeUhEiorr1dGi3xQqSgVXhPSFQfbw6QJKoCcsqXxYjaZe9YeznIFQ0VHo+cyFBG5en+oXIZPmT3G53m/EBZT071u9qEUqxsSTyCg0WD7GO4UD94OGlgPpek7HQc6UVTaJI2T3HVH8kJ7vE4lzzBazpBTdrkxQATI8abrDGf7WHPnxo1qLuwrhEmHUzLxELsnrhQanY755S8vv/xyzJkzJ84888xYunRpbNu2LSIi1q1bFwMDA9Hb21vdO2/evJg7d26sXbs2IiLWrl0bF154YcyaNau658orr4y9e/fGiy++2LTO/v7+2Lt3b+0zHomGQxPJT+LWwGdIUYpF4S6G79yQ6K8jBL8upcuJzwmtMJ/WbcijjBW9e3rdHvqUkj506FAcPHiwptx8IV68UKnzHnnTOcXvsmYoi4rTZS0S72yHh6NkyA8cOBD9/f21uj1c5MrTMxepTLlWRQdFiQFudNh2ksaMQpw0ujSkahuzEp0f1sFxoN94RJn4pSPDkLfK8v6LiCqcyvFO+eUMrfPnIVnnS+NQ93DuqG72FY2U2iyZaT8cnZCCuI6NjslwLVy4MO6+++545JFH4s4774ytW7fGZZddFvv27YsdO3ZER0dHdHV11Z6ZNWtW7NixIyIiduzYUTNauq5rzWjFihUxffr06nPqqaceC9vvK/JJ4948DYmTe7ecKO4Jqwz3aBne8BBSDjU4j74+wHp1PafAeT/50PoIeW9mUJwf8kxU4Dx7qE5/XU48N5LJLAwH6X8mJOT60JHXkdBgbp2YKJUoIrcWqXZI3pSry9zryBl/GgfPCqUhyKFElcuQJ+VFxE3+RV4XnTleo1w9iuHjUkaRz/u9bjj9PsqOfe5yKXRkOqZQ4aJFi6rv8+fPj4ULF8Zpp50W9957b0yePPkdZ0506623xre+9a3q/717945L40VlQCWRMzp8Rr/x/VgiZmm5N6rnpdAZPpJC1zWGxeTZ5sJRRAY5nvkcDSzrdSNCxUBlqGvij6EmlufKknLj2gTRoier6Bn9RkOSC9fpO3lw1OTrLVRuqt8P22WdKQ0fpMyyHcnlnBnKTO31RBh/TnXmECP7yfuFv+XkRtnmxoyPMb+/WciZfPgY47FmOcPI57keNhofbgzZbneuCo1Ob+s90V1dXXHOOefEli1boru7Ow4ePBi7d++u3bNz585qTay7u3tElqH+z62biRqNRkybNq32Ga/kXtw7VWbESEPA33iffndP0g2NE9GMKzM964qOCDOnAPUMER2Vv9dNnt3jzSlw1uXIzxVNDslSbjIUNFqO/hzJOa+8n6jEZZ5T8irPkQF5z7V9tPbmkmDIgyMpdxJGG8Ms1+/NKX13aJxPd6SaIbXc92OlXH80Ky9XZ6HR6W0Zrv3798crr7wSs2fPjgULFsSkSZNi1apV1fXNmzfHtm3boqenJyIienp6YuPGjbFr167qnpUrV8a0adPivPPOezusjBvKKQd+pNhy4bDc/VwLY1Zis+eare/wudF+O5qJmVNQR1OXty9iZAad8+4K2WWZMyaOlprxkzP+RK6j8UW04N58M6Of6+Nm8hpNSXpdbiRyz+aMnX7PIZFmMstdf7tjoBl/OX5H4yU3NiKi5lQ0M9y5/wu9DUrHQMuXL09PPPFE2rp1a3rqqadSb29vmjFjRtq1a1dKKaXrrrsuzZ07N61evTo9//zzqaenJ/X09FTPHzp0KF1wwQXpiiuuSBs2bEiPPPJIOvnkk9Ott956LGykPXv2pIgon/Ipn/Ipnxb/7Nmz55j0f0qHvYejpiVLlqTZs2enjo6OdMopp6QlS5akLVu2VNcPHDiQrr/++nTCCSekKVOmpKuuuipt3769Vsarr76aFi1alCZPnpxmzJiRli9fngYGBo6J6WK4yqd8yqd83h+f/8VwlTcgFypUqFCh40b/yxuQ39Ya1/GiFrS1hQoVKlQoQ/+LPm9Jw/X6668fbxYKFSpUqNA7QPv27TvmZ1rydPgTTzwxIg4f2FtChnnSXrfXXnttXG8faEZFPqNTkc/oVOQzOh2NfFJKsW/fvpgzZ84xl9+ShkvpxNOnTy+D5gg03ve9HYmKfEanIp/RqchndDqSfP5X4NGSocJChQoVKjR+qRiuQoUKFSrUUtSShqvRaMRtt90WjUbjeLPynqUio9GpyGd0KvIZnYp8Rqd3Wz4tuY+rUKFChQqNX2pJxFWoUKFChcYvFcNVqFChQoVaiorhKlSoUKFCLUXFcBUqVKhQoZailjRcv/jFL+L000+Pzs7OWLhwYTz77LPHm6UxoT/96U/x2c9+NubMmRNtbW3xwAMP1K6nlOL73/9+zJ49OyZPnhy9vb3x8ssv1+554403YunSpTFt2rTo6uqKr371q7F///4xbMW7RytWrIiPfexj8YEPfCBmzpwZX/jCF2Lz5s21e/r6+mLZsmVx0kknxdSpU+Pqq68e8XLTbdu2xeLFi2PKlCkxc+bMuPnmm2tv5m1VuvPOO2P+/PnVptCenp54+OGHq+vjWTY5uuOOO6KtrS1uuumm6rfxLKPbb7+99sLRtra2mDdvXnV9TGVzzOfJH2e65557UkdHR/r1r3+dXnzxxfS1r30tdXV1pZ07dx5v1t51euihh9J3v/vd9Lvf/S5FRLr//vtr1++44440ffr09MADD6S//e1v6XOf+1w644wz0oEDB6p7Pv3pT6eLLrooPf300+nPf/5zOuuss9I111wzxi15d+jKK69Md911V9q0aVPasGFD+sxnPpPmzp2b9u/fX91z3XXXpVNPPTWtWrUqPf/88+nSSy9NH//4x6vremdcb29vWr9+fXrooYfSjBkzjvmdce9F+sMf/pAefPDB9M9//jNt3rw5fec730mTJk1KmzZtSimNb9k4Pfvss+n0009P8+fPTzfeeGP1+3iW0W233ZbOP//8tH379urzn//8p7o+lrJpOcN1ySWXpGXLllX/Dw4Opjlz5qQVK1YcR67GntxwDQ0Npe7u7vTjH/+4+m337t2p0Wik//u//0sppfTSSy+liEjPPfdcdc/DDz+c2tra0r///e8x432saNeuXSki0po1a1JKh+UxadKkdN9991X3/P3vf08RkdauXZtSOuwcTJgwIe3YsaO6584770zTpk1L/f39Y9uAMaATTjgh/fKXvyyyAe3bty+dffbZaeXKlemTn/xkZbjGu4xuu+22dNFFF2WvjbVsWipUePDgwVi3bl309vZWv02YMCF6e3tj7dq1x5Gz409bt26NHTt21GQzffr0WLhwYSWbtWvXRldXV1x88cXVPb29vTFhwoR45plnxpznd5v27NkTEcOHMq9bty4GBgZqMpo3b17MnTu3JqMLL7wwZs2aVd1z5ZVXxt69e+PFF18cQ+7fXRocHIx77rkn3nzzzejp6SmyAS1btiwWL15ck0VEGT8RES+//HLMmTMnzjzzzFi6dGls27YtIsZeNi11yO5///vfGBwcrDU8ImLWrFnxj3/84zhx9d6gHTt2RERkZaNrO3bsiJkzZ9aut7e3x4knnljd836hoaGhuOmmm+ITn/hEXHDBBRFxuP0dHR3R1dVVu9dllJOhrrU6bdy4MXp6eqKvry+mTp0a999/f5x33nmxYcOGcS+biIh77rkn/vrXv8Zzzz034tp4Hz8LFy6Mu+++O84999zYvn17/OAHP4jLLrssNm3aNOayaSnDVajQ0dKyZcti06ZN8eSTTx5vVt5TdO6558aGDRtiz5498dvf/jauvfbaWLNmzfFm6z1Br732Wtx4442xcuXK6OzsPN7svOdo0aJF1ff58+fHwoUL47TTTot77703Jk+ePKa8tFSocMaMGTFx4sQRmSo7d+6M7u7u48TVe4PU/tFk093dHbt27apdP3ToULzxxhvvK/ndcMMN8cc//jEef/zx+OAHP1j93t3dHQcPHozdu3fX7ncZ5WSoa61OHR0dcdZZZ8WCBQtixYoVcdFFF8VPf/rTIps4HO7atWtXfPSjH4329vZob2+PNWvWxM9+9rNob2+PWbNmjXsZkbq6uuKcc86JLVu2jPn4aSnD1dHREQsWLIhVq1ZVvw0NDcWqVauip6fnOHJ2/OmMM86I7u7ummz27t0bzzzzTCWbnp6e2L17d6xbt666Z/Xq1TE0NBQLFy4cc57faUopxQ033BD3339/rF69Os4444za9QULFsSkSZNqMtq8eXNs27atJqONGzfWDPzKlStj2rRpcd55541NQ8aQhoaGor+/v8gmIi6//PLYuHFjbNiwofpcfPHFsXTp0ur7eJcRaf/+/fHKK6/E7Nmzx378HHNqyXGme+65JzUajXT33Xenl156KX39619PXV1dtUyV9yvt27cvrV+/Pq1fvz5FRPrJT36S1q9fn/71r3+llA6nw3d1daXf//736YUXXkif//zns+nwH/nIR9IzzzyTnnzyyXT22We/b9Lhv/GNb6Tp06enJ554opay+9Zbb1X3XHfddWnu3Llp9erV6fnnn089PT2pp6enuq6U3SuuuCJt2LAhPfLII+nkk09+X6Qz33LLLWnNmjVp69at6YUXXki33HJLamtrS48++mhKaXzLphkxqzCl8S2j5cuXpyeeeCJt3bo1PfXUU6m3tzfNmDEj7dq1K6U0trJpOcOVUko///nP09y5c1NHR0e65JJL0tNPP328WRoTevzxx1NEjPhce+21KaXDKfHf+9730qxZs1Kj0UiXX3552rx5c62M119/PV1zzTVp6tSpadq0aenLX/5y2rdv33FozTtPOdlERLrrrruqew4cOJCuv/76dMIJJ6QpU6akq666Km3fvr1WzquvvpoWLVqUJk+enGbMmJGWL1+eBgYGxrg17zx95StfSaeddlrq6OhIJ598crr88ssro5XS+JZNM3LDNZ5ltGTJkjR79uzU0dGRTjnllLRkyZK0ZcuW6vpYyqa81qRQoUKFCrUUtdQaV6FChQoVKlQMV6FChQoVaikqhqtQoUKFCrUUFcNVqFChQoVaiorhKlSoUKFCLUXFcBUqVKhQoZaiYrgKFSpUqFBLUTFchQoVKlSopagYrkKFChUq1FJUDFehQoUKFWopKoarUKFChQq1FBXDVahQoUKFWor+H6v02PsVmFJJAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9aZCkaXUe+uS+L5WZtS+9r/RsPcPAAAMIY5BAISRABl9fGUkOSUGAHDLhDYVsWfJCWHaEJSFZCjtkJDmMt7iB0YIIYECCQTPD7EtPL9NLde175Vq5VWbeH3Wft548nT0DEhem4DsRHdWV9eX3vd+7nOec55z3vL5er9eDJ5544oknnhwQ8X+3G+CJJ5544okn34p4wOWJJ5544smBEg+4PPHEE088OVDiAZcnnnjiiScHSjzg8sQTTzzx5ECJB1yeeOKJJ54cKPGAyxNPPPHEkwMlHnB54oknnnhyoMQDLk888cQTTw6UeMDliSeeeOLJgZLvGnD99m//Ng4fPoxoNIrXve51+MY3vvHdaoonnnjiiScHSL4rwPU//+f/xMc+9jH88i//Mp566incddddeOc734m1tbXvRnM88cQTTzw5QOL7bhTZfd3rXofXvva1+K3f+i0AQLfbxfT0NH7+538e//Sf/tPvdHM88cQTTzw5QBL8Tj+w1WrhySefxMc//nH3md/vx9vf/nY88sgjA7/TbDbRbDbd791uF1tbW8jn8/D5fP+/t9kTTzzxxJNvr/R6PVQqFUxMTMDv/9bIv+84cG1sbKDT6WB0dLTv89HRUVy6dGngdz7xiU/gV37lV74TzfPEE0888eQ7KPPz85iamvqWvnMgsgo//vGPo1QquX9zc3Pf7SZ54oknnnjybZBUKvUtf+c77nEVCgUEAgGsrq72fb66uoqxsbGB34lEIohEIt+J5nniiSeeePIdlL9KuOc77nGFw2Hce++9eOihh9xn3W4XDz30EB544IHvdHM88cQTTzw5YPId97gA4GMf+xg+9KEP4b777sP999+PX//1X0etVsNP/dRPfTea48mrVNQSY/Krz+fr+79Kr9e77d/5/263C5/P567r9Xrw+/3u/7yOP/UzvS/v4/f70el03P14b16v3x/U/m63i2AwCJ/Ph93d3Vuu0Wv1c71O269tYBv1Wl6vv+v/b/cs2898pu1bfZbtQ35Pr7NtG/SdV5Jv9jpPvnfkuwJcH/jAB7C+vo5//s//OVZWVnD33Xfj85///C0JG5781cUq20GfD1Iweg2VHzN+VJlaBa3KWRWmfo/34T21barQ9Hu3A5LbKWl9h0Ag0NcWq8jt+3W73YFtvx2AWsWr9wkGg7fc077LoHvyedoOBRqKfQ97HyvaV/ocC94cg9uBurbJtjsQCACAA/LbzRF+146XBXj2QyAQQKfTue0Y2PFhWwYBJO/zcvP+dmtjkCFk19ege3ny7Zfvyj6uv66Uy2VkMpnvdjO+40LFOMgit5+/nJV/O6ucCz0YDDqFS2Wk31UPg3/f3d3tUxBsKxWF/Uwtf74H20ilo4CpCp0SCoWcsu12u649nU4Hfr8fwWAQnU7HvQfvryCnYMM+JvDw3to/VgHrO/r9/lvup0p0EAja8dB+YVv4/gqI+kz+rmBi+1e/w35Rpa/AoGBljRYFBPapeouBQMDNBe3zTqfT1w+cExS+G9u2u7vbB1iBQMA9R9tHsePJ/ho0f+3asR6rts2Cu8oreekcP52ztzM0dI1aA+57XUqlEtLp9Lf0ne+Kx+XJX110sVrKhgt9kPIatGAHWYu8fpDFqAt1kCVOxa0Lj4pjkJIZ9H0FFWspK4gMsreo3PR+Pp/P7QH0+/1OwQJ7wAf0g64qJ72PBRc7Hvr5IG+S70Blbr0BAH1gzffVaywQWUBk/yho8jv8m4LJ7drP9qmhxHey1Ki2kZ/T8NH30jEd5MFz7BX81TCy700DSr9v78ln6/e5Rtgn1sNWsfNz0Dqy80b/pkYbRcfDjoEn37x4wHWAZBAdQ+WlliyFSkYVnipjAH2KnNe1221370H0noIIP6cnEAqFsLu76yxjv9+PUCiERqPRt6j5HlapWRBT614pN7/fj3a73ddGtk+VE99DPURVuLT0u91unyeo76c/B3mNlvrSe9NL4LNtOwaNkyriTqeDYDCIQCCAVqvVZ1To++lY8jk6T4LBICKRCNrtNrrdLkKhEHw+HxqNxi39znvwHTjmHIPbedlsJ5U755G2Sb0X3lNBs16vIxQK3eIF8R89Ou1ztpNzC9hLAuNY6LzTecZ2c5xCoRA6nc4t3qx6bexPNXBezvPSzzlXBxmWbIcHYt+ceMB1wEQpLWs52wXZ6/UQDAb7AMfeh4Cji1w9Oau4qaDUwtZ2ENQIZlTaVPBqJWvb9J1UsQH9C169DCpJBQFSfNp2/Y62Va1xVfQan+Jn2ga2fXd39xYaiO/UaDT6vE8FNks76fN17Kz1zncjyNn3Y18NUoAcL46HpanUMOH7893tfCCdp3SqvZc1RHSeDkriGMQIEBjV8+M/TWTR7yjwD/Jq7PdoaOmc0GeqEaLe3yDGwHp3tg8suGpbtZ888HplORAbkD3ZE0tpcDGoItPPgX7rexBAKL2mykMXGRU3f9d/loq0VGW320W73UYoFHLKf1CyAdtNOs/+zbZ3kBJQD02prUGWtv6uIKftVpC2Frq22SoxpY34Xcbj+Hda9urpaP+pUudn9Gj4fvybUlLqgVu6rtVq3ZKIou9nPUxtL0GK37X9qYaBzjPrmXBODjJCXi7bkdfp+OoY6H21PXYua3vZPuux6jxQA8re06433msQYCszYN9DjUBPvjnxPK4DIn6/H5FIBL1ez1FGXIiW1gH2LElVVqrwdXHRClflRGXl8/nQarXc9e1223kabJMqGH5GRavWuaVHKKpogX3lq7EUVTztdrsPkDSBQZU8gD7PaRCdpkrRinpPqlg09sN7Ko2pQKIUlHozvEYTDrRfCN4cQ7ZD63XacebvNBKU7uLz9H58Rz6H3qPf70er1XLfDYVCCAaDaLfb7rmWClWFq16y9fw4VsFgELFYzFGJu7u7btxsQob2iZ27fAedi7xO5yCNBm0zr2PfW49XvVj14kkrK1hqOzRJRmPO7D/Op0gk0vd89So9eWXxPK4DJIOoLgUZa4Wqh8LPVBkD+wuN91PqLhAIDMzKUiuVXoKldPS7VOjWq9HrBgWytQ0K0PaZ+mxmptl7qYejbRxEQ2k/UbnY+A2VolJvFpzZtt3dXQe4VNLWK7P/t+Ot91Pa0u79sh6FNQQsWCsg2DbdzmvV/rKf857a//rT9puOn/VmaVRpDNcCpfVi9Psaf7TX6pxRINb7EAD5U0XfX8FT1532A42AQaL9o2vYk9uL53EdEKH3pL9rooZVllx4tKaVblHrU+MmVLL82+7urrOMqfj4HaV4FATVk7Ap2taz4vW8J5+jngCFlJZ6NoyBqAK1KdqtVstZ3JaKo0LS91GvlM8Kh8Ou/dp2fXcCrPax0m42fkevWb03jlMwGEQ4HO5LftB+Yhs4vvy7jjs/0yQFenLhcLhPOfOZbIcCsd/vR71ed2A+aCwt6KiHrF65/p3p7vruOo5qOGgslQaAekUKEBxjCzQ6bsoeBINB14dkJxR81HPlMxU42e5wOIxWq9W3nvge+u6ca2pw8BnqKXvy8uIB1wEWa6krSFiaDei3CFUhqqgVDOxRT1SaXIg2BqHKSa1ntbD1uZa24buoAqQyUqDR71oPSeN8amHb79oqF7bvFHS63S7C4bBTrNpe22e2fwlCg6gjTQbQ7FDbBnt/9ZSUGiXNS4Wt7bG0LT+3Y2/fTWk2AH2ZfIO8GKUNLWWn16tHqLSfGiycAwqeg+a7zm8dT7vxXPudQKJzSOe3tt1mQupYsM2WRdD+B/bpajV0aEBou21fevLy4gHXARGrFKzi1cVjvQ+KtWZ7vV5fDEzpN12ofAYLHTebzb77qwWsC52LX+Ni9CTUWrYWOO9lM+AUUAfRjvyuCu+vvwO3xmL4XfZvKBRyoM3rLdWoStPSZVTY6n3yWqvMdbw0JsL7qWfJ7+pPAoyl0BSorbdKRa3K11LG1ltS8FdAsaBl56HOCcsIKKiz3YOoSd5TaWodPwVAbh2wHjHBV9tDD45iPbhBY6zjQO9NaUi79my/63117XLeMx7mye3Fq5xxQISLmRawLgagP2PLKn1ambrAeD+lC7mIdH+U0neDFKkuZPWwqICU7qKoklGKjopYAQTYBwFer0BkgYzXWG+LfcTvDvIkBlFcqoiVilVRWpZ9a5MDNK6l76SWvipkTWpRr0zBjf2u72kTL9QQ0bliPRkFJc001Pbxd7ZBaTH1JiwNyj7S97D3poTD4VvmJvea6b303moYqTFE8GBSiiYVaT9Yb1DHRSnCQfvxbKxQjQqOga5b/Q5/D4fD8Pl8rt++3+hCr3LG97AQgDjxuci0PJPKICVPoeWn2Yj6u3L7VnEqEGjbbDqvKkfrXaiSZFt1saqFr4CkioT9YBWfVUS8h1Us6kHwe7afBwn7SWNLNovQ0knqZVnvx9Jb2hY+y2Yt8m/WoBj0PhaMbR/xvmq86Hvw+zZ7jvdQ2tOCmM4h9oWOvXol/L8mkGi/6fsOomwVhLUNOkfUiFPQt54m26xp+zpWaiio0abPtPPOVmfRdalzwZNvTjzgOiDCOMag9Fkbe1CloMrM0izqPdA7olK2ikcz+vhTn6kLXpWU9aRsAoNVRJYO1NiMgqu+F8VSXryOP9kn6hFZZaLKUZ+jSkW9DQUB63VqWxS89b6qtGjV8134XE1e4NjSI7PeorabP1Xp8nk6D6xytn2j/WEBQj1bTUjQWKP1Jgf1iwKi3t8ChX2nQZSrziEFL+1nnd/8v8aj1OMeZNhpP/N5mkxkDRhdI/oO+s7sj+83j+uvIh5wHSDRUkyc3Fr5wio5taKB/c3IuneKG4MZuO52u64skCp1jX+pF6W0HP9p6RwFTVUCar1a5cvUc1XG6nGol8I2asyK92N/qZKkItN7WwBpt9uIRqPodruOvlFl1+120Ww2+/qVbdC9WWyHgo72h8+3FzdkmzShRpUccGvdRBoxqujYJ3Y8VAFTlEZkf/Dd9J5Km1G0sob2mxo8llLl/zV+Yz1PvSffw3qdpK7ZRqW/mf3ZaDT61oSOd7vd7nv3SCTixkUzAxW8aDTyM80IVMOKCTxqpNk4rfaljqd64p68snjAdYBEFaylenRBWcvudotBF51eT/Dx+fZ4d11YqgDtolOQHJRNpkClCkvvZxM+dHHbbDEFikGUzqD+Y1v4fbWGNSZnadZBYKIerQVQC+zqDes46jNszMnSovS0VPnyHdQDpDLnOCqlp54PPWwtX6WxKkuJKcASPNkPClY6Nynqreg84PdtvFMBQA0eXq8AwM+VtlRhuxTgOb+tJ6Rel4Ktevp2fOwY2/kyCJSssRMMBvu2u3jy8uIB1wERpbEoatFTlP7gP+7lYQah0hzNZrMv84xKkPek98PCuQQIzdCysSZWb9BFzPZzDxGzvhR4LVVD5ayKw8a++Fzd8KkxLKtMFVgoSmWpsuLn6inxp1abCIfDTvFocWEdI76HerEKerwvYzCsdajvrF6e7k1TmlPvrd+hR2Tni3o3+m6cL+rVqoepc4jJD5pMYuk69XI4tuptU3nre2sbB3ly7CsFMu1PNcrs2mE/9Ho95/XW63X3vtFotK8WJUFe34PeGecLx169bgU26/3q+tACyh5V+MriAdcBES46SztYq9zKoL0oFHsfzd5TmkatQbVSCXLAfpUDXqPWtMY8dD+N9TxUmal1rdaq9QCsd2Q9QlUY/IxKdlDcjv2hz1LLWdvDv9nkDJs8YPf2qIdmx0PbYsdMQY+eC98F2M+QJP2r1JreQ/uNgKrjqN7GILqXwMatDbplgNdZr9a+uwUnpcE1pqReNQ0qu6lXx5zXKt2tWxNs/zJ1nr+r4aExVgsmluJk+9TQ0XG2MVNrQNrx9+TlxQOuAyRc1FpVwlJ4VuEo6LxccFiVry5K9ajsIuVzaLEPUsaWulOwtUeqaPtVKdnznXgvjYPQQ1LFZBWmtkn7Q71U+1MpSKXs+H2tSmLf2Xql+o4vR1taINX28r3oVer76Zjad9Ux1SQVggjHeBCNq2NoQYzzhdSbArptk41lKjhbL4l9rLElfRf2vd1QTINIvV59lu1/Cq/VmJSCC++vYKrvw3dW4LXvzfdSg8iOtcavPbm9ePu4DogoOKg1CuyDlCokfkeVgk2D73Q6jibRTakMWNMKtnEYVTAKkNbbUQpvEBWie5Wsp6IL2b6rBs07nY7zACzlebsag4MUptJtCtYUKkgtTcT35HcHxZGsxwH0B+V1MzgTFwZ5chQ+l/udbMFlKnRNYFBRMFRQprKlJ6XGzKC+GnRPVdz8nPcgnajzj+3Q5wyiPHVs1diw763gys/U47aAwkxCZRp0blpPTjfODwIofk/7RE860PbyM+vNaX98v4i3j+t7XCztZyk04Fa6iWJBQS13/lQFz3taSkOVnFrVwK1eExUO72eTKQZZoQpItHD53UHt0aQHfqY0kCpmKnSrbOy7WhBV74lt0T5XhWq9KbWubcxDx2iQd0MFqd6RKnfb7+xLjfGp96A/eb2tValzRr0WrTBhExgswJFe0/dRZcx20LCwbeOzbaaonfvaXp1PCjp2LvPe/I7OA51v1osaBLDaPv3M0tNsk/W69ZmD3tuT24sHXAdENCZDxaCegVZM0AXNa3kKMbBnrbOckc0QU3Dh71xc+iyl50jRALfGkDSOZNOMFUiA/owzW2RV97DxvrSA1ePT+7Bsk1Yv0PfTZAkqFT5TA/+aUKBWvFK3FAXNQe+k48J347EnCkwcp1Ao5EpscXz57mynjnuz2UQ4HHZjyzaqMlX6Tj1C/UyBj+PL8Vegs96+PkspZgKqxqmYIWnBQ4GMfWVjrRqL5TM4PprMw7HRo2U0k0/HyoKrjhWw73Vz7th4sCbs8H11rVn6kPOD3282m33etSe3Fw+4DohYCs2mXfNvqpTU07B7YdSD4fdJVQ1KK1bLWRUZlQW9Cc0UtLSPtULVY7RVz/UfgD5w05RtfocKSdPCFfT43goSmgyi4GS9L6t0VKHbvrZKWIFIQdF6REo78TOOh74D+3TQfi2bgMA28H3VQ+B8GeT9KZixTQrk/F4kEuk7pkXbp6ClAKtUmfU2KNpn6uWzXUo5EqjUO7IZfjqPbKKMrivuAyPo6xhadkHbpWOu3qR6UTajlGPCJBKOiwdc35x4wHVARBU1sB/rGUSfAfuLX+MJSnWphW8pIlWgep1tj3paVO5WWVBRKEBqWxR0+X09ioV/43sNKnGlAKFxIgUlvpf+336mCkjvo9ex7/gZn2tBzd7Pgjb7wL4Hhck3qth0bPT5qui17Rq3Avo3Zw9SumyTfQd6D4O2Wuh31OvSuaHt1I3Zqti1P7R92qcKRoMA6HZGkvaRGig6v3mdfS+91iYT2XsrsPMa3Vup7dF5oXUM7Xh4Mlg84DogosqE9JJas1ZxxePxWxIf1OK2qeBWoalC1/iOfkblZOkY3UipSkHjTfyuUloWGPh9taRVCetpyAS8QUrdWr6qnKlsd3d3HcWksRm+l8+3fxq09dLoCSjIKI1rPQtVmpam4nO1f63Xxz5W+o3tVFBXZan71DRzjtfrhlyN5ehYKNWpdJnOT6u8rTfJvlDvnePCs8JIhXIc2X4FYu136/3rHFMwIF1rKTv1knTuaJ+o58o28XuWHeC80q0F1lNT4KWBOci48WSweMB1QESpHgCvOMFVaSqNpgtaKReNm3CRafxoUMDYLjhd3FaJqSLXf9ZDVIWmfydI2Kwt63GqQlYQAvorsmscz3pIagGrEudPzXLUayjqkVkLWpWdghqAvliWPfdsECWsHsMgsCMg2/FWALQ0HPtJv2MpMvU0OSadzv5pxephq8et/aOejKVS1bu2npWNaalBN8irtx6R9aAHeUscEwV1fkfnHN9P+wbALZ6n/Zsad3Z9EJA9eXnxgOuAiPUcrFVsgUzTxzUeYONGVhFZQBlknVrAUXBUhaZ/t1awpupbj8S2Q5Wh9R4BDLxGlR7vozUQVeFo36lS0mcpGOq11rtgUgnjilSwNllF405U5Brj0PezdKYCvE340PiXpRj5fQV0fXdtC++ryQb8PkXfU+fKIIOAc1aBitfofizOI72e1+m803ex8dpB1+kcBPYzWRWYtS81Hqn31TloAVONgUG0qmUyOEctG+Kdx/XK4gHXARH1NHZ3dxGNRuH3+9FoNPrASzOrSHXwnwax1XMIBALOAqRSU/pR76+WIReZLlZdsAqUmt1GelEVv8YC1AuhUmL77Flg+j09+lyVjP5fs+B4f6VN9R34GYFAx4HXaYyEn7M9qoz4HCoqVXpalYRCALFxQqW2mHGo11oqUAGB/ar787gfzJaY0niSAqOOLftHDSNeZzcCa0Yhwc56LfpTaU9rBGlfaSFpNbD4Pe1r9g/nO7Nt1XCz3hffRdcen8F2KHByjmo/sV0sd6ZAbdeJV6/wmxP/K1/iyXdbrPVIsdb+IMtcF6AqL6WYrLemVrtSV+ot8JlUTLRYNW7DduiC50K1e1eA/mQCbR+/p/SZtXZVaejJxbzOAo16Xdo//A4tcm2n7SsqXRvj4PN8Pp87JFDvR+F46ZjpcxRkVQnybwBuicNYa599r//sFgj7bJtUwWeznQq+/B7je+o5ss9tv9v5p/EljqXG9Ow/7Q97AgDbp/fXcVFDZlCsV71HpRN1TlrKWuepXR86V1Xs3GG79GgUT24vnsd1AEQnOReSFk+lRCIRZ9FZOkz5cy5spezUmwL2a8fxM/6u36EXodXI2Q4qSQu67XbbUSEW4FSptFqtPhBTK9p6jepRqndj4yy8Bui3mPkMPs/uCWNxYvt93UvG79tEFg3QNxqNPspN9zHZTbP6nlpsmO3lXq1Bfaw0qfYZ54ECFt+NbVVFrpQf28SqGnxX3lPjhjZpAthP8FHDhfuW9DkKcBSbiajjqeNFr049GBv7VEDUzFWgP0HGptED+x6TxghtvI9gqOuH92Sf8f/WS9PkIk9eXjzgOiBCJae0nQ0cU0nq52p9KmBZz430jG4KVkVjF5R6IQpwGhdRK5iiSkEteN5TlRjQX9/OUkWaWaj9oZQg/+mGYPaX3Q9m308/t9Sb0nE2gUCfzXewlJDG+NQjVeWtogp4kIel/aZ79thXOlZsk/7UcbHjq54o0J8VqWOkCpyAq+3RfVi2P+w88vl8bgO5Ptt66jrveJ3+ru+tBoq2j2tlUJq99oO+t74b+0xpXfUMtW90PWmyEMfFS8z45sSjCg+I6IKwFjZ/VzpORT0UoN+D0w2kSgtqiRqlAy3g8XqlkrQy96B/SrUofRYKhZy3QMWlHpUG1G3iAS18/WlpGlUQ2k8WZJTKVFCwfWmBwaY+qyfL9qtna6nCQfSo0khKsdGjtTSYBQZ9N+039eyUUtZ2q8LlGNFQsJ4N40U2bV2BTz1nzWDlfLB9p/NOx1CBQb9n14G+E6+3wMD2KrDwOdqnagxxrJVqVHDUTezaj3YNWIOJwOfJK4vncR0AsZSRWrYW0HTx0prkgrDlgdTyU+XPwq1q0eqzNa2ez6ECsbEFG+zW99C/RSIRBxRAv0egwXomnQQCATQaDQd2pCv5faVVFVgZlFdvjfdW6510XDAYRL1ed39XqpWfseIC+0MBRkEDAGKxGPx+P5rNJoB+sFMPVBUhlS6Bj16IVkYnbamUqCp+9iGAW7LW+N4am9H2aKklm9SiYMA2sz8HzV32Ba/j73ymZkrqmWjqGbK9Ovc1E9F6MWyjGiR8L2UkdO5qksTtCjVrkot69RwvriO+k64Hzcbk36yR5MntxfO4DohQ6WuSxCAPTKkmDZKr5ar/t96BpV3UWlQLUZWpKgprmeo92H4uco21qBeoYGrbqICgilY/V7rL798/n0rvpVYvr1Mq0t5Pr7XeCcFMv6+0rVKnCk4KruoN2eQFPsd6MZoBqUpRPVM1GnQs7fxRj4lt0PnD3wOBQF+2Ku9jwdqOvxpB6n1q33FcrPejHpvOCwUv/l09SAr7XOeTetMKSmqY8Fptk/afip0/lv4maNr5p+tCGQZPXl68Y00OkKhXYheQpTioKJiwoH8fFHjmQiLtQ1Ah7UeLHujfHEulpkqQyRm6yVK9CioApq+rt6NeBrCvQFutVp/HoCBJUQBVkGH7ut2uO7KF78zUZCosKmX1StRQ0P7jZ7qEFDT4DL4T/6bxEXoj1kMB9iuksI9s3MrGo/h3BQ+bim+NHpvIop6R3kcB0YKFevuq4DWeqJ60ghRFqUu9L5+t7VLwtmDJ8bOV+G1CkdLqBCr2NQ/WZP/y6B+t8cnvaRvVw9a26bYIHTf2BZ/Pgzm/3/ZxeceafA8LFw4VgrXWuTjVY1FahVY1gD7FomBExaBV35XqYTushcx7Ejist6SUpnpmQH+yhLWYVRGqZ6fBfwVDS3dZD0njGbxGQVIV3SBPlO3RDDnr+Q0Cy0FKjQqLz+UeJwsK1vtQi57fU69a6VIde35u22E9JwVOS/GpF8Gx05ibPrPX6z8AVI0b3ksNKu1HC4Aa+6RosofORR0Linp9PO34dnNLx4uf6QnRFjRv13bbv3aMNA7I+a8etCcvLx5wHQDRBakcPXBrYU5VmrpwlCpTBaXWMmktPcKCz+R3tU0EPlX2fr+/L/vRWuLWo7JemLZFvQDdvKlKjfdQZQMMTmZR8NfvacIB0J/BpwAD3LpHh5/pO+nftA02hmEVp1JUjMvZLQ38qdSTjifvqeOkytR6XfxMtwDwdzvedr4Nel9+xjHlfNJxsf3I3/kd/VzBzYKfPp/3UI9GAVRjSvyOZQosDantVC/felW2X3QcrMeqRoU+h/Ocf9M17smt4gHXARFNxlDvSheOegKa2quUhVqUao1zsbEiBwA0Gg1Eo1GnXH0+n7NYSeFR8QP99CR/1wXI+BwTE1golotYkyaAfcBst9vu2lgs5jLq9L21NI9VftYbsMqHMqjIripJehZ8d32ujXNpG6wHqcqMbeZ+Kj7fZohaoLfxLWCv1iFpXgKeegIcZ6WvtF/Ue1JPnMYIx4RemAUD9QB7vd4t52Kp56PGjMb+LBhzHgH954QpLczizuwDYI/eY5/yXTiHdIyDwSAajUbf3NC5bI0Qjpcah7ou1RvT+a/GzSAv2m5r8eTlxUvOOADCgLguImAw1aPWHbBP7dlMNSpZehk2Gw64dX8OP6Ni1fiXFevJUVSha3usF8WFr/EXjQloP9wuwUETIPgcgqN+pm3W+1lPzr7PoESZQd6HVcBsn3qp1gvS92C/KJ1kPWp9H1X+vJeOgfXE6V2pR8tn837qgfF7ll5Tmlg3Yg/yMjRJQ+eGzjl+h/fjOwxK5rBArqCi3qQFG5uIoXOBRoD2Ne9h1xT7PxgMuli0NXoUoPUznfuaQenJ7cXzuA6IWEqNYtN5+RmVqsYBqCAVpPgdxleYnEHFomnmGrfic6h8lOqwClMVhb6LVeTqaahi0vuzHb1ez22YVo9B31OVtaZEW4qHPwfdh56Fvq/GK/i5xmzUY1ClxvdXZajbDHTTuPWW2EZtlxotQP9mYhtH0YQcGkL63tYztx4PPRe9XtulsbZBBpU1bvQ69Z70b/Z6ZRIUvBVA2F6t/6h9qZ6STSKxn9t4qPXUORdsko2OD+c9+1fnpB0r/cyTlxcPuA6AqMJRSkMXq5b5UZDhnhqClVJlXOCkKqgQBlF9FvzYFlXeSqOocldqRRMqbIaW3sfn8/Ud025BgFUVuOj5TC2Cq3SNVgThdbwf+0YVIXCrF6XABqCPUrPGgzUUfD5fX7kkfkc9Cd0MzntoTIrP1z5WOk5pMd5D26vzSQEY2NtfxjJbHF+/3496vY5Go+HmEqneQXE/VcLcW6dKXRWyenkaY1MPXgFEx5XP4jUUAijvy3sr7cl7KIAr4PAeXAu2Pqauh0HsBQ0dNfL4HU2o0b142j7rHXsyWDyf9ACItX75U6khXmctN03F5T9eawvfWvpJFQeVh6V2lJpUK9lanhZ4bNxJlauly/S99d34uX0njYWw/QQ7BRPtV+1TZrFZD9ACk7ZFFZT+rs9QKs2CsVrdti+0jUol6fesF67emdK/6oXx/rxGM+f4U5U1+1fnnHpJbJPOQ+sV6vziWFmP0npr1gNhe/Td+FNpSBt7slS09cZ0Hvr9/j6v1CZy6DO1f5QCteOk/cXPdD7YrFJPbi/ePq4DIExKaDQabqFrfTW18tS6474Qew1FYzm9Xq9vj5NapZ1Opy94rEpAFZ+C0iAaRi1ULnxNG+d1ej9azDZpQulCegG0XtXb0XvSixsEKpZq0sLB/JyAp5+rJ6nKTSuWWCBWL3kQgFrjwYKiUncKXFYp67Os1zDoefyu0rtKHzLWRW/E7juiYaTGjip9Psu+h3rnttiwBU4tqKtGlFKh9r04j3kvrgfOcRo0mrEajUbdeyqFy/Hg50oF6ry09B+fySor9Xrdfa40KL3o7yf5q+zj8jyuAyBKdWmWFzdEUrkrcKmyUAWqf1fLUC1I4NZTfDVwr0rbKnylmdh2qzAtFaSKWtugoKVeiLZb6R32jSprVaDq6bAv2RZ+31r3ti81dqb1+vj+aunzOHr+XZWn2ovWYqeol2s9YOvlqnVv+1qNBb2Gfcm28Zn6LuolqgdrPRCl6BQIuSHYeoVU/mpUUBTQrHdqvVp+j31tPXPtX33HQV4sP1dw1jmk3pmWILP0u3qdmnU6KAZo58ag+efJreLFuA6A9Hr7ddGs0rGps0ppWcrH1ksDbgUm65GpJ6TgohauKjhrIbOdeg9VxKTibFo1wVqVEz9nGyzw6fP12VTclrq0Hsqgd1Tr/3bt1FieZraph6Wgpl6x9o9a/fQsmKGm8Sf1dNXC17HWPlBPVRWk0lfaVmawauV9W0+PnrUFHY0P0hvW/lFvF0Cfp8pnWoPIeof6T71CC2qWvtR7DAJinbM6NoMoXL2nrgGdm/ZajiPfj89huad6vd4Hop7cXjzgOgCi6c1WsQG4RSmp0gdu3SyrgKELzgaUrRXMv9kMQxtQ50JVxa88v92jZBWRJnBoTKrb7boEB/5OpagUod1AbUGav3MfFoPlSj9ZJQWg771VmamVbYFFlWgsFnMbqZngwP7T+JrST7T82TYLpEpdWe+J9yB4qBfg8/n6NtWqgaIeJZ+htB9jMQRVPott1+KzFgAUvDST1NLZVODsR74792ZRtL3W+9e5aOehpsJzn6B6h3oPXYd8p2azeUvMWOcJgVufY5Or9Cf3R6pB4sntxQOuAyBccIPoFl2UunD5PZvqa0W/o97LoP+rQuH1g4BLFdSgALl6KkB/FQVVkApevE4pHfWylKpRaxboz6zkcwC4Y+sHHUOh76fPZLyDhyAqgGg7+Jm2m9Y1761ttckO/Ix0qYKiXme9CX6mnpH2r/az9q96z3aOafsVcJj1aZU744PqlelcU6ABbs2ss1l++k/voc/Q8et0OojH4/D5+mOa6mGpt2afoWCpXp/ucaNXqnOKc0O9Pes5DmI0BtGznry8eMB1QESt1NspRlVMuheL11gqwy5aem28hwKIWouqFAlkPJHZ0lL8TPcr8fRevpeCXyCwV1DXbmDlM5vNZh89pEqMIERRmsrGfoB9z49KitY3RQu28vuszMC2qRfItvG9LCAzHkLFaY//UA9y0NjpuyiQ6phooF89b6uM6Q1YsGZ/87n6fwVZC2Tq0bBfGJ+zRZk1BsRxsN64ArT2mc6vQWWc/P69bMBms4lwOIxoNOrmJt9NAV3HXNcT34sUHtvCd1UPUd9FgY19b7cE+P1+RCIRAPuVPnTtevLK4gHXARAqHAB9Vp9ajcCtMRNez3uola/XqhWtgMZnqLKnQuLz1EpXD8XuJ7IgZkFWFZuNi5CGerk9PKrkeV8qO/UMbDq/bbvNXrxd3w76XL0VpbP0eaqQrXfDz0ldcpw4/gRwvT+9E0sX6r3V22A2IK+x+7EUgPSn3tt6Zup5KzWpxosmYuizCWwUa0hZ74xjYr12NWIsSOp64LWW4uP3SKNybtv5qdQewZvGA9uqtKwm89j4onp+dj168vLiAdcBEF20qjxUeSk9pB6EWoJczKo01XuzC1wXGhfmoHiYKnMqBM1m49/4ubWiLTWlXiXbbqlSG8uyHumgFGX1zvR5CtTav5oJpiCm1r9a7KokFfzs/6kM+Q70xAj46u1asFPRvrPj8HLUn95HqTF+Pogq5P91Dil1x7ZbBaygpW1VMBj0PnodQYLP0ney76PrQGNn2jc+335augIyhX3H5+rGYgVWGnHW6GJf2PiazgHGVNkmXWvqwXkyWDzgOgCi1pwqbtJNjIPY1GOlNNRyZ4Bds/ZUaXW7XXcvZrOp0mdSgy74QZUP1DrWd2BCBE8w7vV6bt+M7muyYERQUwVCOqrVavVltFmqTak0to19q0kItris0lF6rVJvBIpBbbfe8e3qAvL+7A89rLHX67m4kdJyVOw2WWbQmPFeCobWslcPQO/3St6oGhXaLi1azPiPLZ+lHnIwGOyjYtVrG7Sfin1FUPH59s6C41YRNVi0Ukqn00Gj0bhlrHhvHTNrrPGn9qO+H/tNTzNg/ys1rCA/yDDy5OXFA64DIFwYCgqc3GrtW2+o19tLp7ZeiR7toda2TU3X73GhMnjOz2zVcAUPgo69l8ao1ILl91QpWU9REwV0Dxpwa1o3f+r36EERaK2HZakl62XZz7Xttpgr+4J9Zz07TZ2nch10xDvFeo+8h2ZDqpfFMVKPCbi1FqD1yvT+fFcLstondj+WZQbYt3r/QTSvzlEFLlXqVrTtBArta/YRz9Qa5G1q1q6KzjVtJ3+S5qTRpHPMxiJ1zgL7AE4DRY0Pjyp8ZfGA64CIejOqoNWi1omvykvpMbWKVaGpwlCPQOkOtbB5L13YlpqzgKQKRhUsFYuCjh43obScXdQa8Nb+4P8pVCRqKasiYvvs//l+2rcW6Pm7xs8A9MVuqLzpWbAP1GvTgsFUshZEFBD0WvXE2CabhUjFqSDMJAFN4uD1Ok7qcWg/6dgOou8UPPg7r9GtA/b+1tjSMdXr9Fqg35CzxgXfn96Rxn0HzSXegzFSBTiO3e0obwVKrls1Qvhca8xYA8mTweIB1wEQm2ari55KVT0YTcBoNpvo9XquPI9VnLxOq05QWevvwD59o8qCe3kUDFU5Kh3JNuvBjUqh2PqACho2Sw7YzxrktUA/rUqloFlrqtB5L1JrQD8wKX2kHg7pWatAlRZSC1zHiDExjbFwHNVLAPaUXzwed+/VaDRuiVupIuU7qFXPe2kclH2v3oGCjSbq6LPYh/YoHLZPAcB62Oxba8Dwc6WwrYFkY566n4r0q44VReewjpkyBexDC7ZqKNKw0HWhiTK6Frnpmv3HDFoFYaWxSY9zPHg9Cxt7Mlg84DogoopKA8I27mApIIruBdKSNkqfaXaUWsK6oIFbz+my1qZSUUrx8DObPm2pIOsl8rvWI9KYjKW6VCnbNmsZHn2GemjWw1QlrOW39HqlLm3cQsHMZq7p9wjwGkuzXqz1FBUY2f8WiCzlZWlK7WM7Tjq3+J46BtoWS3dZz0u9Nz7fGgr6DBo0muVn54mOFUXjdPo+1nuy3veguaztV0NJU/etEcDvsu9tX+mcU8PHi299c+IB1wGQ29FfAPqyrjR7SxMkNE6gGWGacWXjY2ph8jvWw6DlqlQXsM/bt9ttRKPRvg2p9HCsp6KKyyZ30Eux76V9o9lhvIbP1EC5gvag/Ue2D3q9/f1WWp1DlbwqKnp07AMCi2am+f1+xGKxvvYq0HQ6HdRqNafUNC5nPST17Kg8+UwaOXwXjZupR6FjzOsYG6Wip7Gk3+X7sWKGjivngWUGFEStQcTxYX/oHif2P8dS+17BaxCtSePOFkLW8aZBM6jiDPtQt1Uou6CnV/P/fAZjtayMod9TL11ZBfUaPRksHnAdALGBbAUoKnRdpEpN6D2UHlLFx0Wv5XbUYtbPNM6mSQe8VmkgS2cB/bE6/q7vaK17XsN30T1kllrifRTUtA/sfRVs9dlK1VlaTjeeWm+C3hSVOL9HpR8MBpFMJvveMRKJOEXOjbI+n89RsAQVghc9YgUk9QQ5XuoNKr2sYKfzxtKF1iO2MScqZd5Hla0aSuppaFv0eUzqsWPP69Ro4T+to6hjDKBvDdjtEWyfenmWFlVQ4/MJQLbPCUIaP9T72Pvz+6QqdX7xb7oePBksHnAdAFFlQ+l2u32HKQ6iULjYbFzKWtd6X3oXqjjUggX2PQsbTNe2sj2DlKR6IxT1pqxCsjSTbY9SRao0+HcqRkt7aSCf37XP5DuoMqOo52WVFZUaAOdFaJzl9OnTmJiYQC6XQ6vVQr1eR6VScceEzM3NoVarOWtdvS5thxoZfK4mdlgPW/uaY8V3UW+TwGAVro4bn8OsOutBKg1t57ImLrBNnNfaRgKyJqDo+/J5vLdS4jTEdD4rwHD81OscRPv5fL6+7FmdC/revDfvD8DFqrQvrZdoAdUDrVcWD7gOgKg1qsq/1+u5ckPWO6Fi0O9o1hQ/J1BpPMdWvbB/t8pFgYPXqyKiQrFxCA1iq1LVWIy+G6krVWC6CVktfCpwvb/Sodo3qrSpvMLhcF/7eA0NBT1kkIpLU/iDwSDS6TSSySSOHDmCXC6HQ4cOIZFIIBgMIpPJIBQKYWVlBTs7OwiFQsjn82i326jX6y6pZnNzE1tbW1hfX8fly5exs7Nzi5eoVj2VsCp7tp9gpOOvQK3/2Eda1Jj3JD1Mpcxrde+bgrrdawjA0YrcAsB3sjSt7vtSz8W2X7/L57A9WopLx4z3Z0zRVrtX4Od85TxVb9yyFNbQUtDjuwyKuXI89YRkTwaLB1wHQFSpa2KGWo2a4WQD8fwuf+fi1wC1VWBqVdqFqECi97Kejop6IoMyx3g/G8Niexjb0I2l/L5VrJZWUwDUzcvaH3YDKd9JrXBtq25aZjxIY2DZbBaHDh3CzMwMjh8/jmg0imPHjiEej6NWq+HixYsolUq4fv06Wq0W0uk0zp49i3K5jGKxiHg8jnw+j+npaYyPj6PRaCAYDGJubg7lchk7Ozt9bSVQa6Ymx0ITcSjW29aK/Qpu7EsFJvWg7X3tmKiRBfQXp2W71fPW+KTS4Do2Oh4KHtb71bmpYKFrZpAHp8+w2wzYJ+rFKaWo1KSCoKVc+V2d77byvSe3Fw+4DoCocrGFRamUVGGrxcvvKQ2hNJJ6I5p1xb9rFqINjAP7Cl6VitIvQH/mGL+jtA6Vrj7TemGayWfvp7Qon6tKWRUYhe20CoX93Wq1HAgEg0HngbHPgf59PQAwMzODqakpTE1N4ejRoy7lvVgsolQqIZfLIZ1OIxaLuX0+IyMjaLVaGBkZwenTp1EqlbCwsIBisYitrS0Ui0WkUinMzMzgx3/8x7G5uYnt7W0899xzWFlZwfXr1/uSCzQVvtvt3pJ2r0pb+02VvXrrGlPSOBrHUZU3FTqfx/5hjIgFazlOfDbHSkHSxsIs8Og8ZBIIx1rnJz07jjn7xhpMFgTVo9YEGCaMaGaozjcajnwXpUW1+okaUzTI2Edcg57cXjzgOgCiJZbUiubCthY1PyetRtEFzev4c1BCBn9ysdnDBKm0VJFQ1EIFbq3WoN4igL56fWyLVTpq+Wq6uNJ56n2qZazPVUpMFaztI76btp+gqiBH6u/06dM4fvw4JiYmEI1GUSwWHZ1GRc1DA0dHR1Gv15FOp9Hr9ZBMJhGPx9015XIZtVoNm5ubqFQqWFtbw9DQEAqFArLZLAAgnU5jc3MTpVLJtY0gw36iJ2jHjO+nHqidP9qvStHZe+g/G9PS8eHvanCo92GB0O6T0rmpgGeTQJTiUwZAKT3NkrR/U29KwZ5zk0YHn6Vek8aTlXrU9+bn6rmqMenJK4sHXAdAbkeLKA1BS9nSR4OuVWvPei6qrAmKXJxK91hrUxXJIMVvA86WylG6hoqFv+vnCjBUDgqyav0qVahgY6ka9RL13amoNHAP7HuwBKPR0VEMDw/j+PHjGBsbQyqVQqVSQaVSQa/XQyaTQSAQcJmCu7u72NnZQaVScZuKG40G4vF4H2BHIhGMjIy4a0hFxeNxHDlyBOFwGNeuXUO323WeDNtogZ1joPEtxnUsELGvlO7S7/EZOqYKEBr3ZP/b5+icUcOBbVbvWue4nadMwtB72nFWGts+T+lK/Zs1aPT5gyhO9QrVM7X9pgampRt7vV4fKHpye/mWe+irX/0q/t2/+3d48sknsby8jM985jP40R/9Uff3Xq+HX/7lX8Z//s//GcViEW984xvxO7/zOzhx4oS7ZmtrCz//8z+PP/7jP4bf78f73vc+/MZv/AaSyeS35aW+14QLX2NSujg0+4qL3mbR6b0UCFmQlFYjrXYuMqVcaA1yYWlKr1rk/Iz/NNCsoKbXa5FgtkdpPy2wqqBMCpNehcZIer294r2amq6KMBKJ9G0ipSIhZUPgU0s+FAohmUxidHQU+Xwe6XQax48fRz6fd3vW1tfX4fP5kEwmXZbg7u4u5ubmsLKyAp/Ph62tLTQaDdfmRqOB69ev98XmwuGw88KsYh8bG0MikcDm5iYWFxexurqKy5cvO5pJT1Jmf+s+K1JYSv9akKCXzfmn80HHkeCglVnUy7OxVIK30opsg6XRdMy1ggzfTfdB6dzTvrIV3K0hY9kACyz8mwKgPtNS6mqQqeelRkA4HHZz3RoK1sjz5Fb5loGrVqvhrrvuwk//9E/jve997y1//7Vf+zX85m/+Jv7gD/4AR44cwT/7Z/8M73znO/Hiiy8iGo0CAP7O3/k7WF5exhe/+EW022381E/9FH72Z38Wn/70p//6b/Q9KOqdcAHczqsg308gUKUL7C8+zbLTvUnWW1KaRC1Da20qTaftG7R/RuNXBB+7r0vjdKqI7PPUY+Tf2BdKr2r/qfJlUF3vSzpPwZp/TyQSSKfTmJ6extDQEFKpFHK5nEvQoHfG/Vntdhs7OzsOKCORCBKJBE6cONFHM3W7/ce3b29vo9FooFarOcp3UGr16OioA6CFhQWUy+U+sAXQN3Y2IYGiZZN4nSpd9SC0GDP7Vss8aUkvNa44rtqfNplB6T+KelV8HvvMes/M9tOYqRognOdafFppUs5NpYR1HWjfWa9N43G3YxRs3NUyIkB/2SpPBsu3DFw/9EM/hB/6oR8a+Lder4df//Vfxy/90i/hPe95DwDgD//wDzE6Oor/83/+Dz74wQ/i4sWL+PznP4/HH38c9913HwDgk5/8JN71rnfh3//7f4+JiYm/xut8b4q1IIF9KosL1V6nSQeWu1dlb6kVpfsUqFTBaoo1P1PgsnSepaj0vXg/9Rj1XQZRP/y/VQL8XDME1ZOwVJatV0dly/8rHUiDIJPJIJvNIpPJIJVKIZlMuiSDZrPZB9hMbff7/YhGo0in00gkEn0gRyudoMUkELatUqk45Vsul50Hx5p2iUTCtb9QKMDn86FcLjsFSqWqXpvNINR31T6iR8P5pEDFvubYsb28l9a+tLFGO1917Kz3zjayT9WLUdqRbdQ1ooaSzm1+x267UG+UfaDbLRTsNcFD14ZNILHJGAqiBGT2oV03ntxevq1k6o0bN7CysoK3v/3t7rNMJoPXve51eOSRR/DBD34QjzzyCLLZrAMtAHj7298Ov9+Pxx57DD/2Yz92y32bzabL5gGAcrn87Wz2q14000qVBRWtTYUH9rPKuGi48BXIrKWo1jPQX2Gb1wJw2VEEG/X8rHU5aP8W20c6C9g/o4sKhZaxVSqq7Ozz7BlW7Bf9PmlOzQpTMCX4KE2Xz+eRSqUQj8ddVmAul0MymeyrcEEPjcqV3s/o6ChCoRA2NjZw8+ZNlEolPP3002i1WgiFQqjVaqjX60ilUshms0gmk5iYmEAikUAymUQikYDf70c8HofP50Oj0cD6+rp7l2QyiXQ6jUAggJWVFTz//PPY2NhApVJBs9l0HkQ8Hu+L5yhFNShWqSASjUbd32OxmKvyoQCsoMJ7at+qN8V2qBHEOaZ0oh5FYj1JBTVerxQz26UZqTrXeR0BROeLem+DGAadX5zPXIPch6VgpZ6dbqXQtcA5b7NVPblVvq3AtbKyAgAYHR3t+3x0dNT9bWVlBSMjI/2NCAaRy+XcNVY+8YlP4Fd+5Ve+nU09cKIKWUFCPSJLMShgWHBSJaWAoNazgh6APuAD+hWRLnp9nqa2W2pFvTG7iHl/G3tQusZa2BTeS6lSvZ9a81Q07ItQKIRwOIxIJIJoNIpwOIxYLOZAJZ/PIxQKIZ1OO+q70Wj0eVl8J1Y2aTQaKJfLuHr1KorFIqrVKpaWltDpdJBKpVCv1x14VSoVRCIRFItFDA8Pu71fpC+VftWYYzgcxuTkpPsuP1tcXOwrJWU3bNt4noKY0mxKQbMP+XwbS1PPQ+ehzj/OJ2uI8P86ZlotZNB8sJ63UsIaw2Sb6QUpuOoaUJqPfWYTdLTdNLAUeG/XNm2LrjH1Bj3AemU5EOkrH//4x/Gxj33M/V4ulzE9Pf1dbNF3VrgXR6sNcOFZ6kyVhi4W4NZ6gOqxWCBQ5Q7sV7kA9oP31tviM7SeoCobpaX4ux6RwfbS67GWpz6L1jTfxyZzqLdAT6PT6WBnZ6evL/j/QCCAcDiMbDaLUCiEkZER5PN5581ks1mkUikkEgk3Bj7fXsLD1taWe5YqyEajgUajgaeffhrr6+solUoIh8Pw+/0YHh6Gz+dzCUnFYhHFYtHFxBYXF5FIJLC+vu48vlOnTrkkEAJgr9dz7cpkMshkMhgfH0etVkO5XMYLL7yAjY0NVKtVV1JKAYnesyrncDjs3k/3W5GmJBWpcykSibj3JhCq0cN+oVFCj0QTg9Qb4++cG5roYdkD61lrYpJ6WbyGPy1zofNK5701xrTfdG3o+PNaeo18D11TnM98LwVZD7xeXr6twDU2NgYAWF1dxfj4uPt8dXUVd999t7tmbW2t73u7u7vY2tpy37fCoPb3q6iVp9acgpMC1yB+XMFIA8+WegHQZ5Vr3InPpGKgkhnUBioGXczq6alS03urMtB6dlR0qoxUoep9LMXJ7+v+JsbC+D4EruHhYUSjUUxNTWF0dBTJZNJ5XaTsVPFT0XW7exU0AoG9Tdxra2solUqoVCqYm5tDqVRCKBRCPB5HOBxGJpNBp9NBNBp19F8oFEKj0XB0UbfbRbFYxO7uLqrVKvL5POLxuEv80DRw9RZTqZSLucXjcZRKJVSrVSwsLKBWq6Farbo+qFaraDab2NnZ6TOK9L7dbhfxeNxRo6VSCe12G5ubm2g2m+69lfb1+/19e9iSyaQDc+vh6/8121DpXaWdNZ6qSl7BSfdxKRByfhBUdD7qT2D/HDwCjm4P0PmmDAHnhHpSyoTw//yOzlkVjyp8efm2AteRI0cwNjaGhx56yAFVuVzGY489hg9/+MMAgAceeADFYhFPPvkk7r33XgDAl7/8ZXS7Xbzuda/7djbne0aUhuGisOnudtOnjV3p4qa3ZIPVCja8j1qxSvGpVameldJ+aqkOSvjQeIb93H6f4EAFqdfo81TRUWkoYBEMw+EwCoWCuxfjVzMzM4jFYhgbG3OgxZiXUortdtulnjNBIxqNYnd3F+VyGdVqFevr61heXnaeFGNWsVgMQ0NDbs8O3217e9uBUbPZxO7urgOJRqOB1dVVpNNpRCIRB1IEQQIaDRO+48zMDBqNBprNJoaGhpwn1mq13H4ypQg59vQWuYdsZ2cH9Xrd7ReLRqPI5XLO66PnxMSRSCTSV9cwGo268RwUa9VxpNceiURuiTtZgFG6kt9lH1hg02vt9/V7g4w6rh39qfNWqVFdizR0dP6rKDtiM2s9ub18y8BVrVZx9epV9/uNGzfwzDPPIJfLYWZmBr/wC7+Af/Wv/hVOnDjh0uEnJibcXq8zZ87gB3/wB/EzP/Mz+N3f/V2022189KMfxQc/+EEvo/A2wkVGpaz/V45dkzes8iZIKa2hYKCUiC5iAokqGwVK9YKUnrMlnADcAlBKU1IJM8amlKd6fepdkDpVMGU7o9EoJiYm3J6rWCzmqlJEo1FEIhHEYjFEIhFks1nEYjHE43FMTEwgEAg4urLb7ToQabfbqFQqblzorbDtm5ubKJfL2NzcxAsvvICrV68iFoshk8lgd3cXQ0NDCIfDrvQRq7+nUimnTDXBxOfb2+9VLpeRSCQQjUYdpTQyMuJS8ZlhuL29jXa7jeXlZQBANBpFLBZz4EyPL5/Pu7EqFotOcbKfCdjcsxaLxRAOhx0Azs/PY25uDlevXsX4+DiSyaQD6kqlglqt5jzkSCTiwJ8GANtD79IaVa1Wy80BerCcLxwbpYo1Tslx0w3YCmpKP/JvfL4abZzzNlHJUuc0jID9Ooyc70q1klZW708TYvgZKVvP43p5+ZaB64knnsAP/MAPuN8Ze/rQhz6E3//938c//sf/GLVaDT/7sz+LYrGIN73pTfj85z/vAtkA8N/+23/DRz/6UfyNv/E34PfvbUD+zd/8zW/D63xvChcLF4omS2isikpfJ7wClFJ8VCQKWlqJW2lALijGGmjZa3wC2Pd4NIlAY1dK3ymIAftZhfpeXMQKqry/pq13u3uVI3w+H7LZLAqFAnK5HM6cOePiU5pFyP/XajWEw2GMjY0hHo8jGo0im83C5/O5Cu0ELHoVGtvY3d1FrVbD1tYWAoEAdnZ2UCqVsL29jevXrzt6jV5Is9l0YEVPht5LNBp1n/n9fiQSCafo6HHt7OygXC6jXC4jl8sBgANAej5+vx+bm5vOkyL1FwgEUK1W0e12nVep4zOIciVAtNttpFIp5+WdO3cOk5OTaLVamJ+fR7FYRCwWQzqdRjgcRrvddlmWnDscf90/NYjao3Gl8aFEIoFOp9MHSurZ63c5B3W+ECA499S71KNmuMbUGFQvyxqHOpcHxYft/jOl9u339fmevLL4egcQ1svlMjKZzHe7Gd8xsZXLgX76TZWOptXydwbL6/U6QqEQYrGYU5JarYJWKC1koD+uZeMSfI5arBrw1liQWppqZdJaZrkjKktaqlSutMAZ76QlHggEEIvF8PrXvx4TExM4cuQI4vE4AoEAUqkUYrEYkslkn3dar9ddkoGCdqvVch5Vq9XCzs6OS+Zg/1B5JRIJ9Ho9lEolF5NaWVnB+vo6VldXsbOzg0AggFqthpGRERQKBVy7dg21Wg2BQAD1et2l3LM9VPKkLhkPYnyn1WqhUChgbGwM99xzDzKZDAqFAgC4ShzRaBSbm5uo1WoOeKkYY7GYU5z0osbHx11yh1KwrVarbwM2+0FpyImJCcTjcTSbTfzRH/0RnnvuOSwtLeHQoUNot9tYWVnpo5oJXARLxupIvarXRw9RjTXOU/VMBsWp1HjSuUvAoTHATE3OUz32Begvpsz1p0aiptJzralhaUER6GdPyJpwbnLLj8aCvx+kVCohnU5/S985EFmF3++i9JrGovRvdlOw/p0KQZW0Xegaz+L1lo/ns/gc/l+TOTRmYONuvF7bD+x5Lix/tLu7fzw7z1HSzDGCT7vdxvDwMGZmZnDkyBHcf//9jg4E4ArfksajB0CvqVarOdApFosuflMsFh0A7+zsoNlsIhaL9bWBbQyFQkilUqjVak4RJxIJZLNZlEol1Ot1BAIBJBIJ7O7uulT/3d1dR1OqN8pEDbaT/UaviW0Nh8PY2toCsJfsxO8Wi0UAcB5xOBxGsVh0CpFe3dbWlts3RmC32XNMf4/FYn1Ff6ngd3Z2sLy87LzVd73rXTh69CgefvhhXL58GVNTUxgeHnbxPc6XRqPhAILvC/QnLajHROoQQN9YEpwA3FJM2qat6/y2iU0cF5twwe/qPXTO67Xq3WksS0FMx1nZj9vdx5OXFw+4DogoaCm1oPSbejP29GOCBUGC97SAyM808UIpRaX5+FxdcOqh6WnKarXyWoKSxibUmwPQZznv7u66mFI2m8X999+PM2fOYGJiAoVCwf2NmXt836WlJRd7Iejt7OygWq06y5nAtbGxcUt7uR2h1+u5ShikmUKhkKMAqfATiQQmJycB7AEo6ULu99JKHAQVv9/fVzeQyR7FYrFvrGkkMBOQYxMMBl3bUqkU0um0y+JrtVqOqvf7/djY2MDo6Cji8TgymQwSiQSazaYDCMbS+DxmKpI2JIjv7Oxgbm4OqVQKx44dwwMPPICZmRn863/9r3HlyhWcPHkSALC5uen6lHEtzaKjImf8EUAfoKgxReDSTfCWWrRzk31Kz1VjrpoFqPS4zlPrefFzPlcNSwVAzmc14HS86C1qBRf2gwU2T/rFowoPgHAx6dlKwK2eGGkmpV+A/qMXFNzopSnVQctQKRb9p0qA96YXYffY0OJk27W9CnYKWFz8VI6aJNJoNHD+/HnccccdOHz4ME6dOuXor0aj4ejFarWKYrGIjY0NtFotbG9vo16vo9VquRJJrVYL4XAYQ0NDLlbVbDZdgsPExIRLP2cbW60W5ubm+uJS0WgUq6urKBaLqFQqWFhYwM7ODnq9HmZmZpDL5eD3+11a+9LSEtbX193mZKVfmZUYCoVQKBQQDAbRaDRQrVaRSCRc2+LxOM6cOYN4PI6TJ086UFlcXESr1UI+n0cmk0G328Xc3JyLNTUaDSwvL+PQoUN4xzvegZGRkb6TlqvVKnZ3dxGNRl0ckZ4llT4TX5hBWK/XsbOzg0ajgXQ67bbBXL9+Hf/pP/0nlMtl+P1+l4JPuo8KWlPOmUhC0CBVyvhiKBRyXio9Z96TYo0rG6/inNJYJz17erdsj85njWsqlaieKo0RTTDimuUcVcNFE38UbHVz9PeDeFTh97AQNDTJQSkNtTj9fr/LuNNMQFrLli5Rr4mLGtjPnBpEYyjwWXCj0rCVHoBbD+3T5yrNQuVE5bazs4ORkRG84Q1vwJEjR5DL5W7JmKvX67h69SrW19ddYVtWjqdno9Z2s9lEsVh0MSmmmfv9fmxtbTmlHY1GnedEz4wZdr1er+/wTcbGOp0O1tfXUa/XEY/HUSwWUSgUMDEx4WJa7C8qvFar5fpnZ2fHKT0CMqnIQCCA+fl5pFIpRCIRTE1NIZvN4vTp0yiXy1hYWHDvWy6XHVDMz8+j2Wzife97H8bHxxEIBFwFD1KBSsvRA2LSCttJr4hZiplMxp3M3G63ceLECZw5cwbvec978Nhjj2F5eRnRaNSVwNLMOQUTApTGU/X/Ghe14MG/04jSKvmaLagxWRpseoK1TZnnfa03px6jrkE1Ikl96/ri/e2xPRx3GoxeksbLiwdcB0AspWc9FypvLhS790XpROXr1dlWYLTejuX0FZyUiuGC42JVKscebaLgaxer9ezoAd133304ffo0MpmMAxgGwJeXl11ihBa27XQ6qFQqri4g9xYxS8/n8zl6sNVqYWhoCH6/34FOp9PB6OhoH3VE2lQ9BipPem+pVArVahWlUgmjo6MOjJiOvr6+jlgs1tfHjP1QgWt1e83q8/v9WFlZQafTwdzcHBKJBIaHh3Hq1CkUi0VcvXrV0XPtdrvvQMtTp04hlUq5NPuLFy8CgKNLNXOSoBqPx10SBzMH+XeCG+NZ3W4XW1tbyGQyuP/++xGPx/HEE0/gpZdeQi6Xw+bmpgNh9pe+u4216X4szYpVOlk9Lpu5qp6Txp6YPs93UIZBwUTvr6yDGpA0DrkWCFzsV5ucAewfCWT3eA2i4D25VTzgOgCihXS5cDQb0HotXPD0uggktD4Zf2KsQBUwFSljQVTImnpPb0HTqFmElc9SZaH3VRpFKUlVJPrd3d1dTE1N4cMf/jBGR0edBxAIBLCxsYGFhQVsbm5ic3PTpU5HIhG0220sLCw4cCMILC4uulR3Khzu4ep29/Y1sYBuMBhErVbDpUuXnAKMRCIYGhrC6dOnEY/HXd9cu3YNc3NzqNVqTmkx4aTb3as8sbu769LzFxYWkEgkXPYgx4rKORKJ9O1XIu2pGabMIGT1Clb4OHHiBF566SVUKhXEYjHnLbz1rW9FJBLBCy+8gNXVVWxsbGB5edmBD2Na9Ho0/pPNZhGPx5FIJDAzM4OhoSEcP34cqVQKAFzleyrwSqWCdDqNBx98EPfddx/+1//6X7h8+bLbUE2FbRMtOO/o5XIusi0sGgzsJ65wPnGM6X0zzqlxWgXHXq/nPHKuG64dpe8IULaGJ703Xq9xK64XFmEm1cl35HsrQA1K/vBksHjAdQCEVqGmBXPx2H1dNvVcqRZdiLQMlRZUy9VamRo7UO6df1cAJV0J7HtUClSW6rTxLd2Xc+jQIbz2ta/FxMSEU8xUTJcvX3axI6bJ93o9bG1tucQLxqja7TaazSYqlUrfe7PMUyKRQKPRwOLiIvx+vzu1mNsGNFbBdPhsNgu/f2/PFdPlmRhCpchMxbW1NXcGV6/Xw5kzZ3Dt2jWXrGATAjSzkRUutBI9U+rpuVSrVdy4ccNlWwLA+vq684KSyaQ7VJMV6qvVqlP6fEfGYpRi7nb3Kme0Wi3U63WXZcj9VQQvjhnff3NzE8PDw4jFYnjzm9/sCmk3Gg34fD4XC/T5fM5w4O+k+jivOU9sRqzP53Pgo+OjlLdSftaj0fVBoFQDQpkN/q4eklafV6OLfapem3pyXCMEUV3b3y+xrb+OeMB1AGRQWjnQfygfPQLdMMtFpt4RFwYXCj0BWvxqTepmS5tiTO9K42WqYDQTURWILnrL/7NtyWQS5XIZf+tv/S3ce++9KBQKrlr7+vo6lpaWsLKygp2dHecthkIhlMtl9/2hoSFHfa2traFer6Pb7br0b6W7eGRJIpHAyMgItre3+1Lc1bviZtxcLodsNgsArnL8oUOH4Pf7USqVsL6+jkBg7/yuVquFbDaLM2fOwOfz4caNG0in03jzm9+Mxx9/3MXBlOYioPC4ElWEzJ4sFouYnp7G2toaOp0OnnvuOQwPD+PBBx9EKpVCKpXCs88+65Isbty4gfX1dVy7ds1Z/wQZZvERrOnNMIuRG6e1DNPGxgamp6cxOTmJEydOuHYyiYRebzAYxPj4uKtk8pWvfAXXr193lK2mwFsApWGkhaXZD5Y+1wxaNZ64bm5H22mslcDI+1LUuCLYMcFCKV1db9pWrr9Ba1r3LJJN8eJcLy8ecB0gsXy/LmD9R1Hw4u8ak1IQ1AWohU7pwZEK4fPsM5SjV0WgVQ7sPdXaVa+xXq8jk8ngzJkzyOVyTqHW63U8//zzKJVKaLVaffvHWOdvenraJV4wI48gxOK5pPK01mAqlYLP58Pp06extraG9fV15+Hp5lsmcNjjQUih5fN5dDodzM7OYm5uDouLi26TbjAYdHUK5+fnkU6nkU6n+zLuSNexH1njjzQVY3ekwrgXiiBOz1IpN9YN3NjYwNbWVl81Bx1HjdGo9U9g4zVapYO07cjIiNsPxr1afEaj0cD29jZSqRTOnDnjYpDPPPOM60cmpqjXQ0qafaJGlbZRFfzt4qScjzpf+X01wGy/6H11i4TOW80CVM9J70UDUP+v76JUvF3HntwqHnAdEFFQGBS4VY5eLTw91kETN4B9atGm11vvSjP3qEQ1MD1owWn72GZVilQwNkOMVuzZs2eRz+dd9YadnR0sLCxgeXnZXcd2kaLL5XLo9faqWdRqNXeQIpMacrkc0ul0XwJCIBBwwMWYSCwWw/DwMMLhMKrVKlZXV/vKQ9GTZLyP/cpYEEF5cnIS1WoVV65cQbFY7KMnmfnJOBeL3vLe1kjhGFugV6Cj97mxsYFOp4NisejqDe7u7hXsJT1nYzg6PvS8NWajc4Ee/c7ODorFIvx+P1ZXV9FqtRCLxdw99RywWq0Gn2/vlOa77roLPp8PL774ons/rU3IJCObVKRt0LmlQEBjRL0x/m49GF6jKfB6raUV7f24dYH9yfZo8obO+UHrWcdSE0k8b+vlxQOuAyBUIKRuNHhOBcrJzwWsio1iPSMLgL1ezxU01YVFa9huXObfdT8LFxyVIWsI6uZafocBeCpC7uU4f/483vzmNzuAiUQi+PM//3NsbGxgZ2cHhUIBhw8fdkonEom4vUSzs7NuvwxPEda9MlrYlW1mHIhKN5FIIJfLuYw8vlMqlcLIyAgOHTqETCaDra0tLC0t4caNG3jppZewtLSEhx9+GDs7O6jVahgaGsLQ0BDOnj3r0urpKcbjcVcfUY84Yczq2rVrLvmCVJKOdzweR7vddoAxPj6OUCiEY8eOIRqN4sUXX0SxWEQ6nXZjR0qRtCc9U7/f70415lio981aizQUOJf0aBO+TzKZxJ133oloNIrZ2dm+GpKbm5vodruYnJzE5OQkrl27hieeeALr6+tuDtJr0XmkhhTnld/v74vF2dqCQP/mda4N3p9eqD6Tz1KvSdcHAYXemgKTenjsP91Owu9z7vE5WiiAfa6nGXgyWDzgOgCifD6wn06unLoN6uoiVGpErUMuXKULLdVBUauTcRFrzVrFYf+uAW9d+EyuCAQC2N7edinbBOtisYj19XW0Wi3MzMzg8OHDSCQSWFlZcQr10qVLDmC514hAxGeot6d9wYQNZgF2Oh1kMhm3X8vv9yObzbrDJKPRKLa2tlyV9K2tLVdGigBYKBTQ6/Vw9epVbG9vA4A75DGRSCAUCmF8fNwljBBQo9EoEomE21itGXBaT5IKs9FooFgsIp/PuwzR6elp3Lx503lDpF9ZGoleeKezfz6WHWcdT36Hwus165ExUop6+sC+N7O5uekO57zrrruwtbXlvFFV/AoOjMHaOW+pQAU7u24UdG16vaUR7Ty2AMRr1TvSxAtlRTjvtBIJwUnbYvvKMiqe9IsHXAdAuAAZrOaiUUVsJzoXuioBLggCD4A+ika9EF1QXIiqRJWXpxKxVqqlWHSB0hpmHCOdTqNYLOLcuXM4ffq0qxCxubmJy5cvIxQK4fz588jn81hdXcWLL76IRqPhACUcDrvSRjwCpFKpOOVMpaaZl1T8TAfnhmNWtaBFnM/n4ffvVb8YGhrC9evXcfPmTZdaPzw8jKmpKbTbbayvr2Nzc9PVC6S3nEqlXOJBs9lENBrFXXfd5Q5VnZ6exvnz551XtLm5iWKxiJGREVeDUA0Nv3+/YG2z2USz2UQ6ncaVK1fw1re+FZVKxRUSZkIFqSgFQKUoAdziObPSCMGPz1GwsB4CDY5wOIxyueyeRTC+du0ahoeH8cADD6BQKCCTyeDP/uzP3BYAoD92xPfmnFPDS5Ml+G66PjjHCVyaKUmDRjNqlbmgIciECd3fxmt8Pp/biM61YLevKPvAdjB2qc+3XqMHXrcX/ytf4sl3W+hNqRXLQDYXwu1SeRnf0cXJRatZg5aD53OtNaoKgfdUalK9AXpvbJ9WC1CahcoyEong8OHD7vnNZtPRS3fffTeOHj2Ky5cv4/HHH8eVK1ewurrqwOuuu+7C1NSUy5ZTpUrwpPLlvilSejs7O6hUKg7oaOEzhgHAXZvP512ZqGq1Cp/P5yg/vmMsFkM0GnWZityUzIK4tVoN0WjUbQReWVlBrVbD0aNHcfToUeTzeUSj0b54FL0pjqVWFWe1iGQy6b6TSqUwNDTkfrceExUrDQigv+o/RZMzLHBQSbN/lO4CgHg8Dp/Ph3K5jKWlJWxsbLj5s7W1hUgkgpmZGZw9e7bvmQoySn2rB6jzmVQq57HOZ313Gk+8nkk2+i66n1CZAvWCCNqMzQ0CGM6/QdmQvCfbY+lG9Q49GSxe7xwQ4eJVvp4LlIsVQN/EtxSQekTqBdl72+u5qJWC4eK3lBBBzbZT70HlpopkdXUVU1NTmJmZccDGtPRkMonDhw+jXq/j0UcfxeXLl7GxsQFgb+NroVDA9PQ0pqambvEY2CZmrpHe0sQKBTGWcuIGZbaT8bZcLofh4WHX50xjVyDI5XJuQy+/Wy6XXakk9RTr9ToqlQp2dnaQTqcxNDTkqmvwWio6xsmoCLnZmpl5PGqFVrye6aXp/1T+ej/2EdCf+s1+A/bPTLPVNXq9veLDSvny+dwAzUM2ubGbVFkmk8Hhw4fdtgGKgqtSiGyfTXywSRpKOVqjie2zYuexrg1NkKFYENckC36mQKlGnoKXgpq225Pbi0cVHgCh0uLuewambRBZaRJ+RsWlng1wa51D/l/5eC4qYJ9CGhQD05gI6ater+cqpw8CK7YT2KtGPj09jXe9612Ynp528ZKNjQ3E43GcOnUKs7Oz+OxnP4tr167B5/Mhl8vhwQcfxMmTJ5HNZlGpVFzSA9tIqVarfUeFkDbl6b9akZxxMrW4WcMvGAy6jbjc76U1DHnQY7PZRC6XQz6fd/uwGKtjHcGf+ImfcNmMuVwOwWAQq6ur7qDII0eOoFgs4vr16w7gmLWoZZZmZ2fd2A0PD7ttAYlEAoVCwe2VSiaT7r2pyFmjTxUwsJ/1yHHXtPRWq+UKEmtyjt/vd6WnWEEjk8lgZmYGADA3N4e1tTX3ealUws2bNzE6Oorjx4/jHe94Bx599FEsLy87yozgqOyBpZ3ZJgUFzYS0AMU1RI+a9K3P53NjTw+W3pI18ji3lbGgMcG1wX1xakRa407bx+/o9d5G5NuLB1wHRDjxaV1zgivAWEVCa1MpP7UemQ2oioDApWBGJcJFpp6XUihMx7ZKUDOp+C76HL/fjxMnTmB8fPwWUB4eHsbQ0BC++tWvYn5+3rUhmUy64rJqWcdiMQfg7BdmSmoyiAI9M/nYv+q90rugR0P6MJ/PO5DOZDJYWVlBvV7H2NiYiwGxygf3TrHuH8GMJyezWPDc3Jyrqzg8PIxsNusUKS1yejGJRMJV82CVD8b6WAIqmUw6OotzRUFdvWqlEjnHFMDpnep5Wjo3o9Goq84B7Jc14jiTjl1eXsbQ0BB6vb1tC6Q0jx075sBNjSqd++plKW2t8SnOBfW6mHDD+3IstB8GMRqkDbUqB0XXh8aRLe2noMd769y360C3Wnhye/GA64AIFwOtRLswyKdrFiHQnxGlixy4NfvKJlpYalGtS/XcCBpUjJqtxRqGwH69Q/XyWAj38OHDSKfTaDQajq5LpVIYHR2Fz+fD1atXXVYcyzSl02ln2TJmxD1RPCOrXq+7fggEAi7lm23S99WYIUGLYBuNRt0RJTxzi0qN5YpIHbZaLayvr7tn7OzsIBQKubOv8vk8qtUqVlZWXDp8IBDAwsKCi2XxPbW/uHlZszrpQRC0M5mMq0SvBy/u7u6dZaXVKJhGTtDie+u4E4DosWp2psbZeKKy3+93Z3tVq1XU63VUq1Xs7OygXq9jbm4OPp/PJdPo1oWZmRk88cQTbh7pRmQCkM5FTSCiKMhRbHo9jQF6SdofNsvPAqECigKsNQg4r/g9y2xYcOUc1Ri1J7cXD7gOgJC6YwaZWs+Wr9cNkVykurjVOlQvTPdT0btSBcBn8N7qAXKhERD4XJ9vP+OKn+meNNI05XIZJ06cQLfbdec3AcCxY8eQzWZx4cIFzM7OOmUyMjKC8+fPo1wu48aNG0gkEjhx4oTbb8S2r62tuQw+fR8qX60zxwK9BAXtZ3oz2WzW7SWr1WpYWVnB8PAwAoG9ahHr6+tYWVmBz+dDIpFw3x0aGnLJGzwEkxTgqVOn3InJTMJgbcJWq9WX9Xf48GEcPnwYOzs7eOSRR5w32Ol0UCgUsLu7i+HhYVy6dAn3338/IpGI25Td7XZx/PhxLCwsoFqtOoOC99cYkN0zCOx7UKFQyFWIZ3yPFC3n5NLSElZXV7G6ugoADjyZmDI3N+eqkoTDYSQSCRw7dgzBYBB//Md/7E5qVm9FaTQLIhxT60ESPAhUSomq96NGHY1DZQ5sooWuK9Lj7Xbbefb8Due4PdSV7eNaVIBTStGT24sHXAdA6OGoJ6WLlovVUhO8ToPyuuBtgsTtuHilUTT2wEXO7ysg2u/YADcXdKPRcLUICcy0fqPRqEsxB/YVYCKRQDKZ7Iuf8b34HFW0an3HYjH3dz2ji9mXfF/+ZIyn0Wi4vVA+314lCO73sptz7SZxpsdPTU05Bb+5uYlGo4HDhw+7RIxSqeSSQuh1Km0Zj8ddliOPLWFJKpZhisViWFxcdNcnk0lUKhVUq1VkMhk0m013YKS2l8+we5t0Tun4EdiY+EElzX5iOj+VNu/V7XaxsbGBdruNfD6PRCLhElLGxsYwOjrqjnxhqS2KZRE4n22sSecCAUTXkN+/X/1D26aUo36fz9Z1pEBHL5yMAPtWU+r1HoPWiPXKPHl58YDrAAgtbq0VqJlgWipIaRGlF9Ua5d+A/iKrDIDbvT6aOUhlp/uh9FkKFlR69IKUbmw2mxgeHsbm5ibuuusuBAIBrKysoFQquQoT9Xod6+vrePbZZ51yisViyOVybp8UC+qyino2m0WxWESpVHJ9wpOFWWKJ4MvCsRr0p7dJT4N9zr1UU1NTSCQS7nceJ5LNZh3VydOVmSjS7XZd4WCfb6+uYKlUcgkV3ESsYFcsFt0eqFKp5MCZlj2zLeltMIuvUCjgi1/8Ik6cOIFjx45hZGQEwWDQpfqPjY2hXC67osNMWSeQ02tmOwieqqSpqJViBPYyIBcWFtxZZpyzrJDf6/WwurqKtbU1HDlyxKXJFwoFdDod5PN5fOADH8BnP/tZXL161VGKnG8EKjXUCKLAPk1IuprzVo+M4XeVJgT2twXQgONBpAqKCurqMbE6iP5TD5/PIT2qwKdrUWPLfGdPBosHXAdAlPvmwqBCpQJST4nKjP/ngiTdoRy7Lk4AfWCkXpK1mik2cE6KhQCoyRv6HlQgoVDIpbFr2jXr4K2trWFjY8MBTzqdRjKZdACgnhrjTMBe9hhTsamUFJiZSMK2ESg1bqFA3+l0XOYi41tMOGApLCpZeiAcK3pZjUbDFellP5B2rFarfYBPOjMej6NUKiEUCrm0eWDPc2RciwV2W62We9bVq1fdfjBSoGtra9jd3cXQ0BAikYjLoqMStZ67jSMx9Z5grTQex4BVMHw+nzvuRMtmEfCPHz+OcrmMarXqvDSfz4cTJ07grrvuwsLCQl+auI0PKXOgwGUTIex847xmX7Of1bPSdaZzh9Q857ICu95DjTntW6UZ2c+8TsFMGQJPBovXQwdE1NrUhap/03+60NVSJsVDaswuVE2u0MXO62gx2ufxevX8mEbNe+ozgP3DEAuFgkuoAPaBlxl2TFKgN8c0blZCZ51CxmuYHJBMJpFIJProUNJGTIpIJpN9m1fZP0xsUAOhWCy6eA4TC6h0GRfi8St8P61s0el03EGYHEPeg/E5PfcrHA4jEom4sdNzxng2F1Pj6cXyCJXFxUVsbGwglUo574C0VCgUctl82hbSfkq16vxgv7BNStfV63VsbGxgbW3NZUHScykWiy6mRQ98YmLCFSFmdfytrS0MDw/jjjvuwMzMjKu0QeOHbdfMT/aVgpbOd01y4PzkfNa5zZ8EYaD/HDC+J+OQ1sNScGTf2CQq3otzkc9Uw5Lv43lbLy8ecB0A0coJqkiZUWazkXq9nlMuAFwQHkBfejh/p/JSuoyKS7MFqTio5Bkb0oXKorj0CChU3lTwfr8f5XIZp06dwsTEBObn51Gr1VyGHmNd+Xwer3vd63Dy5En0ensFcVnfju3VBItms4lyuYzV1VVEIhGk02lHre3s7PSBmMa1gsGgO1eLm5rD4TC2trYAwGXr5XI5HDlyBJubm/D5fK4wMNPBk8kkIpGIy6bjOK2vr8Pv3zv/jHExeosELdJ29OJYb3FiYgKhUAirq6tuozLLXwFANptFPp9HJpNBKpXCvffei62tLXz1q1/F2NgY8vk8Njc3XU1FlsQigI2Ojrrkk/HxcZw8eRKHDx/GoUOHcPz4cUc50oMlsM3MzGBsbMztQdvc3MTY2BiuX7+OarWKJ554Ao888gjm5uZw8uRJ3H///S5ZpNfrufPLnn76aZw5cwbj4+MoFos4ceIE3v/+96NUKrmjUjhuNFw4bjoH+JMGDue+xrhoIOl85PhrAhPjYFwLwP7+Nibj8FBNAjpBXoFUDUVdd+qBkVqkJ64eoyeDxQOuAyC6oGiNDUrG0AxAuwA0HsZ7EET0Wpt9SCtQjxHRRcf2cfER5JR+VFC0VvGRI0eQSqVcwgdruPV6eycZkybMZrPw+XzY3t7G1tYWarWaUwqaEUgPBNgvVsp9WqQbNZaknhjLAOlRI0wiGBsbQywWQzabRS6XcxuNSZ/lcjnnUVBhqcdCmolGAvtV9zoFg0G32bnb7bqK7ZlMBoVCAc1m0yVwTE9P4/Tp0y4zkv3s8/nc9cvLy0in05iamnLVPviesVjMeTQ+n88VEM7lcjh69CiOHz+OI0eOYGZmBuPj4+45VPZM1+c7MN1fq8GXSiUX3yPFy319jGUePnwYlUoFkUgE+XweW1tbLmmF8TiOKWOTuiVE6T/1mNVjVENL40q6PnQd8e/KOHCNqKiHpidJD0poseyErg9de15yxjcnXozrAInSEaoUbbxK+XKl6JRD53cZh9IyNfzJ6xi74v91cWl2mgIBf9rsK6VGWOk9mUy6Z/CIkm636462j0ajSKfTiMViqNfrrhTU5OSkU/gEAwKVFkWld8MisaRpqFRIP5EOs0VpDx065GJmuVwOALCysuI23Pp8Pre/qlarwe/3u/gOqVWei8VUb6W/NKOT49Vut5HNZrG9ve08Ip78zIoU2WzWUaTxeNwVcWXfrq6uun1jjUYDKysrfdUyqHiDwSDS6XRfPI9zQJV+Mpl0dRlpHDBDkSWuFhcXcebMGTcO+XweMzMzaLfbLvORiTGZTAZ33323S50fGxtztSTHxsbwxje+EV//+tcdPerz+W7ZpqBzkrErAH0JEzQS+D7q9ShYkJWwW0HUiNOMQd5LM2sHxbo0YYptYjIU165ubdEN/J4MFg+4DoBwkmvA3yZs0NrUwK4WalUPSZMlNIOMi55yO+4f2A+Ia9KD/q6xNpadUks4Eong/vvvx8mTJ925V6yowM25MzMzaDabePrpp/G2t70Ny8vL2NrawuLiIp5//nmcOXPGAdK1a9ewsbHhgCQQCLjNx5lMxh0i2Ww23XEnnc7e2VSjo6OuukO5XEYikUCpVEK1WsWhQ4dwxx134ObNmwgGgygUClhcXMT6+jp++Id/GKOjo47+2tnZwfLyMiYnJ907shxVJpPBa17zGgSDQaysrKDZbDo6kkqfAEDK1e/349ixY7h+/TpyuRwmJycxOzuL9fV15HI5VKtVd93c3Bw2NzdRrVYRj8dx+PBhlMtlFItF3H333ZiensbCwgIuXLiA17zmNWg2m5ifn8fi4qKjPHkaM2OP9I4SiQSmpqZcHUJuGqZ3mEwm0W63sba2hqGhIRePI50ZCoXw3HPPwefzYWxsDC+88AIuXbqEH//xH8fU1BRSqRQ+9alP4f3vfz8ikQhWVlbQ6XTw7ne/GzMzM/jkJz/paF16ozTiNNamB3Ry3qqRpd73zs5OX6IT54M1zGzCBKlygpYyF+qtMXmFQKfencbCSMdzjfPZXvWMlxcPuA6AaCBaEyeUcrKLTfn4QVmAXPya6q4enabocuGpN8Z7sU2aMMJr1fvSBczrmN1Gq53eQKVSwfb2Nk6fPu3AMplMIpvNuqzF+fl5B3blchmzs7NoNpvIZrOOjmOJouHhYQcOzADkcSbpdNod5KjWvL4rEyHi8TiazSZmZ2ddgVt6c8xq7Ha7DgBZrYJxKsaIKpUKgH0lyL6rVCrw+/19142NjWF7exvlchmpVAqpVArr6+s4f/48er0eCoWCo9fYFu6PCwaDmJubw8jICKampnD48GHMzc1hZ2fHtenGjRsuU5FlonjmWDgcRqVScac/x2IxNx9CoRAWFxfd+F+7ds1RoZubm/D7/e5IFMbwfD4fJiYmMD09jdnZWVQqFaf0K5UKbt68iWPHjqFcLmNhYcHFP3mUDUtjqSE2aE7aNUGjylakIB2ombI0CG1WrnpN6uUxG5ZrR+lCtkGZCK0IYj1cPYrIS854efFiXAdAlK5Rbl5rxmk8h2WUWN5H41hqndKiBvaD0wQZBos1FqTf58KkJar1AfVvfLamijN+dPToUQQCAaytrWFkZAS5XA7NZhMrKyvY2NhwyoxKdHx8HD/yIz+C8+fPIxgMuuNNrly5gnw+j3vuuccd0jg0NIR8Pu/2ZBFcM5mM659oNIqhoSHnRXCvE1PT8/k8VlZWcPPmTbz00kuOCnv00UddO2lpb2xswOfzuecD+5mY+gwm1LDaQiQSwejoKIaHh112Yre7t5F3e3sbsVgMJ0+exKFDhxCJRHDHHXfg9OnT+NKXvoSHHnrIHbUyMzPjvLxYLIZKpYJyuYynnnoKX/jCF/DEE09gZGQEd999N65cuYKbN28iHA7j/vvvx8TEBJ5++mksLS05gE6n0xgeHsb4+DiOHTuGt7zlLTh37pwD6Waz6TIISVlyXjAphgZENBrFoUOHMDY2hkKhgLe97W3odruYn593RYff+MY34vOf/zyCwSDGx8fRbrfxwgsvoNPp4Od+7ufwute9zm1XIOAwdqgbymkEqRdFL9/v97u2a7q7ZsvyTDZNPlIjjB4ds0R1LTLbkHNCjUEambqhnICnXh7fzUuJf3nxPK4DIBoothaipRbUo9HFAMClKdt9LZocwMVHUctQN0CrZas/lbpRS1XjXVQAyWTSeRbJZBKxWAwrKysuY3BoaAiLi4tOQUQiEYyMjLiYWLPZxMbGhqv+zn1LVL7cb6WbpUnD0ZNiEgUTKkiJBgJ7xW9ZxXxra6vvxOJ2u41KpeLiLiykyzgYwYdUqVrlBK1areZqHdLgYHyPY8j2MLbHOBMzEiuVCs6cOeMqiRAYuUcMANbX17G0tIQTJ0647QHr6+su/jUxMYG5uTmUy2XnxbE6SSAQQCqVQqFQwIULF3Dt2jV3svLq6iqmp6fdhnG2mdXh+U48PoWgkslkcOTIEdRqNfesO+64A88//zzm5+dddufs7Cx2d3dx/vx5vPa1r8VLL73k3pljqLFaFfX8OZ4ai+VP+31NHtIU+F6v57xGTbDQdWIBxzIdBDT9nqbFc+0OSgTxpF88WD8AooBkwYif6eZGzZQD+oPDg7w1m52l2U9a+49JEAqOjLHQy6DHoBmMtMS1DfT4uI+HcSfSXoVCATMzM0gmky71mM/K5XI4duwYQqEQSqUSSqUSXnjhBVy9evUWqoXPofLs9XouTqLHWRBU2F/cfuDz+XDz5k10Oh0cO3bMvRP3KBGc2b5AIOD2h+l5VPyndBVje/QG9WRq0pBsG5+xsrKC5eVlAHuxO3oXo6OjDrAIFqwTubm5idnZWXS7XXfWV7fbxdLSksteZPyv3W4jlUq5ZJiRkREcOnQI1WoVTz31FG7cuIHt7W2srq66uVYul/tSvWkQELxYWYTZmD6fD2fPnsX8/LzzjsfHx3H27FlcuHDBlfhisWIAOHr0KM6ePdtnYNAI4/hqNq16/Ux44PwhWNAjsmvAZgbavyntR3rPZgRqAozNLlQjVJOW+DddK54MFs/jOgBCT4fKgbEELhSm4vIztSi5sOmhULnowXa62Akq9Ey0tI1+j8/kd7WaBYGBbVcg7Ha7KJVKeMtb3oJQKIT19XVsb2/jxIkTqNVqmJ2dxZ133onz588jkUjgxo0bKBQK2N7exs7ODra3t9078e/1eh3T09N4/vnnXYyo2Wxibm4OhUIBExMTjrZaWFhwe6zY3rW1NbeJWY0Axt2CwSDuvPNO3H333XjooYdQLBYRjUaxvb3txmhnZwc7OzsO6Ak27PdgMOgqZ7BfOp0OFhYWEIvFcPjwYbTbbZcNl0ql+uopEoxIl21vb8Pv92NychJPPPEEqtUq3vve97rEgWQyCQDI5/O4du0aFhcXcccddyAej+P8+fOo1Wq4dOkSbt68iaGhIZw9exbXr1/HM888g3PnzsHn87nsx0ajgV//9V/HjRs3cOjQIUxPT7uY5crKiuv3RqOBWq2GVCrlklUINDzqZXV1FcFgEIcPH8Yf/MEfYGRkBPl8HiMjI3jLW96CX/3VX8XKygqOHz+OyclJbG5u4ubNm5iensbf/tt/G88++6yjI1kbUA/DZKUUGiQA+ow6m1FrswwtC0G6UClnBUkFRH7Hxos1eUkNRMbHSKPTi9S4sCeDxfO4DoAo7cbFxAWi9BuBih6DWo02xRnoT66wAW/eV9PteR9dfPzHPVK62LiwNdWeZYq4cVU9FVbBmJmZwaFDh1AqlbC1tYXDhw87BU5FyiQLTfwYGxtz2Vn0tKLRqNtUTJqN7aUHxNJDbIt6SIzRsEYhPcJ4PO7ek/Ex9gnrJvJ3ZsSphc1kh2az6U4HtunXHBveK51Ou3JYfC4V9NLSEiqViutDKtHp6Wmk02lnMPC+2WwWx44dw/b2Nur1OhKJBMbHx10sjuO9sbGBubk5VKtVFAoF5PN5DA8Pu43iW1tbfdRtp7NXBJmnLxPQuWmcXiar9i8uLqJarSISiWBychLDw8OoVqtYW1tDIpHAkSNHnJecTqdx+vRp168U9W7ICtg1otdwHHQOsN95LecI15IaajTcuM+PY6zjR4POJpAM8uK0LJpNfPJksHge16tcuIAYk7Ebh5VG5AJTK5LeE70A3bBKIOEC5l4tZqRxL5Sm9rJNmvYeCARc2R5anlQepHSUbszlcpiamnIgNjExAZ/Ph6WlJQDAkSNH3BEcuVwOQ0ND2NjY6FMIwJ7yHR0dxc7ODq5fv46hoSFXRqjVamFiYgLBYBAjIyMuWYWbbHnSMJMMSPnE43FHcbFo7fXr1501zE2zwWAQFy9exO7uLmq1Gra3t5HJZFz1DpZe4hlYpPUYqOc/Al29Xkc2m8Xm5iZqtZoDX451JpPB+Pg4xsbGsLW1hVarhWKxiJWVFfR6PdRqNTz99NOYnJzs26s1MzODQCCARx991HlrpVIJfr/ftenatWsum3BsbAylUgkjIyOIx+POuPiRH/kRjI6OolAo4HOf+5yrHJLL5RCPx3H58mVkMhlHQzL2x0xP0p58p/n5eXS7XczNzWF2dtZ5WO973/vwpS99CQsLC7h69arz/i5duoRUKoX3v//9yOVy+MIXvuCMOT03jZmMjUajL3OWolStGmh2fivo6NEvmhmr3rlm5vIezIAl6Om1uk9Qq9Jwnft8eycQeJThYPE8rgMitNB09796RMqRUzTrSuNLVP60OjVtXWM9muChQGUTQ4D+ah36Nw2Ks73pdBqpVMopZ1ZcWF1ddVUdGI8aVBuOm4SZQRcIBLC5uYmVlRXnjZVKJSwsLLj0b8bj+Lx4PI5arYZarYZSqYRKpeI8LlU+sVjMnSFVr9dRKBQwPT2N0dHRPsqJCpKnEzN9nzSQ0j+aFMAMNe6N0i0OrORBhcmEltHRUQcibDOwl05fLBadocOYF6k4Pf6EdO7IyIjzlkmD8TwtFjFOp9M4evQoZmZmXOo6k1d6vR4uXLjgxqXVamFhYQFbW1t984HULg/NpFd48+ZNPP300466nZqacnUKb968iStXrqDdbmN7exvLy8soFAo4deoU8vl8X3xIPSz1nLgmlE1QwLHsAftcKUKdy/TkNXZq46q6fpQlsX/n+mObuFa1nZ4MFg+4XuWilp+NFenvwL6Vpx6XbtTUFF8FIF30FJt9yIXO2IxSj0rRWCWi/D69saGhIWQyGXfmFLCndLe2thzNxGrmBCLd/0LlQlAjMNdqNUfZce9VqVTC3Nwctra2XByQiQeksWidKz2jfdjr9XDjxg2Uy2UMDw9jeHjY1RukJa418lKplEs2oWhGmypVggjBVRNEmIGo2W3AHgjQc+S4RKNRVCoVbG5uunTveDyOcDiMfD6PqakplEolrK2t9Sn3I0eOIJvN9sVv1tfXXSyQoKnniOnhnBsbG9ja2sLp06cRCoVQrVZx48YNzM7OOuWuxkw6nXb7zLhJ/PHHH8f6+jra7TaGh4dx6NAhpNNp1Ot1XLp0yVVKKRaLCAQCDtxowLDfCNR2fiplzn+6WZ+fEXzVM1LjjfNZPSxdl5wr1pi0sTTeS8dav8t/Hl14e/Gowle5cDKr9arWu6awa6FPrQ/InxqkprVHWolK0XpMXEA2gGzjY/wu/9GSbLfbrjwQ98CcOHEC6XQaX/3qV7GxsYFDhw65+AdpwnQ6jS996UsIBoOuXiE3ElPRLC8vo9VqufTzdruNq1evOq/q6NGjiEaj+PrXv458Po8TJ07g1KlTiMViqFarWFxcRLlcdkktIyMjDswZw2LM7cknn8Sf//mf421vexuCwSCuXr3qYjfZbNZ5G9vb2xgeHkYqlXJxuHw+j2w227dXKB6Po9fruU21rVbLUYIEavYhAJdqz2exvt99993nvBfWMWQMLp1OY21tDZlMBul0Gjdu3MDa2hpOnjwJYC9Nfnh4GOfOncPzzz+P0dFRN2+YeLK7u4tisYhUKoVOp4MLFy64DM1vfOMbuHHjBqampvCTP/mTePzxx/HQQw+h09k7AuaOO+5AOBx2nl4gEEA+n0etVsPm5qYD+J2dHTz88MPI5/M4fvw4AoEAtra23CbuRx55xMUJr127hunpabz3ve/F888/7wBQD4bUjFkaBqQLbSKSGoLc56VxMQqTVTSDFkDf2uF1+o/GDeOamiSiZZ80jsyKLx5NeHvxPK4DIta6U9rQpuIC/QF+/T7/RqvRegC8VukOoL9ih7aF96TFrtlW2jalx3K5nKsozr1QzEZMpVJIJBJug+/w8LALgCcSCdduWtuJRMIlX5BmDAaDjjpkpl+tVsPa2pqjC1k4VjeSUgkxTkjgZSr31atXEQwG3Z4pn8/nautp/KNerzvPK5fLuf1lSjGp4cBMRHoC9BxYh5CxS8ZBNAYzMTGB8fFxV6We8Up6wc8++yweeeQRvPDCC65CPD1MJnIwlslahzQ0+H40dBqNhkth39zcxIULF1Cr1VAul5HP53H27FlXsZ4xGs5THkHT7XZd1REaZIlEAteuXcO1a9fcBuTjx4+7uUXvn0ko1WrV0Z+cGzTglI5Tr1/T4DlfCSD0sviT7efc59jq37k2BtHjSv2x/fbaQenx7GdPXlk84DoAQkXFhQbsW2O6IJQyVO9MQQropzwoSoHo77bkk40jkLpjZXYqAE3c0H0qAFAoFPqKzfKQxHA4jJGREQDA2toaAGB0dNTRXtFo1GVzdbtdpNNpDA0NIZVKOWuWx3QEAgFXSZ79VKlU+uoEMoVfM8fUY1UwGR8fdxl4sVgM5XIZwB5Q7OzsuIQOAic39zIDT/uTHjO/x/gHFS+9BlZi16oQ9MaY6s1NvrFYzIGi0n6zs7N4+umn8dhjj+HGjRtYX1/H8vIySqWSo0pJtRLUSSVTufKInNnZWdy4cQPBYBAvvfSSyyZkjOzkyZM4deqU8yboAQL92ZGxWAyTk5MIBoNuXG/evInHH38cjUYD6XQax48fd+n/GmPa3t7G4uIidnd3MTEx0Zd8pHOSpa90069u0eB8ISAp6Nh4ma4V67Hdbv3omrUenq4nzTDU97TUvSf94lGFr3JRkFHqgGnbunj4d6XvtPyNcu5aIYKLSa1VBS3exz6P99TMRHoPVH70QOjdjIyM4OjRo/D7/a5ixtTUFB566CEcOXIE58+fx4ULF/DUU09hZmYGiUQCwWAQQ0ND8Pl8KJVKLgNwZGSkT1Gw2KvP50OhUHBFYBuNBnq9vWzJxx57DIVCAffccw/e8pa34Mknn8TTTz8Nv9+Per3uPDfSh51OB7VaDWNjY2g2m/ja176GH/7hH3be3e7urquawaK54XAYyWTSJVowC9DG/7hHjCBFek7jMUzhr1QqqFQqWF9fd4kllUrFUXjMYux0OiiVSk7B8jgTALjnnnsAAFeuXHHlqjY2NtxZUdw6sL293XcYZzAYxGc/+1lcuHABd955J5577jm0223nOd9xxx34jd/4DfzDf/gP8YEPfABPPPEECoUCMpmMq5ZPL5LHlAwNDeHOO+9EsVh0ccaHHnoIP/zDP4y77roLp06dwt13342vfe1rzrul933z5k0kEgm84Q1vwMbGBq5du+binpwbCiwEJo0fMXtUt3to3JegQiOG2ZVcKwQcTahRlkLvwzilxr50g7buBRsEkp7cKp7HdQCEE1g9KaA/HqWnBNssPBsb4724cG16O61oBSq7F4YLG9ivzKH7xXQPjX5/aGiobyNtLBZzpZ+mpqYwOjqK5557Dn/5l3/pQCuVSt2ysZbttmdoqfdJL4KUFFPX19bWcO3aNaTTaRw+fNglQajXwf5hUoLf78fo6CguXryI2dlZVymdB1RqDUKt1KD7fbSfGPPQU5ZpjNDqZ91DFr/VTbAAXLbdzs6Oo+H4nqok6REznZ6HQvp8PszPz2N2dtZRhPTYmDUYjUZRq9Vw8eJFZDIZJBIJVCoVtw2BZ389/fTT+MM//EOXwNLtdlEoFNz+PFX4NCZ0PtHTvnLliqvoce7cOUxNTbnEm2q16mpNBgIBjI2NYXx83K0BApTGqJSu1n+abWspPM381LmrRhKBh/1tqXb9jlL5uibYZlKRdt+ZB1q3F8/jepWLKmImAFhREFIqSlNtae3zc2DfElVlaTl3ljVSJaCLjJYi26cBb81K7PV6iEajeM1rXoNAYK+wbjQaxcjIiKOM3vrWtyKdTuOhhx7CwsICxsfH4fPt7Z0qFotIJBIYGxtDsVh0B0kyVsMsQyZAdLtdVKtVByyJRALpdBrxeBy7u7t48cUXsb6+jlQqhUwm0wcWTPbgs1lrkAVmP/nJT+LUqVPY3t52wOn3+92RHo1GA1tbW66f6O11u12Xxs/4FZXW7u4uyuVyX6YijRHda8TU91AohFqthpWVFUSjUUfnURFGIhHE43Fsbm6i1Wq5uCHjanrYZqlUQj6fRz6fd9Tb0aNHMTU1hevXr+PrX/86ms0mhoaG8I1vfANvetOb3Gbser2OK1eu4Gd+5mfwxBNP4GMf+5jbnJzJZAAAS0tLbt5oEhApVQCuxNd/+S//BQsLC3j/+9+PH/zBH0QoFMJv/uZvIhgMulqKgUAAV65cwf33348HH3wQTz31FOr1eh+QMNtQjTC7DhRoNMHD0t1cc1xLLI6shqQabUpd0ojkWuC9AfTF/ZQhsQanJ7eKB1wHQGihcdHTktNgLq1sjUMxRgP00xc2VmY5dqUllbbSBaW/k2bk99SzAPYXfCwW64s/+Xx7BzDu7u4dAz88POzS2ROJBGq1mvOAuAm02+06EGCqPL+je9JYTBbYqzhBxaT0zvz8PAC48kEAkEqlnNKjZ8lqHcBezK1SqeDixYsOSDSWooqSfUkh5aVenSYg8O/sM41Zss0slMy6glR8wP6xGOwr9aYJxjqmPp8P+Xze7T9jXKjZbLo6ks8++yxWVlYQi8VQLBYdJUkPlEfQ1Ot1vOlNb0IqlcILL7yAqakpAHAHaGrhX44BN9zWajU0Gg2XMXnhwgXcc889OHv2LI4ePeoMg3g87mKfpVIJr3nNazA+Pu4yMXX8tQyT9uPtMnT1Ot4DQJ/nqnNZY1Z2A7HOfV2jGqdWmtIDrW9dPOA6AELLjhYd0F/zTEFI02wVVOxC0EC1KmnL9WuWFYWAqN6VLmzNQGQqcK/XQyqVwvDwMDqdDra3t9Htdl2iwx133IFoNIrr1687r0mTSuiZaP25arXqyh/5fD5XrJc03MTEhHtGr9dDs9nEwsKCi7FQERKo6LFqzTgKqaVQKITR0VF3sKR6uaTxNMlD44T82+7urqMBCXTqOdIip+UOwMXNCHx8d44LKa5Wq4Vyuey8Q9J/qVTKtYOGAOOCgUDA1XL0+/1ot9suBjY/P494PO7uT4MCgCsBlU6n8eSTT+Lee+/F3Xff7U6DZukr7mmzVDLvubu7i5WVFYRCIUxNTeHGjRv4yle+gre//e2YmppCLpfD5uZmX6yoWq1iY2MDp0+fRqFQcPvLOCY2WUkTIoD9pCb1BPm7shJKh/N3NTaUWdD1wTHl/NX4l8az1GOjcaJr1gOwweIB16tcdPJbKqTT6bj9VSw4yknPRcW/K2+uFIdSUcC+h0ALmUVhmSqtlqrP53OUF++l1iRpKy760dFRnDlzBhsbG1haWnIHHz788MP4xV/8RWxsbOB//I//4SizM2fOuBhJNpt173H48GFkMhmUSiW34fr69evupOGtrS30ej0cO3YM3e7euU/0mPhM0mNjY2O4ceOGi5PxyI5cLufek/EzKstEIoHp6em+MlE+nw/lcnmgYlYA5Diw3cyai8fjKBaL2N7eRiQSQS6XcwkuwJ7CK5fLbh6QdkwkEi6WRsDc3Nx0BgljaDxWhJQnY3e9Xg/ZbBZTU1OORk2n07h69SqefvppV/EinU6706YfffRRRCIRHDt2zFXymJubw8MPPwyfz4cf/MEfRDwex9LSkivUzPmSSCRcMgkrv4dCIWxvb+PSpUuYmprC2bNn8bWvfQ2/+7u/i5/7uZ/DBz/4QXz2s591cUmCwgsvvIBEIoG3vvWtAIDLly8DQN/eRo1L+Xw+ZxQpSOkhoAQy3SKhiUbcK6mJUloVg8Ck2yNoBDGuC8CBLJ/Jo26sx+bJYPGSM17lMshz4gIkNaJWPr0NAgjQX65JExc0QE1QszSFUlcaWKZw8amHpvy+Vs1Ip9PI5/OYn59Hs9nE5OQkAoEASqUSkskk1tbWsLS05I7eCIfDrt5dq9VCvV53YMrNuENDQ0in067+HvdlAftHrGg5JtbgYyyq0Wg4ECGVxQMfW62Wi6VFo1GXdk9FrmnoGmDXVGi2gcKx4JjxbzQQOB6sBq80cblcdunwWm4I6PegdbOtPnNnZ8cdlsnvlUolV0uR9CDjkalUCuVy2X2H2xDUy+P4DA0N4fjx44hGo3j00UexsLAAYL8IMr/HRBEFZd0GUa1WkUql8KY3vQlf/OIXcfnyZbeBWzNhWX3j5s2bGB4edpvaCUzWMOOWAoquG92GoGnzg2h0vSdBh+tT1xBF15l+rnStUsb6fE9uL57H9SoXTZ7QxU7lSNqGoKULRDOmlApUWoRJDVwwlpbkLn5KOBx2f7MbMrvdrtt8qzQHkwzOnz+PQ4cO4ZOf/CQSiQTOnDmDtbU1BINBPPHEE/i93/s9bG9vu1RqArMCC8GJaeFMDd/Y2HBeGak/Hg3P7ECe7aUZeEoNcZ8UQSSZTDoPjWBQKBQQiUTcOVq9Xs95KqTENBmAHhmrojPY32w2B6ZtM7uPfUgwZIo+34ft0UQZnm0VCARQLpedAcF32NjYcKngqVQK165dQ7lcdnup1tbW8Oyzz6JSqSCXy2FyctJVnSdNqCc8X7hwwW1Q5kZwxr3+4i/+Aul02sWgqKg5ZkzdL5fLqNVqSCaTmJycxMLCAqLRKE6dOoUnnngCf//v/3289a1vRa/Xw5EjR/DMM8+4folGo3jppZdw+PBh3HnnnajX6/jCF77gqmkAe0yEnuSthpaCksaEdQ0py6DAqbExjR1yznJctOj1oAxeGjHq2ZFK9OT24gHXARC72ID9PVnq6XDSA/sJFrqomAlFZambHLmQuLh4f8001JiTem8aewP6jx/nd9PpNCYnJ121dL/f7048TiQS+LM/+zPMzc25GnTRaNTdl3Efn+/WY9G73a6rzM5yQuyPdruNUqnkaDVa1+wfUpyNRsMlJ7APGYsiNaRJMDwgkvfku6p3qaW01DOyFr16TPTWSK9qbC8UCrnDHqk4dW7QC4vFYs4TYtYeFTc9H6aTVyqVvsMnGSNLpVIYGRlxe/IajQZWV1fdWNBg6nQ6LmWexg/35QF7m8g5/gpenG/JZBKtVssZDPQWWfj48OHDeOaZZ/DCCy/g9OnTuP/++/Hss8/2xYW63a5LwZ+cnLzF01JqnJ4PP+Mc0urx/K7ew85nG3eyrINex7HUdcvYp22nTZ7x4lu3Fw+4DoAwRVqteC4GS99xEd4uQ8l+xvtw8yYXGD0cKmO770UVuS5KLY+jFCSrmVOZr6ysOJpwaGgIjz/+OCYnJ3H06FFsbGwgGAw6y5nP01iJbv69efMmxsfHXYo49yBtb2+jWq26OJ+CRigUQrFYdM8B9o/EIBAwm5AbfdvttishxWQJFsflPbXvqCQJNJrtqQWJdRx0fCm8P0tedbtdl7ZOgPT5fI6yrNfrjjIlkJGW5LWkXpl4QQMlGo1ifHzcVZOnd0hwikQimJiYcJXjuS9vfn7e1ZvkPqxgMIjt7W1niHAeMyuUFGE4HEapVHIg0unsbfrmmWGlUgmxWAz33Xcf/uiP/giLi4sYHR1FrVZz3i+LH9Nr0tit9aY0MUNZCa4Ppe7oRemc1jWnnpkalnwP3denbeG7WuqVoGrH3pN+8YDrVS5U9Er1WQuQliOzowDcsihJsZHC0HRcpvHGYrE+ryQQCPQlXhCEtBIB76eWKbCf5dbr9ZDL5XDixAlMTk5ieXnZUYrlchmbm5s4fvw4EokE7rrrLhfPYmyJNB1Bq9PpoFAoIJVK4bnnnsNTTz2FcDiMXC7nvAwmjdCqJz0F7FGfNALK5TJGRkYwOjrqyhPFYjF0u3tp7qTIKpUK8vm8o+CazSZGR0ddoVxWxdAix0zHb7fbDoCZ8ZhMJt2hkABc7EgLCNNoUJqXRoEKP6dXV61W3b44epXVarUvq42blll94/jx41hdXUWtVsP4+DgKhQIajQZmZ2fd4Y533nlnXzyU55lxHmgBWc4/0q/lchlPPfUUxsfHcejQIZdtODU15c5Mu3Dhgivmy4ScSCSCo0eP4uLFi3jyySfxAz/wA/jJn/xJ/Nt/+29djGtoaAhLS0uu3VNTU1hcXHTzhdsGlBbmGPEzJtkoLajzmr9rDNjGFjUJQxOYaKTovW2BAKX2tY0eaN1ePOB6lQsVA7CfkmvTaC3dpxalfq7X8bu0Bi3vrgvXUhf2mbrj3wIn41PT09NIJBLY2NhAIBBALpfDysqKA4hCoeAqQSjFpokPCty93t5RI51Ox4GWHjVPINCag7u7u1hfX3cbcXO5HBKJhKMle70eEonELVavnoDL35kkwfRxG+dgXEpjiNxYrIF5CqlTVnonIJGuo1fMdyFY8rsE9Xa77WhMem4EEbaZNQqZQTg+Pu62FbAvqtUqotEozp07h8nJSWQyGXdsyvz8PEqlkjs8FNjbK8fMQ1KPLNG0traGy5cvuyQPjifjjcFgEIVC4Rb6mbTl5OQknn32WfzZn/0Z3vWud+HIkSPY3t5GLBbD6uoqRkZGUKlUkE6nUSgUsLKy0gdM7Hed38oGAOjzyNinNnFJPWSd94xj0ctWapLXa0zVxjYVvDzQ+ubEA65XuTBLUNNnme5rwUbjXUA/LUjFrHULeY0qC+X/qSx1QWoSh7aRXpoCJO/VaDQwOjqKcDiM7e1tBAIBpFIpbG1toVqt4sKFCzhy5Ig7JoTJHKRnBsXcyuUyFhcXXaFXFtPVzb9UzvR4WEmDiozAxUC/3+9HNpvtC7pToat3CcDF6RSw+Z3d3V13ejATPQhu7GcNwPNvun8rFAq587R4HZMsGIcjPch20MKPx+N9R28Ae15dqVRy7Wf87tChQxgfH0e323UZkt1u13mFpPLW19exvr6OpaUlzM/Pw+/fq9av1C3fmbUhuY1gYmIC0WgUKysr2NzcdDUdG40GVlZWMDQ0hFgshlwuh2q12lfWitmn5XIZX//61/FjP/ZjeP3rX4///t//O86fP4+/+Iu/cKde+/1+tw+MdR/Zn9q/twMFBRQbl1KjjaIeGL1OPe2Y/azGJK+3hosaZUpjegA2WDzgepULrUClKpQzV3qQwX21EpUSVJDiAlQaUqlFKmJu+rTemnpWvFYD0Yxh+Hx7G4PHxsbQaDSwuLiIdruN6elpV3y31+shk8ng5s2baLfbGBkZQa/Xc6cJA3sHTfr9fkxOTmJzcxNPPfUUJiYmnCewtrbm2kBgZwo8E1NGRkbcib9MGAHgylpRmTKWQ+AslUou+45AZKm73d1dl66vniepTlb34Pd0CwPHgN5lp9NBvV53IKIJGix6yxJHbA/3m/H/VHiMTfF06OHhYYyMjLjN4Pfffz9SqRQ2NjYQj8ddfUgq4/X1dVy8eBFXrlxxc2pychJnzpzBm9/8Zvj9fmxvb+PJJ5/EysqKM0aAPXAvFAqYnJzEj/3Yj2Frawuf+tSnMD8/79Lni8UiisUipqamkEwm+/bhBQIBV0H/Na95DTKZDB577DG8853vdHv7UqkUbt68iYWFBcTjcZw5cwblchkPPfSQ827U+OHcILAQ7GmMcQuCgpUmzDCrlmuCc0n375Fi57PUq1PKVmlKfZYCnAdcg8UDrle5WLBRgAHQZ8lprCkYDPal0eueL4rN/KP1zLiW7j+xSR5cgOr16QZKjYWRtuPRHKzU4PP5MD09jWw265IJWLVbN67yfoxrXLt2DWtra7jjjjsAwBVtbTabSKVSiEajSCaTLhU7k8kgmUw674reIbPoNKGE2XLsD8aZuG+Opw6TwlNvp9Vquf5lH3LseJ3ed1ASAH9njI8epfa3VmZghiCTHzROwhgbjZR0Ou3KKjHGxnmiY8dYG89EozfL+9ITJEDv7OygWCxifX0dpVLJbYngmG9ubiKTySCXy7l44vLyMiYmJpBOp9Htdh01SdpXaUg+P5lM4sknn8T58+dx7tw5PPfcczh8+DAuX76MXq+HlZUVjI6OYnx8vO8AR4Igf+e7aGo7qVyKxhdpjKjnxH7m/zXTU9ekxv24fpSK1vWjLIgnLy8ecB0AUYVGhQn0ZzxxYQL7lIcqMF6vXplaoQxkc1FRAVPJaykdPcxQwY3fpUIgHRWNRpFOp7G1tYWtrS2nbNPpNE6fPg2/348XX3zR0VyVSgW9Xg9jY2MOMAiCf/7nf45ut4tjx47h2rVr7liMQqGA8fFx3HPPPcjlci7mQoVEL4TeFQBsbGw4q1mpUQVxejmVSsVVYWexXgIDr9fEFI1lkNIjWGssJRqNOqXF/mq1Wi57kRU8dJyZaMPv2zhKKpUCAHdUCg0CAO7kZ+6VW1xcdN4awYYFebe3t91WgUwmg3K5jGq1iosXL+LGjRt49tln4fPtHTbJ40uYwdnr7R1nU6lUUCwW8fTTT+P06dO4++67MTw8jGeeeQYPPfQQTpw4gePHj7uEncOHD+Pw4cNYWVnB0tKS29NWqVQQCATw1FNP4b/+1/+Kt7zlLXj00Ufxzne+E2traxgbG8P29rajCzOZjNu3xjgxgYEHZwLoOx1ZPR+KNTr0PpoNaNegemO8hvEwYL8+pq5RJkd5XtYriwdcr3LRBaOxHlqA/LvNduL1mhUF7C9EWpn8m2YvalVyfSbQT0dycfI+FiQZYOcenmKx6CgwtVSVyuTv3DCsGWH8/tDQENrtNjY3N+Hz+ZDNZvHggw9iamoKU1NTfZXBmfbN9/P5fI5e08K92k+WKgqHw24TMT1LKiBWB2E1CN6PAEjgVGrRjieBTIP3TMNnH+l4aD1DHVu9lnNHsz15ynGv13NVP/iePJU4FAphZ2cHpVIJGxsbDrBZYYNeaqvV6tvnBexvSOdzaQgFg0FUq1VcvXoVMzMzSCaTOHz4MC5cuIDr168jFArh2LFjfRmAHMPd3V1XZzEQCGBmZgYXL17E0aNHUalU3FlnWueRlU02Njb6vC2bMKEekP7k+rHAxBizemKcuwqQmi2oc1tjyJaWZ0yS80FjyJ7cKh5wvcqFcSag38LT2BQnuSZoaI1AS0coeAH7nhuvtYkISify+ZqEAewnhPD/2lZunGXKOYvFMj2fCo419OLxOIaGhpzyImitrKy4rLWFhQUMDQ25mM29996LVCqF3d1dd4BkuVx2cSeCJfc98Z2VOlVgUOuaSkWTNSgam1BLnkkT6rmSmlMLn/dlv2lxV1ZNp1emSpH72PT5mkCgXp2+H8eNSSykGGmQ9Ho9LC4uYn193e2DI2ixnTQwNB6k84/gS6Bn7K3RaODixYs4cuQIhoaGkM1mUalUMDs7i4mJCUQiEVQqFUdfkjIm2AQCAZw4cQLPPPMM5ufnEQgEMD8/j2Qy6ZKXmFU5PDyMpaWlW6posB+VdVDjkO/BaziPCTT6u763JkTxJ5+hmaS2mICCFDe9qzHnyWDxgOtVLlQywL4Xo8DDuIrGvZRv10236i3Z5ArSPAz8K7VB5U26TTcqc3HbDbMaZGZFCx7nwTgGK7MrbZZOp91eHmYFdjod3Lx5ExsbG1hbW0O9XseRI0fwgQ98AIVCAbFYDGtray5Iz4MdU6kU4vG4S8LQzbnqtVLJMy7FDDlNoGDsh3uuqLgZDwL2aVx6GfT46IGxf1UhEXx04223u3ceFoA+wCCAqtdYrVb7KqIAcB4R94KRzgOAiYkJpFIpN2bdbheVSsVt5m2325ibm3M0VjabRSQScePHTcYsdsvyWfl83iWC0KMD4KhUUsBPPfUUrl+/jrNnz+Ltb387nn/+eczPz+OJJ57A9PS027Db7XaRy+XcfjEC/vj4OIaHh3H58mX86I/+KD796U/j9a9/PR5//HF0u13Mzc3h2LFjOHv2LGq1Gp5//nk37+gNayKFJvKo50XjwrISNtOPnhj7nffl2tEi2LpZXD17PlONQ5ue70m/eMD1KhcuFrUOaZnTKgRuTYG3lIXSE5ai4veU6lNFyN9plSodBKCPXlRLkTSN1uDjPikqPRsv4E/ulWo2m6jX664yA4+yuPfeezE1NeViKTdu3HCbg2nZMolAAV/brB6L0mpq4bOiCIE+Fou5mA4BlvcnuAP7FcoJXHY8+TyOI9+DMbixsTH4fD5XExHYL32lMTm+i3rd6glrEgXnjo5/pVJBqVRyHi/nB0GYVUICgYB7bz5PN14TDNXTUjag2+06Cq9Wq+HGjRuuUkqn08Hc3By63S6mp6ddAgwBWA9bJFBzs/To6ChisZjz/iqVCur1OtLpNEZHR3H16tW+7NVYLOaMActUKO1O4NaEGvVo1fPSsVVqXb07TWDieuI1XCNKWVuA9KRfPOB6lYsqIgUsKiSgv1aaLjwuCFXY+h31qLgwSd9pzEkXNL0HBQIFVL/f77LK2G5apEzfphXKZ3KBMg2cz6lUKlhaWsLNmzfx0ksvodfr4QMf+ADe8IY3YGxsDAsLC1heXka9XnenKTMrUNtML441Brm3q1qtumubzSbK5TLW1tZcYgLr8Cm1NzExgUajgbm5Oayvr7vCsgoO2hea7MHxZD/0evsnIzMmxEQU7mfTWAfbwrElkCnFqc/n/bnxOJlMun4nyG5ubrqTnPkMTRjhe7FifiqV6vNQ/X6/qxKiSp7xH83Ui8fjOHHiBG7cuOGo3+PHj2NsbAx/+qd/iqWlJTz11FO47777MDU15Tw4zqdgMIi1tTX3zEqlgh/6oR/Co48+iqmpKczOzroTr1mW6urVq1hdXXUUonpIXA9K43Ee8ifZBo1p2YNG1dPi5zTkdMz1tAReT2OQfUnP26MKX1484HqVC6k8jSeod6CxJS5AWndKFXEhcHGp1agWunppml6vz9AYF0GOi5eAqMkipKRYzokxLr4HFZyeZhwOh1EulzE/P4/l5WXE43GcOnUKb3jDGzA6OopGo+FoQVaYUEVNZc5K5IyZMSGBypxxBZtgodmCujEY2C+F1el0UKlUMD4+3mcEaFYivRYAfTE77WfeNxKJOOqRVfOZvq4WvnpPmiCj+6/o7fGYFgAuc5DeJO9JsGKGoo3f2CQftoEUs4230nPjNQQCxmuZobi6uoqxsTEkk0kcOXIE1WoVc3NzyOfzbjsDj52h105aL5vN4qWXXsJrXvMarK6uYnJy0lXp577BdDrtsgsJGjRsFCDYbnrJ3MfHvqSxoO+vMcdBfaVel64trj0CmFLJGnsdtPY82ZdvKXXlE5/4BF772te66tE/+qM/6g5vozQaDXzkIx9xk+9973ufqyxNmZubw7vf/W7E43GMjIzgH/2jf9RnmXmyL1xQnPRUWGqR6T4TTnatJ6j0mHpIGnBWCkuBh8JFDuxbqTabsdvtuqwwPk8XKM+TYkJAo9FAvV531jz37zAOtba2hvn5eWxsbODuu+/Gu9/9bhw+fBiVSgXXr193FcV7vb3DE5eXl7G8vIz19fW+s6uopLjfqFgsuv1GjUYDOzs7qFarDsA03Z9xEdI8Ozs7jnpi7IiemyowjaEB+/EUBQECCL0qxviYVajH0Svlph4WsL8fjSBB0Gq1Wn3p1bFYrE8hagafekmcZ2rAaNktJsDoHjEFw1Ao5IwEAiIBzufzueNRyuUylpaWUKvVMDU1hUOHDrkDJefm5hAKhZDNZt1BnRrLzefzuHDhAmq1mqvGks/nsbu7V3iZHubo6GhfnEjjXDq2+o/P4HtrP7D/uDa1r/RzrZSiz9AsVh1LpRm17z0ZLN+Sx/UXf/EX+MhHPoLXvva12N3dxS/+4i/iHe94B1588UWXOfQP/sE/wJ/+6Z/if//v/41MJoOPfvSjeO9734uvf/3rAPYU4Lvf/W6MjY3hL//yL7G8vIy/+3f/LkKhEP7Nv/k33/43POCi8RAqe11UzLqyGUr8XWkffq7Wuy4U5fCpFPk8AH3PoTCQzfiBz+dzVrIqf4IF28Tj53kPYF/51et1rK+v4/nnn8fm5ibS6TR++qd/GidPnsTnPvc5vPjiiwCA48ePo9FoYHt7Gzdv3oTP53Pp0Dz0EQAWFxfR6XSwurqKtbU1F7MhqPF3ZjUyNZzp4/QCmTwBAENDQ2g0GiiVSrh27Rqy2Szy+Xzfpml6mbVarc871fhZKpXq84rodTHjjx6zUrwEAn62u7vr+tbv97uYD+N89ECZxMHv0osIhUKu1iPBghQYq+1zL1upVEKxWHTtZfJLIpFwHpYqeQqNE4JfNpvF4uIiXnzxRSwtLeGtb30r3va2t2FjYwNXr15FqVTCoUOHMDY2hkAggGKx2Leh2O/3Y2dnB48++ijGx8exuLiI48eP4+rVq9ja2kK73cbExATOnTuHL3/5yy57VQ0tlmgiuDBjlHFNzslB8UN6SKTWbVairg8Fd2D/SB2Okab+KyviUYW3l28JuD7/+c/3/f77v//7GBkZwZNPPok3v/nNKJVK+L3f+z18+tOfxtve9jYAwKc+9SmcOXMGjz76KF7/+tfjC1/4Al588UV86UtfwujoKO6++278y3/5L/FP/sk/wb/4F//CKRtP9oUK1vLx6oEB6Jv0ushpSdsMQE2i4ELUTZOWAqHFy2u5IHlPAocCIKkbBqUZL2CtP76fUpn1eh1ra2vY3d1FNpvFzMwM8vk8SqUSXnrpJVSrVWSzWWxvb6NSqfRVWdB3pOfG6unsL/YJ31GtXradgKEpyqQASdFGo1E0Gg1HG6pFPWh8bNyL96GipIfEz5XOA/Y3g6sVzxR8pY7Vs1OlSo9SY5L8XcuGacyUc4/XML1cY2uMxZEd0NJVbC/HmsfAcO60221sbW1hYWEBR48exetf/3oAe2d5Xbp0yc0jzrNEIoFOp+POJaNhw6NwCDi1Ws2d6sz2KqvD8dF1wrYqm6C0rhqRBDx9F11vun4oGhdjX5Eq1H/MgPQ8rtvLXyvGVSqVAMDt7n/yySfRbrfx9re/3V1z+vRpzMzM4JFHHsHrX/96PPLII7jjjjswOjrqrnnnO9+JD3/4w7hw4QLuueeeW57D48Ep5XL5r9PsAyVKu3EyKyUIoA8A1IMC9sED2F+sSmtxQdvsKIKUgqLSlWwbFzIVGeknKkrSXmrB0lPhMzWBANijFTc3NwHsza3p6Wns7u5icXERW1tbjq66fPmy84AYuyKIUCHQc8lkMq4Kho07EFA0TqVHu2i1EsbA+F16MZpV2Wq1XLyIHpImKrCvgP24FzdKa+yK7dB723gk6T+2dVA2qKaC0yvS+oeazKEZdPo7qdx6vY5kMolYLOYyHvmPip2GgiYuMKGHDAHnDOnNixcvIhQK4c4770QsFsMTTzyBl156CYlEAiMjI2584/G4o5PD4TBqtZqjCHn2WqfTwfb2tjuUlP2hCSS6htg2zmddR5ZS1LiirgWl+mgoWMBjcpXGqe29FKQ9ub38lYGr2+3iF37hF/DGN74R586dAwCsrKwgHA67I9Qpo6OjWFlZcdcoaPHv/Nsg+cQnPoFf+ZVf+as29UCLprxr3TxabEwVBvqPcWcCgbUMddGq1a8KkokOvIYARKVkvTICAZWi1nlLpVK44447sL29jfX1dcRiMWxubmJpaQn1et3FmXhMRqfTQSaTQalUcoF4APjc5z6H2dlZl1XGrD6CEeNdiUTCKQPG0ur1ulOgpMg6nQ5SqZSj9viz0+k4II3H424zK9+v1+s5BQ7ApYsz9Z4AzGQPKiTG0ggu7D+CBz9n9Qpmx7Gdmlih+7mSyaRT5BzPnZ0d9+58L84lgrMmkti0b/YR+4nHoDAOyP1xWlVDaTCCvho4BB7ShexXKu+1tTV87Wtfw9jYGF772tfi6NGj+K3f+i0899xzePe73+1AioWXq9Wqq6XIwy2ff/55vPGNb8Rjjz2G5eVlvOY1r8HExARCoRDK5bJLGqHHz/HTLE3Od43ncn5wrdkkDO5FVHpU46/sZ2sw2Wdw7XkZha8sf2Xg+shHPoIXXngBDz/88LezPQPl4x//OD72sY+538vlMqanp/9/f+6rQdQj0AnNBcRrKEp3UWlqBpUmVhCwlA4B0Ad2vA+tRaCfjuNC1dJMANziP3HiBE6ePIlqtYqdnR3npdCDpDJlUVkA7swuZgSGw2E899xz2Nra6gMYBu6pRMLhsPOsSOXR6teMLQKQUkdK4VD5sn2WiqWSodfCxAj+pAJi/6pXQuE9tYSSNSzo+VSrVQdS9GY41tp+jqWCosYuNV5Dr1oPNWTfanvoBRCQe70earVan3GjHqg+U+eltkm3RTBGGgwGsbKygm984xvw+/c2PudyORSLRVeZn6nxsVjMebKZTAY+nw8zMzO4fPkyhoeHEYlE3HzL5/NIJBJuY7cmPrBN6nGrQcbxUG9Zsw91zXG8BiWZqeGgSSCa9NHr7R9Eyv2NHnjdXv5KwPXRj34Uf/Inf4KvfvWrmJqacp+zKGqxWOzzupj2ymu+8Y1v9N2PWYe8xkokEnGVAr4fRT0eUhs6+W1mE5WBKk4uDHoj+n8AfTEAjXdpvEXpII2dcPFRyXMh+3w+nD17FjMzM3jhhRcQiUSQTCaxtrbmzsVihYVgMIhyuezes9Fo4D3veQ/OnDmDYrGIixcvotvtujOeotEo4vF4H43M86CA/rPIfD6fU/b0YIPBoMtqZMJIKBTCyMiIO4qECSRMPKInpUrY7/e7U5X1oER6NVoPkV4Yz9Xy+XwuKQLYS1fnM9keeou9Xg8jIyMOcFTB0VtgPI8p9dazosHAucF4IkGfQGOTRXZ2drC+vu7mhh5dQiqVBWLZL8zGs4YMwYbgwncpFArI5XK4cOEC/viP/xhHjx7FsWPHcOHCBTzzzDM4ffo0MplMX+UTHgI6OzvrDKRAIOD2+F26dAkPPvggkskkyuVyH7AzbqlxYd2bqPFJpfEs3aj3YkUZGz8D+uNb7FdNrGLyCA0cTWzx5Fb5ltLhe70ePvrRj+Izn/kMvvzlL+PIkSN9f7/33nsRCoXw0EMPuc8uX76Mubk5PPDAAwCABx54AM8//zzW1tbcNV/84heRTqdx9uzZv867fE8KA/AaBNYYFK/RlFvGD5T+4IIC+msJajB/0LM1pmZB0gImRbOw6vU6isUigL1MvFQq5SpicN+U3+9HLpdDJpNxVmu73cbw8LCLifn9fqfMWYGDylf3WtGj0uQCtkXjP/RQNNOs3W47y9zu3dLEA6Z5s/38Sc+ByoztoLJkqj2VOseB/ydNpAkf9A51MzI/U69A40Uqmgiglj/fiXQi+8t62u12G6VSydGWmnihY66p4mosERColDU93nr54XAY+Xwe3W4XKysriMViyOfz2N7exvb2tvPW2U4efNloNLC5uenoWx5fw8r4NAjU+1TWQNeTXUd8F62yYmPL7GdN3KAMyjRk3+q8sge2eh7Xy8u35HF95CMfwac//Wl89rOfRSqVcjGpTCbjjj74e3/v7+FjH/uYO1ri53/+5/HAAw+4bKF3vOMdOHv2LH7iJ34Cv/Zrv4aVlRX80i/9Ej7ykY98X3tVtxO7wNXq02vUWuR1wD69BfTv91LqQ+MTmqihiSEat6DC5SKjt8WFq9RLo9FwwKWeTLvd7kta0GyxTqeDfD4Pv9+Pzc1NLCwsOFCgx6XVLKx1r0rpdoqA76Yxnna77fYEZbNZ1w+a9MDn0Cvl39lPOjYKAOq5qsLTdpGSo5dFICLjoF4xjRKl+jQLUONmCpo0CihK9bJf2B72CRNgCNxUzgRnemfqzXBM1ICg10dhm7rdrku2yGazqFarLkY0MjKCmzdvYm5uDtls1lVHAeCSTlqtFmZnZ7G1teXOXYtEIq44MMeS3hP7XZMudI6oYcbvqYHAvtF1Z8tw6dgqSCmY69wY9GxPbi/fEnD9zu/8DgDgrW99a9/nn/rUp/CTP/mTAID/8B/+A/x+P973vveh2Wzine98J/7jf/yP7tpAIIA/+ZM/wYc//GE88MADSCQS+NCHPoRf/dVf/eu9yfeoqFVNUXBgKjSVrwbXAfQpbqA/YK5xDs0qU0ua16knodYrf2o7fT4fotEo6vU6hoeHEY/HUS6XXdV23RfFQwKPHj2K0dFRZwSdOHEC3W4XV65cwerqKoLBIFKplEvk0axHUmkA+ipDELiq1Wrf+5PKYXJIqVRySpdBeN6LHiH7kH/TrENa+GqhazYaNxLrfdQzUoUXCOydU7a9vd2XbUbDgIqeAMC4oXqUSkUqlUvwYwxLKV6OHf/GtnK/Eb1ftpHv5vP5UCqVHGjo/bWiiXqJHB/GJ0mpsrRTPp9345JOpx0duLGxgfe85z3Oy2IcMxAIYGtrC7lczu1dY63Lzc1NHDlyBN/4xjcc0GvVDwVXLVM2KOYL7Hu7yoLQIND4IdeubotQw0M9cfaxloPi2KmR4cm+fEvA9c1YAdFoFL/927+N3/7t377tNYcOHcLnPve5b+XR37diuXV+pnuflG9XBQqg7zNgn/673f9t7IyiyQvAfhKIJncA6FuogUAAhULBHUzIxcrKE1TyBEUqnXPnzmF8fBzz8/Mol8vOgqe1q54l+4Nig+a60Zm0HhXX9va2iwuxDdy8C+zTqOxHvp9ScvR8FAB0XNTz0H4j6GoqNpUfQYd9SKOC2W+avcZ4iHqBbAPnCa9Tw4YegnqpbB+vb7VaDtS5KZpjBuydqExg12QOHR+Ci35XU/F1XrGNrB5y8+ZNjI+PY3Jy0lWw39nZQSaTcXOalfwZ95qdnUUgEHClwCqVimunAjXnkc5xNSys96xzTLcL6Hrh9WQkNBnEshjKoLDSiCboWO/Nk37xahUeANFMQaX1qKS44Oh9aVCZitOmxas1rxY70J8MoveiZ0OFzMWoWVaqhLPZLKamplCpVNw5XBQ+iycJP/vss6hUKgiHw3jHO94Bv9+Pxx9/HKurq4hEIjh+/LirLM826DlS7CPNiKvVamg2m660WCQScWdM7ezsoNvtIpvNYmJioq9dGk+jIqP3wFR41rzTBBY+X6mzbrfrSln5/X4kk8lb9oUxrsUTmTkG3W4XyWQSmUwGwWDQVWYnZUqvgm1mEglpRo6Tzh2CGfuQ4Kz0H4WeNVPQa7UaNjY2XN8lk0nE4/G+sl6aAq5gSeOAHhfHX2NLPG05Ho8jEAi4c7fe9ra3IZPJ4MqVK3j++edx/vx5d5ZXp9PBmTNn8LWvfQ3RaBQPP/ww3vSmNznAfPrpp/E3/+bfxMmTJ3Hx4kUXp1OKUI06/tSjewjGGp9kPE1rDHLNqDGgyRecLzSG1KjQfufmao8uvL14wPUqF0tF0FrVbDF7vXpLNtiuVhwXlH7GwDuVoQaXNeVdN2Jq7AeAy2YcHR11JY2i0Siy2WzfybmM5TQaDayurjqQWVtbQ7e7Vx2eFAv3XGmQnJ6TJgooXcdSR8PDwxgaGnL35HsMDQ25bDa2g/dWT0atavYj43RUOnYPkNKwzDqkt6NxDLazUqm4+wBAMpm8JZ6lxkqxWOxLKuA91cPTOKbOHwoVNIV9yxhZLBbD0NDQLen/3W4X1WrVxaJ4rAmAvjPHtFCxHvnC+2kcT5U034eZd81mE6lUCmNjY3jppZcwPz/ft6dxfHwcQ0NDKJVKfdU9SCPH43EcO3YMly5d6nuWxjk5FuotqrektKIafErDc/7zXurJA3AbzDWuxTVEYKQho8aqJ7eKB1wHQGwiAAGFSoRKcRCtYSkKLjQqUd5TF5NaxFxUVDpKewD7Spzp1KqUSfn4/X7k83nE43FH4fR6PWxsbKDb7fYVxAX29nFRoYbDYSSTSZfizeQNYP/EWI3j6cZZKg6eFUUPhfcljUkhjWSTOdg32pcESI0lqvWtcRvGnXRMqNy4N4kWPvt6YmLCFfVlH2p1kO3t7T6DgdQb34P9Q3pRwYuAx2SYXq/n2keAYpwsFAq5LFDWUQyFQtje3sbKyooDRxoJHC81YjiH2VYFNqUPtdgvj1Dh5vRoNIqhoSG0Wi3cuHEDmUwGw8PDaDabSCQSmJiYwMWLFxGNRrGzs4PJyUlcu3bNFeidnp7G2NgY1tbWXFyQ42yTW3Sc1FCzFS40YUfXh4KfziEFNn02P1NqeNB+ME/2xQOuV7nQMrUKlYsd2MvWsxPdLhSl/ID94LBSGRo70ziJDa6rR6cbUWmt01Jmkojf70ehUHB7/PL5PDY3N52nRes6FArhnnvuQSKRwMrKClKpFJLJpPM+LMWp3gKVNBV6JBLB0NCQSxagNX3q1Km+PW7AfgILFSeFfcD4HPe/BYNBZDIZdyIyv69t5P4yn8/nqD72n26IZhHjfD6PRqPh9re122138CIp2nQ67dp95cqVvvqPemAkY0paAJbKl1X6A4GAO1ur3W67vXGkYAmEKysr7owyprIHg0EMDw9jcnLSKd61tTV3OnI0GnVH2DBeRzqVyRSsJEKgTiQSDuhLpZI7qHNoaAjLy8vY3d3FxMQERkdHsba25ipqcP/coUOHcO3aNeRyOSwvL+NnfuZn8Nhjj+HSpUsoFouYmprCgw8+iM985jOu2gjBRctT0fNhe3UtKdVqY4zAPsVHINTxoRer+/q4dnkf3tsDrVcWD7he5aKgQaDR+AGpBrtp0YKMUlNAfxUFAqItN6PWo3pSqoiUJrHZWsFgELFYzCmocDiMkZERzM7OotvtIp1Ou3hBtVrF1NQUTp486YBPkyWUDlR6lJ4QN80yzqKxHG7o1Ww7tltjLz6fr4+Cstl2zWbTHUYYj8cRiUScAgbQZwSoklZvlOCitBStbAIQ+2N3dxfJZLIv4UL3udm0do310QDRWCSf3+3ubeTOZrMOmFkqS2Og5XLZ0W8EWd43EAggl8shFou5uB37WveMcS6yjQrgTBAhoBK4SeVyM3W1WsX29jaSySQKhQJWV1extbXlqFUmabBmKg8BPXbsGNbW1twWB1LCmgXKcefYce6wv/x+vzMA6JXahA711Ol5s991HSrtrokiHBOCnqX0PblVPOB6lYtSekB/mR9VzrzO8vHW6+K1+ncqK6WRlEqxi1wXnAKAxmDoRTEFm0q/UCi4eE48Hncn4RK4pqamsLS05I7YoEXKmJ6Ww6HlSkpN6cVgMOgC6PQ42Gd8R1VSFI1Z2PgR28EKIARrVTb6LI4f26pjZPuYgMDvEJwYF/H7947x4GcEUvW0FNjZHgURPjcej7vN4EpZsg1K3dIDYbsIPM1mE0tLS0gkEm4bA+OI2l86Z9WjUK+z0+k4w4OGTzQaRSwWc3Or3W67ijzcXlGpVDA0NARgL8nnyJEjeOGFF7C7u+uK7+bzeayvr2NoaAjJZNK9E9unfafZglwzbLduAeFYMtFDDRCdB/q+gUDAbaVQ9kMzHNUY1Xnhya3iAderXGwgX70dgo3uS+KCUSuXC0h5dyZJWKWn8Sx9Pr0OPl8rS2hWlS44VvFntQMqwxMnTuDcuXN49tlnMTc3h4WFBRw+fBhveMMbcPLkSVy6dMlRTpoEwhgVaTg9MSASibgyY2w/92+x3iGAvu8w5ZvKyu/3uxiYgiQrwGsyCjfBWuCj58N33t3ddaDK9vO7qVTKtZk0WTAY7Ktgr+DKPmg2m9jc3MTu7q6r2Vkul1GtVt2ZYiw+PDMzg1Qq5dKt1TunV8W+7na72NzcRK1Wc0ZIu713cvD4+LiLfXU6e9XX19bW3JE1NCx41AuVs5baYnIM+5XeDAGTtKp6j0zyoVfr9/sxMzODmzdv4sKFCzh37hx6vb2q8SdPnsRXvvIVxONxrK6u4i1veQtSqRR+//d/HxsbGxgdHcXw8LDbEK9zi4DEcVYqkG3h/Ff6VecQPS3G6GycWGnIQWDJdasJNh5wDRYPuF7lovSCluYB9ikzu2dLLV5N2uACUq+MGYtUEkp98NmMASiA6n258NQD8/l8LsaTTqeRz+exsbGBSqWCWCzmAv2dzl5liFwu5zYr07PQYD6VhIKZLmrSVSy/pNYuSwMp0AP9e5b4buxLKioqGSozghiz+kg1ahYi35/gQEXe6ewdRFmpVNxYpVIpNxa8N/uUHo6OK9tLEGNcivvd2IZEIuFOIWd6OcdJj5HZ2tpCr9fD4cOHndLU9rNvbbyH3jMTZCqVinu2jo3W1VQDAYAbE1KlpNkoWqKMtRgBuNhfuVxGsVhELBZz+7VYImppaQk+nw8TExPw+/0olUooFAoYGxvD8vKyMy7Uo9WkCTXCOG/0yB4V9dB4vY6hxq30Xvp9tkG/q5SkJ/3iAderXJSaA/pT2gkyBBMtlEoLktSILg7dO6RUpIISn60gSMXKTDBSZWwL79Htdl36M4+TYCp7rVbD3NwcNjc3cenSJSwuLqLb7eL+++/HuXPnnEWaTCaRz+cxOjqKbDaL3d2985bomTDuoYqw2WziQzc/hFg01qdoItcj+Mydn3EZjbphWOMa6gEozcqzw3w+Hw4dOuSq0FOxrKysoN1uY2ZmxilJxsH8fj8WFxcB7HlYzWbTJVCQ/tM9Y/TOGFNh+2jNcx9QIpFAvV53/c3PYrEYxsbGXL/Rw+OBmxrn0xJOY2NjLsOzWq06Q8Dn8zlvVbNQ6dXRoKhWqw64mJyhwA70G05Af2IPPTu+I6lkYN9z5vEhkUgE09PTePHFF3Ht2jUUCgXn3b/5zW/Gww8/jK985SvI5XK4//77USwWXV+94Q1vwOzsLOr1el/mqe7bYnakUnWc0wD6jD32B69RNoSfM9mFz6BnxzmoAMe1OojG9mRfPOB6lQuBQxMOrFVIpapej2Yg3m6BERTVw7IJG7yei0s32uo9gVvr7tESZzyGmYak2phZ2O12cerUKUxNTaHZbKJQKMDv3zvaIpFIuFJCiUTCFVPlvfjc//v6/41up4tmsIluZ39jNOMkTKKgV8Z3pQLhO7M/CRbMNmM7y+VyX+xI93rpMSrcGKweMr0TKmFmMbLP6QkxjkajQOlaSi6XQ6lUwsbGhquwTxBhvcNwOIxqtYpyudxHtVlvWeNwVJoEU9sG/t0mtJDaomJWg0b/WWOKbaCnpvNWn8u5xr5k3Gtra8tlL7ZaLQwNDWFiYgJPP/00nnvuOUxPTztjZ2trC6dPn8bk5CTm5+dRqVTcOGolF02CGhTv0nXINmsClc4rGk9sv916ol6/9pHnbb28eMD1KhddMLoodOJrJiDQX8tQPTXeR2kbVYgKgLyWilfBTgPwlnbjTwIb6TdSdMyy6/V62NnZwe7uLiKRCCYnJzE0NOSyxzSBhIqcFi+9CHpFf/fG30Wnt28Z7+zsoNPtIJ1KA9gDjHc9/i7s7u7i/zn3/zhFpwpGQUGBnkqZFFupVEKr1UIul3PZablczmXmMQ18a2vLUWq5XK4v1kUlpd4f+4MxNptt1ul03NEhPp8P2WwWzWYTq6urjnrlPbiBm7UhNa6lsTtN0CHVyJR/rdHIcWSbOBaDsjH1/uxX7WctmaVZd2qYcU6zbUp/a+V5jvXOzg6SyaTzVMfHx/H8889jeXkZi4uLSKfTbv9WoVDAoUOHHF1Impf34zPpUfH9dC1oHFepVf1J4TvRU1QqWdkCpf/5HQ+8bi8ecL3KRak7AoAqNVU+ln/vdrtIpVKOJuEiJVUBoM+6Uw+B3pgqjk6ng3q97hSQKhdNYS+VSm4PTrPZdMF+VoAH4JQusHcC9uTkJObm5vDkk0/iwoULLkWalBmpqd3dXfzIMz+Czu7/Fw/xAb1QD4GeVDn3AZFwxJWIqlQr6HX3FND/dfX/QjSylxr/+dd9HsB+MV32JZ/D+JRmxTHlfmtry1Uzn5ycdF4PM/7oZRYKBdxxxx1YX1/Ho48+6jYUA3DZiewPptD3ej1XX5EHKBIMADjvLpPJOIpM50Sj0cDKygrW19cRj8ddNX32ISt56Nliy8vL7vmaWEKaUPcfMcmA/a1KeXd3F6VSyb2f1qHkkTTB4P5ZaDrP2N8A+rYQ0JPl80i35vN5VKtVLC8vI5VKIRAIYHV1tS8J46GHHsJ9992HxcVFR/ned999+PrXv45YLNZXYxEAYrFYXxahrgt6TOxvXS/quVIsK8AYncatCYLsA03q8OT24gHXARBaq7rQlScH9hMM1GtSj4wejBaq5b1JEyntp2WZeG+g/wgPpXH4PHoH3KxaKpWwtLSEeDyOdDrdF+tqNBru2PVkMonZ2Vm88MILWFlZcVluANxR9rFYDOl0GpFwBL7I/h42nirX6e5lc0XCEUcRNptNoLdPWcVjcfdu73r8Xej1evjyg192fUblROWqleeBfctYy03ROGAdQ1bbp5IF4MojMQkjkUg45cy+jEajLvOQldJJjzGbUiuYZ7NZ5wnyuT6fD4lEwrUzHo87j4xVJLrdrgMojicBhu+u9Q7tPOR3bJo87805xr9rkoPOF36Xc9TSi5pMo4k/bEc6nUaz2US5XHZloarVKvL5PAqFAtbX1132ZTKZxObmJorFIjKZDCqVCjKZDHZ2dvooPK4vGk3sR64xNeQsi0FRD41eKUGfYKWeGPtKM4W95IyXFw+4XuWifLvSCrSElVLQgDCFqddUQno/BTq1/PhPKUHNvGNyB5/LBc0sQR47QUoLgNuTtbOzg2Kx6I7B8Pv9uOeee9But3Hx4kXMzc25xR4Oh90ptz9x/Sf26ucVYwhk996RySV8j2ariUQ84Sz0ra0tdHtdxKIxd/gjAVGt3nc++k586Y1fcindvCe9IRbrBeDiV9wrFgqFsLS05A5aVO+YBzCyyG4ul8PQ0BBGRkac0t3a2nJWNmNoPAImmUw6Co6eDbMqCRbcoFupVLC1tQWfz+cyFYE9cGMSBsefdQUtEGn8SPcdKb1LpUtw1u9TOXNjOfuY/cR+0WfwnpqVqdQ05xX3fvF6vnuv18PS0pKrtBIMBrG5uYm7774bxWIRy8vLqFQqOH78ODY3N/HEE0/gDW94A6ampjA7O+sSPpSKJcjyvZXRAPpLNinlrjSjHuBKSlFjYrp+aIApMPJzLx1+sHjAdQBE+W+1Am02kl7HGnWazKHnbqnFq5y9AoFSQ7z2/2Xvz4Prvs7zcPy5C3D3BTtAECDBXZRIU4sl04tU2bKdVFadWMk3mTTeJk1nXDtp42kmk5l02qTZJv8kmUniNlMn42bquLGzeIutSLZlyVopUpQoijtIAsQOXNwNd8Hdfn/g95z7fF5eyrHbpKR9zwwGwL2f5azv8rzPeQ8VmD6HC5f7V5hSp1aruQ2jjUY7Lx73DzFekkqlsLS0hLW1Nfh8Pkezjsfj6Ovr21J6c97UOCxa34A/4Nh69XodjWYDPvjcZlZLzVbr913feRe+ft/XPR6oxp/Yx/QslGJOpaX9qlAss6kPDAxgdHQUqVTKCX/CSRwfzd2nAl/JERRyQFsRRCKR66jsvFYT6ypb0noAyqrTH+vpaB/pWGhMSr0XPTCSzyHsao0yHRcba+Pc5z2hUNuzZqqsSCTioEueTBAMBpFMJhGPx91m923btuHq1avuvcy4wrnTiSSiMTmdF9p3mvmdyq9T/Ix9o+Qdtl33fXVL59JVXDd50eC8LmBaiVwYyriybEGfz+fOoVIBS6GvZA9L3tCiC1QtTF6nDDSgDQfpYm40trIkMBv8zp07kU6nMT8/j2w2i1Ao5KA35im0cI2tE/tJhTsVAgWnVdhq1bKuSjBh36rgAeAS3SpbUWMZVPYUzvyf+f14NpSSNBSOoxfRarUcnKj1pGJjYmP2bygUcl6cpVKzD5R6becY60tYzlLX2bf6XDVotCj0rFnhFWZTSFvHTpUpvTLWi3UnTEtSSG9vr9vgPTQ05HIrDgwMoL+/38UiY7EYlpaWkMvlMDU1hePHj7sUWxwra+xpZhSuEYUKbYxOY1/aH7re2Oc0pNi/agBa+LFbvKWruG7yQqtbrTUVqvSi1MplsbEtCmQlaZCNRg+j1fIedaELGWhnqreWIr0Fv9+PjY0NDA0NYWxszAXECdO1Wi2cPn0ac3Nz6Ovrw4MPPojJyUm8/vrrKJfLSKVSjoVXrVbx7mffjWq1ikqt4gQhhYdm/lDSx2ZtE5vVdmyK3h4Al7PQ7/c74gV/HnrmIXzpzi+5OBSwpYhisRii0ajrJ6aYogIBvLFC9gOF6tDQEPr7+9Hf349WayvDST6fx+bmpiN1UCjyiBB6d9rvJC+USiUUCgX09PRgdHTUXdfX1+f6hYI8kUg44gLjYKwvi8b3WBh/I7FHY5u8R+chDSc1DOhpqQLQzeyce1RWJLXo3CPMyb/J5GT7mCEkn89jdnYWO3bscHO4r68PY2NjjvE5NTWF1dVVnD17Fvfffz9OnDiBK1euuPbyJGLuQ6PC6e3t9cDIpM7beLMqX/We2Jecp7yGBg/Hj23ieNu12C3t0qWv3OSFAoICUS1Afq9MQC42/Yz338iS4/+EPtTq5Tvsb1rEVCK0Vm3wn1nbueh7e3tRKBRQqVSQSqVc5nemO9IF/NAzD22REja3NrM2W96sAsp6VOEJAP7A//9zv1fgqhfQab/RIyce8ZANmM2B7WEfsI6M+fH8Kmbp4DsDgYA794vCuVAooFAoOAhR4S9VftVq1Xl0rKumJyqXyyiVSu43FQmp6gqvUZByfDTOqfNIvW3OBxo77Df2D8fbeuf6Hftc42jKwuMYUgmw6Hs0jZJ60VSOjJWS0s+NyzTYyGodGRmBz+dziYAnJiY8pBD1kNmHukasZ6n3Am3CjsKxOl/ZH7oO7XrUfuuWG5eux3WTF05iG8BWsoV6P7yHi0yhCcBrMVN4c/FYvN4KMd6nnpx+ZpllzWbTZYbn3p9Wq4WVlRWXrqjVarm9UfRa1tbWALQ37Prgg8/vg9/n91j1QBumYpC9Xq8j0AqgFdjyWALBgKsrBZmlMVv6MYkXVEzK3uRY6P4fPlNp9OxXv9/vzhPj1oBCoeBifLTG2af0qhhzUUo6n6mCjaw4HXPG+ajIVTCrB61CU+NXVFa8l+/UOaXKiHPFQtV23uj72K8Kq7Ff+bkaC+wXeiT0IAOBrSweq6urbtM3Y6qch1RoQ0NDziioVCrYvn07RkZGsLCwgEql4tmETE+Ya4djqYadrk019KiQ1HDUdcjxUkhS45o283+3XF+6iusmL7VazRN052LQYC/QphVTgOjmUBWyankD8DyHnykEZ4UN4R7+T4FnN1lOTU1hcHDQMfO4P6Zer2NlZQWtVgupVAqZTMaTm5AezvuOvw8NX1uAdIJBGc+hwNWM4/6mH36fH8FA0EMa4F40K7xpzff09OBfHvuX+Mbbv+H6TgU0/x8eHr7OYOBzA4GAyxHIn3q9jkwm46jbqhDoAdGLYh5EQlSaT88qat1X19vb60kMbPdgcU5Y5U84jEX7i8e46OdUhGQvcnuDJpv1+dqpojg3+ByNtVFxK6ORRgCzd2xsbLjtBNpPCwsLiEaj2LlzJ1KpFMrlMtbW1hCPxx00zMMnc7kcRkdHsX//fszPz2N9fR07duzA0aNH8bd/+7eeGFqz2fSc4cb+0i0onK9q/Gg8lNC1zjt+zz5Qb7jVamdeIUzdhQpvXLqK6yYvKjSoIKwFrXCNWntKw+V3yvpSqEKVon6m1F21kFWJKKTIDaZTU1PYvn27O/yQMYRiseg22zLJKXMI8pkfOPUBNAPeM4oIkWmsRZWuCmK2QRUTr9e0UzYmoW1WaFHbqe1XiIufsV3cNK3xDUKk9NKoBFkvLZo7j4qJ8wDwHrli5wufrfNA+4x/a1/xOiW/qBembbaEFR0L9eCswrNZKvR5fK96xxxzelpUHtzcrfBjT08ParUaisWiO9Wa8ycajTqj4tChQwC2jIxoNIqBgQHPHNYYII0LheGtp6prhf1ivS32k37vgbVlPaqBqUZRt3hLV3Hd5IULQyexTnoKQfW0AHio75YZRmuPGbd5DRclrUmFsFT4qeKkUOMemN7eXtx222247777kEwmce7cOZfJYHp6GufPn8fa2hp6e3uxbds2NJtNtxlUT961cTaNBanS4HcUBqyPU9BoU9jZHo2RKexFb1LjL2wnv2dmB6vw6/WtxLnJZBLNZtPBVsDWkSOZTMZBoFbAsb4UuMFgELOzs+6ZjJ35fD6XmYPPZj8Qhkwmkx6ly711JLtQmFPJ6PYBjX1pPKvVarlM/4x1MebEPtKN0eoxUBmSYMH3+/3eDOmcU9ynxs+q1arbC6cQLEk8fB6PgllbW0MymfScTk2vv1gsYmJiAuvr67h8+TLi8TiGh4fRaDTcZmS2wZJuuGbYl/xc4UF6/GwfP+d4sI1cs4wL83t6rDpfu6Vz6ZIzbvKicSSNRQHtVDTE5dWCVU8CaFvFtGL1On7P36osbRzLejidIEWef8W0TjxFt1gsYnV1Fa1Wyx1NQQ/NbtDkj76f77Uekyoy62k1G144T70qJXaQYMHy7mff7YEJrfemno1lEpLGTiOCOQqj0ShisZjnFGZLOGB2kHg87vYpcRM2j4KhErjR+Nk+ohDl2LNuep3OC00grGNMoo16ZXwv+4+kBiop7Xv1EtWzokepY6Jjo3OLitPu72IMlfErFioZJlYuFAoO1vT5to7cicVirv1si64ZnWca19J5qf+rl8V7NKVYo9E+w8v2ozWuuqVz6XpcN3lRD4LCRoPnQHuBqULRQLIqI8CrBG28i89jUSVon6+fkUrcarUc/ELGG7OeM4NEs9l0Bwbad7zv+PvQjLQVLtuqMSkrEHWRe5SX34dWs20tq9JS+E0tW41ZUCnp51poGWscgnXUOCGJFvSolLihcBHvZQ7DRqPhWIrWW9E6MMMIAJdJn+9h3Vh/jSuRfq6xFmX5Ad59Y/TstD4KfanwVlIIn6demipGevSdYEyti8b4WDeFeLlXURWXIg6NRsOdnAzA7e8aHBzE1atXPXFhNQgYH9QxUI9Z261wonqOmttTERNtJ5/VCQLuFm/pKq6bvNjsBKqklCHGBUwBQ4uUC0QXnOL5CsVZ612/454bWttqKTOYHYlEsL6+joMHDyIajaJSqWB0dBQDAwNuoQNbcND27dsdTMi60BrVtDsUgJ3qx7ppDIF1VmVoFRPQttxV6dn28VoVhhS4pMNTcVDosR30MLPZLIrFosfwaDabLj0R20x4kXAps50nk0mnBOfn5z3EiFgshomJCRdLI4yVy+UcLEhPnCmSNG5GggdzE5KCrx6EZmMnjMz0XZybJGFw3NiXhL3YJgutqceYSCQ8ngiNFd7D+axKjnOF8S6OC+nvTBVVLBZRLpedl+/z+TyHmQ4NDeHSpUtOEeu2Ao6lKlmOsyIAVFYcYxYlcxCatV6VwsXsH37fLZ1LV3Hd5MVCdwpdkD4NeD0s/g94jzjhQuGzlKar8TAlQCgsqdfbLBk+nw8bGxtIJBIYGxuD3791KCIXP/P9VSoVRKNRDA4Oejyeer2OH3vlx4BAu91sg2VF6nt1cSucqN6V9qOFfNQTZTvZD3oaMn8o7NU7UMFMC53nYOmRLtqXZF8qCUNTASlRgtfRe4pGo9i2bRuSyaTbdOxieq2WB/bS8acHScadz+dzMSUqXNZHPS/epz+ce5qWinNKFaT1LK2Xy7HoBC/yeUA7CS3nKn+zb9hPVOC6ZUPHjxBsLpdziYy1Tro2+Hy7ljp5Q2TDKkSvKAELn8H1pu9hHXWddkvn0lVcN3lRYazCm1a4xl1oxdr7bO41PkuFv8Jieh2FEnMfUgCrt8DF32w2cd9992FoaAgnT57E8ePHEY1GcenSJfh8PqysrODSpUvo6+vD5OSko7or049EAW0L60QBB7TjLgrL6G96H6p8lW3HPmJRKFChLt1UyrrSmuc9akxQ+DebTRerYqJbhQNJ519YWHCnLlcqFUeXL5fL7n3AlmCMxWIYHR3F8PCwZ0MzBXckEkEgEEAikXAU+Eql4sY1FoshEAh4PqMCYhvVe1A4lZ5Ms9k+bZl9oR4Rn8k4lCpRVWI21qXjoYgBz2LTcaEXw2wv2WzWzQ+eOs3MImoIkOzi8/mwsLCAeDyOXbt2IZ1Oe+Z2q9VycUgqFo6B1kMhTIVG9XNFGiyjshNUzXeq59Ut15eu4rrJi7UcAS99tlMQXOM0KlD1exYuago/tbbVc9GDA5VhyOf5/X6kUins2rUL2WwWZ8+exezsLIaGhpwgZ7aIwcFBz2bdRqOB/+/M/+eeqUqEAoGLWYW/ClotSqhgsZ6W/fxG7+Zz1BMD4FGgahlTWfT09CCVSrngP9M/qUdEmIt7lBgrVMFOBRYIBDAyMoKBgQEXz1JlTm/D59ti3DGmqNDb5uYment7nbenyl2VDw0Z9cLpxdTrdbfpmfepZ8hxUW+V/cz/+SzNTMH2dPIyCEWqsgPaQl2hOI4BGa4cX0UT7FliNGaoDHm9rh2rSNSTV2idY9dJIXOtsX/VGNU5qH3aLZ1LV3Hd5IWTXa04oL2BkYvLKhoAzjrWwLA+V+/VZ3MhU5CqRWmVFtBOLLtt2zaMjo7iypUruHDhAhYXF11uuUajvfGX8TLN/6bWqQoM/bGKxSoh/VyhOa2rjcFYj9UqIu0XFTR2cyqfwzZFo1F3LIluPlWiSSgUQn9/P4LBILLZLGq1mqO96zYFkggGBgY8SXgJ/3EM+Vsp/dzAzL1PjO/Qs1W6OiFb62WowiDUqGmltJ+0jZ1gNe1r2+92jKgwNLUYx5fxLc5lJdGUSiXEYjGkUikEg0EPzT0QCLiDNWlIdII1VeF28rSUcWkVrq5HbQ8NA0UC1Dhin1mIs1uuL13FdZMXChPdSKxegpI3NJis5whx0VsBzkWq1h2hLhugV0aXXk/BOTAwgAcffBDbtm3Dn//5n+PUqVMIBoNYXV11cA7jJ41GA9PT0w4iY4yIC16FIa1Ta/H6fG1SAAWfQlWd4FXep54B+9BS/VWoUOFSiQSDQRcnUko8SQGRSASDg4NOWSmEpN4wALdHKxqNYnp62nkArVYLGxsb8Pl8GBkZQTqdhs/nc9BZJBJBs9n0nKqrsRWfb4udODAw4GJumUzGZRsB2rE2VcCq8FUBEfqjl0IlSMVs458atwLgyCKqfAjP6fhoXkZLHtI+5HVKFOF4MInx6OioS7WlCjuZTLo+Z/H7/Y6YQoWmRT02RSU0W4jGmS0krwYS0zqxXxVKZFu75Iw3Ll3FdZMXXSQ2Y4YuJutxaUCdi0b3xKjVDuC6a/keazlaWITX7dy5Ezt27EAgEMDMzAzK5TJ6e3uRy+UQDAaxsrLigWzm5ubQbDad8FBos5MVrvVST5PlRlavCgDtS4UcO0Ezj73lMfjgpUSzTrZe6rkGg0HE4/HrrHi1+BXSAraELfe0kQFHJU9FQiXGY1FYLwtzsii8GQgE3D4wq8zt3FFjRuM4gDdBrvaXQrnaH+wz9VAsKmC9Zx1XVXS8TzdKa1HYmJ6mptVSY4V1q1QqKBaL180pxu+opPlMfYf2l46nxqd03rJfbdsVXWA9GbsFujGuG5Wu4roFisJ6gDdBLosKik5wh4XgWHQxcvEo7q7vUlhDk9ACwN69ezE8POw2GTNjQz6fR6u1lUiXAoDwTbPZdIQCradlV3XqC8v2sp4o+8EqWPUc9TnWI9WYmibCVe+E0CCFXjgcdhAh66XeohoACknSCo/FYlhZWUGlUnGKPxgMolgsolgsOtq73+9HuVx2sKAqGgCed3LDsHpH+n7NfmEhUT5L+8rn8zmiDvuMRo+SIezcUuaceiCdYjx8H//XeaHHjSh8zbmvHk21WnXtUwJKq9Vy6ccKhYKrE/fMpVIpNBoNFItFbGxseCBJ7WuFQlWZWoNPY5bqhfEe/m0VXrfcuHQV1y1UuFg0W4NCEro4dJOrJRJobEk3gqpQ5zPUM6FQIDzY29uLSCSCUqmEo0ePolqt4uWXX4bfv7UPqVKpYGNjAwMDAwgEAs774tlWzCTB03s70Y+t8tL6cHF3glD5ud1Xo9+pgrT36n4htYb5o/EzKi3G83gv+1YT2GqMi/AU4bvh4WH09PRgYWEBr732mvOwmHmjv78ffX19Lo7DE4JVqdBLYx+Wy2WPEaMKjvuefD4f4vG4hzzA59FD5Dlhvb29yGQybh5SoQNe+I/jxx/Cz1S8VulQcOuhnCrIWdT75XlqSnTg3rqVlRUsLi4iHo8jFotheXnZkzmEHlehUHD1Gh8fRygUQl9fH0KhEJrNJvL5PF566SWnrHX+WAhY54hFNTjPqPz0Pv5N41ORkW7pXLqK6xYoan1SGCr+r5Ocv/UAP2vdU0BZBWDjPDfyelQoV6tVpNNpRCIRzM3N4cqVKx4hxJOCy+WyJx6nORVtih2tFwWfxgrUYlcvlMVa9ypwFDq6kWdH4U9ausY+kskk/H6/J2dhp71M6iVbqFffpZ6CJn2dnp727FdiXIseFmMqjLGwHnw+P1M4NBgMOiq8Qs38bb1KOwepJPW8K92TpF4Q663v6WRYaH11DipkrPPbeiJWKZMdS49KPUo+Q89Vo7Jj7IsKmpnvmW9zbW3tOqIUt4Dwb1X6uu7stg4qW4Xm+RwLpXZL59JVXDd5sRCQZcpp7ISLgVCI9cYoXBl8ViGjz+Y1Pp/PHSWhiVUVKmw2m7j77rtRrVbx/PPP48KFCzh48CAAYHR0FK+//jry+bxjy+kBgIwhcJ8O26lWKNuqx3VQEWh+Q15L2nknrwjwZjxnsRt/6/U6FhcXXQYK5hcE4DZOT09PO9IM66qnQPf19bl3apYFhY+Uzs0NtsFgECMjIxgbG8P6+jrq9ToikQji8bjbXMt7lJyhnp7OB/Y1BWgwGMTi4qKD9pjbr16ve2jyauio50UF3kk5qUHBuWvnE0kanHNK3tBncBw4Z1h3ZvggUYZEDc2jSEVNiJWbtGkUMfdjq9VCoVDAxYsXkUqlsGPHDtRqNfT19TljzOfb2vP18ssve85nU+XK/ldjS9NusfBerjUaG4QiiWLQa7TGQ7e0SzfJ7k1edGFQQBDe0UWkljs9LUtMALyH4gHwwCxqmauQtR4XFyc3dO7atQuFQgFLS0vIZrNIpVIIhUJIp9OIx+POkgWAZDKJUCjkkqKqNcp3KUSngpNClT+2j6zgtLCiKsJObaKlXKlUkM1mHRQVDocduSESibiN02rtKwFDn8f2qDVuvTEqGL2GgpOCNpVKufiSpsfSWJ5S9VXwq2ejHpA+h9nXtf7KeONnCiNaiFIZdxrnYv/o2Opc1TrrHLBesELWOr4kYhBKVw9ePUjC67oWAKBSqWBgYAADAwNIJBIej4wQIjPRq+GhXqZ+p23U/tFrtV1KgWebuIG8WzqXrsd1CxQLJwDe9DOaxUIFPeBNzaRQkEIS/Fw3hFoaLxUe0BZCfr8fY2NjmJycxPLyMrLZrFNmtG7HxsZQrVaRz+cde05JDyq4bgSPUIiyjbxW+8Teq/1gmVkWBlWlVq/X8Ve3/RVqmZr7TjcQU4FSyOj/anF3Yr2x3TbOwULh6/NtxbZIDEgkEkilUtcZE/Sidd+Pjrl6mq1Wy3m4HF/OIRWanEvqGXQ6jVe9RIV02TYbn2K91VBRD1sVr/5oW7W/9B1KmFBCjjJl1TPjcwjB8jgaema6QTkUCjkPeGZmxhlgnban6BpUqJZFFZquLW2H7Ytu6Vy6iusmLxQEakUqRKZCkouAC10te83oTatTY070NmxOPYUsuNiZ9SIYDOKee+7BxMQEvvCFLziiAQXAwsIC1tfXXTvuuecejIyMONIHMzBQuWi2Bi1WmKmSYb1IGtFkrDb+pQpdhaHSj//m0N+gsdFw51Qlk0kMDQ25NgBbAiaRSKBSqXi8YBXilUoFoVDIk4NPFQCVMRUyBS3rFI/HMTExgVar5QgsADwKnu3mOzXNEvfIqYet97EfSf4A4Dxh66lbJdTT0+M8Pwv1KXlHCRzcS0V4j/fwXZzTVrDz3cywHwqFPNlFSPW3iALP8Mrn8y5bCA+kTCaT6O/vRzgcRl9fH3bu3ImBgQGkUinXJq4remMHDhzAyy+/7IkJco3YmJeFiHkN17DS9BlrpmFh52xXeXUuXcV1kxdriSqpgsVCKtZD6nSdwi38X1llVGwKY6kwIRzJI+wzmYzzDvg9j0zv6+vD6Ogodu/e7YRDoVBALpcD0LZe7T4z2ybWjcJS4zn8sXEvhZbYXhXKFIBWefBsLOa+Uxinp6cHiUTCAwexWKq9KjOlVfMzjbfZzbwUdIRutU0W7tL9QzpG/D8YDLotCozBkHHHWJlCXrq1ggLW9iE9Ggstd6LQq3HFtljPV2FPxt/US9W2UMkBcDFNjT0BWwqiXC6j1drKys6tGcyawefw/DgqLdaNioSHefKMOfazrkuNYSqk2WmbgiIb6gHqfO8qrjcu3RjXTV4IHSg2rhCKCnOFJ3iPCnm7ydheT/jOQhjWYme9ms0mhoeHAbRZg+l02nMgI7CVzXx4eBjxeByRSAT9/f0u2wEF15fu/JIHctH4QadYB61bCiqNs6gy1r6yilyFC/uGXoDfv5VIl8oEaAts5iFkLKS3t9cJQiWHqOLUGI5VOmwT7yWZQgWwFWD6HeNT2hbtC/7QmGg0GohGoxgdHUU0GvXkKGQdqWj1f44FvSodH1XUoVDIzSPey2czf6IqMhoMnaj4qrg4rhx//Y5jwH4ipEfyCuekjgPr1dfXB8DrIZVKJU8uQxI6NAas/UpFrkgIi8KuOnZsv84BoE1asZ5ut7RL1+O6yYsylNTrUZgG8J5vROGiEJjdnKxkDH7GvTaEm9RyV6uXMJjf78f27duxsrKCVmtrf8z+/fsdZNXb24uBgQE0Gg2cPn0aFy9exMjICA4cOIBMJuOEAZXuX9/x16jVavixV37MeX9c7IQ6WW8KK/1NgaBkCPXQFIoCro+3aIwhnU67ZLY+n89tlF5dXUW5XEYqlUIsFnOMS2VqUvFR+FOwa4xMN+1a4gLJBqwn60RWoSoKbrLlM6jE+FwdY37X39+PyclJhEIhnDt3DpVKxRFO9IgQ1kU9DPZFT0+PM1YajYZrm54DR0+O9dVtGOpBKYFCN7UrbKywuN/v99RB0yex7alUCmtra8hms055AVuHm0ajURfvajab2LFjB86dO4eVlRUkk0kEg0HMzc1hcHDQKXYmTOZeRIXYWdRQ0Rgc56Emqi6VSh7PjAaYem/W0OqWdukqrpu8cJErIUG9Ed3safcr8XPF47mgNNZD+IVwUSeITb0DhWiCwSDW19edQAuHwygUCigUCiiXywiHw9jc3MTa2pqDH8fHx1Gr1dwx9BTKFOZa/0azgWajDampgrFxEMI7Kji0LQpRqWDg7797098hUAo45c1+oucFALlczp0pFg6HUSqVPDCeWtoqkGyfqwfDQmGqVHM+W69ViFHJFDre6glRqPt8PiQSCWdYlEolrK2toaenx0GG6qVqX9n4k3pcagxZRp1to/aNQqlUmNpnNn6rc5l1oCdjY42M1XFOU9moMcZncQO8Hq+TzWaRTqc9c1/7RX/UuNP2KkzKcWD8TOeezlXAu7evWzqXruK6BYrmfAPgEWZcwMTKNaceiy5Ua+HR+lcrXoWwBqs1EN5sNjE0NAS/34+1tTVnxdfrdVy9etXFvMLhMBYXF51wTCQS7vh3niXFDBq0nj3WbAse7wRobxrttLlVYRZCOwqpavxAvZq/OfQ3KBaLzoMD2gqiXq87Rax09Gg0img0irW1NZcxXaEkFfQ2j50qG8C7MVpZfhwvHlPCovAkPWtCbny+jiNhWTI+FxcX3X6uVCrlPgeAYrHogRs5FqpI1ZulJ0h4jVsdSMSo17cSEFOpsd8VDuOYaByQsKfOfY2n2XnN+cqN75wnPO1Y45WMY8ZiMRfj0r1tKysrGBoaQiwWQ29vL7LZLDKZjFP65XLZ9YPCwerlqvHHdnN8dB7YdWdzhnbL9aULot7khRabLk5dHNYrskrNFiswNHjM9/FZKvx4LyEPn2/r3KdqtYpsNos9e/ZgcHAQvb29yOfzKJVKzuINBAIYGxvD6OioU1AqxBqN9pHtgUAAf33HX3sYdj7/9datbbfGqWwMQ61bjfmwfP2+r3s2YlMBsZ95ZhYVMT0tVT7MskHrn2Og8R0WjdmoIaFeCIUwx0C9NY1l8RrtL4VKWQ+y+nw+HzKZDFZXVx3ky2dbZqYaAkCbAq+xJd2zZeNh6h3ZeJvOaz6bHrOdj532wLEvVGkoGsHncf7Ra1b0oaenB9Fo1O2X4zxiHdRj1RRraszxHho5NsaqbeGzSWihIaaGQLf840pXcd3kxWLdFD66gBXisRasCs9OwV4VLvytClGFPJUC4clUKoVcLodMJoPh4WGXCqhUKrnTcuv1uvMMSM7I5/MoFovw+dqbXLnhku/6q9v+aqtuPiDgb+81Ui/CQlvaFwpddaJ3W8ICrVx6CxQsNoktBeDq6qrbt0aqerFYdHkFFdpiH/OZSizgGOumYRWg6oFQiSj8aeE59oEKe45DLBZDLBZDsVh0HqJupuZ4WyXD7xXuYlt4rdYP2IqV6UnLVIpUGDY3JcfCpijTeadrQsdU+8DCslQ2Gl9ShaQsVL6f1HuN/9IooZFlyRM6L20cUhEEVbr8zMKgqoC7pXPpQoU3eVFLU+ExFk58had4jYUu+Dz1xoj92zx6fK+SOFQwRiIR7N27F9PT07h8+TL27NmDUqnkvC0ACIfD2NjYcM9iBvlXX30VhULBwUzNZtMFvZmstlar4W8O/Q3ef/L9HgGqyksD+SSLKBRFy1uL9gkziDNQDsDt+SFcSKGpfdhsNjE7O4tr164hlUrhtttuw8DAAFZXV1EqlVAqlVymDR4louMItCExPSlYvSYlOXDfEr0jVfi8VoUwcxFGIhG0WluZ+ZvNJsbGxpzh0dvb6zZWsy9YB2UTWsOJiod9TuhUP1eyBYkb7AcSgJQV2mxu7XvTvXCd4jxUTmqwqEGi86m3txfhcBjZbBa5XA7pdBrRaNRdw7FXT5lEjGKx6E6uTqVSyGazuHr16nXwtCp7NaZ0rfB6RTrUQNFzvNgvVkl3y/Wlq7hu8qKYN4PMumAVzlOviWw3G1imAFXPTQWyzbpA4UNoBNgS5olEAslkEteuXUMsFvNYkvF4HK3WVtLYXC7n4h6xWMwd+8Fzp5gjT4UeaeatVptp+MHpD3r6BGjvcdOYl/YBi/Vs1BP58l1fxmZ2ixhAr0AD/cquZNyF/VCtVrG6uorV1VV3npbPt5XfkUl4lRZu4xuW/q25JunZqCdms67bNlKgKrmEzLpgMIhMJoNSqYRgcCtDv+Z9ZH2sx8Bna/zOGhHaJ5wzCoWy7/nDa9Wz0nfa+KAqaYXeLAPS7/c7Q4BbCrgJmXVSZWmVIsfK7/c77zQUCiGTyWB5edm9Q9ul42C9U16vhqQal9Yj63pa//jSVVw3eeHkV+YUJ75CRIw/EO7Q2AMXEa9TwUcBTRiM11MY0COjV+f3b9Gqh4eHMTQ0hBMnTjiSAlM6HTp0CMDW3q4zZ844htfFixdx7tw5rK+vu82w/KHQp7IgjMX4gg10U6CpcFerVq1yjQv6fD48/c6nEQhsZbYP5UOOEEKPj/dTkes5WISRhoaGHDTIjPjpdNrR6JkCa35+HhMTE56N2bZuQDujvb5b68x2A3CxQxsvUliu1WphfX0dL7/8MgBgaGgIa2trKBQKmJiYcB4lBavCfhwbhbOULAG0DSHNDEIYjUaEwm2cP9Fo1F3H+aXCnQQUfb6edK3KjeOmMF8+n4fPt5WmKxjcyoY/PT2NyclJj6elxl40GoXP50M2m3XrZtu2bY5VeOrUKZw4ccKRUHScVNFqbNDC2KyvVWRqNGhsmn2m3le3tEtXcd0ihZPZwlY64TWwrXu+1HsCvBtz1bIlfKFpeagMKSSoLJl1gcpCvYd4PO68PZ9v66wnwoYkbfh8Pk/2CSVo8D1UvL29vfjqPV9FvV7Hj73yYx5hoH3BftLfVABsz1MPPgUfvOcgqTWsisXv9zvYUNtDpUmvZXNzE9VqFWtra6hUKo6lRs9rbm4Oo6Oj6Ovr83g1QBtmUiWmFjiVsgbw1SJXQ0Q3wNZqNWQyGWSzWZfuCIBTzjYGo0qSZ1Hx3XaPHIslMHSaszrfFPKlYFaSh85RzgH9reOlRopuvuZ3rGcgEEA2m0W5XPbkmwTgEirT0+ZJCD6fz2WGr9VqWFxcxObmpturx+zturbYTm0bP2NfahxP1yavUyVvPcJu8Zau4rrJi4UBOcHV+lThq9aaWnUqvO3z+JsLX+EqCz+q0uHhg5qqKBAIIBaLOYGRTCYRjUaRSqU8AorUZCq9QqHgrHBaxpVKxVmxtLq/dOeXXJ1//NUf9wgL22dvtPApgKzXqn3CZ1FIURjy+UosCAQC7sTcZrOJqakpRKNRzM/PY3Fx0SMg1bLW+ug7OV7a552EmRJHFJrK5/NYXV315IVkpn72ucbcLPylBBFVOFpXJUQoSaMT/GXnnR0L26+qoFTQaz3o7bF/dP8WjTi2nXOJRggVHk+S5vxqNBoOImw2mw5q1Payv+gtqlFn28j+13HTv3XMrIf93ebwD3PpKq6bvCgMo7nOeLQJg7mEYlQIqxXH+23gV6ENtWwJN5EAoaSGnp4e7Nq1CyMjIwCAbdu2uZNjuR8mk8ng2rVrALaC+MwKz9OPFTrRQxj5v7Xwe3t7EY1GXaaIRqOBvzn0Nw66YvDf52tnqCBBQkkIEV87We3S0pIjkmgaIwpBVeKA96RlQoeVSgWtVsvBrPRsGLdLp9OYmZnB4uIiksmkY1922m/HMVHFwBRUKth0TAmrcmzpLa+trWFlZcUJ92q1isHBQSQSCRQKBQ+7kW0D2spDtyewvYTyeNy9KlLC1+xnNYQ4Z4gKcK52MqCUbagECAv7qiGm9UilUqjX6w4RALY2jW9sbCAWi7l+j0QijhBCmI/GFOOwlUoFa2tryOfzLrGwKiElsXA8WNgu9USVgMG1pygJ+61T+7vFW7qK6yYvOnk1sKyemFq4aq1bGA9oHxipHoSFJtRbU7YiPStCKbRK+c50Ou3S5ayvr7tsGXpQJK1T9b4IX1EoAW0avlrdGuNTYa5KVyEc9gffzbrYvmNbuQ9MrWkV6EpQ0dgQ30WLn0QInsKbSCTcQYd2gy0L26XjrbE7/k8Foe3Q+JjGonp6ehCPx90zNWu7xkDZh5q1RBWPfs8YpIUIbwTfsv9t7E7jr+wP9q96LDpG+p2OK79jvZQIRAiQBgDnHxUR4XF6+jTiWD+mydK+vlHcSeedek9qoKgHpQmKrTfdVVpvXLqK6yYvulitYFN2EgAnzEloALzEDAp2LkTe00nQWyiSAoQLX63eWq3mvItWayvLA1MjhcNht7/LWswK+wBtZWDjObT0lVoM4DqhCXjPSdJr1HNjHymxAYCzvjV2oYF0FutJUOBSEPn9fqysrHjy6Pl8PpTLZeRyOecNaj9rMJ+KWoUyx4n0fFWgNjbEJLbcLM1YjnqKqvSZeUVPmbbClNRx9hH7lmOoQrZTzIp1s0aW3kOvRec15wnbrR6MwoQcM7JU2XaiEzzShNfSy9dcioQQ6RUSSrR5QTln7FrjeNi4lypzS+mnMWiVcjfG9calq7hu8qJKC4BH4CikA8DBP7wOaAtsXUgUHlRi3Exq4QtCOoDXOlQrn88kiaFWq6FcLjsLl95WpVJx1/N9ao2qt0VFodY5yRsUAAovqpdJxpjfv5WIVTdAU/DzHb29vY6S39PT4zk/Sz0G5iPUPUaEfQgxqcJj//f09KBQKDgqNT2wfD6PAwcOuPfzXkK9rB+wBXOtrKzA7/dj9+7drg5KmtDchs1mE9PT01heXnb7okgmYNwwlUrB7/d7PA62lUYC5wA9RXqjVHQqnDn3yATV/lZvkX1IJa+xKULMSrbQvXSE9bgXS706ekvNZtOd8abvqFarWF5edvuyqBibza2chD6fDyMjI5idnXXwL9udy+U8xpumJGOfa1s6wfG65jQW5vf73XylgaRzXN/TLd7SzZxxCxRaZmpZAl7iBhWVemRq8dIS5MLQQkhKFUin/ToWvqPiA9oJYhkzonVJxWphL12cDI7rZkwrGLUv7P8q7AntUPFSiFAxsb0APHuZCL9RwbANQHsTshoBSiBgn9HKpwDngYWW+VcsFh2tnu9WQa/KZGVlBdeuXcPMzIxT/hxX9dJYKpUK1tfXHVEkm806b0vHg33DFEQcAyo4JeqwPzT7BeeEpoliTJH3qYBWT/FGnoSFaNWQ4Xd23nRCC6h8WG/mSqSRwk3WxWLRpb3iCdP0bjkGrLfChWoEEk5X71/rpN+p8akKTeFFXtf1tt64dD2uW6xYpUTohwLXMrAUdqBVS6FED00FYaPRcCmMrBDXhb26uopWq+UYW+Vy2QP3tFpb5It4PI7+/n53lAS/U09JrctGo4GNjQ0EAgG350fjevTAyF5UIcNnMGsCjyJRYaOKfHBwEMFgEBcvXgSwBRX29PQ4BUHaOADnFSglmn1BqJRkgHq97ixpbkzOZDKOXVgsFjE7OwsArg2sGxUk28UNzvV6HWfPnsXIyAiSyaQ7D4z1Yfs2NjZQKBQ8Vn4oFEI6nXbZ+5lRg16xeqnsB3pWhNo0JkVvk4rOxmIUmma9mNuRjFPGmDhu/Mx6VISIeX6ben70yNRYYpwqk8mgXC4jFouhWq1iaWkJg4OD6Ovrc9evr68jHo8jn89jx44deOyxx9xJyBsbG1heXsbCwoKDDokssI8UfmZRBIEepiYQUMiR3/NvRQ5uFEfrlq3SVVw3eeHCVsafFvWAlGkFePc0Udhaa1UJGoQLLbxIYgRLq9VCNpt1e7Jo3dICZzCcMJ1mW9cgPp+rcQFVZCr4LDVfLXCFnAjf8Uc9TX0Pf1Pwl8tllEolpNNpjwfKNtnYjO0njgEVHNsIAIlEAq1WyxE2gLbQ1KzsbCdhUF7LdFalUgmFQgHBYNBtsKU3RwXCuuv40hOkwqdwtaf5auxM55eSfTT7h52PSppRQ0Hvs2Os3nuz2fTEfLQOrHelUvHA4FQSlqBSrVadARIMBlEqlVz2f2Z+4Ritr69jaGjIbV6ORqPIZDK4evWqO2uOY8P36lyyMDHQJkHpZ4pY8H/2kRJ/LKGqW64vXcV1kxeFB3Wiq2XWCSrRSa+xBRVoCjXZALf12gBv3j5mjQgEAs7j4vMKhQKKxSIajYYnF57d58L/1UInbKZtpUBTMocKRrXagXb+Rf4wVqPkD97L921ubjpPjxAoPSkVWHymenkWstJ4Gq+JRqNIp9NOARHSGxkZ8bTVesDBYNAdmqjJafVdnBvMu0foj14JGaD0VggZsn1sm5J/rJJSsgbfrV7ujWIyOr/0f/Xeda7xWBELgfJeXRM3yqvIWOvGxgZqtZo7QoeKq9lsujO4fD4fFhYWcPjwYVSrVczNzaG3txeLi4u4evWqSxel8SkSQPg+ncfqaakyonJWo0nXMv8G2gmVCVV2y/Wlq7hu8kIhzklMQcogsUJ5Clno/iOgfYovY1GE9NSa1swVisv7/X6XIYL3FAoF5PN5t2+mUCg463Z5eRn5fB5+v99tUuaz1Rui0LRxLXooCi0qcUKVEoU5IRwSEQhj2aIQGgX78PAw5ubmUC6XndWtpBcy8zQ1FD017Xeb+V2JLr29vRgaGkIikUClUsHq6qo7XmRgYMBtnKXHwjYNDg46ksnw8DDi8bgnNsYxqdVqmJ6exsLCgiPSMAVXX18f/H4/yuWyS7sUDAYdo45xLBXQGrvTOcjrNU5m265KkONGaLBYLLpnauFYE84G4AwfQq8cC87LQqHgDors7e11pJJ4PA6fz4f19XWUSiUkk0nU63XkcjmX8JeEj3Q6jaWlJdRqNYyMjODpp5/GhQsXUC6X3Xs4Tzl/6LWpt0gjgHOY2x74vd6jnqbGuZRUYo3PbvGWruK6yYvCJrQygTaDTL0Kq6zUw1KYThWTwl1qPXPhdMLaKUgqlYoTGCQAcBErnq+WowoBS2fmtTapqs/nc7kM1SNTD0xjLRRONk2TKgb1vhKJBEKhkKM+s44KEVGQKySl/cjrlAau9aNg0pOVNzc3sbq6ip6eHsf0oxdC6JXxKD6PXhzJHUD7LLCVlRWXmZ7ptNgWjhkzoPv9W6xLJSxQiBK+5LtYL9se9ZoUitQ5y2vI0mOf0YjR+clxZE5AfaeFwxnP5XxVr1qz0SuFnnOZhki9Xkc4HHZKisfuzM/PexQK+1k9Un0u26T14fXaX0pW4fN1+wefxbp2FdeNS1dx3eRFF4FSyC3zTYUlPRSNd6jQU0EIwGMpqjBS7F0FVE9PD2ZnZ7GwsIBwOIz19XUniIGt5LobGxsuzsVCpcN3sFCoa1yJe3ForYbDYSeYaMEr9KIxJo1vsb0UEpZm7/f73REWpEGzjRrT0s272h6NR2hf83/tSw3op1IpNBpb2Tuy2SyGh4exZ88e+HxbB1eur687oanZ8tfX11Gr1ZBKpdyeNDIVi8UigsEgDh06hHA47Dw7GhIcD7aFbbYEHApYzjON8zWbTee5MR4FbAl97tejZ6pMU3rkGu/k2HOfFMeW7E7NsE+Pl5+xrwOBgGMHAsDevXvR19fngYhJ1gkEttKQ7dq1C319fe4d7FOObbVadfOU76Gi0vghP2esUOcC51wnJcb5x/vZD3wG192NDMdu6Squm77oxFUPSkkLFDiMDWjMwMYR1EPTBQJ4iR7qqShsQS+ACWQJu9h3stCC1jiU9bB4nY2TcCED3vga79ON1LSKLSlAlbS2n31Lg4BxID2hloXQje0HChZ+pv/bWJAqMGDL6mdaoVKphOXlZYyOjjolxWu5J45jtrGx4RHaFHQbGxsA4BS+Jkq25BUWVS4kgFBBdIoXsi8UUlb4l2OvpBESdXSMtehcs/CZemJa+ByyIrnPLZ1OY3R0FIFAwHmSHBPeQ0XN9uoWA57Nxv5V8o+NP2p9NX6sRpl6q9Z71LXGdcN7+Lyux3Xj8j3t4/rUpz6Fw4cPI5lMIplM4ujRo/ja177mvq9UKvj4xz+OgYEBxONxPProo1haWvI8Y2ZmBg8//DCi0SiGh4fxy7/8y90A5HcploigVp96SbqY1Krj4mPRzwF4hK0KOBUyGohX/J5ZtHmPwo1Uiqr87F4orTvjMqyTKhwLHRFO4w+Ajvezv9hGJVIw0N7b2+uSBivkyr/pseizrDfFwhiQwkLsP+1/xp/opeRyOczNzXn2XbVaLRSLRRcLW19fd8SXXC6HbDaLQqHgsprTM1XjgXVUIgE9P2ukWFiZZIlOabTUwFDvRlN6MfamTEPtT30G+05jbXYs6YHS26tWq+6gyHq9jmQyiYGBAccq5PM1+wU9T7JMm82mByrmeWXsF4WILZxui0KJOr+VjNHJcNT1yPd1Fdcbl+/J49q+fTt+93d/F3v37kWr1cJnPvMZvP/978fLL7+M22+/Hb/0S7+Er371q/j85z+PVCqFT3ziE/jABz6AZ555BsDWBHz44YcxOjqKZ599FgsLC/jQhz6Enp4e/PZv//Y/SQNv9cIFTCGqmS4Yt+DCsEQOwHsUO//XTcgqxPk/AI8S00zbjUYD5XIZkUgEzWYTfX19iEQiHhiMC6+3t9fR5pWgwTrxnCsWhTTZTpIgKJw17xwtfdYRgIP41MtQYUKBovtnotEohoaG4Pf7kcvlPPUBtvZGkeyhcUR9loV6NIbDwtgR+zsUCmFychKFQgFLS0uYnp7GzMyM28zLPVfFYhG1Wg2JRAK9vb0olUoOrqNADYfDGB4edgQcbuhOJBJuLtAzW1tbc89KJpMeZh77hP3JPlNlbsdN9wfy/0aj4dn0q7Aj+4VjzXHjuLPv+Q41HNh/xWIR6+vrjrA0ODiIHTt2uD1bTEFGKJDED47B8vKyiwemUikkEglkMhlnzCgMqnOaypMGiiIcilzwM84N9f7InOS1GovTtdhVXDcu35PieuSRRzz//9Zv/RY+9alP4fnnn8f27dvx6U9/Gp/97Gfxzne+EwDw53/+57jtttvw/PPP4y1veQv+4R/+Aa+//jqeeOIJjIyM4MiRI/iv//W/4ld+5VfwX/7Lf/Eshm7ZKrScVdFw0XOviJIPVIgqhKXWLRcei3pq6t34fO3cdvoeKi2FrKhAlQIMeBPDUtCq1W8hTQsNab1VACh0oxa/JRCwr9QbVO9Cr2N2DYU1NX7F9igcpPuOuGeN92scR71SCx2GQiEMDAw4BVKr1VAoFBCLxTA4OIihoSFsbGy4dEXAljIlY48lkUg4+I/9HYlEXJ21/9l/fAbZeQCu62O9Tz1rGg1WQas3y75lfJXGBueV9Q4Jy7JwPmn/b25uolQqufHy+/3uoM65uTksLy974p0AHJlDvUj14H0+HzY2NtzeQvW0lGT0RnEnaxypslUP0yImdp7r/13l1bl83ymfGo0GPve5z2FjYwNHjx7F8ePHUavV8NBDD7lrDhw4gMnJSTz33HMAgOeeew6HDh1yx2EAwHvf+17k83mcPn36hu/imTj688NUdPJSIanlHwgEPEfEU5lQqFm4QlP36IJSmMLi8fxbvRj9jILPCgSgHaejIKH1XS6XHdRHT4pQEYUVLXllEyp0SthOc+qpIFRFqIKC7dI0QvRk9TTgToJLhYzWU+ugY6bxLjU8ms2maz9jNNxY3GptbYqmwmHGCY6dnnHGMdXjTXTbA9vA2JfGndTjVsOB7eJ4c+xUcSl7UwsVkHrxGg9SBIDPJ3rAOug4ar8B7ZgjWYChUMhtGbh27RoymYxHadKYYExUCS8K12kGDp3fnLudYlOcC6rs2F4L4/N5GkPTPrPv7CqtG5fvmZxx6tQpHD16FJVKBfF4HH/7t3+LgwcP4uTJk+jt7XXHXbOMjIxgcXERALC4uOhRWvye392o/M7v/A5+/dd//Xut6g9E4USnMqCSIqyi5AWrZOgp0eKlwGRMiAtLiQdUPhROGs9SZaieRyAQQKlUQr2+dQ4S4axms4l8Po+1tTVMTU1dJ8xIo+fzNbZBYUZBF41GHSWeBAHdgMq+0ZiMtdZVwPIzJRTQk1SPQZ+jef2sR0tojO+IxWIOXlQ4SD1oZctRyVAQR6NRj2fBsSS0yX1rhAp5QCTrxOcqLLqysoJ8Pu9OaA6Hw8hmsx6jQyFlTTxM4g8VARW8GhEqjDkuyqj0+dqZ6xuNhtuT5vNtJTKmMtXYGPvO7/e7PVyEQiORiGMA+v1+l8CYhCE+i3OmXC47VIcpykqlkktezOfqHLCeNsdO1wT/ZrFbKnRdKvRq92txLVmYsluuL9+z4tq/fz9OnjyJXC6HL3zhC/jwhz+Mb3/72/8UdXPlV3/1V/HJT37S/Z/P5zExMfFP+s6bpVg4QQWxwmQsGl9SggUFGKFAtRgpdFSo6iJVCFIFlGL7VCTMnwe0BZAGwnk/hZ7CcloYZ2GdFHLkM2wWcgoE1ptKTHPtWU9QFTDvUTKAZqHQ7B8sVKy8lkVTEzFzgxVGVJb6PApr5lnU9ujG6s3NTSe0qex4L71azgPuZysWiygUCkin0459qHucrBet7dO6q/er88h6p6rUeB/HXA0tbT89LYUM9Xs7N2kAcOzZH+q9qSHCZ1JZb25uOgNCCRnaNvW07VrRtahIhHpbrK/uNWSfKgSv3p16bt1yffmeFVdvby/27NkDALj77rtx7Ngx/OEf/iF+6qd+Cpubm8hmsx6va2lpCaOjowCA0dFRvPjii57nkXXIazqVUCjkLMwfxsLFQgtPYxi6N0uJAboAFWen5UqBrYJRIR39AdrHmgBANpvF2NgY0um0s2T9fj/W19exfft2JJNJrK6uOs9JrUqg7eUw7RAD/iwUcGw7Yz4ac2FSW1rI6rlRQCkESOFFBcA6qNJShatUews7EcZjXUmjJ7THRL3sPz17i8+0p+daViaw5SGSMcdnMT5E4c4+UCMFaMPB9Jqz2Syaza0kt/39/S421N/fj0KhgIWFhevYmXoiAecMx4BjpIqPfVkul92cYJ/SKND5rGNEQ4VHyPh8PgebMiOGbmLmu+idqjKJRqNYWlrCxsbGdYqOXiSNmXq9jmg0ilwuh3w+78bEbvHgWLP+JKBYkgX7T9ebelQ6v9Vjt3/rZ91yffk/Ptak2dyil959993o6enBN77xDffduXPnMDMzg6NHjwIAjh49ilOnTmF5edld8/jjjyOZTOLgwYP/p1X5gSyMcagSUKacTniNYVGhKQ2cz9JnU+Gp96NKz8Z5KGCALWEVi8WwubmJ/v5+zM/Pu2wEQJs2rzEf1lPjMJVKBfl8HhsbGy6Pn1rAvNZuoGYd+Ex6GyRJ6H1qfWv7NG7EGI4SKZQBRxhH8wZyXBhb0mwTdhzVi1EjwY4TPSvCdBw7HtCZzWY9uSHVG1XiRDAYxMbGBlZWVrC2toZgMOgIHown6nEvdk5Zr4H1tLFDS0KgQaLCV5WyVdJ2HrNNjIPyh5vaOWd1TJRWTmhciTXapz6fD4VCwd0Xi8UQCoWc8cM1pJ4m66v9oCQLtkPHnetJ7+XnnVi8/K1eW7d0Lt+Tx/Wrv/qr+NEf/VFH4f3sZz+LJ598Eo899hhSqRR+7ud+Dp/85CfR39+PZDKJX/iFX8DRo0fxlre8BQDwnve8BwcPHsQHP/hB/N7v/R4WFxfxa7/2a/j4xz/+Q+1RfbdiJz3gtXBt8NcKBCUDaNxBBb59PpWLwnAqYJjEdGRkBK1WC+l0GlevXkW5XEY8HneQW71ed/Eu/k1qOzNUtFrtE47VWlXBDng9MaCtECmoaeFTUKinpAKGwkz35igcyx8lt9i9hlTkeh+VllrpvL+TBa7wGmNYvI6kh1gs5rwzwo305ljHZrPpjgShUOczuc+p0WhgYGDAHRWjKZN0zvB/O7fo+fJzxs/U09OtCLxXYzlA27vkOOkcZJ01/yLnOskbvJeKSMeOz1cokp4TDRpu3VhdXUU0GnWeHa9lvTn2GiO00DI9YN5j5yfvUWORn+l85r3qYVl4tlu85XtSXMvLy/jQhz6EhYUFpFIpHD58GI899hje/e53AwB+//d/H36/H48++iiq1Sre+9734k/+5E/c/YFAAF/5ylfwsY99DEePHkUsFsOHP/xh/MZv/Mb/3Vb9ABVCPRR6VCQUBIqFU8ArtKRxAguZ8T4KCE1wymdbT4kB7Gw2iytXruBd73oXRkdHcfToUXzhC1/AxYsXsWfPHly7ds1l515ZWUG1WvXsvQkEAhgaGsLg4KB7vgo33cOjQpoCSI8sIZSlsKRa+krK0LRZ7At9twoQwqoUmppkWCFYKmJVjpo9gvfZjbxW+anArlQqiMViLikvA/5s98bGhpsTbLdmeqhUKu5sLr+/nVWCJBL1BDQuyft1DnG8OGeo+BQ+VcaoKi1mqojFYq6uZAFqn9NLJlqg5Az+kFDC9xFeZv9QgdsUUyRlJJNJjI+Pw+/3Y3V1FXv37kWtVnOpr/x+v0c5cw7wf/avGkRULjqf1EMnBK2Kn2OlkDTHQr3vLlR44/I9Ka5Pf/rTb/h9OBzGH//xH+OP//iPb3jNjh078Pd///ffy2t/qIv1FjjJldTQCSPXvVqqgHgfBajS6HW/D9/NhaSeGeMO+XweyWQSw8PDjq595coVDAwMIBaLuXx5zASxbds2DA8Po1QqIZfLoVgsIhqNugMOVUhw4at3opRvwjxqlepCVwhRBZFCanzujSxbChgA1wlvVVy0xAnrUQhTEKuiUkhWWZasC3/4XMKF9KT0HfTMFCajcbGxsYH19XVH9OAJv5ZkwdRTGvPrpNA1KwnrrcxWazDcSOg2Gu2DK5UBqrAtvRhNSMw+ViYjiyVK6DtYZ24piEajztAIhULOi6NhooQYPleNJEsY0TnGzy18a4kffLbOc76L13Vhwjcu3VyFN3lRphjpwqq4lHxAz4nFwnz8zMJCCu9wVz+tey5syyoEgNnZWQSDQdx7771YXFzEgQMH8Prrr+OnfuqnsH37diwuLmJ9fd0lIb3rrrswOTmJ2dlZvP766zh79qwTNrqIFT4hMUeFmCoeZb0xvsZ6MgOCxtjYTnoaGqtRgU0PhIKU7yNM10nIa3JeegCae5D1pdBWUgnrBsAjnAlvtVpbp00zLqjxGR1vAB6PY3R01Hk7OtZ8Do+doQdHCE4Fr1VarHMgEHBkiVgs5jxbhcZ0XxnbzJyAvb29iMVijoTBnJH8m32tMVads7yGCodzgB6rxkRjsRgmJibQbDYxOzvr5lAmk0E4HEYul8Pm5qbLFq9sUo1zKQLAz9hOfs51x/aqV2bXoEKOHBuFk7ulc+kqrpu8cBLrhFbrTGM1XEQqWDVm1ImEAbSFuUJZClnoIiP0xQB3qVTC0NAQTpw4gaGhIZw+fdrljNP9R4VCwR3WePXqVayvryOVSrm9PKqIFNqjV6lHYPA3LXDCSxRc7APdaE1rmcLEFhskV+XOOpDWrpazFgrcVqvlWHX8nAKVCodQYqfxVsXMcdG4kCoIel7q/XGDfjAYdGdTsW/9fr9LJEuWnmYciUQiiMfjKBaLnszw6lmynjrXrBergp1GD/MY6vzjmFkmoxoAym7kfeqpqJfH59nMLFSSpVIJ2WzWjVOr1T5JQed4J6OP1+vWCtZR/+d9qkwVHbFxL13HfLY1QrvFW7qK6yYvlizQybOywW9VXFy4VE4qcNQCV3hD8XaFgPg/6fiFQgHZbBaJLoXJ4gAAnpVJREFURALz8/O45557XJ25V4gLNpvNYnV1FfV6Ha+88grq9brbi2fZVxrf4mdsOz1MtonPp+LSGIPGhChw6IEpdKhCUOEmrRPfyz1ULOwbNShYP/a1xmyazaZn/5lCjgA8SpoCmO1XiFQJLBx3bhuoVCqO2KGxFMLC6i2yXpFIBACQTCbdBl4yMumBsU+4JcC2X/tAoW2F+jhXNV5EWI+CWyFDeuv6TNaDf/O3EicYsyL1PRqNIhqNukS63MxOSFf3j7E/aTRwndCzU2hT68D/1Xiya1hjiNo/ChF+N7i1W7qK66YvivUzsap6QBoQV+VFK5hCXRWaKgoV/rxXF4zuXSFTkBb4+vo6ZmZmcOjQIZexgAmYx8fHMTo6isuXL6PZbGJhYcHt2aPiC4VCLmMC20XlocFxjS1RsHOBK5PLwohsN70Sy6ik96SbgHkNN01Taeh2APVEFRqi0lC2JJ9FyFX7WAWZnrgMtI8TYUoo9TBJONjc3HQblQG4AxDT6TT6+vo8ikrp5aVSyWXPKJfLqFQqSCaTrp5kHLI/Ce8BcMaAevpAOwM7AHeIIzcBU5FTsQJwBAsSSQC4vIoK5fL5msdRiTDsM0KGPLdtc3PTZfsnKWNgYMARhAYGBtBqtRw0ub6+7hkb9SKpZHRM9RqrtFkn9RZVaati0nWo869b3rh0FddNXii8FE5TKEaDw1aYEtZTaEy9CP6vUKR6HrSIAW/GCV3M+XwezWYTpVIJa2trGB4eRj6fdwliKfzK5TIKhQImJiYwPDzsAuRWQak3oV6LKmYLe9pjMigo1LJVa5pF2Vtq8VLZKfzKZ6h3xH5WRUnhqoqSikcZcToeFpaksvT7/Q7KY9yGioPPTCaTAIBCoeAEI2Fa1omlUqmgWCwCaMOGHAf+1Gq1jvEa20e8RgkZHCPCsZxXCsPp/LKHN6rnzPv5Pu0HQok2btdsNhEOh13OQSqw/v5+l4qsWq2iUCi4LPEcS24e13brmLLPdG3Zeanry5Ix2Be8hp9RaalHTMNQlWG3eMv/8QbkbvmnLfQqFHawsR4WCmKgLZjs4lHvigtQY11Kg+ZnamFa+GJ9fd0Jh+npaQSDQayuriIUCmHbtm2uHuVyGbOzs8hkMk6IdDrmQhWBentqhSpMRjhNIT9bR71eY0iqGBVyY+zI5uJjYJ4KVgUcY1CsMz0lHgTZarU8NH4V6BwTbT89K/WwVRHQI0kkEs4TIHOO8ROOJ5VEuVxGo9Fwx6UoNGct/U6xIo1b8R3WyLAEGkKcfL4yLfW4klKp5BQO5yW9QXqBeqK2GlWsPz0o9cbopXKTMfM/ap7DarXqyClK5LHefydyBeeUHR8WVXwKu/M+heTZBkUZuqVz6XpcN3lR644LVONQdrLzHv621jEhHnudLiINHvNejaMpVHPy5ElMTU3hx3/8x/HpT38aAwMDOHXqFMbHx7Fr1y5Eo1EXc3jttddQrVZx+PBhZ5XbgLRCUBbOA9owKJUI60nokYIIgNvUztOBVSCopwp4YzXa7xTaCsdqElT1VtnWRqPh9hgpo44WNdvFsWP7eUhkIBDA8PAwent7EY1GHV2dHooqt2q16s4Qm5iYcN4Jx4qCmt5aOBzG6OgoBgcH3XYFpn+ycTMVwlTKahjQq1OyCRWSxrZUsOvJw6VSyRPDYyyKXpkaJDoudq7Q6+fG96WlJQfXVqtVDAwMYGRkBLFYDNeuXcPCwgKmpqYwOzuLo0ePYmVlBbOzs2492f2MZJ9aj5uKWjdjc06qoUTyicYK1YikEuZzCdN2va0bl67iugWKKiz1ACxUpYtcLWGgs7cFeDF9G0Dme/VaVXbNZhMrKytYWlrC4cOH0d/fj1KphEwmg5WVFYyPj7t9M1R+mUzGtcmSSvhefm+9JK2vwjoKP6ln2EnR64ZPJSmwj/hbhTgFcicSh8J6ChkpiUJjcmwD4CUZAPBY/vSKKOj5Hu1/YMvjLRaLHQ2XVqvllAMAF8ujF0SDgoqeHgeFPiFJPtPOPRoG1jPQcWGbSbghJKgZJ7S+VLo2ZqSGl/XOOVeHhobQaDSwvr7u8TrpbTWbTWSzWeTzeXdo5NTUlGf7gBpx6rlrHfXZinKo0teYqPaLnW+6hlXJK0zbLdeXLlR4kxcKThtj4sTuBHuppcYYC6EfCgsuOku9tguNAlihH7VG5+bmcPr0aQwPD+PQoUOYn5/H6OgonnjiCTSbTezatcttLu7p6XE5CRuNhoOHmPkAgIOSAoGAE96EFtlmei9UhtVqFeVyGfl8Huvr68jn8+54+42NDccusweVUmBYgofP5z1fjP3o929loCBjUpUpBT3hQI1Jsr9JqFBvT706bg1oNBpYXV11cSvue+JmbuZ2nJ+fx7Vr11CpVNypxBT6xWIRi4uLKBaL8Pl8GBoacse20JPz+XxYWVnB6uqqU7CasJfKXQ0CjUGx3poai/NLvTCFPvlcnjzMPWbVatUpUHptHCPOYbL6aAjwWbFYDDt27MDk5CSmp6cxOzsLv9/vaO+Tk5NIpVKoVqu4cuWKO3H6TW96E970pjdheXkZa2trzqukF8g+Ua+Z9eFasAaSrrtgMOj2ICrsynZxntEj03gi+6FbOpeu4roFiiobFXq00lThqJdAxcZFodadhQb1XXwHBZdVeAqXFItFZDIZ+P1+7Ny5E9lsFtu3b8fa2hrW19cxOjrqLH0qGmYAV0HHwLuyHJniR70O1ofKU5lmfAap3BpfsgpZiRj8zAoMfs/nKbRpYz7ad/xMA/msl8acFB4C2nuolI7ONvLsMsZ61tfXsbq6ikZji8pOkka9XndZSQh7pVIpl8G+Vqs5kgjJH+rN0xPje2yf2dhip7lj+5P9RKhS80nScGB/6HvsXKMBQsPAGm2lUgmzs7PO4OA60PbncjmXUb6/v9+lL8vn865eQDtGrFni+blCzWy3fqf9pP2gBpIiDXwGv6PR041x3bh0ocKbvHAhU6Bo6iGgDTepUtIFwzgEPSz13BROtFajQmuAN9ami6parSKbzQIAxsbGkEgkMDU1hZMnT+LixYsYHx9HX18fFhYWnEBcXV31eCWsM2EpJWuox6PtuFFb2D+8ls/VeALbo2QOq/hZP/2M1ralK/O5ChsppEQDQxWZnnysYxePx9FqtZDL5RydfHNz07EB6QHkcjk0m1vHwaTTafj9fhQKBZcBgvXv6+tzHi8P+6QhQEWqylPro/vlLIzFon2k/WGhaT47EAg4D5mKsRPtXqnjCt+pZ8L61Ot1l+0ik8m4PuZYMPZVKBSwurqKwcFBt08M2Dqmp1QqXQdR2ufQcOG66GT0aP/YmJiuT0U6NIasn3XLjUtXcd3khQJGPSgNpKsgVhxeN1TqtRrLojJUWIif8Tk2RqbJY7nIL1++jIWFBQwPD+O+++7D8PAwPvjBD+JTn/oU/uN//I/IZrN49dVXXd1ff/11ZLNZ3H777R5hRSFJeLJcLrs26Z4s7jNS1h0/089Zz2KxiEql0pF1ZwkYrAeFLyEfTdHUarXcO1joVfGZGo8i6w+AY/Mx2bCmqKKiSCQSThgWCgVsbGw4EgWfk0qlEIlE0N/f7wT23NwcfD4fhoeH0dfX5wSzGgVkIvLsPCpY3adFYkmz2fQcJaJ77Qj/cWyAtpdiyRuEhUm1V9iXMBnnOfuXTED2q0Jr9ByZ1Z1Ka2NjA5lMxkHShJXT6bS7NxwO41/+y3+Jr3zlK0gmk+jp6cH8/DzW1tbcs9kfSlJhO3WOEEpU9EDXJ40Zfs4+YbupxJVww/eowu+W60tXcd0CRS16TnqFuixRQ4WLBrPVc9CigW8lTVhIxMJpJBEwg8bw8DD27NmDpaUl7Ny50+0nGhsbA9A+rp4wFD0Uvo+CWeMJbD+VsFr91sNRhasegMbklMSg0BTbq9RwPkNzGqonwnuVwKAQl3qJupfLesUKv3GcmNmBY8+M6uwXPVw1n89jbW0NPp/PQWDcvMuYGucBiQqNRsMxDbWvgLaHab0F1lc9XdvX2m/6WyFeNbY4JspQVIIOx1nHkrCtxsKazSby+byDIpnYmQdtMnZIKLbRaCCRSACAMw60/9nWTpAw+5Ofcf7YdaSxP32O9g37TN/He7pe141LV3Hd5IXBdBUQ9CYoeCkwLaxGi5MWK4kVisNzMaoAUMYXi1LWeR3f0Wg0cOXKFezYsQNHjhzBJz7xCfzrf/2v8cADD+DatWuYmprC0NCQC5bH43HUajUUi0X09/c7AUsCBSG0ZDLpFjzfz1Q+QPv4dVXWFBwKgWqfKPSjcQyNUwQCASf4bEYPEjw6wbUUYozXAHAewcbGhovbtVot50URDiUxQEkqgUAAkUjE3aOHMzIeMzMzg0KhgFarhT179rhDPLVNJGsEAgEMDg7C5/OhWCwin887gc526+ZhAI5hqBuAqchLpRJ6erYOoqRCVjiZcKgSOzSpsCbR5Vhx/KnImW+RBoJCsHwex2txcRGJRAI+n8/19/bt2xEMBp03Vq/X8a1vfQt33XUXRkZGsLy8jGvXrrkNyCxcV4yNUWHrfNNYKdvBddPb2+vmAecKjReuYY2fqWKj595VXDcuXXLGTV6oGNRSVXKCJRRobEED4Fx4urg0fsDv9HsWhUdsUJlKYnV1FblczgnZ2dlZjIyM4Pz58wgEAp6zoIrFojtOHoCzgNUzsoF+fT/rR2GqEA5JA/SCaPl2IndQaRCaVK9CrV8lL+gz+HyFelQZUllqsl+OZ61Wc3uwuDGYbdQxsHFAfs5j7hnPSiaTiMfjAOAo7jRYqAQikQjS6bS7hvAqPVx6K5b4wP5hfykcRu9H6269MK23el8U0EqwUS/Tkhqsl6rvrlQqrh8Zx+vp6cHQ0JBL+ZXP5xEIbOXY3L9/PyKRiNs7x7XG8VWiBZUl+5NtUg/Lxq20P9Rj0zmi65NGpv2uWzqXruK6yYsN9For30JiFOKqZFQY6GKw1p5VTHqtKkRa5uqZLS8vu7hNOp3G2bNnEQwGcfXqVeTzeUxOTiIWi7mgfCCwlXiXng2tZ/Xo1FJXRqUqTWXqUZjxxypneqnK6NO+6hRUt4QVKgE1BPQ+fs730DvSI08CgYCD+crlMnK5HDKZjMt1yHZpG1T4k4yQz+ddTDCVSjnhbuE6KvH+/n6kUimX0YMKnp4klZZtl467zSiihgSvtUqF3qLGW7VdZE0qgqBkISXkcHtAtVp13vvm5iYymYyLS/FdTDvGOuVyOfT39yMYDCKVSnm2ZCj0rEacwpRaX11DalDxfzt2Fi60bExrLKoC7JbrSxcqvAUKLT4VYHr8gx4XwUVH+Iff2YWgwV+N8wBe9hM9PY3B6CJkrOD8+fPYu3cvpqam8J73vAf/63/9L5w8eRK7d+/GF7/4Rbz73e/GxsYGnnrqKSeoarUa5ufnMTEx4UgK5XLZQUOEWShoCamxzipImOSVioJeHD0SWrMUnvo3M26wPfQsNI6ilj2wlUVdhXmrtUWk4NgAbcXKPVaM64VCIRw4cAD5fB6XL192imhlZQXBYNDtX9P32dgkD4vUDcM2AS1JBiSmTE1NIRwOu71Myhbk+ALwwKOalkkVCmE+NSJIZGFbdeO5klYAePYuqdHB+UcIUxMMKyIwPDyMu+++G0tLS/jc5z6HpaUl9+xSqYRQKISDBw9i165dKJVKWFhYwIULF/DRj34Ur732mvOQ1tfXkclkPOQJherU67fJhdl+QphKWrKsQYX9rMFIhc3frEO33Lh01fpNXtQS60Qk0PiADR7bvGv6P3+rlcn7LERBa1LhLxVm9XodKysrWFxcRKFQwLZt2zAxMYFLly5h3759yOVyGBgYwO7du5FMJp0XEAwGsbKygo2NDSfcWScmlWWeOsKCan2zUPDTe9PNrzcqCtGoEqSC4P1sn+6rAuDJnccYDynouvGUCkBhXoX3CPGRbUhhViwWUSwWUSgUkM/nkc1mUSwWsbGx4c7TooK1JAAWHU+eSA1sKUOdR9bb0H1SarRQkbCvO5FjaGQpWYEeCWFZu6+Qn2v8x3p+en8oFEIymXQptrgFgP3baDTQ39+PyclJJBIJ5PN5rK6uOnJKqVRyJ3arklKYkwabMke1j9Uj53rQeKwiBJxv6rlzDvMavp916Hpcb1y6HtctUJRibOnqNh6ji4OLSene6pnxestE1L1N6oXpNVzgxP4zmQzm5+eRzWbR39+PXbt24Vvf+hZGR0dd1oY9e/Zg+/btDlIMBoMoFotYWlrC6Ojodcq1UqlcdxYUvSpa6AoX+v1+t2FZY0oac+H/mtlC2X9ss5ItVEnT8yUFu9VqIZFIwO/3e3LcqUDieABtQgH7kaQG9ah9Pp8jXKgy47MoHLmxmwxEHScqG3qAJMGwz1hHlk5xKio+9bparZbzlqlsdC/XjfZ7qaeuEJoaGBwnwpbMlKF1pbeXz+exsLCAhYUFN594TygUwsjIiNv8fvXqVSwtLTnPfGFhAclkEn6/342FKl6Ojd02oXOD9VJyhsY9Odbabr1HYUG7xu0+wW65vnQV101erELiQtE9Qxpv4vUUPkoxV8tOIQ0uMFp8FHi0vrm3ReMNjHMxxlKtVnHq1Cm8/vrr+JEf+RHcc889mJ+fx9LSEj7wgQ/gmWeewQMPPIAf//Efx4kTJxCJRLC5uYlYLIaFhQXs27fPLV4eA6+xJABu4ypJBeyfQGArPZTNWE7mnSo+1pt91Gw2XWyk2Wy685lUsNJDpMdBZUnFTU9Rk+yyf3UfD9l59XodhUIBkUgEAwMDzptiyicADgaMx+MIh8MIBAKOMcfDFUOhkEtWW6lU3Ebbnp4ed4xMLBbDtm3bMDk5iUwmg9XVVRcb49xRIg8TxmouQ/Y1Y3dsczQadTR9EiAU9uJYEBoGvGiAxtTYrwrrMp6Wz+c9cdGNjQ2sra1hZWUFCwsLbvMw0FYWhw8fxsjIiDuV4MKFC7jrrrtczDUYDGJubg4XL15066JWq7mxVAKURSFUIbEPlcnK8ebcY7t1fSrUyH6l19j1tr576SquW6SoAmNsS2nvVDz2GHEuJFVYLJ3IG/o5YxYsNg7G67kAs9ksrl27BgBIJBLYvn07Lly4gF27duHVV1/Fvn37sG3bNgcXbW5uOuuaR00wVhSLxdyzuahp+atiZX2ULk/PiQqKbSaEqFa+Qjs29qB9S2VGKIoClkIHaG9TUIGlY8LrKcwZn0okEk4p893cNJtOp50RwrFQynq5XHZJdskqbDQaKBaLqFarGBkZcYSE+fl5ZDIZJ+gJu2kMVOOoOr8UolWCBseenrHCbKqk1MuictO+4ph12tKh6bbYz/Ru6TEprFmtVpFKpdBsbh2NQiU+OTmJ2dlZhMNhZzxks1mXYktju0QSOIYa11XPUdeYrlW7/tR7VzjQkj90LKxX1i3t0lVcN3mxkJMqHy4AsqNUkFAQMO7DZ/E7Cw9yYenx5IA3KzYFDfdZqaCiN/Hss8/iJ3/yJxGJRLBz5078xV/8Bfbt24d7770XX/ziF/GRj3wE9913H5599lm31yUYDOLMmTPYtWsXEokEFhcXXftVedLapzVMEobG+TSvoTK7KDDovSgEpUxKsta08DiRaDTq+pR1K5VKzrvThMTcY6YGh8bw8vk8SqUSxsbGEIvFUK/XXX5BwqCq6HjEBw0WKjqSLIC2Yrx27RparRbC4TDuuOMOd9Lx8vKy86C4gZkwI5/L/uY7qGz4HkKUnWjbCk+y/21cVWFujiONAfYh4UkaNzQU+C7GQxcWFjA/P+8S+JbLZfj9W4mQt2/fDmDLS7927RomJiYwOTmJb37zm3jggQfg9/uxtraGpaUlzzrgPNH9gpwbCnOyaAyUc1QNP1Vcus1BDU+FoZURqu/pFm/p+qS3QFGYUIWACl1VZp0webX0uQDt3xpgVuuTReNauuioPEOhENbW1pDL5VCv110A/fLly7jzzjvh9/tx9epV3HfffRgdHQXQzl6RzWYxOzuLSqWC7du3Y+fOnY6tRwuYsJLGtwC4jcuhUAixWMxBWFawUpBagonGd9QroLegv4E2zKMUfmWhqcfCa0gyoXLg6byM2fHcLSU21Go1rK+vI5vNelI/aWyPAjEYDDpqPbClxAYGBhyzcGVlxSkoC1fZ8WUb2Ed8Dz009mskEnGKjxCozjnOIWUtKiFB+9V6fUpm4bNsxozV1VVsbGx44MZarYahoSGX/Z4e2N69e513v2PHDpRKJde3rJMl/ajRoUQU9bCUdKF7+nidxlktEUr7X5/B5yo82S3e0vW4bvKiZAKg7WXZhaPCQplYvAa4/jRlFhvzYlHPTa1NTdJqF1exWEQ2m8XIyIjLyj07O4tkMompqSm8+OKLeN/73od77rkHjz32mNuPE4lEkMlkEIlEcOTIEfT19bmEvACQTqed4qHgYF49pvFhW23bFbphu9ge7Udto4VCdX+YClYAHq9B71GojNR+3kvPcXNz09Hf+/v7kc/nHUSlUJiOmXrauhl4bm4OzWbTpX0aHh5247GysgKgTfdWgwVoMzm1noBXcRGiY/8xHsi6aj9qLFHp8Posvle9FPYPY7N6Vpge2MijXlhfvqenpwfj4+NuThMduOOOO9BqtTA2Noa+vj7kcjksLi4im8169g5aokindcB6c22yrwgnKyTYab3eyGDQvWMWRuwWb+kqrpu80EKjYNDguVpwQDsuoJ6SBsp1wSiEoQFi9cRU6NtFzcWm1iOF2alTpzA6Oorh4WEMDQ3h5MmT+Hf/7t+hv7/fQT4f/OAH8fWvfx2hUAiFQgGDg4MIhUKYmZnByy+/jImJCRSLRUcCYByIVrPWkxCcxvcsBEgCAbNDUCjSC2E/8TON7VHIE6rU5MRKR6dHRS/IBuC5jyscDmNgYADlctlBvKlUCslk0u1/AnDd8SbqLTHBLIX3xsYGlpaWEIlEcN9996G/vx+NRgMzMzOeGJzf7/ck0VWSD4WrMjcJGXIsgK1EwZaoYecZ+53P4zwiBGdTRClsyO0EGttizDISiaBYLLptFDQqWA4ePIgjR464GNXFixfxkz/5kxgfH8eXv/xlvO9978P4+Dgef/xxnDp1CoVCwWPoKPmIfWTjvAoB61pSo4dt4ucKFfI5hHPtidEa8+uWzqULFd4CRUkI6jkA12fkBto5CtVypjDm/VQgwPXHm6gy4/csFGYKmwHeo9SvXr2KTCaD3t5exGIxpNNp7Ny5E9VqFUNDQ3j99dcRj8cxNjbm8S5oPZ85cwYvv/yy55gTDVwTtlLITj0ZkiTUEib7jVaxhfcUXqWS0jYpJMf/dV+SpW3rHjsqWyU5sC08W2tpaQnlctmNC+FFxm96e3uRSCSQSCSQTCaRSCTcMfdkO0ajUQwPD2NwcNA9u1wuA9hiPJJ5ybpxPxX7gDHCTnAXAM+4A/Ds5+L3HE81bvgcCm4aCIzbqSdHCJWxOB1zetWlUgnZbNbto1NPdnh42BFbSqUSLl26hMHBQczPz+Pq1asYHx93GeF5vA7nAxWSGhu6pthnim6o16rwsPUgFbLX9arGp65xfXe3XF+6HtctUggX6kIlQcHSxnXxqaekykYZURQQZKtZCFBjPxTY+g6fz+c8hWq1ihdffBHDw8PYtm0b7r77bpfVIhaL4eGHH8b//t//G5OTk/iZn/kZ/MVf/IWLVaTTaQcZZjIZ7N271wnS3t5eZ+mrsgLaiYFZL4XPent7HU2cVH8qJD2qhH1hKfLBYNApCD29mCf3UjgrGUHfxXvoQbCf2L89PT2oVCpYW1tDs9nE4OAgUqmU815isZg7WoSUeJIHNjY2cO3aNacsjhw5grGxMVSrVbenTk9k5rzR2KF6CVT6Go+iF00iDZMjs/3cDK0sPM4fKkrS8+v1uiOi8By3ZnMrEz6PYaECoxIIBAKOBZlIJDA/P4/p6WkXs+vt7UUymXSQ8r59+zA6OoqlpSU88cQTCAQCeO211/DSSy/h0UcfRSQSwYULF/DEE08gl8s571njtrr1g+0B4GBLzjH1vDr9tvkNuRZpePEz/uZ7uuW7l67iusmLWsTqEfC7Tti5Kh5VclyQVH4U9AqFdIIedeHpBmitmyq+QqGAy5cvY3FxEZOTk5icnMQLL7yA/v5+DA0NIRaL4dKlS7jzzjtx8OBBfPvb33YWuCoOvofekMKE9GRYZ4XmKFgAONq6xgo1fqX9oe3RH/ajHgGiVrdaz+qdMuOH3mMhSHoRvJ5HjSgNnjkd19fXnTCvVCrO2yH8Nzw8jHA4jIWFBRQKBQ/LUuNvVE5KyOlELKDC0/ZSGTO+SG/PxrQAeBifuhma1xCqpMETDAYxNDTkYd81Gg2sra05j3FpaQnr6+uun9SgUMV+/vx5rK2t4e1vfzvOnDmDffv24c4778TCwgJOnz6NlZUVhEIhl1JKvTtr2GkMmX2h/aYxLWsM6Dyz61rXnP7dJWV899JVXLdA0RiU5pGjoFEPw1qNgDdBrlr69Ap0cVEQq8BRRaYYP5+pGQPoFc7MzGB6ehqHDx/Gnj178OSTT7qNpIODg7h06RL+1b/6V3jzm9+Ms2fPYnl5GcVi0S1ipjoC4PYIkcatEBzgPeCPbacQUeo7v+P3liloWYbKNKPSUePBKm7tX81vqN6DKkP2GeM9pMQHg1sHXkYiEZTLZYTDYVQqFbc3i5ncAWB4eBjB4NbRH8zxyCzoPL9LPT+dTwpHKSxMga2bqzX2pId2sj1MocS2s70Kp9p5ohR8kkeCwaDLWxmJRJyHXKvVUC6X3QZkJUGUSiVXh2g0ilqthu985zsYHh7GwMAANjc3ce+99yKdTuP555/Hyy+/7I5m0fYqssB6ch7oeuNnnDe6WV7nBvuVyl8zkLCoAuT6onK3JI5uaZeu4rrJi7WMgXZci8JcM0YAXnIGPSobn2D2BYX7rMWpHobGepSirIw3ptsBgPn5eXz5y1/G/fffj927d+P222/HsWPH8M1vfhPvec978OUvfxmrq6t44IEHEAgE8Fu/9VsOUmIgfnp6Gjt27MDIyIhLMwS0N6AqA4t/A3B7lDR2wHra+AMAJ5zpfdmYH/uRfc/r1NMC4EgPQNujoHfEemvsSftX4VwV+vv378f+/ftRKpVw9uzZ6zyy3bt3o6enB8ViETMzMwDgMo+EQiGsr687Qc80R2QeMuanbVaPmzAeFSe9XhogzDRBJcqicTqNmxHyZZ7KeDzuSCbA1ubxTCbj5vv999+P8fFx7N27F5lMBisrK2g0Gi6/Y71ed4oslUrh4MGDiMViuHz5Mvbu3Yvdu3fjmWeewcc//nEXW/3MZz6DmZkZZ7ioR8VxphenniPH2/ZRp6NOdH3Sm+P3OoftuFsjq6u0bly6iusWKBTOQNt6598M+HNBqcXH79QjU4GszEO7SCwUZheVwiD8TUXKxbm4uIjV1VUkk0ls374d58+fx5kzZ/Dwww/jbW97G5599lm8613vwt69e52lTDiy1Wq5ww77+/tdjEXP2dJ9PcpQUyVNYaFKzLLoVMlr3Er3jtm+UTalUr3VC1Yol9+zXzUTOn8roQPYOtmYXsPQ0BBCoRA2NjYAtD1qnq/FtE/qjVl4yu41U8KD9peyS6lA9X7dBE4EQPtd54qSEuhhsX/VwBoaGnKeIdNdAUA8Hsfg4CAuX76MlZUVtFpbe95GR0edx1ytVpFOpzE2NobNzU1cuHABd9xxhzsqZnJyErlcDmfOnMG1a9fcyQEK/7E+Oo+0/uqtsq3qubPvFF7kc1WZ6RxVr1e98S4x47uXbg/dAsXCExQqiofb2AsXiyoljRsAbc9NoTVVYLqYVeBZ4oaNrwFbVncul8PS0hLq9Tq2bduGAwcOYHNzEysrKxgfH8fLL7+M2dlZDA0NYXx83APb0FJlHj8qRYWpFNrTNup13O9DlprCf+xbFUokB1DxWAhRlZyOCZ+rpAZV7vxOrXvdRM2isbRqtYq5uTnk83n4fD7s27cPBw4cwK5duzA4OIj+/n6niOkRMW5GIRkOhxGLxZyw1jmgylk/Y+Z7elV6YKedEzoHLPRGYoiy5UjAYPZ8KrlkMol0Oo1kMomBgQGkUim3QZiMzHw+7+DkSCTiPK9EIoGhoSEMDg5icXERp0+fRjwex+LiIoaHhwEAly9fxsmTJ6+L5Wm/c16oN21jyhaZ0HWkhg/Xif7W+cbnKsvUftctNy5dj+sWKBRkFCyEqyxdVxcThbddEIrbU9Hwc6WVA9fvC1NShwo+n6+d+JWfkUH21a9+FclkErt27XJQ0Re+8AU8+uij2LZtGz7/+c/j53/+5/HTP/3T+MpXvoKTJ0+iXC67tD4bGxu4fPkyDh486GA3CkhlN9ITaTabDm60ZAPGh1SwWpiUfcM+5gZWJVWwryjIeT2v0WexzcAWfZz1jsVijmChUC+vTyQSALa81rm5OQwNDeH973+/YxmS/h4Oh5HL5ZDNZq9jWirUpXGYer3u+oiQ28bGhutXEkparZaD+djvfDahZGVzMm7FOcY6MEbFuUzlTOOEECRJHvQiZ2dnsby8jP3792Nubg6XL192eRnX1tbcUTIk+YyPj+N//s//iampKTz//PPI5XL46Ec/ipMnT+Lv/u7v8PzzzzvKvq6XTkpDDTlFPNh/9LQ5xpwvqnRUWfF6xsQUvtY1ZA2jbulcuh7XLVDUE1IrTmEmtepU+agQUetPA9C6WFUQc4+LFmtRcjFqLEjvuXjxIi5fvgygDfswq/dtt90GADh79ix27NiBQ4cOOUiMFn+pVHLZJPSARgogTX9E74DsPB5Pz2tJIdfPVcgo7KgxD6aUuhHJg0pLLW8dG3oZVFCM4SkpQ+vPAxgp5MmsW11ddQw89vvm5qbzKBX+tIQaKl/1gNS7sJ4qvSxS+HUbARUi26QKSD1a3qOeroXhNI2UerkcA6aromJmn5FpGYvFsH37dvT397txOXLkCK5eveoyxM/OzjrPn+PBsbFryiohznH1jLk2WF9FLJT4wr7Rz+iZqtHJvtdru4rrjUvX47oFimaIUGgB8O7s1/1ctGCVbcj7uUA0CwcAd0wGF44uYi5uKjie0FsqlZyFrlapz7e1AbRQKOCxxx7DAw884OIYY2NjeOyxx/DzP//zePDBB/HVr34V/+bf/Bu87W1vQ29vL/70T//UxV5arRby+TwWFxfdhmag7UHxvUoUUTJLvV73xH7IWKN1y/O7OgXCbawCgPMwqNQp1BkLU6hQvS7m9SP8RoHHcWDhe6i8BgcH3UGJly5dwu7du5FKpdxRMs888wwWFxfh8/mwfft2p2jIVlRFotCcCtdWq+XmRqvVcrAqFQufoUegAHD9oJvdVbFpP7JenK+sn16jcGqz2UQ8Hkej0cC5c+ewurqKer2O8fFxFAoFlEolTE1NYdeuXdixYwdqtRq+9rWv4ed+7ucQiUQwPj6Ot771rQCA48ePY2FhwVNHNbC430ohOzXo1DuyMSsaFkwKTEWn81CNTva37gljXxPJ6O7n+u6l63HdAkWDxkqr1u+42NSaVg+MxeLtGpTnM2gBapBelaXF4VWpUbEB7T1U09PTuHbtGur1OhKJBHbu3OmevXPnTuzfvx9Xr15Fb28v9uzZg6GhoetO6SV7TD3ITu9Wr4seAxPTWuWkdHgWtl3bp56dvs/GDtlX9DIUuqNgovfGzzQzBn8I7fE9TFNFoyKVSjklSG+CylnP/FLvRsdX32ljNtbzpLJnHVh/fqaHdnaKC/Ld6r1p1gydl2ooEZbu6enB8vIyMpmM28TMa0dHR5FMJtHb24uVlRWsra25LBm7d+9GNBpFqVTCysqKOzJG4Xady3Zt6Fzh3zpX+BxVTqy3KkBtn3rler8+v9O93XJ96SquW6RwsgNeRp/CCmrlK3uLRZlcdmFqvEuVlQokXZwURKos6eWoQgwGgyiVSjh//jxyuRz8fj8mJycxNDSEtbU19PX14S1veQvOnj2LWq2G4eFh7Nq1C+Fw2NU9GNw6KXltba1j/E0FpcKChAQtQUKhKz3nSwWRCimFV7UPFB6zfUrlqdAb26Nej8aJ2NeEHhWKZRtDoRDi8bjLtpHP59140FvShMAqGHWO6BxSBayCnceeRCIRp0y5FSESiTjaPfvWvkshUP7wf82Wr+9VYU7Fysz47M9Wq4VUKoWhoSGX6+/q1asuC8krr7yCffv2uW0CS0tLHkNDx0tjWMooVaKJjrv+beeJKnwL+3FM+RnHWdmndi9Yt9y4dKHCW6CoAFMCBNDe1KgKiX8TutLNnlwotFyV4MBURDxoT0kHSj0nFZ1/W2+MiWpp5YbDYTz22GOIRCK45557sGPHDtx999148sknkUwmsWPHDrz22mtIJBK455578N73vhcDAwN44oknnBDd3NzEzMwMdu7ciUQi4SBAVZxUBKwz255KpTykFcanGo2GS0eltHdttyaRpbBSCJEEBjLzOEZ6ppfG2VRocWz1MEeNA+mmYcKu2WwWc3NzePHFF5HJZDA8PIxSqYRAIID5+XlPjIv9AbQ9BE1b1YkxSk+Hion1jMfjHkHL/tX9dXyesitVoavQ1vmi3hmTBjOV2eLioju6hPN++/btuP32292J0M8++yxWVlbwkY98BF/72tewtraGAwcOYGNjAxcvXkQ2m/WMD8lObBuhWyoQAJ46Wmhev+c64pzhM9SYVKIM1yXro+PVJWb840vX47oFigo1wEtBV2GgWTV08qsFqZkyLOSlnhUXktLulQSiz7cQnAa/g8EgKpUK5ufncfHiRedlDQ8PI5PJ4Nlnn8Xc3BzGxsbw+uuvY3Z2FqOjo7jjjjsQiUQcNZtxEp71xeM56FUpnMo6dMpfaBldqtAUYlSvikLHBs3VULDwmG41UKWosFInuEjHWlmetVoNhUIBS0tLuHr1KtbW1tBoNJBOp93xMer1qPKwnlcnKIrtIDxHWMt6idpfjBMqzKcxIp2nhCd1XNgf7Ad6ZHzf6uoq5ubm3HWbm5tIJpMYHx9HIpFwfXnhwgW87W1vw/j4OK5evYrt27fD59uiz/OgSBosqrR17ir03GmuW1TDKibtR7v+LAzLOWX7zRoS3XLj0vW4boGicJFSagHv0Qnq/XAhUPhwcan1yMVLRUCBrtklNHEs4N3XQlq4DWZrfII56LLZLL72ta+h2WziF37hF7Bnzx7cd999OHHiBGZmZvChD30Ijz/+OL7yla/gk5/8JO644w685z3vwQsvvICZmRn3zhMnTmD79u3Yt2+fOwaEgtnv96NYLDohpZ4h+8Qep2HbxX6j98H7lcTB9gHehMUa02JRgajHpzCbBuEw1oHjovEtCvdcLuc20BJK41gxoa0qqUZj64RmKs9IJOLeRWGpsB2VF+eSziN6jTRG+AweJKl9xr4hbAnAefHq9ZPYA7RJPlRwtVoNJ06cwMbGhnu/z7e1l23btm0IBoPY2NjA2bNn8eEPfxgHDhzAqVOnsHPnTrzzne9EJpPB888/j6efftqtC4XAdfsClYeSItgPOn5KkddxtqQkfR+3XGjsi96ZjZPSs2dh33TL9aXrcd0CRWEEFpIQ1GtQooVa2IqvW09NLUguXEv/tUwq3dME4DpFqZAdSzAYRD6fx5kzZ1CpVBCPxzE5OYk77rgDm5ubSKVSePOb3wwAjro8NTWFvXv3urOl/P6tNEI8sp1wVjAYdJ6SegzqUVKh6qnDqqhVadk9PPT6bH/zehufUvq7jp16LIz5sD42PqQCk7+pjIH2fiiFmvS8McakmP6K+7G0tFotdzSJepek5Fu2I/tEPQU+h7+pHJQ+r32lfazzlu8jhLa6uuo2G/N6blKmsjx37hyuXLmCHTt24OrVq3jyySdx1113YWBgAPPz8zh//jzm5ubc+FKpqqJRJaQxLe0j63XZ7/SZN/LIdD3pexXW5/XdGNd3L13FdQsUja3owtIFZYVIpwC8tRJ1kSl0Zhcv4E2wqwtdlZ4Gp/UeXkuG4dzcHAKBAAYHBzE5OYm+vj4Ui0Xs2LED9913H1555RWsra1hbGwMBw8exO7du927ucdrdnbWbd6NRCJOETBreTQa9SgUCgiFAtXjtPXWomQPKioLowJtoaWkCwpoGg/8nPWxRAoWVQJKdLGBf7uPjF6QshRVydl28t063rr/SucL62+hZtbR7t9SL431VYNJDQqgnb1idXUVly9fdv1bq9UQiUQwPDyMVCrlDIvLly/jrrvuckfpML2T3+/H+fPncfHiRbcxnXNQ57dCqxqz1PlvITxVKBZWZNvVe2Uf23u0PpyfHB+7361bri9dqPAWKArDqdXM/9UqJPTFRaMkASooCh96MQodWuGpipELS2Mv6lGoYLABab6v2WziC1/4At7//vdjcHAQtVoNu3fvxj/8wz/gkUcewU/91E/hN37jN3Dq1Cl85CMfwd69ezE0NIRMJuNS+JTLZeRyOTz55JM4cOAAxsbGkE6nnZWeTCaRSqUc5MQ+BHCdQCWxgm2xNHIqB6B9XAeZkhovVGKF9luz2T7vi++i92BjaRsbG574i8Kt5XLZjSf30FGRU+hpMl8VjnyezgPduMz60lMjFNlsNh3BRjdDk8yguQe5fUH3tBH60rEHcN0m583NTQepXbhwAbOzs8jn8wiFQiiXy+jt7cXU1BQOHDiAWCyGQqGAEydO4KMf/SgGBgbw6U9/GqOjo3j00UcxMjKC6elp/PVf/zXW1tYQi8UceSUQCLi4nHp87CcLG9sYqPUaOe+5HtTDZh9xPdkYIceB3yky0I1vfffS9bhugaJwCa3BTopDvSr1uNSCtIpOlY7dY2JjLizWyge8ufs6QSsKz5w9exbnzp1Ds7m1yXRkZAQzMzN4+eWXUSwW8fDDD6OnpwcXLlzA5uYm+vv7sWPHDiSTSSdg6/U6VlZW3B4xYCs7++bmJtbX11EoFDx5+BRSYx8ovVqFhlrjjIewnYQN+SyNl6n3WqlUUC6XHWvR5v9TujnjU+x7endUOkq0UA9WWXvW87Eeg3p/hAIJf2r8hRu16VXye8bClEHId6tHyg3Z6tnR2FGPjH8rPFcul7G0tOQUDd81MjKCnTt3YmRkBLVazXlSoVAIr776KpLJJO666y5s377dMQmptBTe7QTjqSfFH53/ugaUcGL3b+m64f+qrHScOq1vu1YsLNkt3tL1uG6Bop4RF4amD6LSscFkVU6q+BhL0CAy0M4goF6WLkwVmkr8sFAjrUwN8tM7qFQqmJ2dxauvvoq3ve1tSCQSGB0dRSQSwbFjxxAKhfCmN70J733ve/HYY48hEAhg79692LVrF9bX15HL5ZwyAYBcLofLly8jHo87ogO9l3g87uJfyshUhh+p+yqQtM8pdPm95i5UZc0+53MJv1EJ8nslPyizjhAnlQoFLj2cVqvlSTvVScmqB6AQlBowAJwC1X1DjAsqDGohU75XCQeazFiVqd6r/ci+1VRQfv/W9oFcLod8Pu/mGb/fu3cvJiYm0NfXhwsXLmBhYQG33347lpeX8dJLL+FHf/RHMTk5iXQ6jStXruDEiRPuxGl6gKw7x8HCpqyfrhutv01tZeNk6mHzHVw/fLd66LY+6mXbeGe3XF+6iusWKX5/O0WTClp+pnEDCmC18BSmoNChQFGBppYplRr3MlGYWYFOhaesOavcaJlTkTz55JM4evQojhw5gsnJSfzET/wEXnnlFTz55JNIp9M4evQowuEw/vqv/xovv/wyHnnkEfT19eGpp57C+vo6QqEQ+vv7sbm5iUwmg5dffhkjIyPo6+tzioAxKfUSGF+iJ6b7wdifPp8P0WjU0y+8hycwa58S6iPJwcYCeUxHOp1291cqFZdImP3NTO71eh25XA4AXAJdn8+HgYEB19fKOFMlQwOB7VVvh0JRk/1SIMfjcXcf5wHHLhAIOGXFeVatVlEsFt17OOc2NjawsbHhyQzPflIvSynhrdYWpZ2kHAAu4e6OHTtwzz33wOfzYXp6Gqurq3jf+96HZDKJz33uc7j77rtx6NAhAMDy8jL+8A//EFeuXHF9o0ey6NzXuCch2Uaj4a5Xqr+OMdBmiKpRqIYb+1ZhdUKJvEbbDsDzHDWsuqVz6SquW6DYfR66YLTwM24O1YmvRAK1FrlYuOD0O/UQ1GtQa1DZeFygCrGoxcnC+j333HNIpVLYv38/RkdHHRR1/Phx9PX14e6770a1WsVf/dVfYXV1FYODgzhw4ACuXr2KcrmMSCTi6kyYyefzuWM8KGisclfrV4WOwkLaz4R81HtRIUYFpwzBTnueKDA1QwnHl8qFgt5mjKfgUwGq9HclQWiwX+eIjoUeaNjJEKHiYp30OayDGj18L6FAn8/njBR9j9af1+fzeczPz6NYLHrSYQ0MDGB0dBSpVAr5fB7T09N45JFHEI1GcfLkSYyNjWHfvn2IRCJYWFjAa6+9hunpaSSTSeTzedc/rLvm72R/NBoNp2AtKYLjr54R77NkKf6vn3F9qSGpa0vnjkKJlv3ZLdcXX+sW9Enz+TxSqdT/62r8sxWl22pMwMagmA1CP1MrUIean+keFgpI/q3wh8JgVmBZq9PGkyig+BmFR6PRwNTUFB566CE88sgjTgH95V/+JTKZDP7tv/23SCaTyGQy+P3f/30AwCOPPOIs+0qlgkuXLmF6ehrr6+vw+XwuPhMOhzE2NuYyPlDQxmIxJ0DpAWo/RyIRRyvnPYQcLbRE4c5+yuVyLjbF57KdtOabzaY7AZjQnxoGHAPmHqxWq85zHBsbc/WmR8gN2VQ4JEUo9KRKFwAKhQLK5bLbG0WmIwB3urIV7oQCqfQ0kwo/oyeZzWbRarXQ19fn6QdCuGQnrq6uYmVlBZlMBsvLyx74uq+vDw899BBisRh2796N+fl5fOtb38JP//RP41vf+haq1So+8YlPIJFI4MyZM/jiF7+Il156yQOtav/bNcF66zzW/V3cU2ahclVIaggpuqCxRyVg6D4uPo/zitdonyqr8we55HI5JJPJ7+meLjnjFihcDBQyCnkpZk4rl/dwEWggmYuXi5R/W6sQ8AbV9TNd+LqAtT76t75D6dTxeBxXrlzBd77zHczPz6OnpwcDAwO4++67EQqF8NRTT2FxcRHpdBof+chHEA6Hsbm5ib6+PkxMTOCOO+7AnXfeiYmJCSckKLzL5TIWFhZQKpWcgtBzodQQ0L7S+B7p5Cr8ta/VU+mUxJfXRSIRRKNR9wzClyRwaAyOSo77wDRTu44l4GVI2niXJRvoRmO2T+uj40uhaan6qrjsO6kEdJO20sCz2SwymYybT5VKBTMzM1hbW0OpVHJni5H4kkqlEI/HsbGxgeeffx6vv/46wuEwnnzySaytreHo0aNua8TTTz/tNivriQhsl461zl2OjyoX9TzZH+wjGy/UmDKfTwXOey3JwsagtV78W+vULZ1LFyq8BYrCdWrZAe2JDniPA1dlxHsU3uJC0WuUTAFcr6RYOkGDvJ8Cw8KJ1ttjHYPBIC5cuIDXXnvNHb++c+dO5PN5PPXUUyiXy7j33ntx6NAhd5DgyMgIWq0WhoaGXPaMCxcuoNVquTgNsCUsQ6EQhoeHPQqdClTrqt6T/m+9SPaLFvarjW3p+KlyUMhPszfQK2k2mw5RKJfLALaUvJI+eL9a+zoWljzSKXMDYTlNSUWvUBUgx0zhagtPUqirx8LYnsYR2fZCoYDV1VWPwiOZgobJ+vo6zp496zZT9/X1YXp6Gg888AAOHTqEer2OK1eu4Nlnn0WhUHAEEyWIEIlgG2wMSZUQ287xZtvpjXIs9VlWSdEw00NcFSFRaJ11sB6hVYjdcn3pQoW3QKFg4Sm2FGAKBykEp/Ce4uqEkPSkVRVEVFz6DDs91IrUtFMKk1B5qLemC1Zp2RSgjUYD999/P+6//37ce++92NzcxIkTJ3Dy5EnMz8/jne98J0ZHR/H5z38erdZWIl+eCjwwMIDPfvazWFhYQKFQcB7B+vo6Wq0W3vSmNzkqPeuteQzZt+Fw2Hlm6qXV63X3v8I67H8et8G9Xa1Wy6VXomerBzgSLuT39XrdCWbSypmncWVlBf39/Q4y5aZrQoUkdzSbW3uu/H6/g0PpgeqeKaB9AKQyPlVZU6HRoyN1nwqQXiI393L+0FOpVCrI5XLuDC0AOHjwIHp7e3Hx4kXMzc2hUCg4EkgkEnF71fbu3YsHHngAk5OT+PSnP40HHngAU1NT+OY3v4lsNouPfexj2LNnD1qtFj7zmc/g6aefxsLCgjMCtC0Kp7PYuJLOa/4m3KpKRVGKGykYjoWSZfgu/a1QutaV81FPoP5hKN8PVNj1uG6B0kkJqeXXKQCvHpUqG4uz3+h9GvuyC1wJDvq5CkMGmPk+hT703RR6tVoNx44dQ71ex4EDB9DX1+eON7l8+TKeeuop3HvvvXjHO97hYj5f/OIX8Y1vfAPvete78Na3vhUnT57E6dOnsbGx4Y6mbzQamJ+fR6u1dSgj60ThpIUKTAWSWtRKcFFvTIUYv1evs5MFrUw7PiMSibh+oWLw+XwOZmSbFM5ksmGFKjkuFsal4WIPhFSoj3NG9/TxmbyOddb5o6QU9eD0bLGNjQ0H37L/uIGaSuy2227D6OgoACCRSKC3txfPPfccisUijh49it27d6PRaGBubg7Hjh1zSXjZRiVNKElG56GNKel97Dttr641hc0t7EdSitbFxsM0tsx7VZHq+zptR+iWrdL1uG6BopADg7kKN1kihr1PF5DuE9GFrFCfMs0s5GGhRVqmzWY784DS6nUx6wLVtnAhh8NhbGxs4B3veAcefPBB3Hfffc56feGFF/Dkk09iZGQEt912G3bv3o16vY4vfvGLOH/+PP7zf/7PCIVC+Ku/+iu8+uqruHbtmoNuarUaQqEQ9uzZg3379jmBRIVA75WZIzrt+dJ6UwHoeVvlchlra2vo7e1Ff3+/O91XDYlSqeQUh54sTONgYGDA0bKz2SzW19cRDocxMjICAJibm0MsFkMymXSCVQ9lpJJQaEvfoxuLOQcUdraFnqGOEeNzLI3GVi5H0vcDgQCy2Szy+bxLPVUul3H58mXXT7rni/3c19eH3bt3Y2BgAHNzc4jH4xgcHMS1a9ewd+9evPOd78TY2Bhee+01PPPMMzh9+jTOnz/vUAiFunVPo+5F5JpgPXV+WqIG1xi9e/WO2K8a9+P71ZC0xqJVZlSsABy8qpD+LSiav6/S9bh+QAutWIUgdNOphR40dmNjO0r0UIiRwk69CD6TC1AFnCViMBivzwXacTI904qChhAcBQjTGb300ktotVqYmprC8PAwAoEA9u/fDwD4+7//e8zNzWFhYQHvete78MADD6BcLuNb3/oW7r//fhw6dAiZTAarq6tuP5HPt5WJfH5+Hnv27HGMQdZDs3JTobLfWTe2XanKFFpk0q2trSGRSCCRSCAcDnuMA3ueGceDXl+9Xkc+n3c5Fim8CPupB8gNygrF3sh7Vq9Y5w7fr0w+jheVKecJ262emhIwbNyoVCq5/WLr6+vIZDKu7SRfBINBz/64Xbt2YXx8HBcvXkR/fz+OHDmCY8eOIRAI4N5773VQ6ZNPPoljx44hk8l4vEnbRxqr0lisZihR70tjhfxfafuqsDmGCh+qEajKiRAz55D2p3q0anBqW7qlc+kqrlugKLRBSMgGza2l10mZcZHQq1DvSotaq6qcbFFvhYtTFZcGw1U46iJXGr5mUzh27BgOHz6Mw4cPY3BwEP39/Th8+DByuRxOnDiBF154Afv370c8HsdDDz2Ez3zmM6jVanjooYdc4P/8+fOOel6v17G6uopcLodt27YhEAigUCgAgIPolGXH+mvfaZtUsJCxVyqVAAB9fX2IxWIe2EqhNT5PY5cUlFSm9HSZl5AxIMaxFJLTLQedID+tJxWNKmigvc8PaCfZ5XYB/uj+MhpOGhul98W5sbS0hHw+77w+9g9jOfSI4/E4xsfHHbnmyJEjCIfDyGazuOeeezAwMIBsNovp6Wk8//zzTmkpQ5VtVSNL14YSV9TDUkhXFZmuG76Hc9waZXymbjbWdyjaoF4X66nemq1zt3QuXajwFiiaFFfjXQq3AbjuOy46a32qotNnV6tVD1mCQl+hDaDtdVDpAN7MBKo0eZ/+VoWgQoBCmNnAq9UqBgcHsWvXLjz00EPYtWsXtm/fjkqlgnPnzuHP/uzPsH//frzjHe/Ajh078Hd/93eoVqu4//77UavV8KlPfQpXrlxx0F65XEYsFsO+ffswOTnpslTQMqYioBfAulWrVUdRJyWf7VWW32uvvYZarYZ0Oo3bbrvNA7GxP9ivrVbLA91xXAj3lUoldzzK5cuXsbi4iGZzK7ej3+9HMpl0dHmOIzdwRyIRj1Jk/UgCoTJstdqpntQbp2dBLzgYDCIWi10Hd1GBE9qsVCoOkiwUCjh+/LiDgBhnpHFTq9UwMjKCyclJDA8PI5vNoqenB29+85vx4osvYn5+Hv/pP/0nDAwM4Nvf/jaefPJJvPbaa85ro7Lmfjc7BzXOZ404jYFZRaHzk8qYClEz5lvWJg0R9hu9u06ekxqealjoPNGN2j/opQsV/gAXXYBqZSqspwtQrU8LQ6gFSKtalRMXnnpRmsJGn8X3U0Hyffp+LWpZqmBXEgSFUzAYxOLiItbX19FoNHD77bfjfe97HwYGBnD77bdj//79uHz5MoLBIA4fPoyHHnoIv/u7v4tKpYK3vvWtePDBB/GNb3wDly5dcpBhLpfDxYsXUalUcPfdd7tsCowTqXC+0f4tu6GaQisejyOfz7tks6oItb9USfBzfkdh2t/fj/7+fqysrGBjYwPFYhH9/f2ezPCWnVgqlZwiVW+E3lyz2XRJfXXuKKSsddJ9TYSBdew1LkojhJB2JpNBIBBwMTgaJHxHMBjEjh070N/fj2q1ikQigQMHDuDSpUtYWFjA3XffjfHxcWQyGbz00ks4ffq0JzWXein0+rkOaCCpgmA/aF/b+cixVo9a19eN1qIai3oN66HvVuiYz9f5pXGvbrlx6SquW6DYuJR6TCrsVFGpZWwtQi409RoIG9rFzuB3J9hFGXhaFxUOGg8AvAFnraMKDYUQqVhefvllLCwsOMhw27ZtePe7340vfvGLeOWVV3Dq1CkMDw/j/vvvx9NPP41cLocPfOADqNVqmJmZcUIP2NrfVavVMDk5iYGBAfdeuzmX/WghKPYh20BlHo/H3TEhtCLJmqO3zD7RfmNh3Kq3txejo6Po6+vD2tqaMyRIgSe9nYqB48jTgmnp67NZb3oNOo/svFHImePNeBSvofJlUmCgTbOfnZ3F7Ows/H6/2yKgyY6DwaBTzLz36NGjaDabuHDhAg4ePOhil+fPn8eZM2dQLBYRCoVcO/hM7Vud9/ycc4tzT/tfYUEtOlfZ36p02F/8XJW4xskU3egU29K6AN49dLcgEPbPWrpQ4S1QKIwUogPa1pkqDKBtxdlFp5tcVcFobMpuhlQPQTNk8/26IK1FqxCNpRbrQgeuzxig9dP4TSAQwL59+/COd7wDP/uzP4tSqYRLly7hj/7ojxAOh/GLv/iLiEQiOH78OB5//HG8/e1vR7VaxcmTJ3H27Fnk83nXnmg0irGxMRw5cgSxWMwDX7KvFFqz5Bjbn4xD5XI5bGxsIBqNuj1Y3BumfWMt61arhXQ6jZGREdx5553w+Xz4+te/jpMnT6JcLmN0dNSlTeKes1wu55SR3+9HNBrF6OioGyvdotBJUHK/mZIxKEBrtRoKhYLL3hGJRBAOh91YKJxFpb20tIRjx47B5/O5/W3K8tuxYwfGx8edkrnjjjuwfft2PP7447h27Rp+8Rd/ETt37kSr1cJf/uVfun1aSpCw81U9KF7DYlmTSrjhPZaMQyhS41l8jjIE9X1kkdrz7zQOdiNGr0Lour5+WEoXKvwBLaqECAsBXhKGxed1wfGHgXNd5LpXRC09Wqo2GSuLQh96fad4mr5P4TJLVebnFA7WKuZ358+fBwC89a1vxY4dO7Bv3z68853vxIsvvoh/+Id/wF133YXh4WHUajV8+9vfxvvf/3685S1vQSQSwTPPPONgr1KphIWFBQwODmJ4eNgl5wXacQobu+AYaB9obCIajcLv9zuIrFKpIJlMXmfVK7zE75LJJLZt24Zt27YhGo062ngwGEQoFEIkEnEKkwmGudeLZ3tFo1GkUikPnKVjrkpMBauyA5W0YWFS9fh0fhWLRczPz+Py5cueXJQAPCdTT0xMoF6vo1gs4u1vfzsGBweRyWQwMzOD++67D1NTU6hUKi4jxsLCghsD6x1yntPosetC14DGvGx7FOJT2JRjo/vX7L4w1oEeIJUTCUE6/zVzDeePKjWNW3e9rjcuXY/rFihcSKqcVNgD7c2zADxxKnvaMQVhp4WogoDP1IC6VTpcsLoAVZEpw02FPN/diXSi7VQPjsqGCrRWq2HPnj14z3veg7vvvhu33XYbstks/sf/+B84c+YMBgcH8dM//dNoNpv4sz/7M0SjUezatQu1Wg2XLl1yefIogCKRCNLpNA4dOuSSw/I70uVVYEejUdeucDjs9vWw3xYWFrC6ugqfz+eyRrCvms0mYrEYIpEIRkdHncJMJpNIJpOIRqMOon366adx+vRpFAoFJBIJz9jruNMwabW2NjKzvtqXJGdo8lhuHFZ2qMKg3Ke3vLyMVqvloE+2PZfLYXl5GRcuXHCMR83AzvG8/fbbMTg4iHw+j76+Phw4cADFYhHPPvssIpEIPvnJTyKdTuPVV1/F008/jVdeeQXLy8sOOuXhmwqT65ylwtBz0Kg0mPVDkyorzMf+pBesSIXu19JYMteOQuwWneB7+GxVZnY9qeelkOYPQ/lnT7L7u7/7u/D5fPgP/+E/uM8qlQo+/vGPY2BgAPF4HI8++iiWlpY8983MzODhhx9GNBrF8PAwfvmXf/mHzj3+XouNj1iLjPEGxkkUZ6ciU5jKMsP4DIXC7D4h9ZgIm2lcRBc966f15PP5bv7Nota+ChFVitwXwxOSv/GNb+Dxxx/H+vo6UqkU3v72t2PHjh1YXV3FuXPnEA6H8a53vQsAcOHCBYyOjuLo0aN429ve5rK+A1vzdnl5GZcuXcLc3JwTlPpDw4AQ2o0S9tbrdYRCISfYmEgW2IoZplIpTExMYHJyEiMjIxgeHsbQ0JAnPZPP53PXMoOEVf5KRqAg1ePn6QUzE70aIlRYbI8aIBwnfs89ZrlczuUE7OnpwfLyMs6ePYvp6WknmK134vf70d/fj/HxcTQaDYyMjODgwYPo6enB008/jb6+Prz73e9GX18fstksvv3tb+P48eNYXFz0KAfA66XqPNO6su38TUVCo0eVj15rkQGdr+oV62eqfLTP7Tu4nUA3FlukQY1FrVe3dC7fN1R47Ngx/Pf//t9x+PBhz+e/9Eu/hK9+9av4/Oc/j1QqhU984hP4wAc+gGeeeQbA1iJ7+OGHMTo66qCAD33oQ+jp6cFv//Zv/5+15ge06EJQMgP/p5DXRcOFrBg7FxIFroXjdPMlLViFUxT+obBQKjV/lLRhFzjrootcITOFJ237rODy+/3umPbdu3fj0KFD2LFjB+6991709vbiqaeecpk4BgcH8cILL+Cll17CnXfeiampKdx+++2Ynp7G4uKiE7pLS0vOY0gmk87L4ft6enqwsbGBQqGAWCyGdDrthA77xO/fyheYSCSQyWSwtraGZrOJbdu2IZVKIZ1OY3R01CkAKuNisYhisYh4PI5UKuViXqOjo05Zan5FKiGOXTgcdh6EjoXdMsH6KmtSDRttC7PYk3bfam1lUykUCjh37hw2Njact0ePjx6q3+/H0NAQJiYmUCwWUavV3Blrx48fx9jYGN75zndi3759WFhYwKlTp3Ds2DHkcrnrIEFVGGwHv1fFzfnBuc85S5SAY8t+UmWl5CTOPfWCaOQoO5L3qoJURUalRYOGRfua7VFP94fJ4/p+yvcFFRaLRdx11134kz/5E/zmb/4mjhw5gj/4gz9ALpfD0NAQPvvZz+InfuInAABnz57Fbbfdhueeew5vectb8LWvfQ3ve9/7MD8/71LZ/Lf/9t/wK7/yK1hZWbkuf1yn8sMGFdLa1qS29GQIg3SyDrlwuECpUChgFGLi/hs+X+FFoB3/orBTFlcn74ufcTxV0NiAOZ/NRc4AtyrWTsKBkBe/P3DgAD72sY9hcnISgUAAL7zwAp599lkEAgFHr56fn8dTTz2FlZUVvPnNb0YoFMJLL73kMs+zzdFoFPF4HOl0GoODgy7GpMlvyXpMJBKeWBc/29jYQCaTQW9vL6ampnDvvfc6iFFjRBzXtbU1+P1b524NDQ25pLq1Wg3Ly8t44oknHM0+lUp5+pvjVK/XHVOPXgb7n56cjk+5XHbkC7YxHA67fufcKxQKKBQKKBaLuHr1qlNYJGBwbAit9fX14Y477gCwRVjYuXMnxsfH8fjjj6PVauHee+/FI488gmq1iitXruAP/uAP3F4v9ouN0XGc2R5VJvQYOT9VUev/quBsfLiTt6TGEuFbrgNFDOjZKmqh/aH7Hdn/ut2Ez+R92vYf9PLPRs74+Mc/jocffhgPPfQQfvM3f9N9fvz4cZe9gOXAgQOYnJx0iuu5557DoUOHnNICgPe+97342Mc+htOnT+POO++87n3VatXD1snn899PtW/pogFh/s/FpsqFk54WJAWApUATqmPMSK10wLuYlb3FRacBZVVojHFYy1c9RWsrqQAG2oxD5hm0jMROMYBarYbz58/jmWeegc/nw44dO3D77bcDAL70pS/hqaeewtTUFO655x786I/+KM6cOYNjx45hamoK+/fvRyKRwNzcHGZmZlyCWxXuhClHRkbQ29uLWCzmvB8KKmV98v5wOIzt27djamoKfX19rt9ZWq2Wo7QHg0EkEgn09PRgdnYW165dQ71ed5ntY7EYyuWy84KoOJUWrn3FuA7nBuOEm5ubLsM780oGAlsZ4En0UAXClFbLy8vIZDLIZrNO8QLtY1r4zvHxcQwNDTmvdGRkBMlkEleuXEEwGMRDDz2EN73pTahUKjh9+jReeuklzM3NOcXAOcL/1atUj4ZzR71wNXY6oQ0av7JwIYt6Q6roVfErSqBjybnOtcC+JZKgHq6iDVq/bvnu5XtWXJ/73Odw4sQJHDt27LrvFhcX0dvbi3Q67fl8ZGQEi4uL7hpVWvye33Uqv/M7v4Nf//Vf/16r+gNTlDXFyc5jMpjdAvCmqdH/laWn1/LZGrvShU52nCo7VUAK66nHoYtbvT3N16Z15GIm9NVJMNFz04C8Ph/YUhjPPfccWq0WyuUyDh48iP379+PAgQOYnp7GK6+8gnA4jP379+Pee+/FlStXcPnyZUxMTGBwcBDJZBKVSgVra2tOQeiZUq3WVobzRCKB0dFR1wc8BFGtcBIb0uk0JiYmEI/HXYopjomtP5P+ZrNZvPDCC5ienkaj0cDOnTuRTqfR39/vGHnFYtGRSlTYKxvSvoffdUr9FA6HkUgkEIvF3Fg1GluZ9VdXVzEzM4NiseiyY3BcqLwpgBOJBMbHx92Bnzt27EBvby9efPFF5PN5PProozhy5AgikQiefvppPPfcczhz5ozHw1IGoMJ8HH/2ocKGGqfl9brJ9428Kb2Gc9FS13WriCotVT7KwGXRa7j+1Mu2xhqf3y1vXL4nxTU7O4t//+//PR5//HEHK/1zlF/91V/FJz/5Sfd/Pp/HxMTEP9v7/18XCmob4CVeT0YYJz8VDb9XmMTCL3quF3B9bkMqMRUSygyk9dpsNt05X+pBaUokxoh4nXpslUrFI1BUEOgmaPXY+LcKiunpaczOzuKb3/wmfuZnfgYHDx7Ez/7szyKbzWJhYQF/+7d/i+eeew6xWAzvf//7EYvF8J3vfAfnz59HrVbD0aNH4fP58NJLLyGTybjM5xScTOB7+fJll4Vi3759GB8fx7Zt2xwlfWBgAIlEAqlUCkNDQygWizh//jyq1arbG0aFwf67fPkyLly4gHPnzuG5557zWOuJRAJHjhzxECA4XhxzjaFwDC1tnfdoBo5isYjZ2VkHfy4tLblEvrlcDsFg0BN3VOIPf4+Pj2NwcBD1eh3RaBSHDh1COBzGiRMnsLy8jB/5kR/BgQMHEI/Hce7cObzwwgv42te+5tpB5qB6QUxfZYlCnB+6D46fWVSCa0c9UIXBqbg1nqqGkWUBqqGh7+A8pNerqbb0GhqahO1ZXzJseY165d1yffmeFNfx48exvLyMu+66y33WaDTw1FNP4Y/+6I/w2GOPYXNzE9ls1uN1LS0tuTN2RkdH8eKLL3qeS9Yhr7ElFAp5Trb9YSvWUuRnFNxqIdoFrNaxQkgMRFu4A/Du4FelxaIWrn0e36MxMH23Cha+X708XqeQj42L2foolMS6r66u4itf+QqWl5fxYz/2YxgYGEA6nUahUMCJEydw7do1HD9+HEeOHHEHF545cwZnz57Fzp07ceDAAczOzmJtbc0Jcr/f77K+l8tllEolVKtVnD9/HgsLCxgfH0c6nUZfX5+D8zY3N5FOpxGJRDA5OengJhWA5XIZq6urePLJJ3Hu3DnMzc2h2WwikUggFAqhWCy61Ec8KmRkZMTt3aL3rf1gx4vCu1qtuthZo9FwxItms4lsNotms+m8TO4jUzYjhbFCw36/H+l02hknb3rTm+D3+/HVr34VlUoF+/btw5vf/GYEAgG8+uqreOmll3Dq1KnrPHn1mmystBO8rPNMPTAA160FO+90/tnrm832SdOcm7p2tN6su4WM1Xjk+xTl0NAH32cNt67ndePyPZEzCoUCrl696vnsox/9KA4cOIBf+ZVfwcTEBIaGhvCXf/mXePTRRwEA586dw4EDB64jZywsLGB4eBgA8Kd/+qf45V/+ZSwvL/+jFNQPGzmDE57KSS1nDQZb4WItUwsbalCYz6UlahUPlYkuZoVg1HtSRcgFqfEyAB5hotYsBYSSUQA4q1+VnVXoNvbGwPj+/ftx11134cCBA7j33nvRbG5R1D/72c/iypUrmJiYwG233YbBwUFsbm5ienoaL7/8Mur1OtLpNHp6ejA3N4fl5WV36q/P5/NkS1AoiBkpKMBGRkawfft23HnnnYjH4/D5fI5afu7cOayurmJ9fR2rq6sIBLY2Fw8NDSESiaBSqaBUKqHZbDpjkMqmXq+7xMHRaNTNBcJRSthoNpsu/RJjWfyMgpRppNiHPp/PkUM4Rvy+WCxibGzMZQYZGhpy1P0nnngCwWAQP/ETP4Ht27cjHA5jdnYWJ06cwJe+9CXPnKE3xeeqV0XvnqmerLfDMVfFpXCbPtP+r8gEr9f36zM6EYQ0ga4SPuy72acsynykB8j26tr9YSr/5OSMRCLhmEIssVgMAwMD7vOf+7mfwyc/+Uk3oX/hF34BR48exVve8hYAwHve8x4cPHgQH/zgB/F7v/d7WFxcxK/92q/h4x//+A+1V/VGxQppCnEuHEKIVEwah9KiCxBoLzgNZmtgWa1LDVLzXr5DYT1dgBojsHEGXqvtUwhQYVG1ZgEv/dh6hfyMbEmfz4czZ85geXkZFy9eRF9fHyYmJtDX14cHHngA/f39eOaZZ3D58mVMTU3hwQcfxOHDhxEMBnHhwgWsrKxgYGAAQ0NDiEajuHbtGorFomPv8fBJ7d9ms+k5fuTKlSu4du0aLly4gEQi4ajvlUoFhULBCVFmfGdCYBYq4FarhUQigf7+fkeaIH2fFHXdqKsQVjQadXBcPp93HpoeFBoKhTzZH/RkZa1XpVLBtm3b8OY3vxkDAwMun2Qmk8G5c+eQTqdx9OhR7N+/H5ubm1heXsbjjz+O06dPOwjNKkMdW84vjdGqQrPMQr1fIUA1vnS+6TzlPfpsNaCscaf15fM5h7VO/EzfrwpTx1ahdAA/dIrr+yn/11M+/f7v/z78fj8effRRVKtVvPe978Wf/MmfuO8DgQC+8pWv4GMf+xiOHj2KWCyGD3/4w/iN3/iN/9tV+YEralVysZG0oMFjhRkU4lBFoAQMhUMUrtBFyGd2UnYU1kA7MG09KoWCGFPgczrBjj6fz8EpGsC2lH99jiqvVqvlLHWfz4dsNosXX3wRQ0NDuOuuuzA5OYm9e/diYGAAtVoNFy9exJUrV/D8889j586dmJqawtjYGC5duoRTp0659+3fvx+5XA4zMzMolUrY3Nx0Ap8eGIW+jdPMzMy4vmDsid6ZehWNRsMRMDTV1traGqrVKtLpNEKhkOcZVKSW7k0FUSwWPV4v+4iEEBJQuF+M/cZYHLCVxLfVauHw4cPYu3cvJiYmnAI9duwYstksBgcH8cgjj2Dbtm1YXV3F1atXceHCBbzwwgvO+1AjyMJuHFMdY01+rMaQzg2FlVWZKELRyWOzELoqNKvwVOFoVhILXWtOT44fr+mUsNfGppWo0S2dSzfl0y1QdELT+1AF0YkZaJURLUUV8JalSKJGpziUwjHWU6IXyGcCbYVpLWDWgd+pUOEz6cFQMOt9rIfGHSgkVPhoUcuZsbh4PI6f+Zmfwe7du3HbbbehVqthdXUV3/jGNzAzM4PFxUWXoZ1eVbPZxMmTJ108hyzBSqWC9fV1FxPiO23yVpJT1MjQ8VEijXpd7N9Wa4s6r1sbFJblHjFtd7Va9STJ9fv9WF9f92TPoJHg928xIXkKc7PZxMrKCpLJJHbt2oWpqSls27YN8XgcV65cwVNPPYV4PI6hoSG8733vw86dOxEMBnHmzBmcO3cO3/jGN7C2tubaqR6IjhkhNZ0jnOcKrakHpsJdFYEaVHb+8tnqQekc1HnLGB6NDB0jXqfzUu/X9aK0eD0hXKF87pWjYWmZtT/opZtk9we4WKXBzwC44DzQxvw7Yf12Qav3okJS4URdqN9NmRFmIoVevTHL3LL1UWYg0F68VKpWIfH5FAAWWqTgU2Xv97czeW9sbODrX/86pqam4PP5XHz2wQcfxOLiIp566iksLy+7LR579+7F6OgoRkdHkc/nUSwWkc/n0Ww2MTExgUQi4eC/jY0NtzeLgo/wp/aZ1pV9rZa57h1i7Mxa+Zubm57AfrO5xRLkeDEO5vf7EQqFnMLiODA7fDqd9sTF8vk8Wq2tjcKTk5MYGhpyQvbpp5/GlStXcPvtt7u0VWNjY6hUKlhdXcXXvvY1TE9PY3l52Y2XeoFq8Nh5aA0v9osqqRvFqPT5Onf1eerpKDStykcNQ53vdh8Z55X1yBSmVDTCogLW29J+6LIK37h0Pa5boKigsoJeNzWqYuBiUQ+HcQ0VArzGLigVHBQGnTYe835arrQsraDiAqUlq1R6tYjVu1QvSoUaFQAp9Op1WCIKhQDv0ewHjB319PRgfHwcExMTePe73+02zJZKJWQyGRw/fhxXr15FJpNBvV5HIpHAv/gX/wK9vb3I5/N47bXXkM1msbq66ijyfX19ALYYg4uLi25TM70css2Y05DwomYzYX05BsrcZN8rk5DED1WMysiLxWKuv3n6MpXYxsYGYrEYBgcHMTU1hXQ6jXQ6jWg0iqWlJXzpS1+Cz+fD0NAQDh486A6jLJVKyOVymJ6eRjabdZlCGB/TcbXCWA0sjhNp4bz+jbwrVdg6vzjvNGsLDRx6N9ovnFvqQWmWGgtDdoLyOJ+UXKT10mewTlzH+iyOsW7w/kEv34/H1VVct0BRmEzhMC4KCmZVEPzMUnQp0HUR6X4otQ4VWqOQsJCJDaKz6ALVRa/1Vo9KlQyFNynoFAZ8rnobtIRZb9LV7REkGj9jXQlJ8vylYDCIe++919G30+k0Go2GE8i5XA6nT5/G8vIy/P6tFFPpdBq9vb2OFr++vu7yDW7fvh2Ad2M9GYHM3cf6Nxpb53kx5RIVEhUgIT/WncaBnrvFNdFJqFIYaiYKMgx7enowMjKCAwcOYNu2bWg2m86rPH78OFZXVzE2NoaJiQl3tlg2m8Xs7Cyy2SzW19dduipNRGy9YPWyrAfEOWmPL1E4+0aEIc3Arv1pIUA1ytTrsrEszkEqPL1GYUauHdaR84keoX5n6269Sn0vjbofltKFCn9AixX0QHshWo8FuH7fl/Vm3gie4mcab9F3aLnRQlQ4ksUKI22XPoNKiwJC+4D3dVr0Fu5RT0zhIxVEqiTZ9ueffx6XL19GLpfD3r17Xfb2gYEBNJtNDA8PY2FhAU899RS+853vIBQK4R3veIc7qqNWq6FcLuOVV17BwsICenp6kM/n0dPTg127djkmHy1q3c/TaDQQjUYRi8Wc8AqHwy6GRsWg8FqxWHTtr1QqLpchPZKenh4XnyuXywgEAi7LRygUwt69e9HT04O+vj6Mjo4iFArhhRdewKlTp7C2toYdO3bg8OHDGBsbc3W8cOEC5ufnsby87Aghmt8Q2Np7yZip9eJZd01qq0YXx0/p6/TUOfb8TONl7AfLauX8UTKQzmV+p3PT3s85alM16TNUCVsIk+1j/ezWDpZOBJJuub50Pa5boND664SPA+3FoYF/tXR5DhMXrcabgLY3plkWKPR4jTIWAe/BjprIlcJHz7CicLIQIN/F7xWyAdqMSX0G360QjFXE6v1ZS5f9SQ9EvQR6lryvXq8jFovhwIEDmJqawvbt2zExMYFQKOQIGtlsFk888QQWFhZczGt0dBSHDh1ytPk9e/Zgc3MTr776qns/82/yuBHNP6gCke9Kp9OeOpMlODk5CWALkiTbcG5uDj6fD6lUym04DgaD2LlzJzY3N91ezJ6eHqytreHatWvOi0yn07jnnnsQjUbRaDSQy+WwtraG6elp5HI55PN5D0RHr5b9ZcfCJp7Vs+U439RLUiNGFQ3nCZmbNoelGkvq6fD5+jxep4aPzmf9n0Wfp+/hWlECkCpqRUeohNWz1G0BioRYr/kHuXQ9rh/QohabVVaAd/+QWqF6HwUImW8UFppCCvCSM+zzrcelC5XXMT6g77dt4bUqKJT2zbgL66ZBa/UyWQdLIOlkDXeCTTc3Nz3v4TN4LeMhx48fx/T0NIaHh/GmN70J/f39uOuuu9ym2/e85z1YXV3F8vIyVlZWcO3aNRw7dgy9vb2IRCLYu3cv0uk0Dhw4gHA4jHQ6jWAwiFKp5AQ50/zopmsKuMHBQaTTaXduFrB1pl2tVsP4+Diq1SpyuZwjX+RyOQ/JYm1tzb1nbW0Nly9fdv1UrVYxNjbmtqZEo1G0Wi0sLi5idXUVZ86ccZujW62WO4KFLERLJFAIkApLvSj+VviXY3QjFEEVgP5vkQheQ9iZ9bFKROcg4VaFwlUJaroxG0fW+aebh3XtaNF7VOGqIXYL+hH/T0pXcd0ihQpCPS8LCeqC0sWp8Sh+1gnK4LP0OhuPUAFDC1HZewA8Xp9+Z7MGKBVeYwEqQFRpavzOElYsvKnQjBYqKiV7KLVcvT2+OxKJIJ/PI5vNYmNjA6lUCvV6HVNTU+jv78fg4CAGBgawa9cu5PN5LC4u4sUXX0Qul8PS0hK+/e1vIxqNIpVKYWxsDI1GA6lUyu2RouBkjETbtrm56YRnuVx29WfS26WlJRePqtfrKJVKDj7kETGhUAiNxlbC3Egkgl27drn37tq1C6Ojo04xbmxs4MSJEzhz5gwWFhawvLzs6qDEAUKDLHYTr91PxnmhRAXte6tYOsHN9G54v7Jpea16K51IEjaupWvGohr6XL6fbbVrTuF4NbAs5Mhx0dyLqrCscdgtnUsXKrwFChcDYxU6ZJokt1O8ShUELUd6RDb4rIqDyoGxCpYbLXoVQmo5q7ekjD/CJFYBUYiTmabCSGE/Ppd9oew79bpUMdMbtQaAegy6H431IWSqQogQaSwWw5EjRzA5OYkjR45gYGAA0WgUfr8fhULBeTzVatUx75heye/fOnCSm5jD4bDra3rD+XzexZC4vyoQCGB8fByRSAQ9PT0uLhaNRt1maHpwJHfomVvc79VoNLC8vIxsNovXX3/d7V87f/68U1S6v0qNF/a7UtN1bDvFZWlccFysQGe7+Vwlz3D+6B42jrfOW5JC6E3xWZyzGsfl2tI5oEcBqdfIunciKVkCB4uNpWkbFT5le3TtdqHCNy5dj+sWKWSdAdfTiAEvDdxabzeyZvUaLkBCZVQgGl9SCO6N4J9O1qp6cvyfwks9rE7vU4XFd6iiBdpK2bZNf1RhKexjISB9NutovQbGN8rlMo4fP45Lly6hUChgz549GB0dxc6dO90Jyv39/Wg0GhgYGHAxIioW0uS5mZkwIgU0z/Dq7e3F6OgoIpEIent7MTw8jHA4jHg87sYrGo2ip6cH5XLZHfTILPDM9N5oNLC+vu5o7KdOncLc3BzOnTuHfD6PSqXiDCQqDB0r7SsrvHXMOX6WKKFIgM4fnUM6p+w1lmGr46zzrJPC0LmoBo59l/6o58c5qJAl54IqUCp8+07bfl0rfFbX4/rHla7HdYsUjScopq5WnhUOqmj0b13onbwnFVaA1yK0XgdhQRUiqlw06KyUd7bB52tnULCKTRc7vSV6KrxGBYqFRPWgR1V+vNdm21CFSCWu5I1O8Rr1MtVzOnDgAPbv349t27ZhcnISiUQCw8PDjsque9HoDSWTSQeHkR3IH2a06OnpccSXZrOJXC6H1dVVrK2tuU3DPI6F/cNNynNzc+54l0Kh4A675JlemrFBiTn0DhgPUrhP5wD7o7e31zPGVNDsJxX0HCcLhavhoGOrWxysYRYIBDwxQn6n68PuDbR5P3VtdfLY9X/reSr0bevfbDYdvErFynhwq9Vyc4Jt7Hpcb1y6HtctUNRCtKwztS4VBtEFqwvNWqQaGFbloQtO2U43soa5qPV9rC8Az6F+9h6Na1FYqEJQC14VnjLAWBcVOBp3sQKIdSARwzLi6FEplKSwp77f7oMrFos4ceIEZmZmMDAwgKmpKcc0jMfj6OnpcUedqOHAQxwpgAlNEbKlZ1Or1bC4uIhMJoOzZ89iZmYGy8vLWFtbc+9ne9i2ZrPpjmHhHrCenh4P9d7Szal8OPfYjxYG7gQP0jCw483x0Lmh81Tnrxoi6rlYA0X/5zMVgrZnzlmDTue/KshOcVvWwaIK1hPT/rLrRt/NogZd1+v67qWruG6RoosA8Cos6z3xs07WrfXAVMHowmfRALsubrXG+W4Vakrg4PsseYKLWAWC1tdCnIQxbTxOPSRNjWS9T6vAVcgpcUA9PxZVnOphNpvtRLZ8HhXYwsICFhcXcfnyZcTjcVy8eBGDg4OIx+MuQz2T5dKbjMfjLnZVr9edEmo2t87LymazKBQKeOWVV7C8vOziZjyxWQUxC707eo9qZGhMjYX9ZIUzPU5VKtqfNAL0Wp0zqnQshMZ6al/SyFA4WcfGwpZaZ4WAges9NTsP9VoLNarxxL6yXpmNb1kYUpEHNZ5UudtDQrvlxqULFd4CRRUL4PWSOjH6uCAITxAGUiteac0qGHivehv2farsGAchiUOD2qy7Chdbx07wC2M8arVSuTB7BDfSEgqzcQ8VKjYLAZ9LkgoVh/Zlq9VmrfGd9KpUiQJt4W+9NY4BE+ZqEl5gi7kYDocRCoUQi8XcIZG6f61QKDgyRz6fd2d/Mb2Ttl2NCIVpKcRJdlChzVibKjwVCZqzz3r2VNBqIPC6ZrPpyXhvYWi+X2Nhdt50In3oHkT+z1yMuoVBFZ1tE+eJ9YY06S8/0/qo8uPWA/XM2M8sbJ8qLj5LFaYqwWaz6YFsfxhKFyr8AS1q/SkEZr0Ra9VZb8ZCHArLqTfHZwcCASfUFeYB4GJOCtN0EjT8W61SS4hQZaOWLY+FsEKH1yn8aKFRC2PZ7/l8yzzTWJrWm0JLg+nWMrcxDip3WtJUlnwHWYN+/9aGYr7Tep3AlsDnESQ0IJR5R7iPCte2mWQLbb/OBQsvW0hLx06NHOv163PpAbJvVAlYb9oyXzU+pnE1C6PZ+avKQutr5yDHQ/vazlc1FFXRsG3abu0/vU7XhVWW1pPr5Ol3S+fS9bhugaLZBqxwAbw52tQaVcVFb0GtRn2+KgKg7TVwgds4g7VIVfkobVmhQ3uNQklWmXVSNlawqDdgoSGNR+k9qnh4LftFlSTrZtMSKSSo/ax9pQqR/5NUUS6XPeOnAjwWizkvSqFPXtdoNDxeM9AO5FMpsu3ab6p09LNOCp9jqdfqNgL9XoWvKiBC1LburJvWR2OgPp/PxfK0H9QLtt6KEn5YPxIedL5q+zlXbPtJSLEKSxPuAvDMb+0DVY6KKvAaHR/W226/oEFzC4rl77t8Px6X/7tf0i03S9FFodYb4M1iYaE/3qvPUQiJQtpa6Nb6VQiK19i68Z0a09A66kJXT04Vi71f4USSCggJadvs8wkT3shb6BR3IfxjvSntS+1vhdfUK9A+pTDXVElqaNiAvFX02h5S6SncNOOIHVc9XddS+rU/O0FX+pmdHzapLdtDBaKKXAWyziM1ALQ/dR6oh6Zzi+/ms23cTeFJXQvsWxojnfqc79P5rbCk1s22T+8lk1KVvbZPIU81JHhtt7xx6UKFt0Cx8QFddKo8KLDUIuRC04VDIaJCQhWJwhtWEajAoWWqngHgVWIsan3zXns+lfWkLAxn4RoKZau8bSyQ16ogVkHLz23gn/W03h/rbgWMwmHquZHirh6cVaatVguVSsXda+EjFWy6N0o3XmuMhs+xdef9qpA4plov3QJhPQpV2hYBUIVstxtov7K/1QPjeGieTTu3rKFgYUA7jtoPdlzt57o2dA2QtKRKTwkuqtT5nE5GHeCNo2n7ufb0ud1y49JVXLdA6QQD6kLlwmXCVrUyFeZRj4kKSuFBwAuxWWFvD4pksYKKv+2pyLow9dgRVQA2pqXWPiGyTl4CvRF9Hu+z5Az1OHw+n2djN5+lniC/08+1rfo/r+X72S+daPcqgNk3Cr2xveoV+/1+t8dLafhWKasCV8+u1Wq5WJptq9LitR9ZdypJCnOFwjjeVKBqRFFxazYX/Z71UFib7+EzOZc1m4rOA96n7bJesvYniT30hBUSV6ON/cv2M40WoVCFmNnuVqt9NpeFJ5mZnyQbHVuds93yxqWruG6BosJNlYd6ChozUqFsFy69MQt1qeWpSkuFmkJsNoZk94ZREGmsR4kjvE6fx7byu04bYhX+4fW2vay3QnPalxba0Ws0zsFnqfXM6+lx6TEXnWInalgAXg9L26vkCn2Peq5K36cSIDlD26F9bsdTx9163SyqSOkVqILp1Ab13PV5akSoEaUsWR0P9ZZsPJLzH/Dus9J6WG9L56I1KHQOqdLnuxRy5H22zeq1cU5QuVpFqqmhWB/t9275x5eu4roFihUEFEiaqNNa2bxWF5AKWYUoeD9/q4Cyi8xahBZuU6GmwXfuS1LPT9tGgUZKsypV1kuFiSoprWMnpa2ejAp/rbcKEd1DdCNPwLIsLTRqDQb1GtRTsd4ln6NCTttqlaJ6euqp0VDgd5qtwyo2jpMV3vpOC8uxvqoMdJ5oO9Rj7wRBq/elysoSOdiXui6sArKQn8/n8zAAeY+mFtNn2PUAtAklurY0vqbGkt0ioXUFrs+VyDpqPSxC0C3Xly6r8BYoOrkVH+ffFBqW7dbJktTFoftwVIjqQrZ7m7Qu1iJmXbmIVWioUFVhxXcxbsR3sqh1bjcW0ysAcJ13xXqrMGP9NO6kRT0UJTnY+vN/Pkc9FO5rU8Vn4TT2i8Zy1NLX56vS03HXvlFDQT0CbQvrqYJRx5lepM+3lYZK5w/Hxyo0rbPuE+T92h6dK6rwOJb0HDW2Z40mq2ipPFTp8nv10hQW5x456yXre1hnPRFcDSL1LK3Xp/XopMgVGuR8JgTLgz5/2ODCLqvwB7jYSW/hGcC7uDSrub3XCgAAHkVos1NQUNp4mVr3CqcorKRKg993+pwWtoVmWGzMiXXmjz7Hxle0f9Tr1L5lYXvVg9L7te/1nRo/4Q8FKvtDC+9RSj/bZL1WFkJQ2j8UyOqhqbDVuBLrxDbbHz6z09gSolbFYL0h7atOc1UVv7IPNUZkSS/Wi1SlZ70t/q/Gha2XGhL8X+e53XpyIwViPWy9pxNbVI07oA0rMsbWaZtKt9y4dKHCW6AozMTM036/31HCCa8pXKZEBbXMGUtR7B/wKiWb6ZvP4qK0whXw7jXjOxQa4jt4DeC1TvXvG9GVVfjwflVa6vWpcNPrbcyDkKsKRQshqQWvx64AcEeFWIufddP+r9fr2Nzc9HiKbI8qG2sc6GcqyDXZriqJTtk96HXxZGvOKxWYlqFp/2Z7+F71ihTGVQaohb1UoatHy3crUcayJBUW5TstpKhzge/gelGPVeOJ6iHzGs5xPp9jwPfqutF1wbrRk7KxYK5jXVdqTL6RsuyWdukqrlukWEiHlqNav9Zi03u4OFTxUahprKGTpWk3SepzLSymEJuFiQCvV6hWvhYrFBSqsouan6mgtvW3UJv2CeCFYq3CsvG0TqSNTv1CQUzLWo8qUSWlbaRyUxhUFZZV5j6fz0MEsEpAFbb+VqJCJ+hPvXheRzYn/9axZL8wTyTnl44r+7jTvicLv7FYYhD/Vohc4XP1qFWRdWIfqsenyonf2+ttO+xaszEw3mfhZoWw1XCya7GrvN64dKHCW6CocAHae6I0VqHKiz9q1fM6vd7CZRS0VtCp0LSC3Aa3VRBxkVrvQq1mfb+FsRRytG3X+tk+UEVk2Y58rkI5Ng2TWuOaoFaFoVVwfD4p01Ygq/JUAa6f8xka56BwtrFGegXqibOdjDVZKx/w7uGyfahjpHVlnRQCtc9XT8XOLyphOw94r8aSdOw6edgWcuRY2OdpvRTmVKWlniT7gfXUftV367xVqFT70ypZ3mv7XhWZhWe75Y1L1+O6RQoFnXoMqkhUSBA3V8uRwo/XWAuTC1ZZT7qnSqFHy0gkNKiQJpWAWsNa1BJlnfgs1onPZLECrVNR70v7SYUB66l10IA5C+vODAg3sqpbra09dDxyRD0CKlP1Uvz+rYS3bKO2jfcR+iU0pf2j7VPoTT0tra/GxKwy0+eoB6OxQet9sh16nyp361nwe85Jha11Dmt/6jvU0+xExmFd7XxnW3Ut6DzgWKuy4Dqh91iv1xEOhx3E22w2PRCgGnQKC9v+0T5XaJPPYB1tzLNbOpduL90iRYkU1gPh9xR0Ck1YuIVCQxeRCg0VJCrwrPDQfUz6LhtE1/1X6m0AuE5YqFBRy1qFjiVi2HZYJU6BqUrPwj3cVqBCRb9jbEgFuVrS6hHZILvWR8dRvZJOXgbvtR6sVRIcW+0T3ms9A+tdqKDv1NfsOwDXbajVtlj2nRow/PtG/WKhMY3vaXvYTzqGWthHGle111rlayFbxvwsUmHHg/XtlAAa8J7/ZWFOFo6lvks98W5549JVXLdAoQLQ/ShcQFxoPDqDqYV0sfIeCiZ6U1woFIL0cAg1qdBXD4wLHPCy1VTYE7Kh9c28eQqxse5UDNoutVQpJCiYrCdhhRoLhbAlKKhHoDBOq9W67ugPfY4KS+0v64nxPfa0YAp/hat4jYXYNFO8jbGwTnoPx1b7HPCeLkzhzHbX63VH8KFi1vyGOu9sTApoC2j1EHlkPecB68U5xXgO368ePp+rHozOY1W0CguzqAFjIWZdA3y2KkXuc9MzxfhjCRnqfWl9VVGqAaDXqdJTg4ReO8e+W964dBXXLVBU0FqlZOEZFrLfLBwEeAPcVF6qUHR/jPV2VADaRaqL1/5vM7lTmVEJUohToAFtWMgmvaXA4bNVaapVbZUTn6kCS+umsKvGmDpZ7PyxUJl6EJ1IAdqX1qtQIWfjXNrXHEvryamHrXW0Al2LQmOqRPhszimFbXVeWGOE77Z9rONjTyS2c13rwPmmELW+W+c1DS0bw7ReF3A94ciOcyf2LL+3sK22UWFQnRs6v9TzVTTCerTdcuPSVVy3QOHCYPYJhezUKtTFQuvRwlu60HRhd4K/9F4VqvqMTtAR0BZ4fJ4lSdDTosC0HocqVSsQVRCyXupJAd74BXMr2vstdAi0vUUKc62zejRWUXE8VMGrIrDjQ8Ohk0K2Vrq2Xfu/0z22H5UQ0AkqZXt1Lqny1Xmj85HtYlEPWOeMVYC2TTcaB+2zN4qtWfhUx1GhdYW9eR0VYqVSuc6IsMaCKh1ly3YyJLUfLVzKuU/mpUUmrJfYLZ1LV3HdIsXv97vjPDY3Nz3BXI1fAXCnEfMzLijCIdx3xGIzlltlAXgXqQoXhWv0t3p0rIt6cv+/9s49Nu+q/uOfdu1TOuZaYKzdkHEJl8llqENKNcREGnAuXpA/FrJEokaDjAR0IYJGwZg4EhMTNYZ/VPjL3wJG0MgljA2m4LjNTTbQychwxKybQnaTre3a8/tjeT99fd897TaFjoeed/KkfZ7v+Z7L55zzubzP+Z4vDYomKhfvx1vvkVFm/VVmbv1iaGgopk+fHhFRl5vK5LNnpGy4USWlVH+LtIwRTxxxSsipTrWBEY36xY914gkboqd8gwtlx99InTHqVZnKj6Bx4eYaRjR6Xo3PV0khK39tgXelzigkR5FR6be3t8fw8HA9GmNaj3ip3Jubq8+zkZ1Qm1kHrn/J6GkOsY2iTHm6CmlhN4CSsfpUGzg0Dum0+NoWGQbJshiviVEMVwOABoi0mEClKM+W3i8jAn9inwpfZfjakdNA9MDp3atcRllcP6NC93UGb6/u0XePONQelqu0gpRMrm7uubt3TTk51cSolHImNcnNIty0wrqQ/mI7SRF6pMH6kM6SPNiXvmbpGyRo6PigMNO4AVKbvW6MWMgI6Hff2efRu/qccucuSd3HiIblKz3l4vDxx/5jZJobQxprOZpURpDjwzfzKE85PZxX3ElbNmccHYrhahBokVyKipNQtCC9yYix9BK3EsvL5oYBgZGXK3lSea4INDndWHB9i2lYP153RU5vWopEz+b4xgEqFUFeM6kb0jmu+CUb0mk0Ptytx80VbB/bwTffegRBefiaH/tRabmpg4ZWfUyFrjKoeNmHAg0H84mIikGjjEjP6R6OM1J3rJePM40VbvbxtVo+jkBjRSpcBsvHslOVjAjJCvi9PKVD+TAq55hTvhxTbW1tWQfNo3OeusK+LJgYxXA1AFJK8dZbb1V+I0XBiS+FQU+5tbW1roBFf3CCStnwja0sJyLGeLBUovrOsqVY9bZepWG0IKWhuvomCU9PD5zH+MggSXHklIQv7EtpCopIuGuRdeCHmx1E3ZL+GR4eru/W07NdbBeVqSgp9g93I0pB8nBe1l2y4zN4+l0yUPtJK2vc0Agx2lT/+gYZRe1U5GQB2J9sJ9sh5U/jJuozYtQI5PJXu+gMSW4cqzRQpHZzkRjXWH29iREc+51jQbJkNEY6kUaez/PJ8dIYIMVZMDGK4Wog0OMnLUSP26kYRgz0uCOqR+GIUlI+ulffaRhYlkDF5c+mMDJyOo7RVM4r14T2iItRi7eba21OM+V2ZzKypFJV/lT+VH4yTDkD7oqbSpWePttKKphePWVJp4S0oNrLvvGdcRxDrCPvY9TB/nD50lnQ2KFxIA2m+3hGYsToBgrWTXL2/DVeaQSYhuOFxkRwijpHU7tMKH8ZXM+bzIL+8j7JgY4J+8GdJ+/zgjyK4WoQUAnTc6aS4Ev2nJKKqD6vwg0djDAUeXm5up9KLKL6gkl91z16TkiKQG9oVv7+TiTSYbrHDXNEVDxgQfnQ66WxVBp9Zxl+EkJEVYmR+mQ/aNebTsHwM/xYFtdI3AgzLalLr4O8f8pZ5SnKk5MgOTk1yvFBZ8YVuu7VhgXK2qlW1YF9qHz8dSU0VjRqGoeqI6lv7hhV3qK5Od4kA7aHhkFtYl8K6geemKHx4xEbKUv2FelzpcvJmmOcxot9VDAxiuFqEFBRcAJS2eparVarvyHZr+UmDJUKIwGnySLGnl9IOoXrQ1Ta9Dgjxh5bFFGN/hjJeZmqLxWF06Q0hlQ2jFRohPmdyptpBK5teHTC/0l38qMyfOOJe+CqN5W8U8OMWr0dbI/Sk5bUb278JV8adTorMtCSiT/+wN8of3c2GKHSuXA6lTJyY63xIwpOaTT+aFR9TcvpRNaFv0VExZFjH7L/eZIMy3fDTMOXG+uFJjw6FMPVIOCk1XoFjZnWJZwqYRQWMbpVXnDlG1E9dsc9af7PiZejFalYSJd5BKR0jGycbqOX65QKFV1OcXPNxndteXQj8H/WV2ldyZGOc6MqpU2jR6pL94tKU395BOhlRFQNh29AyDk2bC/7kxEnj3Byp8HlwGhH/UInhutrzIuGQferjjnKTGUpb7WZkZlTwRxf7miorPH6Qv3uxoZydFqaLIh+I2Pg612k/OkklajryCiGq0Hgk4BH8tD7lgLLPS/DdZqI6qGfvk5Bz3K8yIEedcQobegeLD1c95y5IM2NAGozy1F9SbV4tJHbPBAxdk2C3jajV9VXHrJveKAR1M5GvjFY5VNh63fKXgaC27CddvN76PkrEtI1bSzx57GowBkdKwKm0XRKkf3pkYVA+k4ychqbzzRRzmyr6sB1RBpl1Usy03VuzBANrrGnTUk+vunAqP3qb57NqA02dOIkA3dEDh06FCeeeGIMDQ1VnsNyx0/Pq6k9rP942/gLxqIYrgaBRz9U2vQwdV0PjurB0IgYo+DpnRI0PPTE6XXqesTY6IR0Xe7EcikmRokq140djZXTfDIQfJ+R6iNlJKXCCIzp9NcjGdXHjQkNOWk2tV31iYiKMlTb3egz+qVTwPUd1pfyIqXp0axHlhFRidIZqTskJxoX/pbbPCEjTwPJvx4B5cp3io31pJPE9UCOS8qD64cjI4e3p9MwUI4aJ6QkVRbb546NZK45NjAwUHl2Tv3LfheVKKPKvtO89EcQCsaiGK4GAakIKk8qM/eufb1EGyV8o0BujUuQF0+lT++ThoreLaMWKQ5fNGdd2Q4aVSo+KkOn0TThZTioeGis+EwV85QR9eOhlK+MJE+IcPrOd17m1lvYh/ydToVHrjRGAssRdJ3RttOXjBS49ZvyVr3ZTlKf3geu1J1GcwPBsSXHor29vb4hggaR44HjS2l4JmfOuZHh1yYTbrRoaWmJ1tbW+qMVvkGJm1zIGDQ3j576ovapTmJAJCsaS9aZjxfwfo/yC/IohquBQOXmW8mpgCNGHzLm5ggqO65ZuVGiYnB6K+cl0kBS4Tc3N4+hTajEuFbAiUuv2Y2W01aCr8noNxoTPidG+jRi7E5MXVMeqr+fHs76Ou0j+aq9VFLavSZqidQl25AzwB65eHqn5PSb01DuKDC6UZ76Thqa8iZFmJMz88mtHzH68uhKCp7y9C3lHHM5Y652Moqnc8YITONAdfMozsvx6FAODnfmSpbMR/1PJ5KGs+DIKA8NNAiodNxbb24efcsr6TfSOx7l5HZU6S8nGK/JE6ciJL0nw8OIQvUbGTl8xBTXYPyZJSl3ev8R1SN9BK9jjhqjrJwGSmn0VRvcIu3UJcsTKA8qbOWpqI5rIFRgboSd/mOfU7Y8LSPnlbuDonHhlK68fV+L5Job5U6DQ7Dved2jLyl00WM5A+Ay9r5zA+KOGCN8L5+GWOly63w0GsxLdZET4Y9ZsH91r48h1cXp71y7C46MEnE1CBg5NTWNvnfLX9RIr5ceMq+RJsspDU1o38KrD2mygwcPVhbRm5pGDyhVtEVqSpN3YGAg2tvb69do0FSGR4ua8GqP6sWDSf2Fh3yfmAyFDBZpy4ix2+zppVOGXPPwaJM0n0d/rvwHBgbq6eiFuxNBr97bkNLoOpkOA25qaqp7/FSUjMAZLdKYOn0pg0NZ0gGg0dX/dJC4RuhOE9df1QaeGsL3zzGC5DhlVM1TKEhTkxWQTHjAstKp3oy+NQ4VHdM4SW48iJgn0bAvPbJTGkbblEPBxCiGq4FA5eWK0V/j4N6gfqfHmvOUlSZHFcrgSVmQ2vMHO3WuYkRUlDLrRMUlhUElSoPJ0z+444zRh/L1Z4u4RqS8nJqREqQsGNnKQDICoSNB79/pO4F0KKNlp+a8jxgdqN5StJQDNxW48ZVjkHtezqM4OgCCU3uUB9tNZ4j3s/8oc/1VX/ghu06JO8XNaxyD/tJVpef2c455ycajbI0hrv+q/53q09jiuKKzw/q4k+byKpgYxXA1CDjJ6UFrslOh0hPmWo2vkXAC0XPlRCJdQnqHilppVT9Ndi1UR4yl8qiIGeWwHLbBjaynZXoaAiqUHAVIOlP1oseu/KjslF6/iY7jPVzvYlTCqJfeO+VIedOw5SIxYdq0aRVvXRG3ZC8j53JUeYxu2TYaNP2l46LvdEwkH/a5R6Pe33Qc1Be+RZ3jRPfK2Oial+ljjvQ2HS06ex7lsk0cb74L0o2SjxXvW9WJMmB5BeOjGK4GgQxUxKhHrJ1SfE5Fk1NeNykd5UPjJtB7ljLwDQVUtKJyPCqhMtJuL1c2+sujlmgYnMZ0SpSGVpPddxJSyTmtxWexSH/RCeCzZJKP6trW1jaGuqWSpVKSDP35Kl/f4wG/3k46JKw/I0kqbzkFTU2j70LjJhU6F7qP1DINLtcEfUzwdBZRlxEx5sR+yZEGl4cFe+RFetF3WDrFx2uK4DlXVLYYAEa2uk/RoEfSjLTJIDAKlvzVh5yramtLS0vUarU6vc+yfM6Qui4YH8VwNQg8KnJvfnh4uG646KWTQuTEbW1tra8NRVQnMtdBcpNIk5tbfRmd6ZroLI9WqPA5cX1NhFGcfnPqSKCRc8/XKSrl6ZGFytC9ra2tMW3atPpalPInHeTPBlG5q/1sA+sWUX2GiA4FlbIMmjsCWnuhUeB2dzeQyl9nK+pUe/a3jCwjPPaPjwNGKjLOjNJoxD3ao1y8/zQO6cDkIkaPlCgfX5PknHG6lnJn3uwrj+YZPSsfOgVsh7MBLItj0GVckEcxXA0CetTaJszJl3vjasToDqfm5ubKCwWlfEl1RIylwFSOFqC5zsWJW6vV6obSIzflS0XAqIDGZWSk+vC0lAEjGbWLipPRiCta1UX5c3OKU3AyTPSg6QVLManMwcHByrFajOaampoqz/V4JMMIxalO9jfrQYNHmlUOCtce1Rbvf72qXsaZ40anT8j40DmSLFkX9R2vkfqUbHjCS86J0BhnnzDKlQFjXf2MSn83mpwIGnw3+jTojHY1BilvlZWTCx0WMhCSEU/1oPxy86PgyCiGq4FAykngDihGKO79RVQPt/VJQqqRO52oSEjPcA3H1wTcM5XCodFlOv/LNrgCcO/WJz6vUcF4xCPFLIUj+coQka7MbXyhXEmjMfKVzFWu0gqsl/qA1Ku/G0xlu5LzqNKdCl/89/UWRr5OW7Gu+stoeGRkpELR+ZoP60rFTbkwynMZRYy+TJLtj6hSg059ciMPf6fTQgeEbVKfsz6aH5SPR/2cVz7mGPkqDell7mgsODKK4WoQeFTAvxFjH7bNraf4pgkqfip0Kkx/MNYNZESMURKKvhiZaV0gorrTymkstouGkl54RJVKdEqJcmG6HFxxqZ5SJNxOr7I80pNSa2lpiYGBgTGGRnXnOgmVqCs6p9nYJsknR0sxD/aRK1jSdxo3jOy4nT0XBTDS8HJdtiwzpdHdir6WpujH6TP1K8cqIzqupVHebozoHJFSpSFRfpKFj10a9lzExfZynNA54oYkl5lHjAXjoxiuBoErCD5LpY9+GxwcjFqtVl9s54G85PKpYCOqi/zKU5NMR9xwYZln39HjZ0Qm5ZB7aaTKzCkcTnif5DRKome4c07tpPJmGawD5ckoghEc5aGNGSqfdB9lN57RIfU5bdq07EkcMkiK9JQmt7vOyxovQlY6UWSMCHlNMlU5MjSKbkSj0ai7geHbjLnLzx0Iyk//M0pWu+mg8DgrGhm+RZhOEftWxzuRPtdD1+pDj9I5HvWdUR5lLMND6ld94s6O735UPTzaLMijGK4GAiOgiGoUFpE/9sjppYjqQ46M1LizjMqChkLXeEIHDZzy9+hJCoNK1BUZyyG9QkPinjrLZcRC2lB5qr0ePbpRpGHlvVyXoCdPalJ19voyMtBf5cO1Ro8c5aGzfpQrowb3/rlBRPKUfCgXN4AeyTNdLkJmVK9xpLrTALDPNAZpqCUnp+w4nnxdj86Gb7dXvnRsOO4pZ5bpY5KRKcc75wfHofc3+5r9z3Q0uAVHRjFcDQJ5uvSKefK6JjL/d6pPSsENCJWSJqEOxZX37NSR0nGiU+lERH29h/Whl8m65c6kkxfth5XKaFKB5ZQ36R3Vkzv+fNOD5CrP3pW5R3GkFZUPI05/Pot/vW2qm4wYo+Lc1nvJl7QqN4bQyRDG22jD6ECnZEg2iqoYXdN5UP48nJjGW6CBowIXLa2Ijoo895zUeAZGfUbamIad9C+jShpQyVqRGOeX/jLa5phw48sIXrIkE0BnTHOEDkzBxCiGq0FARaRJ62s6HuW4cnEqLKK6HdmpD5+0SueUGI0hn2+Rt8x8GPmRGpGR9YNwqXRYDxlyyYaKPQdGKDTcjCz4IDeNLA1irhzdSyXI9Tz3tNk/6lcpW1J73Bnq/ewOBOuZ8+x9DKhcRhO6znbnKD8+50fZ+P9ytNhuOQyqv4wF5cvxqd/8OTnKzMvV2ONYVBpS1rnomlGp+o9rjnQUndbj+NQ9uU0zyld5OqNQcGQUw9UgoEcWMarom5ubxxzPEzH2HVOaVNqY4TQO6bmIUU9Uk0nKimsrjFRoZKis+YZaKoncxGfd1UZGdVxQJ6VJOjOiqpypTFQfKRO+zoIbFJx6ZDvpsVOmSs8NMB6tMV8+kMx60yBxrcnzchl6O9V+vrpkPGpM/zPaZGQ13nhS1O99yUcVaCT4m+7hA9KMiBiJqZ5sp6J5d9I49tSvfLZLedAxEmgIGQnTkWtqqj6aobb4PGBUp3QeObOvaBCL8ToyiuFqEHBiRozSa36KAikPesz0BElZcN1G9+qVG3oGRvdrQvvpEspL0ZJoIyo7jxSVt9JowZ9bnGko/CWIUiCeVvlLcVGxDQ8Px4EDB8bIVnWUovPIlZsC9DyO5CNKS6Diy61rkUr0aMDTUzmzLjR2jDhkgJwKZJ6SDd8vxjowQpfC1/1S7JI7j4DyusjoULGTqibFyzGhcrnZJiLqa6QyaNOmTavQ2DQoMoQ0JHLwaBQYfckIq1/H29kpqlVjXHXR+FJe3BRF0DGkwaZTWHBkFMPVQPDoKCIqkVPEqGLS/zmFGFGlKDwqIlXlCo2KzWkP/sbyaHgiRp/hobFx79cXwPW/bxmmopTh5JoTvXs/KJVGm7SbR4i5qISGghQoFaP3FY2s/nItjW2mzFm2ZOOUldNXjGjYP5SlO0OM8ri+I7mzP1Uf9qEr6lzkpvKYN/OkvPQ9F7GpfPYT15UkD1KlkgVpUxp9PifpzIJHj7l6k4JWWzkmKQN9yJSoH8qzXEdGMVwNAk0MGpNcGqebOFloJHxhWb9TifkivDzunHLwMhhZuDKi502vncrHqR3eR0UjSOnS6EppuFGnV06PPKJ6PI/upeKiPHLfFbXSmVA6Pd+mrfBcG3TqSv/TENLIeJTFdubGhBtXKntFvzROTCsFzLqzXjSMKjNi9NQMrodxbLA/PRLRdd8o4waVxpePTqiera2t9W3upJpVL0L9wLML9TsdApUlGXjEyd888lNfcBOSy6/gyCiGq4FA5ejeN71d7tziTjP9zgM/NaEjok7XKS/fXsyTD2gcc5GgJjGVofKhAaaCIFWk8jWpnUKkDGT8RE2RUoqoRmBc91B9Jzr/kMaHFKR+o0KncqM3rXJJy1FRK70bCypwtY/5jxelDA8P1+uj9TdGlvque6mA6Wy4YXPHZdq00fdJyUgosqGR4kn1jGo4NlSm8uI4Iz3K8cKTXiRLyUXlyAj5bkn1nShNrpW6Q0Z5qe6sk+aLDr0mVal1VMlN5XsEWwzYsaEYrgaCJlSOTnLahZ6d4NGGn9AtJcGoiwqVa2FcW+C9uo+KMxfReHuo6Ggo/XkfrifweTTSR1JuNPSkFyPGf+6HoJJndMMIJhfleJ0ERhgeNTMCYaSbM06eL/vJvXj+zmeOPCqi0uWDv3ICdCIIDRdP5Pe1VcrJI1xGmnR4nILLyZe0rht4yodpIqK+5ZwnoVDOuX6PGHWmnJ3wsnwMMdJyB0/pWWfO1fIyySPjmEz8nXfeOWagzJ8/v3794MGDsWzZsjjllFNixowZce2118bOnTsreWzfvj0WL14c06dPj9mzZ8ett95aON2jhCbDoUOHYnBwsG4cSLfIy5PC8QlSq9Xi4MGDdY93ZOTwiQLcuszTz50208I6FS0PeFU6vTmX57DRo6SSVt24U1Desisvf1ZGi+k01Iw4JB8tzlNZcteYe/a8zz80nlwTUV6kIGmIJBtfZ1M6vtVaMtRHR0rJoPNNABFV43rCCSfEiSeeGG1tbXVD4XRhjt6i3NTWoaGh+utLNDYUrXBMHDp0qP4GYGFoaCgGBwfHRMSKfujoOH3GDQt0WujoMB0Vv4yS8lbZfOO0xg2ZBM4TRWEqJ6XDp+rXarXKBhHKjw4FHSU9FuJlMA/1UdlReHQ45ojrwgsvjMcff3w0A9BHX//61+Ohhx6K+++/Pzo6OuKmm26Kz3/+8/H0009HxOGBunjx4uju7o4//elPsWPHjvjCF74Qra2t8YMf/OBtaM57H+6Fk4dnGnpy8vI0KXxnGie5lDqVq4yc0vhif0R1i7VHEk6bcasxPVTVkZEJjedEbWWkQSOh+tAQqR6MVHOREz1meuZ0FDxKUHrm7WtLpKNYPvN0j567zyKiQoV6nZWOzzwJlBENFdeg2H/czcmIk/Qr+5fRhEd6pMd8bPh6k+rnG0AYKeXWV52K4305qtfb65G7ZOaUq9L4uOQc8IjLx0NElcb2NyAUjI9jNlwtLS3R3d095vc9e/bEL37xi/jVr34Vn/jEJyIi4p577okPfOAD8cwzz8Tll18ejz32WLz88svx+OOPR1dXV3zwgx+M73//+/HNb34z7rzzzvo23oI8XNFS0ZP7V1qlozEgrRMxduuxU1Sk55QvDQAVhkcjEdWHpPXdqRNSR/KAuQjPutDoOg1FpaTrrLO8/fGeTyIYBdKQuEFl2yh7X5T3fnNDSCMoZae+8kcSnLZ15c70dBBcPuO1j5tR1GdO5VIhu8PCiE19Q5rN28x8KBuOORp63cv+Y9toNH3MkGb3POlEMW+uUWlse8SpcnJUIClcUqQcG7m5UzA+jnk18JVXXom5c+fG2WefHUuXLo3t27dHRMT69etjaGgo+vr66mnnz58f8+bNi3Xr1kVExLp16+Liiy+Orq6uepqrr7469u7dGy+99NK4ZQ4MDMTevXsrn6kIUiMeGdHLp1LUd77+xBWgK2BNLJXF7d/6DA0NVdYLuFlE93Ci634aJNFgTCPaiQpAIHXEB3x5kjc9YKfxUkr1estYC+4VU6nSO6YypnxJnyqtfo+IbD+JaszJmjv/RkZGxpw6L9mTXvUPrzNa41hQffhQOg19zvD6hhvVS1EKFbPozxxlynrTcNOQ+hZ75UdKk3ODDof6Wt9ZnsaaG3allTzUP5IRjSrpbMnCnTKOB8qL80lgHxVMjGMyXD09PXHvvffGo48+GnfffXds27Ytrrjiiti3b1/09/dHrVaLzs7Oyj1dXV3R398fERH9/f0Vo6XrujYeVqxYER0dHfXP6aeffizVfs/AaSn99U9EVBQfJ+R4yiii+lwLvU2PwPx/1oURCevJyawJT+PG6x4NsT6kUhihOTXn0Yt/d5qI3jENicqmN801CYE0GvvIZe1to3ydNqMX77JnXv6/y5JjgsbPZaZ2sU7ccOEGdbzo2eviY4yypbw4ZjguGHnl2qd7WK73gztybjhyUTcp0dy88vZ4/l4v7+vcOlnB0eGYqMJFixbV/1+wYEH09PTEGWecEffdd1+0t7e/7ZUTbr/99vjGN75R/753794pa7wEV76cnALXW6iUPY3yy+U1Hv3o9A7rREXrNFLOoPh6E40H4cpC9Esuf62lRUQlIqCyIt3p9JcrX8mEmw9cQTl9SiOZM+jy+seTDZUmjW9OoU9UZ44L/s7rzMMNZc6YSa6sN+uSu+7GW/0subJ8p/S8DbrGKChnsNk2pyJJnXOs5uYR+yrntOQcK/aVU+asu8p0ORWMj//pwYHOzs4477zzYuvWrdHd3R2Dg4Oxe/fuSpqdO3fW18S6u7vH7DLU99y6mdDW1hYzZ86sfKYixvOw/beJ0o03KSbyFAmPuPze8cqmYcpFB7l6eF65KM6/u9HIGfhc2z3aZL6uOJ1SzXnxuba77FhXlsdIJtdON0ge+eTa523IyWS8/L0PxhsrbvD8/lzd3Njn6u5lOI15pPGTa6PK9DHsaXJ1ybVjovs8/1za3JgvGB//k+Hav39/vPrqqzFnzpxYuHBhtLa2xurVq+vXt2zZEtu3b4/e3t6IiOjt7Y1NmzbFrl276mlWrVoVM2fOjAsuuOB/qcqUR075+HWnT45mkkykzI81v7dzUh5JebiSmEgxuGKfqC3jlUuFTsPlxidXNilDpXXjl6untzdXBqM4l8ORFHWu7InkdyTF/U5jIudpIkMxnhH2353mHK/d4zkzR3tfwVEgHQOWL1+ennzyybRt27b09NNPp76+vjRr1qy0a9eulFJKN9xwQ5o3b15as2ZNeuGFF1Jvb2/q7e2t33/o0KF00UUXpauuuipt3LgxPfroo+nUU09Nt99++7FUI+3ZsydFRPmUT/mUT/k0+GfPnj3HpP9TOmzhjxpLlixJc+bMSbVaLZ122mlpyZIlaevWrfXrBw4cSDfeeGM66aST0vTp09M111yTduzYUcnjtddeS4sWLUrt7e1p1qxZafny5WloaOiYKl0MV/mUT/mUz3vj898YrqaUGi823bt3b3R0dBzvahQUFBQU/I/Ys2fPMe9baMhTHRvQ1hYUFBQUZPDf6POGNFxvvPHG8a5CQUFBQcHbgH379h3zPQ15OvzJJ58cEYcP7C2UYR561u3111+fso8PTIQin4lR5DMxinwmxtHIJ6UU+/bti7lz5x5z/g1puPTsR0dHRxk0R8BUfu7taFDkMzGKfCZGkc/EOJJ8/tvAoyGpwoKCgoKCqYtiuAoKCgoKGgoNabja2trijjvuiLa2tuNdlXctiowmRpHPxCjymRhFPhPjnZZPQz7HVVBQUFAwddGQEVdBQUFBwdRFMVwFBQUFBQ2FYrgKCgoKChoKxXAVFBQUFDQUGtJw/exnP4szzzwzTjjhhOjp6YnnnnvueFdpUvCHP/whPv3pT8fcuXOjqakpHnzwwcr1lFJ897vfjTlz5kR7e3v09fXFK6+8Uknz5ptvxtKlS2PmzJnR2dkZX/7yl2P//v2T2Ip3DitWrIiPfOQj8b73vS9mz54dn/vc52LLli2VNAcPHoxly5bFKaecEjNmzIhrr712zMtNt2/fHosXL47p06fH7Nmz49Zbb628+bhRcffdd8eCBQvqD4X29vbGI488Ur8+lWWTw1133RVNTU1xyy231H+byjK68847Ky8sbWpqivnz59evT6psjvk8+eOMlStXplqtln75y1+ml156KX3lK19JnZ2daefOnce7au84Hn744fTtb387/eY3v0kRkR544IHK9bvuuit1dHSkBx98MP3lL39Jn/nMZ9JZZ52VDhw4UE/zyU9+Ml1yySXpmWeeSX/84x/TOeeck6677rpJbsk7g6uvvjrdc889afPmzWnjxo3pU5/6VJo3b17av39/Pc0NN9yQTj/99LR69er0wgsvpMsvvzx99KMfrV/XO+P6+vrShg0b0sMPP5xmzZp1zO+Mezfid7/7XXrooYfS3//+97Rly5b0rW99K7W2tqbNmzenlKa2bBzPPfdcOvPMM9OCBQvSzTffXP99KsvojjvuSBdeeGHasWNH/fOvf/2rfn0yZdNwhuuyyy5Ly5Ytq38fHh5Oc+fOTStWrDiOtZp8uOEaGRlJ3d3d6Yc//GH9t927d6e2trb0f//3fymllF5++eUUEen555+vp3nkkUdSU1NT+uc//zlpdZ8s7Nq1K0VEWrt2bUrpsDxaW1vT/fffX0/z17/+NUVEWrduXUrpsHPQ3Nyc+vv762nuvvvuNHPmzDQwMDC5DZgEnHTSSennP/95kQ2wb9++dO6556ZVq1alj3/843XDNdVldMcdd6RLLrkke22yZdNQVOHg4GCsX78++vr66r81NzdHX19frFu37jjW7Phj27Zt0d/fX5FNR0dH9PT01GWzbt266OzsjEsvvbSepq+vL5qbm+PZZ5+d9Dq/09izZ09EjB7KvH79+hgaGqrIaP78+TFv3ryKjC6++OLo6uqqp7n66qtj79698dJLL01i7d9ZDA8Px8qVK+M///lP9Pb2FtkAy5Yti8WLF1dkEVHGT0TEK6+8EnPnzo2zzz47li5dGtu3b4+IyZdNQx2y++9//zuGh4crDY+I6Orqir/97W/HqVbvDvT390dEZGWja/39/TF79uzK9ZaWljj55JPrad4rGBkZiVtuuSU+9rGPxUUXXRQRh9tfq9Wis7OzktZllJOhrjU6Nm3aFL29vXHw4MGYMWNGPPDAA3HBBRfExo0bp7xsIiJWrlwZf/7zn+P5558fc22qj5+enp6499574/zzz48dO3bE9773vbjiiiti8+bNky6bhjJcBQVHi2XLlsXmzZvjqaeeOt5VeVfh/PPPj40bN8aePXvi17/+dVx//fWxdu3a412tdwVef/31uPnmm2PVqlVxwgknHO/qvOuwaNGi+v8LFiyInp6eOOOMM+K+++6L9vb2Sa1LQ1GFs2bNimnTpo3ZqbJz587o7u4+TrV6d0Dtn0g23d3dsWvXrsr1Q4cOxZtvvvmekt9NN90Uv//97+OJJ56I97///fXfu7u7Y3BwMHbv3l1J7zLKyVDXGh21Wi3OOeecWLhwYaxYsSIuueSS+PGPf1xkE4fprl27dsWHP/zhaGlpiZaWlli7dm385Cc/iZaWlujq6pryMiI6OzvjvPPOi61bt076+Gkow1Wr1WLhwoWxevXq+m8jIyOxevXq6O3tPY41O/4466yzoru7uyKbvXv3xrPPPluXTW9vb+zevTvWr19fT7NmzZoYGRmJnp6eSa/z242UUtx0003xwAMPxJo1a+Kss86qXF+4cGG0trZWZLRly5bYvn17RUabNm2qGPhVq1bFzJkz44ILLpichkwiRkZGYmBgoMgmIq688srYtGlTbNy4sf659NJLY+nSpfX/p7qMiP3798err74ac+bMmfzxc8xbS44zVq5cmdra2tK9996bXn755fTVr341dXZ2VnaqvFexb9++tGHDhrRhw4YUEelHP/pR2rBhQ/rHP/6RUjq8Hb6zszP99re/TS+++GL67Gc/m90O/6EPfSg9++yz6amnnkrnnnvue2Y7/Ne+9rXU0dGRnnzyycqW3bfeeque5oYbbkjz5s1La9asSS+88ELq7e1Nvb299evasnvVVVeljRs3pkcffTSdeuqp74ntzLfddltau3Zt2rZtW3rxxRfTbbfdlpqamtJjjz2WUprashkP3FWY0tSW0fLly9OTTz6Ztm3blp5++unU19eXZs2alXbt2pVSmlzZNJzhSimln/70p2nevHmpVqulyy67LD3zzDPHu0qTgieeeCJFxJjP9ddfn1I6vCX+O9/5Turq6kptbW3pyiuvTFu2bKnk8cYbb6TrrrsuzZgxI82cOTN98YtfTPv27TsOrXn7kZNNRKR77rmnnubAgQPpxhtvTCeddFKaPn16uuaaa9KOHTsq+bz22mtp0aJFqb29Pc2aNSstX748DQ0NTXJr3n586UtfSmeccUaq1Wrp1FNPTVdeeWXdaKU0tWUzHtxwTWUZLVmyJM2ZMyfVarV02mmnpSVLlqStW7fWr0+mbMprTQoKCgoKGgoNtcZVUFBQUFBQDFdBQUFBQUOhGK6CgoKCgoZCMVwFBQUFBQ2FYrgKCgoKChoKxXAVFBQUFDQUiuEqKCgoKGgoFMNVUFBQUNBQKIaroKCgoKChUAxXQUFBQUFDoRiugoKCgoKGQjFcBQUFBQUNhf8HMD4T9DwD2KUAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d4yl53kdfm6Z2/v02dm+y11yWUWRIkVKpGlKtKTEkSXHBfklthPYiCEZcAQksRInjpPAAlIdJ44DpLgkcWwYgR3LMmQVW5WkRFJiE3dJbp+dXm6vc8vvj8l553zPfENKtiJxpO9ZLGbm3q+89SnnKW9oNBqNEFBAAQUUUEAHhMLf7gYEFFBAAQUU0DdCgeAKKKCAAgroQFEguAIKKKCAAjpQFAiugAIKKKCADhQFgiuggAIKKKADRYHgCiiggAIK6EBRILgCCiiggAI6UBQIroACCiiggA4UBYIroIACCiigA0WB4AoooIACCuhA0bdNcP3qr/4qjh07hkQigbe85S348pe//O1qSkABBRRQQAeIvi2C63d/93fxoQ99CL/wC7+Ar3zlK7jjjjvw2GOPYW1t7dvRnIACCiiggA4Qhb4dRXbf8pa34J577sF/+A//AQAwHA5x+PBh/MzP/Ax+7ud+7lvdnIACCiiggA4QRb/VL+z1enjmmWfw4Q9/2H0WDofx6KOP4oknnvC9p9vtotvtur+HwyG2trYwPj6OUCj0/7zNAQUUUEABfXNpNBqhXq9jbm4O4fA3Bv59ywXXxsYGBoMBpqenPZ9PT0/jwoULvvd85CMfwS/+4i9+K5oXUEABBRTQt5AWFhYwPz//Dd1zIKIKP/zhD6Narbr/169f/3Y3KaCAAgoooG8CZbPZb/ieb7nFNTExgUgkgtXVVc/nq6urmJmZ8b0nHo8jHo9/K5oXUEABBRTQt5D+PO6eb7nFFYvFcPfdd+PTn/60+2w4HOLTn/407r///m91cwIKKKCAAjpg9C23uADgQx/6EH7sx34Mb37zm3Hvvffil3/5l9FsNvETP/ET347mBPQGoVAoBA1y9dPEbBBsKBRCKBTCcDj03DMajdx3o9HIOX95/2g0cp/be/VdoVAI4XDYXW/b5heUq9/xGQDcu/brg22zttXvnfYeO0Z2PO1zOG76HP2e42Lf5TdG9v38fL/xsZ9zjG1b/ei1xj6g7w76tgiuH/7hH8b6+jr+8T/+x1hZWcGdd96Jj3/843sCNgL6i9F+gkAZPRn6cDj0MGg/ocFrB4OB53kA9rzHMjTLZOzfkUhkX8Zl22IFlfbLrw/hcNj3GbwmEom4/lOw6PWvxay1ncro/e6jkFCBYcfotRi9Mnf+1Gis/e5VQaRjo+Nlx5HP1rFQYc+/I5GI59l8phXQdk3oGGg79X1+68w+y86JjovfeFpFRu/VPWC/8/v9tSgQrv9v6duSx/UXpVqthnw+/+1uxrecLJN7LQbOn/1+f4/Gr5t2MBg4ZmNJmaSfkNLnkVGFw+E9jEsZjR8j0faHw2EMBgPP9aPRCNFoFKPRyMN82QYriHmfnxWm71IGyueSEWtb/Ri2vUbfQeZn28afOk4cfz9Li/dawRKJRLC9ve35m8J3e3sb0WjUM/6RSAShUAjb29t75tiODds1Go0wGAzceLD9w+EQ0WjUtZvEOdc+WEXCrlU7H0qcC+2HFZQ6tnZ96XVsm37Gz7Ut2n6/sdHfVdHieGg7+Wz9XBUkXSe6xgH4ztN3MlWrVeRyuW/onm+LxRXQn4/sRvKzYqyQsBokAA9jslYYmYNl3MokLGO0G93PmhgMBnsEp75bBagyI9tuauFWOO6nDVvriAxHf9c26ff8WxUAjl2/3/dYbCpUlSkqQ1SmboUfGZcfM7bXUVBxLJThqnXJd3BsrWJhBYa1zHSt6HP9LEtdExR4qoDos+w6VCHFdut/VRj2s6D8LFfepwLKWtR83nA4RCwWw3A4xGAw2DNnts16P+fhtRQaJbu+ua7tuAa0PwWC64CR3Ryq+XHz+/lReK8KDWU4FCwAPEya//ezjPhcK+yAXagnEom451DrVUavjLjf77vvddOrRecH6VBb5XUUAuwX3xMOh9Hv9z1jZS1Q+86xsTH3Xt5LgaVatQo2+2w79nw+LUkVhjpO29vbHsvNCmy2jfOm96jQ4TNpeVAY8/2cOx0vXsO2WiGn99FKGAwGiMfjnmuj0ajrG+AVJHynCm+10CKRiGc9Wis6Go1ie3vbrSFanPruwWDg1gPvZX/GxsY8QkOtRV5jBacqEZwT/mf/OP/8Wy1OXQdW+Qno66NAcB0g8tModfH3+32PoLEMic9QRs3NqUyYDF6JDEzfr+1Spq3P1d8VMrOwWDQadW3YL2BAhYPVclWg22tU0wZ2GSf7NDY25oQ3GZxq/JbpWs3YPletWWXgqmCQWavlZudYYUtrNfL5FiKl4KFSQqbP51IQ8J0qqK2Vo9/7WRF8t7bHCm7OKZ+vc2MFEZm3tQ7telYLne9XRUEFjFq91jfHe7g2+v2+Z93aufYL8LGWsB0jXeP6PBVeOgcBfX10IBKQA9qhsbExRKNRz4ZWbZVMwVpH/J0CaTAYeBi/apZWCFnhYxmYMhJti/5XpqFCTBlBv9/3hZbC4bDToNl+teD4frX4LCRk263v1XFRhmShSz/mQ01dhYBakjqmFs5Si0j9dmpd6TN0HKywpiWoc8Q+kTH3+313jVq6fKfOqVoPbKsVrNo3K6CoBKiSZBm29oECWturQkjnlvMfjUYdWmDXup/CZi07YCc1R4WljjnfaVECq/hZxcQKTb97dcz99ldAr0+BxXVAyGpwXPQ2aIFWhDL1WCzm2bgKeylTUl8IN5Leo9/pxiZ8Zi0cZTaquVori5YO+0WrT/sF7EJrZIyRSMT1TRmhCuLRaOQCGWKxGAaDAba3tz0Ms9PpuHazLWSOwE59TT6T42uF0mi0Aykq3Ge1eGXaatmqcGU/2ZaxsTHP3HFsFaKiALUWn1rg/N1CYjr/Fu7S9uh8clzImHVu1QrUdpAs1KcKha4NVRj0mtFohF6v5xHkyux1barlx/fGYjGMjY2h0+nsseb4XlVk+LxIJIJOp+MRNvydcC3njPshHA575k8/V9jXKgmBBfb6FAiuA0Kh0G5UGBkumZFqiQpb8D7+p1WjQscyfbW4IpEIut2uh2HqM9XXYyEnfR6wNydIrRAyVj/LTPtkGbhaRn5wEAD3bDIV66the5QocKyFpM+0AlKhQTJEa3moEFZ4TQU8+x6Px/dYrn7MnIJSrScNktCgCT+hAOwqLCQ7DyokdQ3YtvD9foqK9lP7ys/GxsY8a1Xnza4b2zZ7TTgc9vi9tD/63l6v51nrKvx1bnTf2XG0igPbzP6rj1CtLW277qXA4vr6KBBcB4R04TP6SYUPmaTVUOmoV+bDjWhxdlo91tqxTJv3+TnNyQAI5Wxvb3ues5+FR82V7xkbG3MnAtDprmOhlpdtl1pofC7fp/3mtXofr6VFaufA729VJDjOyhT5zuFw6PGncez5HeeKvinrJ2Qb1UJhe3WudTxVcGp4OZkr55wKDdvH91OgWItN1x/nx0Kwur60n9ayVKudVgoFhkJ5fJ76p/xC3DneXJ8a0q/wId+j82lRC7uWVJGhwIrFYgB2TrFQa2y/+3XNc+8BcOhBQK9PgeA6IGQtJG5qfsefdqOQrENfmYC1qMi4rN9In60bU6E9qzVaocVn6AbnTwpLYFcIEA6y1oafD0WtDj6DDNzey77rWFl/oR1TZTxqPVirQ61aPsdapep7sVCZWpJ2DSjT1/GyjNLOg1qr2j9+R2GpVrSOma5BtUzUmlOITeeISpGFpvkeFXjWGlS4Tq1svk+Fn47NfsE7anVrJK3Oqa5dnUedE90zqtRREaDCpnPCdaCWl0L9XPMBvT4FguuAkcJPgNfnRQbNxW9Dm3m9asq6WRV61A1nYaBer+cJ9ODGtv4LTb7Ua1RjtkKOP5Vp8H6L/9vkWNXslSmxD8DeZFF9tgo1wAsJquAl0+R7+TcFpRUOyoxsAIoKB/rIlOlaLd/2x1oZfj4SbTOtJ17PcfK7l31X6NH2R+eX19ogElUKdD3ymf1+H7FYzF1nFSNey+f7rX8VXKq8+OVHqX+J16vvSduuz7aC3Cp0up7s3Og69tsvui8D4fX6FAiuA0aEQHQzkWlbZswAAwYjEBpRTVA3DCFI9c8A8FgyKmxUABIas1qqasXaNisMFZZT7dcyHhUy2n4+3/pFqP0C2BPqTgZLPx77yvvI1JURq6at7yEz9YOu2F5+x6ALjjHfsV/iK+9VKJLf0RemwRh8B/torQ6ORTgcdnBsr9fD2NiYg/0sDMd26HpgsIutzqJBIcPhjr+OfbOKztjYGMbGxtButz2KgvqTEomEC6phuxUaZzsUQrZKB61ghWh5rSYes7+E/7a3t917UqmUg3StQFVlTeedY8f2bG9ve+7v9XpuH9hAl4D2pyAc/gCRwhJqbVBb3N7e9jA3a9koHGeTLlWztv4DfX+/3/f4Vfa7VjVn1fYBL0SkTFWhPyu0yIRV27UCTYWYwjd+gk19ZKrpq9ZrhauF3+yc6O/aJv6uyoJaCLb9SgqNcU7VQlAhbuFaZag6r+yvCjrL6K2FwHazn34Wgx0D9f1plKa1xFRYK3ToJ9DpO9X5sGvBKlc6HopQ2LWqChefqeOpltR+lpPOp91zOldUEnTO/azDgPwpsLgOCOlGJClDo1apTA3YZdR2g+lzNCFVv1OtUgUQGbv6o2hBqKVkGYq2X9tLpqEJyJaxq1Dh3xY6s33XgAFrodGyUCZmf1q/msKJqhQwfF79GsrklGGqBaDauBXa1oK2lUHUitM+qMDS91hGroEL/FutBR1PYDcgQt/FdaNWKNulQtFCbBbW4zxwTbO9+0GbKvzV8vKDxfnTWj8qfGj1qnLB7xQiZi4cLTfr79PnqMKl65JtsetM+xbQ61MguA4I+S1yYJdR9ft9d9jmcDh00B3vtUIlFNr1qVj/Dj/3K/czGu3k0bAtZNzKeJTJs63MvaGPjNozmRbbrlCStk3/1nepJadWhY6bCmOOl46PRlEq8yFpnygMNWfLBj3wp0Zd8j3K4K1vycJOFOb9ft8Dk5GJ8lmcN86DlqiiUsD1QWiQPiX+rZGXVviokmC/t8nBai1x/Dm+yux1jSizttaeKlXaH8voVUhSiaB1Zufa+j8VxtP5sKgA17pab3ym/dtWROHzCddrm1S5DATX10eB4DogZK0J1SJ1Y1noyDIJq536wUN+4cAk3YhWo7VMzm5GFWZkDioQyNzYbhs8Yi0s9RmxDRrOToY+GAz25Flpv1RgqIBXstYIk1HJpJQZqnavz1c4jm1mCoAVEtpeMn72i/fZaiPW4tje3nYKgVpkOpd8v1pD6rPSMdT7tT8qrC28pn3aT6Gw1oxaQiSuB2v1AfCsAx0jHXd+HovFPAnlun75LCpnajVxTgjXalv8LNXRaOTgaO4nClJrIfNnILi+fgqONTkgpOVtuHmAXaaszv5QKIREIuH8XZxiPsNqjMDeoqnKWNRC0E0K7FpjWp2DpJCPChdrVej71YJReAzYW/eNn+m9ti/q8Nbv7XiRySlZS8IPBuR1Fn7z07h5nWXKHGNq88okVRAoU4zH4xgOh64qiNX6uUZsjUkdG72PcC/v0QogCpepgOIzVTnSNaVpCBrIYedKmTfJKgGcK7WONZSc/aUVT4tGBag+21rm9KXxGQyaoHISCoWccqX7z6IZqpxpLp5eo+2yY0El7ruJgmNNvoNJhcV+GfxqASl8xQ2qVgiZlm5GtdT0OQpP8V6SatUkbYsVhNaaUEtFNWW7yRWq0r5rFXhrAZI5WStBn0mBoz4PHQP9nMxIfRUWCtTxtlF5OldspwomtTZ5bSSyW72E0W+W+fN3ji19btpGzoXtpx9jtwqNtdR1jPUa9pmKlM6BwrCq4FhBq8JZgzt4jb7PKg5+/bOCTpPvOd66TtlOhbEVGdBxZPu179oHtaD0dyplCpv7Cf6A9qcgqvCAkC5oWlkqiJR5AdgTeEDS+m7K0FQQ7MfwyBS46QDsETp+2jMAD4TnJ4Ctn4h9ei14ic/jM7XyB//zc2XMypyoTavgtlqxjq9fu/zC2Cmg2A4dKzu+JGt1WguQz9BxUwhY50AtCv5kkWYdS2XqvE+VAGsZaN91HuxYWytW14+Oj46xtkvXFd9FoWiVFF5HS8vvWBeF7PhTFQuNNtW+8jO1hnmP9s+uWzt+r/Wf97BvAb0+BRbXASG1VNTKiMVinkAKy4D5tzJ4dfqrj4Ph9LxfI6gsgwmFdksp8d1WMwV2hZOG6as/gM/S3xUCslYi+05fhTI/LXk0HA6df8f67Eaj3cK7FGAKG46NjXmc59pWCjpN9iaTVHiQjDwU2nHE22LIHCPNLdO5UkZGBsvnWA3dWi3aDv7UMVDLmZYc26n9VBiMxDXHZ+p1vFfni+/QtcE+0E+oFifvUyhQLTdbyFivV8VK+08LR/vG+2hB655SX5aud4VdmecFwLNO9WRqKlGa16ZrxVbK0OCdgF6bAsF1gEi1WNU4uditH0KZoX6mQQ/KKFWAkIloEVe15tT/orAO22Qd5AA8tQgVdiOj369v+mwyFBUqCp9xnAiDAvAIbNXWVQO3MB3fz+fpGNuoNB1DP8jNwmP6nZKtjah9Zj+UkasfxVo51uJQRUTrE7ItOtYqLLXNCiGzXRYC00hLKjZ+FtZ+QkTH9LXgMysM/SwYtdZ07FSY6hrVftm51Xnk56occn7YHhVWurYVcbDrSoV3QK9NgeA6IDQajTyJv2ox6MamBdHv9z3Jm8ButQSGCuuGVgbHzacMV4Wiao4KLVnNOBLZOQrCVm/QDa4WFeAtXmrhPYYSd7tdpyVrVJ2SMmXLFNgXMnGtHs93WT+Uto3Xqvas16qFFInsFq7V+3U89Fnqp6JAtoyTAlktZiuELFPl/bZvViiyL1xfapWoZaQCSJk7hb+OC+dD4UxVdvgMLQociUSchWlRA2BXOeE64jrQSFodD/6u46jjoO/VMVZFRcPj7ZplQIcN1VeLTtNI9BmB0PrGKRBcB4S4uVVYcZPZoADCLOqgB7zHV2g+Djc0N7wf9m/L+AC7cBLgr42qH0c1WjIoZSjKRPRzFZTK+NTCtNo0mZyF05RBKLPSZFm1PrQf/GnDwjVHSSFChfv0fj/Gr3Om46HPUGWC1wB7c4DsvaqcECK2JYusALP9s1aMKgrqXySzt1a8KhXW+uBz/cbJ5r1pm3Qtc2z4LBVeqmRYGNbPCuN7NQBG17Yqgmr169zqc1VAK2yuY6r9COjro0BwHRBShqdhwRZGYTQXsGt1qIChNm8tFf3JjamWALC7QZm0qkJLmZAKFP1MmYnCVdS2lYFp+9lPWiF8jjIRtQj0p7bFMotQaPesJR1HFXqAVzjwe71H4SrVpC3T1nB5+wwrONlPZdJW2bDCw/bNtmG/dqmFpnAj1w7JCjcNtlDB7hfpqW21wp/PtmvQKho61tp2nR8/QW7bzjmyY6hwOO/XyEY/K1KFoX7OtikKwblUJcWSKkcB7U+B4DogpAxFmR61Q8uICBXyb2AvJKFaK7+zlg3gPfZDKzYQBlTGqdqp+pgI+fAZ7FMoFHIBJmwr263t06AEQobql9LTirUd9MdZBsU20gLRZytDej3N3U8YKdES0XvUCtRoSwabWI1fhYe+gzAnlRX2nf2y1qKGeFuLj31T3xSFjM0H41yq/1P9apxHFRy6fjUUXO/TZGy1wKyFoxCbtoNjp/PHeyh4NLhGFRdrxanyplaYCiD2W61/v7HX5HIdPzuXoVDIM4cB7U+B4DqAZCEFtWC4kVRQqF8B2Js4a+vgWQtCmb3VoPV6a/3xexVqgBem5H/VNNVnpgJD26dwmzIgvofaswpJtfq0vyrI1PKwcCO/570WUgV2fTxWMLANfhaWhWyt1aYCTMeG42LPLLOQqQofnXtVJLSclI6rzg/boUENnC8dO4X67NrjelIhwmfTR2THzO8n17m1Ni2EyGtjsZhHWFir2ipz+gw9Y8siHiSdLxWm1qrTfRMOhz2BTtYSDmh/CgTXASGF8NT5S4am3wN7y9/o78qE7LN1A1nGy3erJQLsVh3w23RkUPa5CnepoCXz0c9sO7QffszL+oEsLMc+69gpU1ahQCvAMmD6ixQus8EGfoLLCgL9Wz/TObLCTqFDhmXbwAUdK96j463PtlCwQrA2EtI+w8JyOq98pp/yowJOA1GU4Vv4TklhY0tWCbDvVQjcbzx0vCmELKKha02VKr3Gbz/4KT46P359DWgvBYLrgJCfxs3PFSpRaEM3tm4IZczK+FUL5QnLqpmrBUZNn3/bja0WCzcpf7faO60CZXyA1zK0BX81wkuFGN/P97DaBNuqVTIUclQYh2PNfitsxfZw3KxgV4uQ97McloVIlXkrk1QLhkqB9ovPIKypSoFaf2p5jUa7lTdU0IxG3rqHnHs/4WnbzfYR4rICHPDCeioUuL447zqvvEdr+2m/dMy5DnVOYrGYO0dL54WQHfvLzzX3Si0szj3HmUqMrjUruO1aUCtQlSCFZfluTekI6LUpEO8HhNTKYcSgZvOTWaqmR8ZiKzeQ2VmhZjVnrTihCbUqwGwUlR+zU4uFz1MGqs+3Gi8ZjgpGtRC1HVbgqX+H1yqTHI124Cm9V/14Vmj5jY2f1sz+kPZjaOwHE7/5HedW0wgAeKA+Ql/WGrT+MB1Pm+vG/+yjCk1rqat1wnt0ndn+6Xq1+V/2Pio2mu6hz9I5UQGjihAtYF6rc61zpsqUFRR8Bkn3ld1/tg+6D63Q99uf1rqycxXQa1NgcR0g4gbXzQd4I6v8LAULManFEY1G0e12PQxGAzDUKW8Fgp8vR+GmSCTitF8/S0A3vQ351g3Pe/VvhUutcOWYWEtEr1eGxjYpg2b7ydDValP4SJ+n77fVKdg+a3Eq7ETBEwrtFnQlM9XK6YPBAO12282Zrdag48h+MI/IQrAaIcrTlO2J0eyHbYtagCRdbzY8XiE7La2kvjbtg58iYC22WCzm+sC2aoAOq3zoGtLzv1Qp8vOHqqVt54xCjGOsFivXvc6Frg3tM79jsE0gvF6fAsF1gEgZvD24EfDmk1h/kfX7EH4j47GRYxaW0t/9tEg/a4nCgu1RssJD26jCBtgV2GTofLdq4Wotat+V8epPvYbvoKBQ/6EKMx0bbYO1EPkchWL9og6VGav16jff9t0W3lUrTn1l1g+npIzYWrwcGwshq0/QDy5Vy9uGdetasLAiI0vV8vUTWlZw2PH0s6B0Pdl1YK9nu+w46n7Qn+w/A1xUSdK2A7vClu+1cxKEwX/9FAiuA0KqbZOp+Glm1mnOvy0DVgGnG5M+gP1gDYV3lAlYK0QjsWx+jEYAWuaqkKJCPXq97QMAj4OfDEwFomVY7IsVuPrc/QSSCjUVsDoHmqdjYSsKBP2Ov1v/odYdVOVBBT/vUz+iPsv6EPVd2gaNjFOIzAoyHTsKKD/fmSorusZUyNp59fOP2bartRcK7aZTcK3pO1QpUEXOWnCcY78kYV0XnF8btKN95P0q+Pid5g1qnUoV0nY9BbSXAsF1AMhaILS4wuGw89Eoo7VaO/8TigB2fQeqlfJzPepELTJ+pptWgya4EW0RVMKWqs3SsonH4wiHw+h0Op5ABv5u+2ctLD25lxqw9p+WJK0FQjnMf1LYcTgcunJSFA72pGNlNDoH9FVxDHUMVNu3DFXbqgKWliXH3TJUK1h1PAjNquBhmS9CiwA886hWgrWgOF/sh4UmVQGwignXoAYL8Z3qw+t0Oh5BwZJhLPukCo3OmV3j+gwNxLFj5TcXXBtqWYZCu4EnFhFQ5YH9U+iPe4FC0i9C0voK/ZTRgPZSILgOCKl/yWrNujF1A1tflDI4FR72PpIfFKWCgG2wVhsAj8ap1gBJ+2BL4JC52tJEZC5Wkwe8eTR6nWrqftYVhbfVcum7UGGlTE/hRD+IRy1SZdT7+eDUotH28lr7nUKcylRtVRO1brTdAPaML8dMc4vYDr+Te+3647OUwWv7+bu2xX6m79D+aoKwWs/aJ/u7rllVamgx6f3aVo4vBZjfgaZq1ek8qECzv6t1ZhEMtlOh6oD2p0BwHRDSDUgNWhkcGY5aSNws1Fh5bAW1VbUqwuEw2u22ex6APYyVQkYj7bjZ1BHtp+Uqc1emxTbZoBLtt7X8+PloNPKtNKCwk19ItJ7MC8DTH9XsCT8pJKZBMJwHZdSW4VDjtv4uex2taDvnANxpxypkCefqezV0nv3RtbC9ve3mWgN1SFbgK3PlOFtrTNvPn2oRqYXEdimcTeGgglmtds6PMnVVXHTOeA0/o0XJz/luq3yxXRwTvm80GqHb7e7JA9O+2/5xHPeDNdkeDZ5iH61iEdD+FITDHyAiU7EbRUOAAez5qZqmMhheo9/5adoUfPbZdjPzfgupKNSk9/IaG2Gm2ry+wwoXP0e3BhmocFJr0LZLoR0+h/AQv2f7lRG9ljVnoS3+Tu2dz1U/h5/Voc+y48G+WL+RtR7UClJBpRaMWmEWwrTP1rBxa2GpssP3WUteLTy7BgeDgWuDClENXLHog6IJKuB1Lei7bZ9sO9XPZgWQku4lu9f4/Nfad/ou9lWtzID2p8DiOgDkp+UBXt/BYLB7FIYVMhrhpLCNda7bGoGWKVnIjBtUYTM/bZECxcIlfKdqtH6aKpmY1XytVadaPDVaHTsrGCwkx35yDOxp0SqAtU6f38GF9NXRytO28j47r9S42V8+Uw/I5HXW16XzZX1Q6mexwSt2DO0c8X2cZ7/1oD/tePFZDEvn2NLnZgMnVPj5rSNVGBQ+VKvGKi52/O1c2znQ8aDlrUoP38/1q5CnrglVsJiO4Lc/7DMDi+v1KRBcB4CUCQB7K4lzo2q9PF7vt5mJ71uLRPNbyPxsoV5CWsq89b8GASiT5P2qzVorwB40qVq/Fbq60dlfHRcKAX6mUKQyNPV/qNDzEzz6bIUheY/V8BVO5XjpMfCDwcAV1lWYUK1WG1mnY6V9Y9BEOBz2BLioMNDz2bhu2DctYqwM3Vo3FKocLw0h17XE5/I+tk2FvK4xrilauqHQbo6Z1t3U8bbCUosIs41+fjG/9WGVCf2ce0BTMXQ+OA5+ha057ypg96ts4idcA/KnQHAdEFLmoBsW2AvlkJmrX4EbiExSoQyS+tBsvo6fxaJwj8XmVaAq/Md2qEWl/VNBZIWdjZ5U5qJQnbUOrSWokJPNX+K91jdmIS913vN5Fq611/o5+1VYECLjM61VpsxQ26J907QJZdpUWHj/cDj0WCL6LGsVE3azUKVahhrgwN81apBCRNeKrkPbBrZT28v55LyrQqEWp03+tj9VSOk4815dV2wzx07HQi12Ci/tnyouDNXXcdP+sn1WYQvInwIf1wEhKxQUUlHNlt9bP5C11vz8P9TW+TzVbHUza2UFK+ispUfrywovtVwUilKYUwWXwnkk3egqdF5vDFVbt1ajhWrUEqNAsIna1Kit/0i1cbaXfdUyT9YaVn+gDSDg5xxjzfNieyi0rK+GfdPKGfpc3qv9V2ue8KlGI+pc23boNTouVpHg862Vpn3VABptm/bDpiCogNL5tYJDFTzdH7p+OYa6dthWXZ/W8tTxt0JWx8ZCwQG9NgUW1wEgu+gpMCwMZyEm9QuRkXFza4CHQif8TqP11MrxgzZGox0fhgaJWGZCKMhq2KpJsy3KYGiJ8Ds/QZxIJJwfwm5+ZR7KGEcjb4kjwljab+tU13ZbS02FrLW2dLw0XD0UCjlYj22w0XRsr/VhktnzWYQCOUZanorP4zs4T8rgNVdJGbtCjZaBq0Wo86LJ05HITg1CQqJqmWkbdBzsWlPLMZFIOKGvyhL7rYEZXBMKbfPdzNdT5YvKhvZLx1/9hHb9W2XRKkC6N/k9y1UpAqD9CWh/CgTXASBuNnVmq+9AYTEAHoeywlTWH2RzgyzjtwIL2GW4mmhJRqiwnzI7P63Sz/9GIhNRa0N9Sn5CyU/A6Hf8W09/1merIFAmo+21lqV+z3eoxeh3jfqH9DoyWvssKwgtQ1PtnmOtibd+VrmG8NtAHb6fglnbxGdTIdJ1o/O+37qx+W5+46VKGJ+tz1SLylp51l+nsJuuCW2nvlND5tWn5+db1jlSwcWx0TmxypiG2tsxsXshIH8KBNcBID8mS9KK1+rXUBhFtX9uOtU2AW8ei0IV6pjWja1aNbDXKuNPZRz8qVALNXKNbOS18XgcAJw1QItImaYKM81xIoNTZqsCkX6H0chb8FWtHR0jvV+tRMtM9XoLi6nwpABRIWPhokgk4iwR1cqtpcjrNSJRx0IFmM6P33zxHVxLWqTW+sz8lBkVksr01QLk/NHasIoUx8wP5tP1pmOm40xfIf/WI1e4h7g/bO1LFS7aX11vqlDpGOve0nFknxm8oZafX38Den0KBNcBIvWtAF6NVR3BSqoRqgaq1pbVmK2DX7/j9cqs99Om+dMKBoWLlBlZjV+tRWsd8tn8r9Fq7B/7ZUPxrf9HrQ6OoQoFC2eqT8f2V605Cxfxex1zhf+0jVrZQftqfXocL32fjqe1onWs7Hf6XF1L1n+nc+sHbXEMFFpkH9VnZIU/SZUEfY++m8/VNW0F/36/8zkU8jqf9l1+VqWOi1ph6g+07dVx9dtz/J2CTcc7oL0UBGccECIjsFCEH1kNkRtBGZp1OvN5FmpRR7+FaCyjs4xWmbFq8foutpHX61EYer3tl36mVpAyKLUwFXJSAa0RZTrWamXwJ+fA5p35WRk6NgxdV4E2GAz2VMpgX+mj4vjzWeyD9dWpNeYH/bINfmNoI//4DPVx+UG01sJQyzocDnvOC9NAFT5PkQG+21pYfKfOjTJ5Xdu83g/utM/Q9akKmA3O0PGycKF+ZxUxnRO7RxVy1v2nFnpAr0+BxXUAyMJi+rkyMA2ztpDeaLQTjBAKeU+r5WblZlJnNYWYMhNlVsq4yXiA3RwwtXTUac428qcKNwAOUiGUA3gLwqrwpCC3Qorjo32hz4bMX/0ZZEgamWZD4vVYCs6HWoI6Hoy+43UcX71O87oAuPJCbJfCTITWrCDXdaDv51gzr04tG42kpBKjY6eJ6BwH+gbD4bALttA5UGXGziPhNLZdc7W4bvU+XWdcV3Ytq6Wja4nv0VOnqaQNBgMHD1OQ89wshcL12RQkbAOFsFpEyWTS7SvAm36i0DGfqQJPfY2j0WjfJOWAvBQIrgNAirmr05zMiUxJmYmfds/Nwdp3fIb6YlTrV8avWq0KD8AL7fhp0Vb7VWagzNcKS7UgKDiU+E6F0Pi5WnR8l32/FcjaJtWi2T59r37GtjKU3c83Yn9yfFSTV+vRKgb2/epPsjlWfgJZ/UeMAKWFq/OoAm4w2Kneb61kKjgUAuy79sWelUbhoX4tXRtk9FwzepKBtfLZHwpYFQoaNavrSudX4Vrtm7X0dC37wZ+8zx7TYxORFSa1Sp6ueYswBLQ/BYLrABA3CZ3y+4W0K6PTREoyRF6n8IpGiakA04RJ1QCVUZK4Ka1jWwWXQpUUIrQGQqGQxzJgAIZahPo8fb8yKRsCzv98tx9cZJmmPULDzoGOhQauAN6akTZCzTIkBj0wQIPMS0OtqcUrtKTlm/i5zi3bagWOziNDwe086vW0xDQMn+/l/OiRL3yvwqLsXygUcseWqEJh4UVl7Naq4lpVi10tcLXM1G+lljQ/03qRPJJG9wjnh2Oili/voxLJNct1q3Af76HlyzXN+yKRiBsXq+QEVtdrUyC4DgipxqkLXWEZ9W8o/EfN0lpa9tn632L93IQUONxYjPzTenrKyCzEqAyFG5kCw8IqfL99hhVMOh4Kg2kVeLVYgN2gERUCvM72wT7DWmQ6F9p+DX6xzIj363vUwrB5VvzPOVAlw1pM/F2tZB1rFegqVK21ofOva0qFhT5L/VS6tnQt6Pir5asWojL+cDjsct90fVtlTNsIeKtq8DkU/LQQ9XprPftZ5wpd+1nBaj35IQC9Xm/f0l68LhBaXx8FwRkHhFhZYD9GYi0N/R7wBiuor0ktJQ2+sAydDBPYm1ujzNVuPAoahYwIQ6ng5X1kRtT0tQivXqMCVX1CbLMyXn0O36VMTfuhzFGZlvZPfVXaTx0TnSN9nloB9BexXeFwGPF43PnzrA9NtX593tjYmLNW2BaFIRWa43u4pvy0fWW4Oo467laRUAgPgAc6BLywsI6N+vhsBKtNdeD6URhP504DWdhGFa4WcmTYPD/nXFBAqYWma1jfZ/9zH2pbtB9+bdI9qusloP0psLgOAI1GI08+jQoZCiHmOCmT8ouEi0ajDp4g09A8J92YfrCMMi4AHguH36mQ00MJKTxU6Oi9hJVUeKqQI3NRy8paaCpk2Ua2m32zfjPtFxkOx1sZC/uhNf4sJKjC1fo6/CwZbY8e56Hh8Np+FTaao6Vtp49Jx4BrQwNw9Hn83OZSafFbrgP1qZGsn0mjFUkq8NU6UwSA/eJa0BOp2Q6Oj1p/fpatFTZcR/aYHoVode1bn6oV6Fw/RDJUOCvszH6pgqeBHOyLrcgR0P4UCK4DQFzIanGRWar2ZsnCSHyW+gCUuQO7uWLq0+Cz+FOFnLZFmYc+X5mUWgHq01Jrjn0iRKSObTsm7I+N3NMQezJaZRxqJSh8Se2YAkffZ/1tZPw2yISfc5wUVrRWHEnD42ndqLbPPmg0JN+j7+V82MhB/V0jMFXbV2vQD/bUwAaFjP36qUqMPkd9YrpGOXcUnFTELHyo12vf7Typlcz54X0U0Foyi3PAtUfrq9/vu8AmrmtrwfmlXWgbdB/4oSA6v4HA+vooEFwHgHThK4PiZtINrCHDyqit09o67q2As0KR99vgBVsCSDeyQny66f0gIxVq7IsyP76PWjCfpVac+s1sH/lTha61/hgpp8zXQmC0Uulst4qEwj1+lpiFuQgx0cqzFoj6fnTu7drQv5Vx6lhRuKiVt18Fd7tONCrTBpCwrbxW0QAVEir8eD3bYt+v/VBlQd+j69sKYLtv9B38jmT7rMLarkcN5tE51nbQatS/LYzPzygcOWaB8Pr6KDQ6gKNUq9WQz+e/3c34lpFlYoDXh6BCRIUE4LWwFHLz28jcmKoFKoNW2EsFDZkU29npdAB4jzVX60f7o1FYbINGfSkz1L9VyPFvZUZWeKtgVmZJZs7vVGu2FqcKQIWqFMqjIGWEGT8bDAZIJBIAsMdKUu1ehSufq5+rwLaKiZ+VoeNihVkoFHKJwoTkdDzVv6ZKhwp2FV5qiXKMAC9czFxCCkUVRhwnfSbbZqE2jgHvZdu0FqWuJ6v4qSKnwlkVIPbRKhwWmtZ+8B3ad17nt5703DcKaGuVfqdTtVpFLpf7hu4JLK4DQFaTVxhMmT6vBby+E36vG5ZMyWqguvHIjPr9PuLxuNt4fnAPj71QwWAZjZ8A1msA/6M79DoVWPtZirbPtq1+Wrd1iltrz7aDfdY2WIuGjFUhKYXUOFbdbtcDjfF+9QmRUVOQ6TstU9e+2GRiHQsLSbJt1ldDUoXHWgc2lN4qNxxjvY5CZWxsDO122z2fbVJLW5/Be22unVVWdF5VmVPhrWtRx11TN7QvCj3zGRRmaoXRavZbo9o/P4UgoNenQHAdANLNQwGglpAyAb1GoTUL0WlQh2rXZAwURMq4+Zkf3KWatmqWfJ4GTPj5WNSnpJafhbsUllKmQfKDjZQpWGGugSQqjGy0pbadjInt1HwmK2Cj0SjS6bSHeYZCoT2FX3WsVTlRy4/PpM+FjHJsbMwdkWG1eiuk+WwrFNl3vkfhYI1G5HU6Xzq2/K9rSitX6Dq0FhnHVedR13YoFHLWlz5P88wI46rw1GR9FeDWSleyKAH72e/391RQUQGuVUr0BAUVVLQKdc3xd77nu8ni+vNQILgOAGn0lTIbbkJgb8FP3QTKhJQBK9kNrIxUN7nCVQD25ErpprPWkUJyqn3zM2VWNk9JGa1f21VT1/4TgtpP27fjxeepgFRhpJYO28RoQFI0GkUqlXJ9IiPN5/NIJpOIxWJIpVKIxWLI5/NubhkKPxgMUKvV0Gw2UalU0Ol00G63Ua/XfQWvQsR2LRCKGgwGniRYzUfysyatAkKrjM9XAWR/WgiQwpLzzPHTa9X3qFAilTEKH1VS+Dy+iwLA+sCsELLtt35hXSOqnPn1V9ce28CxYnSkWnoUtDpv1qoP6PUpEFwHgJSxKpPhBrA18fyEiAYM0Dqw0W76uyULNSk0x3v94EEL4SmDVSvN+roU8lKBoUJLAwb8YFPVxPdrh2Uq1venDFUFuVZ5UOiH7el2u0gkEkin0zhy5AgmJiYwOTmJeDyOWCyGdDqNRCKBUqmEwWCAVqvl+tTv91Gr1dDpdLC1tYVOp4NOp4OFhQVUKhU0m01Uq1VPpKUNdFCITMfLMm9tv64zKiQqtC1zt+tF4TP9XOfSri+FTG1wBGsIklTA8V6rXKklzH6owqJjojUaOZdWsJK07xSWCrFS0KtfUq083Sv6bN5HZSKwtr4+CoIzDgApFKPMaTQaeTRq/V03sG5Kbjgbbm3hPhVCdjNxozNUmBvWj8moz4xtU42YREjKWmlWoKqQUo3XWjccG1s+SrVoWxRV28336VlhaqUpk43H40gkEhgfH0ehUMDU1BTOnDmDYrGIdDrtyi+REVMw9ft9TExMIJVKYTgcolarodVquZ+pVAq5XA75fB6FQgGRSATVahWNRgPXrl3D2toaLly4gEqlgl6v54SfCjR7FA7XiX5vmTL7p9YKn6tQsd6ngt/O4XC4W6lC1weFy/b2tqeWprVq9adGrKolx3vUCtb2W+uLz1eoXNc2+6EQNZU+LTLsd7+18KylBcCzLnVdc199N1EQnPEdTFYT9NOAyWA1vFYtJW4a3Yiau6KOd4VrFB5URsBrlcggtHwT20mhpYJRmRS/18gwCjRbJV5DrNXCUytKQ9g1uVcFMsdWrQU/C5LPUYYbi8WQSCQwOzuL8fFxHD9+HNlsFtlsFlNTU0gmkxgbG0Or1UK73XYWWLfbxebmJtrtNjY2NlAoFJBKpRCJ7NSuazQaaLfbThHpdDrOgovFYpiamsLk5CQqlQpCoRCWlpZQq9WwtrbmCecHdkpyUVhqX9XnSCIkp0JGBbSFY5WpqzDQ9aOFnNUfaYNGeK+uQQqfWCzmsRIVxtOgCPuf7bekfia/vWJ9dHbPWcvQ9tkKVF2T+lxep1aun6IY0F4KLK4DQAqH8W9lQCQyfQ3HVitDNz81U2qOGgCgwQb8nFZDr9dzBUhHo5EnVBnwJgZzk2t0HSEo1dyVCZCGw528JlqO6uhWgahjolGPbIsdO8v41HpQ6FQtVQBuXNPpNLLZLM6cOYOJiQlkMhlMTEw43xWZYaPRQCQSQSaTcQL53LlzSKfT6HQ6WFtbQ7vdRqVSQTi8Wymj0+mg1+shm80imUyiWq06y6/ZbLo2njhxAolEAv1+H+VyGdVqFc899xyWl5extLSEdrvtqQrCwBpaYyzeG4vFXEQjhQwZM8fI+oyswFeIzA8WpK+H64rP8gsA8YOMdW3peqGQVv8Z25xMJp3Q5zXaN1I0GkUsFsNwOES73fYoKTpWts8qyKlU8TOOpwpD3V/cbzbNQQWW9eN+J1NgcX2HEzetWk66aVQAkEkBe/01ZKTKuJVJqNZrK6ArIwH8z8nS3/20eo1Is0LE+gC0z5Yp6vcAnGWmzFCFj2UW2m+Oj8I7tEri8Tji8TjS6TROnjyJiYkJHDlyBJlMxlk0esSHRrjp+LdaLbRaLVQqFZTLZc8YDAY7lTOy2SwikQjy+bxTNNrtNsbGxlAsFtFqtbC9vY21tTUUCgXkcjmUSiUkk0k0Gg2k02kAO8yg2Wxia2vL8x4dG22vWig28s6OtSpInGO1nNQiUfhPrVm/9aekwss+z89a369PflYYsOvfUr+Y9ZfagAyLTqhixnWtY6xjpu/X4BVeo3mZ301C689LgeA6AKROXt38Fj7RTUcNXgWOHu2gQR4W/lBGzs/UslLGpsxfBY5qpWQk+jmfbyFPy0S14oJ1zitzUhiSpGccaRuV4SmD5E8tsxSPxzE5OYnx8XFMTEzgpptuQiaT2aP5t9ttJ6woZHQ+IpEI2u022u02Go2GqxSeyWQcBEntPxQKOXgsmUw6AZpIJJDL5dDpdFCtVlGr1VxCbzQaxfT0NJLJJABgY2MD5XIZvV4PnU5nj5+H9fk4xlxnOlYktQisH1LXKMfE+s00OEHHmc/md7qe1CInKUO3c2nbqute0Qb1lXEtsQ4j9wyfo74maxGpBU+FiIKV0KWuexV27L8Gblg/a0CvTd+w4Prc5z6Hf/kv/yWeeeYZLC8v4/d///fx3ve+130/Go3wC7/wC/jP//k/o1Kp4IEHHsCv/dqv4fTp0+6ara0t/MzP/Aw++tGPIhwO4/3vfz/+3b/7d8hkMt+UTn2nkTJdCiAN1FDmzw1LOE81S16veTyao6KMg0xfi5zaCCkAHh+GZXi8h89TgWmhQcAbhcZ3qFOcfacg57W8XuFNDVTh+9hGFZ7q6wPggk2mp6cxMTGB8fFxnD59GsVi0VlXrVYLy8vLGAwGSKVSKJVKToBQWKuAIENqNpsA4ELl2+02lpaW0O12PaHvnU7H5YdNTExgZmbGwZIq3Or1Oq5evYpsNotMJoNMJoN0Oo18Po+trS3U63VMT0+jXC6j0WhgeXnZnXvG8e10Os7ao6JD5ksFCNhNj1BlRv2Gal0pNKwWPK+ldaHBMTo3akFbREDD4ikYksnknvwqfs8TjhVNsEJNv+M7NOJQ1xjn1O4nbY/CyxwPO15UQvksPZfrAHpvvuX0DQuuZrOJO+64A3/zb/5NvO9979vz/b/4F/8Cv/Irv4Lf/M3fxPHjx/GP/tE/wmOPPYaXXnrJlbz5a3/tr2F5eRmf/OQnsb29jZ/4iZ/AT/3UT+G3f/u3/+I9+g4law2pQ1yFgEZbKXPndRbS0O/1XfxcIRMVDPSZ8Llsn250q2EqtBIOhz0Vx/W4Cgsn2X5abVbbrRalRkpaCJTv1KTfSCSCiYkJ5HI5nDp1CpOTk8hkMpiengaww7zX19cdA6IQicfjnmcDO35YjmGlUkG320W323Vj1m63Ua1WsbGx4Y6sabfb6HQ6ngM28/k8Dh8+jOPHj7tgkLGxMcTjcbTbbfR6PWftUchEo1FkMhkHnaZSKVSrVZcPxpJcqlBosAYj3ng/f7cChc/QnCRgb9URa+X6+bGs8ND1p5aXhRz5mW2P9WXpmlKFz65/tfzZTyvEVYlkf9VSVChar1Vfs/af1i8psLhen75hwfWud70L73rXu3y/G41G+OVf/mX8/M//PP7KX/krAIDf+q3fwvT0NP7gD/4AP/IjP4Lz58/j4x//OJ566im8+c1vBgD8+3//7/Hud78b/+pf/SvMzc39BbrznUsqCCwGbqMFdbNZx68GdPhpktS2LeNSvwEhJt3ctHIA7PH36LtUoFq4UvvKz+0m1r7YcdAxUpgRgMcasMwxEokglUohlUrh5MmTmJubw/Hjx12S8Gi04+Sv1+vodrsYjUZIp9NIpVKefCfty+bmJprNJtrtNhYXF53AoGBipCEZfiKRQCgUchXx9b29Xg/NZhPJZBKlUgn5fB7FYhHJZBLb29vodrsu8IFjy8CQcDiMTCaDfD6PwWAnsXl1ddUFIqi1zn5QIKsVoXNiBYZGgfLdXCd2Tq3VxLXld7yO9VMp4gB4IxN1Xej8cq3aZ1rLjutF+8Dn6HpVAWitMdtORSd03ev46Hiqwhf4uV6bvqk+ritXrmBlZQWPPvqo+yyfz+Mtb3kLnnjiCfzIj/wInnjiCRQKBSe0AODRRx9FOBzGl770JfzAD/zAnudSWyVRm/1uIm4adRwrMyAUoZAON6PVhFWYaEVyfqbWjl5PYcaIKwYOdDod3yM5FE4BdoWH5sDwXSrE1ALQkGW/I1eoxfo5yLUQLe9RgT4zM4NisYhTp06hWCwik8ngyJEjLlqPvqvV1VXHwOg/YfBEt9tFuVx2Pqh+v496vY4LFy6gVquh2+2i3W4D2GG03W4XrVbLXQ/sQmpaaUH9RWtra9jc3MTy8jKKxSLm5+fx7ne/G9Fo1AnCTqfjoEQ+KxaLYXJyErOzsxiNRjh16hQ6nY7bp7VaDRsbG2g2m2i1Wm7uOYa0/BilaitTUNio/9PPIqL/SPvKtaYWnVolanmrQNaoVK4zTaNQ/xrXk7aFEYR6yoBa4ySdayoFKuzYRg1UYZQj36FtYLttTU9dj4TcA6H1+vRNFVwrKysA4KAV0vT0tPtuZWUFU1NT3kZEoyiVSu4aSx/5yEfwi7/4i9/Mph4oss5tu8m4QXTjAvsXGFX/jgpB1fhUq7b3WSiHG5ACSP1m/KnaJRkUfTUKR6qllkgkPDlAKlBVsKm1YK0uC2HG43GkUimk02ncdtttmJubw9zcnGM+FB6VSsUxVioD/K7X6znLS8eiXq+j2Wxic3PTVbywUYz0hXU6HSSTSTSbTWehdrvdPVYKx5ACrFqtolwu49SpUyiVSm7srOJA+JHjFI1GUSwWXV8mJibQaDSwvr6OWq2Gra0tJ6zr9Tra7TZarZYnt0l9Nfyca07TMthf9e8pk9d5ppKi8Cj7oWOgQTqWrAKn48326prR6/kuG3SiSpfClVYg6j7QPWp9vhpdqYqivZ7jGgiv16YDEVX44Q9/GB/60Ifc37VaDYcPH/42tuhbT4qFqzDRQAVuUGA39JsWlWqLCltoXo3mnqhmaeES3YRkagCcg7/b7XqsBt7PDa5nFfF57A+wW6iUFcOVWVhfCxmOClb2g8yLwQ0TExM4deoUMpkMUqkU5ufnEQ6H0Ww2XZCCQqUMJGi3277ClOMdi8VQLpdx8eJF1Ot1NBoNlMtl1y8yZlpZFKC5XA7VahXdbhfZbNYJfr53NBp54EqOx/b2Nh5//HEUi0WcOHECExMTyGazbhzI5JPJpEuCpl9sNBphZmYGY2NjCIfDqNVqaDQaTki1222srKyg2Ww6Iby9ve0qfYRCITQaDQd7sloH14qGyFvri3NJi51KQCgUcmH8jIBU6JhrXy0l/UwFiKZaqNChpa9BF6rYcd2TuAc0p1HXqBXIGpDBZ9NXyOdqMrjfeHQ6HQ96EPi69qdvquCamZkBAKyurmJ2dtZ9vrq6ijvvvNNds7a25rmv3+9ja2vL3W+JeTTfraS4uVoPCq8A3o1qHc8UZCQVFhb+0M2uG1X9ZZp3wnsBb6VshXk0vFm1an0XP9d2q5BSbdm211qM4XAYhw4dwuzsLG6++Wbk83mX86QQJZmn9oFtY+SbllLi8S6DwcAxmsFggM3NTcfw6b9iu8mIKBiHw6FrRyqVQqvVcnCrtoFtJOOk34kKzObmphNaiUTCMx9cA71ez4Xes5/armw2i1gs5qy3Xq+H8fFxdLtd1/fhcIiVlRUX9bi8vOzy0Sjs2C8V+roOmeislpBC31zLCgnr/Kv1w8/1O/60SpJCjypsVOHSdaf+J/XfWgGs7yWxf8BuHqUNDtKgED5DlTfbnoD86ZsquI4fP46ZmRl8+tOfdoKqVqvhS1/6En76p38aAHD//fejUqngmWeewd133w0A+NM//VMMh0O85S1v+WY25zuG1GIioyY0xAoIwN6qFYBXkPAahUV0M1uYBtjNhWI7BoMB4vG4x5ltQ3ztJrUWm/rrqKXb+mwWKlLmz89VcKVSKTcW6XQaMzMzeMtb3oLx8XHMzc0hmUw65YdMWbVktosVJ/g94T7L5AaDgWPqvV4PW1tbKJfLznJjGxlarRAXAyYAIJlMIpPJOObP6yjou92uiwLM5XKOKa+vryMcDjvBY9cBoU0KD/W9xONxV+mD0CWL/vJzFULRaBQ333wzGo0GGo0GXnrpJayurmJhYcHBnQxEUR8d5wzAHqvFWjucc/XP0hrjelH0wIa9a7QeIV5dw7rGVQhaBMDuOc6l3sexVX+U3mv3nJ17VRQ5Nup/tvmIAe2lb1hwNRoNXLx40f195coVPPvssyiVSjhy5Ah+9md/Fv/8n/9znD592oXDz83NuVyvm2++Gd/3fd+Hn/zJn8R/+k//Cdvb2/jgBz+IH/mRHwkiCvchZazq8wC8VoJqmRQWyvAphHTTAt6iuXwfN6TmwJD5kSFTQFEgaJv8rDg+26/GIIUpBZ467JlPRliFmzyZTLrAAOZbve1tb8Pk5KTL7el0Op4oOY4DtWMVkPwO2IGsKMgUDmMbmXtFIVetVh3cpsKW1yrMSauC706n084nReGvz+F7acUBu7AsmW6hUMDExAQGgwFWVlYwNjbmhMpgMEA6ncb4+Lh7D3PJaO31+30nuMbHx52FlMvlkEwmUSwWMT09jaNHj+LcuXOIRqNoNBpYXV3F4uIiPv3pT7uAD5apYkCVWijsU7/f91iAKuT8UiMojFQQUoFS2I/f6bpT6JtrlykM2h4tMabv5zvVSvTzOxMapGC1Pj32VxELFaLWSg1of/qGBdfTTz+N7/me73F/0/f0Yz/2Y/iN3/gN/L2/9/fQbDbxUz/1U6hUKnjwwQfx8Y9/3EVQAcD//J//Ex/84Afxvd/7vQiHdxKQf+VXfuWb0J3vXLKChp/5wYIqCGzFdj9YTe/1EzgWb1cGpBaIhRjJvGk5WC1b76dA0qoDfO5wuJuoyWekUimXtDkzM4Mf+IEfwOzsLKamplxfGo2Gh0lrRQyODS0QwnJkkGToLHqrYevxeNyFqfd6Pd/wfz5PLVwd/83NTYyPjyOTybjyT2rlcGy0qLAKMgquSCTiKmkcOnQIkUgECwsLAHYEolomFJiEOAnBx2IxtFotFxGpY7K0tIRwOIxcLodUKoVMJoOpqSkUCgVXDX9ychKRSATXrl3D9evX8fTTT7vcMqsUsd20Qik0mfjNwzAthM15Y2CI+qRUqeN9fnChPkvXKMfWRupyHhXx0Ln1E466T7T/um/8BJRaxgG9PgVFdg8AsWCoFkp9LQ2P19Li4n0axcfPrA+JpIEF6luwyaMKAfJaFvglpDIcDh1DYrFeMmkb7WXhE/p9NA+L9/3QD/0Qbr31Vsc4u90u1tfX3XXFYtGjofN79psRZ81m0wkgCjOeh8VxY+Ivx2Bzc9Ml9TLKUNM0tHgxGViv10M4HEYqlcL29jbGx8fRbrf31C3UeUilUh5mRuuTCsnc3JyD9s6cOYPDhw9jfX0d5XIZp0+fxt133+38ZNevX0etVnMMs9/vY319Hf1+H8eOHXPMPp1Ou+CJarXqgkX4buaUnTlzBtPT00in05iennbBB5/97Gdx4cIFfOlLX8LGxoYThAzbV+bNoBWWyqJl7Qchco75tzJ7/k34Tn2umu8F7FbqUETCwoR+EKCuVUKz3HcUjqq8sV/cK4peaPUS9Z/x2u8muDAosvsdSqpRqq/FOqt5rd0E+p1qpvosbkJaHNRMlcmrNmo1SYVXtJ2EVSxUBng1Ut3A/FzziUajkYOGisUibr31VjzwwAMoFosufJ2wYCKRcNF/zWYTy8vLaLfbrnKF+igYZNBqtZwioGdDUXjG43GnMDQaDSfsKLQ02k1hJsssFa7sdruo1+seJ76Fw9gnMnpN/ubfnDe2a25uDpVKBS+//DLuuOMOpFIptNttF1Rx6NAhAHAWa6PRwPnz593ZYcVi0RMIwndrNOBgMHCCMJvNAgBKpRJSqRRuu+02jI+Pu+eurq66fCj2z4b9q++Kf/tZVlYwWPRBn6lWEWm/AAl+p5/zd1Ws9DPCrnbN2zbrszXZmZ+rMFOL/btFcP15KBBcB4C42W3UmQ1qUHgK2BUoGjxhN73CjLrJFJtXv5lCL7rJNBCDz9D71ZIiaTuU8Sg8SAsomUxiOBzi0KFDuP/++3H27FlkMhkncHg9z6waDoe4ePEiyuWyB/5KJpNO26UFoOHgtAjVKtzc3HQHO/I8LfrA2A87V8pg9ToyVA2AALxJumRmTPxlVKAKQrXkOFesVzg3N4fBYIAXX3wRjz/+OM6ePYtIJIJKpeL63Ov1XK5aIpFwOWKRSATr6+sOEp2ZmXGJ1bS8Jicnnb+t0Wg4ob21tYVSqYRsNov5+Xm87W1vQzqdxoULF/Dqq68iEom4o1+slWMtfg3+0XWtiALhRqIH1h+l68kqFCo8VUj4weAaaajrX4OcrCClYqGBSLTwuA9sEIfdawHtTwFUeACIWqgGMFBrt8ETwG5wBe+zBVQpZLixNDJrNNqN3up2u05g+FW7UL+DX3gzAM9x5ISDGCUHeJm0hhJTGIZCOwEh3W4XJ0+exN/+238bpVIJnU7HVUePxWKo1Wpot9u4ceOGg8PGxsaQz+c9wSZMEma5pVwuh3K5jEql4vGznT592oWQ8ygR5lGVy2UsLS05C42+o1qt5rEgVbhovTsKVwoQnSvCiTzeRIM2dK7Zv3Q6jWQyiUKhgMceewxTU1MeofiFL3wB6+vryGazrp25XM7lm9XrdU/hXfaJaymTyWBychLZbBbb29uIxWIuiEqFCtfAcLiT6zYxMYF77rkHo9EIKysr+K3f+i288sor2Nzc9My7BuTwmVbwK7yoJbsoMBUmtMiDWjq0pDUX0sKI+n4bWKTjauE+te40wIP9UN+awpeqjJC+25KPA6jwO5gorADvqbHqwNZNx82hG0+1Tb1OoQ5aG8pMqc1an4BCjBRsClFaaFGDMxSa5DX8XWFRwktHjhzBgw8+iFwu5wInGOI+GAywsLCAdruNra0tJBIJZDIZFxnHskiEC1khgj6bzc1NJ+Tq9Tr6/T4WFxdRKBQ8Pimr9atFy+ATtURVWHGO6BMhxKdBKLyfDJrCX2EzQngUFBRs6uuhoE4kErjzzjvxwgsv4Pr1684q09wwPndychLhcNidvByJRDz1FROJhEs4Zi5boVBw1hh9YfF4HOvr66hUKpiensb8/DwOHTqEBx98ELFYDH/6p3/q3qmRdQqtcpyomOl68gtP14AeDT3nuFpLi0RFQYvn8qetg6j7Ty1pfZ76pTi3+m4V0Bo0pYqnCtuA9qdAcB0Asrk9FErcYDZgQjVhbmzdDKpRqn9F7+OzFeoCsGczao6TNd4trEkmoEJQnekKrWjfut0uHn74Ydxyyy0u+i0cDrsjK5j8q1AnQ57ZLjJ3BjvQR5NIJFyYcrlcRj6fRyaTcaWQIpEI5ubmHHOMxWJIp9NIp9OuvcwLo6XKsSWj5TiOjY250PxkMumqa2gkIZk2AI+1xbGjcFLYkdUYCHkyR4z+wJtuugmhUAivvvqqm7tKpQIAmJqawnA4dPUMm82miyLc3t7G1atXnbXCY1kY7h6LxVAsFpFKpbCxseHyuOg3e+aZZ9But3Hs2DHcddddSCQS+MpXvoLV1VUPrMb5oDWj6QpcB+oHVcVNIWZFEjSSU+sk2j1FKFqVMVrKuubVB2sFlvrQVEHje7TNCqkrgmEjCgMf12tTABUeAFLtTaEihSsAr0OaEYRaU4+bEtgNv1XfiUYialAF7ycsRuakyaK00FTwKRRpqwhYIaoMSDXaw4cP46GHHsIjjzzi/FDpdBqdTgeXLl3CxsYGqtUqhsOdZOHp6WlkMhnkcjmPINnc3MTVq1exvLzsAjcY2LG0tIRSqeR8adFoFIVCwUUcsm8UKqFQCLVazQm3zc1NtNttT8g+4HXu9/t95PN5dDodFAoFvPWtb8Xzzz+ParWKwWDgIEMKunQ67arCU9PnXJOhEwLudDqYmprCsWPHkEqlcO+997oyVPV6HRMTE4jH47h27RpWVlawsrLiTnM+deoUWq2WmzfWLWQo/cLCAqLRKA4dOuT8Y8PhEJVKBb1eD8eOHcOxY8eQzWbR7XZRrVaxtbWFXq/nBPPExAR+9Ed/FIlEAp/5zGfwiU98AhcuXEC5XHbCnNGCWpKJ8HYsFnPrlHCtHw0GA+cH5pocjUauqgiVD4XdeZ8KSFXWdM9owA7nlRa/Fu1VhU1heBV4di/qnqClqVbZdzIFUOF3MClGDsCz6dTxTMaqkYGqzamw0/Oh1OFMopVk4UbNs1F4kM/QsHG+W3+3GqZqoPwukUggGo3izW9+M2655Rb0ej3U63XH/FdXV3Hjxg2X+Nvv9zE9PY1z5865/CAmCF++fBnXr19HpVLB5OSkq0ARDoedIDl06BDq9TrC4TDS6bTzhyQSCRfsUK1WnT+IgoqCziZ7W+ZKX+HY2Bjq9TpCoRByuRy2trZciL8GdnDOFcK1wSA6L4x25LElzA9bXV3FYDBwpyOPj487oX3o0CFX5V4r1hP61eARjpf6eQgJLi4u4vDhw4jFYi48vtlsOqFcLpfxyiuv4NixYzh37pyDIz/zmc94/FxcC3ZtaMI6+63ReBw3CiO1iqwSoc+wuYMKnWs1Dd07ADxKGOFJVfSskmlhSrXI9Rr2U5PTA/KnQHAdAFLcnBuR/gFaP9xU/JxBE2pQ8zv+p6BSZzUAF7rMzQTswn5WGDGYgBtdS/uQAQDePC9agcqMIpGIS1IfjXYCQ37yJ38Sd955JyKRCBYXF5HJZFCpVHDp0iUXBceDFk+cOIGxsTFcuXLFVWa/cuUKWq0WJicnMTU1hampKdTrdWxtbWE4HGJychKVSgUnTpzAYDBAs9lEqVTC4uKiqyI/HA6Ry+UwMTEBANjY2HAJyRxjQoVUFnhOFqPoNOqxXq8jFothYWHBwY6E2ZiEC+xE6wG79e8YIMN5ILwZi8UwMTHhivH2ej2srKzg1ltvxeHDh3Hx4kWXEsCTkm+++WYXNVir1dBqtZw1S+bZ6/VcEA3TBnRN0CpkbhXTA/r9PjKZDCYmJpDP57GxsYHV1VV86lOfQj6fxw//8A/jPe95D+666y5cuXIF169fd4oKhQ3hO1pjuu78ACIV8Cykq4iErnfOEQUMIzy5di1Ep1C2rmuuaVpbqvD5KXQqwDjP6iMNhXaS2/Vd321BGt8IBYLrgJBq8ropVOAoZKdaqGpwqqnq75ZoWdHy0DBk60hm+/h8CjUArhq6tUL4frZbyyMNBgNMTU3h1KlTiEajzrcCAMvLy6hWq+j1epiZmcGpU6dQKBSwvr6OxcVFXL582cGGrVYLuVwOuVzOadb1et2NEQMd4vG462ej0UAotFOZg0yzVqshk8m4/LB2u41kMul8OdonXqPBKhTYlUoFs7OzOHz4MIbDIdLpNM6ePYtLly45H50mXCtcReWAc0bfl2ruiUQCqVQKiUQC09PTyGazmJ2dxerqquv3aDRCLpdzvkMGX+hp1ISp1PfWbDY94xQKhdxhmqymsb29jeXlZSwtLTkrdnp6GqlUCl/60pfQarVw8eJF3H777ZicnMSZM2ewtbXlmROuJQ20UL8hGT3Xmo6RBnlwrela158aXWitoWg06ubP7gcKMl7HNlBh0yCM4XDowv/VcuX7bbAS7wsE1utTILgOCKn2Buxubl38AByzAXZ9IgpdqKBR60mhSI1Y5Oa0wR264bgR7QZUyEc1SH2PRoXRzxMKhXDmzBmUSiWXbwTsCJByueysoHPnzjlB8vnPfx4bGxuOIUejUUxMTDg/FpN5LcMh0eILh8MuhF770Wg03N+h0M65WhqZx+RoPoOnEvd6PSe83/zmN7uTlV988UWk02kH6TWbTYxGIwd76sGDOmZUIMjgWN1iOBxifn4esVjMVXsfHx/HiRMnMBqNsLy87HxmrPBBqFTPAeNcarFcAO70ZwpmvieZTLoah7S6L126hHQ6jeFwiKmpKYyPj6NYLGJtbQ0vvPACisUi5ubmcPvtt2NxcREvvfSSJ3hBq2KwTWoJqc9VYUH7vVWq1C9IxU59T5peonuOv6vg1HerFczxU6HL+7U/1ooD4Cy3Axh28C2nQHAdAOIm4ELXyCluCA2s0OKl6tNShzWtHFpkqonypx/MqMEUGjKv0YVk6PQFKcMHsKfsE+AtMfX2t78dDz/8MFqtFhqNBuLxOBqNBq5du4ZIJILTp09jenoa165dw1e/+lVcvXrVRQDm83lPGaTRaOTqGjYaDQ/MeePGDYRCIaytrWFiYsKdCUWLjdZapVJBuVxGLpfD+Pi4ExrNZhMbGxvO+gDg/F5TU1OO0U9PTzs/1tLSEsrlMhYWFhxsuL6+jm63i0wmg3g87spHEYZTyFHDw2OxmBtP5qYxyGQwGCCTyeD222/H+Pg4Ll++jAsXLjgBznmixah+RvW9cH5brZazuo4cOeKSuXlvtVrF2NgYcrmcq9zxsY99DLFYDLfeeiseeughbG1t4cknn8RnP/tZvPnNb8bb3/52B1l+7WtfcykFKniYzmA/V1+SWu/8XfPKdM/QylarS8/cIrStgRPA7mnN+k5V3NS/qUqRlrDiHur1ek7RUfhTq5IEwuu1KRBcB4SUsVAQAF48XbVmAB5hwtByy6DIHLgxAa+gpDVEgUYYks+xuV4AnM+AxGgvfqZQiwaZMNGY8B99SWTMvV4PpVLJ+ZueffZZXLlyBc1m08GhU1NTKBaLLuCAfjM9W0qj/yjo6cOh5cMzrgCg3W4jnU57ErO17iCtlkOHDjnLo9FoYHNz01XeCIfDqNfrLt+JApBRehRsypjJqNVHwxp5jBpVyIvfjY2NYXl52Vk9Y2NjyGQyHp+RRr5ZuM2uA16jwQPhcBiFQsFZL8BOAAoToldXV/Hyyy9jeXkZjUYDd999NwqFAgqFAlqtFhYXF3H69GkcPnwYN910E55//nn3frXebVAP4K0Io/lu7JdFEEhUsHR9M/Q+FAo5AalBSnwXSVMRrAWlAp/jpOgE32mfZ1NFAnp9CgTXASArsBSuUOcxISkVKhaSUL+WbjTAK+h0o41GO/k9ZJaENKipcpPr+U98N9uhGipznrRPfO7c3BzOnDnjklqZMNtsNpHP53HmzBl0Oh0899xzeOWVV5xmPTExgXA4jFKp5JJi4/E4er0ebty44QTb3NwccrmcExS0CIvFIrLZLFZWVhCNRnHkyBHUajUsLS3hvvvuQ7FYRKvVwjPPPIPhcCfviVU3AODw4cPOqmMEJC1gjmupVEKpVEKj0cC5c+dw7tw5VKtVbG5uOgFEnw9hTcKN9GFxzDXptt1uuz5tbm7i+PHjuHTpEi5cuIAjR464uZqennZJxeovs4JCISsqQ2qx8oiUdDrt1mOhUEA2m0UqlcKRI0fQarVw7do1vPTSS2i1Wvjd3/1dPPjgg7j77rtx/vx5XL16FZubm5iZmcHb3vY2fPrTn3bJ31Y4WNjND2Kza1tRBp4ArZX82VdarSTuLVpEtsoLn80jW6hEALuoAeeFyhnXvlpYWvJJ94n1zwXkT4HgOgBk83i4oAkJqdVCjV03P69VnB3Ym+SoAoTfU+gog+O1apEp/KiFYNWXpRqvQpTqZyOjbbVa7jpGik1OTiIUCmF1dRVXr1517YxGozh16pQTcDxSQ4MkGO2Xy+Vc8jBhmXQ6jWw2i3g87kLhWamc0BchvOFwN9eLEXNzc3PY3t52sCEDKTguhPto9W5vb3uqzRN6ZEV7Rvt1u13E43FnBZFpaoIsBbfCtnxftVrF2toa8vm888sNBgNPnUWr5FBY2nknEx+NRr6+wna77SDF6elpl5xcKBScRXvhwgWcOnXKwa9UhvL5vBPo2haiCNbnxahGjp+WFVO/lK43P78r71UIks+wZZsY8q4+R91TCoUDXstMrTPrk+Z1tnqH7tOA9lIguA4AKfxhrSX9W31LgBcCUiGhjECdx9QOicsrKRMDdsOEdeOq9qiRUXy3JiarpUgBzCjBSGSnqnsmk0EotBO5l81mMT09jdXVVVy8eBHLy8tu02cyGRw9ehT9fh9XrlzxaNmsrk64jFYCsFt7TmFBwkdkhuPj467OHxlMoVBAtVrF4uKie/7W1hYAeJgksGst87RhBo5QsKyurjo/EwMdGIpvUxHYZs7naDRyAkOhKqYzJBIJVCoV97tWHNEwbFbz4LM4XnyvPdNNy1/xGgpEAK4UFE9VJjS7srLicvGYtxaJRJyVxjqGPHiT644/leFTSbJQIAWQtX5USVOhQetVx5ljqHC27jW/vvN+9VdZH6+SCjL+VFg0oNemQHAdAKJgoHXDRa4biNf4+QRCoZDLLQKwJ0FYYSe7ySjoVCOnIKXWTyZITV1zuTQQQ6EzFZqMyrvvvvtwxx13eLTd9fV1NBoN3HbbbYhGo/iTP/kTXL16Fa1WC7FYDNlsFjMzM84hz1ylcDjsQttLpRLi8Tiy2awL5wbgIuRSqZQToowobDQayGQyOHHihGPqi4uLOHToEEajEZ588klcu3bNHWtC+I2Mrt1uexge/UGMdkwmk7hx4wauXr2KQqGAeDzufGnRaBSzs7MoFotYWFjYUweRDDUSiSCTyWB7exvJZNJFMzKpenx8HOfPn3fCodlsotlsYmpqymNVKOzLM8iYfK2VLIAdJYQnPrfbbeTzeZePRqskHo8jkUhgamoKuVzOJW4DwLVr11AqlTAajVweXjwexzvf+U4Ui0V89KMfdRGbat2rv4hrkRXqtewZFQddc6rA6VoG4PleBZCWO1P4XPcASfPAqERwLXB/KirBtcbxZHs0pD6ACV+bwq9/SUDfbqKFBOwWaiWRgakmCuxqlap52s1jNVDAG75rndQqrNSXxjYyGdeSasuq6WtAyfj4OGZnZ13pIA2aoJWwtraGxcVFdLtdVwYok8k4h3+lUnHMWJNps9msq7bu5ydRa1IhITLkZDKJXq+HRqPhGHWj0XCQGYUGYUBW16CVpYdU8h0MzOB76FNhIjD7R2bJOWaxYK30z/9klpVKBY1Gw0Gbg8HARQWyvJO1qgA4y4zto6JhGa8mHFN54pllqVTKMV6FNGnt8t5ms+kq9Q8GO2WhaDVrRJ/9z/5wDVrrx65therUMtUgDPZR95oNkOGaUajP+q20zXooqUKFqlDqPmJb1B8c0P4UWFwHgFRDBLCvVqY+KMugucEAeKARFWgkG6BhLS0/v1kikfAwU73GWlfaB/ZvcnISk5OTroJCOBx2vqpisYh+v4/Lly+jUqm4Qx15fEaxWHRMlAEXKtzVZ0MtnNCZFVaEsJhSQGbOtmezWdcHChxgJ8+JVhUjKNkmVqsvFovOuuQ5WxRwhO86nY5L9FXojkKXbYvFYq79KnQ5v9vb284/RmuY1fEZzKERgmNjYy7IgEJHc8Y0yIC+LFbdp7VLQcsDLRmo0u/3USwWnTXKe+v1uksJyGQymJ2d9QhI6+dRYaTr10bKWvhQ/U8UbAoh2mfp3xxzOwYqYGw0oPbBKoeKkOg+5p7h74GP67UpEFwHgNRK0hJPuvmsT4AbgMeCKHynz/Szqrix1TmuUBUAlw9DJkpLy0IziuGT0WquDKHF22+/HUePHkUsFnPCCwAmJydRKpXwpS99CZ/85CedcNre3sbRo0dx9OhRTExMoNPpIJVKYX19HQCc70p9OMCOv4YHQrKWIceMyb8AnJUFwAVsMGGY72Ih3PX1deTzeU+FDw30KBaLLul2MBi4E5fj8TgymYwbB/q4OLb0+/GwTNY45HxxPdCfUiqV3LieO3cOR48edaWebr75ZiwtLXnysQgP0l9EZYA+Pc4v88ry+byrlrG9vY1areZSD7a2tlwwyfr6OqrVKl599VVPkEkul8PGxgZyuRz6/T6azSZWV1cRj8cxPj6Om266CbfddhueffZZJ3Q1kERhQq5bBtHQatLEYq5prQ6vJcg4hqpAaRQliYKI698KKlXK/HxzvJfC3QZycE3r/gmgwtemACo8QMSNy8VPwURtjVoyiZvTarA8b0k/tw5skoVQ+LuF/NSpT4FFLdXWi9Pf2S8WZyWExv7Q2llYWECz2UQoFHLWCp3/fE8ul3OQYCi0U34pl8u5k4EZrq3wGwWqrR5Bhthutz15ZxzXbrfrjhFh4VrmAbEEEvujcJVGUNKHREgvlUq5s64Ij/IzRkUyT0wjN6PRqIPpKHSKxaKzYOLxOA4dOoSZmRn0+33nj9K1oD4kjoEKfQ22YB+YZwfAoxxx7DY3N50wD4fDLh+P48+xUcvtxIkTLv+MwpykVo5dq1Z50/9a/oxzybZyrAHsgR0txKdE61zXkd0jqkSqlaewpYUeOQcBVPjaFFhcB4CU4XMzEcZhBKBNwqSW1+l0HANSbB/wHpinPiw60vk9n0dYSaOxCIsp/s+NrJuPznYVmMAOwyuVSjhz5gzC4TCuXr2KlZUVd2AkYa5r166hXC4jk8m4/h49ehTT09PuOZHIzuGGwE6RWj2yhcET6XTaMS0yReZRMUwd2LGyrl27hpdffhkzMzMuh+mVV15BrVbDysqKC2EvFAq4du0ajh8/7qwlCitaUMVi0UU5UsOOx+MoFotOEDBnjZArBVS9XsdoNMLU1BSAHVjy8uXLDl5stVpIp9PY3t5GOp3G6uoqtra23EGa1WoVpVIJ7373uwHARUpubm66CEC1PofDoacwcCgUcpVFGo0GNjY2MBqNcO3aNYyNjTlLkSclU8B1Oh3EYjGX88XqImfOnEGj0cCNGzeQSCSwsbHhxvGd73wnRqMRPv7xj6PT6SCTybgoQ2uNKDTNgBL6CoFdWFqPt1GhoJGtgDfhWoUr72E7+BnHRo/50b2q/ke2maH8RDJ4rw2sCiyu16ZAcB0Ashi4EpknNwP/VmuIzIibSAu0qqanUVVqoelGInxI6JIQnOL6FGh8jvrnVCPl9YwE7HQ6qFQqjmEy1JynGfPd7AcjAvv9PlqtlvNHqE+CPhb2lYEUwC4EyOPrKTR0vDVknUelMKjC+iH4Xo4JrRUycw2E6PV6zn+noddkYBTOtAb5vNFo5GA+RlE2Gg1X9T6RSKDb7WJ5ednBe9evX0ej0cCRI0dw22234cKFC85KpLAfGxtzydScFyY+x+NxxONxt1YYBNPpdFydRZblAnb8gq1WC8Vi0Y0x89bC4TCmpqYwNzeHr33ta0gmkw4SHY1G7mia8+fP45VXXnHWqM69DaBQRYyfafqHpgrwOq3awmf4+Zv4LkUZFH6kMOS7VAhx3fM+tcL8fqqiFwiv16YAKjwApNoiN5WGw+siV4cvN6Y6rxVzt+HstKr0Gn6mjmyFWQBvxKLVhtWRbtvCjVwsFl3IOZNSeYovobfx8XEX+q2WJ8eCUW6E/BjlxvBtWogabJBMJlEoFJDL5VwducFg96gWlnNaX19HuVx2Fec1EIBjonCoKgF8D30cfC7HkTX/GIDBIAmOKZkg54AWDttMmLDZbKJcLqPRaCASiWBpaQkrKyuYmppCp9PBtWvXkMlkcPz4cXcApsKMbKNfUAAjHJPJpINcaZmy/NVgMMD6+jqee+45rKysoFarYXp6GocOHcL8/Lyrtt/v95HL5XD8+HG0Wi1sbm6iUql4rPXZ2VmcOnXKrT36u7RiCOFcVQZUeHBuLHROq0atIQvLUQGye0sFJtujFpOF5HXPkGzUIJVK9cvZMlYB7aXA4joAxI1LqEK1TWAX8lDNlMcp6AYg0we8VTIohKxGSB8aLRENJyccyAAG1To1Ao4RgBpFxTbQ33T77bej3+9jY2MDtVoNhw4dcpbWcDh0pYGOHj2Kr371qy5CbmtrC8Vi0bWHUBwFE3PIyPQ1z4s+m3A4jLm5Odf+ZDKJcrmMUqmEZDKJq1evYm1tzZVKKpVKCId3DpusVqvO6puamnLRi7T6KAApmDgvoVAI+Xzew/TYPiYgs7r8xMSEOxsrn897fHgMgiDDYzpCJpPBxsYGnn32WTzwwAPodDp46qmncPLkSecHW1paQjS6c6YWy1PpeW0qFOPxOKamplxiNn1SrBQSiUQwNzeHXq+HL33pS8hkMuj1eh4/Ied7c3MTtVoN586dQzabRbVadRZzPB7HxYsXkc1m8dBDD+ETn/iEGzfOpRUmhPS0XBmFFoUchZcqXnomFv8rVGpPTab1ye+5h3TfUDGysLhGKFoFU4NkdB1zPgPyp0BwHQCyC54CBdiFp8gkLJZvow5tlr+FOCz0ofdrMAWwq8GqEFVrQ53SJBW6w+FO+aTJyUk0m013HPxoNEKlUsHKyorzczGcnAyA2i7hSkJktVrNA9PE43FPUi3HUXN3GN3HUknsMyPoeD2P7wDgohIJgdF3RkZJYa0BH+yz+lW0UrtGYLJ96XQak5OTaLfbnhwrQqs8okSZIJlpq9VCoVBwpw4vLS0hl8uhUChgc3PT5XTxeVQk+J+Jy2NjY56DKpnwm0wmXQDFcDh0R6dwnWliLddWt9vF5cuXcfPNN2NmZsadBUYhXy6XXXWSubk5LCwsOGhO/UmEvK2Cpeuac62WMIWNRvipT1eFk+ZA8nvdK3Yv6P1UBlWhtNC7RofSCqQgDui1KRBcB4BsKScAnsVNhqbHQmgWvzqfLd5PBqtRT4A3cVP/VojPOrtVQClkqIJNteXt7W13Um61WkW9XnfQGI/+CIfDrmYgAy/YLyb2Mix9bW3NYwHSt7K1teUEF5OXqVHTJ5jJZNBsNh0DqdfrLnG52+06gUXNmhYbE271aAz1r/nBR+q7UD+Ifq7QGS1ErgUKx0wm4w601FqGCjXF43HMzs46iJDQLJOU2V6W16IfjRGd4+Pj7nMyffofeU2pVMLGxgYuXrzo8uN6vZ7z7TEKczTaKUj70ksv4Y477sC5c+cAADdu3HDRm/3+TqHhyclJvOlNb8LGxoaDItXi17WqSoiuMV6jkJ0iDVQC1IJSIaNQsAZcaMCSzq3uE/W/WQHIvUghZeFN+8yA9lIguA4AcRHTGiB0R6IwsptMNwQ1cmqqalnxGQppqGCkxqzhzlrORv1tNrKKUXYMMFArMBwO49y5czh27BhefPFFbG5uuoMhGb2XTCaxsbGB+++/H9lsFsViEdVqFaFQCC+//DIikQhOnDiBxcVFtNttFAoFJ+ApjBh2zuoaZLrxeNwV8x0Ohw6iKxQKePbZZ3H27FmXG0UBdeHCBRfEUCwWna+JfiYqGMlk0oWak8nZiEqOB+eMcBXni9GQZPgabEAIMpfLOWG6urrqwuD5bobZ33LLLbh48aJr4+zsLFKpFK5cueLGg21jEWKWp2KwBa2UEydOuIAPWqQvvPACxsfHEY/HnT+NidXATo5cq9XCI488gk996lP4whe+gJ/7uZ/Dm970JnziE5/A+fPnAQD5fN6d2Pzwww9jenoa/+W//BckEok9Z4dxHNXnSqtZ8wkJM1JJUXiQwtj6hPkM3VeqcGlAlAYDaaI79xXnVwNvdB8AuwW0GW2oOWUB7aUgOOMAkFo1qmVyY9HyUGtGiYJEN6xaVNYKU23R4vlaa1AZMDebBmyo9s93KZafy+Vw6NAhpFIpp1WPRjtVGdrttkvupbUzGo1w+vRpzM3NIRqNYnV1FdevX8f6+ro7doNwHq0q+nHy+TxyuZwbLya2soQSGR4AFx6+vLzsGH8ymXSwY71e9/g/mCvGd+dyOeTzeeTzeQe/sf0cN9W0ydQorFTh4N8Mj0+lUsjn8y6fi7lzbBvrM9Ivo762w4cPI5FIYHV1FalUCocOHUKhUEA4HMbGxgYqlYoHbtYEZ1I0GkU+n3f9HQwGLqw+Ho+7UHkKjk6n46mSMT4+jomJCayvr6NYLDrfZbPZxKVLl1z9yGq1CgA4cuSIey+tObaP88W1yXWueVVcw7xe/VIcd3tOmULjfpGAnEMbVGH3KhUMDbBR/5vCiyS1KAPanwKL6wAQFz5hMGrmGhlFpsgNbEOGVaNUJ7xW1FAfgVp33Gi66QlHqnZq/WbqL7J+rn6/j9tuuw2nT59Gu912FS/i8TjW1tYAALfeeitefPFFzM/PIxQKoVar4Y477sCJEydw4cIFPP/887h06ZJrY6vVcicH0/cyOTmJVqsFYEcgbW5uOmuVFRxUsDebTRcUsbCwgEKhgLe//e0OZqTPhxaA1k08cuSIgwfpB+p2u6hWq670k44Drdh4PI5YLOb8XYwspKXFCEBCc6PRyDH47e1tl/NWLpfR6/WQy+WwvLyMlZUVj6VbKBRw+fJlrK2t4fjx48jlcrjzzjuxubmJ8+fPO2tkY2MD2WwWuVzOBW7QL0TFhdDl0tKSs/4uX76M4XDozi6LxWJujBlCPz8/jzNnzuCpp55Ct9vFxMQEbr31Vrzyyit46aWXsLa2hkKhgHa7jevXr+PIkSN43/veh//zf/6Py0vTtAAmfquVr8KKa43wHsdjOBy6aFPm+6kiQShRgy5UAdF0CItsqEBSQUho0MLrbJfNAQxofwosrgNAfhUpAO+ZPRpRxQ2jmiDJCjPdIGpFMLpJIQ0Vftx8WgeQz6BlptGO4XDY1fUjzc/Pu5JBegYY6/6dPHnS40/hc9PpNCYmJpw1p0d2sDAvQ76t0GRbaHVZyJQh9YwqbDQabrz6/b4L62ZoeDQadblM1m9B0mLB1O5pLbTbbWeF0srRNlFpYZg/20fhyAMcecKxQmLdbtcx4GQyiWaziYWFBWd5DgYD5PN5TE9PO4uJCctsL8csn887GJZ5bCz2m06nsb6+7mogDgYDFzSSSqVQKBSQz+cRiUSwubnpFKe1tTVEo1FMT09jZmYGs7OzuHjxIhqNhjs6plar4ezZszh79qyzwhQx4FqlMAHgsVpJhPQYUq/P0b2ha1vJCiDuSVpqGr2rwksr26hg03eo1RYIrq+PAsF1QMjPatHIJus30cgr9Vepn4R/W0GmxVv9hKXCGdRkFT5RIkSiG5jvmpycdD4aJusyMpAnFbPyh/ojxsbGkM1mXUg5qzLQz0Co7+rVq66GnuZ30WrQ5Fb2kcIhGo0im81ie3vbFYXt9XpOQNAnFg6H0Wq1XKAD+wzspgzwXQqd8p29Xs9zBIodX2WI1rfDNrKkFYVKr9dzFSTK5bILra9UKrh48aKLSGTtQ+bJ5XI5pFIpVKtVVymEIfHM32LgSrvdRqPRcP0pl8vuWZ1OxwlkWqdHjhxBPp/H+vq68yMywZinT2cyGZTLZaysrDhhtLq6iqmpKdx2223usE8KJq5TFQQUyFRydO2q1cR1pAJDFTDNt/KDDK3VpJC73TNcu34Kpe5FtdSC4IzXpgAqPACkJWW0qoIVZIQ8NEyYTFqDA3g9Q8nVV8bNr1CICkhCltz0eg/gxf+tJUaBwA18/PhxhEIhXLp0yRWlbTQamJycxFvf+lZ8+ctfBgCcPXsWGxsbaLfb7lwxnve0traG69evu6NNVlZWMDk5ifn5eXzsYx9z1gaLvLJeHwM1WEFCFQFgR0NnVfqVlRV3ThcZ5tWrV50/q1gsOl8WGSJrKFKwkcHSitVjTFjNXksQqcWq92jFd0LHrNPIc8WGwyEKhQK2trbwxBNP4KabbsJoNMJnP/tZfOUrX8H3f//3Y3l5Gdvb2zhx4gQSiQSmp6cxGu2Eqz/11FOIxWIuDy8cDmNtbQ1ra2tYXV3F+vo61tfX3dhubW2h3+9jdnYWR48exauvvurawZyviYkJlEolfPKTn8T29jZOnz6Nf/Nv/g0ajQb+8l/+y7j11luxubmJF154AS+//DL6/T4mJyfdQZgPP/wwUqkUfu3Xfs2F4bMosvoOFTYHvPUGab2qsGLEIyuD8BmAF1JXmA/Yter0PeoXVgue65+CNBQKeXzS/Knwf0CvTcEIHQCiJqZYu0J3WtlCN5fF5jU6UXONbMCGapPW0rLapn6nmqV9J59F7TKVSiGTybjE48Fg4GC42dlZjI+PY2Njw+US0Y/B6DQN/9ZowdXVVSwvL6PVamFiYsIj8Fn9gnCRWqOWcZD5MNkZ2BHcm5ubLrye8CZr9ZEp0UriM+iP4mdq5em7mZdm83gUtuX1WgmE488gElUY1tfXsbW1ha2tLVy/ft2VWGJuG/2CAFyhXlpu9XrdBXxcvnwZi4uLqNVqLtAilUohEomgXq+7WoUTExM4dOgQxsfHna+Iz2HADMekXq/j8ccfx8rKCo4fP47Tp0+7cSWkSOgxk8ng5MmTTuArw7cBLtb60t85j6qc8T6FcBXmVtL1b1EPzg3/pgLCdcE9qe+0VplCkgHtT4HFdQCIDJoMjpohhRb9P7R+ALgKEgBcjhGTlqkFEsYiwwZ2GCvDmPmdtoHXkemrgCMTZai8Rh+q1sscpPHxcRfxViqVMDY2hsXFRTz22GMol8t46qmn3OGC4XDYhVjbY1r4HgZMrK6uolwuY35+HhMTE845PxwOsbCwgEgk4irF6zgQIqOTnFF87XbbheBvbGyg2WwilUqhVCphfHzcBWfouGn7OO4cX2r9WmuRfilgl4nxb0YGqlCLRCKuNBbLXXEOLl26BADY2trCysoKhsMhqtUqVlZWcPbsWZcKEAqFXO7axMSEC344fvw4arUalpaWcOTIEbTbbVy9etVFab766qvOumMQyKFDh5DNZl0U4cTEhLO4wuGwC1CZn5931T3Onj2LL3zhCxgfH8cv/dIv4Qd+4Afwv//3/8b169dRqVSwtraG6elpXLp0CZubm8jn87jvvvvw9NNPuzGyypyf0CISQWHFNUyLUi0tWrr8nvdTKVSLzUYVWgGlwUm6l+09ui5UKAe0PwWC6wCQ4uD8W2u2WS1PN4cWjeUG1koBurHsBqTlQStCN6YKSzqhAeyxFjSwgc8AdvNWtAhuuVxGuVxGMpnE8vIyotEoJicnMRgMXFUIheO0KC2tGh5RPxjs1C+k8GWIPP0VetQ9x5RtCYVCrjo6LQQyYBXgtLRo4YyNjbkACdY05JiQKWm6AADP+UzqmOd8AXBWIgMt9D+DBFSJKJfLjmmWy2UsLi66SMDJyUkA8FiAbA/bS0uVUZCs0cjfI5EI8vk8tra2XPHhfr/viiQz+pCVOyhkR6OROwmZR84kEglcuHABKysrmJubw9mzZ7G2tobBYKf2IYNf1tfXcfr0aZw7dw7Xr1/HjRs3XLvV2lFrVv2DGi6vPmG1qAjDcx5I+rtaSPxbBZHeo7A+IXv93gZh6D4O6LUpEFwHhLRsjtUQ1R8FeA/EU/hQoUD9HfBi9Nx01megzNGS+t2YE0UhQ8EF7DIKPYSRwmpzc9NVhN/Y2HBMjsyp39854oPCUZNAKUiy2SySySSq1aoTPpqbpH4LBmfUajUPY+H3ehIy4TUqDSQGL9gcIb6Tz9OgDx1jJRUeKrxYCV4hWQvFhsNhJxz4mUbvdbtdzMzMuGs4LyoMVSmIx+NOaeC5WoR1JyYmnFJD4dZut115Lo4PQ7xjsZgLXkmlUm7dRiIRV1fx/PnzGB8fx1133YXLly/jypUr7kyvtbU1ZDIZlEolnD59Gi+//DIuX77syS/TMaRyoUEc6t9VYaG5VhZm5BzwGk35UMHE/xSUCgfadvH91u+mgR7avoD8KRBcB4C4WRiYoExPQ4CBXSZpNfzRaOS0ZgC+wkvv5zUsCssq4HYD+vm8FKtXLVctwdnZWVQqFbz44otYWFjAXXfdhQsXLuDw4cOIRCK4dOmSO7+JASTr6+tYXFx0jJV+Cfpm6P9IpVKudqGG0odCIZcTxSTisbEx1Go1d/Ivx47vZvWOWq2GjY0NrK+vY2Njw72PgpL3UdgwQpLQqfpUCC2yfRwjVsSn9aL19whBqlXNuSIjzGQyLuxck9J5bEs4HMbq6ioAuGuZF0aINB6PO2s3Fovh8ccfR71ed8e/sC7hpUuXMD8/7xSNZrOJjY0NzM7Oot1uu2eePHkS4+PjWFlZAQBnwbLSCINXfvd3fxfNZhMPPPAAxsbG8Ju/+ZvuOZubmwCA69ev401vehMeeeQRLCwsYGFhwZU543okfGhTMayAtvUJuea1sgb3HQUWBRXXjaYf2IhAohtWGeT+ULKBHQG9PgXBGW9wUqtFNwYXu1am0HvIPBmOzk0HwPM8FTwa6KGJxhRE/K9QlYU8/LRaK7zYJwYkxGIxlEoljEY7hyXWajVcvnzZ+X+Gw6Er91QqlVAoFJDJZFxbyGQBOIZN5hiLxZwlxkoPFAz0DdEnxfqCjUbDMc1ms4mVlRWsrKxgdXUVtVrNBRpo6Svrx1PIVv1dAJyA0Nw8WjpaPNlWNFGfivobbSUInpycTqcxNTWFqakp539iYIsyagBoNpvOaiL8t7S0hPX1dReyPxqNXFV8hUJpYTIvjn7F4XCIlZUVZy2SyXe7XRfQQT/j9evX8eKLL2JsbAynTp3Cbbfdhs3NTZfeQMWp3+9jfHwcx48fd4JcSa1YC6WrtURSIaVz5qeccS7ZXyqRJPVtco1zv3IPaBssVM95DOj1KbC4DgApo1eYgUxPNTkufDJFhcnIZPW5JCsQdUPzc9smhUc0LJjaJQWk+h30+RSQPMiw0+ngxIkTuHjxIm7cuIGTJ086Yap1+RiSz0RghULJIMjIaa2R1GptNBqOkbKfkUjEMXFgRxASdiTjB+DgQftePodtogWgia+0yng9gD0My1rCo9Fu1KP1qVDoEdZU3xfnhnOowTMkBlEQDmS19mq16oGJWXqLFT7a7bazyinstre3USgU3InKKysrmJmZcWejsZ1M5p6ensZwOMTGxgZeeeUVl6Jw//334/d+7/dQLpcxMzPj5qBcLiOXy3mCdnRPqGDStcn+WmWAEaecU7XYOAcK5anVRiFlFUoLO/JzjVi086zC008gB+SlQHC9wUl9He122yVgMjGXDJwQh0KEGiZP5gbAnesVjUYdM9SoRBU81q/FDc9n6um8vJbvtJYY30ELiAmsR44cwdNPP43Z2Vnce++9+PEf/3Hccccdro5ep9PBxsaGY/5kpEyKZTsikYirZg7AWUbRaNSVZ2L0IiMMq9UqMpmMywHjeVXUrkOhkCsDlcvlAMDDWDT0nPliKrjUD8dn8vRjDcDodrtYX19HOp128KfCTQA8fi5WIWHhW64LCmXN6RsbG8P09LTzR9ESjUQiLmKSlsT29razRCnk+v0+Tp8+7dYD4b5Go4FsNovZ2Vl3Fti1a9fQ7XaRzWZd+Hur1XIwrELVnU4HyWQSJ06cQK1Ww3PPPYc//MM/xH333Ye7774bf/Wv/lV89KMfxeTkpIN3b9y4gRMnTuDmm2/GxMQEVldXXb/YXlrVGlxk1yPXpK5VG0SjEbQKLTKCU4Wa+loJIdr+qgJIhZNWmcLJsVjMraHA3+VPgeB6g5Nqihr5phF+uiG5GcjkFM7jJqNQU7iI8JP6pSho+By1LqzWqj4AtdLU6qC/JplMolQqoVwuO9/M2toa7r33XpdYOjc35ywmRhzSP0SNlZGBHA9aGdR4tU6fRjEqEyOTp/DjcSXs12g0Qi6Xc2OkTMyOg0KhNvGb0K119uuYN5tNdxox26h5QJoAzTninHJeAW9YNi0RRlISRuZY1Wo1ZzkRjqPlpOOkRWi17Qwnp+AkDDg2NoazZ886wa2WDudKA3WKxSLW1tbwta99zaUavOlNb8JLL72EV1991RPdORzuJFgXi0WXA8i+KlzLOVHrlG1QXyGtQSpx6pfUudX1bq1qhesVLlQrzELm2kYKQdvOgPwpEFxvcKJjWRcxj99QiIzQBaEMzSMBvPXbNJKKwpCbiwwJ8B7jQMZhQ+m5Ye1R5/qTG5QnED/00EM4e/Ysnn/+eVflHABuuukm/Nmf/RnuvPNOz72sbMA8IvrG2B7mIik0xvcRPgPgQuX5GUsY5fN5F0WoR9QD8FhIfBewG8bOXCD62Dg+rBXI0kcUurxOrTH+X1tbQ7PZdAIOgCuhRGiN+VytVsvdx3lkxCCwy1w1opH9ZsmsTCbjKuMzwKJWqzmFRkPm6TdrNpvuqJjJyUmXrMwgDwq5XC6HY8eOuahGXqPCVdfY9PQ02u02nnrqKTzxxBN4+eWX8bM/+7OIRqP46Z/+aZeTVy6XXRHgW2+9FdevX3fh95wPCmd9PueE65+WKAM1KKy4nlXpUShWrTQbZKHpJrp+rfBneofuG22rWsxBsIY/BYLrDU4WWgB2Q3gB75ElFBx+92ughWp8eh8ZlgoeAB4YRP00qlXqpuQ9NjCEjOOmm25CJpPBaDRCNptFNLpzVMba2ho++clP4vDhw+j1ek6g8Nh6Ht1BgaTWBH1OOkYatk7NmtCVQqxk+AwEYJAE/TfKZMkQ1U9EaEejwqjBq39L/Ri0eOycqRWnQR16LyFBJi2rT0/hYp1b1eqr1aoLLiDkrLAYTztm5B8AFz1JwUwrlffwMzJ1DZhJpVLON8j1oqHqhHHT6TQymQxu3LiBZ599Fv1+H2fPnnXBHoVCwR0wWigUnDBbXV3FaDRy1jjHgO/TeaEw55irhUUB5mcRWetH17f1n+l+s2R9zFbJGwwGnty+gPwpEFxvcLJOW2WACgeReSkjVGhGBZMKLw0KsM/T53JT87kKgZBRceOqb0aZBAXD0aNHndVULBbdtV/5yldw4cIF3HTTTS50nwxO/Sq0QAjDaSg7D0rkewllAbulmVhuiAJPQ81tThMFGsdCK9xTeOg4UnjaSE6OqyoD6si3vkP2XYUQv6fw0gRXzpOGbCtsyYK8FFaEJlUQDYdD56ejdcTnZTIZxONxtNttJ7QIWw8GO+W61Lrb2tpCrVZzpyDznRwHKl+j0cidfsxgjXg8josXL+L69es4d+4c7rrrLjzxxBOIx+NoNBro9/uYnp7GkSNHcPLkSayvr7uoUCpZGlyh/leF8RTaVjiZe4SCS8Pq9W9VKhSmtLCuzr/uTf1dFRYK3gAq3J8CwfUGJ2VCCt1QI1ftUI8hIVTkh82rAGIwgSbf6r1q6QF7IR5uNEYvkjmoIB0Od85oajQauPXWW3H48GE8/fTTSKfTSCaTuHbtGhYXF3HlyhW8613vAgAXOTga7Zw9pX4IQjdsFw9ybLfb6HQ6HutLI7/IdGOxGMbHxx30yFBuZSQM7VaoZjgcuuCP1dVVdLtdbGxsOIanhzuqxcU56vV6TmCqFaCCi9YY+0AINBaLuaKyhIE5Nxz7XC6HeDyOer3ugaoo6CcmJpzgpuDjvNM6oqBn+4rFIgaDgatgzwocbBvH98iRIwiFQqhUKi5X7HOf+xwikQiOHDmCQqGwx+eYy+Vc+oIWzGXh4n/4D/8h3vOe9+BHf/RH0e128corr6BQKGBhYQFPP/00fvRHfxSPPPIIvvCFLyAejzsrmhYwIV72UcticV1qEIRaYVw/6mfVkmoWwqMCoBC8Kp1c09wbDJDy2+fWdxrQXgryuN7gpBozISzCVOovULydTEk3mUIn3CSMTiT8po533qdBFRaCAbxnCZGZklFrRCOwwxRvu+029Ho9rK6uIplMotVqYWlpCdVq1VVZZ3kltU7shqY/g9ovv+MYUcg3m03U63Xn42E5KI6pWoO0sBRuok+J/aOvh8eIqObO8dDoRz/4lmOrGjoFPi1bO89khpw3DUhQX54G0bBfvIe1GNWfyTZzHPlMChRChq1WC/V63aUOUOlJp9MulUEVoXa7jampKcTjcdy4cQNra2su6Zvv55hrdOXW1hY6nQ4ymQxWVlbwe7/3ewiHw7jnnnvQbrcxPz/vLK9arYaJiQkUCgVPDU/ti4XjLOyr1rTOhc4P20yIlmShWIXv7R62z7f5f37tDWh/CiyuNzipBaVaMpmvwoMaAag/CXcRbmTRXd3MFGZ+0JUyd9VOdcMq7KIQDQViq9XCww8/jO/7vu/DZz7zGTz33HO48847sb6+7oTY2bNnHWNIp9OeaEEKWPqnyOB5ACKFhdZMZF6O+rE0YIFVNShgCJfp2VnsI6uu0wcxMzPj8pko8GwCKQMWFKJl4jIAd0YYLTQ+j0JP/TH0w6iQIzMlQ6WFQegzHA5jYmLCBXhQyDGKcHt7G9Vq1VnqnHPNMaOCwLYwsIOpGYwm3NjYcFXmY7GYqyQ/NzeHZDKJV155BblcDvPz8w4mJVzJklupVArXr18HsOMXe8c73oGrV6/i85//PN761rfiB3/wB7GysoJ3vOMdePLJJ/Hkk0/ivvvuw4MPPojPf/7zaDQanlPCVZmz6IOiEH57jPtFFUD9qYgEhSDHazQaeY4zUX+jRlMSTeB+VkUzEFyvTYHgeoOTWkfq86Cmb8PUgd3ES25E3QjW16XWGLVw1fC1zBCZuUbqkXmqZq8bXjXaEydOIJvN4uLFi9ja2kIikUCtVkM4HMaZM2dcZBmFnfWDaHRlOBxGOp1GoVBwPitNBaAQ0IRjkgo5G32mliTfY31fGnigARTK7PRZfAf9PwpF8VpNTwDgeQbH3yaXq5BU61h9NWSqGkDA88Ho46LvkX1hDlk4HHZWkjJfVunnAZC0mDjOzEVbXV1FpVJBqVRCPp9HrVbz1LGkMOa4MTCGvrNIJIITJ07g6aefxpkzZ3Du3Dl84QtfwPd8z/dgZmYG6+vruHHjBk6fPo0rV67glVde8fhmuSfUV6fWjI63KmMWxtXEZB1vrg/+rSgB32uRCc6bhtLbNaPvD8ifAsF1QMji4X74OK/T76yvixvQWlZ8DoUFNxiZEZ9DBqqWAACPQFMHMzf25OQkjhw5gn6/j6WlJbRaLedPSSQSmJubQzQaRa1Wc0xTtVAtU0QhOj4+jmw26ywJFaBaJ5AavaYK6JjRkiQDVie59pOpAgwUUSe9JqyqgqFzoJAQmbW+h8JH4S5ayxrZaedZmSEtQoU9eY1aVBxTJgEzIXkwGDjfn7ZLlRKW2zp06JCDTHm2WiQSceeiDYdDV9md4d+Li4solUruffF4HIVCwfUzm82iUqlgOBy6EPobN27gC1/4At773vfi6tWrWFpawszMDG7cuIGVlRW8+c1vxtmzZ3Hjxg2Pxcw205LWeeX8qWKmMKIKDlUcNN2BioLdo/Y9ClVyHfF6FYD6O68P/Fz+FAiuNzgRXlInstbcI1NR7Y73MbiBTIzXclMrPEgLjpq/hcoAeNrAjU8Gp85pAJ4j1sfGxvCOd7wDt9xyC5aWllzoM7DjgyoUCuj3++6YeYY/0ypSxq25VFNTU0477/V6jhkyeAOAO2ojEtmpRG415Xq97grTqmNdxwXYVRYYuVgqlVx9RVUIut0uWq2Ws0AoUMPhncRrhnwnk0kXGALsWsedTscV9uW4MnkY2E2FUH+LClLmlfFaWogAXIAFIT4mG7N/HBe2hQEEyWTSJS+zrmQqlUI+n3dKBtdHMpnE7Ows0uk0NjY2sLi4iOeeew4f+9jHXMJ4qVTC1NSUO3jy8OHD6Pd3TpoeHx9HoVBArVbD6uoqcrkc7r33Xjz55JN44YUX8J73vAcf//jHcc8996DT6bjTqR955BFsbW3h8ccfx2AwcKHxnANaniQqWtwfsVjMk2Khid+EYS3URyWH46e5jBqpaq0wzqGfpUVoWa3pgPZSILje4KQQhjrkgV0tzQZD6GeqlSvcxM+5gfh8P61T363aI6+hZq+5KwqBAcDhw4edD6Pf7yOfz7v30ofF6DgKSAoiFap6iCQZAxOHtVo328q2hUIhT/QgmehwuHOqMiPl6M9h2+x4qEVEps0+sv+j0chFoikjYtShBs9wPliaShmgTVWw2jv7qWNPa1SDani/ClG2kWHuquWr34xJ0+yr+ug0qIf3VCoVd8/Ro0edILp8+TIuXLjg5pn5YuqH5XqLxWIoFArodDro9XqIx+O4++678bnPfQ6JRAKzs7NYXFxEPp9Ht9vF4uIi5ufncebMGXz2s5/1PFOtFoU7OSZqWallrME6tAbpQ6SPmPNlUQ1rqfPdfKbuY71OLXCFoAPaS4HgeoOTbjy1CMiA/HK3LBRIK4QMUaPglGEpXEKyDm1ufG5IhRb1OgoeMuKJiQmMRiNsbW2h3+9jamrK4ysitEdNmZAV38VaeNRmydjZJlpmrH6uvj2OCbDXGW/Hmu9Wa5TjoBVFyNSt1mzni2PPvnL89YBP/iSkxfmzc2HhJPWpKLNU/5sGEWgwD4V+Npv1JFyTKAz5na41WoEcJ1rEHJerV6+iXC7jzJkzyGQyOH36NN797ncjkUjg8uXLGI1GnrJW9LWp0hEKhZDL5VzB46mpKdx33324fPkypqen8eyzz+L+++/H008/jfPnz6NUKuHo0aMe61ehWfaJz+bc8rr9rCOdU44DhZjNCdPx4/1aGUO/t8qmCimFswPyp0BwHQCyRVnD4d08ECaCWuuKDIzfadi4Mjd1WisGr3AisHuQpYUO1W9E5q5WYrFYRLlcRqlUQqVSwdbWFu644w7cdNNNqNVqDjq7fv26q6BBoUe4jUeNsMICE4kpSEKhkKeEDoUUQ7Xz+TwAuBqJhMo4Bix7BOzAbsPhzuGSZE7lchmxWAz5fB5Hjx515aBarZZHsCmjIQSnDJDWgyobKlQzmQzK5TLq9bo750rz0jRyjSHozWbTzQH9O1raiQIB2C10zChMDcLh55w/QoVMH2DABYsQa01H67ep1WpYWVnB//pf/wvJZBLHjh3Do48+ire97W341//6X+PZZ5/F6uoqYrEYjh8/7qIvx8bGXAQkgzhSqRRWV1cxGAwwPz+P3/md38HZs2cRCoVwxx13YHNzE1tbW3jyySfx4IMP4qabbsKLL764r7XKOeK+4PypgOFY0Vem+0ctbLWW1DLjZ7xeI4B5rU145/lsXBOqGAS0lwLB9QYnP1jIQiDqc7KwIu8BvBq7MjP9Tq0MbQPgLdiqvh21DpigqpubeVX1eh39fh+zs7OIx+MuspCWCzexCj4Ky1arha2tLdf/7e1tTE5OIpVKOWiMzJhCjX0qFouu/mChUHBMhIKvVqs54Uurhz91bOr1OjY3N1EqlRyzHQwGHv8Tk4cbjYYnqEG1f/Uj6Tgmk0nn52MyrR+sSNI8LP5kWD2tOzt3vE+ZtkLCCh3TP0TfFaHCQqHgfHTDobfwMyHCfD6Pra0tVKtVvPzyy5ifn8fJkyfx0EMPod/v45lnnsHLL7+MWCzmKtezwDDnhwE8yWQS3W7XVeK4cuWK2xcnT57ECy+84ATYiRMncPnyZY/PVRUw3qdQud1XFh7eD1bnNXa9KnTKvzUqlYqZRruqIqPtC8ifAsH1BieF5cgouREVpuJipxZNphOPx90m5mYBvPg6NyotNN5PPw43lQoW3qtWDzco8f9QKIRGo4HTp08jFAphcXERGxsbuPfeex3TI+MjTKgwIK9pt9t4+eWXnaXIE4+pqSaTSScUyQCBncCPaHTn2BSGWmsJKDIO+pcAOBiPVkUsFsPMzIxLXt7Y2HDHebDfwG6SNMdNhQqFabFY3MPAVOiz7d1u151IzAAO9o1zB8BV1OAYamSgBtgotExrnaQ+QI281HqQXGcMo6cg0fnh2Wb0m6VSKbz1rW9Fq9XC4uIi/vAP/xDj4+N45JFH8IM/+IM4evQofuM3fgOLi4s4evQo7r33Xgdd8jiUUGjn6JNDhw4B2LFiDx8+7Pykzz//PE6ePOnO/PrUpz6FRx55BK1WywVp6P7hutK1z/njuuX+oRKi1pr6DHUOda8SRlVFkHuG406rjc+k9aW5hnxeYHH5UyC4DgBZZ7KGKtsAAg2YsM5n4vkWTyfGr4movI8MULVNQlF8PjevtktzyAqFgjvvqtlsurp2tBCondIPxPdFIjuHOlYqFRQKBVdklYdKkgGodm2hGjIrtkUFB99P5qx+HPYnGo26cO1sNusqR7B8FP1FZFSaQ6bBKgz+sNGfwN4ahv1+38GXtPwGg4ETyGoBMHrN5gXxuXq9zivvt4nbuubC4bAH2mT05o0bN1wlF8KTWq2/0WggHo/j7NmzSCQSyOVySKfT2NrawsWLFzE5OYmjR4+iVCphZWUFCwsLrvCyrie1MBnBF4/HXXmvS5cuudw/RmQmk0mcPHkSn/vc51yf2VeFC/38tXq99euq0sg1pX5WPeSTiovOA+eYa4DPpqKoc+Xn9wrIS4HgeoMTN5f+VAFF345aZbTGlHFSG6SW6bcxbCQUP+Nzgd0Qa7uZ+Q79nhu2UCigXq+jUqk4K7DT6bhrWQmDbdaIPkJEU1NTiMViqFarHiatbaPFYNuiTn/6tZjrpBozP+dz2Q5gh4mm02nk83lXW491/0gKseo4qgbuN7ccZ1p/vEfDs1V713arsNa2+gUCcJzUiuacM7iF7aJQVH8Lhcrm5qb7noKL1la328WNGzcA7PgOWRNycnISKysrePXVVzEYDJDL5XDTTTdha2sLjUYDa2tryOfzaLfbTpmisGEkqPpnO52Oq7oyPT2NSqXiqq3Mzc05YWyhP107NpDGCjAde/2c48Fxt3tU51NzElW46bNUsdC9FdD+FAiuA0K0tNRZzAWvjl4NFrCRhXyObi7dOITrNBqN79S8IWBXgyW8QsiD3wE7UNyJEydwyy23OL/RzMwMut0utra2POHQPBiQAnZsbAyLi4u4ePGie97m5qYTfgBcOSO2Q6MbaYWMRiOPz0uLylIIseI4rUvCiiTCOpFIBFNTU6jX6y6qkO0nHEgtul6vu7O4UqmUs6LYFvVdqT+Op0OnUinP/A8GAw8cyMALFWjKFGkptVqtPUECOs4asKEwMN/DsaQAsAoLmS37R6iMRXGBHWvzyJEjAIDr169jfX0dJ0+exMMPP4zJyUk888wzLlR+e3vbQY201lTpGQ6HzuLKZDL4yle+gne96134zGc+g06ng2eeeQZvfetbMTs7i9XVVTcuGozBtahWshKDLBSFAOBKmHHNq7XO73TvcU+oILZ+U37OfWf9mAH5UyC4DgAp07CQgkIQ1pls87L8YBJubIUR1XGsWqpq7rzWwpVkCnw+mRCwU38uFNqJOqPWTguiVCq5pFuGYLMCe7FYxObmJjY2NjzaL4Uq4C2rxPFihKCGgXMsgF0oTw/tY5v0UEqNBiN8ppYo4UEtxUQGZCEqhS4JvfHZrMeokKnCgmSyCjlRAFoFhMxUw/t5j4WwBoOBi06MRqMu2IT94/PU6uFYk8ioe72es97UAmESeDQaRaPRwOXLl1EqlXDkyBF0Oh188YtfdAEWrVYL+XweU1NTHoWAgoTJ7Xqa9ZEjR/DUU085a/7YsWNYW1vz9FsVOF0HJLVSeT3TMlTI6JrXQAzOrebQUairckHFUyFrVRB03ALyp0BwHQAi4wR2mRIj91hrjkyMCa7qfNbIKhtMoJuXWqP1lWhwh4UHuRnJ/MkY+JyZmRmMjY1hbW0N8Xgc+XwerVYLrVYL6XQa5XIZq6urLsqQzv3t7W2srq6i2WyiWq2iWq1iOByiVCphfn4es7OzLok5HA4jlUohHN45rwvYEWS5XM5jBWhdPK2hyDOo1GJkoAhzdliNnOPKo0LISAkDsXp8p9NBOp325A6pT4lVK1jNgsEPlUoFnU4HjUYDc3NzDgpWYajWJZmf5lJRKFIYci40MIUWNPvMwrsU2BQ+alXyWs712tqaC9JIp9OeiE4bKMOCxqVSCa1WCwsLC3j88cdx++2347bbbsO1a9dQqVSwvLyMaDSKzc1NJJNJ5PN5Nz+RSAT1eh2JRAL5fB6f//znMT8/jxdffBG33HILNjY20G638cILL+CBBx7A8vIyFhcXPQJG1ygrZ2gQBuCtgqHWu0LBmv5ByJRzqzCsBv3ontQgEbXCALi1aP3RAe1SILgOEHGjAN7zf9TyUUHFjaD1+0gUYrxfNxQ1WdXQdSOpH0ujsGhtKZMrFouIx+OoVqse5s4ag+vr61haWkK73UYqlUIul8P4+LgTWPV6Ha1Wyx15Mj09jampKWehkcGyH2Tkw+HQMSYKKgp4WlUkjg81YQB7GIoyLY4fGRoFD9vB6DtgV+nQd/J6Mk1eOz4+jnA4jK2trT2Qrvqv1PemCoO22eYAqe9TI+PYP/rqrB/VKj1aLYRCsd/vu3B52z62nQIY2MlXm56exurqKtbX15FIJHDq1Clcv37dCW0K53Q6jUQigXa77Up9UUFLJBJYXl5GLpfDaDTC0aNHcf78eayuruLkyZMolUq4evWq64Nazmqh6tjRAlflzO4znbd+v++J5lT/FcdSlSSOiV6j1pX6pgOhtT99Q+dxfeQjH8E999yDbDaLqakpvPe978XLL7/suabT6eADH/gAxsfHkclk8P73v98dLEe6fv063vOe9yCVSmFqagp/9+/+XQ/sENAu+S1uwhEAPBq0atEWQydDoeDjdxReZPbKtBRmIrPS9lgGxes19DqXyyGRSLhyS2oxbm5u4tq1a1hZWcH58+fx1a9+FV/96ldx/vx5vPLKK9ja2nJVFaampnD8+HHMzs664rqFQgHj4+OYnJx04essX0QBohqwWosUrppOwHaToROO0hwlPpsWHAB33IoKGA2sUIYHYM98UGufnZ3F0aNHMTMz46mVx2foveq7pMBVXw3ng+3UOVNhz2vZDn0vn0GlhWuPPiwG2Oh6srAk282xYmg/10WlUkG1WsWRI0dw+vRpDAYDNBoNlMtlJxBpdelaJzxIxaZWq2F8fBzb29susf3YsWMeYcV2AruKnyIPnH8KZ+s3VqheLVyN6tR9y59qiXHerDVFiF7nySpLAe3SN2Rxffazn8UHPvAB3HPPPej3+/gH/+Af4J3vfCdeeukll0X/d/7O38HHPvYx/N7v/R7y+Tw++MEP4n3vex+++MUvAthZdO95z3swMzODxx9/HMvLy/gbf+NvYGxsDL/0S7/0ze/hAScVKJpoS5xfywOFw2FPnpZGZekG1ag0Zuur74w+DjIibQs3IODdyOqDCYVCSKfTjgloMVJgJ79qYWEBn/vc57C+vo5wOIzJyUlEIjvFTtfW1tzZStPT0zh8+DD+0l/6S+5Aw8nJSZRKJQ8z5JEZvJdQHqMBCf/YE5RHo53yQ+xrNpt10B8PkeTYJRIJ99xMJuOBnIbDnUroHFs/64qMWAWs+rtYLWQ4HO453JPE39vtthvTdrvtiXLUJGoeUQLA5aVxHBQaVQHDQAH2i/POz7a2ttwxMmTgHFdgB+pi+L9G8dEK5rwUCgU0Gg1cuHABd955J06dOoVut4vnn38eq6ureOaZZ5BIJHDrrbd6BCHbdeLECZcUfunSJTz44IPuQNJ0Oo3v+Z7vweXLl51yzfs1kEKDeLj+OFecHxU8KrgBuIoXHDvdexRCnEcqflQUrNLIvUM/plp8AXnpGxJcH//4xz1//8Zv/AampqbwzDPP4O1vfzuq1Sr+63/9r/jt3/5tPPLIIwCAX//1X8fNN9/sDn37xCc+gZdeegmf+tSnMD09jTvvvBP/7J/9M/z9v//38U/+yT9x4cAB7ZI6eskMyMBUkKgjnzX/9HMyIDJDJrcC8DAGbhq1ylTwaDssrKTOZxsIwu8YVdhqtZyWWalUXJQho9x6vR4mJydx7tw5nDp1Cs1mE6PR7hH1LHlUq9WwvLzsmCotAX2eBjJwTAklqk+COUHWWlVoTueDY0c/B8eH42/hRtWoNUGYUYjquNf26hxZK0whQgCuWDGVEPWDcQ1QeKlCQ0WDbVBfGv189Xrdwb4WBaDgVAauQguAB2LjPHe7XSwsLODo0aM4evQo6vU66vU6rl69itnZWczOznqsYS3IPD09jXK57PLeWLaq0+lgenoac3NzuHr1qhNYFJwcP0KI/F0hXlpb6u/SPeDnG1Mlg1Yc1w0Fkvom2ZZIZPfIFAb/BFDh/vQXskWr1SoAoFQqAQCeeeYZbG9v49FHH3XXnD17FkeOHMETTzwBAHjiiSdw2223YXp62l3z2GOPoVar4Wtf+5rve6hR6//vFuIGsbCCMkWF9gAvw7BOZWW2NsqMTEoLnirk4efzUSaqAlIrLzCMmc+s1WquJBKZIrVRVo3gUfDhcNhZQWwDr1laWsK1a9dw+fJlrKysYGNjwxXZpQbN6hJMmFWITMeSWjVDr/U0XQZqsD4f6/apX43t43hRIPMd+j6OBX0/tIQ02IbCg3NAgUc/Ey0rhRBVmVHImILVzpNVNiyUzPf3+31sbW1hc3MTtVrNQYeMpmSb9QBKmxjOZ6rwZe3DZDLpAjOmpqZw++234/Tp0yiXy7hy5QrK5bIL7sjlch4/qlrIW1tbyOVy7vdoNOoseVXq2C8LldPSooVkhRX74Cf49ptra2XptQA8+5jf+b03IC/9uYMzhsMhfvZnfxYPPPAAbr31VgDAysqKq2WmND09jZWVFXeNCi1+z+/86CMf+Qh+8Rd/8c/b1ANNKqQUOlIGR8uAWqxqcsAuFEToiH4GZYoUGtZxDew6w8kI+UxCLhrcQGaoDJWKB7BTmPby5cuoVCrO4qF/qF6vO62fwm5rawuLi4s4f/48yuUyALjCrwsLC2g2m+j1es6JryWuKLQAuCRZhfA0uouk/iL6HVTAa3FbVqzXseCcqbVGC8H6UlTA8zmECynMZ2dn3fgyETca3SlG3Ov13LjSQhsOd8/bYhShtaYpyNQvxmsI56ny0ul0cO3aNQyHOzlUhw8fRqPRwJUrVzAajdBoNNz6Yf6VBrswN46wm/rpwuGwq6Ry48YNzM7O4ty5c7jlllvQbDaxtLSES5cu4fDhw8jlcu4csPX1dWxtbbnak5lMBi+88ALOnDmDp59+Gs8//zyOHj2KY8eOOQuc1h7frT4nHUNdB5xPtZT4NxUbCnsqmOpr1OAlv4AZ/Z3joSeMB+RPf26L6wMf+ABefPFF/M7v/M43sz2+9OEPf9iFRFerVSwsLPw/f+cbhVRTBLxHhhCCsVAhiRtBmRc3EZmrbl6FdRQy4XO5MTUiz2qbyghGo5Enj4ttJtPXNvKn5h6Fw2EUCgWk02nHHCm0WUGd/WYlDA2c0DQBawHYNvNzWlcaes5zoRS+4XW0MvYbBwoa+5+aNcPiaSERwtMx4Tv4PY+A4bP1LDItx0WNX/1KwO5p0lwXtOAYUapBFzaQhPOhvrN+f+dwTVq7rCWp1ht9Z+qPVb8o1+XLL7+MhYUFRKNR3HPPPSiVSrhx4wbq9foe/5iW18pkMhiNRk6QVSoV1Ot1lEolV1aJ86ERhOoL1qAI/Uytayp8ajmqQFLL1z5TrTtVOP0CcazyGJCX/lwW1wc/+EH80R/9ET73uc9hfn7efc5ipKwtR1pdXcXMzIy75stf/rLneYw65DWWqD1+NxIXOBmR+pfIEFST5qYgnMOkXmrSFu7j39xE3IAKUao1p0VdeY/+5LMZUk8ojOHWFDpra2vOekmlUqhWq46ZskL46dOn8dBDD2F+ft4x5aWlJSwuLnrKCSlDoq9F1wwDB2hR2IATWn3MqaKw4EnTbBMFJJ9NpsvnkxkOBjsJvbRgSbSmaHnwWl5DoZNKpTA7O4srV67gxo0bmJ+f91QZYWAGLTYGYlC4MRy/3+87H2Y8Hsf4+DgikYgnsEP9NJ1OxykEXEu0vg4dOoREIoFkMonl5WV0u113XhYtcj2vSiMzuQ4AOEh2ONwtqtztdp0ScPXqVfzxH/8xTpw4gXe/+92YnZ3Ff//v/x2tVgtnz57F9PS050QAjlmlUsHU1JQ7aPL69et4/vnncd9997n3t1ottw5UEdHgDApQ7jn1SWpdQfUVU5Cpla37UtNLdI9Q8CtSQT9cQK9N35DFNRqN8MEPfhC///u/jz/90z/F8ePHPd/ffffdGBsbw6c//Wn32csvv4zr16/j/vvvBwDcf//9eOGFF7C2tuau+eQnP4lcLodbbrnlL9KX70iyDmENftCoLjILDWlWZqrBFnyuPk8tOvWp8P1agFdD8dVPAnhPZR6NRq4aArAjHGu1mrNg+Aw+n2c9sXzQqVOnXI4OyyhdunQJS0tLLoKPDJZ918RhauRknhQYFDYkheKazaYTOgq3qo+P7yIUSd+ZWnzqO6QVQ6atpYH401pr9POtrq5ibW0N7XbbU8Vex5oMU8sYqYDmnFExoODVZ3FOtG2j0QjtdtspF0zyppLB9hCqo5+Pz/KzNvhe9Q/SX5dOp115LOZ0nThxAqVSCbVaDYuLix4rhOM2OzvrYObNzU3k83kMh0Osra05K5FWplqSCv3ZCD7r39Vwd7sndc/oZ/oezgH3hlYX4VzZsP3Az7U/fUOC6wMf+AD+x//4H/jt3/5tZLNZrKysYGVlBe12GwCQz+fxt/7W38KHPvQh/Nmf/RmeeeYZ/MRP/ATuv/9+3HfffQCAd77znbjlllvw1//6X8dzzz2HP/mTP8HP//zP4wMf+MB3rVX1emShQAvH2b81uk1JoUP9DNjF6dXq4nNVEOmxDfoM1U5Ho5FjUFtbW64iRjQadblVKuAGg4FjXowIm5qactFkrK6xsLCA5eVlp+Wzreq30UoFrVbLwZLsE31KmjwMwCMAVAhREKmywHFSAWahQgoS1e6pqdPa0HqIZGLdbtdFGFIQMCDJT1DbzxTG5RrgXHEcFN5k31WYK5TJZ1DYaLSoWmu0kgeDgfMncpw4HwAcLKnBK6r45PN5RCIRNBoNXLt2DfF4HKdPn0Y8HkelUnHPoBAMh8OYnp5Gq9VCvV7H0tKS61e5XEar1cLExISnmj/POuN1KiDU0tL54trgeGiul4XxNfdNFUUNBtH3cb3wb/08IH/6hqDCX/u1XwMAPPzww57Pf/3Xfx0//uM/DgD4t//23yIcDuP9738/ut0uHnvsMfzH//gf3bWRSAR/9Ed/hJ/+6Z/G/fffj3Q6jR/7sR/DP/2n//Qv1pPvYFJHMiEm9VfoNRo2TEc9fSLULoFdZqXMSf0A3GjKjFSoUQPltQy0iER2Tq2NxWKo1WqYnp5GKBRyUXNra2tOO2Zdu2az6Ym0O3XqFN70pjdhNBrhwoULqNVqrpwPE1LD4d2jRRT2ZHUFhherD42QIBkxc3bW19ddqaj5+XkHPwK7fi8KRFUS+L1GAfZ6PQc5qrOfVh39OYlEAq1Wy5VM4t+MaEylUrjrrrsQjUZx+fJlZ/lQIFLIFwoFx2BpgfN3zdMaDocuCIbwMefLQlyaaJ5KpTw5T8whpJXV7/dRq9WcRci+co1wzHjUCdcbAzIYIMJnp9NpHD9+HBsbG/j93/99bG5u4t3vfjdKpRK+9KUvYWFhAbfccosbAxblPXPmDM6fP49Dhw45JIiBQPfccw8uX76MTCbjfGU2ctAKZYU6VTCpj4r7iHM7Go08fj9+T2IJMI0etX5qa3kF5E/fkOD6egYzkUjgV3/1V/Grv/qr+15z9OhR/PEf//E38urvaiIDpANeGQKwN4AD2N1wmj/DDcnv1Nejx4r4aYbArjaq1Sj0eWwDf49EdmrThUI7hXWbzSbW19edtk1LRH0KnU4H586dw+TkJJaXl7G2tuapt8ezscisNQ9Jk2r5TAoWjpdGB1Lg1mo1D3RKZqT90SAFAJ4xUM2bWreOh44fLRUrWEKhkPMFUkDx9F8K/X6/77HueA8ZLoNK1JepzJhrRw805H+uLQun6Xpi+1ksORKJIJvNesZeI/cs0QKh4qCRhda6KxaLePnll/HSSy/hbW97G44cOYKLFy9ibW0Nhw8fxvj4uIODWRJsYmICU1NTKBaLLhBkcXERx44dc75ZrgdaRGpZc11Z1MIPvlOI0e4T9Uvr/Zw39clqCgvHToVoQP4U1Co8IESBQS0tHA57LCZuVG4KwjUMawb2nvdDyEMxfAoiMiNg95wrTZbkxiXsws3G/+12G9PT08jn886Jvrq6isXFReTzeWdlkckWCgW0220UCgXce++92Nrawvnz5zE2NoZCoYCpqSnHXDc2NgDsWptkkmR6DOFuNpuuj2S2wG4U3MbGhusz87No1abTaSckOLY6F2RsDCpg9KFaRBxzJuUmEgknkMioeHgix5Hlq1588UVsbGygWCw6X5q+F4BHANM6YvAFgzbUOtAAFWW6tJK5xhhIw7HgfRRsrKlIq4Glm+r1ugsUKRQKSKVSe/xHGq2aTCbd85nXpwE26XQar776Kp577jnMzs7ijjvuwB/8wR/g6aefxi233IKZmRmsra2hWq1ibGwMhw4dcpYlg0du3LiBt771rbjnnnvw6U9/2lnQXO98H9eFogOqjNgx0z2jyowqBRqxOBqN3Hqkdc4x5pwoJOnnTwtolwLB9QYn9Tep8CIpjMEoNoUzLARoo+oAb71D3aTAbk023qdaowZmqHOa7WEoPAUej+1Ip9MukZXvZFIp+8b8JAZspFIpBytSY6ZwVp8UBRcZ0vb2NlZWVpDJZBCLxVygBH1t8XjcCQf2jYJCyzIBuxq3tbKsM14ZEfuggotCzUaxcTzp6202mxgbG0OpVEI2m3XX2gAPhW35mVpTannrOmCflMHSMlerQfP0OEfJZNIThKFj1Gw2XUi8ws523anVRYVHj6/PZDLo9XrY3NzE9PQ0SqUSwuEwlpaWkMvlcPToUWSzWVQqFbcPtra2kM1mkc1msbm56VIx5ufnkc1m0ev1HKzNsbLBFjp+OmZqZWmAEsfX+qrUR8zP2G+ueYVl1dIKBNdrUyC43uCkG4xar80j0Q3CTaTfqW9LBY46ofmdBizo9zYAg9eTIelGJwPMZDLI5XIuQo8HKzJpWPsF7CQJj4+PY2trCysrK4hGo64yAt/LYAhg91iKUGi32gfzeqix12o1rK6uolKpOMuJzJ7HrKhPS/1HFkayjAjwBjZwXAlhsW2sYq/P0/GzDnwAzhLjYYpaT5GWkK4PjqWOP+CtxqB+GQsXM3BBtX1tK6E1fk//WrvddkqIWuG1Ws0T5UgrTqFdZdAUvhSS3W4XiUQCxWLRWc8s7v3qq6/ixo0b7pSBWq3mxpyQ9Fve8ha8+OKL6Ha7aLVaKBQKmJmZQblcdn4u9W3pGFmYUKE+jgXHh9dpEIq1zvV+TXDW//Qvcj1YX2pAXgoE1wEgyzitrwrYG0GoGjm1ZeuIVwjJT7AB2GMNAHBWHzVHwFvUNxzeqZaRz+dRLBaxtbWF9fV1pxn3+313TDtrA1arVYTDYVf7stls4sSJE85i09D0XC6HVquF9fV1AHDJs4D3XKnZ2VnnB6JAYsg1hYnCYbFYDLlczo03/X4aWKE+CjJxwnIcVz6L1pFaVppfRXiRjJJjMxgMUCgUXC4ZrUjOD+eLEZKRSMQJHkJ1Coty7nn0CIM0+L1Ws1ALjf449pEwW6PRQLvdxtzcHFKplDurjOMeDofdsTTJZBKZTMZzbArfQ0iv3W67PnS7XQc79no9JBIJvPrqq1hfX8fZs2fxwAMPoN/v48aNG6hUKs4apz/w8uXL2Nrawo//+I/jLW95C5588kl0Oh1MTk7irrvuwp/8yZ945kctVg0qsaHq9MnyXgpyXsM+cf9wzXCf0VLVYAytBWlhYL+cw4B2KRBcB4AUh7cL2s9iUuaj1pHi6SqEVPjpRtYNqRaEFaB8L9uqTJyMiYxeoahcLudgl06ng8OHDyOTybgIv0QisUcz1Yoh9I91Oh1XeLdQKDg/AxnN5OSkqy9IBqXPIaPhgYV27DW02QZHKIykYwDs+qAslKpWmg3Q0GsI/2pCMMfalhtSa1mtWPX/Kcyl2rz62CxMZYMnuGboSyIztsJPQ8JpJfNzXqf94/ObzaaLyuTcNhoNNBoNjI2N4f7778exY8fQaDSc4GK/FGZutVquPNRgsFP1/9ChQ2i1Wh541yp/7D+fRb+ljokVJgqt2z3JnyrYFBbkfrMWsCpqAe2lQHC9wUkZpFaC2N7e9mjZ1tcCeHNHyIAsAyWpM9mSCkYVXmRWupHVvwQA9XrdI4jS6bRLDNaj7sPhMGZmZpwlpoxlNNo9q0iTi2OxmLPYWBlibGzMBSeQqTJ5NhqNuiAADeumtq9JucpQ1J+huVLWQe/ny+Fz+DmZuQaycIz5XwUlowDZPp0ztXCs8qCKAt9Pga6Ci2OkR5ho+9VqYJ9Z3YFHqejRNVyPvG+/clgWbta/OcfhcNhBv+12G2tra+5stpmZGSwvL7uoVT2uptVqYXV1FVNTU8jlciiXy0ilUq4yD6t1WHhSUQdtK4OCuL5tH1TJ47jbivK6PhQF0b3K9ti9GdBeCgTXASEVPLR0NCSbG0cZmIUPmYvF77gpaQGQyXGjMi9HE4atP4Yb31pz3LDtdtsxucFggHQ6jfHxcXQ6HVy9etUxgsOHD+Pmm29GqVRCtVp1SbJsRyKRcEEJDK6Ym5tzkAshvm636+AcnhGnQkEDTQh9Me+MApFjSUHDvjHUnEKTjn7CpsCuX4iCgNYkABflqZ/zO4Ui1fkPwL1HBa1axhqmz/eo5c11wHfxfYPBwFm1tCx0/dDvwt85DjzTi/MA7JwQQaiVBZRp2aqQY8ALn8Uka0Lb09PTrv30WakFff78eczPz+PEiRP48pe/jGQyiaNHj7oixpOTk1hcXMS1a9dw7Ngx3HTTTfjoRz/q/GHZbNZFXrIf6rui8NMADhUo3CNWIOk+1P2naSkcf46p7iUATsjbYs0B7aVAcL3BSbVYMlF17iupz0rxd42AA7yRiIrlc9OoBqoh1NomhcMU4lLhpRYVNzEZIwMvqFVns1lX/ZttpbDSjc4ADAoPhV1YZd0GQfBvhYB0zHi4o/qYCI2qH4Jt0Bwly1hUaKufiVo4285iubxOhZUqCGrBaIg2g10YOk7BooKSc6cWkTr/qQhwHWhwAN9jx5Dto8LA/xRopVIJiUQC9XrdU1bLPoPr2qZjcD0yAEmFSzgcRrlcdgE7sVgM6+vrOHbsmFtrk5OTWFtbw/r6OjqdjjtpezAY4OTJk5iensa1a9cAwHPUi90n6hu0iIZaUtyPOmY6bzaAg++ykKGuG1VQA/KnQHC9wUmhKc3NUUZD4kZQP4dqi7QENDiDDILP4jX6PsDr5PdjpkycDYVCDtpiAEW323VBGpVKBe122+VxUcAdOXIER44c8ZQEYkg1AKfZRyI7ZzJFIhHcuHEDw+FOJQi1Shh8oX4shTRtlfJsNutOfaamXavVPAyF46jCmNCtCp3RaOTqI9K6UNiI0B+VEAZfDIdDV4FCAyx4D4+zpzLBdk5OTjohr9Am55xQIi10C3+yXJv69qhYqK9UhaMqB7SWWONxfX3dnVC9tLTkhA7Xmv5N31coFPIUluWaY+AFq6Gk02m0Wi0sLCy4HEFC0YlEAu122wUEfe1rX0MsFsM999yDhYUFLC0tIZPJ4NFHH8V/+2//zcGLXOecW3tUDdcEoXk/NEPzG0kapMG6jtp/vzwu/tTAj4D86S90kGRA/+/J+i5sIIWfU5jXW8tM4UQyBy2sSqbGTaNan1oP1ofDZytcwueRiWYyGRfRp9o6n1UoFFx1A2rTADwWg5Z3oqBRPxDhImWMZLwazk1Si0KvoQJgLQSFHHkdQ/UZjq8CXSEvCjMyRO0jr2+322i1Wi6oxE9JYBtZrZ4nE7MoL+FQKiMqNHQMWIzY+p4IFdsyVzomVJq4/hixCMAdPeQ3DhqIon4vte74O38SJtajWxiCz5JTnU7HtWc4HCKdTqPf7+PKlSvY2NjAaDRCpVLBjRs3nB+V91JxUytIfZAWBlRkQfeizqMGyah1yrmxVhkAj6XJ91moP6BdCiyuNzhp9JEKKf1cYTvdMIrRA7s+C1pS3JSKwyvcwQ2tzISMz8Ie+jwydPoUCPdls1kAOwEbZJRsey6Xc2HxhIjUcmRiquZLJZNJZzH0ej1PZJZG7KkgUBiRDFSFjkJnGqyg8JpaqVawqTDUwxhVqJHIUDkWFDwWmqKwo4JBS6RarXrOpLLQrPrB+D4KGj7f+nJoKTJdQI9I4XOtZQHs5J1xzDc3Nz3+NIWoNQhGrWH6WpVx61hzrmhZNRoNd4wJ6z0yTJ0QdKVSwebmpvO7ra+vo1gsYmZmBtevX3ft19QFttNPiOg+VDjPQqy0qLh/+J8WOJU57heOq7oCrL8xIC8FgusNTtzghJXIQNSq4eJXyIJM3pZrAnbzhbjByOzJ+NT5rIJNo+nsJiN8RWisWCzi0KFDmJ2ddbBboVDA+Pg4XnjhBY8jPJlMugrfly9fRr1eRzQaRa1Ww/b2tssBImMinMZQ5//v8v+3a9ltZhCOhBEOhV0x2X6/jz++548dc6N2Tr8WaxUOh7uRd6oMqJXKfquFyUrvaqEyx4rtZk09CthWq4VOp+MCZDQvjsESFPg8vLFYLLrrm80mwuHdiEmFAhV+JOylvkgVxCw6zLECdqI/+UzmfGnpMApSKhvsUz6fR6fTQaVSceMYjUY9bWRuGlMlOD7hcNgdRMkxZ5AH54ypDZVKxa3JyclJrKysIJ/Po1AooN/vY3p6Gs888wy63S6ee+453H333VheXkaj0UChUMBjjz2GX/mVXwEAlztmYTn1MXLNc/1x/lWwUZHhd1odQ6NH+/2d8meaUK4IhxWQAflTILje4MRFrVFi6q8BdgWJQhrUcrVChUYxKQxBAaQ5Xdx8/F0ZOLCrRXMj29B8RgXyXel02iNI1KpIpVLIZDKOSaoAUTiKDI9t/6ELP7RjEYxMySOEEAp7qx58/1e/H9FoFJ/7ns85fwb7piHOHFdaN7QQ1P9AAaGCgEJdYSaOE79T4UZ4jf44wo2bm5sAdg5G3N7eRjKZdBGTFLQMaEkkEhgfH3eRexoMYa2+4XDogf/UQiZ0qYEbXCtULrRvhBj1aBR9FgW1QoH6u8KuJM1T03dpqSxeR6uL495oNLCxseEUnF6vh/HxcSwtLTlIcWJiwgm8mZkZtNvtPVU8bBvUmrYKjELR3Hu6B2jJWxiRz+WcALvKp7W0A8G1PwWC6w1OZIIKO3DR6yJXfwiwG0zBkHAbaKHwDTcIIRMLlSikptAJLYLRaOQgOxVu29vbWF9fR6vVcqcYr6+vu4gzavrT09OIRCJoNpvo9/soFArO6qBVwn6EQiG897n3YjgcohfuIRKOACMgNhbz+IXYT7YJ2GEej3z+EcewPvXAp9wzVWgpDKoWJZ+peVCEJTlH/E79Rxx7JjiTyWmggw0OYHsIC7LWIv0+09PTrj0alk9YjcyT9fBCoZCrJFIul11fWdUiHo97QvUZsUiLktezlJcyWlrNmluoqRX0TXKsFfaj0sBoy3A47M4kazabKBQKSCQSHoWGik+9XnfWJQ+QTCQSKJfLuP32293vDNJ48skncfHiRZw6dcrVLaRflP5G7i36YrU6iea6aV+4H1RQqQWlApFzofA8r2eADOs/8vOA9lIQnHEASPNpVHvVCCf1TVFDVFItUYWgasD7WXPqd/GzupQZkegzqNfrrloBYUQ9diOVSmFiYsJVj282m56IQLaBfXj3U+920WiuSCv+r3YaAkbwVoTQja+QDAB87xe+18Mg1AJgv9gX+m8Ik/H9KvgV9rHMjf/JyCnYNKRcgxISiYQTKslk0lOtXvtC5YLBHoR/KUC5NjSggsyf7yGcxf5by4vChe2n5WaDVNg3WsaEBlWIU0ATXmV72SYdc513DfbgM7jmGHnKIA1gRwlj2azBYIBisYhMJoOFhQX0ej1MTk46KF0tLlVQrKBi+1VJpLBXeE/9ZTp+nAsVaroe1drTfR7QXgoE1xuc1JmuDEWhCgt5qBanFgI3EJmYMl1eD+wyYGU26uey7wC8YftkyLSWbPQe20L/zfT0NBqNBtbW1lCpVPYwezKIR7/4qOuvBhiMhiMHlTnLIBLFCLtVx63Q4nPe8fg7PAEbylQ4Tv3+Tm1BtVp1rPUdKgB4jUbjqdDiWHH8GEFHq4Y1+LSSBOeZdR4pTLLZLDKZjCesXRUaBrfo6cSWUVvBpb/reGi/9F3sJ6FVvpcClUyfQl/XrE301qhICyuyLRzjdDqNWCyGVqvlhGG/30cymXRIQTKZRDKZxPLyMmq1mkteZ/t0LgBvtK2uCV2Xul4Unuca49qxChHn0cL/3KsBVPj6FECFb3AiM1S/kAoDMgM6yJXhEG5TxzFhCMsw1a+k0V70ddGvww2lm1mhIW5Iat1kxCy9A+zCbalUCseOHcPc3ByuXbuG69evo9froVqtOmZAhve+F96HYXToGJ6zNsP/l5lEwoiNxXZ+/l9mtN3YxnZ/GyOMEI1EPcxf/VMPfeYhfPbhzwKAE7bxeNxFv3Fc1MHOoAe1EKzPRv1E1k/GQBZ7KCOrwqvVy1OVOTe0XFkdhJ9NTk5iOBxidXXVBbCQ+aqSwgRezSeiH4vBCuwXLSsVcvQPsfQTmbxaQ2ybFsEltEwGr8nYvJfHzoxGI2cNKvzL6ENeyxMF+v2+OwqHsCdrFW5tbSGTyWBqagpPPPEEXnzxRdx55534yle+4oQqLT7Nx6NVRyGpCAf7QmtVA6B0X1o4UCF+Km+KdqiAtAIvoF0KLK43OOlC5t8KRVmNn5+rgPNzfCuUpFaIMmO9nqSQiLW8aM3F43EcPnwYxWIRjUbDFWMdDAaeaDlWrOCZWfycR1EoVENGqUyMGz4WiyGXzSGTyexYWhyjcAj8R1Kfi0JQD33moT1ave27ZUj8jExdfTlUCGwOmj5TFQi1YBSapMKi4fR6P5+n45TNZl2ABJ/Vbred741CSsP1+TzOH8eZwRbWuvJbf6zEwQAOC/lScFNY9Xq9PQpRt9t1x94QjuM7OdYKqeq6GwwGnlQLzgEPcCwWiwiFQtjY2PAoCWoVqSXMudb9Y/eHwoNa+kthTd0fdv5VUKoSoShFQHspsLje4KRaGEmFE7VjdRRrxJsKI4ufU4PWoAT1efG9KhCt/8aPkZdKJczPz6NUKrmoLmrIrJjBMGlgJ4KOp9iydp4NNVamBewGn0QjOxo8gx76g90ox2gkilF0N3CFQo5wJ/vt58cD4Kwi9WuoBq7wEJmRBkYow2b/1ZJS5s82kJHT16i+H43g4/Vk8LSKNeScFS0A7KlgQaWA7aRlRsHGeaewUXhR16WFs3Qc9UgWhcMYfMI26Jri4ZR8t4Xp+Dy+Q5PGaXVZBYKRtRMTEwiHdyIyWXT31Vdfdd8rREzhqnPKNcP3qfWkaAifxflQSFmfx/ZbpUDHMSB/CgTXASBlslzw1HIJnZH5kNlraRlqimodcYNoJJS+T608MhHVjJWBAbuVBOLxOE6cOIH5+Xnnm5mdncVgMMDy8jJWV1ddu1OplMtn0gMTKWASiQTe98L7dtoQ9kZTaiQbGXy700a71XaFVEnaVnWQkwHx+0e/+Cg++dZPeoqdDoc7J/ECu1GKOjY6Rn7WrfoFgb2FVBkxR/hQgyB4NhWj5Uqlkgeuo2BSq4DCn4EJk5OTHktBI+nYTrV6CPPaPqqA0gARwsG6BhkdSt8RAAe9tlotZxVx/Nm2brfrqvenUimk0+k9VjDXNiMQAbgxAIByueyOuBmNRkilUtja2kKn08HMzAyGw6E7hfuhhx7C8vKySz1QaJdWnFq5Cudxn2hCvEKBvEdPJedzVXDxOWphqXITkD8FgusNTipklHmoJaQWmEYwkRRa0eeoj8pCJWSGxO/tPfyp0V8MDJiZmXHh68ViEVNTU9jY2HCnzyqMQ000l8t5Ct3a/B3V7lX7JuTZ6XbQ7XYxHO1qvpp0TdKqITbIQMdRozgZ2ECmqb4jnQuOmzImPotWph1H5k+xvcpA2S6GyFM7txa0Mkl+z/Gl8kAYrdFouDB19RWqNce+WZhMrQ4VsPpujWrUMWSQSbPZdOPOewkRskoHrT4/a1fHkfPBtrLUExUjKkDAriXHShvtdhuFQgFzc3MuIMgKFb6L+0yFre4tCyFaK5LjYv3Pun50vepBoIEQ86cARH2Dk25AhXAIpZGpscQON4kLFR/thudyQ+kmI8Miw1VNE9jdOBQ2mqiqcBKZYa1Ww7333oupqSkAcA76GzduYGFhAZubm47J5fN5jEYjVzGBDJFRZ+95+j1uHJRZa38IlxHWi8Vi6HQ6KFfKHh+FhoJrOL4ViHy3Vmug/0rLTlGg0V9EIoNl9QkGT7CdjE7U8eb46/M4nuPj4x6hrrBSOBx2CczhcBjVahXlctmNryY2dzodVKtVNBoNT+4XhSUhstFo5Kw5zoX66gi1ci1xDLVUFvPCKLg0OIg1JTl/rCjS7XYxHO7UGUyn066/1kc4NjaGTCaDfD7vGa9YLIZ8Pu9J4lbloFKpoNVq4cEHH0Q6ncaVK1fc4aUKqbO4M99HX6PCubpeFG7XKES7vzSyVRUrXQdsh/ocA/KnwOI6IKQaNhmHWktc+OoXsNdazJzPVIjDL0RaLSz9rzCh4veZTMYlG09OTqLT6WBzcxONRsNFoDH/RoVQp9NBLBZz0Bywax2qpcHPXX9CAEY7P8Oh/5s83fce8Gh9ByoAlGk8+sVH8cVHv+iYLdtHHwrDya3/hY55DdVXBqXMiPdSgLBdqVQKhULB+aAikQgymQwymYyrHagpB2TkfBfnin4vtX4oCAF44C31YVkLmsx4v3eqH1LXCAWWzhnbpwyca2F7e9sJOrZT/ZocH7U+dF7VAmako84Rla16ve6xsIAdxYpzrWXMdE1oAIUiABbtsMekqFWvELuOnR+SwbG3/sOAdikQXG9wUuaogQp2Y+x3L3+q9kZnuUJFtCD4PS0bvU/fZX1E1E6Zo7S+vo61tTVkMpkdC6hcRrvddlomK8WTydAKov9BoweBXSZoYbJQKLQjrDBCCP+XQY680A6vI5NTx7cKMf2eEB+tBB0X9p8MjWHRjMZT5qOaOKFUdegrA6Pg6vV6KJfLTglgdJ7OqYZq0yKkoNKoRJ0zRnG2Wi1PwAfHSaPrOP+dTscFvig8SAGpY6gQJy1cN0fhsMeXpv3n2FAA6VyrD1HXsvaL7eBYWP8v/V31eh2HDh3CyZMnsbS05PyqzPPinCkMT2Fj4T0NXOHvulZ13VEQ2n1q15tVAgLanwLB9QYnLnhqqmQ0unm5wbUAr1oq/EwhQOvXUiGmOWMk3WRWKNCf0W63cdddd2E0GuH69evY2NjALbfcglarhWaz6UKdx8fHcfr0aYTDOxW8h8Mhpqen0Ww20W630e128f4X34/w2K6/Ri0tP19CJBxBdGwHVh30B248yLio5Wpwi46x5mHRClDNmZ9p7g79UeFw2FVUVwGgApnQlzJgW7g2FouhWCx6hNHU1JSzQBUOZm4UI/cI0Wk0HBm4tVapMGjpKrbJ1qvkOBBypFDSaxRethYySYsO+530q1Y8oUES/7YQNU9tZtpAMpl0lhNLYPF+q5BsbW0hkUi4RGTCw5qCoHtDoVRgN4BDg6ba7bZHwBMy1mASFdZqpZKsrzkgfwoE1xucyBQIVSkEotaHDdSwwk03iEI6irNrQV7702qACnmwTalUCocOHfJYMBRowG4ZnYmJCWQyGVeTjoIrmUx6/AkAPAyXfiIme+q1kWjE1dQbjUbO6lK4yZKFWgG4sSbD5nipBcprFEJj/2wEGrB7MKMyLT/ole9PJpMuhYBBDRQqnGcyWo6LJr/yc1u1QXPBeC3br23VPrDNCl/q2iNpBB7Hjda3jhMDcvRdlknr2Fk4Thk7/YIaQMFrVEHRvRGN7pw6UK1Wkc1mXS1Ehcw1aIT9JYTuh3KoAFIoUedc957tl1plANz6Dqyu/SkQXG9wsptaFzs3mMI+fptErQZuQGrWCnmRySumT8aulhyvs5vzzW9+M+655x50u13E43HcdNNN2NzcxLPPPoulpSXU63W0220XcMDk5OFwiEql4pz/733uva7dypDUb6SMhoIhmUjuFOYddhAa7kajaYK2Rs/5MQx+32q13O/WMtJnaRACq1UMh7uHYaZSKddOtZj/f/beNEjS6yoTfjKzKvfKzNqrq7p631tqyWptjTZbyBLehkUQJobABAHzgzEwwARBEDExMcAMEPxh5ovBDDPBMMPEYBsz8hAY27JkGcmWui2ppZa6pd67umvr2iv3zMrK5ftRPLee99RbbRsG6JLyRlRUVea73PWc8zzn3HOJKFToKSVFX1qpVPLkAGSd9egSPacrEol4wuqVUlbqkHWikuM9qqyB9Qg3HQvWVZWBGlZsWzKZ9EQWqrGk12qEoypljg39dMwgon4znjjA41n4PmCdfuS40ADg0StDQ0Po7e1Ff38/rl+/7p6pyaZ1G4hm1lAfnNZd52iz2XR5Ovkc1p1zi+/iM9RvrIiuXbylrbhu86IWs1r+zC4OeENyNVTZUjhq7fNHheVmyEyFu1rmwPoCjsVi2LNnDwYHBzE5OYm5uTnEYjEsLi5iamoKuVzOna1EIaeHGHK/C6PWtKglqxSVo02DAeBv1zd9Xay/1lWRm7V4VZjofjU+h+2k8APgyTtIC599ptSjIlbbDk9+RQ3v/9t0SNls1qEwjXRksYrYbxwVYelYa/YU9YmRyrOUoD7fIjNrUCn9rHOT9Kr1j+pcssmEqbgYAakGhp33zBhi/V5KazMakcZFLBZzc5Nto+Jhn/EdynIovakUpiJrnYc69n5+LUWUel+7bCxtxXWbF53M6vgHvJterTWtGQuUTlSfBwsXjWZt0MXIBanoTy3Mzs5OdHd3Y3h4GOl0GidPnsSNGzfQ2dnpDhtUVMh9NJqZQAWk0i3qxwPgSa7q0EtHJ1rNv/VHNb0CW5WJKmSiNEvdWGqHdabPiQKMvi4eG2LpMw3A0M907DRM3CIjjrnmKdRksNr3SnfqcyzVqwaAIllFpexjRRSkgi1ysHVh37KftC02G4UfRch3EMEx6lARor6T84rzUetVKBRQq9VcVn22v16vO38k+57BJ6wXlaMNJtE5p2vHRmLqXFBDRuei7snj3FDk344qvHVpK64tUKzjG1g/6FB5dyIYUiZ2wXJBccGqI54CWmktLmalxqjglIoKhUI4evQoRkZGUCqVcPXqVSwtLSEYDKJSqaBarWJ+fh7AmmAoFou4efOmEzbM3K2h2yoItTDjNylSCkZ32GHrb+nAv5WJStEp/aIKkO1n2/VvBl6wz+nnSafTHrqPCEDz1en+Mn7ONrP/9BRhHklfKpU8yYmJfPgZFR7nhW661c+pMNgO9hX3UbHuAFzePkUZdiMyhbEesqnIgu8KhUIuI4huqPab11S8Oi/Zpnw+7xSN0oAM96/X6x4KlXUKBAKYnZ1FT08P4vG4y0LCPXRdXV1IpVKOMuzq6vLMZctgsO+oaIjaiCBpQOgxKRxrpUe1bSw0CgCvP7ettG5d2orrNi9KV6mQBdZpIp3snPxKlagQVsVk6TClgpRy4nPsvp1ms+ki1Hbs2IFQKITFxUUX0VWv15HL5Vy0IC3pjo4Oz8GBRDkaCKBoQNsdDAbR0dmBANYOyVT6yZXA2inIzWZz7Xyu1sasI6oYVVgB3tx0vJ5CmNY4haha5LZvgHX/ooZO6zgpLUaBzO+VDuMzdDuE3a7AYq+xbfZDFxT+emIylbzdx2VpMApqzjUKePWFKXLWPlGFCHgzm1jKTpkBfq+oUjdT0wigocHnBgIBRydy4z7pXr5LzydT+s8yF7qGLFNhtwzo+uQcU0TOflYjs628Ni9txXWbF052PyWj3L5+rotdFw6L+rooYClIAK8iZFHUp8IyEokgl8theHjYnXhcKpVcRnLSgmpV8uRbRXW6WNUxrnX00JvBALp7up0A4JEWgcB6NnhHLQUDHqFyKyX29Ye/7vaD8Z3sZ+vXU2qOiIH9a40MbRv70xoSHR0dLqcf7yEK1aADFZwMs1dlxGeHQiFUq1WP0UIqz1LH9C0Snahy0vFW/51uzdD2U2Gp0lO/oc4jRTEAPH5P9j/vZf1UsVFZAeupsRgUkc/nUalUkE6nN/iViHDV78r1ooYGP1N0aX2wWj9FpRxXFl1j/J/10j5pK63vXNqK6zYv1qELYIPQoKWm2QNUkKnPQ5WWPkP3ePnRhepMp1Xbaq0FEezbtw+Dg4O4efMm3n33XUxMTDjru1AoIJFIIJlMolAoOOsegEuvk0gkPO3g+1jXRqPhaDKins7OTgxtG0IqlUKmkMH01LQTfvV6HY1mA2h5Ny5rUcGpPiK+X/08TNVUq9Xc/in2jwomCm4VpurXUOWhdJwqax4GWa2u5V7s7OxEIpFw0XOKetk3aqk3m03Xr9pmKoBms+kiISnASRtTMRB16f4p3RfFOnPDNcdL/VlKuwLeY0mUVmW9uSeL1xLVal/yM90Tx/yGkUgEhUIB2WwWAFAsFjE7O4vBwUFs27bNnUrAvmCaMWaK51pgLkO+gwEbpAM1QlVpaD5X1yCRKPtZDRWON5kMttuuzc1o1vd7aSuuLVDU96A0E+ClHICNmTYU2TCDgFqevAeA4/EpCDXiUIMm+F7eOzQ0hI6ODmSzWczMzDjFkkgknJOcQqjZXAtPpvBUJatFBTzrpr4s9gsAdHZ0OoHDMGr1JdjnK+202XfaNxSeFETquAfWFRb7yvarH5Xkh+BInTKjA0/01dx9SjFqP3CMrN9FDR9LV6ri5eZmPUGZ99AHZ+utbeTn9LWpT4rjx3ZqAAbHic9RelQjLjkfOA/0WWrA6bt1IznbwDlOo6FWq7nowmq16qHL2Tecu+obVkqdP2qYKMXN3370vEXm7Pc24rp1aSuu27xoYIEuHgorXbz8rUIC8AoD3Xel1rFa3JrrThcyr6MVGolE0NfXh/vuuw/NZhPXrl3DtWvX0Gq1MDIyglarhYmJCQQCAcTjcY+i0o2jTBWlC55IQtEkAzmANfqP3zExLpUDqTCrMCyq03fwf/a3tpmCjZZ9Z2enyzYOwGW20FBt3RTL5+imZlWcaomzvzOZjOuraDTqFBefr5uS1c/GqE0qJaW42A+a0Fizp/NZmUzGKUYiE/Xxcd4oJUqFru1S5cLC51J5EM2yvkS2DLzp6Ohwp0Tz2awDkwjzWiJWYE1RlstlT35MKvV4PI5kMolisYj5+Xm34dsiKI4Z14giTWUdqOA0O//Kyoprv6JkHWNlQNgfnM98rh/V3y5txXXbF53Qas1TOKiTWOk8wKuoqKwoRNVaZOHiVIXmZwmqv2BgYAA9PT0uke7Kyoo7IJLnJFnL2PprqGCsP8D6ogKBwFqwBdaS6bKdFOTAugDW4mfV8nMVVMC6/4/OdbZX36W+DH02/9cMFzqGqmAUaarw12dSGUSjUU8AAfvNUoZUCtaPxOutb0mDOKg0ACCdTm+IuiTyYv/YOcc+oJKyNCr7QWk1TTulgpr5K1Wp23HmuKliVpqXfjPr4+PYRKNRR8eSqlalq5GASiWz7hrRyc+sb04/owJTRK/UpaI1v7XZLt7SVly3eaFyUmrOBR2YBWUnPBWQ0n4aTMBnK+2hPhMVfFQsaj23Wi309/cjmUwin89jZmbGhTivrq5iYWEBANz/9L/4USoaYg9s3GhMgVetrFFaHR1rWcCDgaBDQmqtsl23CvDQdgDAC4+8gEDTe4aSCk1VcBRy2v+srwpdfmbvYx8rxcuxUgqSCE83x/KZ1pjZjF5SxaBIyNJZjcZaUl0eda8+UPXvkIpU40J9XfytCoP1tGjY+ov4LPVNKhXKcdC2UGErNUwkxkwb0WgU2WzWHaKpKJuKjsouFFrLiGL9iUptagSlKic1VqzxxWdwbDVXo9KIXO9t/9bmpa24bvOiwhzwHiynyEIXuqIXjeyyi73V8u79IoXHZ+uiY7LQQGDd0Vwul3H33XdjcHAQX/va1zAzM+OEyuLiIqrVqhPI5XIZXV1d2Lt3L7q7u53Q0gg9WrpK52nCX1riFPz16fo6AgqtPUP3rmkbSSUxoIB0HgXEc9/3nAtcoGVP1MV2A/AIG0tjWn/drSxwRb96LYUfT3dWRaPPo7CjIcBxAbzh7izsWzV62KfBYBA9PT3umY1GA8Vi0fUDFVhHR4dL08X223rre4jgiNb4XvaX/YzUJYW4pWy1LRw/1lEzjnCer66uolAouGCgzs5OFAoF9Pf3e3x2DLhJp9PI5XLuHDXmMCwWi5732y0GWl/1n7HtvM4ZW2aNcjzVeFQatl02lvZBkrd5UWvM0j9qpatvCIDz+wDYIEzVArcUEuDd/a+Wo1rFjcbaSbUDAwMIBAKYnJx0YdT1eh2lUskpQfp+KJg0dZH6eVjnZ+58xiPQ7buVanE/jfUoRPVpKTXG3/bvlz70EgBvaiT+qILTPlSqTYuiW0VOOmYqtOz4Umj5+YgUrWk/6Gc63pZ6UkWthYiEvh5u8tZn8Do904t78RR1st42QpTfMdCFxgSfa+e8+istJap10nFUVkI3K9PwUZqS1wFwPkQaO1TWTAel46yGJOupY0d/myJqu850nWofK2JrU4W3Lm3FdZsXteTsYlV0YhEKr1NeX6kozTSvvhWl1fh+pbT4Wau1fn5UR0cHJicn0Wq1HFKg1UtBxf1Bmq3DCiFgTciVy2V8/tDnPZ/51QtYVzKKJv0Qir1PiwpOKwTZj6ogtM/1WkvbWhqOCksVmg1osEhEFZLWz+8dtj1W4atg5PVWmDJiDlgP61c/qqJ6+oj8fKc6xqqoVTnr52pM6PxWH5y2h3W1hhcVD++t1WouYpJ9yn5Xha4HSvKzcDjstmGoIaFKXelEzndgnVq2hpcqI/Uj2vXdVly3Lm2qcAsUpWRUYNJypXIjDWEDAXTB8Fp+ppF1pDg0dJ2LWIVoOBxGrVZDb28vEokEZmdnMTY2hkQi4d7NYAIuTh5ICHgT9LJOfLf+/ae7/xSfvPhJhILrSVKZCaGjowM9PT2eKEtShRR6VNrMDq6Chv0AwHM8OxEhn6nCIxAIuM3TpKS0r7VfFZFR+CuC0qPhVSGoYKfQq1arLiLTKkpmRbcKgIKdRelgVWCrq6solUqe8P6uri5Xh2Qy6fFLEZ01m2vnYWl0IhPXKqq0fcQ6MXsKkRWf75fKinu82MdWubN9nGvMkVkoFNZOC6hWkUwm3Ynbqtg531OpFEqlEoLBoNs3x7p3dXW55yhSZj+qwaJGjRpSHC/6ezVNFdumNCLnaLv4lzbius2LUgcqsJSisYjB+omUHrL0BbBuFfM+XmdRmAqXZrOJ3t5eFItF3LhxwwkhpQs1iqparbpoNbV0VSCrlcvw/88f/Lxrs59Q12AFFdYUsAxuUCSlguXlJ172PB9Y37tlIzZVOTAIRfdTaTYMi1KUGlUayaIPHWeLqCyVyLGz1J/2jyJEDX7g/ZVKBZVKxdWTNJmlCnV8bNYPKn4WDU9nP6kBwPZZupjjwDZb2lTrpGtD/y6VSp7UWco26AGgjF5kCHsikUAkEkEymXTzj3M0nU57fI5sg6Votb/0h+OhY8w62DHX57TL5qWNuG7zokrHWnhK21CAq+Wvysr6HJRqoyJRlGYtR92jUiqVMDAwgAMHDuDcuXN44YUX3MGQXISkZyjA4vG4O823r68P2WwW2WzWJZHVxK2sH8+z+uoDX8XHXv+Yh64hEtEAAEWIbBvPp2Lb9btXPvyKE8ZK5fBvIl2iIr6DyE7pJtbBZkBXZUAUwbapM1+Fmo6L0mAqqK2BwXeRHuPYq5Jh8AbDxAuFAubm5hAIBDAwMOCMCJ0zq6uryOfziMViLh1VMpl00Yc0EFT50oghCmN9OeeY7Jaf873q99I5r8pU+1e3CLAPGBDE75i0uK+vDx0dHS4NFNNDUan29vZienraoUvOX2Yy0Y3Z7B/WU9cbx4BKjqcHaCQijTI+g3OYa1Az/rOt7eItbcV1mxdFPZzQ6sdSjp3CQWkUtdysr0q/14WoyIT/K/Kr1+su8iqfz7ss3kRtpBIVwZBmGxgYwPDwMBqNBqamppx1q1FUfBajumyElfrP+HwKSAoHRSvWL6QKwF6jCluVPa+1CJSK0voxFB3TWc9n8Dql/vgsfs9rKeD0mfyb72If6UZsRWgcP/ZrNptFpVJxm4vV2lcfnFV4/IyBHBbFsm6qZNX3qGidz9K/2f8WMbIQLQHrCo+f892qfPkuIkoqPt1ETyWjaFiVCr+vVquubmyPGoY6l/g3+0X9mEopaoCGjmvbx/WdS5sq3ALF0ga6UHSBkMbhdzbIgNdb2kZ9DBatWcqLJZlMIplMolwuY3l52Z17REFlhS2wFr3V39+P4eFhxONxl9lA6T5ap7TgSef8+eE/39RJr456S2tSWLKP2Jf6LPaJpVxtP+sPqR61iPU5qihtwAzfb8OqVXFpW1QRKVqmYUGkooEp+h7171UqFczPz2NhYQGFQsFDA2rhZ2r5k1ak8qKipILgs/i50resP5ULs5HYiEsr4JWy1qAWvZ/zlGNtA47YN8wK32q1PNk4LIUaCKylR+vq6kIikXAIlXXX+a1KVulf7XsdM7aDz9Ix07mgY9guG0sbcd3mRYWr5khTy42Lg9+rBa8WLQCPpUmEpAvMUjJURtwLw/ORRkdHMTAwgG9+85suiS4VTalUcgqPyV5JJzGfIWkmZtzo6+tz1rVmgKAvr9Fo4HMHP4doNIqnzz0NAB5nOTcgq/BiP9DP9Y1Hv+GOUg8GgwgHw04A6WnGpDepFIlKiBr4nc2aoFSmIk6b9QKA25OmgpAKu16vO1+hWt52g636OoF1I0MREz+vVqvI5/OO4uOzU6kUEomEQ42skyotDS3X1FBdXV2uXouLi8hkMo5WU8qVY8kSCq3tI8xkMk6p0TfFfuM8Y1+TMlQUw/WhYej0ZfF6Gg3JZBIdHR2OlmNaK56rxuwkTOdFf2wwGHRBHgyuYHt0Tqhhp9dpsmW2i9dYv5aiaKX/22VjaSuuLVBUMHLRKsoAvJSizSMHbEwRRIHA75RS0qg/pXN0sTLarFKpOLqP+7YY+ccs6rVaDX19fVhdXcXU1BRmZ2exurrqNoJSOfB+todCTTchNxoNPHPnM+jo6MAPvfVD7nNFUhahtlotnHzyJAIrXioGWKeZmFFdlYU61HmfniGmfWfzLSpFtNlGWv2fQs0GWigSU8WoCEQVlFr07ENGDhYKBayurrrIPwpsGieK7pS25XtZPypLGjP0GVHxaHJcS3mpQlOkoZGDlp4G4AkMUUNOEbeimlAohHg8jnA47KJKtQ7sN56EzByYFrHSx6c+ZEVxHDudEzp/LKPBz9SwtOyEHYN22Vjaius2L8qnq6BSeoOFFqdftJMKJVq8wHrma0Zckf/nwuVZWgwbJo3S19fnQoZbrRZWVlZQKpUAAIODgwDWFNjc3BxCoRC2b9+OUCiE69evY2pqCjt27MDx48dRKpUwNTXlMsarj6herzthSBSlkWFfPPZF1w+0kBlJSOTowqfLG4+iYOJcDQCwmURIe1HY2GMr+Jn6vpQ20+85bqr0GEyglJ2lodTXyLFlcAHr4ufDazabuHr1qjtzKhQKuQz6FNh8jm55UKRuD85UActABlJ3GoBh6S/Aq1jZHr6XWfCpIC01zbYrNVgsFp3Pin3PAySptCKRCMbHxzE3N+cCgYC16EMeidLZ2YnBwUEUCgVHIZJxyOVymJ+f3xAso8pVFZCOvaWD1a+pWVFUSdognnbxL23FdZsXRRSb0X+c4Lp3yV4LeDckqzPdz7nO5yvnToEZi8VcCigesre8vOzQl7Uc1e+hyEXRTrPpTRHE35bKpBJQq5bPU8FAZazKRBU6BauGllv/hKWkWGcVYn7IVkP2WSfSlRRsfj4oCjt9p461WuJEGyo0+T5eT/8j/SnpdNpTP44Rx8dSV6osdb5pf/AZ3BrAPtZAoUZjfaO73SbBvqNiVaSt48x5ToVOalCDV5RWJ5IHgEKhgHK57IwaFu2veDyOYrGI/v5+zziSwlSkq+hfjQpLF1oErP3C9/M79jP7Rt/VLhtLW3Hd5kUpIT8LTCe3CjxVRCy6yNS/xe+UgiIyo3DRhcuoMmbYzmQyWF5eRiQSQSaTcYKDtBr9DsCagOruXju5uFgsIhBYizYsl8uOfqGC4AF/HR0dqFQqzknOQp+HHvFBS5YCVJWCRoKpbwKAR9moJa1K2Ebb0TJWnxj7H4BDjBYFq2GgRokiMYaMM6yc9K+loBTNUOATuTKnIDNDxGIx1Ot1l3tPgxaIRGwwgQ1gUKpP6S8NWND7VLErnaxIBFhPUaZKnYVjxXfSl8r2Kvrl9YpcS6WSC4nXdE6aFi0cDqNYLDo6lPOXORtZZ+17NUJoLPG9uoGfdfObc2pwWPTWLpuXtuLaAkUFKBeaHpDHxcKd9zrplZ5S/p6LE1jfi6ICiouJ+1BIyZCO6+7uRiKRcLQPM1kkk0lMTEw4pdRqtdDV1YVAIOBoqj179mB1dRXLy8su+0apVPLkNKzVai6HHKlLRsWpwKJvgn4bppVSxWMj19iX5XLZtd0iJ1VeRCz0B1G50qrmyc6JRAIAnO+I47S6uopyueyCHjQUWoMgqOjY9wxciUajbhMs+0cRDvuG++jq9Tqy2SxyuRz279+PeDyOlZUVF2QQj8ddPzCsnQaB0tDsJ/UxkspTRKtKUzNwsI6snwYf6FxUZch3KNLj/fzNceR37GcG/Gzfvt0ZSnNzc8jn85ifn0dvb6+bz6QR6ddMpVJYWlrC7Oys54ic5eVlj39P+0DnixotnHNcGxYNqxJj4ZygEuaz2ojLv7QV121elA7kRLYoSukuTnpFCvY6i64AL0qzliHfrcEGVKCxWMzRhfl8HsC64KYgJSLSo006OjpcqiGmWaIgYwSiUlNqHbNdTOdEJaYIkYrchkZr36ngsMjLUqjsU+0XFZoqdEihabAFBWtXV5eH0lWLXFEFP6eyoZLh54pm2U9U8CsrK6hUKgiHw+jp6QGwdpQ9jQndFKy+TSILm9lc55P2lc41rQe/UzRCvyQVswYo6D1KoWp/atQgx9T5LxvrWzZCoZDrY56yTcOBe7G0TlT4DH9fXFxEd3e35x6dO5b1UGNPUSvbr8raolF9pvqnlcpvF//SVly3eVHBpnQUv1Nqwfq81OejfDwXryoHuzCtQCE/z0LBE4/Hkc1mcffdd2NiYgJLS0tIp9NOSBGpqJKkpU7/QSwWQyaTcVa/BoewXnZjsPqcKKiJhlg08tI69/mZ/m19XX5CStuhlJFGuOmYKULI5/MeRWpDnq11zQAElr6+Pk84NSM3lW4LhULI5XLu+1Zr7ViO5eVlZzSwL3k954Hfhl72i2678NvzxWcpUqJvS8fSzlWtp/axog0qL/rS2IeKTjQYh4EifA+pV+bLZE5FAC6bBunUXC7ntg5UKhVnlFGh2PXi92PbotdbY5AGmyorbXe7+Je24rrNiwoP3eyqk1ypNEVOqrTUb6HCktSJdcBT6Si1RiHHfUBdXV1OwDz55JOoVqu4cOECzp4968LDM5kM+vv7nUJR30NnZydqtRrK5TIymQyCwfU9M/TTUGmyqIOd7dKIrnK57NoViURcxBw/U8W1WVGhaH1e+lmr1XJKd2VlBfPz845+JA2lCKxcLrvznvbs2YNwOIxCoeDQjtaNPi4md2XgACPvNGqPx92TwpqamkK9XkcymcSbb77p+nNkZMTNCYaXqzGkwSG6H03nnNZT95XRj0nfkfrBFEVqdCjD6NUoUl8gn8/ruRb0e1Kjus+Q76YfjHQyI2N17vMQ1GAwiG3btmFychLNZtODTpXWpTGiho4yFErbq/9NjUyOsQYRMTWZKvY2Vbh5aSuu27zQz2SpA10ItGwtoqGyU+exWr+qENQaVivZFvqRVldXnU8nmUwiEAi4bBrK/8diMRc1yN98PinElZUVtFrr+fsozFjUylWLVa17FhvJpZ8pZaOUmSpyCkb1USgNZg0Aos5oNOr2C9nIR45hNBpFoVDA8vIycrkcent7PXu/VBjys3A47JAo+04zLtAvxvaWy2UUCgX3bt6rm7ItrapzTZWYRvnxfWog6b2q1JReVIrMfkZEzPoB60pKfW1KbZMi1THjczWKlNSkDZigv5ah9Hxmq9VCMpl0yloDapjrUjOEKBVqA2cUcVnmgnOW7bB+Vd7XLrcubcV1mxdab9aRrb+5+DjhLZ3EhU/h4OdU1kXERcjQd42QCgaDWFxcxJUrV/CBD3wAweDa6bnLy8vYsWMH4vE4CoUCgDUkoAqINA8zIgDr/qFms+lSQi0tLQFYPwSws7PT7a9Ra1czs6t/hH/TYiWdRsuYwoN1IIJkf2u0HxWRpYH4bAq9zs5ODAwMIJPJeDZVd3Z2oqury+19KxQKuHr1Kt555x3s3LkTO3fudBkdVIEFg2sZy4eHh91xMSpMbXANAywWFxedIVOtVhGNRpFIJBxS04AE9qUqMSpjziEaTUyxxKCRYHA9mpPtp+FhAxc4Vvp8NcjYXn6nSoJ9XK1WHZq1aZ6UkuVxITY6sFAooFAoOOW0vLzsxpXPjkajSKVSLqBGFYgqdQ0k0TmjUaBUvDYXpO5boxLkNhDtB92M3y4bS1txbYFiaSrrAwC8eQv5m2G/GiRA5MW/LTWhz1LlCKw77ZvNJiYmJrC8vOzez8S7yWTSPVsFigooIj9d/NVq1VGevEb38+g+MGA9tJr+JfWF8Z2KMBWhsF7aNv5NYaj7ffwCYqg8gsGgC+WnQKISoWDi/iXSVkNDQ8jn81heXsbg4OCGQBqlZ2OxmKsrr7E0FfuaYd+8rl6vI51OIxKJuOwmupdIfZcMnFGFrnODKE37UlGpKj+dO6ocrS9R0yfRR6iIhsqV/lI1oDhWHA/OA1J7esClFraD40X/qwZYtFotRznrnGJ/sf7WaFQWg3OWxgXnAcdGr+Nvi9DaZfPSTrJ7mxcudmvB+vHm+rler8pOlR+vobBSSoaLkMJChS8A3Lx5E7Ozs25xMoqNyEh9WlRI/GHOOxVU1WoVlUrF1UePXGc/KAXDevoJPLZZ/QnqD1OBqH4aAC5SUYWiVVraV+x/zRmo48XftVoNCwsLqNVqSKfTbqPrwsKCQxJqkKh/j1GXiiL5Hs3qkcvlHHLTjBgMS7dRofycCoTP1WNYFKFqn7IuqqhUoHP8tS3AutJTtML6arAQx4c/OldtUfoSgENo9j4N8FGKkgiPSo0oTTc407BT41CNCZ1rRNo0ENQPq9drP/Fevk836LfLxtJGXLd5UQqHFJvSV+rEVeHBBVOpVDxoR4sf9aFJQa2yZGhxMpnE1atX8fbbb2PXrl04c+YM8vm8c37T2lWURMuTFi6wHuxB/xctZbsxlPVRIc3NyJYiUuFJlAGsnwvG77QoKrXBFTYLiaJGKkDSYCyqWNj33GRdq9WQTCaxd+9eLC0tYW5uDsVi0Z3Qq8iGApTv1aSzpCOp8Hm2Vr1ed6iLClKfyb5iGzjeimy5laFSqbioUEUd9KtRAVG5UgFqAAWFPQ0RKggaMKSliZQovBkFqIpRT6bmeOqcZTtyuZwHMRUKBZdgmGNAKrVcLnsMLmAt04YacLo9gGtFla8iLqIpXUdq3LBOvE4ZCKVI2ymfbl3aius2L0rXKfVhHcBcOFwoXOy6V0jP8+JnGiFmrWAV8BogAawJ1dnZWQwPDzshpYqQ93DBqs9A6UwKAU37FAqFEI1GPXt+9OBF1lF9VXrKsVJWANy+MRXeflSbCtlCoeDxIVJJEa1YGlTRAuuj76ECYOYKVbD6mVVe6kdTAUnhSwVTLBY9dBrDu5WO07nCz9gGvo8IjN+xn7WwrxTBaT8qmuE4aKonZRHUoGK7dJ4rq6B/sw5EJ2y3BsZoUAYVlioDKmMq5lKphJWVFed/U3Srhzuy7Rwfu15s3a0CYp0smmU/KbXaRl3+pa24bvOie2GURlKenoJSqRHl0K2g4oJS6oSLhg583f+kTnOik3A4jImJCezcuRPhcBjlctmdkgys00WsGxcrUZn601gPhnV3d3d72hMIBBza0Hqzndo+RWUUDNzXo8KPCI5/NxrrWTlWV1cxPT2NTCaDvr4+AGsbeCuVCuLxuIcGIuqhf4UUXDwed32hCIXW+MTEhEONHDNmaSAiYoQgKatSqeQyXRC5lMtlVCoVF+mp1GetVsPk5KQ7doZ1ZoYJRS6JRMKjoIkSaXQoxUqlwHatrq669nIeEUXpvFXKWmlgAO40a2Y+0Wv4v/UxUVERIZHmo7BXtEp0zg3ZS0tLLiR/9+7d6OjowNzcHEqlkodK5Bzj+y1aV4OH7AD70S+Ag/VWGlGZE9bbT+G1y3ppK67bvHDyUnnoYldhTCuRi0YpFj5Hgx1U8ALr1iEd7vxMKSUqIr6PAQzNZtMTMkzLWRGI/s0Fa31FaqkC6xa7Lapsqcj0mURn+j4bJafIQ/0PVJ6k4Jj9gz4TCntFqNpXNjiGCkYTCBNhrq6uuhB6NU5Ic/E7IrBisegQaSKRQDAYdCiBbaTxQeFLui8Wi7nxpg+GhTQ0+4LP06K+RO0rRsA1Gg2H3jWrhSJfHVv7fCpIvkfpP0UeVqBbdMNISgAePxcNDKU7V1fXjizhWGiiZraZY2aNP2U+uJ7UyGP77dzWNWmZAZ1HbaV16/I9BWf84R/+IY4dO4ZUKoVUKoUTJ07gK1/5ivu+Wq3i05/+NHp7e5FMJvH0009jdnbW84zx8XF87GMfQzwex8DAAH71V3/VY920y8Zi6QT+T+ueVJVSTGodU4jaxaD0kS4+pV54nfrReE0ymXQUH/e+cOMwo9oYEUYfF9+h0WXARr8Q4A2M0NOGVeGoJa7h4vRbaJokizJVQFAJFYtFl+qnWCwim806Go71B9bD+IH1ABTdf8T+B9aoSo3q6+joQDKZdPvgmA6KARWVSsWhOLaXBgS/Y58yw4MGn3AvlApGKjUNVFEqVxERhTj9UhTWVCrse/YBf5Sio+BWilADLzjenF/an1aY8399nn7Gn1qthlwuh1KphFar5YkspL+XVCA3hzNNmfW5KQ2twSVqSGqgivpS9To1Xji3dX4rxWq/s+iuXdbL94S4tm/fjt/93d/F/v370Wq18D//5//ED/7gD+LNN9/E0aNH8cu//Mv467/+a3zhC19AOp3Gz//8z+NHfuRH8PLLLwNYG+yPfexjGBoawiuvvIKbN2/iU5/6FDo7O/Hbv/3b/yAN3OpF0QH3I6lQBLz7ltQq1t98Fn/zflJw3KhKC9VashowEI/HUalUsG3bNnR1dSEYDCKbzQKAUxS08El3cQHTsqdQUeUIrG+eVud7s9l0Gc25J4l0IwU46TUV1Orj0ROOSUepj4Yokft7FFlRwejeGj3KnQKJaJVok4gxkUi4sdOAiK6uLvT392N6etodvQGsKYVkMolIJOIUCBEDhX+5XHaHQ/I04a6uLoeAFHFSwXV1dXkCURigoGHmqlAUfen2BM4RKmJmX7GoSA0e9QspOtZn29B51p//a99RibN/1EcaDoeRTqedb1Pnb6u1drpBX18fpqam3HObzSby+fyGumkAEf/ncyxzQSSra4/PYT5EXa+kNvVZmyHLdvGW70lxfeITn/D8/x/+w3/AH/7hH+LUqVPYvn07/viP/xh/9md/hscffxwA8Cd/8ic4fPgwTp06hQcffBBf+9rX8O677+L555/H4OAg7r77bvzWb/0Wfu3Xfg3/7t/9u/amO59CYee36JU+pKOe96jiUXrOWnW0YlVZ8dkAPEqPAprCQxEfUxPRl8LC+0m/qJLRKDO+Q4Ue28X60J9Bh7rOF1XkVOxUHHbjtfVBsC4MbmB/0GfFfqrVaiiVSp4gEbaR9WU/M/u4to3faX8SjdGXpYpX/UU69rTqNa1QMBh0fiYiJWaNUEVjsz9QYXDuULCrb0qpMfYDAI/fUeerReo691Qp8Vq2gXVShcc+VQTPNaGBKJoKjPXS42CU1aFRQWXKMWa+S9Ledq3o+tA2a+SsnVOK1qzfyxqH6utSA6JdNpa/8z6uRqOBz33ucyiVSjhx4gROnz6N1dVVPPHEE+6aQ4cOYceOHTh58iQA4OTJk7jzzjvdCbkA8NRTTyGfz+Odd97Z9F0rKyvI5/Oen/dTUYGu4cM64bmQdCGqNchFqrSEdaYDXkWlQRQspAlpHapgoD9FfVMqXAE4ZMfnc48S0Y8Kd61PLBZDPB536Xoo6NlmXqsh1aQXVUhrsRQQ28F7AbikrMFgECsrK8hms8jn824MVEFRODOkPBaLeU4GVjqN7SUKpdLhGBE90KfV3d2NTCbjCcnu6OhAKpVyNKRSkqoE2B4GlSgKYh+QplTlbX2lfjSpzgsiMPatKmJVYH40IOlFpVnVH6XGAed7LBZDOp1GV1cXUqkUuru7MTg4iEQi4RgKjguRpdZdN4WTKrQJnjmmWmdF9rZOwLqCYr+qEWLnm65vG03ZLpuX7zk44+zZszhx4oSzrr/4xS/iyJEjOHPmjEuqqmVwcBAzMzMAgJmZGY/S4vf8brPyO7/zO/iN3/iN77Wq74mi/g0tXASM7rJRWrxX9xiRflMFYYM9aAXTKtUILy42Hvs+MzODe+65x6GoXC6H3bt3I5FIIJvNOupndnYWmUzGCQo68ylMaUErvQLAKY9gMIhMJoNIJILu7m5UKhVUKhXMz8871EchpXuJdM8QhYhuvNWAESogRvoRrZTLZZdvsV6ve3wizEjB88b4LLX2aYlTMWjYPPsjlUq5NhBRpFIprKysYGFhAZ2dnUilUti/fz9yuRymp6cd9ZfJZDyh+kReyWQSnZ2dWFpawurqKiKRCNLpNAKBtXyGGvbOutFIYGg+FZEaEow2pE9PlS/HgPQt6VSNrNOktYosKNjZ9/V63aEo+vCIBIm+U6mUC1ABvH4nKvWenh7Mz887hcx5lc1m3bOSyaRnbtMoIwWq/ir2F9ujSJsh9DZHIu/l2NL4VMXFZytdaJV8u6yX71lxHTx4EGfOnEEul8Nf/MVf4Kd+6qfw4osv/kPUzZVf//Vfx6/8yq+4//P5PEZHR/9B33k7FQ0CUIc0v9PgA8Cb88yPetMwYaVClEqkxaxWsI3yo/FCizWXy3mQGoU0fT4aRah1t/XW63gtkVomk0E8Hnfh0+pbAeA5XNGiVBugomi1o6PDs4eKypRHW1AgMs8fBawe3UIKVC12tb5ZNHiFysZSvcFg0CGKQCCAfD6P/v5+xONxdHd3Y3l52V1PpaenTNOntrS05NpH1Ks0nFKHWk8N6LGIiXkLWTSSk3VX5OiHTtif6tPknNC5yucplUifH7cgcI4o4ua2hXg87urI6MqOjrUTtXmKt76f60gpYq23H72nCXPtOHM+cS5on+gcVYXGerSV1uble1Zc4XAY+/btAwAcP34cr732Gv7Tf/pP+OQnP+ksGUVds7OzGBoaAgAMDQ3h1Vdf9TyPUYe8xq/Qmnu/Fo3QUpSkSkf3CCn1Z30OujdKFQOVll083E9F1BcMBh0lWCqV0N3djT179mB+fh6XL1/Ggw8+6DksUQUB/UikLaPRKOLxuAsSUB8MAKRSKY8CoVAiBbdv3z5H/5TLZQSD6/uR+Ay2hwjIz9dHn0YsFkMymfRY1NVqFXNzc07wa8JeCp18Pu8JKafA0VBsqxQsSgLW1kC5XHYn9jLogrThlStXkE6n3TsUsTEEnIqUaIi5DhlgokK6Xq+7KFBGNapgVtqPSll9rbxOKWeONxEd5yL7igYIAE/whCpzpWstdUbly7nLjdZEOvwuHo+7uaLKsaurC/F4HI3G2qnHnCe67UEpUioaHTc17tRQUWSq/WfZBPVPc32RftcgFs7fdtlY/t65Crmojh8/js7OTnz961933128eBHj4+M4ceIEAODEiRM4e/Ys5ubm3DXPPfccUqkUjhw58vetynuyqBDWYAFFLtaPpftOgI1ZJqxQUmGu1/B7tS71OaSCMpkMksmkO4+KNBXrx0Wpfjn1t+jGWQ2XV7qNtBH9FVSeyWQS3d3dTqGotc5CX5ofIqBi5PsphFkXRRv6OX1utOw5BhRCdq+PBjmoIFTjIRRaO723p6cHzWbTKTEqe6ZBIuXJPiL6oZDjPCHVa8PVSdMq4lPFSsqO2SZYX6WSqZC0DzW/n/aBzlX1rbFe7HsaBtbIUFQaDoeRSCSQTqeRTCY9ab3Yp1qskaL9EgisRZgSaSs74ec/5VpSQ5H9oYEkFgGq4cJ5ohvl9bn60y6bl+8Jcf36r/86PvKRj2DHjh0oFAr4sz/7M/zN3/wNnn32WaTTafzMz/wMfuVXfgU9PT1IpVL4hV/4BZw4cQIPPvggAODJJ5/EkSNH8JM/+ZP4vd/7PczMzODf/Jt/g09/+tPva0T1nQoXH7Ae0aTUoCoftWDVl6WCwNIguij93quITelHRhIODg5ieXnZnbSbSqVcNo1Wq+UCDGj96zNo5QeDQeczUvqOAoYCWh33pHuolEghKYqxipzPVWpH20eFq/1r+z0YDG6gqBSt0ldh99T5+RR1XNQvl06nsby8jEKh4BQTFT/bS/8M/UY0EJhdo16vO78aKTE1UlRZa7AIgzQ06k6VgxW2qnzZH0pn+9GQvE59tzRu9Dv2ifY9FQfbpBumLSWs/a4BIKVSCclkEtVq1W3m1nFmm7herPFiUZcaexwbe732jR64qRQk4E2/1i7+5XtSXHNzc/jUpz6FmzdvIp1O49ixY3j22Wfx4Q9/GADw+7//+wgGg3j66aexsrKCp556Cp/5zGfc/aFQCF/60pfwcz/3czhx4gQSiQR+6qd+Cr/5m7/5/7ZV76HCRWGTofKHiUdt5BIXHxcQKSRg/WgMtfwVTZC24zUUghT4FAb5fB6dnZ04evQoLl68iG3btuFb3/oWduzYgXPnzmFpaQnBYNAJwkgkgmq1iunpaXc+lHXsE8kBcPQgkQHby4VeKpVcVnpuKFV/nIZDa6AH20uKUH0Ovb29KJVKyGazng3N1h+ogp3h13yGRXZMy0SFB8C1idGERDmsy969e7GysoLp6WlH4xF5MiCk1Wo5KnFxcRHA2t6wer3uNk/zs0wm4/qVe540KIP9SuFOZRGLxTwRgmybbjmgf82iSaWHNRqWfcj5rAwAlbJu5laFo+dY8XuLjvjuQqGAbDaLlZUVdHd3o7u721Hd2WwWw8PDmJubQ2dnJ0qlknu+Ur0cMw38UKXCPqPBxDVoKVVtK6+n8cD5ZTcvK/XYLt7yPSmuP/7jP77l99FoFH/wB3+AP/iDP9j0mp07d+LLX/7y9/La93WhguKioNAA4BG41pHs970KC138ej2wLgCsRa1Ijwu0Wq0ik8lgfn4e3d3dmJ2dxR133IF4PO6pN8OOGalnhb3SddyIS0uYyIvPUyXCezSiTakb6w9kXdSCVyTA56iiZrFIgWND/w+vUYGqVOhmrAKVAQU8I9oSiQQGBgZQLBZRLBY9KIbnnmkkXnd3N6LRKJaWlrCwsIBms4l0Ou38PFTU7AcN1VafGWk+DXRhn1n6VPuDz7VUswbqqG9Po+5UMfA9RKPsT24zILrke3U9MCckjQ8eaqqRpzrP+bdmolcFZdeNRehqLCnTwTrbSF3ON11/lk3xC+hpF29p5yrcAoW0E6PI1JdFdMTFTkGh/gdVHixqPVtahZScIh36U1TglctlTExM4P7778fS0hJGR0cxPj6OHTt24K677sLExIQTJvPz88hkMhgYGHDokbn6lOaigAkEAi7ggIjJUpr0JwHrTnvAewSKpXFUeFCQMSuHvY59rQjWKm8/+ojfsQ8ZLKD/6ynELGyD7reLRqPOl8d9RtFoFN3d3QCA+fl5d45ZOp1GvV7H+Pg4QqEQ+vr60N3d7ZAVT+Ylrcq5on4c68cE4E5RZn0Z1k2FVi6XHcJVv2axWPQoRmAdaaoiBLAhEIPIhP3BfmIAEhVXsVhEqVTy+PkCgQCuXbuGubk5LCwsuD6j4ZTNZpFOp5FKpTA/P49QKOQMA9KORPBU5moAKvXItvLdrVbLg8B0MzOVt84hGiwcF44B29xGXf6lrbhu86IWqQpLjWgilWJDepUGU65eF5A60FWJqQCjEFa6MhBYCwNeWlpydBNRRTgcxtDQELq7uzE/P49Wq4VsNuv23kQiEU/SWRVitLLpONfgAmDNMuY1Stepn4wbg2nRqxJSK5r9o74eu9eKwsMPvVqLnEWv43PZX6Q7bYSj+nJUYGnwAnNDamg7kRGPTOG+rXg87jYsUzDqnjnOBQpMDfrRecB6qR+Nddb+1Y3nulVD90Gpn0jroQjFryjlzVyN/J/jxcK1kM1mkcvl0Gyuh+/TCMjlcujp6fFQ3/THsg56crH2iaWDFbVrsJEqKK4n3V6gz2Pb1UC6VX+0S1tx3fZFaSlgI2euisxGPvEa+7lVWpaO1JBftTAtHdRsNjE3N4dCoeA2HafTadRqNXckyOzsLAKBAIrFosvcHY/H3YGNemgkKSpVRhT2FDL0l7HO9LEQpVA4qZ9J6UK1/pXeAdbQQKlU8mS2Z734HD3fClhHRxZpaZCHHQc7jiwaAKFCXoUdFQZRFJVGLBZDoVDA8vKy23wbi8U8vj0NWmCfs86quFg/vksNGBvkQ6WnARQU0kRHSq0p5Us0Q8VIY4TPYOE4agZ5O4aWwmOyZM6laDSKZDKJYDCIYrGInp4epzxXVlYcpWjniPYV54FeZ5WxUvqK4rX/rSHEtaRzqE0V3rq0FddtXjQ4g051XShUKIqolFtX3p3XW8WkAk0XkS4g7skBvBtYz58/jzvuuAOf+MQn8IUvfAEPP/wwXn/9ddxxxx04ePAg3nrrLXR0dCCfz2NychKjo6M4ePAgkskkrl275ixoIkEALqt7V1eXowt5Qi2tbbaXWRxYH/XLqH+GgpTtI93FKDwKUmYXV/pMs0ro2V4URkrtKV2kgTPcLAus558MBAIbwvh1vNWar9VqWFpacuNOv9bAwIBTUNeuXUMkEsGxY8fcfjZSYMD6Jm6OP9vB+cPvlLZl0AYT/Go4uSo3a/QwO79GrrIveA2NkHA47HJcci7w/RpizxB+9lG5XHZGQqPRQKFQcAbZ/Py8JylxKpVCf38/VldXMTY2hh07dmBiYgLpdBrxeNwpLlUWapQQhSudx7aokcXCOWoNHVVYusb1XXx+u2xe2jGXW6BQgGkoOAUzv9OIKhXONjRcUYFVaH5WnqIRPkPfkc/nsby8jOHhYWc5z8zMoLOzEwMDA24B0h9RqVRc2Lv6Jagc4/G4J30Tr6MgI2JLJBLOp6I+PyIEXfjWwrXWuQoORUgWrbKuKujZl9qf1j+milSDOCxaY9FrqYyVhqLlHw6HXboo9i2DOqgkdHwVSejnm9WX404Bre2mMLdBFewj9UnpnGP6K76LqaE0h6AaVMFg0KWQ0vdZ44Morre3F+Fw2PmWSB8nEglEo1Fks1ksLCwgFAphYWEBfX19jsa1rIUahzpvLBq2fWkpYl5n54gqMG2vUozt4l/aiOs2L7TsgXUhC3gjnigcSB1RqFCQU+iotQvAI1CUplCajIuLoc8AHC3EI+4ZSciw4uXlZQSDQQwODnoyaFSrVXfwIZUqhUYwGHQpeFhPXqNCWAUwBVmr1XIh8WrhWlqVqE6VFS1cGyhhgxb4PvpUVNlrFBqFjwp09TPqNdq/am2rgNPcixTe7CvmMCyXyy5AIpFIbEAnVPAcd6WziFa1n6xxwjYAcAjJj7LmnFL0rIaAGl1sE5FKtVr17GvSQoVpDQ67NmKxGPr6+jzH1tTrdefvi8VimJiYQKlUwuzsLObm5vDwww+jVCp5EncrGlX2QalcP4bCGj6su64pnSs6j9WPxz5sK6/NS1tx3eZFF7IuaD3eW1M88Tr1CfE5agWr0lBLm/QGlRXfA3g3RvKzhYUFXLx4ET/+4z+OD3zgA3jzzTcRiURw4cIFHDp0CD09PVhcXHT7mbLZLBYXFzE5OelC5LWelk5iVgN7JHurtR5x19nZ6TYia9CCpgAiJaZ9qYit1fIePMiURaQKNWiD72YhZUk6U3017DfeSwqRip8+HrZL0QfrR3puZGRkAzIul8vOUNi/fz8ikYhLzEsKlP1AQa8CVtvAazgHNB+hIgw1npTa5HNJ19Jwos+QSFoNGT6HGffVaGLhmKhPln0UCATcSQEDAwNoNpu4efMm4vE4otEo8vk8+vr6sGPHDqRSKZw9exbFYhHnz5/H/fffj+PHj+PSpUu4fPmyMwJo9JGGJ9pnv9PHSOXGsbUBPErfU4nyf85FfkYDUw2hdtm8tKnC27woZQF4c5cpYrKLG/BahUpN0OLWU33VmtRn+CEERWn1et0df37gwAFUq1X09/fj6tWriEajLkks31culx31x025lmLiMR/cbMtNulzQFCSJRALJZNIpDAoEtdBtXyqyVN+gBolY/576svR+7QelxGhsKHKhcFKkbOtCpcXUTlR+mk6JqHV5eRm5XM5Fa1IxsM3c1K3KUPfKUUnUajVP5gmOg/a1Xx8CXgpWIw5VsREJc+5okALbSMWuR6qQUtSAIIvy+JtrIhgMYn5+HnNzc4jH4w4ZMgdlq9XC7OwsotEoent7sWvXLqTTaXfCtSpmRb1cD6yPfq50u/7NvmI/+fkxWWe2l/3dRlvfubQR121e1ApttVpu4y4XGqkkYD3TNq1R9dvo4gHWFaDl6imoNOEq36PWIO9vNpsYHx/HysoK7r33Xnz1q1/F8ePH8dWvfhUzMzM4duwYlpeXMTMzg1arhRs3buDhhx/GyMgIZmdnUalUkE6n3RlKioSIHNXa1Qzuus9LD0vkc0hp6kZX7o9ZWVlxx3sw0S8VJX0kqrz4HAAeJUMlzIAFpZc4dpqGS4WjKjJFWAwSqdfr6OvrQ2dnpzvihM/gydOKPNhG9svS0hIWFxcRjUbR09Pj9ucRNWh6JaUPbYYV1pWF/UKlQlSiBgifSQXC6D2lQLmXrdlsOsFtUbAaNpzbWudgMOhSzEWjUXzzm9/EzMwMgsEgCoUCWq0WDhw4gNHRUcTjcczMzOCpp57C+fPnXdqlmZkZF/WqNLjOF6VCdd2p31kjM1XZEc1b6plKyu6z1PXeLv6lrbhu86JKR4WTKhu18FRwAut7YHQxWOc5P7coQJ/tlxmBvqVisYjFxUXs2rULu3btcpb2jRs3sH37dvT09GB2dhatVguFQgG1Ws2hqGq1ilQq5dm/pcKd7aegIDJSBMbPFVlauoVK2S/sm0o+FAq5qEEVoMzkQSHGPuVnGpVo36kIy1J02s9EkRTq1oejUYq8lsqA/c1n8rwyZsznBmKLEjXKUZUV5432vUasqoLmtaw7+1TnlNZP0Z0Kf5vuSClDNR4U5dGASafT7kSKYrGIlZUV5+uLRCLo6elBIpFAtVp1frDV1VXXrnw+j1Kp5PG/KSWqSktRFNGjjrUdW6XWqdDsM/m/9e+1FdfmpU0VboGiqIgLlz+WJtQgBnX28jmAdyOupa70OgoHFVpqlXNR1ut1TE9PY2VlBXv27EEkEsHevXvxzjvvYGBgAL29ve5dlUrFc4IwKSKL+lQ5aigy66UWP4W6HuTHSDQiK57fReGg1J2mDWLEI5WDZlpnW1XQatSjpQCJVNgeVbqKbrW/VRlYfwcTDXd0dLiDNAuFgkNrwFrI++zsLJaXl91GZIaa28AGnVPAxmg+FaJKb2mEoSohm6BYowg5TjRQ1LdqlZVSs0Rj1o+ra4OUMelnInP2eXd3t8uQ0t3djWQyiUBg7bDOUCjktkDYeaV9on2kc0bpT71HDQ81sizdqYpQ79X12C4bSxtx3eZFJ6+1BtWK796QJwAAkypJREFUVyGgk19pJKINCgEb/usXfKGbb1WwsB60oF999VUMDQ3hyJEj+OIXv4gHH3wQFy5cwMDAAO6//36cPHnSKZXTp0/j0KFD6O3txdLSEgqFgjvwT1GGhn6TItU9Q6RXSN1pQAbrqShMfS6xWMyDHHhUyNDQkKM/GVQQi8Vc3ajgKKi7uroArEePsV9UkNuoPdJKDJxg3XiUCPugVqvhypUrHqRIhcyABB5dHwqFMD4+jnK5jGg06g6dZAAL72Pd2Q8MemFwDMdeKUIV3EoJ6jE7FOQqrLmZmwEuKqTtvEwkEh4DiX3HseV8pr9sdXXV7bfr7e1FMpnE0tISisWiJzUZM7isrq5icnISe/fuRbPZRCaTcRn4L126hPn5eQ+dzHryvUofq0G1mXFIxasbrNk3Ok+0Xdp/OsfbZWNpK67bvCh9oMiL/6vCUgueik3DzlWosCjFwUWoG5KVWuJnXIxcYPV6HdlsFsViEb29vbh69SoeeeQRHDx4EPV6Hdu3b0c4HMbKygo6Oztd3kLm29PIRQ2ZpoJttdaz21skRou+WCwC8G4aZdt5jheRApWgpZwCgYBDKFpsxBj7kAqFUWZK/9h6qiFBhRkKradj4ljzfeFw2JPFw1rsRBh60CSj9IaGhlxuQRsVCsBtG1CaSwUklZANo+e1um9KjQz9XlGspbsBuLHke3VjM5+j71VErKHqjJ4MBNays7C9zIxPdFWtVp2B1NHR4Q6UrNVqyOfzrh4aIago1RqKbJf6wCxdyHZZipbt0z5VNkV9ZO3iX9qK6zYvlsbTTZcaIGGDMNTZbp3B1nqmstCIJhX+fgLYUkyzs7OYmJjA7t27USgU8OKLL+KBBx7AN77xDTzxxBPYt28fbty4gVarhcXFRVSrVTz66KPo6upCuVz25K0jjUQUZJUk0U25XPYEonR0dLjMC2yXUqGNRsPtdwLgFKMGnsTjcfT19bn9QNpOS9mqL46K1lJcvE+d+IoK6VvRLQgAXJsymYxDo8A6NUkBv7q6isXFReRyOSSTSfT19SEej7tgAwpuLYqSbJotRYGKJPQezhuli/k/kYmOqfaBFhXk3NunwS7lctkhQVWupIJDoRBSqZQ7puTChQvundVqFel0Grt27UKj0cDc3BwuXLiA++67zwUS9ff3Y3x8HIVCwSlx9gUjNDm+ug6sYcLfitQ0wwfnGov6bJVybbVajvK1NHG7eEvbx7UFijp6KTQ0LJdKS+kX3QulVJOGvhOFWOtZkYRy9LqQ1L/R0bGWcXtubg7lchl79+7FlStXAABXrlzB9PQ0+vr6nG8GWHOiB4NBRxFls1lUKhWHngqFgnuHFaoMGafvA1g/ZJFBCXS+K1qhMucz1BeomebVl2TRlVrc7C/d7Mt62vBwtahJcSoKpKKhcqPSSyaTzofDE391PLi/LBKJIJ1Oe7JoUBFTSHK/GREn32XnAamtzfx2ihrsd8A6xcs5SUGudKKff1bZBBou1vhgQIqmoOLeQCogrpVYLIaenh40GmvpoJaWlhAIBDA2NobBwUGsrq5ibm7OoVq+h/NFUbb6/3Q9qeGiBqYyCJwrnAdqyGg/6jvbaOvWpa24tkDhYtHFBWw8sVgtQAoHLm4VniqsLIVji1qNSpOppcnIrIWFBRQKBezZswfZbBb5fB6RSASXL1/G6OgoEomEE8i09hmOzjOk8vm8izy0wpN+HyoK7qtpNNZOQy4UCp5s4ZqFnfSbhh6r4qJgJbVoc8xZpEV0QWXqJ/y0f9lmRV2k4+grrFQqHkRpURh9PpVKxZ3RVSqVAMBFNvI5bDMDTdh++ryAdXShCob3WSoU8KIAOw8VvWtqKN7He+x85XM0UrTRaGwIpuEYUKkrpVcsFpHP5z3h7K3W2iGbvb29aDQayOVy7oTud955B319fSiVSpiamvIgY0vFs58U8alBpcrLrhvtP916oL48fqZIe7N9iO2yXtpU4RYoNkQZgG+kn1p+XCBK91A4WWEErOeeU7TG7xkebv1dunDL5bI7/+jOO+/EpUuX8OUvfxmPP/44XnzxRTz99NMoFAqYm5tzQufChQs4cOAAotGoo4oYus1TfgF4lFSz2XQKo9lsuv1UpI4ymYxHYbVaLbehWY86IQogNcmACf7Qd0TfGREAhSyDBmq1mku/ZBUAERGFmAoojiNPMl5eXsbc3JxTiIODg4hEIp4oTFVi9GFNTEygo6MDvb29HkqL2dBVmbBPGACi+f9YJ1UySnsSwel3vIfPUFpMFQ7HBYCjcrUPaCzQoKDiKpfLHgqPbWHOSh6rUy6XsbCw4Da3F4tF9Pf34+jRoxgdHcXc3Bzeeust1Ot1nDp1yuW5HB8fx40bNzwUuVLq6hPUtcgsF5wX6pvjerH9qnu0tN28Xse2rbC+c2kjrtu8KEpSWlAnN4MLrCWodBCwca8JP9N7gPUgDSss9R7rd2q1Wi6sOJPJ4MiRI6hWq9i2bZvbLLtt2zb09PQAWFu0MzMzWFpacoqCylQjyqgISA+pNazHXFA50emuee+YRcIeGw9ggzCmwCI9x1RSNty52Vzb30V6Sk90tmhDEQjHQJGBRqAROTKnoyJDKlVSmTpWisiVEiRCoeBUepD/N5tNdz3nElHCdxMooDSXUoA6HzmuSsFyHDmHg0HvlgEr0DUohJGSGlXKhL30b2UyGXR2diKXy2F+ft4ZSP39/S4DiQYv6frQ8aLRomOqjIb2AdEn28Z2aHv4OduigTJtpfXdlTbi2gKFSkQViC5mVTBUcJq+yDp5iapIefF5KvwogNQfpnXxKwsLC1haWkIsFsPIyAgCgQC6urpw/Phx5PN5DA0NuYwZTMg7NzeHgYEBxONxJ3yIEPRYCm07F3epVHJIglnS1U/HDBJ6Mq/SQRqAQKHKPmTEGRVmIBBwilOFDAM4aIUr6qIg1Mg+/lYB2dnZiXQ6jbm5ORcZyHB3hrRTUWnQDKmxRCKBdDqNjo4OrKysOMUVCoWcgKa/i/faoAEqds4X9qUGbrDNGuyjgtn68dgfSkHyHfSBca76+c20DkpRaz2o8HU7RDAYdNlYQqEQlpeXUalUcODAAUxNTTnKmsEfGt2pc8L6qZQ61Plk2QlL2eu6UUZE26FzU9mCtiLzL23FdZsXiw5oUVMYqqCgACGNaBO48hla9OwlVXwUNBQ+FDhUelSUtNCj0ShmZ2dx9uxZPPHEExgcHMQdd9yBy5cv4wMf+AD+v//v/8OP//iP46Mf/SjefPNNAGtWNlNB3XPPPQgGg5icnMTi4iLS6TSAdSsdgMvppo77SCSCrq4uR52trKw4Pw6RV6u1npdR94upEmGbGTxChUBFQNRE6jCVSjlhury8jHQ67dl2oMKWCk99gxrhybPHAoEAbt686QI1eOaWnqhLJLq4uOiQ4bZt2xCLxTA/P4/V1VXs3r0bkUgE9Xod165dQ6PRcDkf+U6OJ6P2lFbmGWFqLHAM7N46zlFFcFRm3LtFqoy0Kvs+Go16jCxeR2OBddR5rRGc3I936dIl3Lx50/kMQ6EQDh48iP7+flQqFUxOTqK7uxvf933fhy9+8Ytu39vS0hJu3rzpxkn9Ziw6XnYtWCTNeaWGAf/mHLKBPhrEo8/ZzDhsl7XSVly3eVGEo5aZWt5UKGrx6sRXK5VCQBeK3muVmEUqWiiIKUybzSZyuZwTINu2bcOlS5dw1113Of/WwMAAotGox3+RzWYdqigWi7h586Z7Li1zIhoVZPS9RaNR124e065Kwi8qUuk6VYYqqBg4wvdGo1FPDkMATsjyzCc+V6kytd7V72P9XplMxim5XC4HAJ5Es8lk0ikYFr6Lvj5G03EsisWiU95zc3MIBAJuczINIfUVUuGrotTABP5mHynC1Hli6WcaUqrEFSFr36ji13lPwU8FR1pxbm4OuVzOGWwMzCBdXC6X3RluwWAQqVQKjUYD2WwW2WzWM9ftWLHtisT4nSJAbbt+R2OGyFCpaUWl9hlttHXr0lZct3nhIqBy0Cg/YG1fj9IV1tGsjnIKGlvUf8Z32h9FYhSEuiAZBXj9+nXkcjl0d3djdHQUzz77LK5fv44HHngAL774Ij71qU/hzjvvxMmTJwGsU1VjY2MYHR3FyMiI8xsVCgWHFDOZjBM6pLVoXVPJBAIBl6yX6IsIQv1IrLtusFU0q33b2dnp2ZNESlMzXFAAMwCEG56pDCjsOBbsZ2auYDLY7u5u7N69G93d3Th9+rQTcrTOGQTCdnJbwNLSElZXV9Hd3Y0dO3YgmUzi+vXrGB8fx+rqKtLpNNLpNGZnZwEA/f39bs5oTkb2ifaBBmdwbmheSM4pRjJyzimtptFzivAsFcyxIorXe3mNBupQ0c/OzrrPgTU0PDIy4pRWsVjE7t27HQV8+PBh5HI53Lx5E8vLyy7gh0yCGkmcG5wzRO+6Nqik2Y/sW64PVfzqHwPWE2Nre62ftF02lnZwxhYpdhFZi5bX6MJQhab8vS4qLSp4LA3CBQh4w6J1/1c4HHZHbdA/AwDnzp3DoUOHnJD5wAc+gIGBAYd4VlZWcPXqVUxMTKBer2PPnj3YuXMnAHisYbXQ+TmtdyIt7QsKXQ2RV8Wtz2AfqUVv0RLv0QgxGhR6DIntIxsQQURBJKmGCA+HpH+GARnqg2LbSD+RNuURLxplmUgknJ8slUohHA4jm81idnYWMzMzTpEw4INnhXF+8fncN0e/J/s2GAy6PJEaYKEBBzZAhePA5+pvNdTUN6Z9rXOaWfQ12GVwcBDxeBytVsv5sZj8mYi/VCq5/X6cx6ynhqbrWlG0qXNGkSnXIJWvIlXr57KZYNrK6rsvbcV1mxcVtEqdWEe4X/AB71HLUPcnqSXJa7l4+Ux9B7AxA71GIPKZi4uLaLXWk5+eP38eo6Oj2LdvH06fPo3Dhw/j6NGj7j2tVgvZbBZXr15FNpvF0NAQBgYGXJ2SySQymQxSqZQ7goT9QCGhe9WUrtF9P7Rseb2ludg+wLvHSe9RH49Gc/Jz+x4N56YCUqRHupMBAvR5jYyMoL+/33M/FR6FK3+3Wi3n6wsEAi47SDqdRn9/P1KpFGKxGLq7u5FOp50fiQqOyJR10v7Ud9ltA5xHKoSJftkm9Ump8iMiVv+OBoIoDanzmmPCzBrz8/POx8ow+eHhYQBwm9lHR0cxPDyMYrGI4eFhF2mYy+U2UKBsK/9Xg03XkzIfqlh1XHVN6Hpk29TI1He2y3cubapwixRujlVBQKvVRt7pplsuGlql/K2ISRcVf6ufgZa1UooU1nof6/LGG29geHgYe/bswV133YWXX34ZX/7yl9Hd3Y033ngD0WgUTz/9NF566SXE43GXwzCbzeL11193+7fC4TD6+vpc4ttms+ksadKmqhyU7mT9LYWqPjL2oVVMvJ6ClMEK1WrVc/IxhY8iKvYrEVKj0XCn6jLknH41FdTBYBDT09MubdPDDz+MZrOJd955B9evX0ehUHB0ISnPRqOBwcFBl2S20VjLEAGs0YEM+2abu7q60NXV5UEU8/PzTnlRoYbDYTe+RJGst4bJN5vrmduVCVBkTgTGU6QrlYrbumDRM/ueZ3WRbuW843uIrs6fP48bN264CMrV1VXs378fd955p0Nb165dwyOPPIJ6vY6vfe1r+OVf/mUkk0mMj49jdnbWtYPIUw1AznnOG2U8FJ1z3DlnOBf5GZWzomU+R9evdQnYbSjtsl7aimsLFLUG1dqzFimwMdiCRReCojIV6IrkrBNeaTkuSLUYaWEGg0HMzs4il8s5v09XVxdeeeUVhEIhDAwM4MqVKzh27BgSiYTHWd3RsXb0xNzcnKOfksmkSzjL+mjdrHPfRoXZoAhFWOwrWsGKILV9DJMH4A6bzOfzTmgrzaSCyAZiaDAL+5v1odCuVqvI5/NoNpvo7u7G0aNHEQqFMDs7i2Aw6CImGUgxMjLiwtzn5+cdYuvs7HQZ1HVfl0XY8XjctYEUHwWtzjdSiNZPapG/okJLgTYaDbeRmXOGc5jvtOH5/J/zlYqw2Ww6/xT3Z9Xrawmd6cMrl8uYmppCLBbDzZs3sbKygkwm446Eoe+SbVZkpUhMlY2Oq7Zf15ulDVVh2X5Rup59oSi7XfxLW3FtgUKhp/tF+LmlNOxCUiHFRcjFqpSfBmBYJUfhqk57e9yJIrvLly/jjTfewNDQELZv345Dhw4hnU7jpZdewsGDB/HCCy9geHgYn/jEJ/ClL33J4whnlFgmk3ECqFAoOPqJTvRWq+Xy9rVa3hNmWW/Wib4x9hfRjvrFqLCIZHTfFLOGMHqQdJxuN6hWq1heXka9vnbUiFrrFFQ82JGIRrNIBAIBT/aLM2fOYPv27fjwhz+MEydOOPTAtFCkBlutFmZmZtx5aKToyuUySqUSKpWKo1d1rxmVwMDAgOsj9TlyLHj8i0ZTcq+Z3TirtCIVPvuG/jaOValUckEznNMcH1VijUbDRUkqdbuwsIBsNuvqzDG79957sWfPHly5cgUvv/wyisUirl69ijNnzuD7v//70Wq1cP36dXzzm99ErVZzY6Hh6n7I3CpavtNG3ioS5Wf8rRGhnB9+tL5+1i7+pe3j2gKFQkHpGP2Ovy1Vo5ahLjxgPW+e3msXlkVulg7Sd2nJ5XK4fv06pqamMDg4iMHBQWSzWYTDYWzfvh3pdBoXL17EgQMHsGPHjg1+Be5jYj31HCTWTQMAKOzUX6LtotLSSDhFQYoc+Q7tY6JBRrwpqlO6y1JCFh1bNMv7KPx4iCXTGS0sLGBhYQHhcBj9/f0YHBx0EYIjIyPo6elBpVLB4uKiC3uPRCKOlgsE1jaAazolAI6qY+AGUyApZaW0tF/Qj0VafnOSc0YLn2l9XJxPms/RRsTS2CqVSpifn3fCn8e/sC3NZhPXrl3DtWvXcPjwYVy+fBkjIyNuW8bU1JSH9rUIXdfJZu1Vow2AM2B0nqm/i0V9ZupX5P9+a7ddNpa24toCZTMlontPNEjCWm26gPwEr9JvuhGVC9gKcwoTCg61OvmsiYkJjI+PI5PJYPv27Zienka9Xkc4HMbIyAiuXLmC4eFhHDp0CIlEAuVyGYHAWjg2Q5i1nRoGDazTb/RxUbiyDuq3UkHMNtuoNxVQNiyZ7SUFR0XEd+kzVGnZ+mnQgio1VRIcA4a7X7hwARMTE6hUKi6whvVvtVqYmppye5FIrxJRMpKQgR/sPwaEEPGoANY5pH4nS8nqfNT5oLkg6SNj0IlV2jRK+A5roGk9iFxbrZZL4cT7qLjo6yoWizh16pSbX5VKBceOHcPg4CDGxsbw7rvvOoRFg0mRMcdAFbauEVXoagjpeHLcVYGxqN9M56S+o11uXdpU4RYoduJzv4k6kFko6CnkNMTY71BCRV0a5m2DGdQ3pEqK3yt12NnZienpabzwwgt4/PHHMTIygt7eXkxOTuLb3/42nnzySTzzzDPo7e3FD//wD6PRaOCLX/wiVldX3flKCwsLqFQqSKVSHgtdM8Zz7xg3L9vjRRiOr4qNtBWFtgpFvof9oBm9NVqO32nwCv/W8HYKWpuslUI5FoshFot5nPJ8TldXF2q1Gt59913Mzs5i3759OHr0KGKxGHK5HPL5PPL5PGZmZtyzODe0LpVKxYWMd3d3e5SLCmoaPkqDUTGQUqWg18wpfJ6OC4U9s7urUcC2B4NBlMtl9z83V7N/lHbjxulgMIhCoYDx8XEsLi66ZMyVSgXpdNrt1bp69Sqi0Sg+8YlPYHFxEd///d+Pe++9F9PT0/jMZz6DsbExj19LjRD9W9eD1p9rTv3M7BPNCanGIylYUp1KzVtDwG5TaZeNpY24tkixzmJ18PNzDTIA/Pd+2ev8BAufx3dpYIYubr1PfQNc1JOTk47SodN8amoK4XAYBw4cwPT0NLq7u3HXXXc5uo/O+5WVFXeirfpCdD8QlQIVFgUIrXiN9lOajr+1XZay0X5Uy1xRE5UU+1NRjKJejSDTs6rUALCWO7+PRCIupyMAR1fy3DEq4Wg06vqAClePStH6qF+K40jlyz7RevFvYF2I34o2ZDt4P1Eq+9WivNXVVZTLZTf2NFLotxwYGHCnUjMbPOvC+TE4OIjR0VGsrq5ibGwMd955J8LhMC5fvozDhw8jEAhgamoKExMT6Orq8qRMU0VufbwWXauy52d+fWANIvazfQ8L722X7660FdcWKCpQVXFZikmpDEu3cBH58e8aUs7nqB9Ln2XpEqW+dBHH43EUCgXMzMyg2Wyir68P27Ztc+dIHT58GM899xzm5uawc+dO9PT0oNlsOkEbDAbdURW6oCnY2B8MN2c2dVJTDPFWq5/1tmdtaR9aWtHSYfF43JPdQfuRe4msk519y3qRsuOP/g+sR5qRXmw0GlheXkapVEKr1XKppxh8oUodgMtor2PEAAc+37ZZ55nSzuxznT9+xpEaCXbOal9ohngGhBCxMzJQ/ZqpVAr33nsvjhw5gp6eHiwtLbmQemAt4CUWi2FoaAiDg4PI5XJ49913sX//fmSzWSwtLWFgYADFYhE3btxwbdFEttYgswZcMBj0bG6316iSVgrRoim9V6/Rz9WX2C6blzZVuAWKWoeqTHTTrSo1/q1UhAppWuAURBRUjCAjTUSBzOv9BJ1FcgCcAz0ej+OVV17B4OAgdu7c6Z73l3/5l/jn//yfY3h4GP/tv/03/NiP/RiefvppPPvssxgfH3fXTU1NOfTGDcnqkwDWFjvPrAqFQojFYh7qiopKTwG2/aFUEIWpZg/RFEd8bnd3t1M4DIzQCEVuuOWG3UBg/RwvIkUqLaIQtlWzV4RCaxneK5UKrl+/jj179qCvrw9zc3OYm5vD4uIiOjs73dExrVbLHe3SbDZdSjCOOwDPMS2sixoujH7U+cG/uTWAioWKh88G1k+jppLmXNU9dRqxx+hMRTrMRhIKhXDkyBGMj4/j+vXrWFxcRDQaxcjIiEtCvGvXLhw4cADd3d3467/+azSbTSQSCXz961/Hnj17sLq6itOnT+Oll15yaJVzlVsLrKLielMjhvOF7VUaXqMSlcbn2tFAIDUMGLGqhktbaX3n0lZcW6DYBcRFpjy70j5q7SqFpxadHmdCBcd7AO9BlarkuKj0HvX1KNWyurqK8fFxTE5OYnh42OXSe/PNN3Hjxg3ceeedOHPmDC5evIg9e/Zg//79WF5edr6PVqvl0JT2Bd/JevJ/CmpeR8Gv1I0iB/VhsW95Pa/Vflehk0wmN9CUrIdmmaCi0q0E/F/HikWzlnA8GFzBY0y4b4mCm0qE/V6pVDzjSUXOdqkxw7qzX/V/KjM77n715rWaVYOKnHOCiJPCn9eREg0EAp5Q+0KhgMXFRVy5csUF+9AI4XtSqRR27tyJdDqNRqOBqakp3HHHHcjn8yiVShgZGUGlUsH09DQWFhY8G/AtHa5I164fu4YsUuP9nD82yESfo2vJBq2oQaEorV28pa24tkChRaeBA6Q6NOqLAk6FlG6oVeexWnVcRBR4XHzqu1KqTYWwbhBVRcZnXLp0CV//+tdx/Phx9PX1odFoYGhoCF/60pfw8z//8/jYxz6Gv/iLv8DP/uzP4vHHH0ckEsGzzz6LVquFcDjsjqUYHh5GLBZz+2Os/4lISP1hvI5ZEVRY0o9GlEUFpaHyujlYUS3rRp8WEQb7h9F0alGrIKLS1M8p/FQJBQJrQRfMfl8qlZyCnJ2dRaFQQDgcRj6fR6VSQV9fH1qtlkMq3IelilrrxmspWEmtsq/oLwuHwy5hMJ9LFEqhSyMAgEOaRGiakYRGE/tbA4tWV1ddSD/HLZfL4YUXXsCVK1cwNjaGYHB903QymcT27dtx7NgxRCIRTExM4Pjx43jiiSfw53/+59i9ezfuvfdeTE1NYWxsDMvLy06BWgpTI2gVfdFAs0pOP2O7GNCkvlSr4PWkbACe/Jaq+JRVaJeNpa24tkixC0w3C6svwjqPAW8iXD5LrWjLyatV6RcyDmyMdFTERZ8Fle3U1BRyuRwGBgZc5u7l5WV0dnZidHQUO3bswOLiIjKZDHbv3u0sYqKPfD7vfBlaLypmRjRynw/bRF+UKl2ts0bOsdzKAW+v0d82ywHHgtY3laJ+T0HIdrC9fJ9m4aAC5cGQuVzOBSYQjS0vL7t26zOUluK4UIFzvDgvOF/YNjUE1H+j7eF4UPEqbch7GLwCrEdraiSq7uNjvzGasVarIZ/PY2VlxZMqanBwEENDQy5v4fnz5/GRj3zEKfMnn3wSqVQKr7/+Oubm5tzz6Ttkv/vR7GpMaLCNUuZ+a1JZEZ03GvSi/aZ+MGD96JZ2uXVp99AWKBTiqqyscqHi0IVDYa57UtQvAXgzbmz2bl2cGn2mvg8VxOqvSCQSWFhYcEEa8Xgcw8PDTthkMhkcPHgQ169fBwAMDw+jt7fXRd/V63VPeLwKCUaf8YynQCDgnPxaN/YHBasm3VUaEYBnY6yNpuRzgI1CnN/x82ZzLXtCpVLxZCLn+3SzNJWSji+fqRQnoy6z2Szy+TwajQZSqZTLILKysuL2wPEgSp45lc1mkcvlPBF5flGMm+0x6+jo2JA9XvvBzlOdW7yf55tpVCYRHZUUFUqtVnOIUZEgfXYAsGPHDmzbtg2tVgtjY2MYHx/HwMAApqamsG/fPuzevRuhUAhXr17F3NycM3a0WPrdtkvbZilCto1tUZRkmQvex7+5JhWp6xy0hlC7eEsbcW2BQkFIK5kbedVCV2FCpUSqx6IltW7Jxaug1AUFeNGUpUeUwyfyIKXUarXcxtmvfe1riEaj2L9/P/bu3YulpSV89atfxUc/+lHcf//9+Lf/9t8CAE6cOIEf+7Efw1e+8hVcvXrVKaBLly4hm83irrvucnQcj0/RooKWglQDMHj2VTgcRiKR8CSM1ewbNnKQ92sou96ngkZ9X/wbAPL5vOtPKgIVxFZp2Q3FzL23urqKfD7v6hiPx92etUqlgpWVFRQKBTSbTc9xJVQGrLNGaBJd0aDQuQMAiUQCwJpgJ9XG/1k3PscqAd6j86zZXMupyD6koNezznp6ehAKhXDp0iUsLS0hFAqhp6cHnZ2d6OnpQV9fHzo7O/GNb3wD4+Pj+NEf/VGcOXMGr732Gn7pl34JmUwGCwsLeOWVV1x7aNxoNhbu0VP/HQ0wDQLSsWHQBceN/2/Geih1qAYKP1OEbk/tbpeNpY24tkDh5KbCUT4egCfCSSkn3ksrWD/jglVqjJagbqK1FqpVkrxPeXm15Pk9LeJisYh0Oo2dO3fiwoULuHDhAoLBIHbs2IHz589jcXER+/fvx8GDBz3ZwoG1PTw8NFEFEJWvpU8t9anBI6yXOthVEWu7gHWEYulF9VfoZ/TVRKNRl1qJY6GUX6VScfW2fUZKSy36QqGA5eVlRKNRd8ovrw+Hwy4DPH1LsVgMyWTSJdklYmJ/KfLya7cdYxXs/NwiLRuMYPfXaQYU9h/HkAqVQRhErLwulUphz5492LdvH+r1OkqlEq5cuYKHHnoIhw8fxltvveWOb2k2m+505FgstmGPGgsVkioi1k3nvbZV55E+l2tGUaz2oa4hv7WjQSPtsnlpI64tUNQCt5NcUZAGTlC4qlNcF5MKbKW3iFCU9uPzuVgpoNTXpCHzRCUUiM1mE2NjY3j22WcRCoXw5JNP4sCBAzh69Ciee+45tFotfPKTn8Rzzz2Hz372s/iFX/gFfPzjH8ebb76JyclJrKysIJVKoVar4a233kIymcSuXbuQyWScJa/1odBknWi50rLWUGx1iKuSVhRFha73quDTEHs+M5FIOMqHvh1FV6VSCdVq1R1XoqH8VJB8B8PdA4EAlpaWkMvl0NfXh56eHhQKBRdUw/uZMkoVHueP394/ImMqDfYJfWVUNpodg/MF8B7aSSVEWlb9kFRI9n49KZp+u3g8jmvXrmFsbAwdHR3o6+sDAGzfvh379u1DLBbD+Pg4Ll68iB/5kR/Bvffei5mZGYTDYTz55JNotVp455133JxjP+s2D7afiof1U2NEUaOlSDnf+DfHjuHyapBo/yj9rgEd1rfbLpuXNuLaAkUnt6UzAG+knyo2y8fbxaAIxFI8ytGrYNJ3q8D3c1jru2OxGCYnJ3H+/Hm0WmuO96GhIcRiMVy6dAnBYBAPPPAAdu/ejbGxMfT19eHo0aPuyA4V5IVCAXNzc+7YE+Y6zGazrg7cB8STiam4re+CQovCVX80xJ2+NI6HCjw1Ajge7F9FY1ScisZoCOj7LPVqI+/4P2k1vpP+TL5L0bP6r3Qe8N3sJwYjqN9SiyIP/Yyl1Wq5ejEbBvtON18rVcm+1FD5ZrOJK1euuByX3d3dGB4eRiqVcuMxOTmJsbExHD58GNlsFt/+9rdx7NgxbNu2DdlsFpcvX8bFixddO7Vfda5bhkHnGvtSEan1AaofTPtEaWbb/+pbtHPS9mm7bCxtxbUFiiIdRVeAN+0SAE/SUr9nsKg/TJ3wGtasNA6w7r9QhGHpFEvPKfVWLBZx6dIl5HI5BAIBDAwMYHR0FEtLSygUChgaGsKjjz6KU6dOIZvN4vjx49i3b58HyTA7xvLyMnK5nGsDgxbUL6B7nVg/9pkKGUUFdl8T20NhSWtY262+Dy32Ov1faUA7jvqjKaJIpfFZmlldBbIqO46pbo5WZKTprHi9CmN+xney76xS4zs1c4n2sRpUisjYBqUugTVaeH5+HsAaOg2FQhgaGkJPT48bi6tXr6K/vx9dXV04e/YspqencfjwYXR3d+P69es4c+aMO+6FKFYzirCNugYUDWr7bLi8zhO7BvVeu+YUmanytPOjjbhuXQKtLdhD+Xwe6XT6n7oa/2iF1rNa8JrFXR28FBZqNTcaDQ9lpEWRmSpD3e+kQpzCR1Ge+jSUdlHhQGd8pVLBv/yX/xJPPPEEQqEQJicnce7cOUxMTDjEdfXqVXz961/Hj//4j2N1dRWnTp3C5z//eeecp+BqtVro7+/H6OgoUqkUFhcXEQ6H0dvb67KAtFrr2TDYB7rfS5Wz0p2tVsulSqLiYtAGKTftawAexELk0Wg03F4qRjs2Gg23f4rKMBgMunOzVBHxexYKd2YSKZfLWF5ednu64vG4Q3IdHR3o6upyiIKRebon0Pr9ALhjUPRa0pHqG2X0HyM5Oc61Ws31Mf9nQAcNMBtUw/dVq1WMj49jbGzME+By8OBB3HfffRgeHsbi4iKmp6dRqVTw8Y9/HCdPnsT09DQefvhhfOhDH8LS0hJ+4zd+AxcvXnR11TXA+cvNyKy3pd01CpBjbdkJv6AlPx+w7WMGvmhSZFWk/O79UHK5HFKp1Pd0TxtxbYFiKUEVpLpYKJyV2rCLyVqSFoXQx8HPqIgo/BRVqVNaLX2lFrUutVoNyWQSb775JsbGxhCLxZBKpdDX14d8Po/z589jfHwc9913Hx599FG89dZbiMfjuOOOO1y2dGBdka+srLhQ+3A4jKGhIYRCa8daMGGrVdY2zFtpMlJYFMbMd2jDu4l2FLFYv4SiCBuMYClZUoe6z4ttVAqW/a1CkCiMtCgAT75ERViWvvKjw7QOwDqS0vfyR99rKWreS6XFvuVWA+0noulIJIJcLueUUjAYdKHymUwGkUgE2WwW169fx7lz5/DYY4+ho6MD4+PjuOOOO7Bnzx7U63XnG7OoWBGPKgtrgFh/FPtafaeWLrW0PP++VaAQ/7bGiq7LdvEvbcW1BYpVQH6LQOkKuyABr3NZERTgPdxOKSf1VwHrwljP9NKIMVrwFLoUFup4Xl1dxcWLF/HWW2+h0Vg7M6qrqwvRaBQzMzO4cOECYrEYTpw4gdOnT+PKlStIpVLYu3cvIpGIyxjP+lcqFczNzblTkhnWnM1mndKx9BwREwUr/TB+eRApuPUzKipVCrovS/uu2WyiUCggm8169lcRnakiUIWiSoRCTcdXx10teVVAVsmqwqYRpJGMLKqM2UYdU+0bDTRQI4iomNQuFZft61qt5s5iCwQCmJ6eRi6X80Ts9fT0YHBwEF1dXahWq5icnERHRwcymQxu3LiBnTt34tixYy6H47lz57CysuKymrD+DL5gYT/S6LN0uSpipby17br29Hs7D3gP+5G+Shvhag2KdvEv7ajCLVCUV6dColXNot9znxcFilrRzJ7ABaooic/RZ+reFxZLHQJrAlMThvL5XNAarp/P5/EXf/EXuOeee3Dw4EEcPHgQy8vLuH79Oqanp/HOO+/g0KFDePrpp/GXf/mX6OzsxA/+4A/igQcewJ//+Z87WiyZTDpFwGS+d911F+r1ugsMIAVBocH2MBxdqU22WYW09g0RH4NCVJCvrq66wy8pxPm7VCq5qLxGo+GUbyaTQU9PjztfK5VKIZPJeO6lguG7WAcqg87OTnR3d6PZbGJhYcEdf6Lom0pBfZNUYur7otC0gSJEQ8B68ludTww1pz+RCkD9bJw3uoF5YmICgcBaxn2eLXb16lXXbir3O++8E/v27UMmk8GZM2cQDAbx8Y9/HM888wyKxSJ+67d+C/F4HMvLy/jTP/1TvP76654cllRQSs9xTZAyZP0swuTYU9lwXmv0ra4ZzX/Jtaq+YRpw7GvtL/5tn9kuG0sbcW2BYpUJAI+160c/qW9KU/wAcMKJPhi1qikw7CZlS2MoWqPvQPl/ho8r/UghHIvFUCqVcO7cOZfte9euXRgZGUE8HsfFixcxOzuLvXv34iMf+QgCgQByuRxGR0fdNYqeWOf5+XkXWag0G3+rlUyUREXFepMeVMRBVKkblK1S0PBqRaoU7LFYzG3wpfIMBoNIJBJIJpNotVpu461a3EpjcUMy0YMiQgq+arXq6DilMxUdaB9YVABszKqh7WKdLApVA0YVOvuGc5B9oPRpKBTC3NwcJicnPZuqW621ZMYjIyPo6OjAwsICZmdncejQIXR2dmJhYQGPPfaYm09XrlzBmTNnXKQl66oshKJkzgFFqOq/Yj/4UcV2vXHNsV22X23/UoHeijlpl81LOzhjCxSlOXQRqMCkclGFpQsWWE/wqU5fXSREBGoVEinR4ia9pgud7+fzVADQ8g6Hwx6BSSv+vvvuw+OPP4577rkH5XIZ8/PzeOaZZ9DZ2YmPfvSj2LlzJ2KxGH7v934PgUAADz30EK5cuYJ3330XExMTKBQKAOACP0KhEPr6+tz5TBSizFShCYiJLLgJWP1fyWRygzAjAo1Go+ju7nYWM9uuCY+VotT+VlRcr9cxMDCAYDCIpaUlLC4uIp1Oe8444xEjzHpPq5wZNUg7VqtVFItFN248k0uVZSQS8QTVcLx0HtAgALzRrJpXsFgsbtjUrjQm+5iKWNFiPp93xgHfk8/nMTY25ijnYHDtdOTBwUHcc8896O3txbvvvotqtYoPfehDmJmZwcWLF/GLv/iLGBkZwYULF/D888/j5MmTWF5e3qCQ1d+k20k0klCRlhoyup44tooodb1QeVEZ8Tv1exFRrayseK5Xal/f934of5fgjDZVuAWKWtfqr6EQUv5cFwPgPZRQhZP+psJjsX4uwOukV9+AWrRaN13wKsh5H63Ss2fPIhKJ4MiRIwiHwxgYGMBdd92Fc+fO4ZVXXkG5XMahQ4fw0Y9+FH/yJ3+Cbdu2OSVaLBZdfr5AIODSYJFKHBwcRCgU8lj37E/Wk/4wUlaZTMYpBkVRLH50j30m/1dFbfNDxmIx5PN5FAoFp2Q6Ojo8e5kUxbIeinrYt/yO99CwCIXWz1KjEaJCnM9RBM1nKVq3QQrq22TRLQfsO0XZfC6pVybLzWazWFxcREdHBwqFgguuqdVq2LNnD9LpNM6cOYN0Oo0HHngAi4uLuH79OkZHR7F9+3bU63W8/vrreP311zE7O+v6TiNElVLXcVImQOuma47jpZ+TolUjTYvSrur7sv4yi8J0PbZR161LmyrcIsVOdD8+3qIr6wNTKoKf8dnqr9J3KF2iwtKPztKiypM0llrCrF8ul8Orr76KS5cuYWVlBR0dHTh27BjuuecezMzM4Jvf/CbOnDmDAwcOYO/evS6rfF9fH44cOYKdO3cimUyi0WggHo873xODADRaz0b+tVprGSNImZLW02NKWH9FY0o5qeBiH9uIT/YxUR9/RyIRh2D5Hv7ejOpk/+l4MOiBQg/YGJXI6zbLyqBBG2ookTZmOzWAQANzlIbVMHt+xkjNUGgtq0gikUAul8Pc3ByazaYLyCCCjMViGB0dRbFYRCaTwUc/+lEcOHAAb7/9Nnp6evChD30IgUAAU1NTeO211zA5OelJZ6V1VSNC28F5qvOXc8VvXZHhoBHgp2R0Gwr73gbyaP5MP8NDqdZ28S9tqnALFO6HAeBBPQDcJKdQANYWCvcf2Uzoal3rcxTR0WGvDmg/dKGKTi1X9Yn5+QMikQhWVlbQbK7vi+ro6MADDzyAe++9F4899hharRYuXLiAS5cu4dy5c7j77ruRSqVw5coVhEIh5HI53HHHHUgkErh8+TJOnz6Nnp4eNJtNLC0tYW5uDrFYDAcPHsSePXtcNgcNUrh58yaWl5fd3q+enh5Eo1FPeHswGHQUWyCwfj6WFvadKmdFGtxzRqWoilxz9K2uriIajTr/DsP6mSSXhfWv1+vIZrNYXl5GrVZDT08PYrGYu0b3mrH+mg6KykdpNdKnVshyjxmvabXWjptZWlpCtVpFT08Purq6AMDt+VIBz7nDkPeJiQlMTU25EPdAYG3PWqVSwbFjx/Dggw9iYWEB58+fx4/+6I+iUCjgzTffxIMPPoj7778fiUQCzz//PJ577jmcO3cOoVDIoVV9n46Rzn9Nr0R0SERq0ZYaW/xbaT0+U2llXQNkQ3g9x0X3kCljwaNquDfuvV7aVOH7oHBhqUXGRaN+Jj13iUKI11pqUJERfRTWEtWi9KQfXaJWq987bV5DWuSvvvoqCoUC9u3bh/7+fpePsK+vD3/1V3+FkZERPPTQQ+jt7cXExATeeust3H///dizZ4/zU928eRPVahXN5loYOo+6iEajiEajmJ+fd/XK5XJoNptOGbEPLe1n6VkWRT+KOCz9yj1h2n9qhWu4up4AwGdZAat+KApU0o8UroA3ez/HxQYf6LuU2tR5ZKlFDbwgNZnL5VzgjRpZagwFAmtBNteuXcPNmzfR1dXlTiqmMB8cHMT999+P7du346233sL+/ftx4cIFXL16FZ2dnbjrrrsQiUSQz+fx0ksv4fz58y7zvaXaSNnpfNY+JYLSKFBtJ8dKlbgqP/VNqULS/rdziP2mtCHHnYqqTRN+59JGXFugWGexCh61DBnAAXjz5Pk5gP18HVzoXJx8Jt+pfhMKWB4PYQWmIjvew+8pSIg8NAtIvV7H4OAgDh8+jI9//OPOz3H+/Hl8/etfx8TEBB577DEcOXIE3/72t/Htb38bO3fuxMc//nEsLy/ji1/8IsbHx1EoFFx7k8kk+vv7sXv3brRaLczMzKBQKLiQ9B07drg+SSQSTpFS8WuGdk0ZxEKU4heJ12w2XRb4ZrPpFKgGSGh0GxEZEZiODZUTAy5qtRoWFhZctJ6e6Mx6Ef3wLCy+wy8/H+uhyIX3E/HpvCCNyK0M0WgUPT09DvnS10ahvLy8jEuXLrnjXG7cuOFBfcFgED/90z+NUCiE119/HZ/61KeQy+XwzDPP4JFHHsEdd9yBZDKJM2fO4NSpU3jxxRddUA7nkipVGg/0fSoCsv5XzksaU1aB6Zrju7Q/LBWvW1D8/Fh+NLIiPks1v5dLG3G9RwutOcDr/OeiATZGsvEevxN+uVDUKlUOn1QHsE4n0nGt1qytjyo8iwypVKmcKECANQGrGdRnZmaQzWYRi8WQzWaxd+9ebN++HQ899BD+6I/+CM8//zwajQZOnDiBarWKt99+G0tLSxgeHsYdd9yBYrGIXC7n6r66uorZ2VnUajXs378ffX19CIVCWFxc9Pj3VGCwD9Qnotewz4F1ZKH9qP3BiMpCoYByuYx6vY5UKuXZV6XpiNSHxfRN3KhLP5sKT1WYFNTcV1WtVl3dGdTCvlbBqCH/vEeFLPtS30MlS3qVYeg6J4lYrl+/jmw26zaJl0olJ6w5Z44cOYJCoYCxsTFEIhGUy2V885vfxJEjR7B//36k02mcPXsW3/jGN3D27Fk3v9UXyPepL0rRMOc328/PlLFQpMR5an1S1hhUI1AVsVKF+j/nBvtAc1C+XxTW36e0PYBbpFh6Rzl1DawgslFhyvutf4vChxa47lNR4cP30BGvz1daTAWc1kmjtRSpWP8X689Tb19++WV89atfxbe+9S00m02Mjo7i4YcfRq1Ww8svv4xIJILHHnsMJ06cwPPPP49yuYyHH34YBw8eRCqV8iDQer2OmzdvYnFxEbFYDCMjI4hEIht8MH4KmW21hgEpPg1K0JRRuv+H9VhZWXFHmtjsFNZ3QoFIPyD7X09oVmVpg0dYH6XJVOCq34d9VK/XXcYLNV40szvrSIXJn2aziXw+j/n5eUfDlkolLCwsYHFx0Y37wsIClpeXnbJotVo4duwYjh49iosXLyKdTuPRRx/F1772NczNzeG+++5DT08PSqUSTp48ibffftvRwTSOVNloIdpXBKPX8X6NHFSDwlLqauzZAA81cnTMbYCHzn+lfbU9fm1pl/XSpgq3QFFnrvqUlPLQYn0yXLR+vitNvqtUonL3uohosarQZP00swDvp7C3J8yynvq3RWwAHNr4mZ/5GZw4cQLbt2/HjRs38NJLL+HatWt46KGHcODAAUxMTOD//t//i1/8xV9EIpHAxYsX8d//+3/H8vIy4vG4y5nXarUwNDSEQ4cOIRaLuRBq7p/SdFY2pJunJgNwglMDYlR529yDwWDQHfVBKk43I3ODMfuUSkeVBylBDdP3SzXFNFb1et3RgwDcic/0NwHrSJkbl4nSeB3fQeqU72eIP7+/dOkSFhYWUKlUMDo6ilgshomJCZTLZYTDYaTTaRSLRczOziKVSmF1dRXz8/OIRqM4evQoHnnkEbz++ut44oknkEgk8MILL2Dfvn340Ic+hGKxiLNnz+Lb3/42Xn75ZYco6deyyXMtWiTyom/R+rL86Ds77/kcrg3+z+fZdci+Y2Z6K2Y55na7Ao3GNlV469JGXFugqFWpwpHfqeJRa5qf6WJWRzQFAK+lFa8/+lwNi7cCQn08qoBY6OuwUVtsg90ro4gxGo3ipZdewquvvopAIIAdO3bgoYceQrFYxIsvvoizZ8/ivvvuwz/7Z/8MX/jCFzA3N4fdu3fj6NGjiEajqNVqTil1dHRgbm4O58+fR0dHB/r7+xEIBByK0U3HalX70YQaQm77Q9tGxBmJRBCLxdweJo1eVMTHkHD2ux7kaDdRW6XVbDY9qZcSiQSi0ahrvwZ1aLv0MzsOSr3x+URkOpbMRs/owtXVVaRSKSSTSSwuLmJ2dhaJRAL1eh35fB4dHR04dOgQjh07hrfeegvB4NrG6RdeeAGXL1/Ggw8+iM7OTrzzzjs4efIkzp4969ItWcOJ/W5ZCA3N1/10OkZKhyoNrspIn20P1NQ1xP6jv5Bjqn2t6019yhaRtcvmpa24tkCxPqPN0At/2wWgi5iLiEJcKRG76FUIq3BWOpAUGa9RQWuFqlrA+nyiD1UafC/Pdbp+/Tq+8Y1vYGxsDKFQCLt378bDDz+Mer3uNiofP34chUIBf/VXf4X5+Xncd9992L17N0qlEsrlsss20Wq1MDs7i2w2644CUQGkbdUISWY3Z4QgFYEqLSIBCnYNLVe/Bq/1C0evVCqoVCoA4CIeNesJ+5d9Y/uXc4Z7xai0LMqywlbnEtvBd/A7ZulQdMeNw5lMBtu3b0ez2cT8/Dz6+/uRSqVc2H4gsJa3keH7+/btw9GjR924PPjggzh16hSuXbuG++67D4ODgygWizh16hQuXLiAfD7vUQg2YElZAjV8bMozfk+lZsfB9gfHTNeSXVuqyNTHqZ/bfXXA+sZtRfjt8p1LmyrcAkX9FlyIXGRcDERLKvhJPyhlyIXD/wFvYIX1RalSs4qFKIvvVb8ZBYIKaS2sO9/PdlI483MqalKlu3fvxuOPP467774bu3fvxuTkJN5++208//zzOHbsGJ5++mmcPXsWX/rSl/DII4+gq6sLf/VXf4Vz586hWq2iu7vb01cDAwO4++67PZa8HnFP69r6KJh5nGNRr9dRKpWcfygQCLjnKAXJtmvKH+5py2Qy7jomzuVhigBc8IOfElJ0QDrP7tVifXQM1MCgf6tQKPj6g/getiebzbo6MeNILpfDpUuXkMlkUCqV3EGOsVjMUZLpdBpHjhzBrl27MDExgVarhfvuuw9nzpxBb28vfuAHfgAjIyM4c+YMvvzlL+Pb3/62R1npPNH5pwpDr9UMHzpX2T6lGnWMVTGqcaL+QqUceU2j0XBzVg1KO+fVkNPxez/RhEA7qvA9W1Q4UtioQlCrTqkswOsYBrxnDVlF5ec41t/WAa28P59hKUqlWAB4nqHohnXivfo8RZeXL19GIBBAPp/H8PAwRkdHkUwmce7cObz99tv4vu/7PuzZswdPPfUUvvzlL+OBBx7Afffdh1qthsuXL6NcLiOZTLps7tPT0xgaGsLQ0BA6OjpQrVZRqVScP6fVarm9STajAdGm0p+h0FoORo3o4730MXF8QqEQSqWSyyo/PDyMTCbjssQvLCzgxo0bHsSgwTKsgxoewWDQhcsD8BwhQn+a9in9Khxz7X87F5Q6pa+OuRsBYHJyEvPz8y40f2JiwhkvzIqSTCbxwAMPYNeuXXj77beRSqVw6NAhnDp1CqVSCU8//TT6+/tRKpXwrW99y2WD17miqJ19YKNulXq19C7bZI01Ne7U76XMgCot/V7pSM4LXTO6RvRdLOqz1ra1i39pI64tUNSZDGykK/Q4BH7PxWwXlzr/VbEAXmXF/yksbGJeDZ6w1r9+Tmtf/Vt8LxUwn+/3bm2nbdNTTz2FD3/4w9i/fz8A4MqVK/jsZz+LdDqNo0ePYufOnTh16hQajQb27NmDmzdv4otf/CJKpZLb18S9T93d3RgYGMDw8LDzPSWTSXR3d7tsFKrIFaGpMGQ/5/N5jzLj+xiKns1mPft/UqkUvu/7vg/pdBqJRAKxWAwXLlzAN77xDUf3URFSyCk1RR8i68n+or+r2Wy6xMGa4YOGjGbwYOJiu/9OoyZDoRC6urpQr9cxMzODfD7v9qdNTk56Do1k/46MjLgjbLLZLB599FG38fzw4cP44Ac/iHQ6jYsXL+LUqVP40pe+5OaOzhdreKmSYR9YhG99SZxzGnmr/cYtDIq6OOaqxJQm1/nqR4vreiDdz2vtMzZLzfVeLP/owRm/+7u/i0AggF/6pV9yn1WrVXz6059Gb28vkskknn76aczOznruGx8fx8c+9jHE43EMDAzgV3/1Vz2CsV28RXl8dZRrgIAV6n5oR/1XSrno/4BXMarCZFGEoULTBljwWrUmtR38XJWrtkvrzmfpZuxTp07hueeew+nTpxGLxbBv3z4cOHAA8/PzeO211xCPx/GhD30Ik5OTOH36NFqtFnbu3IlEIuHa3NXVhWAw6JK3MgNEV1eXZ78TaUPtQ/WPaLvq9brbZEv/FH1U9E+RohscHMS+fftw5MgRpNNpJ9xUuOoR9haVMus70ZQiDd5DIegXfq/jpc9XY6ler2NxcRGLi4suSjAej6NcLmNsbAzZbBbd3d2IRqPuHDTdqN5qtXD06FEcOnQI169fx9LSEo4cOYLV1VX8zd/8DWq1Gk6cOIFMJoPz58/j5ZdfdmdqcW74UaJqHPnRfIpOFU2pv5HzV+e0IlL2pX6mCsUafYr4VOltNrd17fEzXUft4l/+zlTha6+9hj/6oz/CsWPHPJ//8i//Mv76r/8aX/jCF5BOp/HzP//z+JEf+RG8/PLLANYmwcc+9jEMDQ3hlVdewc2bN/GpT30KnZ2d+O3f/u2/X2veo8UiKH6mioOC0CIgLhpaeX4L3Pq6+DkFl9KRfKbSkxSKwMYNy1bIWwpSP1eEwvqon4Jt5buLxSK+9a1vIZ/P4+jRo+jp6cEDDzyAarWKsbExnDp1CnfddZc7Tfny5cvYtm0bQqG185+KxSJCobVsFIVCAcViEZOTkwgEAti+fbvbsMsjOCytyX5Ti58KgHVlMAHbSgWfyWTQ1dWF/fv3I5lMIh6PA4BDSPQJqeXN92lQDd+v40ghS9RDZaT5DllffTb/VjqT2fer1aoLRonH46hUKhgfHwcApNNpNBoNzMzMYGlpySE3zp2hoSFs27YNS0tL6OjocIEX/+f//B/09vbioYceQiqVwvz8PL7+9a/jjTfecPQp22KVBeeI+vFUaatCsahdlYn6xRTB8TO/vYp8B/8nCtTvda3abRHaBs4NvzXeLpuXvxNVWCwWcc899+Azn/kM/v2///e4++678R//439ELpdDf38//uzP/gw/+qM/CgC4cOECDh8+jJMnT+LBBx/EV77yFXz84x/H9PQ0BgcHAQD/5b/8F/zar/0a5ufnPYtrs/J+pAp1EWjQBRcNF5kuDF1kei2fEwgEPFmuabVr0AVDxJWiUQsS8FJ4qtRUUVGZ0cq0Fqr+by1rUjSstypkXv/QQw/hwQcfxGOPPYZSqYTZ2Vl861vfwo0bN/ChD30I+/btw+LiIj7/+c+jUqkgGo2iVCohn897NiETDR06dAg7d+5EX1+f2//DQIpGo4FyuewCLOgfU4HK5zUaa/kTmcpqYGAAPT092LFjBxKJhKO2QqEQqtUq8vk8AKC/vx+zs7M4deqUizDkGKpFzrHTHIe6OZc5HDs61g5nJPpjZCBzNPKeRmPthGb+tFotxONxpNNptFprKaAuXbrk0mgVCgVMT0+7k5eVrjt48CD279+PaDSKixcv4oEHHkA4HMabb76Jubk5/MRP/IQzfJ955hm8+uqruHLlipvfNFgUuQDejBxEtywWGdEQomIA1o9q0f7j2KkBpfS6FZN+BpymgeK9TJBtQ+zVILNrws7/93r5R6MKP/3pT+NjH/sYnnjiCc/np0+fxurqqufzQ4cOYceOHTh58iQA4OTJk7jzzjud0gKAp556Cvl8Hu+8847v+1ZWVpDP5z0/77diEQqwbnmrEvFbYFyUinQUPfA6XTykmpRS5EK1Wa31bCIKDk2kq0pM66jRekrB6f/AelJewLsvTS3Z06dP42tf+xquXbuGaDSKffv24bHHHsPx48fxwgsv4Fvf+hZWVlZw7NgxJJNJLC0tIRaLobe31yOYSE/duHEDV69exc2bN53QZ3AFfTlEI0tLS8hmsy5MnqiQCCWZTKKvrw979+7F/v37sWPHDnR1dTmhxp9yuezGtrOzE6lUCjt27MDAwADC4TCKxaLb42VpYKUFVTiyvtFo1DM2HE+dT4rUgLXoxL6+PvT29qLRaGBqagoXL15EJBJBJpPB/Pw8rl69isXFRQ+yD4fD2LZtG0ZHR1EqlXDx4kU88sgj2L17N15++WXMz8/j6NGjOHr0KOr1Oi5evIgXX3wRFy9eRKvVcpudFS0pE8D5ZANLVODrPLHrSOl2fba+T+eiGljciL4ZorN0oWZW0fpzzPiZ0uB6Tbv4l++ZKvzc5z6HN954A6+99tqG72ZmZhAOh5HJZDyfDw4OYmZmxl2jSovf8zu/8ju/8zv4jd/4je+1qu+ZwoWmjnWli6y1pr4rwJvDDVgXUID3IEIqKqVF1NmtPhHNFqB/U0nqQlVqhotY6US+n79VIfEeqwBpNRMZrqys4J133sHzzz+PD37wg9i7dy/27NmDeDyOa9eu4Y033sD169fx5JNPYnh4GBcvXsTrr7+OeDyOSCSyoW65XM5FHlLB0bejkXS5XM4pA6Iwm40kmUyip6cH+/btQzKZ9NBzmtGDvxOJhMvkceTIESwsLGBsbMwhNw30sAEBrD+LKlHdl8XxpfBX1M3gEPZvrVbD+fPnUSqVXN9fv34dhULBHZvDozgCgQD27NmDnp4ezM7OupOMt23bhrGxMQSDQTz66KO4++67UavVcOHCBbz22msYHx/3sAaKlnSe6Zyyc1r7wfqYtLBdyhj40YW6eVkNO6vc1DdMpaMGoTW6dP7rOtEkwe1y6/I9Ka6JiQn8q3/1r/Dcc89tOJPoH7L8+q//On7lV37F/Z/P5zE6OvqP9v5/6mIVDZWM+pVUOXGRKaKiUNTPA4GAJw2UCg7l4CmIVclRwWk9gsG1UGytl7WUW62Wx4fC4AYWXdBMm6MKE1i3ZNV6plJ/7rnn8Nxzz+HYsWP4iZ/4CQwODuJf/It/gZmZGbz77rv43//7f+Pee+/Ffffdh/3792NychIvvPACSqUSMpmMh9YslUoolUqYn593tF40GkUymcTg4CDC4TC6urrQ09Pj+soGPkSjUdxzzz3o7u7GysoKbt686T5n/kH6vkZGRty+sRs3bqBUKiEWi6G7uxsdHR3I5/PI5XIu4S59dKR4qZg0JLtWq7kDNpVa5VjTAKJvrVarYWpqCqVSyfnIAoGA87lxc3QwGHT3BAIBJBIJ7N27F9FoFNPT0yiVSnj44YcxNDSESqWCP/3TP8V9992Hf/2v/zWq1SomJibwh3/4h7h48aLLIEEUy3FV6pv15DzmfFKFyfbo3FQlw3EFvKcUM9EtPyc1rAqM9+vfuilclRrrqgFniqI0KInRiyy6dtpl8/I9Ka7Tp09jbm4O99xzj/us0WjgpZdewn/+z/8Zzz77LGq1GrLZrAd1zc7OYmhoCAAwNDSEV1991fNcRh3yGlsikYhzlL8fCxcvQ2itPwhY94NxAW9GHSqVYT9ToWZ9ZBQswWDQk02B12saHEUU+nyNoqLgtBtCWWdd3OwDS8tQSNhQ8FqthjfffBP9/f3uUMJ9+/ZhYGAAN27cwNtvv40rV67gqaeewt13341AIIDXX38di4uLSCaTSKVSiEQiKBQK7nBD3fwbDodx48YNh3wOHDiArq4upFIpJBIJxONxd6hjKpXC4cOHEQgEcPXqVQ99SEWoSn1hYQFzc3N4+eWXkcvlnH+JpyXrQZbc7Kz9QeRmIxApJNlXFJDct3blyhWUSiV3H31hoVAIKysrmJ+f9/jHWNiGoaEh1Ot1TE1N4Y477sCOHTuQTCZx4cIFnD9/Hk899RSOHz+OpaUlXLp0CadPn8bZs2dd29W3qqjFBmZwLujGYg1KUgNPkY72kSIirhOLXK2SIfLT9aYGn1LNqiC1ztZIVAZB5/L7KRT+71q+p+CMQqGAGzdueD776Z/+aRw6dAi/9mu/htHRUfT39+Ozn/0snn76aQDAxYsXcejQoQ3BGTdv3sTAwAAA4L/+1/+KX/3VX8Xc3Nx3paDeb8EZRCga4QSsIw8KQ1I/forLUniqELiQyN0zio5CSgWA0jeqBP22Myjtw6g89Z2pg12zF6jDmwqZKMKPSmLKIPaVWruhUAg/8AM/gAceeAD79+/H4OAgpqamMDY2hs997nNoNBr44R/+YSSTSVSrVXzlK1/B5OSkx3KfnZ3dgCLVnxePxxGLxZxwYrRgf38/uru7ceDAASQSCSSTSecnozLM5/MoFAqYm5vDc889h6tXr6JYLKKjo8M9U/057JO9e/eiq6sL0WjUGXa03omWGo31vIdUcq1WC8vLy6hWq85o6OzsRH9/P4C1wKubN2+i1VrbeJ1MJlGv11EoFDxGUzQadWPZaDRw11134a677sKuXbsQi8Vw8uRJLCws4K677nKRk+fPn8f/+l//C7Ozs466ZD9yLqj/lPXTEH1lE+xYUPADcMEdlkpU6plIXWlyvlsNOTXsVCkptWypZjW8lBFg0Wu4Vjjv32+K6+8SnPH33oD8wQ9+0EUVAsDP/dzP4ctf/jL+x//4H0ilUviFX/gFAMArr7wCYG2A7r77bgwPD+P3fu/3MDMzg5/8yZ/Ez/7sz37X4fDvN8Wl1IP1QQHejYsU8FyQaolqZB8Aj6DQayk0uPCVWmR9bFQVN6VqvVTAaB0Bb5b5RqPhlKYGC1C5+fliVGBRcbEueoRIIBBAV1cXDh8+jOPHj+OHfuiHEAgEUKlU8Pzzz+PcuXOYnZ3Frl27cODAAQSDQVy+fBlvvvkmVlZWXFLYxcVFh0QAuHRPjUbDRe5ROWumi0AggMHBQfT39+Po0aMOaRWLRXdC8/LyMpaWlnDz5k3X7v7+frc/i2NFHxrpQO4VI91FSpFBHLqHi0oMgPPpse+4J4tRhJxnzMBRKpWcYVCv1x2lWiwW0d3djf7+fnzkIx9BX18fms0mPvvZz6JWq+EnfuInMDw8DAB49dVX8corr+DNN9/cENWnPlmNXmVRhKTIXf2jqozUqNH7NciHqE2fwXmuLACpQ9YNWDcgdX1yjur60LVmlaimalMfGuvTjiq8dfl/nvLp93//9xEMBvH0009jZWUFTz31FD7zmc+470OhEL70pS/h537u53DixAkkEgn81E/9FH7zN3/z/3VV3jNFFYcuUL+gBUVkLHax83kMbLAbMLngbQivXwCGBgPos/m/WqnqZFffgF5LIWwTyFr6RQWO7hnjeyiYKLBPnz7tKOtdu3YhlUrh4Ycfxp49e/DCCy/g2rVruHTpEn74h38Yhw4dQjgcxtjYGBYXFxEMBpFKpZyCoqBUJEmFoj4f1m9iYgITExM4c+aMJ2ydfUrkwug/+lIsBdrb2+uQNZPWBoNBt89qamoKANyxKbFYzG1qrtfrLpCEgpW0PgCH3Do6OhxFSn8SAJf2iu2lD2t0dBTpdBrRaBRjY2N4++230dXVhQcffBBDQ0MolUq4ceMGnn32WVy7ds0pLQ1GUKNM59RmBhDXgUVgVuGpccO+0jWlfikaVlpspC3/tsaf1lENN/ssXmefadeIBie1i39pp3zaAoVoxG4yppDngqUiszQEFxkFvAYFqDBQhzSFMi1CtQa1qMWsUYKAVxlZRzefqQpArVyiQRVeOlVt9JYqZtZHw7p5Xb1eR29vL3bt2oVPfvKTGB0dxcDAALLZLCYmJvDMM89gdnYWw8PD2LVrF4LBIKampjAzM4NcLueO44jH4y7rPNtKnxDfw88ZuKGbajlOHNtQKIR4PL4BRWvQB481AeBC55Wq1XB8nQM8CkUzpGtAARUf5wgjF4nmeE5XKpXC4OAgDh48iJ6eHgwPD2N2dhZvv/02stks9uzZg927d+PIkSOoVqt4/vnn8e6772J6etrNJZ0zauBosBD7QAOGVHGoT9Ai+M0MMM4Pa3CpstQoRTuX+Q41upTa4/fWiFKqUY00NeLsXLYK+L1e/kmown+K8n5TXBo1BnjDgQGv70sFHxesKiYNoNBoQCsI+F7dIMmiC3ozFKQWMj/jYrZ7dKxTXvPB6X2sK/1aum9Jz6iyG05ZLwp/CsNHHnkEhw4dwgc/+EFkMhk0m01cvHgR165dw4svvoiVlRWXkqlYLCKbzbpov66uLudPoh+J/a2WOreHUEGwPtqHqlTYTj2KhP4oXqfUrwpp3U9Hn0qhUHD+L9Ky6vNihKBmJNFN58ViEZlMBj09PRgZGcHw8DASiQRyuRwuXryI2dlZpNNp3HXXXchkMohGoy4DyUsvvYRyuYxYLObSQHGMNFJV/UGKxBR5qYLR9vn5oXQeAOvBG8B6/kWdFxa1+fmzeJ/2v46jVUw2p6GtH9eEzmlFa++nFHhtxfUeLSrU/BaLpRLtglNaIhqNetCWcut07qtAsP4zFYysk9aBRWku9UGoEmJRBcs28p2WnuSBigxw4PP9NqyqP4PPYbg+kUi9Xsfo6Cj27t2L3bt344EHHkAmk0Gj0UA2m8Xs7Cy+8pWvYGZmBqurq7j33nvR1dWFbDaLSqWCfD6PGzduOGqOCXmvX7/usfQVJRPFKPVG6o5t1/5XhMY+0b5WlG0d+3qdhp3zPibeXV5eRqPRQCKRwMjICPr6+hCLxbBr1y6Ew2GcO3cOMzMzTnj39/e7jCGhUAjz8/OYnZ3F0tISpqenPb5VzRChFKj1ZyqFpkJe5xefoWicn+na4Hu1D/hs64Pyo7atUrS+WvalRfwaZKSGko6J0rVEaTpeanS9H8pt4eNql3+4oumdlF7QhaEUon6uFAgXtQoKAJ5MGRoIwmItRb5LlaN+b61XpQt5nVXEfihLqSQKE83xxjYpbcn+UsGn0XlK94yNjWF2dhbvvvsucrkc9u3bhzvvvNPl2AuHw7h+/Tqmp6fx5ptvYnBw0CXFDYVCGBwcdGHsweDaic19fX0olUoOOfHUYLX8rSJifTQoRS107WdeTyWuSIWFgp5Rp6QaQ6G19FIMyIhEIti/fz8GBgZcDkUaKjyqZG5uDplMBt3d3di9ezei0ajL8l4sFjE+Pu6UeSQSQTC4ts9LBbcqYjWsVHgrYtK5wftVCbH4+Xe131SZ2O/UuLCIiHXQ+a5/c6zIhPB5uv7UQGThc9Tfx3tt29rFv7QR1xYotJCV5toMXVD482/6FZTTb7VanvB5VQDcL0QloFw9F6pat+ok12AORTvWmmYbLLVoBYh1wOtz1SdhqSC1du092p+sn0ZEptNp7Ny5E48//jhGR0fR09ODcDjs0jv9zd/8Da5cuYJWay3j+dDQEKLRKCqVCs6dO4epqSl3LevQ1dXl6DkiFAY/EH00Gg2n6PSQSu65YmYOFbSrq6suJB6AO4mYWS8Ycs9rmJeRyC6RSLh8jLt370Y8Hkej0cDExATm5uYceuru7saRI0dc2qhYLIZqtYpz585hcXHRIU+lvBT1a4QqBboqLkXa1jjhuPK3JjDmmKqisdshdLwtUlVFp6if/3MtcR5qm/Rd9A/qHNT8lhbx0QBR2lKV+vsJbQFtqvA9W2g1qxBmAAPDpVWw66LRM4SsBWv5dlVMzFqhSXgDgYBH4QHrKBDYuK9FrWClsayPjkrKWt0UyPV63b2P7+czLDXmRxlaZcg+Yj9a4Qms0WrRaBSZTAZ333039u3bh5GREezYsQO1Wg1XrlzBjRs3MDk5iVwuh8HBQezdu9c9s7+/H6urq1hYWMD58+ddfRhgs7q66ihLDSwA1lEIx56KZmhoyENThUIhFAoFh9SSyaRTiLVaDdVqFbt27XKIpqenB5lMBul02nNNs9nElStXMDExgVqt5hIAE6U1m2snMS8sLKBYLDq/HpWGzi+On+1vi3aUYlNErnS0NXZU4JPq5byxyEz3AmpEK+cIx0LpQypUDbKg0qKSUb8bi0Vrul6UftdrOY7cD6e0JANk3i+lTRW+R4sKBEU7ilAA71EkdnHptcrx64JTmk3Dvjej+RRJKaLj96yXCmL1ifH9lraksLMIzlJmKgT4LJvcVwWln4XNv60gZTDDzZs3UavVMD4+juHhYTz00EPo7+/HkSNHMDo6isXFRbzyyiuYnJzE3Nwcuru70d3djZ6eHnR2drpDLRnmDqwrVyoA0ouJRML5vtLpNCqVCqamptxzqIQ0EGR5edltLK5UKigUCpiamnLoOZFIuKhK7t/KZrOYnp7G7Owsbt686SjM4eFhbNu2DV1dXe6E46mpKeTzeczNzbnPSFGy3zWSUlEDIyY5Z3T/lh0jjrNlEZSao2+IheNmFYcNhlCERmNB14+uM7uWVLEqDavzUtcoixpPqtCs380qVa1Du2xe2oprixQKKr/FpQuEi0QRCa/VBU4KRIUF4F1QXGh+Qt9ax9ZiVPTG92tUGd/Fa6w/TP1sNmqQn1nFZZUpi0WAqiAB75lO2ga+K5fLuYwS9Xodhw4dwqOPPoqenh6XfHdubg5nz551fh8eYQ/AbSZm8tquri63sZcZNUjvlUold0+5XMbo6KjrDz2Vt1gsOsTEcPYbN264vVfsr/Pnz7swe6aH4rj39vbi+PHjaDQaLs3VysoKlpeXsby8jFwuh4mJCVQqFadgKXg5t/zmIsdHKW3SnlRkHBM+S8eTn6mhpXNS560ljJQ2VARrvwPWN/bTR6rzxPqQ9Tu291bv5ZxU44trlEFGNpsG39Pex/WdS5sq3AJF/Qb8nwuDAl/5d2Dd18UILCYS9UNZfo5x9YWpULfCn/epYgC8iE8tVl3MSsUA6wqR72SCX60XFzypRApCpRJVsWp2BL5DlZ+fANL28JmkeyhE7733XuzduxcjIyM4fPgwotGo813xPDCe7TUxMYFisYhcLodCoeCo3HA4jL6+PqTTaXR0dCCbzTpk1NnZiVwu58aAZ3Xx+76+PnR2drrchV1dXdizZ4+rBxGRRZtEv1Sq4+PjmJ6expkzZzA9PY3FxUXMzc15DqBUQ4L9zuALRdWWllNU46fULHJW/50aSpZF8KOmrXJRBK1oiZuzOdaat5Gf8TnsK/qwNErWKjGlfdVIVBTKNGJqUKohqs9tU4W3Lm3EtQUKF5HSYYqEVHhwMak1TIFv0ZUNnFCahd9zIakfQa1RS9VQWAFe57e1RFWpWbQF+CNMvZ5Fo+vsgtfAB20X66YGgAostbr1WRrG/MYbb2BsbAy9vb2oVCoYGBjA8PAwkskkIpEIuru7XVDFtm3bUKlUUCqVkMvlsLy87PxWS0tLmJycRCgUcv4OClf6QRqNBqLRKPbv3+8UVX9/v8tOH4vFEA6HkUqlEAwGUalUXOAH+ygQCLjAm0Kh4JTomTNnMD4+jrfeessdU7KysuLpO9ZFN99aWphzBIAzkmz/6hyyiNeOuc5VjZb0C+rRsVPUbNGL+tssqtE9i3Zd6dzje3UOqiGm/WTfy2s5j7SeFsG2y61LG3FtgUJBqoEQ3INkFZG1VlUZWUux1Wp5zqJihKFGLwJriy0Wi3mQjaUcLeLSd7Fe9HmopW4VBIUGFTPfxfbxHn2XoioKMBV2ijr4PrvHTB322u+A9wRmvkOd/4wW7O/vx/DwMEZHR3HHHXc4CpCRiRpwwXcxpyDbwo3BTMFEIRuLxdDX1+ehvahMicauXbuGUqmExcVFl+m9WCx6MlaUy2XMzc255L7FYhH1eh2RSMQJT+5106g+HQ8aIZrtXOsEYAONqPdq1J2OIxUl+9UG8+i46D4uPtcaJ35F0aM+zzIQdl4SIVMhs085D2w9b2UQ2v5k/bkHkEj9/VLaiOs9WqzlT5TBcGtgY0Zr/qj1xwWvi9wiDRUwgJe7VytUlQL/1zpouDOFkN1nZH1j2l4bQmx9DLxOlZJarwA8VJf2AZWyCielqdQpr1SW+ma0jVTq4+PjuHnzJi5evIirV68inU4jk8ngzjvvRCaTQSqVchnX0+m0MxaKxSLK5TLC4bDzh0WjUdcuhsaTBl1dXcXs7Czy+Tympqbc5t8LFy44nxcDOPSMMEarMQ8kAM9xNOwDDdzR/tG+sZSqoiaOGz+zVDC3BHD/k6WdbdCDjp0aPHwX14DOKzt/FckRCeo1bJuic/5WdKb14nM1KpDPs3Odf/O5SlmrolbfX7tsXtqKawsVLi7N56YCxIbwAt5kruTY7cJWq5m+JRv2awM06HtiyiAW/dsqJKWGSIOxPqr4KKCVFmLRz/wO8vOL0tK+4mfaHvooFEWqkNToR6V12McMq04kEmg2m8hms3jrrbfcnqwbN26gp6cHfX196O3tRV9fH0ZHRxGJRBAKhZDNZlEoFJDJZBCPx92pzNxzVa/XsbKygoWFBRQKBeTzebz99tuYm5vD2NgYstksSqUS8vm8x2jRfm211nxTmk+x2VzL1qGRekpZ6VzTrB58nkUtHFu7d9APXVt/rBX2Gq2oFKL6xVRpfCcjSOeAGm469haRc8uCKms7N2w/W+Rv2Q+2V5/H74jm2uU7lzZVuEWKzQjBheVH06nw10g+G4QBrDuodQGrY5t8PIWG0k68htaiWuhcmKQfbZCEoiW2QYUQ68OFbC1tFVaKQllXFqVp+DmVuDrO2WcMR2cJBNZP2VVBzGfw+RTyRLQMMVfLnv6nQGDtROHOzk709vYiGAy6k5VjsRgikYij8DRycHFxEbVaze3/4bMVJQHeMHHmKQwEAp4wemvYsK/4naUAdSz4t90czjFWxMJnKsIj8tO5ovXi8/idpRm1KCWtBpzOLyIy1lu/143RXE+KQJXS03dw3ilCs2uHv9nHGgjF9+i2DH6u6+v9UNpU4Xu0qDCwdKDdF8IJTxSgn6mFys83+1FBr0pEgwZUWbLo/2r9ah1Icyp9YsOR1dLVKDTtE/aLFRzqd1DFxUg7KiGlGP3oINaX11rL2YY6awAM+4rfUyiTIgwG16Lyrl+/7pSevpcoUutJhGZRC3/TJ2YpUqIlClD6rzaj4+wJ12yzImadJ4octK80EtEqADUY9F2KfPX5tp76nZ9C02dY6pF0JWlURe06XlpXnSu2vXpUjTIbHAMdC0X5anj4tbFdNi9txLUFilIRapVqxJcKObUmdQGqILcRX7zGRqJxIVlFw++ZBshm51DqTi14RXiWLtL3KloE1rNzW0rGWvZ+C1/ro5lErNWtfaCWuCpIzZ6gaFNRDNth/YhaP1UCFk3atmhd1U/E73jUCfeAad/4zSW+S/sG8CppnXP8TucQP7P9rf/bFGUaWOJHZ6thZuuovjPdD2bbqDS0ImfbHwxG0ZOSde5rJg01Rvi9Im2dP7pOG42GB63rSeYWrXJ+8Htb9/dyaSOu92hRZWWpss2oMCvggY3pcPhsdcpb6pHKSK1Ci+BUEOtz/a7Xay2yU6tWLW7rV+C92kZ7PZ9nc+P5IUTNJKJohT4gRl7afqCQVMG7GWr1GyftC/XDqBDj2BMJ8T1ErTQcdMwVzfiNvyIKpa+sglE/jFXsiuBs4TspoJnr0RoxRCpqxOj4UYBTMbOP/Aw2vlOVI+cN/9f7NGzeUnk6l7U//RSszi1V7n50qxpqFr2xj23gSLv4l7bi2gLFT3Hwfw0LVstNLV0+wyoVpbqUarMKS7/TBUaL1VrcfCb/t4pUrVP60CytZgWstfZtn1gh7UdF6fdaD1t/VVLcV2URoZ9C5PWqjAB4kJhto6IGrYcKcr8MFbqnz6Ii7WvtB75bUZy+V4WoReZaB92DxDpag0DnSCDg9Y9aekz7yM/Y0rYQfdnn63vVX2aVpT6DCoa/NTWVzjXbt9YQs4hV+1TXgRoTaiy2AzK+99JWXFugcDGqoNB9R5z4TAnEH0u1qfC3VJUuOubpU8RCnwj3s1CYUfhx0W+2ydTP+a5CR53cFDSWPlE6jrQd22ARC/uA53f50Xwsqnx1e4EKUUZAss5qPVMYap1UcLIf7b47tbrZX1aJqTVP4a+UrbZFDQR7P5+pglb7XOui9WQUotKrukFZn6WKUuvBecLEzawv55RStqqoOObqj9Nk01bBqXJjRKDOd7tPTFGYpUdV8XBd6TttTkzWQecr2xgKhTwUta5NHUtVyu1y69JWXFuk6GRXoa8pkaxSUiGlAtPve7Uk1SqnQKHlyr1BtmgdlO7he2xiX7tglYZh/fwyvbMfNCKLgoObsllUcWu9WA99vhX02i8WqVlrnO9SRadoxhoSfIalVxUR2P5UdKbKWwWqoluLqtUXoxSWTeml9JXOBX2OpWP9xsevXjof/IS+Klm9VqlEv/5jUcpN79d5rcaRKks7xn7KHFhXtnaM1HhSJKZjQcWpc9GuJTuv2sW/tBXXFimBQMBZbQwnViGmCo3X24Wpik0tfUUR1m9FgWGj5Hgf4PVRcKFaYcOFbUPelSa0aalUyXDh203Aak0rHQWsC2Uml/Wrm9JiqsS0rRZFsi5qsfMZSkXZvqWhwferH0uVnj5fhapVSjqW2h+alV0VlTVUtE+031lUYFtBrQhM68ffSgfaHz7P+oRUgfoZBna+aQCPn1ESCKz7Bf36WYsqV0U/anjo9gfrS6NhwEAMNTJ1jOxaU7Tuh7jbxb+0owq3QFEKRIWEClEuUuXL1YdEQaaWLYWc9YMoxcLvmXUc8J5aa6k+1lfrZzeSWjTAZ6oi0nspMCiIVVjY/UC6Z4fvVKFkaUKldlQZ2PZpH9OIaLVaLhGwRVB2nJQCbTabHqVqrwfgkuAyZFsRqkXROg9UQfGdOq62sC/96DetD9/De5TqUsSs++54jUacWorVGioWsfB9fLdGwyrzwGtV4ev7VUFz3tiITmuQ2Xlrx1dRtRon+kydT9oOyzr4+UbfL6UdVfgeLmqtWUFH+sJa6NbStRSKoivAGxBgaTQN07abKNXitUKW72JRhaBIxSIOS+/wXhZVVq3Welok68NQJar0ULPZdMls9TBOfbbSXLpZWX8sRWeRmyp2bZuOhdKf9nMVllZRaVtsffku3TjMa7SPVKmqUPUbB35nEbter32vxoBeryhDFScVOvvLGlSqyNh2P3rR+sj0fju2+m41iPzWgho8Op/8FJf2lypMVXZspx8CbJdbl7bi2gLFb3FYgQXAE0ihR36QLtHgDS5o3sOwZVrOFHpciKoUKJTsviUVymrhsr68DlhbsJqR2/oIeI0KQFV6KpxJ0TBLPKlUi64UdQYCARdmTdTDPiHlyA3LDN5gndWK9tsDRlpJEQHbyOs0SSv7SYNELOWpqFfRDulWUshaFxWaOodUeKrgZh/pGPA3+17pOf62SLpWqyEcDrsAImbssPNA36NUoSp7vUepTyo4biS2iIrzTo0rtkfnsfr6lJb225ulflpF2Zp4Wt+r88/SjuxPa+C0y3dX2oprixROevpIdFFppnN+ZlGNWsebCS4uSouibAQVFyYXKVMtWetRkZZ+bpGLRZHqH9D7Lb2iKI1KkAJQrWhFCJYuslSR0nmKMvVdgcB6PkcViipktZ0qKAGvr0qVG+tBheiHsLRflWKiUvXzVWm9NTzcjzLV67U/+Jk1SBShKF2n79RQc/s+9rVmp1eDwLbdoj1Fc+pX07opurNKS5GT9n9nZ6ejae0c1Pml/aUshZ//Stuh9/FvXdftcuvSVlxbpHBRUjDbYxVUUNsfwJvjTxe4+gooMPg+Xaj6LH2npT8UuShnr+iJCEKTm2rd9cRbPtcKAmD9YD8VdpqKSpWUChetjwpl1lWpJj7H0lQ2Gk/70/pElBZS4a5BBqq4dbzYPkuNWvrNjpH+r2Oov7W9OqY28MDPIPKj4ixCoaHlN4/9nsH3qeJSY0iVkqUI/ea7+kF1Tti+9jviRNGk1pXf6ZzXfraUo9LcnJva1zo+2tftcuvSVlxboNjFxMluz5BSqkuFKiPuVEHpggHWqUEbBEABodSX1onf2dyI+i5gnRqyIcH6HFVivE/pOo0OVMFDi55CT63qVqvlzlFSgcJ+swpRBavdfqDKXSklCkaLOlXg+gls/Zv9qIEoikCpNKwBo8KY9VCfnY6hBrqo0OS+PesfJAVr54vOQbbTBjpY35GiGmssAOv7oki9KfrnPer30ghTFlU0VFg2GIRUsiIbuyYajYZLtqzGlqUEdc5qv+gYaFQmEbEqNL1PI2bbCuzWJfidL2mX26GogFdLXC01CqRbURMUvCr4KGgURSiSsItSF6pFM7opVReohp9TEFshyM+opDb7nvXXKEO2nUJPEaMKaWZXV5RgHfi2L7U9KrQsumLd/JCvHUO/RKysjypevUf9SNr3qpjstXwvf2v/aztVwFvBrkfj8Lf2r1KefK6iHKv0FFGpctXr7bYHbTs/o+GmSo3ts++1bdM1oMpMUb6uGX7GumwWFML3a79tpuh0XSoab5fvXNqIawsUpSEAb/ZqYCOFQ+Gv99F6VWRkBY+lZrRQ2NlTcak8lRKidUqhoCHjuv+sXl8/ebfZbHosaNZRBRqtaOuMpyWrAQTaP7pplPSVBkWwTymMeY0Vjq1WywVtWIqVCED9Zxwb1kV9hWyDhtVr4Igqd+u3UmGvCpjoUoMoVIjzGRwPVf6K6m1biebUWKFPkcZKrVbzZNmwNCj7gs/S/3UMNDOGKl5LkbIfVGGxcC7ourBjbN+jp4vznayjrgF+pzki9XrOcxpeOic1YpLzRtkFv7FuF//SVlxbqNiFoojALm6lxazDVyk5e3gf4M36QIHMQmFgw6eV/uMeJNJMFGxaR32PCk8KPj0kkspAQ5T5DAoo/V79Tfq/IkWLKPQ7/qbA4TspYGhVq0+HykqNCovi1LBgndTfxmdxbClgVXFY5aLPB7BB6FtLnopGFZEaKoqCFOnwO/a5Gj+sA6+xfiSlb9WnpQrEpnXS+WgRpqXTdO5ocI1ea9tg55UqEotAOU722ZbRsHNOx0vbwz6xqEsjG9vl1qWtuLZIsSjCUlCAV+jwf6IDVWgqdFXxAV6hxMVFoax0j9ZBFzLrSqVHJad0Et/LZyiFZIWeCgZa5FYxWQtVEaQqV1Va+rmlubRe/Fvvoa/N0lD2Hvu/jdBjX2n/2XpqWL9VeGqc8G+GavN7a7To/zqnVElZRa4KVsdR66jjbsdX/1YqTY0CVYqqZNhvvE6FOueXjrc1Gjgf9B06Ppv9bfvbBtwoo6FUsWUgWCdreLE+Wl87Vu2yeWkrri1S7Mm+qnj0N+CNBrMBGiqUuPB5D5+j9IqeskyhxgMLlcPXiERasyqgeI8eaqj14bWknJTu4jOpSDVwQQMWWBdVvKqYVThrf2kQBtMl2az36ufwo99USVFIKTJQ/4w1HlgfW1+OhyoUVbit1np0I8ea40flpb5MIhtu1rb0n0UANviH7SbNyfmjPlfONRXMOlZEX+wzbgLn2OicYPtVgWhgjCp5paqbzSZisRhWVlZcfXUMWD/tQ17HuayIm+/XRMt8hvrM2EbOUX22NTpVwek6aqOt7660FdcWKSpcrKUHeJPk+iEHP4t9swAMRQmKKuyipmCyiEvfoYLLPk8FmEa7WRSi0WQq1LjfBvCmqbL9pUJKAxNYVz8qR++zgpKKyfpEtA903CzC4+f8bdGeKkn1panvjNdaoaxCXA2WRqPh2aSs80fpQP2e9VW0YMdFr9Gx0vHWPtKx5HxSpaVRm3oMCtvGKFOL6nU8VRmr35Lf6980UrTf7dxkexQJso8tfch2ar/q+y0DoHSl7et22by0FdcWKUq3KEWkdIpa5IDXmaxC0NIbKmyttW+VjmZp4LO1XqoclL5Ry5xlM0pQfQ4qOCjo9HsVkhZhWNqHik/pUH2vtXgtOqKgVMFp22ARjKWYNLyb9xC9aH00spDX8lgQ9THa6xTt6PMtQlFBb+vD3xY1sig16WewqFBWpbtZAMRmc5LX6zxUhaLvtkib6MlmfKGhY+csx1UNIDX4FO3p+PPd2k41cCw1q6hcFZei/nb5zqWtuLZQUSe0hkBbhaW0hlJPijb4v/qdlPKjkFcFZPdqqQBTwWeParCRitYSV8vfz0GuKJP3sz9UGdv2UZDbzB+sn035pEJd02OpIGZ7FNloHkPW3+6lsn4bHunO9lGQaYi/tdotLWW/53xQ6351ddWTy5Lt0Geo4lMFwzoryrPPYb/ruNjweRZGM/JaRT4afWfniFW27C+WSCTixpCKRSMb2f9qUGlwBp/HlFo6lzgm7EuNsvRbC34+xEAg4DE6/IwLVZbt8p1LW3FtkeIXSaaCQy1dPwQAbKTmtKhwsEhNr1eEp99rDj8t1gfnVzf+qIJTIQV4M16oklF6RUOg2Wf2ndpetXjtZxaxWf8aKbhWq+WOsmBR5WmpKY6DUoA6lhpIo3W1lJgaJBbpWWNE22aNGW2zn1LTAAi//uF12tfql7QIQ5Wk1s2iGJ0zujfQT5mpb8yOqSoDPp+GBRW6+l4tfWqVk9aLf6tSsmuAhhMVqR4maZGq9km73Lq0FdcWKRTMKuApSAGvj0Wd7prbUMNtrTXJham+ChUClnpiscqSAl4VHH+rlWqFpiomfu/nH1D60I+O0Swi7DeiJw27b7Va7iRftXZ1vxqf4ydUqGQUbfEdlrZSWlEFcyQScXXSwABa/9qvGiig/aOUGoANSMDvsEyl5DjmKpRVqOomd76DaFIzSbCo0qCxxX7Suiv6YUCOVWbaZ9o+W6rVqmdcms213IfWV8q5qXNK28r/ObY6/uxLHUu+zy87Br9nu/U+nTO6bqzibpfNS1txbZFiEYb929IMKjQAL+JRSgXwplCigtH3qjLjs9RiB+D5ztJ1gHevFIsqQ92YrAvYIhL94QZYRQzW+a+0jj6T9SBaYPvUx6X+DRXyKti0Par8tU8UCfF/vcdPQFtEqu+y9yilqwpI66ljaX1GNGq0H9WY0THXsbJ9aa/XvuP7FX2qIaJzSZW+0rUWhfJ/pWzZRr7DD4Xa/tWgDNtu65fdzL8VDK5vJuc9RFvaB5shQV2PbT/Xdy7tlE9bqFghoD/0TXDyK5XFe63Aa7XWw6lZrMWu79UIMBVKKnS5cFXgWFQEeCPn+DzWmZtk2U5ep/Qaiw2SoCAhOlHhB3iVtD1l2ApO2/faHwxQ0X7V/rfoUMeC9SbKUkpKo+kA/4MctU4aEemHHPU+vot+TO0Li4QVfbP/dHytErAJZG0fah/ofLHjYuerHTP9n3VUA023ZSiFaI0KfTYL550aNRrtZ9ePzjntC78+1OeoYrVtayut7660EdcWKdZyZOJYtdB1U6TmegPWzxsiSqHwVd/UZgtU0zwB6z4XpVtU6FjlwHcq1aSKhe1S4ag+CEWJREgqXNh+vltRH4WpChRFS5Yq5LO4n4vvtBSV1p1t1/PQSH/6KcHNKFBrAChNqwiTVCafrb5O+lF03FUZKFWsxgPH2FJc/KFCCAQCzqfH4BadB/yhwtCzxKx/ktdFo1FPYISf8lIDiPXXeWORoX6u42opbAAbEJIiT5sayo9mZxtXVlY2KCuiWWvQaR9zLCwt3y6bl7bi2iLFWsQs+r8uYN6jgkDpHi4Qmx/PvtMGYVAg2+9VealVq+9TIe6nrIB1qlIFp7ZF28Hi59RWBaW+DVVsuheNddI22RBley2RRzQadQJV26uCy95r6TMqAhXWdtwp4HiPRQ1+1rsKcPWR2X1QrKvuT7Io3SJoNRo0f6NScBTkutndb0wBeOpilYPWRe9VJbEZClKFYw0dvZZIV0870LmrLIJlO5T65FzgGKkBZteB/m3ncLtsXgItP5PwNi/5fB7pdPqfuhr/qEWtQetcV7qFyoeh1oA33ZAtihgsUlGBaBetXXBWCOlzNW2RCg6lTawgtAs8HA4jGAw6R7wiFmDdH6JCjtYwBQjRCOvXaDQ8G5g1VZLWS/vbolHtHy1+lJk9tkLHz7bZKicqNjU+eL9mH9HoR30Wi0WC1hfF9+o+MY6JVRaWzvPbi8Rn6dzRzebA5tsl9NkMI9c6sx62/coqaPu1ryxKVgVJJeyH4nR+a9aScDiMUqnkxojvVYWnUa9+TIGul/dTyeVySKVS39M9bcS1RYpfaLcKf11cdmHqfcDGhW+RjaIr/rYCC/BapqSN+Az7Lou+LNWndaTlqpGUFpVpXfX5Filofe0+KKv4VSmoYNE6q7/Eokx15NtsDuqXoXBstVrOwLCh/NYwUKGrvhteqwaFKh0VvlYZ6XhapeCHWiziVcVglQz/1nG1SFcpXM0wr8hMlQ6vtQrA7iPT/rd9Aqyfls1xsQmH9T3aJ7oh2q9tnDfa71qIDHWNWiQL+EdOtou3tBXXFik6sVWZAN7UNTYoQfl1i2KoHPyUB//2E4bWL0QqSH1sfCefwwUNbEQxRAEqZFWJKZpTy5RtoEJhUYWlocr6W9Glvo/PtQqLv/mj/iQ+x1KO2g/8XpGAn7Wt/QqsB5DY6EDexz6g8tENzH4ISiPd7Dho3W00Kn1+2h47R3Q8LYpThab9of4qjShVlG8VCPvLIhmL2nVucf5ZxoDUpG7qV0PGKm+LlNnXrLemqVKFag01XVcAnD/Q7q9sF//Spgq3SCE1AXjDx3VRWBQGeA+zU+EIeNMPWcTC72mdcnGrsKNi1D1fVCIaocUFrQpPiz7TFhUcWpTmUf+FVQKaDFX7yL5flZJVvKyH9pda/ZoAuNVay4pRqVRcfaxy0L+j0ah7hu65s74p69uy6FTpMYuYOZYU4lS2FoHxeo2sU4TAOWV9h7xX56r2s9ZJEbQKaT/aT5kEndt8po3UpGKmEUcWoFqtblgnGnnot+mb3+mz/a5R48MPtercViSvwUp2XrzfEFebKnwPFyuw/OwNtfK5CGzYuQpN+g0Ueeiz1JK0liKfQb8Cj/rQ71gsnaLP0e8t4lI6SZGAKmZ9hx96U1qw2Wx60izpZmNFBxZFqPXONmq/aH0sbabCVRWrtdipQHRcOQaKdqxCUuFPA8Jeo/NFo+ZU+ev7mJrJ+sKs4aG/VThbQcw6aR+pAtJ2UcHqnPPzu+p9/NyOmx44yv61m6epxKjsFB3asWVRpav1pEGgc10VtSJFa1ipMdou37m0FdcWKUrT2c+BjRQEP9tsc6Wl3CxdqIoLWLcQdcGpEFOhbhWhojFeY+tio8J0U7CfIKRlapGkKm2/JK22z2w/AOsKXRUMsDGLhn5ux0kpslqt5pszkUqTyl+PkNFjaKy1b9GfFfSKxixKsEpY/1aKT/eSqYLSPrNoTJWxHWvtZ/6vSNX6eVQZqc9MFYONUqSyYvGjLPUzvsdvTenc0TnO5+h71VDRNlkjkvdwvtv720rruy9txbVFii48wJtaSQWqLggroLQoN6+UoFJLqoT4fvVTcGFreiQuerUg7bttAIVa8/oe0i/BYNAhOgCee6zQ08+430gFuApGRhyy7pbWoyDyS5vEv1VIAfC1mhUJ8n7rb1HfIa/nGBElEnnp+GmfqbDnNSqANVSbRQ0TTY1F5aUUrPqftD/8lB/HTuupdQDWU0fpHFajhv2sc98iJT5Hw+j9gmR0Huj7eI36KW1gB++xeRttAI7erwYZ+1e3HJAOVAbAGlDtsnlpK64tUqxFqxashsnbxQN4fRFWqfkhB124isS0LnyGKkq9Xy1VuxitFWwtWv7Ne9ViV2VI65bvVMGkwkaRG4WnDZ+3QoM0ov1MEYVVOlbgWhqLAQB6nTU0bJ+oErQCWcdcqWG/OvAa26/av1YZ2THX53Cs/TZZa330x6Iqi8oA76ZcCnc/RKTUoH5ux0nnm/7N9ig1SZSt80rrrfW1CFjXkN8eOG2LRaC6FjZbc+3iLW3FtUUKhQUtN92PZC1VcvkWYdhADWtR0nKlU1stys3oJivgLYJRRz7fZWkSzU5gLVhg3Vq1Sk3RIAWQBoGoRU+0wqg7tf43U0ist6JMW3c1HvSQQ+0rHSMbSMI6sm68PhwOuxBxvqNWq3kQi/YPha/6aVTRU6DaSFK2Qf18/Fz7lv4be26YUoUqyPkepfZ0vEiT6vsU7apBYpW4KloAG5SCrbsaMexj9e9yXKmEVYEpMubcYr0YBbiysuLWjTUkuNeLa5bjGIlENpwsbX2c7bJ5aSuuLVJU6Knw4f+W81dKkX8r5WU/28xfo4KFv7nYNfJLFZMNstDPleLRVFLWx8bfbLfd/2Kd4KoMrF/Czx+kbVUhz/81Ma916Gvxo3csqtWMEPZ6225Fk9ba93uXtse2k58pFXYrdGgFPftC+1fbp7Skzg3bHioppXf1vZYmpgFC40cjOBVV2z6xileDIbQP2RZrAOp8YR/aDeyqRLXtnDOsM58biUQ8a473qd9uM9TfLpuXtuLaQkUFjy1qraqS04VuFx6wrrjItVvkoYuK91HYqMJUZWnpDq0DsK5MVQmrwOPz1VLlc5jDkHVVAWKRm7aZSEspQqVdleJRZaDtVsFnKSeljjge2g9WWfr1Na/zE46Kcv3ez6IGhNJdgJde1HfpVgGl83TM7Lgq+rK0nI6NIm5tr46XfY/WTd+p4+aneGlkcDz5XDVotI4APBue7buVDg0Gg55z1yyy1j5WJWwRoypURYDsI7azXW5d2oprCxVLJ6llroqECxeAS/wJwHPmkyo4pYNUGbVaLUd/UMBYqioYDCIajXrSGSmttLq66tmjxDpxcVOhqECnMLH7WUKhkEfYsQ6sfzC4lhKKEXlWUKpVrMJLAz8ikYh7Dp+r9WXf6VEiGhxg0aCiTPaXjgfvD4fDHsRcqVQ29LdSbfzO+jr1Hv5PSkvHVZWVPlvHVTeVs16qSDQiUoW0HRs1uLSPNJBGUZciPFXO/M4qTL2Hofycz6y3nf/qC7QojbQv+0iZAWtgsV66jrQ9qmytgWMZBKtg22Xz0lZcW6jQSlNLFvBaylwYytOr4ORz1IrlZxQwirA0qk5pN2sR6wJWP4hFCuozUktTBZP1v1glq8LWhphbusUKEEsf2XdovdUyvlX4sgpXRcMUrOonoYLT51jkw7apotFgBD5Pv9O5YGkyvsdm4VDlvRli0qL9TgqU1/KZ+hx9lv5WJKRGhQpx/Uz7SZWdHQvWSxWeGgx+lJzWW7/X//0OkLQKSD/j2KhB5rf+/BSYzt122by0FdcWKnbhUXhwMelGSgo3BmkomuLfdCxboW0tXOaQU8VERMRr1X+mKNAvxZBazeqgBrx7cZSmUz+R9kckEnFtVkGpPhEKMAAbjlm3VrBa6WwLhY8GOqhFbpPnWjTk559TC5tIgYV9zGAMjovSbqqQrbJQhaDvV3TDucD5QxpM6Vwb2MExq1arngSzfCavt2Hjtn+tUuX/6hsC4JlzquxVgSstCKzTj4rodFw5P+ya4r2ck7afrEHA56hBw894ndbfnsytY6b90UZb311pK64tUqxFzsIFpotHFZzdpKuLRIU93wF4jxFX35k+m39b/4PNtcZ324gvtd75bqWUFCXp8/l3Z2enZw8VFakKAhY62CnAlUbTOrIeNkDB1pV1AOAJdrD+DV5nKTAKeTUWms0mksnkBpRlkYAiBRWm1tjQPtXxt2hdfWzqH+M8UIW3WT5IRQkazKFzxF5n0ZxtMz9j3ew80XZZoa9jyGLpcdZV57CONQ0PRfV+46/PsfsWNSiGz9TPea8alW3E9d2VtuLaQkWpCiIKawGqoOQ91qlN65mIAvCGGKszWhebdbiroKTSolCm74pWp6V41KIF1v0PKtCs8FPho/4Aq3z5PitIqBS0LYqcKBCt1WspMrtPSO+xFr6l+fR6DSCwCESVj/aXVQCqvC3i02fr3/qjwlWRj1V+mwX7sOg80jHRvta2qVKyReccDSEbDMHP/BSo3zgqsuR7FZ1xLehYUxmxTlapKHLWsdexUGWvyteuXz8qul02L23FtUUKhbFGKen+D2DdklPaTU84tla+tcS5oBiM4KfYVHCrNUwEZ30M+r+ta6u1HjhAukyVoypptZZVeVoFpYEPpAUrlYpHUKtyVhoqFAohEomgXq+jVqt5BJMKJQpUTZSqPh8VsDayj20Ih8OeI00CgYBLBmvHQ40TVV4WlaphYJErv2+11pIAcz6wvyxatD4YVRwaYKL9qvPKoh87X7TOWndFI7FYDKFQCKVSCR0dHZ7sLpwv+i6LULXN1ufEdnEu8H9+ZveGaXCJjqvS5TpX9d3aZvazZlhRP5xFtu3iX9qKawsVa51y0alVa6kitcLtAuIziYp075JFCPq/WuUUBqwH/WHc+0QL1+bcU4Gp71YKxfq1VJDyGhWGWh8VqFZY8jqlWPle+noUyVgqTAW4IhyrsK0FznrY6D+LglToWivc9oG2TZUGDRhtvxW6Nn8i71cKmc/T9Fisu85DO0dt9Cnr7EdHqkC3bbU+JO1zHWdLyVp2QtGOKjD1NdIgoQJTpae+ZPaH3q/vtejPr6gRqte2fVzfXWkrri1SrMBXa1qj3pTWsYgH8CInoji1Wq3g0fBp8v5+gkoXrI1a6+zsdArBIgjASycBXr+ddZhru/iuer2OSCSyYR8Mn2kpGotANapRhbtVaipsrZ9IFZcVYuqQtxTUrcaXfc/nhkIhzwGU1tJXIWgtf1Ve7G8dJ7/oS9s3et1mwpZ/c65YH50tSvlaRWoT/W6mEPzQnTU2+ExL3alxY5UM68a9YWowsR91TikK1d/82wb+APCtT7t859JWXFukWCRlI7is1UzlRetZqT/7LC460mT22Vy4+p2+T+mvQGB9D5JFVbrPTKkhVX4qgNUfoZSnWvwq+NhPfLYqchZVPrzfChhLd2k/qQHg5//QPtP+Zr1VKWsotipUVSCKiEnHsn5U6vV6HSsrK64eanSwrmrMMJWRFeiqsKzSU7rXIhrWj4pGWQDtH4uKrYFh94zpNRZ1c5zYJv1efbUAPAhSx13nPq/3OwjSRoXSqFBqeDNlZbcJKFLV93GcAaBSqaBdbl3aimsLFUUc+P/bO/fYqIovjn+L7S5taneB0m6LlEd4VB5FLbKshpjIBqyND+SPhjSRqNEgJQFtiKBRMCaWxMREjeEfFf7y14ARNPIIpYUqWF61lRa0UlIsMd1WIX0pfdCe3x9kLmdP7y5UYcuy55PcdHtn7twzZ+bOmXNm7i6CF6FliIjPjPkDZODehPHK+BoTf+lSPozy/vweZoMGf9j5OoAZIPhslQ+sBj6Acs+PD1iy7tKYcMPIDyO7XJ8y9zcbS4yXaaczg/Q+uVGSgz8P6/Ft7txDkMae34d7a2bGzych0uPj4TCTLvuJ3QvGJq+5L28fcz031jJcLNvFzthwufhExM5r5H1Xhg253DwEyNuen5Pb23mbmbK4YTWyScPEJ0Q83MgnPLxeZuegXFPk/Uv2JyU0o26c5TqbN28eMghkZ2db6T09PSgqKsK4ceOQnJyM5cuXo7W1NaiM5uZm5OfnIykpCWlpaVi/fr0uRt4EfHbJQzd8UDDIrefmJWLzLRjmszQgBjOo8QeYGyLpxfAfo+zt7R3ixQDXF76lN2DqZLa3S4+DD+By+7upN9cD/xVhc87hcMDpdMLhcAQN+tz7kgOdKZ/vDuR6luFYoxdj/LlXxGfV/HqjF+nJSUPHd2ka+U0ZfA2Qy8f1b67h75bxOnAd2nkWfOchDyXyDQZ9fX2WrniIz7QVN3S8//K+wvuCMdA8r7kvfw6MTky/lhMAu/95/czmnt7eXsuImz7EJxq87tLz5N6neU54u/KJG+97Mozf29trbdhRwjNsj2v27Nk4ePDg9QLYezuvvfYa9uzZg507d8LlcmHNmjV47rnncPToUQDXGjU/Px8ejwc//vgjWlpa8PzzzyMhIQHvv//+LajO3Q1/gPkAAwTPVOUMVw6GdrN8XqYMPZo8dgvKBul5mHN8IOVl8/rwRXFTjt1LvXxGza8Hhm5W4IaIG1qpQ15HKb9JN2svXOc8RGU3OHMPk3spcrLB28PUW9aLe4TSE+LyyPPSIErvxxgHPlHhugaGhv142Wbg50ZYejgGvj7EZea6l/eW4V/ejnwNjV9rkOFoGfblfcsYMe5Byv7A+5KdjvkERvZ5HiWR7SANqnJzDNtwxcfHw+PxDDnf0dGBzz//HF9++SUef/xxAMC2bdtw//3349ixY1i4cCEOHDiAs2fP4uDBg0hPT8cDDzyA9957D2+88QY2b95s/ZyGYg+fBcqYv/krQ2Mmr11Mnx92D3aoh1EOLLzMwcHrW/B5+M9uMDN5zOBsNzhyz8FOZmmUuWGUxpbrkcvCPQvpKUrjYOcJSkPGvQiud7MzjeuUl2vyy4GUe7Ry4wvvF9II8vbihpPr2Wwx5zo3adLIyxCp3WYd3k527WJnZOVgbjeI2/UDXobUSygDYmdo+HW8vU05vL3sJkCyDD5xkn2NlyvrZpem2DOsUCEAnDt3DpmZmZg6dSoKCwvR3NwMAKiurkZ/fz/8fr+VNzs7G1lZWaiqqgIAVFVVYe7cuUhPT7fyLF26FJ2dnThz5kzIe/b29qKzszPoiEX6+/utr3OSs1v54PGZpnng5OyUGygzyMsZM19XMfcOtc5myjdfrAvA2vUnt7Xzh5QbYimPDP2Z/HIdjYe0jOzAdQ+Gv8hqwkumbL7uJMOYfNYuN1XwtTBTf+7J8F2L/J07PrOXM29uyHioqb+/3wrDyhm/9Db5u3FmzZG3lTE4POzIN32YepoQGl/r4/kHBgbQ09NjbaLhoUg+kbEzInxgl169uV5ujjDX8x2Q0miYOg4MDFiyc8+aPw88emDaUoZuTd/kbcLva+7N+4Api8PrzBkYGLB0qV7XzTMsw+X1erF9+3bs378fW7duRVNTExYtWoSuri4EAgE4HA643e6ga9LT0xEIBAAAgUAgyGiZdJMWipKSErhcLuuYOHHicMS+a7ALB5kOz42CnSfFZ8tyoDXXSY9HGj8ZluN5+eyZh8RkuI8P3NLgGewGEHmNHLDs6i6v47N7XhZfl+JGRcomB2FZfym3LI/LaK6V+TnSe+JGVmLyyq9lMoMo9yR420tPh/+184yklyh1Harudv2SGzcjO3+XMJQc0iDyuvF0M/GRRo3rVRpru3bl52Rf47o3epGeE29vbqh5/bjnptyYYYUK8/LyrM85OTnwer2YNGkSduzYgcTExFsunGHjxo14/fXXrf87Oztj0njZDXB8VxIfjDjyIZWGRN5DriPxsuVhN2jZzXC5zHYPrF06D9/xMB03xjK0w0NtxlOQs1kZnjPwcBavO1/H4nWVg1SoAYp7aHaGh2+SkIMXr5+dkeC7R03d5ZcUc71Ib9Lkk+FNeT0f7O28PrkZgqfLupiDG1k7L43LICcdQPC7jLyOpn5EZOmCy8knWtKQ2Blx2VfkM8Tbkd+f6zsUst8oN8ewQ4Uct9uNGTNmoLGxER6PB319fWhvbw/K09raaq2JeTyeIbsMzf9262YGp9OJlJSUoCMWCTUrt3vghluu3d9/K59cr5LIwVvOxqXxkAbSID1CWZ6cQdvJypEGWc7M5f3tdG83u5czc37YeQ2hyraT185j4vW1k5fLIrGbRMjBVbYT9+LsDI+dcbe7L/fMQunBGBs+ueJ1tuuD8no5MZHtF877sSvHTn+hJmOh2tXuGiU0/8lwdXd34/z588jIyEBubi4SEhJQXl5upTc0NKC5uRk+nw8A4PP5UFdXh7a2NitPWVkZUlJSMGvWrP8iSkxg16nlIBjuMGWECw/JPHYDgN09Q8kXThaeHur6UHUPVbdQxt3u/3DnpSGV5dqduxHS47Crj5TLfJZGxs6g2xlnOxnChbzsjOON6hSuXjfDvxm4wxkHmY8j+z7v53aySINq8sgNTxIzqQrXP9VI/QdoGBQXF9Phw4epqamJjh49Sn6/n1JTU6mtrY2IiFatWkVZWVlUUVFBp06dIp/PRz6fz7r+6tWrNGfOHFqyZAnV1tbS/v37afz48bRx48bhiEEdHR0EQA899NBDjyg/Ojo6hjX+E12z/jdNQUEBZWRkkMPhoAkTJlBBQQE1NjZa6VeuXKHVq1fTmDFjKCkpiZYtW0YtLS1BZVy4cIHy8vIoMTGRUlNTqbi4mPr7+4cltBouPfTQQ4+74/g3hiuOKPr81c7OTrhcrpEWQ1EURfmPdHR0DHvfwn9a4xopotDWKoqiKDb8m/E8Kg3XpUuXRloERVEU5RbQ1dU17Gui8tvhx44dC+DaF/ZqyNAe867bxYsXY/b1gXCofsKj+gmP6ic8N6MfIkJXVxcyMzOHXX5UGi7zDofL5dJOcwNi+b23m0H1Ex7VT3hUP+G5kX7+reMRlaFCRVEUJXZRw6UoiqJEFVFpuJxOJzZt2gSn0znSotyxqI7Co/oJj+onPKqf8Nxu/UTle1yKoihK7BKVHpeiKIoSu6jhUhRFUaIKNVyKoihKVKGGS1EURYkqotJwffrpp5g8eTJGjx4Nr9eLEydOjLRIEeH777/HU089hczMTMTFxWH37t1B6USEd955BxkZGUhMTITf78e5c+eC8ly+fBmFhYVISUmB2+3GSy+9hO7u7gjW4vZRUlKChx9+GPfeey/S0tLw7LPPoqGhIShPT08PioqKMG7cOCQnJ2P58uVDfty0ubkZ+fn5SEpKQlpaGtavXx/0a73RytatW5GTk2O9FOrz+bBv3z4rPZZ1Y8eWLVsQFxeHdevWWediWUebN28e8gvo2dnZVnpEdTPs75MfYUpLS8nhcNAXX3xBZ86coZdffpncbje1traOtGi3nb1799Jbb71FX3/9NQGgXbt2BaVv2bKFXC4X7d69m37++Wd6+umnacqUKXTlyhUrzxNPPEHz5s2jY8eO0Q8//EDTpk2jFStWRLgmt4elS5fStm3bqL6+nmpra+nJJ5+krKws6u7utvKsWrWKJk6cSOXl5XTq1ClauHAhPfLII1a6+c04v99PNTU1tHfvXkpNTR32b8bdiXz77be0Z88e+u2336ihoYHefPNNSkhIoPr6eiKKbd1ITpw4QZMnT6acnBxau3atdT6WdbRp0yaaPXs2tbS0WMeff/5ppUdSN1FnuBYsWEBFRUXW/wMDA5SZmUklJSUjKFXkkYZrcHCQPB4PffDBB9a59vZ2cjqd9L///Y+IiM6ePUsA6OTJk1aeffv2UVxcHP3xxx8Rkz1StLW1EQCqrKwkomv6SEhIoJ07d1p5fvnlFwJAVVVVRHRtcjBq1CgKBAJWnq1bt1JKSgr19vZGtgIRYMyYMfTZZ5+pbhhdXV00ffp0Kisro8cee8wyXLGuo02bNtG8efNs0yKtm6gKFfb19aG6uhp+v986N2rUKPj9flRVVY2gZCNPU1MTAoFAkG5cLhe8Xq+lm6qqKrjdbsyfP9/K4/f7MWrUKBw/fjziMt9uOjo6AFz/Uubq6mr09/cH6Sg7OxtZWVlBOpo7dy7S09OtPEuXLkVnZyfOnDkTQelvLwMDAygtLcXff/8Nn8+numEUFRUhPz8/SBeA9h8AOHfuHDIzMzF16lQUFhaiubkZQOR1E1VfsvvXX39hYGAgqOIAkJ6ejl9//XWEpLozCAQCAGCrG5MWCASQlpYWlB4fH4+xY8daee4WBgcHsW7dOjz66KOYM2cOgGv1dzgccLvdQXmljux0aNKinbq6Ovh8PvT09CA5ORm7du3CrFmzUFtbG/O6AYDS0lL89NNPOHny5JC0WO8/Xq8X27dvx8yZM9HS0oJ3330XixYtQn19fcR1E1WGS1FulqKiItTX1+PIkSMjLcodxcyZM1FbW4uOjg589dVXWLlyJSorK0darDuCixcvYu3atSgrK8Po0aNHWpw7jry8POtzTk4OvF4vJk2ahB07diAxMTGiskRVqDA1NRX33HPPkJ0qra2t8Hg8IyTVnYGpfzjdeDwetLW1BaVfvXoVly9fvqv0t2bNGnz33Xc4dOgQ7rvvPuu8x+NBX18f2tvbg/JLHdnp0KRFOw6HA9OmTUNubi5KSkowb948fPTRR6obXAt3tbW14aGHHkJ8fDzi4+NRWVmJjz/+GPHx8UhPT495HXHcbjdmzJiBxsbGiPefqDJcDocDubm5KC8vt84NDg6ivLwcPp9vBCUbeaZMmQKPxxOkm87OThw/ftzSjc/nQ3t7O6qrq608FRUVGBwchNfrjbjMtxoiwpo1a7Br1y5UVFRgypQpQem5ublISEgI0lFDQwOam5uDdFRXVxdk4MvKypCSkoJZs2ZFpiIRZHBwEL29vaobAIsXL0ZdXR1qa2utY/78+SgsLLQ+x7qOON3d3Th//jwyMjIi33+GvbVkhCktLSWn00nbt2+ns2fP0iuvvEJutztop8rdSldXF9XU1FBNTQ0BoA8//JBqamro999/J6Jr2+Hdbjd98803dPr0aXrmmWdst8M/+OCDdPz4cTpy5AhNnz79rtkO/+qrr5LL5aLDhw8Hbdn9559/rDyrVq2irKwsqqiooFOnTpHP5yOfz2elmy27S5YsodraWtq/fz+NHz/+rtjOvGHDBqqsrKSmpiY6ffo0bdiwgeLi4ujAgQNEFNu6CQXfVUgU2zoqLi6mw4cPU1NTEx09epT8fj+lpqZSW1sbEUVWN1FnuIiIPvnkE8rKyiKHw0ELFiygY8eOjbRIEeHQoUMEYMixcuVKIrq2Jf7tt9+m9PR0cjqdtHjxYmpoaAgq49KlS7RixQpKTk6mlJQUeuGFF6irq2sEanPrsdMNANq2bZuV58qVK7R69WoaM2YMJSUl0bJly6ilpSWonAsXLlBeXh4lJiZSamoqFRcXU39/f4Rrc+t58cUXadKkSeRwOGj8+PG0ePFiy2gRxbZuQiENVyzrqKCggDIyMsjhcNCECROooKCAGhsbrfRI6kZ/1kRRFEWJKqJqjUtRFEVR1HApiqIoUYUaLkVRFCWqUMOlKIqiRBVquBRFUZSoQg2XoiiKElWo4VIURVGiCjVciqIoSlShhktRFEWJKtRwKYqiKFGFGi5FURQlqlDDpSiKokQV/wft1COsceLaqgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eWyl53Ue/tyFd19JXm7D4QxHGs1otIysxZKs2IniRXUcp26WX4M2TZC2MNDaARqnaes2TZoW+LlN0S1okjZBkQWoASNAg6B2YcdbYivyIo+tXRqNZoazcCcv734v7/r7g7/n5fMdfhzZSWqL9ncAguS93/Ku55znOed939BoNBohkEACCSSQQI6IhL/TBQgkkEACCSSQb0UCwxVIIIEEEsiRksBwBRJIIIEEcqQkMFyBBBJIIIEcKQkMVyCBBBJIIEdKAsMVSCCBBBLIkZLAcAUSSCCBBHKkJDBcgQQSSCCBHCkJDFcggQQSSCBHSgLDFUgggQQSyJGS75jh+o3f+A2cPHkSiUQCDz/8ML761a9+p4oSSCCBBBLIEZLviOH62Mc+hg996EP4lV/5FXz961/H+fPn8cQTT2BjY+M7UZxAAgkkkECOkIS+E5vsPvzww3jooYfwX//rfwUADIdDHD9+HD/3cz+Hf/bP/tm3uziBBBJIIIEcIYl+u1/Y7XZx4cIFfPjDH3afhcNhvOMd78CXvvQl33t2d3exu7vr/h8OhyiXy5iYmEAoFPq/XuZAAgkkkED+amU0GqFer2Nubg7h8LdG/n3bDdfW1hYGgwGmp6c9n09PT+OVV17xvecjH/kIfvVXf/XbUbxAAgkkkEC+jXLjxg3Mz89/S/cciazCD3/4w6hWq+7n+vXr3+kiBRJIIIEE8lcg2Wz2W77n2464JicnEYlEsL6+7vl8fX0dMzMzvvfE43HE4/FvR/ECCSSQQAL5NspfJNzzbUdcsVgMDzzwAD772c+6z4bDIT772c/i0Ucf/XYXJ5BAAgkkkCMm33bEBQAf+tCH8DM/8zN48MEH8eY3vxn/+T//ZzSbTfzsz/7sd6I4gXwbJBQKgQms+rd+/3r3jkYj3+fovfZafsfPeI1ep+8Ph8MYDocIh8Pue/1sMBh4njscDhEKhdw1h5WNz/FL4vW7R69j4NqvzFpXv+fatmE5WW6/99lr7fO07nq91lPrZevoVz4th36mz/8OJEAH8gaV74jh+pt/829ic3MTv/zLv4y1tTXcd999+OQnP3kgYSOQv7zcSjH4KQiVb8ZA3Oo+XheJRDAajQ4odvuOw95t32mvVYPAvweDgafe9lrbLvrscDjsq5xtG1qlr8bLKvnDFLZ+F4lE3P1+Rs4aCnudGlqWJxQKeQyV9oHfWNDn2vLadrL9YOtxq3bj9dZRsGVhvQ8bJ4cZOd5nnReKdUzsmDjMmbiVQ2TLFRja/3vyHVnH9ZeVWq2GfD7/nS7Gt11oAKxXOxqNPMrCzzjoROV3VGQUq8wB7wS3xkHFT2nzcy2TvsdPSbNMfkhBn61ogIovHA6j3++7a/luLZctu1XY2qb8LhqNOsOr71HFaA2Ytq0q5sOUo21XvkOfz3rYtrV9qP/bvj6svtqefugtGo1iMBg41GlF+1THqd/7bBuzTflcliMSiQAA+v2+px52LPgZj1Ao5PrNltfOBz6DdbRto+0aiUQO9IVtNy3nYDA4MJ4PQ8hsN7/2/W6WarWKXC73Ld1zJLIKA9kXVWxUkH6IgaKKUukhfqaGRSdcJBLxKFs/lEPFAuwrZ05sVa6qXPhOq3y1rFpPlkNRgxoUfb4+j+1j20kVUSQSOYAGrfLh34c9z6/dtS30Hj8vXuusBscqbz9jxHbRPrPPZD3D4TCi0SjGxsZ8lbL+tmiJ9wNwStWvPW3f+dXdOkF8zmAwOBQBWgTpV06tL9tNxxlFnQprOK1jZpGV3qc/dszY9verk/3Rtgnk9eU7QhUG8q2LHej0ximDwcCjYDQmA8DjUaqxoleqXq8aGioHVQL8Xic/P+N1qnBHoxHi8bi7ptfrYTQaYWxszJWdz41EIuj3+4hGo4hGo+j3+57vtU76OYX1ppJRb5j38nulqdgm/X7ftYu2LduAiE6NKA1or9fzUHKWolMjwvezLYiY1WGg9+1nILX9I5GI69vBYIB4PO4x9nwG7xsbG/OlUmn4er2eaxO2H8upY8C2/3A4dG2hStiOKeskWWNEI9zr9Q4YFnV4+LO7u+sMs32X1lHHiaJC7Rstr0WynCt+qJfjim2utK++U8eDls3GEwO5tQSG6wiJTgQN2FN0wkajUY/CVCWq3qXSdQA8k52fk+4YGxtDOBxGt9v1TDh9Lz1nfa71cPX5Wt7DkgbUCKuiU+Vr0YY1qhYxULlo22o72jLqd2qktd3tM/SHiljpP75D+wmAh+5Uo6LevqWnaLRsn+j3fuVXg65tQuPBz7U9aNQVLasxV7SsfWQdJB1zLLu2J8sWi8UwGo3Q7/dd21j0a42idUbsMy2tbg2dfa4dU1YUFaqzp/3JtrfODN9nqdFADpfAcB0hUcNzKxpjOBwiFosd8OBUMakBo5FTbl0nLL1TGgc1CEQINGZ8tr5DEaIaNVXEwD5FQyXf6/UOIANVgFp/1s+PlmKdeZ9fTEh/K6qzBojlVkNpkwdsG1nDBHhRnBonlk8NnBpvGnd9n42hUfFpjE3rS+eCylINjB/1qP2jCl+Rn9/9akyUDeB4U2eCxskPCVojY+vth1Z0zI2Njbk21Wv5fCJ7NRjqlPBza9y0vhYZ8hoaZJ13OnesAQvkm5PAcB0RUUVhaSLAO5E5EUkL6bWKXjh5NIidTCbdJOe7YrEYotGo2y+SRtF6+WoYdBJaRatKluUB9ugoABgbG0MsFvMgO2DfgFqvXQ0h62sTEXhtNBp172GZotGoU96sN5VKv9/3oB2lQNW4qTevdVFKSu/ndWNjY+j1eg7FqHeuYuvD3yw33z02NubazQ/lKKWstJrG+khhsn76DpbTLguwaElRB+lf3qe/eZ0aDW1X62yNjY05+pgojPSkjjONmZHiZXzPjj2dGxT2vUVS+j9FKW0bO+NzdbzouOCzdCwH8voSGK4jJoq2qCCUuqHC9VPswEFOfTQaOSXr9z2AA7Ea9UCtEeLnnOT0elUxAnDUIIXf0/NVhWpjSuqlqoK31A6vU4NOhab1JeqgsrKerzUArIe+29JWSoMR1Vo0oV4232tpLlWG1ttnu7GP9Bp1RixC1zZQ5W3jRNp22ndqoG3yiCJQjkGL6NUpso6MGhx1WjQ7j+/QMaRzQZ073qt9RWOi19Lo03mhsVYnxjpkfK81xsCec6fjSftU66UI7bBEnEAOSpAOf0SE3qYahVBoP5BuqSkAnglM5c/J4ZdqbBWjKh41HkpZWeMD7KMDnfRKT/nF1SzK0Dr6LfpludTrVgWlylZjWao0+Mx+v49YLIZwOIxOp+NRJrzOpkmrh25pHlW6SisqMrLevfaT/V6RMutvjbMqYRVrdG2ZLZJTpyAajaLb7XraTWlFNXjsD6Je9ot1MnTMaH/r2GbZiA51jJBG5j3WEYnH4xgOhx7qmm1HJ+hWqFSRIcvMtgXgxpoaOT7bGl+bsWodJr1P+/R7zXAF6fDfxaJoggOdSlGRgPWyLVJRJWs/P8yzHAwG6Ha7vhNQvW+/4Lk1nHqfpcO0/H6TV71xq3gtAtLPFDFa4w54U6SJOtSwsm0UUdn7VPmpgVFjy/awVJhV5ERofKfSuXq99qP9X8eBKlU17HRIiDjZhzoOFI3ye9tudnzq/5FIxKEPRVi2z5WaVFHqTR0RNRCKrDh2/Ohpv/HhZ1RZbqVvdTySdeD77XjQMcLy0NhxDNisWb+2CeRwCajCIyRW0XNCKEI4zFgBXkXDVGOdMEQt6imrIuYz1MukV6zUlDUswD4as+jJeqEaG1FDrZ4xn6PeOO+xtBDbSZWdjVPY+I4fQmN7aF0ounDUKh5VsFTgLI8qZPX4te5q/BXpqFJlHdU4quK0tKMiCW0vRaO8XpGQjgGl+nivohK+g/Wi46PjVY2x9rG+x1KQaiitAWdsjt9rH2gZmdpv+0/Hlzoq3W7X00/WuaIh0/jlYDDwlMUPFbMNtL0tYg7EXwLDdUREjQKwPzk0HpRIJDyD31JAmvKsypj0Cb1eeoKh0H5GlsY9/Ggx9cR1YnOik9JUykspQiodG49hXVXpxGIxJBIJT2yOCQA0pjbeoIqWSp4nDvB6vrvdbjsKUdudity2gxpqfqYeO+k2VdBsX0V1qog1eYFKj23BsrDs/FyNJtvPxsD4fKbm23JZo8lr1Dhbakv7XesWCoU8RsL2K8vW7XaRyWQwHA7RarXcOGEihjoMdu0Yx6vWm3OD7cK+tQ6ZOlOK7NS503Lyb4uw+b/GMPludQx3d3c9aJaoS2l363QF4i8BLj0iQmWlCoveq6XllFJSdKHxLaUzKEqV8Hp6k6Q5eL+lIilU7JbSs8FppbzUe9XrNKstEol4qBYiBkUuSnupAaTh1RidDeJb717LwnaydJ0aAjWU2rZqFPxQsNZBy6ztq9fwfXZsKCVpjRDrYo0tRRfGav+okfdLEiGFqll/tt1oeLR/eV2323VGne+1a+v8UKSOZW1P7UM/Q+S3/ozvVfRrxyHHk0VLvM4iT79nq4HVz+gs+qH9QA6XAHEdIdEA82g08gSZ1bu1SkoNh/LyNp5hs96sIuDP2NiYx/Ok+E1efaYiCotSVBmqIdOsRFUmSnUqarF0l9Kdej0RlSorpXoUndn38l1Kh2o56N2zfZW24/d8rj6DywzUCdGy2xikOiD6o+vu1KgSPdsxRSfAogZF2dY4WEfET7SsfihaHQVNllBHQhEm20DHhyZOKI3HsqlzpM6NGiutB8tJg6sOhKWQ+dtvblmEzPco6rPo9FZtGYhXAsN1hMSuQ7FKyW7LQyOjlKLN+FKlqsZD6UH+aDo5n0mqg8qAHrR63RqPsspU66KfW7TW6/UOzc4jKlGFA+wrNaVjlB5SY8r24vekS1XBsPzW4PBzNfJch6bUbCKRAOBNfefaOMaBFKlFIhEkk0lPn2r7jEZ7W2nZupA21UQZKn2Nx6jjo0ZEaUZey2f0ej0kEgnXV2po2J92jZIiX5ZJDQ7gdQjUILO/bd+zv7UcNj6o79D+4nhRREejomvc+Gxr7NVokd62iJ5UtM49S4XbuarPDuTWElCFR0TUo1YvkqKTRr1xfm7XUamCZGaTKjk1VmogaBysN64eODOoaCQtXWhpLcC7i7x6wZZ+8vNMtXz2fqWFVImpFzw2NuaJk1hkyDr50bJqSGKxmEME1jHQeMhhcSLtE/7f7/fdHoh8pt15QpGWtpsf/adUsmbhaQo3y6uoWpW8vtvSvVpnHbN+CFv7wfaN37jX8UBDYGOF2tb2HexHGmRFdkqN8n06F9jmwD4y13GvZfYbR37MA8Uar0BeX4J1XEdEdBLpWhb1bpXast4qPUxFW/QUeS9FPVUiHZ3gtjycjEqH0KvWXSpU6Skl44fsFL2xfErBKGpR71mz1ng/N/PV8quRZ/lYL7arTYPW9ystpHXidUovsV66lu0wdKnv4rW6YNYiR01+4Fo0i178DLGK3RtRF/bauBbfQ8PB56sTdVgGqXVGtO1tG2k8UREb36cxIXUCNNOVZRkOh575YnffOGx86WeRSMQlV7BfLCtxGGrltborim6Srb91XHyvyF9kHVdAFR4RUW9Y6Qj+Dxzc6NNOSjUiodA+bajvoOHhc2ysQb1wTmo7cQGvkdDPqBj5PkULWg47edUgA17lqBmBFonxWjUE/NxSjnwvlaaiMls/fYciYd3cWI25Xq+UnSo5vZZlU+Wtz/QrgzWMiorUwPJ/zR616MHShxpb8ouZaZm03paa1Tqq0VUDz88UBdoYpSJBi9D0e0WldNTUQOrYUiTNz1kONZTaD/q/ZnDasX5YeTUxRmNlgdxaAsN1REQpNz3EUGlBq2xv5U2qUlEKRye0euGW5lLloO9kWf0MK7BPTVqajNdQmdlYDhGcVbT0XlUxqGdPJaVxDE01p/JhubUd+Jl+bxfqamxEFZMaEHUEABwwMNp3tg5+SJafAzigLG29LFrSstAY+qEDNchKH9p72LZKCzNxRsvg58To+OD/lrJj/+k8sOjW/hAxclxYVsEuolbkZ8ekdYY0q9ciSI3DsQ3sOjn72469QL45CajCIyI0OkRKnBC6t556jDZIze17iArshLIKhr9JC1llr16+NZb83E+xc8LHYjHP+VUUNYTWQ1XkopQl28XSZBQ1zNYgqJHQ5BOtJ5Vyr9dzf6sx9EMIfkqP1JomFtjNZVX5aXtoPfi3IkZFFGqwVElaw6NLAizVx+fwWXqGmlKLitJYFsb4rDFWR4t9oPE6lkOXQbBd1LgrDW1ZAoqORTXG6vzY8WapW845JlUofczM2lBoP8FG77UUs01K8jOY6hR9L0mw5dN3sVj05Ech8TpOVE4su+O5KmtL3/gpI32floF/W0NJpc732fgYvWBbZrteRr12VdSKrmwA3NJcADx0pkWi/K3KVOuoMRZgb+2RbjLMe6jUtU0pNlbGZ6vzYN9DsTFMq5B1ayheo2jU1lN/WD9r4PyQj9LQduywLkQ5mvightrWVd+niRY6rtTgqgNj46WWKrYOkCJEOnNcF6iOhhpXllszDbVeHJN8fjwed9TfrcqoY8Y6YEcQR3xHJEBcR0RUYaiyVmWvE0NPsdVAM9Pm+Z1FKJyoVtlS9H2q9FS5KEXEdOtYLOZ5pioiRQtUxlSCWiYNkDNBhdfv7u465cGkDDW6VFaxWMyTWKHKiO3MNtb6UJlrdqGlPdV48DOl2ZSGZXnUybDoh+2mdaCS5FIEYD/5hBsEW2eDZdOTjymaGs9yc7wMBgPP4aEsqyJTaxysIxWLxQB4d6vnO6j8dfyxTDqOdCkE4E2M4Zi0RkvnCdtfv+fxPawXr1fHzSaX2DHBMsTjcezu7ro2JBLk+/h8TWTRWDGNKOdKgLheX4IY1xERjRlRSdCIaPyJ3/tdbw2O9Qz99snzo+Q0RsMJrjQX4FUCNgPPUmgWSVDxqaLUeBzgzYRT5EJDwnvozbMdAO9OHdoG6plrfalkSaHxWdZoK1KxVBSVvSpJ27Z+R6poLFDRLOths+9YHh0jfAYVIg0Y665oVvvJij6PYukuilKMRCgae7NLAnSNotad99o60tj7xfgsArNsgY4BbVM/JErHz9Kstn3ZhoqcdG0ly6jtw2ezndSBCuTWEhiuIyJWofJvnZx+BkUVqSodndx+Xi+VhX7Ge5TS0ettejGvV0NklRNwcMsdDcyrYVaUYmk2bQtroP1oOz7TUoJqbPX92ga6kJTXqwLVNuBv9b6VKrN9xmeoIdZ2tNmXipJsxqeOGTo2uvckxSp1VeaKVOwYsZSzvUaNud3VxV5rEyh0PGisy9LeOr782t22Fe9h/zLmpe/RZ1mHjL+t06gOnW0L7QtFbCwH3xMYrm9eAsN1REQ9fcC7r6BOBF6jFCC9WV0XxUW3rVbLKRQbuKbyUkWotJYmI/A3n8PMKqsU+VzNYFOKSZUPvVbr5fJd1ssGvOuvNNYGeM+PUkXO9tR2tbEu3q+ogcaa+80pRaqGzaZeaxtqNh53IR8Ohx5aTxGDTbxg9poiR15n66CHWbKsLJN1KhQFhkJ7FCydFusQqROkRknfxev5DNZbKWVSbXyHrudTI6zjUNdWsd5qRGic9H6iT45Bdbo4ftX4qIHRsc5y6PZjlu7WMaEMiGaIsg15llggry+B4ToiYr02fsbfqlStV68TRuk1iqX37L2WklN6hMpO1y9pRhmw751qXVShq9FV42XpQ2s89f18Lg0RlYFSdMxEY939Dp+0Hr0i0l6v5xSSltcuDKbyVePG9rJtrApNFaaNh+nnWlalULVeLJsqWtbXr59tf+gzbVq90su2Dnqd9o86Noq6bPah0rh8htKFFB3rilj5OWODuvxBDbw1NIpWrSG2ySba1nyfIjcKqUK2izp8Fo1rfQJ5fQkM1xERnUz6GXBwOySdoDYhQifkrdKO+VxFD3bC2Wdq3IKiXiWwn5SgylwVlqUvbSahGhSKKgVVghQqJ0VS+r22oSpd/V8Rkyo8vZaxPquM+L8qVlsO6zxovfi3NQKHJTeocVPKz/aDGlpFHPosSrfb9TgLdAT0fdq+KuowaTsqErOOkKIidSCUprXjTJ02TbPXtWvafnQw/IwyhXVSh0nHlLaVUtoWLY9G+wlK1tjzGX4xzkD8JcgqPCJi06ItmjoMtSiloRNQjQ0nqyp3NRyk63So0EDwGZoKroZCt5rS+63x4YakSnHqc+LxuOfZihDUWLENbCyF7aIIRWk5pnEzhqaZlzY5IBKJuAw+pZpYT5ZBDT3RoCI6pc14vTXQrAtpQRvz47OtgWPdqCzpMNAgAPAYHh1fahhsvxNZ2Dpq3MgaQKukbbzOr830vYqMldZTdKgZfYoyWValghWJW9TPd1oKmXWw9J4+k22n/chr+TztQ50vrFso5F0X9r0gwTqu72JRKkGVMwe8pTrsvYwZKDpTBUnFaBfEqhLjhNc4ivX4LQ2ohtAqNaXI/KgnNbJaFz+FqopEPXRVHhr38SsHUQSNih7fwja0tA4NAQ2THwJSI6/KTg2rH/JS5KCITXdOUQVoEasaHx0HWm8+Vyk69p9SrCyf7pLP8qoB53vVCHB86nhhe6uzpe/WNtOxpgpe284mm1gDzrZhXTQuacez1l+TONSBY5/rc3WM8DN1ALW82i96jV4XyOESUIVHRFQhcd0SlaWlwKz3R49PvTtV1oB3jYpOPKIgerpU5Lquip4uRY+oV5pIPV3Au7bHxpZYJtZJ13TxN/+ORqMOsem5TroeTD1zPtsG0nu9nktg0RiJIi1dO6aePHcm4bN1s1/WQVEGsO8YaNKM1pHvs8ac/cb/mcjBPtK1aorQ/BJ87CGV/JyGm8qUSEsTGohWAbhxoGWzded3/LGJQH6UNttVj6jRTEvOAX0n25nPVFpQx4oaVjVG1gkCvGvL+E41jnacKDLkZ3yGtpuiSOuMBXK4BIbriIhFHcB+LEvjRfzeet7qqR6284PuZajxL9It1iO0sRRLwymVyM+VjrRxG0WSVoHYDEd9r6Wl1ANXBWepMI3N+CUm+FGzFhHxOfpsNbQ2rqVevUUm+pvKWBGwRaTadhZlq8OgY0froIpb669IQteuWQpR21uRn+07e8SLZjPasvq1sToQimIUNev9Oja1HFo/i2y0n/R7a6QU+fI6Nf4sK9tO+0/HoI4BZUosvR2IvwSG6wiJUj6cNJZL528/5cZjLwD/PfDU+Kny0AmlygbY306Jim443N+NwE9hqFeqFA6v03iLogX1ilUR8zk8two4eJy6Ij8+y88Q21iIto0qc5ZDnQGbuGKVq9aHCk1jeLyP9SfasvE1Fba7RahqSFkuVe5aNi2HXmvHlt5n45lsB323toVfFqqiMCJtvY7PUlSmqIX1sVSubSM1/vb9fsZC20jHjGYfKuPh1/eMkdL5sO3HuunfOtYDeX0JDNcRESIiDn5NzbYK3xogTkZVDH7nWqlSVwoM8D/kTp9JBc7JzXt0g11VBCwbr9O6kB6zNGY4HEYikXCJFHw/2+OwmIw9RkWVn7aPIlVV3HbRs5ZHkYT9zTbhOiSLjNlvrIcae65PUqeA9/g5BPxf0YCly9SgUfhc2ybaXqwr77exPn2v0oBKLyYSCUfl6knPFp2zTBYVa2KJImiLDik2xmrpXa0P659IJBwjQSSlDIWlyvl83YlEx7pfoolSg4q6dK4Gxuv1JTBcR0Ssx20nMT9Tykqv9fNKVSGqAdR7VbFaA6B0Cr/js/SZGj9TmklpMy0rRWkbNRh+8TlgP+NNqRqrhBXx8X/NUlPFpsJyKXqjorHKxiplfRaVoVVq2mZK8/I5tgxW6bE9NXakxlbbVO9XZW+NI+tpkxj8dle3qEbbxLYH36VKXvuH91tKkcL+IvLjO2wWp+0fdUYUCVukp46VGio6SzYeq8iLdVPngWXWMad9rQ5CIN+cBIbriIj1vCmqtBUt0cvXw/6YZmsnL5/Pv3X/O04+XVNDA6HvtzEBKheWiyjKZkBqPfgZKZZer4dYLObu1zqoguT9SnVp/bRsSllqPXn0C3f70HvsKdCWYlJFp32kbUClqdfq9ktWucdiMacweRwNn6uUGcvFsmrMj8/R9UF8Jp/D5ys9Zw2JHiGixkAdJTXmRFtsQ1J+FDUklj7jfTY2pPXVvg2Hw25MqJHgsTk6tvV9yiRwPGsfsR5kDZQOVcdNY2Mav9WxrgaS9SOitlt6BWjrm5MgHf4IiKVv7EBXRcPrqcxIoR1Gb+kz+HzdXUKVCK9VxMQd11VZWuOhHr7GRPxotsPoKksv8js1rto2oVDIUw8/1KFKgnXhb1sXKiE1WlScwL4yJlJQxa5LCPjeSCRyIH1ekx+63a7HoPG92rbsH0U9iuBUgarDo32uu0LQePu1tSJua9jVeeG6NJtswR++g4ZEy2vLbQ2YNSw2E5Gf2SQhRfxqdNl22m7sS0WX2v46xtgWvE/Rq52PLJtfmS1dGCCv15cAcR0B4UAmN66ePIADE0+9XyZK0Kuk4rATCIDH2HHy2kQITkilcfxiDmoUVAlYatMqAzUMSkFpvEERhqV8FEGyfPoOpWuUyqJnbZUKgAOGn3ENLaeltTRGowuArUG3dJq2MdtMPXw/J0b7wFJ0ikz8EKCiUjXCqlQ1CUIzMa2iV1rZvt+PRtO2UCOjSFz7kvfzHdaw2yQHdQTUMGj76vvYH5YyZXva3fUVuWodtY/s8zQ7UulS7dNAXl+CnTOOgNBT5UTViandx0mmCyXV27WUB+ANyqvSVQWua2dI56gRUrpEqThNNgC8NBWfrUZBkQ1jVQA8FIsVqzxJ6wH7BocbxALwrLXivbqezG6wapEf24nnTGlWHp9LR8GPctN3a1spItDv1FmxCEgVLsUepcFrWW7r7FB5qtHRMtklFNrH3AnkMIOqouvsbFyQZVOkpP2rba/GifTzYcZcHQ1tS44XW0aLotkO1lH0cwi0TQB4jimxc0Apao3DapbrEVTLf2EJds74LhU1BIA3U9AiG53ciqT0fk0dVwWrihTYV470Lm1CAv/mgmNVpH40oI3PKdJS+orKQq+nEbI0jyouKhCiSr5T4zaKGvhuRVqKboiWVMnznaTyrJLlbhvqEPBd6ukrjaTKy66xs33Pz8LhsFtfpNmmGs9iW+jzLSXFfqXDwL62+xAqildHxyJ9io3VsP9U+fO3Kn6KRbzsSx2nOh/s+NFnWaeC7abfKWugCE3HmH5vx6xNWNE+U3pTkbYaV1LH6pAEcrgEVOEREYtWVOnrBNEJpmm3wL7y1LVPdkshwLu9DhW9jSEpDWNF77cK3CIM+50aKPXKNQuPykIVGq+hIbJtRYWuz/TLOlQDoZ67tgfbQI2rto1SXhapWeWulKO9XpW6GhXrFOh71SjTkCpisnW3Bo3P1DbQPtc0cy0rhahVjQiTa0ajvdOCeZ3er+NWkZ+9xq9PtP8p6uDQkVHUpONWkZ8+w9ZPUZa2kzIfer+OVxtjZH+NRvt7UFrjHcjhEhiuIyBUXH7/+6XY2mu5bsZ6mqr8qGyUr/ejaCKRiFt8SZ5+d3fXGQQ1crxHFTDfp6hAlZFuqKr3s24sD+lKVZDA/oasuhgZOLhOSRWNUl2qdNV46jq1UGjv7CSNV/B5emAi36/11vpbD962BZEb+4MKOBQKodls+tLFFpmph896q8JnedlnrDP/1liYOhXWiKvhV2XNZ+iaNkWMpNQsta1LGizboIaL9eT/iUTCGQNLe2p9dVxyHNh5QdpPz0mzKIlzkPWy41CdPJspycxHOhfcNiswYK8vgeE6AmK9WuBgZpyNTzGArFli1ktXA2LT1HUzUmB/I1z1tpXi8SuLrQPLzd9aBovgdMskog2NpfE7fb8fwmOdWAZVyvq3Pk/LZmksGjFVUloeq4SJAFW58jl+CJOiFB3LqPvhaX10PNh+ZUxPUR/HhKU/VVnqM6xhZBsoralp3fpM7WvbRjZmSWOt71VU65chqu1AQ6Jtwrbm33yG3cZJ20CdJh1frJtSq0ola301rsi//ZJJ1PBrOwVyawkM1xEQS0uFQvub5qpCs5NCMxA5CVWRa5o2j+kAvGvD7Ea7+j3L5ucd0otXg6rGRCeyGg71alXZKCLi89U4aNxAlSc9eqXbdM2WesUAnOesx6gA8CQCsD2s4tUYG/tFEYYmB/D9RB5+BlF3Hen3+y7BwToMqiS1jxWZE+3o+FD61zpHt3IGiBAUtWpMLBwOu/VjWr+xsTG0220PYlYDoPcrGmNbqkOhRo5G0I4HRXask41l+TlN9hkAXH10nGliETc25meavGSRGp/JOqkDwHixblodyEEJDNcREPX2gX16Kxzez17TyQbsB+ZVAWnmmNJgFonpMSOkSRRx0ZBa48L3sizAwd0trHJUekwXOauSV2WlSoZKQhcHU1hf9YL5ThoCKkVFSPyMSlPvtWiF7ZZIJFwbKF2q+zha1KvBfLaTOiFU6NZgqkHidzYzVI2RIlW+X9uJ5VHHwiID7U9Fzn60HYWfs838qGL9Xo8F0fFix5SOCTV82lc2fqVI2rIMt6JZta8BeBwSNZiM2yktrcjUsg38jvVRp1AThQI5XIKswiMglspRSk737VMEpeiEz1DlxHupoO0CW8CrwDhJNVlAjYIqjlgs5tmORyksWyfeo96zJiCowlGP1y9zUhUsn0vjbtGFzQgkStBYHQAP1aroxc8Qs66WBlPDw3epM8F25nloRCd6PIz2hyI4PypL36vogu/mZxa56ed+CIxtoAaaZYnFYp6F2zQq6mAoM6DjVVEw29DSoCzDaLSfualjmX2lZdfnW6OvqE3lMPRpx5vf93bM6riksBz6Pj5DmYNAbi3BOq4jIFS+up5Kg89+WwoBXuPFCaLZdcDBhaT8TJGPIhPujGDfpcPIptHreh8+SxGF9YBVyarnrl6/H1KgWKSlGWr0jkmb0XhonEEzGNXbZ3nVkNED5/d+2wNRiduF39pPanT5PBoAGt52u+2eaTf+5RhRxEUqkn2hZ5Gp8WD5qPR5FpntC5aTCpp0FtuVCJ1JB3q/dSqUXuR447P4N9d8KWJRWjQc3jvLjPFcLafODzX+NK5sG7a3UnQ6HvmZOoGWDWD5tZ+5TZeWV4VUv99ZbBYVf7fLX2QdV0AVHhGxFAcnk992NUrzqOKiUInoM2nkqBDI2VsPUycW71EkAHhjUhbhUFlwoutz1IiwLtZYWQXPsvilOVt6S4P3zATTOASwv65NlZOmgLO8+rlFfopUtf80PqcKXVGt9p2l5ZQu0+QN3mup4MOSGSwS4nMUKWh9db9L1lvrRQOr93GMWrGI3qImbQe7VMPWVdfqaYan9pG2pfa1OgZ6nTpploa2RsiiM0Xr6jDZ+lM0+YP/a78HcrgEhuuIiNJ0FBvcpWJWmounxwL+E5jevCplXVtEj5ZKSAPphyliwEsP6gm2NEy6hkzLRoXHOJNeYw0h60EFwXpwrzyltHg/Y3ZqvFXUE7cxQ258S4OnClRpOT9kOBwO3WawaoTVEKuiVKPJ++hMsGyj0QjJZBKDwcAtiOY97D/2EY8V0Tgif7RPOa5YD0UaSt1puyvtyb4h2ma97Hoym1Ci9KClCTXxQ50Vjn9r5DiW/YyEZj9qHXR8Kw2rhkwTRyz1qfeyj61h0/LoTiQ6jzhGA7m1BIbrCAgVjFI8/JwTX71E/q+/eb1OHn2mvscmDpC6Uo/QGhP7fv1eFTHFxsz8vGFddMv3W2PiFz+jHOa9HvYZkabGDW1bAV5UZpGKX9ls6jUAR1kqEut2ux6nQFGkIiQ1oiyHbvWk5aZhVUWthk0XBCtSsVShUs50KtRYW5TEa9Vw62eKLAHvsgUazE6n47lGjZyiHN6vZbdxOutUqAHjWNOxZJGXvkPbSse+dV4sE6LzSp1Q/m3nXSCHS5CccYTE0mA0COrpafwI8C52tZNLJzInKL1IGzPg/Rqk5v38sbSipUB0olPB2XLy+eqxW2OtdQXguY6KzS9rj/daQ6jJG2wLS/9RYdEQ0bD4pZQrWrDKVPtOy6TGxdK62l98nsbX6LVrJqN1dizyVIWros/X9xLt2BiqGiBLj/F/jXnyWkVY/KFh0H5R6lVROetMqtrSs9Yo6VjRvrWOG4XltUaYY4tl1/KqUeMzFNUrGrOOiUXCgdxaAsR1BEQVHr1rrg9S+kwRiT2KhPcpwtEYRigU8pzXxffpjhqAdy89zdZSj54TmN49FT2vpULi+/l8u5GwpnIrFUVh3f0SPBQtMDlE0Y+uEdJNiUlhqsdNA8D6aIo630kKkkF+ogW2maUl2+22h0pjfamQSf/xHaQJ2X5UnoPBAJ1Ox9OnNhZDo6UJGOwrpQgVVWufK4pXWo1tpgZLkZemefP5/K2OlCp0NW58rq7F0+w9to9mMKpBpJHSnV7YB7pUwTplWh6OM7t3IzdZ5phRdoB9rnWzySJ+CJ1tFsjrS2C4jogoyuHk0e2AaCCUy1dPTxW/neDWi/bL7lMqx6YtKx2ok93SY/ycCth60Krc1VAA+7E1m3Bg42X6LmvA/BIGeD+Nh1/AXNvQxsC0nkynVwSmcSYacCouKkrN4OR71eD3ej2PsWDdFFVonyeTSfd8zZ60VG44vJeVp8ZF6cTDnCFFG3y2OlBq+NSYsQ0UharB0HKqEbhVkoNFKPq5HY9sPzXuauAVuWtZtC/V4B9G3fPv0Wj/UFVLcdv71BkJENfrS2C4joAoJQH4nxukWYCcXICXS1fqQhWget18n6VQqEwsvWiNk528NAy687XeZ2lFvY/vo7KzhkKNmkWEanw0kUMVrhoxG/vgO9SYah35HCr0aDTq0JyldK3iJfJjGyr60/dpOrs1yEoR6phgu6gBtcbOz1nQOmqcSlGbTaiw9KrSpWq4+D59j95rnSQ+R+leHc+2LSxlzrFqDYAd09qPFKJpvpPj19ZB24DlVRSnfcd6aVuqU6BGX521QA6XwHAdAbHxLFITakAAeLw23qPJBvo8nbSK3NSg8HlESEqf8TMNiltaiDSkKkzAuw5J6UK7yagiResNU/hsIgtN9bZUn6VpWHabkGHjFoD3EEHN5lRFzf8VwfE9pF256Jt1SiQSnjJpuw6HQ7RaLUdn6vo5m6ofjUbdNlV2UTnbzq5d0wQGi7K1PBxbiiAVfSi9p2OVjoEyBYpeFGXp2KCxpxHhujIAjoolUuRc0HVR2nfaDoo41cHh92owNdtQDTnHgD33LRzeT1gZDoeunJw/GsejYQP2sj1JZep8COTWEhiuIyDqjapiVS8d8G6ia+NJipqULuIzlB7S7/gMVSjWuyfiAw5msakxVEpGg9isAxU+DYmuh7Hv0diERZT2b4peZxGiVdh6jUUvFv1prIVtx3bSuJAaukQicUBRcfeJ0WjkdtwvlUouJV7TpNX4KsqycSpeoyjWj+ZT5MXr9Ht9no4p9oX2t0XMfu1J46n/A/so2LIMOjb1M4smdb7wGho+Ogssh27hNBzuZVjSGFrKl89SJ4hGUkXLRmTNdyi60jGkTpk6h4EcLoHhOgLCgayLK3Xxrk4Cq4B0ka3+BvbpHaXcOMHpkVpuXpUhJ5kqEwAehEdFrMFqRT9qBPkOvY7PI+rQzDZ9hipDKgwbg9N38DcVkE3j5nET1pNW+ojX0rum0R4bG0M8Hnd1azQaLmbFNuU9sVjMGSzWUdHc7u4uOp0O+v2+25VC96ckuuK1SnP6KXmlLtWhIOoIh8Mu2UN31VBaVbel0uewPYiGbFxU12D5oeFoNOqOJbFrwihqSLQvLaJTpKiJSkrr6XwIh8Ou/QA4pMW6K2rWZ/O5tiyWYtQYraLZdrvtaTvdBSSQwyUwXEdALDdOsYZKPTelKGxcQCeapV6UKqHh4zPVW1Q6z3qHGmwHvNmJli7is60yHY32zw/Tba74Ti6uprDuNi6kcRkaf76L9yttSWWrRlyNo7YFhcaEFGCv10Oz2UQ8Hkcmk8G9996LbDaLQqHglHMmk8FotJdIkUqlXP2Y4FGr1ZxCbbVaaDQauH79OnZ2dtBqtbC1tYVms+n6UBMG2Adsbxpl6/ErUtN2VGPH+irC9KMXdXzZvlcHQt9py2IRmVKeHLdKR9tkBls+PkuRuRoXdQJ1fOv80rGq45z1UOOlc4L3K1K0DAmv0UzWQL45CQzXERClW3Sy8zONO6n3xr8tQtHJqXSd0m4an+F1VGqaDq7v1utUeWgcjGWza2T8KClL0enEVnpJn6vKkUZK0QaNly0PY1RadlW4Gvhn2yhl1ul0EI/HMT4+jmQyiZMnT2J8fByJRAJzc3PI5XJOycViMRQKBezu7mJsbAzpdBr9fh/VahXxeBzhcBibm5uIRCLI5XIOAd97772o1WpoNBpYWVnB1tYWLl26hEqlgk6n49pHkSLjKao4rSGxbWTHg8YY2cdUwPaZRI0WRStC9etrHRNqVCz9qcia5VZUr2yC9q+WUZ/Nv22MD9g/VgaAe58aQF0OYkUdBYtIrRNpaVf9PhB/CTbZPQJiPWKlbmgoqBw4AfkZUYWNg1nDBxzcTYATmlSaog9dE2NjKUrFUKHaQDav0VgcJ7huD6VGhGXTeAEnPg0nKTqlaawRojBeplQSlZMubiVtyGft7u4in8+jVCphfHwc586dw8TEBObm5pxRZEp6p9NBtVrFaDTCzZs3HQ03Pz+Per2OwWCATCaDbreLer2ObDaLcDiM1157DaFQCPl8HuFwGKlUCmfPnkU6nXb9FovF0Gq1UKvV0Gq1cP36dWxubuKll15CpVJBs9lEq9Vy/cR2oxPA/tWxpePB7oepxkrpLqUESUVqe/NHNyDm2OT/6lzxPZb2UyfCOig6DonWLM2thlpRjo5pdcK0LBrHU0Olxl4ZAr7H7uWpaEzHnrIOaui/FyTYZPe7XOjlAV6qg8qDE9OiCVU2lpazz9ffNvCsE1mz7BRZAfDECqxnDRzcPkhjH3oPy6eITQ2rXbB8KzqTykrrYuNraiwBuLhSOp12a6Ly+TyOHTuGBx98EHNzcygWi8jlcohEIojFYuh2u2i329jc3EQikUAikUA2m8VwuJch2Gw2XbuxrWhAU6kUstksACCfz7usQ9K+jJXt7u5iMBggnU47CnJychKTk5OoVCqYnp7Gzs4Otre3cfHiRezs7LgDHLX/1fgrqlUjoijGOg6awWn7WpG97Q97vY419ociQo4ZGjt+R+rYJiDpGNYxSoeGdbOUoo4NO+Y5HvTZvF+pVXUMh8OhZ29MHeNK6+v4PYI44jsiAeI6AqL0Db1Cm7qtg14nArCP0jiJqHSU7uB9qmx4jxornagUS2UC+54oDQbpK52omjiik9qiOaUrmSGmu2WEQiHPzhKWDtMyqidvqTVtT1JsiUQCd911FxYXF1EqlXDq1CkX06LhvHjxIur1OpLJJIbDoUNOi4uLGB8fd6jppZdews7ODsLhMGZmZhxaikQiLh5GoTGs1+sO8c3Pz7vPLl686NLAieKKxaKrWyKRQCwWQ61WQ7lcxubmJr7yla+gVqthfX3d7dxBtKpOkaW+NN7HsaT9Y40f21npWhpBinV2NBlIjZ/GH/m5fm/niFKWRFF8nzoqOqaUYfAri75f55eOK62noi412pY1sPOURliZku8FCRDXd7FonEW9Zk1v18+AvYnALCWlwfg89Wp14ur3lh6x9KCl/GisAG+cRD1i0jiKpHSvNj6X79LYh6ZLs65WsfF+rpFqtVqubWj4Lb3JMiUSCXS7XRSLRczNzeHYsWO49957kc/nXRJEp9NxyROj0cihmWQyiVgshmKxiHw+j2w2676PRCKYmJhwiRiRSATJZBLpdNodGqnoKp/Pu34myqByTKVSSKVSrp+oCOv1umfpQDgcRiaTQSqVwvj4OACgXC7j2WefxebmJtrttnOCaIiJoHRc6JolRe78X+NQpLG1T9gvTGBR5Ke0MMuuY0fZBC2bJjnYd9gttvQeFY2XhUL7maj6nY51P6TlxwpYB0j/17bTcWxRfyC3lsBwHQHR1GpLh1hPTikg/miixWE0ELDvJev/9AwtnWEnvX5GBcYYlyokNS468VURqXK0tKHGFBRx+VFAur2SvkPXhPFvLt4dDAY4ceIE3vrWt2J6ehrZbNZl+nW7XVQqFTQaDYxG+1srpdNpJBIJt0VTPB5HoVBw/9PgjY+Pu/JxL0MqetJKPICw2Ww6I5XNZg9khlLh04g1m03Prg/VahWNRsMZxkgkgtOnTzuq8tq1a6jValhZWfEsiKbiZ7tr7JH9RUOmyJWGTRU2/9f+0+91TOv4U0dqNBod2EOT12o8V5dwqAOm99gy6HjhtYrY7Pf6W8etpu7r53yOOo46vv3ax2Z5BuIv3zJV+IUvfAH//t//e1y4cAGrq6v4oz/6I7zvfe9z349GI/zKr/wKfud3fgeVSgWPPfYYfuu3fgunT59215TLZfzcz/0c/vf//t8Ih8P4sR/7MfyX//JfPFTJreR7jSrUCao0iSY5AN6Tc6nMOWH0Pp0sitISiYRToNypYXd31xOYpiiFwt+MJXDRpxpJTl6/Ce8X3NYya9BaKT1gX9kkEgkA+7tD0CDQsJNyovT7feRyOVfGs2fP4vTp07jrrruQTCaRTCbR6XSwtbWFpaUldx3b6fTp005Z5vN5xONxR4nGYjGUy2U0Gg3U63VcuXLF0aK8h+2ws7ODWq3mdk/QLLVQKITp6WnMzc1henoax48fR6FQQCqVQjwed7FEIqX19XVnWBgHi8ViyGQyzngyttbpdNDpdLC2tobl5WW88soraLVa2N3dRaVScX2gm+Xq2kGKRdThcNizn6PNSuX40Pbk+jyiPqXaWF51fNShYZ16vZ5nU2Ld3cM6eGwz2946NjUGpYbHPofX2LHNvtZjYxT56Tt1Lunc/V6RbwtV2Gw2cf78efzdv/t38aM/+qMHvv+1X/s1/Pqv/zp+//d/H4uLi/iX//Jf4oknnsBLL73klMvf/tt/G6urq/j0pz+NXq+Hn/3Zn8X73/9+fPSjH/1Wi/M9IdYLtopbBz+AA3sD6mTRLDG9nxPSep+KoKznCexTmPo8pUQ0PqdxFL2fZaPhtYkWKurZa7aW0ll+CM0G0HneUzwex4/8yI9gcXER+Xweg8EAlUoFy8vL6PV6aLVaHmMfjUYxMTHhyh2NRpFOpz0KdGNjA0899RRu3ryJSqWCarUKAJ74HI0O6TrWTREpAGxubuK1117D+Pg47r77bkxNTWF8fBwLCwser571ZZnZ15OTk86JoHGMxWJIpVJIp9MoFAouyWRnZwfVatWl2DOOaBMm9LgRivY7+4DUJsekzRZlvyh9qO/itZY+5N+KcHT3dR3TNG46pulg2XGsqEjHFr+39+h9LJOOOz5HjboK38f5EyCtb17+UskZoVDIg7hGoxHm5ubwC7/wC/jH//gfA9izptPT0/i93/s9/ORP/iRefvllnDt3Dk8//TQefPBBAMAnP/lJ/NAP/RBu3ryJubm5133v9xriSqVSHiqEA15pCMv5U6kyLsDPYrGY75EbSl1QrLFRg6nCyavIS9cG8V4qIpu+D+wrChoA68Gy7szAY9ltTEI91Xg87srGepIe7Pf7eOihh3DnnXfivvvucwjtpZdeQrVaRSKRQDKZBLCPBLvdLnK5HLLZrGuXcDiMyclJhEIhrKysYHNzE1evXsWXv/xltFot9Pt9t8ibaGw4HLokDY3XcNcIvottS6U/Pz/vkj3OnDnjkCEpUe5YwoXJiUQC4+Pj7p3aN2yzdDqN0WjkUuprtRpefPFFbG5uolqtYnl52UND8l5F+Tq+dKcKorzRaOQ5xoXfa8zWxmCtg0ZRVKJ9b6k43fCWhlaPN1EaXN9nnTAdW+rcJRIJh0Y5Dq1DqXFcjkFrAElDK8om6/GXUM1HSr7jyRlXr17F2toa3vGOd7jP8vk8Hn74YXzpS1/CT/7kT+JLX/oSCoWCM1oA8I53vAPhcBhf+cpX8Df+xt848Nzd3V3HcwN7hut7Sai4dKLpljWKuJSKUY+ZE1I39OREtTw7sH+Gk+7K4Mf104um0mUKuU5aKj0aDt24lBNWkyb0XYB3rZCe8ms9at1miu3F8jFd/ZFHHsGZM2cwPT2NqakpDIdDXLx4EeVyGcPhEMlkEvPz8wDgYk+Tk5MHkADLVa/X8dJLL+HmzZt47rnnPLtfkGGgkmQbcJ/CTqfj6HEd38B+unwoFHLGem1tDaurqxgbG8O1a9eQTCYxNzeHiYkJpNNpJJNJ9Pt9tNttJBIJRCIRrK2tOWdgenoa8XjcGTt1dObm5pwCPXv2rBtLm5ub2NjYwJe//GWsrq6iWq1ic3PTkxLPcqqR5fhRx2k43MsKZcyW1FkotLc2TtfLsT+VmqTh5d9KPeoOMBa1auIPx5DWXdGijVMp48CxSSeH5fCj35VGt2sV9bm6TZca3u8Vo/UXlb9Sw7W2tgYAmJ6e9nw+PT3tvltbW8PU1JS3ENEoxsfH3TVWPvKRj+BXf/VX/yqLeqRE171YBMTJT0PAScJJrpOdYqkfpRiVwrF0ISeX8vU2fmAVAd+liph1UpTHH5tp5lc21l1RJrAfW6CSYtwpnU7j9OnTOH36NN785jcjk8m4mNDm5ia2trYQDodRKBQwPT3tkjCIsBjvarVaqNfryGQySCQSaDQaKJfLeO6557C2tobRaOS2cmq32579/WwMcDgcIpPJONqQ+xCq0lQHwVKq29vbLjZUr9cxMTGBqakp9Pt9t+hbUV4mk/F48wA8dDL7lG3OOk5MTGB+fh7pdBqbm5uo1+t47rnncO3aNVSrVdfONLwcA3yXRS12YTfpRFXwfI5S5Dpuiey0fTk26WTxHTY2xrLp+NOkIB1LvI+/LWKyTpRd0Ky0pe6uzzJxnKqTxbEeGK9by5HIKvzwhz+MD33oQ+7/Wq2G48ePfwdL9O0VnWia+aW7BlhPV7cXUk/Spjrr5Oa7bExIM73orSq9yDgF4N3yiUkeTPrgxKdSscqB5VGExvfq+iFVjFTONJaamn/69Gncfffd+L7v+z4UCgVH5126dAm1Wg2dTgfJZBJnzpxxyvfy5cuoVqsYGxvDxMQEYrEYrly5gnK5jG63i0QigZ2dHSwvL2NjY8PtHUhvmeuuWBYVjdWEQiHMzMzg6tWrbr1Yp9NxDghT7Jnt6Efl9vt9rK+vo1qtYmdnx7WtUrWhUMhlQnL381wu5znjjCiQRoTGl2ggmUzi3LlziET2FkS/973vxebmJp5//nm8+uqruHTpEm7cuOGcBlLRVPKKPlqtltvWSseRUnpWwSsiUQeJJ4Fr0os6QXZrL21HNQqWliSdzDHHjXDVyOu80vizOm/sA4018+QDolOlz0n12kSoQA7KX6nhmpmZAQCsr69jdnbWfb6+vo777rvPXbOxseG5r9/vo1wuu/utxONxl53zvSg6IQB4FIH1+DQYrOiGEwTw0iw2mMxn6QT0oyFt+aiEOCl1wloUqChP6RW7swXrqvScUk/6fTgcdskRuVwOp06dwnve8x5MT08jnU6jXq9jZ2cHN27cQDQaRSqVwrFjxzAajdBoNLC9vY1ms4nd3V1ks1lEIhGHsKrVqsco7uzs4MqVK6hWq9jd3UUymXQGF/DSZvS2VcmxrTSLTpG0Gm3bP7peiAp/d3cXjUYDW1tbSKfTKJVKzmhWq1VnGEnJ7e7uOhqTTgF3qSctyftJM2pcKBwOY3p6GplMBqdOncLZs2fxsY99DNvb2x50YdGRXSfG8aFLLlgndZYssuaY1jFu2QjOA84VjkN1kvR+Xqfr2TS9XulHv7isjmXtM72WbaHLQ9Sw2thaIIfLX6nhWlxcxMzMDD772c86Q1Wr1fCVr3wF/+Af/AMAwKOPPopKpYILFy7ggQceAAB87nOfw3A4xMMPP/xXWZzvGuGE4oRW5UVRVEUjQzoD8D8aRak3RU16n07aw7xVTRaxHi4nrCI9inqqfBd/05ApTWR3I9DMLdJm9957Lx544AEsLCxgYWEBw+EQS0tLbjf1dDqNmZkZJBIJtNtt1Ot11Ot1R9eVSiVks1lsbW1hZ2fHE9CPRqOo1WpYXV1FuVx2Z2YpjcR21rbizvuk6Vg3ptbXajWP0iJy8TNcmoSiCrPVauHGjRvIZrPIZrNIJpMIh8Oo1+tIJBLI5/PI5/MOofGolEhkb9cOLn8YGxtDs9n0KPxIJOKJoxH1T05OIpvNYmpqCrVaDRcuXMDS0hIajYYH+bIOducVdYIUadl4j1LP2ha65ZOOS6WrbeKDXmNZA72G99kdWtQ4KU3vRynqtbxeHTstmxpz/h+grsPlW84qbDQaeO211wAAb3rTm/Af/+N/xOOPP+5SdP/dv/t3+Lf/9t960uGfe+45Tzr8u9/9bqyvr+O//bf/5tLhH3zwwW86Hf57LatQFRkNFwc6qQdFZZyQ9mh6nYCkQXTtC0URlBo+uzjSUkGaag54N9RVulNP8tX7+W5SXVTupGb43G63i8Fg4HZVHw6HeOKJJ3Du3Dncf//9APbWKb388svodDpIJBIoFAouKaDX6zmEEo1Gcdttt7kNa7e3t9Hr9RxVFwqFsLW1hbW1NWxvbztkpll2NPQawNc4B9GK7rDR7XZx5swZAMDFixddm7A99DgZ9pseokmKLJvNOpqP1F4qlUKhUHD0Y7FYxPz8PPL5PJrNpttNvt1uI5lMuj0VgT00USqVkMvlEI/H0Ww2Ua/X3UbL0WgUpVIJU1NTmJmZQSqVctTa+vo6lpeX8dGPfhSvvPKKG7e6sFoNssZ6NNuT9+nmvn4UMf9n/FQXoXN82rFFxw3Y3/+Qi+Q5ZgE4I87xxh1o9ORi0qmaHWkTMdQ5pOi84HsVFfM93yvI69uSVfi1r30Njz/+uPufsaef+Zmfwe/93u/hn/yTf4Jms4n3v//9qFQq+L7v+z588pOfdBMDAP7n//yf+OAHP4i3v/3tCIf3FiD/+q//+rdalO8ZUe9N+X1g/8RYKk31Q6yHqZNeRRWseriWVlGFQsOmXrJFZIqKlJaxdVLlrEF6pYtYLo1r7e7uIhqN4u6778Y73vEOFItF9Ho91Go11Ot1xGIx5HI5lEolhEIhT9LFaDRCqVRCIpFw2zANh3uHPjYaDUcXcpHu9evX3U7rbAvWgQpWs+c0GYXKydYbgDM6fpStKmgqOaXDtO8YD+v3+2i1Wp4MvUajgWq16rZ9IqoiwiQdSEdlaWnJbeA7NTWFYrHojE+328WVK1ewurqKVquF2dlZjI+PI51OY3p6GqlUCm9/+9sxMTGBP/3TP0U8HnftS4dDF+KyrqrkldLmZ2wfdeAs6tT5YRkFuxZMx64iOY252fmkba1H++h7bAKHH0uhfaiHi1pkGcjhEmyyewREvURV8JYG0YGvNJtORlUYwMEFyDabkBvH0pu/lYFU48ayakKGGjmWi+9Saonrr3QtC8vHVPPBYICf+ImfwEMPPYRSqYRWq4VWq4V2u+3aLB6Po9frYXNzE5VKxR0jkk6nkUqlcOLECedJ12o1rK2t4cqVK0gmk5icnMTa2hquXr2Kzc1NpyyZEMCFyap8le5TxGXRK2nN06dPY3Z2FhcvXsTa2tqBZA5FbozhaZuyDenxZzIZh9w6nQ5GoxHOnz/vYlQ06mxXXRs4MTGBYrHo0uaTyaRbo0RqkOvBaMC1re+8807Mzs5icnIS4+PjqFar+MQnPoEvfOELePXVV52yVrpMx7WOTU0Y0nHLewB4jJulm3Vsss103FnqUNcNcnxbo6mMgdLrLEs0GvUkIWnGoZ1vbDOl0pXRsOX9bpfv+DquQP7viHqbdiID3v37+L9SH/o/DYQqWmsE7WfciUPjVHyfKmlObj9jaj/j36yfIjg+V71opUuHwyHm5+fx2GOP4fjx4+h2u269Ui6XczTLysoKKpUKNjc30Ww2MRwO3fZMyWTSJYrUajW3UwSPI+Hf5XLZ067qQNg+UGRKmtMPlSpFFo/HPYtQVYFZtKY7LChaoKInncfnqQPDjMJ2u41Wq+Wu43ovJpr0+33UajXMz88jHo+7NWeM5/H6er2Odrvt+vurX/0qSqUSFhcX8Za3vAXpdBpvetObXHzsM5/5DDKZjCfmqTtm0MBw7Glba99rHNYaMV1YzbGqSRyWKte+UJRl556OQ52Pdh4qu+Fn+PS9ei/fyToG8voSGK4jIFYp+iVfWOFk0kmrk0YnInDwQDt+p5y9zfSyz6DYrX7Ugz7sPmZcAXDxEK1LOLy3eLndbuPUqVN46KGHcOzYMQyHQ9RqNYRCIbfR7WAwQKvVwurqKur1ukvPTiaTOHv2rMu6oyHQnUS4ELlWq3nWYvV6PYditPxUknaDV6VTlX4l1ap9oXFLra/2NY0xx4JdM0S6st/vI5FIIJfLIZVKoVgsujVZzPrTNj9x4gQKhQI2NzddIsr6+rqjWicnJ3Hs2DG3aTDjUYlEAvV63e2zOBwO0W63Ua1WkclkMDMzg+npadxzzz3I5XJ4/vnnsbGx4VAw68vxoJQ3qWBNjFB0o+PPJrHYOaBzRxGVZQW4jICi1/A6NVDapywbxy3v1d8sA8tuKXtLcwZyawkM1xEQDnZ7wqp6qkqj6eayui+b3msnkM3iAg4eLaJGx36nitRuEKpxCyp0KmwAjn6jh8qYS6fT8aQc7+7u4id/8idx3333YXp6GrVaDc1mE4PBAKlUCu12GxcvXnQGJhqNYmFhAadPn3aLe7kj+tbWFsrlMjKZjDu0kYprZWUFN27c8CRMsL24pofKTtubnwNwgXYaE00w0HTr7e1tt9OF7hhPpaeIhIkANHRsV3U02u22SyYoFotIp9MuGYMIj9mB2WwWJ0+edIkc3PXjxIkTLvljbW0NzzzzDAC441FOnDiBWCyGBx54wCWMfOYzn8H6+jpWVlZw8+ZNJJNJ/PiP/ziOHTuG2dlZRKNRfPGLX8SnP/1pNyZ1oS0NNN+r1OBgMHDxTD/Km86KjlnSmhybdmzb9YuMCbJcdtkBUbSiXvaNxl9ZHo2B6fjXMa5jW1GixvEC8ZfAcB0R4YTkBDmMAuHfVHTqJSrnzmdx8nPCWgqQE4vPYJxHn2U9SFXgOvn5ncaFOIktzcbv6X23220sLCzg3nvvxdzcnMtWo4LiYYmrq6vOCJVKJRw/fhypVArVahUrKyv46le/6naAiET2jho5c+aMZysqG8NIpVIe5cS2o+JVRaaKjferYiLtSqlWq57MTk2T1mw129YcA2wjjT3yrLBcLoeVlRVsb29jcnISuVzOjY9MJoNcLuey4/zKCwBzc3MoFArY2NhAuVzGjRs3UK1WUSwWsb29jYmJCRQKBbz5zW92McErV64glUrh6aefxnA4xMzMDM6ePYtQKIRvfOMb2NjYQDqd9iBYHQ/qGKmRsnXlONUxbJ0iPpf9aZ/Pe5RW5PjV62kwaTztvPJD1+rksXz6v/Yxr7eZu4H4S2C4joDQcDBF2i/OoYhJFZDSURpz0sluA9xKSVGoFDlx1fDp3xp3UPpGn8+Jrt6v0iQ0onp/sVjE+fPnsbCw4NZgsc7NZhNXrlzBzs4Out2ui83Mzs4iFovhpZdewqVLl3D58mW8+uqrTqkx03V9fd1lELbbbUdLsj7cVYNp+awbvXZVNKoE1WtWj5zljsViqFarB6hYGm81lGrwtd/4PCKfwWDg1lp1Oh1sbGwgn89jamrKxf9Go5FLgdfsPH0X6TuOrYWFBRSLRaytreGVV15BNBrFsWPHkMlkUCgUcNddd+HUqVOYn59HuVzGzs4OLl26hMFggPvuuw/33nsvotEoHnzwQXzxi190a72sw2PpM9bVLuTVJAptE6I0Gh79W8e9RdIWaWn78tnqnCjrwX5XdKcIy8Z0tax+GacaJw7EX4KswiMgPLBQOX8NXKvoxLSTW+NMFI012NiXpTP8vFtFfhrX0sQBNUoaQKdy0GsjkYirLz3yeDyOn//5n8ddd92FRCKBZrPpkgzW19dx+fJlt+XRqVOncNtttyGdTuPll1/Gs88+i6997WvodDoIh/d2Q2f9kskkUqkUMpkMut2u210jGo065Q/s029Ef91u1xNbVNpJaR6tNxVaIpFwCRlvetObsLS05BJAuGeiOh7ctFiNvj6TMS2uURuNRshms+59k5OTmJ2dRSaTwbFjx5BOp3H9+nXXztzbUM8z43jhmV26pyHjU91uFxcuXHBHw0xOTmJ+fh533XUXHnzwQZTLZfzO7/wO+v0+MpkM3v/+92NmZgbr6+u4cOECnnzySbzyyisA4JwCYH+7JXWw1JiqEWd9b5USr4aBfWUNotKtino0Xsn36LU2OYNoOhLZPwtO45Z8n17PucqxpXT79wpVGGQVfpeK3UECOHhGl3rLSvWox+eHDNSTpCGy3j0nm14HwONhahlskoFFgSr8nJOY76f3OxgMXJwqk8mgXC47o3Xz5k13ku/Y2JjbUy+TyWBnZwdPPvkkrl27BgDI5XIuHqXxI2bjUYHz2kQi4dKaWRfWkfEQi4jYP8Ph0O3HR8MTCu0tFmfsbnFx0Z1ezAQRxmoYm7Q0FVGgKlKWkYZFNyMeDodu4TX7iicqa9xQD9/sdDqes82YVcg1XKSK4/E4zp07h8uXL6PVamFrawvdbhfNZhPz8/OYmZnBQw89hKeffhr1eh3PP/88RqMRxsfHcccdd6DRaODZZ59FJpPxoGtlDpTSs86AKnUaN/aTxmgtK6DzR8co383+pKgDaFkOjacpS6DPUEfQMhAcj0pZ6veBHC4B4joCwslMZTgajRylpcbGL8OKk0ORkv1RekKREK/XDCsqe+X/aWQs5aTGU1Gceqp6j6Iu0nVvectb8Mgjj+DcuXOoVqu4efMmBoMBOp0Onn/+eYTDeynab3rTmzA/P4+VlRV8/etfx4svvuj2JYzH406pplIpT4xpMBjg5MmTGI1G2NnZcciF37FtuaaJCRJci+WHhKwSHQz2T8IdjfaOEMnlclhfX0e5XEYymXTfMyGFCr1Wq3l2kNA+Jr1I4RjgBsGj0Qj33nsvxsfHMTY2hmPHjiGRSKBcLrutrnZ2dlyW4Gi0tz0VU9+5FRR3sGf877XXXsNgMEA+n3cLnpmNyXVyi4uL+If/8B+iUqngK1/5CpaWljA7O4v3vve9SCaTqFQq+A//4T/gxRdfRDQadbuKKNLSOKkyCRoDDIVCnl1GuD5Kk5bUkbJoinNEkRvjl9aYKBrW44FISdLgKzvC8aDziu/i/0z0iUT2d7e3ySPfzRIgru9ysUZFJ5UaK40V2QwswBtTosKyilENmyoLS6tolqD1gRRpsbycqNa7pCIhZRIOh3HmzBncf//9OHbsGMrlslO4Y2NjqFar7iTfQqGAhYUFdLtdfPnLX8aLL77o1nXFYjHs7u66rDqeB8WjPhqNhkNP3N+Pu3QrOtP0eYrSnlSymmLPduS2SIy/RaNRXL9+3dGSbA+uMaPh4Dup+OwxGkRm2v82vkmnhMiJRr/ZbKJWqx0wtmwbIjzd9ojjg8+bnp52SjoSiWB7exu7u7totVq4du0arly5gtOnT+ORRx7BtWvX3CLwTCaD8fFxnD9/HhsbG1hfXz+A5mkIOC402cH+cKyxHkSEw+HQpepbJ8/GprRddSwqWtJ4nP1c6XFFyurAcfyrM8jv7REugdxaAsN1hISTSzfq5ATRnSls5pRVCjrZNQlAlR3gXYSslCPvVQNKg0avl9coAtPYgz6fwnpEInsLZe+66y53qCPT14kKqtUqstksCoUCTp8+jcFggFdeeQXPP/88VldXXTmovIC9+AnjWqlUClNTU6hUKq4NADg6jeu4WHa7c72lk9Q71v7gM5mKzo16+/0+ZmZmMDk56Qwr7+t2u25XCrafOhvAwSNSbHsyTtfv7x8sSTqUR7oAcGVS5MCxxd0gQqGQW8DN+pVKJdx+++2efgb20sqZvv7kk0+6raDY1ltbWxgfH0cikcAdd9zhdg3Ruli6WhkBvl/HP42an3Gy7AMRpCZaKFJSRKYxNn6n7a51Ztl06YO+g3NN0TjrRoaBcypIznh9CQzXERFOMDsZ1atWb89P0elk1MnNiaPratTIaCwM8Hr39nr1KEOhkKOYWAZOaK6ZIfWm93e7XZw4cQLnz59Hr9fD1tYWbty4gcFggEKhgEqlgng8jmw2i/PnzyOfz+O3f/u38fzzzyMSieDUqVOoVqvY2tpyR3jk83kUCgUcO3YMqVQKiUQCmUzGrXMCvHHDXC6HaDTq9vnj8SXZbNbtrm7RpBooLkdgpmIikUA6nXYJInfeeSfuvPNOzM3N4erVq3jmmWdw5coVFAoFjEYjtx6Nz9I2V6+fO7mPjY0hl8s5tMdtq0qlEsLhsItlcS9GUrTZbNbVgQZMsw0Z42PbDAYDTE9PY2ZmBoVCwSnvTCaD48eP4/r16/jyl7+M3d1dfP7zn8elS5fwzne+E+9973vx9NNP49lnn0Wn08Ftt92GO++809F8Tz31lCcBwp5SrHSfxhg1PkSj2+/vHa7Je/kcRY3WSdO4GI2PGhAd6zToADyo3MbnhsOhu45GScupdDnRpRrVIxjF+bZJYLiOgFBR6d51AByFxQnG6zQGpcbE0ht8hiI19WoZ26H4GU2LooB9ilCfZxEJFQRjMmrUYrEYTp06hXQ67ZIxmBSgiQMLCwuIx+NYXl7Gyy+/jHq9jnvuuQeRSMQdFZJMJjE+Po7JyUlMTU1hfn7es0ceAIyPjzvarVwuo9fruS2hwuEwOp2OOxaEMRVdLEwlyFOGw+Ewms2mO4mYiSGkyBKJBIrFIkqlkqMnufiX54dVKhW3Uz3fYxNCLCXFtqXRUfTL8UPDRDRJJaoIgnsb0rHg+/l87n6xvb2NTCbjUGoymUQsFsMLL7zg1pJtbGzgwoULePzxx3H69GksLy+jXC5jfHwcpVIJCwsLOHPmDP78z//clUeXBvhl5VmGQJGKOk06NtVAsf/VQFiHTx0pbWedR6SULcNhy8a5o44lr9E+VUcokFtLYLiOiFCxWrTDyaOThKIBYj4D8O6pxkW3fLau3VFjqF6k7iSuWYVqMIH9rEM+j4iOBpc7PKhxDIVCuPPOO/H444+j0WigXC6j0WggEokglUqh0+kgm81iYWEBuVwOX//61/HUU0+hXq/jtttuQ7FYdDuXJ5NJlEolvPnNb8b09DTGx8dRLBbd0R67u7su9sR6ce9DItBoNIpcLufa+caNG24NEo0W+6FSqTglyCSQcHhvIXAul8Pdd9+NRqOB69evuxT1zc1NXLp0CeVyGdls1sWVTp8+jWKxiKtXr7qsRCr0Xq+HVqvl1pWxjxnP6ff7WFtbQ6/XQyqVcolM169fd9QgKcBUKgXg4DEedIaoyLlAm/23u7uL7e1tRCJ7i7h57Eyv10OxWHRJGvV6Hc888ww+85nP4NFHH8UDDzyAlZUVrK+v49SpU5iZmcHDDz+Mj3/846jX664feEwLx7oyBjqGNbaqxpUGym9Ma0IQsI80NU6m8TyNy9JwMTmKTpcaTd6vhpf1UlZD1wCqoWQWaEAXHi6BiT8CQiqPnrTSF/RQgYO7Y9Bo8FpOBk5qenwa4+C7+FuRFBUkDY/d201jD5zUtrzWy6ViYdlGoxHm5+cdJchTiJngUCwWcfz4cUxOTmJpaQnPPvssbty4gWKxiEKh4HaJD4fDKBQKmJiYcLs/ZDIZ5wnHYjGk02m3ozfrzLR6KsFcLodOp4Pl5WVcvXoVOzs7ni21qNQ0y4xUWzQadTtUTE5OIhKJoFKpoFwuIxKJOOTTarUQiextENxqtbCysoJms+koTvaRpVk1hqLrx9immpWnWXY2fqN9AMDVh6nxipa73a6rz/j4OPL5vEvwYV24uJkZneFwGC+//DLW19cxPj7ujFKj0UC320U+n8fExIQzlDaWZJONWCeOTZ0DStfZZ9jEDMC7lZkyFzrX6EzwXsZzFf1ZtGTXi2nskX2m8TzeY1FdIP4SIK4jIOoJ6qSziReaGQV4DQUAz0TXoL+lEvm5jXWReqKhs7sDULHYZBAtFz1bTn71VGlEGIdqNBoOWTBlfG5uDvl8Ht1uF1/72tfw2muvoVKp4PTp04jH46hWqwiFQshmsygWi5iamnIGazjcW4NFw5NKpVwMSbP5iMJYvu3tbezs7DhjZBNVdnd3MTk56RAHjSJRCA3QcDh0hzIy27FcLrs1XKTgSENGo1EUCgX0+300Gg2PASGa07HA9uVzRqORM86sP40eFbYqSyJfGg6rlFnv6elpR4uqc8L1cNlsFp1OB5VKxSG5druN7e1t5PN5F3NrNpsYGxtDKpXC9PQ0lpaWPJl1Oq75vx3/Ot5JjyoDQaSqY1qNoc4LfQ8dEssY6HVK21rkZceIvlMTh6z4rSUL5KAEhusICCcQhZOAg18nKCeMetvqher9anAYGCeFp8ei2+CzrjPRZ+lk48JbpWGICmggqEg0C5HbB+kapkKhgPHxcRerWllZwZNPPonPfe5zKJVKuP/++zE7O+vKwO2PTp48idtuuw2j0Qj1eh2NRgOZTMZRUMD+ybPFYtEp3Uwmg6tXr2J7exsrKyuIxWKYn593ypeUHXetSKfTaDabSKfTbsNeJo+k02kcO3YMU1NTKJfLzmBeu3YN5XIZq6urrj0ikb3dLPL5vNu1gv2VSCTQarUAwCWTKP3F/mN/8uwt9gN3pCBy7ff7SKfTzphx3RjP2uJO+4wVsq+YbFCr1VwckAkhTBA5ceIEIpGIO2PszJkzuPPOO9Fut7G0tORifzRs09PT+IEf+AG0221cuHDBZUTy7DA1tLp5LsczMzIputaNc0EdMKUF6Zyw/fm5GiId58A+xQ7sIyg6QxrDIjrmfGB5dN4qLcl36E4pgfhLYLiOgFgOHoBnJ3jAmyihEwzw7pumSEljUH5UinqkGh9Tz58eppZBP1MFo89WT16R4fz8PGKxGDY3Nz3H0+dyOUxMTGBrawsXL17ExYsXUSwWcfvtt+PYsWNOQTMbsNvtOtTFLZtoGLimiSnnpLY043J7exvr6+vY2dlBNptFOBxGq9XyxBnj8Tji8bhT7kzCYP/kcjlHpVG501ATxTHZgVl7RFLxeNy1NWlZHutCZcv3qMNC5EpkNRzuHwJKNDI1NYVareaQNwDPbxp+HUd0jMLhMNbX1zEajXDs2DFks1lnhFg3ticdrmw263bv39nZcTQpD+TsdruYnp7G/Pw8vv71rztnQpMjlKbjb8b3LH2oGYCWTdC66DN1jOrfjHUqVWljwKHQ/rlnWlZFqlo2jW/RYNm5YtFlIF4JDNcREF0TpPEhwHuCsSovXqsBYz/eXKlETfRQulERlU5epQOVt1dPUikSNWi6+JKKZGxsDIuLixiNRm7NFhMqeLrvxYsX8dxzz2FlZQUnT550W0EtLS0BAPL5PJLJJNrtNpLJpDvCg+04PT3tFN61a9fcPn9ED0wIqdfrzosuFosYDoduT0G2UTwed8h2enratUMikcDExIQnpb7T6aBarXoMEdshmUx6FhuzXVhOYH/rJWB/Pz8aJ46PTqeDbreLYrHo2p3GlX3Bo0nW1tYwGOzv0KFxL3WCdByoM0KniSn+r732mqNJaWSJ4Jniv76+jmaziUwmg4mJCedstNtt5PN5zM/Pu/HLmCHHlcbi1KASyfN/nQM6Dyism1LlnEc2tkSjQqeH37PvOM51HNu2s4ubeZ0aXa2PpdcD8ZfAcB0BocesFAS9d05OjRXR4+QEUxqD9Bafp+uolDrhpOFE0tiDUh2aNODH69sFtKpkqMCJfB577DE88cQTuHnzJra2tnDy5EksLCy4jK7r16/jYx/7GNbW1pDP5/H2t78dk5OT7oBEKkmWmQiIG+nyYESigStXriAa3dvlnFlzGxsbqFarbod53YWByG59fd3RgwBciv3k5KRL7AiFQqhUKhgMBi5ZhOvHmBnJoz1IR/HAR3VKSHWNjY2557OsoVAIjUbDk3Ch20Btbm4iHA6jVCq5Pjx9+jTy+bxDpeznQqFwIJMtFAq5eCINBNdQRaNRbGxsYGdnx7NxMQDU63Vsbm46BH3mzBm89tpreO2111z5Jicn0W63USgU0Ov1kMlkcP/997ttu5rNplPuigwHg4FD4sok0EiosWcd2JYAHE3K9tBr7XpCdbp0txcaMjveLaqz1DzfyflJYT9zA+dAXl8Cw3XExHq+1rvTbCWdOHYiKl1hJ5x6jRoDA/ZpQ30ORT+3CzLVm+QzNH6WyWRw1113oVQq4YUXXnDp7HzG7u4url27hq2tLQyHQ7cmigqY3j3fB+wpiWaz6bIFR6MRqtUqms0mWq0WlpaWMDY2hnQ67dLZy+UyWq2Wx/Pf2toCsBdLYWo+256JCpqAwb5RLzsej7s1XLVazVG8fgtpafBp0GikiAxzuRwymYwzemxLOgLlchnFYhHZbBbb29sYHx936624m8bu7q7bVYPjhn1hHRvNiGPyCJNLrl275uJ6XJO2sbGBjY0NdwIz27fX6yGXyzljzt04SJPm83mcOHECq6urnrGlyE8z+mh4FNlYSs/ShxzvbDedE4rQ2A8UfSbHmFJ/dM4sYtLvbewN2D9wlMZY17AFcrgEhusIiEU6un5KkzaUL2cMgRvM0qARdQHe7WY4Uexx6VzzoqiMXqEaSzWSLItFb3wnr2OCw+TkJB5++GE8/PDDqNfrbk+7fr+P5eVl5PN57Ozs4E/+5E8wHO6lJ588edLtYdjpdJwnyx0twuEwtre3sbW1hUKh4NqOKdgbGxsIh8M4f/48nn76aWxvb6PT6XiO2AD2vOtarYbBYOC+j0aj6HQ6mJubw/z8PCYmJlwSAak5xqhYZ1J/iUTCxap4nEgymcRgMHBJI6QvtR35ORMpBoOBy3TU03aJhra3tzE9PY1Op4Pr16875JNMJvHqq6/i2rVr7iwtZvkxhZ5ljMViWFtbw+7uLtLptMsQZKr71tYWdnZ2sLy8jGg0iuPHj6Pf7+PZZ59FrVbDI4884rbsKhaL6HQ6+OEf/mF86UtfwrPPPovFxUUkk0nMzMy4JQ8//MM/jGaziWeeecbjiJGyA/azXpXaY/xNx6/OHf7NfuJziWY1O1ANnNJ8uizFOnhqlPT5uoZMkzw4PhS9kVlRliMQfwkM1xESTgwOdDspOaE5aTjRaIA4oZVioSiFR++UE9hSGzaTTWkcjZdpbIwogt/xenrpp0+fRjKZxM2bN102HZMestksWq0Wtre3HaUyOzvr4lJMJtBMRlJG3W7XISYqeW4jdfbsWXQ6Hdy4cQOj0cjRSFxoy3JTYUejUWcsmGbOZAqWgRmFunu8HvJIA8sYkKVkVekB8KwfYn8y3Z4ohchLUVw8Hsf29rajFrvdLlKpFEKhEDY3N91uIIpS+R4mVdCYKpoYGxtDsVh0Y6HX62FnZwerq6uo1+suDT4cDrsYX7/fR6lUQii0d15avV53WZs3b97EqVOnEArtbV+1sLCAe+65B6+++qobB5pAYVPF1SmgoWA7qoFRJ4JtqahJ24Cf6xhgf+j1Or5tEokaXEuTa4yNddO6KNILxF+CFjpCwgHOScnPlM6zQWZdQKoTX4PuGqSmIdJFybzXrvlS+lBpQWtE1YCqpzocDpFKpdDtdjE7O4ter4fV1VU0m01ks1kXg8lms67OTOPm+iYqUz5Pd33QdT12N/TBYOCSBrhzPNuT65FUWfOAQLaZ7ozBazTBgu0SDocdguHnNG6KSEOhkDO4NGoazPfLlIvH4y5rUR2I0WiETCbjHBZSmexz7oGYzWadwdOlCXQAms2mx8kgItPxQnQ4Go3QbDaxsbHhDLsih3w+j5mZGcRiMRw/fhzFYhG1Wg3Ly8tYWVlBMplEt9tFJpPBHXfcgdtvv/3AzhU22YLP17HF7+2YZLvwf4376rywDh4dJRp4bSuKH9VOmpffq5OnLAnLr4lNWpdA/CVAXEdA1FhoGjS9NSo6vwQNKkT1pJXPt8ZM30FFrMkh+r0NfGvMSvdQBPYpSHqgzMhrNBqIxWJYWFjA+vo6bt68iUqlgkcffdRlz/G6XC6Hzc1NxGIxt6uGKtxQKORZ/8RYDAA0Gg3s7u6iVCphNBohmUwimUyi2Wy6QxLpMWt6MqlBuzB0amoKxWIRuVwO6XQakUjErU8KhUJIp9Ou/lx7pLQREx4U1ZFKVJqR9J8aC5aT21GxDeLxuEMuNGqvvvqqO/6FaCQcDmNmZga5XM4h0NXVVRSLRYyNjaFer7sFwowPkiKcmJjA2tqa26JqOBzi5ZdfRrFYxMrKCpaWltzatVgs5oxjt9vFW9/6Vnz+85/HO9/5Tvz4j/84PvrRj6LRaODJJ5/E6dOnAeydAnDbbbfhR37kR/CNb3wD6XTaGYtQKOQ54FPRkG0bpe2Ag4c4amIRxwidHkVxijY1rqtjn86G7hLvt3aSa8MYYwTgWRzOMgcxrteXAHEdIWHwVoO7mrXHNTiklzR4rB4fr+fnfLZNptDv9X9VCnqsu6UVSd1Y6oSTmF76sWPHEIlEXPypUCigUCggFothZ2cHL7zwAsrlslPSjUYDKysrLj4Qj8cddcezpnhQYq1WcwkZGpujgubO7TRWNCD08klnavo6DQyPR2G7MTlC11EpotFYofaZIjoqYi5NsN8TCeteiXwv24D3j0Z7C6+Xl5cdlUejREeGjk2n00G9XsdgMEC73Uaz2fRQpqxXPB53WzvVajWsra25o2E2NzfRaDQQj8ddmj2NPzMIn3/+eYRCIdx3330olUous5L9wEXT8/PzyGazDvHpkhD2oSIojmGOVU3KUPSi6MwmdCjNrsaJ9VAnj2hbHQwtE5/NPtU5p9fTodFEq0BeXwLEdQREJxOwP2l1KxsbUNbdApQGVLrKTiLAm8GlSM/SLbzPxr+AfYpFn89Jb+s1Go0wMzODfr/vMgZ5XEa1WsXq6irW1tacF//ss8+i2Wzi5s2b7kRjLlDW/fVYftJbqgCJTqvVKobDoYsT8ZpweG+xscaj1FEgzad75LGezMqj4aOxpPEh4lSUapNfVMnpQZEaR2EdaEiV2h0Oh2i3286z5/lki4uL7ngT0og0sL1eD/V63SWKkKZVxc4My0ql4lBquVx2u3pwnRrbvtFouLO/uCB7c3MTOzs7OH/+PBYXF7G8vIxqtYqdnR2cOHEC6+vrbv/CU6dO4aWXXnLtznR8dYx0bLL9FRmp86Vzxy+bFvDGXzl3lIK0tDx/1NgpctI4l+5xyes4Pug4smyBAbu1BIbrCAjRCRWecv86Ccira2KFZvwBexNTqUU1MoqaOFnt2h5VmpyMisoAb/q90m+cmExc4K7rDz74IK5evYpXX30V7XYb99xzj9vHDwCSySROnjyJsbExZLNZNJtNbG9v46WXXnKHGbKsVNikRWOxGBqNhjNAW1tb7phwZsxR4QyHQ5c52Gq1Dmzjw10hiHh0g2LWnUkCpCw1Tsb9EHnmkqIvlmMwGDjDZx0D9d51pw/G9vTwyVAo5LaYYtLEn/3ZnyEWi7mzyZrNpkt3p8OQzWadEaPRJ7K9efMm1tfXnSHf3d11yRpXrlxxCSC5XA47OzsA4PY03NnZQSqVwsLCAv7wD/8QZ86cwbvf/W63SfKf/dmf4b3vfS+GwyGWlpZw4sQJ/K2/9bfwqU99Cl/96lcdXa0L5DV21Ov1HK0bi8U8x84o86B0uhoJ9hP7hXXj39Zp0FOq1fgo28H5ockWamw5rhQxcvwEcmsJDNcREDUqKsrrKwfPGAoAj9Gh0KvUtGKu0SGS47t0sad6gUpB6sSz3qkmNFBBMh7AXR5mZmawsrLilD0R2OrqKobDoTs2YzgcurhMNBrF5cuXnQHZ3Nx0O473+32XgED6kMiER2cw3ZzKmQqOtBY9exohtpfuzK6Kjm1I46wo16Jlvz5kO3J9EttNk2u4rk3jWYxxMvYD7GcVsl+4c8jNmzcRjUaxuLjoSQAB4NkYmHEvnjvGZRVEqGwLbpI7Gu3tDM8Y1PHjxx31xy22SNUuLi7iC1/4Ap566imXLt/tdnHhwgVcvnwZMzMzaDQa2Nrawvz8PO655x489dRTjqLU8aY7hzB2pAbfD5EpulKHQ2OIOsZ5rc3kVaRtER0RLL/T721M2SaHBPLNSWC4joBQEVIZ0YjYJAz1GnmfKllFS5pwoXw9KS6lVKLRvYMCNVNPkR7fQ4WrMTWdkFQsajTuvvtuzMzM4MKFCxiNRu6U4U9/+tPo9/t48cUXcf/99yMajaJcLmNqagoAsLOzgwsXLuCVV15xiR40NuHw3pqf9fV1hMNhTExMAIA77bfdbrvjS5jMQANE45NMJl27c+0P11DxWr2etCEVKLAfoOdnStOyv1SJUhSd0piPRiOXyUjnhIuAubktkWQ0GkWr1cLu7q5baEx0xRR40ndTU1OOFozH42g0Grh8+bJLNGk0Gmg2m3j22WcRj8cxOTnpHIObN2+65AYmlCQSCbc7PBFnPp9Hr9dzGxjfcccd+P3f/3088MADWFxcRCi0t8PGZz7zGbz//e9HJBLB9evXcfLkSTz00EP46Ec/6vaJ1D7meFdaU9sQ2Ke7+Rnv4/wA4Nb+MY7G71utlod6B7yxNT3UVJGzPts6mxxHjJupo6cLqgMjdmsJkjOOgKiXC8BjnJSnt1y6xid4jXr8NCr0rvk8RQcaP9MYmnqJqpD1PRorswqH3nmhUHCLpEkfrq2tYW1tDalUCvV63WWvEa1xB4ipqSm3RokKls/VhAoiCIs02Zaa6q6bxOrmu2qc+EOFrVQiY0csLxWUtre2FeutMUQqW02WIf1JI8ikDbYH6xCJ7O1CQiPH7MDd3V3XLnQQCoWC551UvMx4JNqs1+sA4PaMJMLj2CG9yT0X2+22i23R6DJhhbvoc01cKpVyZ3sNBgO3KLvT6aDVarlDQ1kmmzXI9rBLPnQ5g24ZpXNGKUT+rXEmjmH2vb5XY1d8r9848aMGLdWpxkppzEAOlwBxHREJh8OeHRIURQFeD08Nh05woi1eB/hvx6R0VygUcicVU1HxPlX2fK+fZ0oaUsukhos7MTBRgxvmrq6uIh6PuwMWdfIz3qMLfcPhMMbHx10MgrtvMB6hiJDPikajDi2wTna/O6WQmDqtyoeiyQNqvHTHE5aVKe52r0EqYr+1WXwGDU88HndIGIB7Nw+ybLVamJiYwGi0t9UVUVuj0UA+n3fJAbp7BI9Ase8+duwYSqWSqyOzDAE4Q8SYH7MEdf0TfzP2FY/HcfHiRUxPT2NqagoTExNIp9PudOlQKIRarYZisYg777wTN27cwMbGhgfh2DGvtJ9Sufq99pvOAba5zYpVh4SG0MbHbAyXbAPng0VRShUqpazJUECwc8atJDBcR0BIhWniheXcmYygx68D3mPPFbFpDIVCJctJpL8VxdEIAt7dMlQBa4Ye4N0Nnko4n88jk8mgVqshFArhjjvuwAMPPID//t//O971rne5371eD9vb244q6vf7LostHo+74024GzwAR4tVq1W3vyCPy+DhhSxLJpNxtBzr2e/33d6ATNOPRCJIpVKOKqvX645WZKo4qVAmrzDLkA6AxmeYqMEAPtGQxqqIqhh/Y7/SsGl6PJ9NQ0y0RURUqVSwsbEBAO7QxlKphGKxiFQqhWq1in6/76GFuXnwzMyMi51yv8JUKoVCoYBisYhqterGAw0k093ZdhwjhUIBb3vb2/Cbv/mbWF9fx8/+7M/i7W9/OwaDAb7xjW/g/PnzOH78OG7evIlYLIa3vvWtAIDPf/7zrvwUGlz+UGyGrRoLvYZUJ8eMUuTKVDC+yTGuMSwaR10nZ5eBsG14D+DdhUPnD6n0YD3X4RJQhUdAdL2J5c4VwehkoygiU4qEE1oz1TSRQL1KKlYqSHrE9r1qzCgaY1AabDgcOuOxsbGBdrvtFvImk0m3i/vU1JSLuQFwMRuWLZ1O4/jx47jjjjtw/PhxT/1TqRQmJiYwOTmJbDbrdoWgktO1NsC+EdfUcjoDrKMe2aFUEn905wv2k9afhp+p+zYhwCpbPo9KU8unHrr+0FjSILOO3CU/kUg448PkCyI0bkDMdVqsQ7fbRb1ex/b2NprNJtrttmsbIiul0zKZDJLJJHZ3d902WUyuGR8fR6lUwuTkJL7+9a/j8uXLOH78OO69916sra2hWq26ndI3NjZQLBZx6tQpd+wJx5WOXYug2L8c43YROdkDNUAWPfMejlelmC1NrrSkpTP95qK+j/NC57vGRAM5KAHieoNLKBRySuJWMSa/yaKLNi3aGY1GLpmAdAiVrZ4QrNmFlMOoSGvAlHIhEtH1VFNTU8hkMmg0GpiamsLi4iKuXLmChx9+GK+99hp+6Id+CJFIBMvLy44GazQaCIVCyGQyuPfeezE3N4dCoeCO0rh586YrdzQaRTqdRqlUcmndTLFntqTGwXioIbPy/HbqpsJMpVJIp9PIZrPuWqV5aGDZFrqEgPScOiGkYun10/iFw2FHYbFf1JmYnp5GPp9HrVbD1taWB+GOj4871NXtdjExMeESVKrVqkPG1WrVlb3f7zuDpZRuuVzGxsYGOp2O2xWDFG+/3/cci0JUxRT9aDTqjlZhTHBnZwenT5/Gyy+/jI985CP47d/+bXzf930ffvu3fxvPP/88HnnkEXQ6HWxsbODee+/FXXfdhU6ng2effdaD4NSpYRtzXKpzocaC7apJSOxXSyUrC8EkDk2x53U6V3TcKwXInWD4PdcJcl7a5JBADpcAcR0B0YmiytEv0YJeISeNUh+6bktjYerBKwLRGJqdlDa2xglnKRny+Bp0Hg6H7oBHUlzz8/NIJBK4cuUKEokEnnvuOWSzWbfzRavVQr1edwYpk8lgenra7Wm4tLSE1dVVhMNhl7DAHTWYFp9Op13Kt7Ybs9IYn2k0Gq6cRCVaL439sI6KhvkZFaT+8DmkIRm34j1MlFFKmIiG7+h2u84wcscMoldFf6FQyJ3CzGNN1KDzHlKfjE1p5qgqaorSrYqyiL44zlgnXg/A0Z2kGo8fP45KpYLXXnsNyWQSt99+OyqVijO29XodzWYTyWQS8/PzLiuSba7bMbF/LBJVJ0/nj84B9qciKI510qO8h22ifcq66fIFnXMUzi81WIoWiepZx0D8JTBcR0CUeuLk0swjTdbgRPGjGXQyKz2ha2A00KwIipPITigqLkVsliJRpEcPnfvnDQYD1Go1JBIJNBoNXLlyBb1eD5cuXcJotHcSMie+rlniVkvczaFcLrvNXCcmJlwGHJMCWA8mNfB5uoiau8PzxGJuH6V7ELKtSTUNBoMDhp/etaXPKFReuiBZKSvtQ81y5DvYXxr4Z/+znroNFI0XUR2zMrkcgG1B+lCRE2OrjJMVCgXX9kx9B+ChPUkzso7cCWU43NvRg8ky2WwWc3NzmJ6exle/+lXUajX8wA/8AGKxGK5duwYAbrF5OLy3v+LExIQbg7reUKk2tiP7w29OqMFiu9kMRc4Fto+2sbaNxo4V7Ski00QMzQK1Y0rnXiCHS0AVHgFRD5iTQr1ONWbAvoHSXc8BeGI8fI7Gb+htq1IgrQV4FxErRakTj+iKniMz0DQbjnRYJpNx9F48HselS5ewu7uLL33pS8hkMu6MrIWFBQB7CQWMIzHoT4qQ65i4lonZhJq1BezvbEFKUMvIffO49x7rnMlk3DOpjNk+LE8kEkGr1UK73XYIjkam1+u5DECKZjAOBntna1Eh8l3aF6SquDUVqc92u+2oxlwu5xSlGjbAG0dhedPptDs6Rg1epVJx7+l0Oo46zGQyOHHiBMbHx7Gzs4NsNouxsTFsbGxga2vLLUFoNBqoVquYnZ1FPp93u3Go0eW4SyQSOHfuHH73d38XW1tb+K3f+i2cPXsWv/zLv+z2KnzxxReRz+exuLiIe+65B41GAzdu3HD9Q9qUxoHOCg2WGge7vEN3vmC/0KjR2FmkzWfwMxowokqieEV3Wg6lN2mguKg+FAqh1Wq5PgvEXwLD9QYXKjPy9+q9Kx+vBo10EuA9ZsRSeDqR+DxFcvS6lcrgpOOkt7QS09PVE6aXT+VFimw02j9SpNvtYnl52W3Eet999zm0RcqQCCeZTCKTyThaiv9zbZFVNNouigo1hZkGaWJiwn1m436sF5GU9Y7ZDlwMrUk1RJvA/q7zvV4PqVTK7QjRarWcUeEzmDhBR0AdDxoCUoP5fN7d50cjK1qmQcxkMs45YfZjpVJx97IsRFfZbNYdRcMYF49ImZycdCcsE6Uq6iGqVaTLbMrjx4/jk5/8JCqVCs6ePYu3v/3tePrpp5FOp1GpVLC8vIz5+XmcPn0aS0tLWFlZ8STp6DxQitMmUyjd7kdnK2ri/2po2ObsT0Vkmsyhc5dCwwbsb4vGccP3KSVpUWQg+xLg0Te46ASycS4aHSoIjXEA3oxDNXL6HSeheqeqCChU2KrUqYgtLajrWfQ7TUlXNJDL5VCtVlGr1VAoFLC7u4uZmRn0ej23yLdaraLT6bhdPBjrIHLgmiLdkUAz8jRpgT+KaljubDaLQqHgYnC60JY7JfB5inxJJenu/Gx7jVmw/2hgiN5o8NSLZ+ahpsFrbMTuFsKkEk2j1509WB+lw7R9eD83ESZFmUwmMT4+jkKh4A7+5A/LFIvF3K4nk5OT7hgVu7hakzrUsN97772IRqP41Kc+hWazibe97W1YW1tDNptFu93G9evXsby8jFOnTuHMmTOOBlYKl3/ruNMYL8ug9KEaNJ0/Sr+yz+x81Dmi12k/6z0sj6I5irInGu8KxF8CxHUEhIqTXrIiB03XBfZT59UTVAREA6ReuXqpADyTT3e1UJQBeLOnNFuQKIATVo0J38Mth0j7/cmf/Inb+PXxxx93inZubg7RaBQbGxvo9/vuDCxua8R3UelzfRNjCDQIejgkvX16tzR6mhTRarWc0lfUw/pqPIltzPowyYMUZC6X88TVKOFw2CU4cB2UZrxp1psqTG4iy8MeOS5YHsYO+UNkzLKSHuTzaQC5u4bGxJhpOTMzg0wmg0gkgnK57GJYiUQC+Xwe3W4XlUoFw+EQOzs7jg6mTE1NuXJy8TI3r+33+8hms3jf+96HX/iFX8Bb3/pW/It/8S/w0EMP4Stf+Qre9KY34cqVK/j4xz+On/iJn8Db3/52VCoVfOpTn/JFkcowcEzTyeI4VbqPRkd3VtE5pUwEkZAyEzoHtK94L/9XlKwbZ/NaXUcWGK1bS4C43uDil/iga0o4ueh9Wg5faT41SDR4RE783y+IrZlWVNJU/Brv0nsUwWlgm0qAdCEVPPeFu3r1KiYnJ12dGNthYgaVsO7YTeXAeBTpLCIInpvFzWbZfhTe73cEChMSmEpOpMN+0EXF2j8amyLioWHTxA2iIyoyvp/XU4GyrrrGTJWhIgzSd6Qd+SyWh8hLj0zp9XrunC0bGyP1x70Pd3Z23Nld3PORz+IeiXSuOp2OW/ul40KRKzMre70e7r33Xjz55JP49Kc/jXe+852IRqOYn59HPB5HrVbD+vo6isUi7r77bk9syyp6xg9tG7LNNLNP1yayT3Te8HmWzdA5ZelHnZt8J8eesh1+LAjncRDjOlwCxPUGF6U4NBCt66YY2LWxMGB/sapud8S4EpUSJ4rGBRQt8TlK//F7jb1oBp9eY2my4XCIBx980B1Y2Gq10Gg0sLq6ivn5efR6PVQqFSQSCWxvb2NnZ8cpF90pnu/UmJ/ugsDEBdJf3Pmcu0nwPt1JnQkkhULBKTA+k4kKfDcVM1PsqYC5Px/bgf8rzUZR1KcGKBaLIRwOOwMdieztQch60IArUuACbqWHSUXyXapg+XyuLaPxYcwtFAq5LEDuIRgKhbC1teXiXsD+0SUs98LCgjsaptVqoVKpIBKJYGZmxqFRUplEetw95dFHH8Vb3vIW/MEf/AF+7dd+Db/0S7+E3/zN38TCwgKefvppfPWrX0U2m8XDDz+MUqnktvVSI8A5QaOt7apxLnW4WN/d3V0Po0ADQ0On6x41EYbtq0kbdp7omKDBVqPK+c779cigQLwSIK43uHAQU/lomroqQU4uv7iWJgjwGZxsli7UALdNzFDUpLSfPkNpSX6m7+SO5HNzc04p8xyl6elpnDt3znMiLNdV8RlMwlBDYekWbgfFE3/L5bJn6yMiDiIQUlf8TONDbFsALj6jMS67xontpG2iSRt0FOzSARvXsIha6VzGzDSLjX0FwFGjzG4kquB9tp8ZS9QMUz5XUbWt59bWFtbW1rCxseEoxeFw6OJdbB8qfKXi+DcAl4lJRV0oFPDEE0/gE5/4BJLJJK5fv45yuYzp6WlUq1Vcu3YNoVAIp06dcvWmk6Fl1USVwxAR219pYj+0o/XXflG0xL7XNHddzO7HTPihskBeXwLD9QYXSwVpwFgXrirNYPl35d6pNEnZkbqxmVn6fhvMBvZpPKtolYpUw8r7xsbGcOLECUxMTDhj0uv1MDExgdtvvx0zMzMeapE0FpMTNJOL5SOqIlok7cSfRqOBRqPhqC1SSEoV2c9UWCdSh7qrBdteFZA6EOwz9aw1GUCVqSpvjX+oweD/ahRsmWlwmAnJ/mc92a6DwcAZDe1HGyME9tBcJpNBLpdDoVBAJpNBp9PB+vo6bty44bIItU+4uwiPX+GuJ9YR0kW6lUoF9Xodk5OT+OM//mN84xvfwMmTJ7G1tYXbb78d7XYbS0tL2NnZwZkzZzxIVVEU20djitoX1gFUapXtYA2Nzg2/pQYa/9X3+Tmaarh13PB5wZZPt5aAKnyDC71B5dSHw6EnoYCeHQ0ZkZYiEb2X2x2RjqCnbe+nUhmNRm7HdDVQqihszAXYn7SkN7kN0AMPPODx9LvdLmZnZzE/P+92c2DchEdy0JgxfjIajdyiXKZjW++bO6KzbXhMRjqd9njE3NyWhoNeejgc9iz+1Q1xqVh0rRVFt3QiTUrvX50Dfg/AxZjYtjwo0rarPeqd76bSVRTFHSqovLmLezKZ9DgiRL28n8hMU/1nZ2edIeDvSqXi1mzxZGUAnh1OUqkUQqEQ1tbWsL29jUgk4mhYGkkeHDocDlEul7G5uYlisYj3ve99+MhHPoJf/MVfxCc+8QnU63UUCgXcuHEDn/vc5/D2t78dy8vLeO6557CxseHaQpU++1gTVWjkNL6mhlupVBpBjmkuUme7qaHT9uEzuNha56DSz+pU8ntLLwZyUALEdQTExoyowOm1qYemXrz1yFUJ6rP5W/+27wfgmaxKFbIMSldpmj0z3ZrNJubm5pBOp1EulzEajVziBCdyq9VydJjWS4/RUGOpdB3rq+dFMSOQa6fUWHE3eaI4GxhXuk+fr+3qZ7QttUYngmntVrGyLdVQaDnUsyei1IQQ239+tK+eZgzsIw81ekzcSKVSjlItlUoolUoIhUKed4dCIYyPj7sNjHXbKBpKUpYAXHxPt5TSzM6JiQl3PlgoFEKj0cDs7CweeeQR3LhxA4uLi7h48SKmpqbQ6/Xcgufz589jd3fX7YGo/aGMgFKW2s9+DIWOYZ0TOu40KUgTmyzdyjLRoPL9lsE4jKkIxF8CxPUGF6WhGNdRZWZjI6oQmZquKfJET/QO7Roi3q8ZX/ytn+u1egilJo4Mh0NngDqdDo4fP46///f/PjY2NnDhwgXMzs6iVCp51iIxcB+NRrG9vY1yuYx2u42pqSnnvVPpaPYcE1RYLzXwjLcMBgM0Gg2X5MC204MmWT9ewzZlXCydTqPX67ndJOz2UVRGuhZI+0k9bCpvRVKsX7vddsaEZaIToFmmRHE09kRrFN2RQReAh0IhZ8yY9MI+o9Hl8SiaOalKOhqNui2lNjY2UKlU0Ov1MDMz49aLhcNh5HI5TE9P4/r169ja2kI0GsXs7CzGxsZc8sf09LRrY9apVqvhLW95C37zN38Td911FyYnJ90JypcvX8aLL77o1n/RMeI86HQ6brwqmmTZlVpUFMQ2isfj7m9NuNBjZdheTBJSw8T/GYdkP+qxORxb7E9+pw5hIP4StM4REI1J2c/VgFi6wQaa9W9eQ0pH06wVxahHyGs4WXWBqR9iswji9OnTmJ+fx+rqKlqtllvQGovF3BohjcEx45AoSRWreqsU1kl3JVdKispBFx0DcGnew+HwQDo0FQ6NaTabddsYMd6lCFc9baXzNJWaiMQvAUAzzNTLV/pPFZv2BfuBWZSM+9Go2XczdT0cDjvkqenzVLB0RIhUGbfSuJ/WT2Op3OS41WphZ2cH6+vrWFpaQrlc9sSVWHaOxUQi4TZXPnfuHK5cuYLRaITNzU2USiWkUim88soraLVaOH78uNuFRMcqETsdNvaLxgeVkrOJHayDzh+KojSlxvkcTUQh2lZGQlPwde7Q6QoowltLYLje4EKlrR4dJ4oaIqWmeJ9Se8q7a4abIjU1NEyRVuVJUYNhF9SqwlfjWCgUcPbsWaRSKZTLZUQiEUxMTBxYU6RGhWnkVIB8n76figHY34+Qu6czA5GxK032sPEjZr1ReasBoSFTbzqbzSKXyznPW2lEKn7NQNT32YQKNXqqbPXcL9vflvrVLaZoZKy3z/Zl37bbbQD7h1LSECntZg0Klxww65I7m9CYEeUTmRDprq+vY3V1Ff1+H9vb27h48eIBmo1okLuW9Ho9bG5u4vz58xgbG8OlS5dw+fJlAMD09DQ2NzexsrKCe++990AcSR0vpXmtQVAjoZmGZAsUMWv7W8fNrk3TZ2pGpSI9dS7pHGhs0VL2gexLQBW+wUWVFrBvYJR6UMXtZ2h4j04WXQNkkzjovWtcgMoF2N+FAPCuM+P3fC5T4DOZDN75znfi/vvvR7vdRqPRwNzcHEqlkqOqNHNwOByi2Wyi2Wy6xAs9/JBKmQuKuWaHZWVbML19aWnJPYs7l1cqFbc9knq9TF+mEmZ7cpeOwWBvb8Risegx+opkNWZEmlTpQbYh+4J1to4H6T3Wj/eybpoQwOQTzdDjczQuMxjs75wxHO6dm5XP552hpJHiIm8aXyIsPWGb54MNBgOUSiWXEt/r9dzuJv3+3mnVw+EQ2WwWKysrOH78OJrNJl566SUcO3bM9QspPyrzRqOBnZ0dnDx5Ej/1Uz+FT33qU7hx4waWlpawuLiI1157Dc899xz++l//6wiFQviDP/gDZ0h5OjXHB4XjXiltXYhtlxiwDbV/2Bd0hjTJwy++pdS19jnRMe+lw0QHyDIKgexLgLje4MIJQo9NkwJscBc4eC4Xn2GTBfT5vJ/XqDL1mzz6LhWNh2l8q9Vq4cSJE8jlcu4cJm7l1Ol0HGXFuEkotLdDtnq+SpPxh54sFRM/V+9b07rV2+V6r0aj4dlOC/AaPRpsGgcuxrXp0GwX69UrwiKaUm9dUZKuK1MkqHEY1pvPpFFRRKXxKLsWTXfz4PEwigoVgShNymvZLooMwuGwO/MM2D+XivUdDAbu/LRIJIL19XUMh0NsbGy4uBRjbryXa/6YWRqLxVw8i1mL3JIqFAphcXERJ06ccMZeHQSOSaWHFQH79ZXS7BxTlg7WucC56Tev+KPxT17DflG6UhmSQPwlQFxvcCFasmubNGtPJ6HNaNPrrTdIRMT7NfGDE55eJHDQuCnHr3w9n89J2O/3MTMzg9FohGazifHxcczOzjoDMhwO3W+mLnc6HYRCIZf9p+nlfKeeCExlYGMG4XDYZRZ2Oh2XuKA0KdGhXYPDpAnSQErR6uJevtdP/JSlJnHwN71vrY/GQ5iGrW1uEwfUaNOoaH3VOLIuTM7R8ll6kOhWDYwqXD6PSJNomcaU9w+HQ8zOzmJtbQ3r6+vodrvY3NxEKpVCNpt1zgHryDgdd97I5/MoFouuL7k58/b2NorFIu644w5sbW25sUNHiAwA66X11bGsBkX7lG3pN7c4HpTytE4kn6GLodXJU9qY7w/Q1q0lMFxvcNFJ5GfA1JujUuLnVJKkgDSrSp+v9wDeALaiGEVT6sEyAYITkmuzWOZ4PI6pqSk0m02X2jwxMYGVlRXPImp696ScCoUCjh07hmw269LnWf5wOOw8fN5HxUNlHQqFHOXFLaDm5+cRiUTcER3D4dAd46FGnmuqiMz4Hsa0qtWqSyLIZrPO06exVspJjTjbikZEPe1EIuHSxWlodLsqGm0ad93lXdGq9guTLojY+VyWh23Ed9FA8Xvd45AGl2NDY4o81p5ndDHphuvg2u22MzDhcBhra2vOyKytreHxxx9HsVh0KfSa8EBDODExgbNnz2JjYwMbGxs4f/48nnrqKXzuc5/DQw89hO///u/HZz/7WTcuuLiaz+EYUwOjNKzSrJaiZ73p2JE6tffY+WcpdN6vR5zQ8eM16tQE4i+B4ToCQqOgwWEALjakFBgADzKhUtQ9/VQs7aFZe3y3ZlxR9F1Kq1ARasr9+Pg4EokEyuUyOp0Ojh07BgCOJtLkhlBob3887qeoipjUE5EZF+lqUokmSFD5pVIpp/xZL91Zg59pNiHrQk/ZUq+aIahJEtqmmtxgUReNF5c4aBzR0qHavjQYRBJEP4qW/Sg/RdGaFKHOCK/VZQCsGw0lDSyRtCYM8d5EIuEyGvneiYkJjI2NYWtrC81m0xOz3NrawsbGhusn2wbqnGWzWdTrdQBAoVDA+Pg4rl27htXVVZw9exbZbBatVsuddM1lBRzbLCfrpmNHnTd9ry5atm2tqFsROftV0ZrGG3mdon5lEwLEdWsJDNcbXDhxQqGQW5tChares04kNSqkSUj70ZioUlKlxecBXu9ckYFOWBt34QQn6ur3+zh//jxGo5HbGmhqagqNRgORyN4uCqPRCOvr6x6UqIkH9Og19kGjranbNJo01IwlnT59Gtls1rOurdvtYmtry6ExAG4n+Egk4rx+jSMSdaphouK2CFWNnNJV7BtNl1YlyXpzwS6vsQ4KERXrTENKo04lyDiRUr52Z/1+v++QXq/Xc7QejZXte6JF3U2faJL14xlpRCcnT55EJLK31+TS0hIuXbqEV155Bf1+H41GA1/5ylewtbWFBx980CUsqCPE67gwmv1z77334uWXX8ZLL72EXC6Hd7/73fijP/ojR1VqmzJerLErzifrbLAebOdoNOrirqHQ/o4YiszYLvq5pSJ1bLBunOMADmRj+jmbgQSG60iIpQaV1tAYg3LyRBx+2YiAd9GwNXi6BZQmhWg8jYpPjaCWg58nk0nMzs5ie3sbGxsbnvgD4I2x0AgxtqLJAKSQrJesxoTPpRJhGUjv0YgQFXS7XbRaLbfPHhcVc2891pWZavzxi2cpcrRp6yybLiBnG/Ld6umrIVPRlG5NSOF3fK81cGrU9Vo9moYKWncsobFUdMl+UOpQKTAacmaTkk5lH8zNzbl7l5aWUK1WEQ6HsbOzg6tXr+LMmTNuBw32wXA4dA4J30+kNjk56cbH0tISbrvtNiwsLODq1aueBb3sH4syOSYU4eg9+m6LghSV6zPtPKAjpYaSc4kIU9uRzw6M1uESGK4jIJaSUKVPNMaYkg3sq6GjMtfPNa6lBkQnlyY+qBGlwtDkBn1PKBTC1NQUSqUStra2UKlUPOnUREB8Fg0EFSDXeCmtxWQB3U9Pv2dbDQaDAwdNMv7GOvOk4263i3q97jIXbdC9UCgcSI9nOym9aI0P24xCh0JRoW13m3TDZ/Fd2t9aVy2zUpYWGdNAaYxsMBi488p0lxFFH4pUicQ5LhRp8tparYbx8XE3Rtku2WzW3Xfp0iWMRiO30Lzb7WJtbQ3JZNK1BeNSGmNl9uHNmzcxOTmJiYkJ1Ot1VCoVjI+P48yZM1hbW0OtVnMxRbYvDQuFhon1YJ2VItX+4HzU+7V9OacsauM7lTK2RlTHcEAV3loCw/UGl9Fof5Nd3dmb3rCuUVHkpFvTkGpS9ESFwvvVqJE6UySgWWmkvHQyE6FRSfV6e8fSP/jggzh9+jSWlpZcQsRLL72ESqWCyclJZyzUSDWbTdTrdZeJOBqNkMlkPEaSCkJT2OndMxGjXC5jbGwMExMT7t5UKuXuJ/K67bbbXFo+KTU99JHrxaxS4vf8Tg2bbsWkyRC6OTLgXQDL3dQZ+2N8jWXS9XNse8btWD/2NZGhGlC2L09Qbjabjn5mfMkiAyKcdrvt6k2UqMZuNNrPEO319s4841q5ZDKJO+64AxMTEw5Fnzp1Cj/+4z+O1157Da+88gq+/vWvY3d3FxcuXMDm5iZmZmYwNzfn1vCx/fTsrq2tLdy8eROPP/44PvvZz7r6PPjgg/jEJz6BYrHo0uV1rZ+OZ503folP6oyRhmW/MC6ljiWfo8kWw+HeFl6cv5xbbCu/jF/2cYC6/CUwXG9w4QTiYKbo2iSlJ3iPKlmlkCjq4el9Ovn0eg1wA/t0B4UKeGxszMUfRqORQyvh8N7+f7FYDFtbW07xKq1lY3ZUmIoegf3dH4hAbOKDpRJZXwCeXSE0fsUMPN3UlwkGNEhK+dDw8NmW4vGj+lgeOg3qGPCdiUTCtY29n32p670U9fL5bEub3MKd92lkibxYR8C7byOVqo3LaDyN39ukBj5vd3cX1WrVGYDjx4+7ZxUKBZw8eRKj0QiXLl1y9azVas4oEF2zPETqxWIROzs7WFlZweLiIk6ePIkLFy5ge3sbJ0+e9CQnMb7INtExBuwvBmcbWjSkdKCdGzRAiqosOqNR4t6FugzFj7pU5iAQfwkM1xtcNGONdI3SCMzkCofDnsWcun5HFaEqGGZc6eQC9ikybjRq0RqwHzPj5xRVmMPhEJOTkxgO946rGA6HSKfTLquQKIfJA/V6HcPhENvb26jX627hKZGUjVFwRwYqBH5OFJnP5931mUzGEw/TPfK4kwSvYz1pYKanp137Ev3oQY1sQ95HOlSTF4jiaHgY7+I9NMSM7/C4mVQq5aGEKWrkuDCaFBvbhgiPFJ8iR6assz78jveSEmT72n6m48IkBe4TqP0RjUad83H58mXnsPBYEwAYHx9HqVTCzs4OLl265NiFer2Or3/966hUKjh37pyLa7G9GDe7du0ajh07hhMnTuD69et44YUXkMlk8Nhjj+HJJ59ELpdzi8bJCPR6PYfi2B+a7q70H5G57l2oywvsHFUnh21L46vzl2NRk2Y4ZxkHDuRwCQzXERA1NhzwnDhKH6kCtbEmKhHNtFJPGTi4AakG9tX7tMkQFOt9kuLTdT5UxoPBAOVy2YNcuD1QvV53u2kAcEqKXrjGOlgOjXVp0B2A28SXO3WwTalk0um0y6rL5XLOMAH7iSpaR7aVesWKiv0C7IoCVVnaNmbaPo8H0f61yJtK1qaPs/5sa16jyTXqBOjziGq4k4mOLSINXSyuyp7twnZlujvjVO12G8vLy+h2u86RyGaziMViuP3221Gr1fDyyy+7fu50OiiXy57dP+gMRCJ753htbGxge3sb6XQa09PTWFpawvr6Ou644w587Wtfc3FNji+OEaVy6YAoSlL0znvo6Gl/KAuhbUUjx3Y/jBEhctb5qNcG4i/f0pZPH/nIR/DQQw8hm81iamoK73vf+3Dx4kXPNZ1OBx/4wAcwMTGBTCaDH/uxH8P6+rrnmuvXr+M973kPUqkUpqam8Iu/+IsHPLpADooqJg0Ic3JQ6MnpmiddnKrKlqJKks8l5UclT2WtHqYiORpKpTuY1k0EoeuW6NXr5A6FQk5pqkIh6mICB//WRA0qZE3a4Gd60CLgNSpEH/l8Hrlczh1iqWuluBURy0oUZA2A7Q++n+8E9lEyKVRdw8b/eWoz0Q7bQvtNkwbYxjwTi+e1qXLU9mD7aFINF1sz1qfKk32gWalKI7J92J7RaNRzZhwXJG9sbOD69eu4fv06bty4gRs3bmBjYwP5fN7t8r6xsYFGo+ESN4jq+O5+f+/sr/HxcUxNTbnMxFKphH6/j62tLRw/fhyLi4vY2dlxZWJsyhpyS4nbnfQ1vqjX+yUFcbyybZTSJ9ImaiNaV2Nv52gg/vItIa4/+7M/wwc+8AE89NBD6Pf7+Of//J/jXe96F1566SW3e/fP//zP4xOf+AT+8A//EPl8Hh/84Afxoz/6o/jzP/9zAHuD4T3veQ9mZmbw1FNPYXV1FT/90z+NsbEx/L//7//7V1/D7wIhTci/FfVoTMlmMgF79APPI9JMKSIJIhAAnsmmC3MpRDr8nDEfKi6LeMLhsDttOJ/Po1QqIRqN4tq1a4hGo8hkMi6jjEqWxgzYW6BcrVbR7/edZ06lyvJoEgMNDI1tLpc7kFDAGAmwvzkvFYn1vvmj6ItKnuNds9SovKnUNQFGUdZgMPAYLpabZ1OxnIwRAt6TrjWzkMgsFNpf56c0KDclZmIGxxAdBk0WabfbjmLUa5l1qQaaZec79JRupdvUYLZaLZTLZayvr7s2Zrnm5+cxNTWFBx98EF/72tewsrKCmZkZVCoVXLx4EfPz864tSDHn83mcOnUKly9fRrfbxeLiIj772c+iXC6jUCjgHe94B27evOnKThpVKT+LgnTusA7qPOkSAWUc+LcyABr/U2qdKJDfs695ynjgxL++fEuG65Of/KTn/9/7vd/D1NQULly4gLe97W2oVqv4H//jf+CjH/0ofvAHfxAA8Lu/+7u488478eUvfxmPPPII/uRP/gQvvfQSPvOZz2B6ehr33Xcf/s2/+Tf4p//0n+Jf/at/5WB9IHtC5aBJFMB+AFiDvfY7/VwpRD5XKQ1Lh2k8jIFl9UZtnE2D1XwWr+cO7+l02tGcVASdTgc7OztOAVcqFae89WRkKn414nwf0RxRmiJSVcKsC9vDBueZncf7/JI9FFEqklL0o142r2cGoqIl7QdVatr23IKJhlfpXUVijC3xO5ZZz+limVg+HTN6Tplu2MtYHuOJqsRZP92p3yJlOkg0ihxvpDLpdFy8eBGDwQALCwtu891ms4lMJoNyuYzJyUk3FtjuPPk4Ho+j2+06FD4ajdzho9PT0y6OyXrpGKTjx79tkob2L/9mzJJtyrGnY0LHqCYCqWNokRvfqwvLAyPmL3+p3eGr1SqAvQArAFy4cAG9Xg/veMc73DVnz57FwsICvvSlLwEAvvSlL+Gee+7B9PS0u+aJJ55ArVbDiy++6PsepsDqz/eS+MWjVFlRNMFCU8bV6NmMKE384P/0xu271RBwktpgs42f8IeevSpP9muj0cDW1pbbUaHZbGI0GiGXy7k0be5OftjBjRpvsDSLloNtZ+NTLJtfLIjtxzbUfuDf2g5q3DWWwb377KnJimI11sIMRzoAVpFqPfijyTg0hqo07UJe3fpKFSeVO1EgkWSr1UKlUnHJM0zk4DhiG+k4GQ6HjjbkwvJisYh8Pu+QZ7lcxpUrV5BOp3HHHXdgZmbGJZ0wzZ3IkUaz1+u55QqMh5ZKJQyHe8ficK9LjVPa7FUbt9U+0LHEuuk1HFscBxoPo7Oi3/G3ZVDUKOrfgRwuf+HkjOFwiH/0j/4RHnvsMdx9990AgLW1NcRiMQfpKdPT01hbW3PXqNHi9/zOTz7ykY/gV3/1V/+iRT3SQjrOpscqtaUUoMaaQqH9dT6q3PQMIMC7hZSmapNWU0pEU33V8NHgkQ4D4IxVp9Nx+8sRYSQSCayvr7uMvldeecWdzUWjNTs7i3w+j3w+jzNnzmAw2FvYqsaAZWF7UMmz3r1ez20vRQVKhEDKUNelsa2YyML1UFT+upMHr9f21aQZNarAngPGOIcu5AW8p1z3+32Xmr+9ve2y8FgvLXMqlXJKlvcSOTImRTShyACAZzNbCtuM7cGF2UwcYZICjQMzCDVxRvudzyNdTOqNdeWz5+fnsb29jZs3b+LYsWP4/u//fnz84x93GyDncjnMz89jZmYG4+PjGA6H7pTrSGTvqJSrV6/i/vvvxyc+8Qlcu3YNCwsLeOCBB/C1r33NjT2NB9I4K0WnRkvpVhoidWwYl+V9KnyexsCUguRCe51P1uEIjNfh8hc2XB/4wAfwwgsv4Mknn/yrLI+vfPjDH8aHPvQh93+tVsPx48f/r7/3jSCa6GCRkaIojS+pB6lrqhR9aXq7IghOTEUoyuerAVO6ROMfgHc9j16nRkeVRKvVcokb09PTmJycRCqVwuzsLObn5zE+Po7NzU1UKhWXqcY4hRoJjeWxnkyDZh2osNTIKlUI7O+yoJ41kzwOyzLk/XQOdL0TEYLSvkpn8owvKq+FhQXXLuqh8x16r9adZeE9erq0xu6IDHU88Ro1XOwnJhcww3M0GmF7e9uhonq97qg6Kl6iILYnHSa+U8c4kdKNGzfcicqTk5MuSaVcLmNzcxPj4+POgO/s7KBWqzkqktmE8Xgc1WrV7SjPBdmKimmUNB6l6EqzV237KAOhKNzPcVH2QuOG1vlj7FLRcWC4Dpe/kOH64Ac/iI9//OP4whe+gPn5eff5zMwMut0uKpWKB3Wtr69jZmbGXfPVr37V8zxmHfIaK+SxvxdFJ5OdXIp2dDKpZ6eKlTscqPJW6kIpqd3dXaewGEugIaD3Dng34iUSoWJg0kWhUHAZX1yrtbu7646xuHr1KmKxGHK5HE6cOIHJyUmEw2GcP38et99+O8LhML74xS9ieXkZa2trB2g3rrOh0aAyJapR9ESlSkPR7/cP7IfIawE4OorxGE2xVwTCZ/F7KndN1FDURwVKCo7oNx6PO3q0VquhXq9jNBq5jW+ZUMIdJTTBgAt22Vfsc30PnRkAB4wekw9qtZpToLo5MYXjbGFhwUMdck1ePp93BpaGXhdNcxwzu5Ltdvz4cbzyyit44YUXMDs76w6OfPbZZ3H16lUAezE/LmRvNBq4cuUKFhYWkEgksL29jbGxMSwsLGBlZQVXrlzBPffcg+Fwb/3gzs6OG9OkF20CEsVm6vIzGiYdHxrXtVS9ZgzyWnVE1ICxjTg/A8N1uHxLMa7RaIQPfvCD+KM/+iN87nOfw+Liouf7Bx54AGNjY/jsZz/rPrt48SKuX7+ORx99FADw6KOP4vnnn8fGxoa75tOf/jRyuRzOnTv3l6nLd6Vo0JYKQ40TEYZy6Po/7yMy4WRS71zRFSeWogIbD+LE0x3LAS/vz3IzHklFwSSDXq/ntgyiIpuamsLk5KQLtM/Ozjov/Nq1a6hWq57EBY3zMQ2cBkTjVRrP4T3838/DpfHThAW2GduCbU3vnwiGhpTKStGZokG2NQ2W9ttwOMS1a9dw48YNzyJnnlasyE7jjexjLYMdS6yb0l2aLEPHRccM66UZgnQemC1KupBH0lBJa8zLL2GG5SYzMDExgWg0imq1ikQigYWFBZdaX6lUXHtQydMY53I5t1aMTtLy8jJGoxEWFxdRq9U8C7RpvGmU1UjoHLEoiW3I/3UfRR0nOq5YT91fk/3BZ5MZCBDXNyffEuL6wAc+gI9+9KP44z/+Y2SzWReTyufzbh3M3/t7fw8f+tCHMD4+jlwuh5/7uZ/Do48+ikceeQQA8K53vQvnzp3D3/k7fwe/9mu/hrW1NfzSL/0SPvCBD3zPoqpbCdEUFaDugWZFaQtLDypi4w+VlBofXmPpPH0OsD+5lX5R+ovSaDTchKRBYR2oFAEgk8kgk8k4YzMxMYF4PI7NzU1cunQJoVAI2WzWPVcVCtGVKgmiRhpYxizU41f6UL1gGhRdW2MzLylUvHowINuMSlITA9g/msJPI8Tr+v2+W380NTXldr/QbYyo6PhMpcA07dsmEWjfEmWybTROSWWsY0DbQI1yKpVCoVBwxr7dbnuMqSIuZQYUdRBJktqjE1IqlTA1NYW1tTW3cwnrlM1m3buy2SwqlQoqlYrLcNze3sbOzg7Onj2L1157DbFYzDkKlg5nf2mChKInm8ih2bk699jGNquQ/auxaL1HE3SU6g/EX74lxPVbv/VbqFar+IEf+AHMzs66n4997GPumv/0n/4TfviHfxg/9mM/hre97W2YmZnB//pf/8t9H4lE8PGPfxyRSASPPvoofuqnfgo//dM/jX/9r//1X12tvouEk4teMSeQGgMqZmbcESkoVTEa7S/mJH3F1GXNLOMzVaFRcXKy68JfVYiK5Dj5GJPY3NxEu912uzkw2D8zM4PFxUUkk0lsbW3hypUruOuuu/CWt7wFW1tbePHFF9HpdLC4uIhisei262FSAuuvafBMHFhdXcXm5qYn4YQxBz1+nuvFarWaaw8mtmgGINud64iIHhXN0ljwXWwX9qGuU+v3986Y4rO0bcbGxnD69Gncfvvt6Ha7uHHjBpaXl13Mi/er06F9ZWMtLDupT9KsSr3RieGYYQq/LidQlMeNend3d1EqlbC4uIjx8XHXvoxPEd0oAmFdieQ0njc+Po5wOIyXXnoJAPDX/tpfw+23345Go4GlpSWXoDM7O4t4PI7t7W1nVJaWlhwlvbu7i6effhoPP/wwZmZmnIOifco4HMvDMc06KLJVtEXURkOvTqK2FZ09zjtdc6kbNCv64tzSdg/EK98S4vpmoGsikcBv/MZv4Dd+4zcOvebEiRP4P//n/3wrr/6eFaUnlMYD9uNLOpEALxqzhoTCvzWrSZ9tDZFOWBo2VciKBvhc7myQTCZdvItrZYbDoaPZcrmcM4yFQgFnz57F5OQklpeXPfEyru8hFUbkYanMXq/nFiqTjlTEybbQzEC2CctGREJDqNmGNOqj0f4R7prwou1OY0p0o94436VIlbRnu93Gzs4OIpGI2xqLhgeA292D79F+Zlk1SUURr5YN8CYS0AizPWikNHVfk4NojHlwZKlUcgujmUZPB0b7gOhXt77iuBobG0M2m0W5XEa9Xsfdd9+N1dVVLC8vY3l5GceOHXNLIxgjY3YtY5bhcNjRi7FYDFNTU87AEXkp26DLBKye03V5/F/bl+2uc0aTlzjeWD72t9/YVSQWUIWHS7BX4RtcVKnqBCLlRUWlHpx63FbRaFIHPTs1JLoQFvCueVKPUykSqwjS6TTq9ToWFhYwOTmJwWDgTq1leXu9Hr7xjW9ge3sbS0tLaLfbuP322/HWt74VpVIJN2/edPRQtVp1qKrT6WBjYwO9Xs9log0GAzSbTQBwsa7BYIBSqeSJrfV6Pc95UNztA9hPTuAPDR4TFpRispQiUQmRg3rovIdGUY2l7vIRDodRrVZRLpextbWFzc1N7OzsYHZ2Ful0GnNzcyiVSk75s5zsaz2RV7MONbansTFNXGFcTFGHxgnVSdHFs6T/ms0m1tbWUCqVkM/nMTY2hkqlgtXVVfd+LnXQrEIiRMbQNIGEKerLy8t49NFH8eijj6Lb7eKTn/ykW/81OTnpUHiv10M+n0exWMTc3Bwee+wxtx1dr9fDuXPncPHiRcTjcXfiAOcEDTfRlyY7qaOh1DHb0Ro6HVPsc9KgarT1HXqt0rdKJQbilcBwvcGFxgrwxin4WwP9nGQ2K8lODlWiSj/ymfqjdJR62Xyu9UI1dqC7l2cyGdRqNbRaLTQaDVQqFTz//PNYXl5Gs9lEsVjExMQEpqamsLKygldffdXRPc1m0xkcZusxBmJRBRfE6jla9XrdodFOp+MUC2khRSnJZNIhOl7HNrUeMBECAKeAaQw05sT2ZRsratUYFetAxRaNRpHP5zE+Po50Ou3amOWis6B9oahPEY6WQfue3x1GL3OsaNyFWYqKMDqdjkuPJxrK5/NotVoA9ujYaDTq+lFjSWrkSatxyQNRUy6Xw6lTpzAcDrGysoL5+XkUi0X3LGYwTk5OIpFIuGzURqOBcDiMiYkJHD9+3CVssF81+cg6hxob1vnH/tKxB8BDR1vDxH7VOWZjfTqXNH4cyEEJDNcbXNQLA7zrhazHpmiAyIkTm6KoyaIpVZ58t53kWi7eNxgM3NEk9Eq55kd3XqhUKtjY2EClUsHm5iZWV1cRDocduikWi0gmk3jmmWfwyiuvOMXBPfiy2SwymYxDPxsbG46qY5lpjPibClkNlComPQ4FgGcjVODgWVv8rbEsGmqiBP1cM8z03fytbTw2NuYSVLheiklOLIsmmJBWI7WnSk7ra9O69d267sqWTaliogaOLRo7GtJer4ednR00m01MTk56lksQZcbjcRSLRU8Kv5ZX+6HVarl6ra+vI5lMYm5uDrlcDltbW7h+/TpOnz7tEJMa58FggNnZWaRSKSwvL2NsbAyTk5M4efIkrl+/7qFuWUbWS5OM1OnQMa9ozCZQ6JpHtqE6kTqO6AToPFbHJJDDJTBcb3BRJaJxEs1W404FzWbTg6aAPYWge8dxoijdB8BjuOgJ8v12ous9NsU+HA6jUqmgWCwik8ng6tWrWFtbw+c+9zm89tprKJfLHq+dx42Mj4+7zLBnnnkG/X4fi4uLzmgRfRWLRXeW0tLSkqO6Tp48iXQ6jWw26zkHKxKJYGpqyuPtsl4AXKICqUJSZaSDSHUp+tJMtFAo5FLANVDP75UuarfbTtmzT3hcC+8tFAoIh8PY3t52W13xeyLBWCyGZrPpSWXXGCcpPBp9pfWUiuK1pA01IxHYT/aIxWJurRppPzXoPA9Od6XPZDIuVmcX4Gqm5nDoXdemyxeI2l944QXU63XcddddeOc734lPfOITeP755/Hoo4+iWCyi3W4D2DN2ly9fxtTUFB566CHk83mXMj81NYW77roLf/qnf4p0Ou2cH+0rpVIVSbG/SYnrujw+gwaTGaZEWEoR8lk09HZuk/q3xiyQgxIYriMianCUxrC0C0WDzrzeTiCdtBa98RmKrKznqO+xKeU0mIxRvfLKK6jVakgkEuh2u06hUCkzPseMsVwu52hBYN8DVyNCb9bWh0LlqNmP6gFzc16uebLohZlluq0W24HxLH6uykvv18xPzSgE4OJUzHBkf9r9GPkMJqRoBigVpEWDVILsP/1fRRfQKu3ItqJzwlioroVTBMb1eFTeoVAImUzGIfHhcOg5DFTjPJo0o89mG9RqNVy/ft3RfaVSCTdu3EC73XYHlVL5c3sxjnkmBiWTSbejfywWO0Az67v90KDOB+u4cCzQGdG+sEZb68f+VvSmNGxAEx4ugeF6gwsVh90fT7l9v7RoKgMby1AFDOwbRE0qAPazCm18hvfwGr/YGLCnEOv1ukuKaLVaDinRQ+dE73Q6bmeIZrOJZDLp9qNjmVKplHu2BsapsDQWyDbQuA/b0C5+peLhj96jqfOsMxNYaKzD4bBLr6ZiZ7+xPfgsKnC+m2XR5Bl9HoVxEypCmwnpF3vRPmJfa5IFhfQlMyj5DJtpSuWs7afjgVsqkb7kPXQ2+v0+ksmkp1/4LpaRW36NRiOXCcqswY2NDVy5cgV333035ubmsLGxgWq1ioWFBWcI0+k0Go2GQ4SpVAq5XA5ra2su81EpZUuh0rjb9H+NRamBZX/QOWLf2zmhSxL4HG1HdUh1N3/rZASyL4HheoOLxhg07VypK2AfXajnzpRbPw+axoif6VHmNEhU5GoQVMkCcOiA99E4KCXCI9tDob3ThvUodMbFaKh2d3dx/PhxRKNRt/UQjTa3nmLQvtFoIBqNolQqOYXI99JQMYGByRM0NkQ2+ptKOhQKodVqebLfKDREuoYnl8thNBq5ezS5gXXUdWPAfvYZt2Ri+dlmXLjNU3dpWKhE9YgP9gmfw7VgumxBx5ONk7IcpDBJv9K5UJoxlUq5MjLphadb6xoyIm1FajR+bFeuxwP2kTZjY+yD4XCIubk5LC0t4dlnn8X8/DzuvPNOd1ry3Nyco4dTqRSy2Sy2trZQr9cxOzuLcDiMZ555BvPz85ibm8PExIRbL8adNtQJUYSkRpUMAR0ddUTYhnq+GuOdTE5SlKl0LNtLqUe7xVYgB+UvdaxJIP/3RY2GpfIAeJQar1fjY6k+zWLiRKVRtO9RalENg3rzfvw9JzEzyLgrOj1xnrVEJEGqjkZBqS+d0Ewh5+f8TeWn6CIUCrmYEDMFiQB0aySWSek0GkrGbA7LfgPguU63Z7L0oU2b1nVRtp6aek9qVHcw1zHBz7ScahzYH0oFWkqM1xwWU2E/sV11myP+UDGzLYfDoYtx8bfuqBGJRFwMj8abY8iyArlcziV1cCuoUqnklg0QqZESDIfD2NraQqVSQblcxuXLl3Hp0iX0+33Mzc2h3W47ulrLQwdA0ZjOGzs3WF5FYHRa9Dt9hn7GMUfnwyZFBYjrcAkQ1xtcdHBbKpBGQeM7VAA0AFQoTFlm3EgzyHT9F7CfvWaTNJSi1AXH/E49TiqXTCaDiYkJ56nztF9dLD09PY3BYOCOPuE7aZD4/lAo5Gg7Kj0aH1XUSuvZDMFUKuXZr45Kg+1qg/RaR0o0GnUxHaIvGiy+n0d/sBzxeNwlmoTD+7vMU9lxR/OtrS20Wi1MTk4C2Evfz2azDh0oYgTg2kAXDmvZmdav68aUXk4mk+6YFSpL0qHabjo+2EdEsWw39u1gsL9uTzP3uIsGKUPeOzY2hvHxcdc+SoUSvZw4cQLxeBxra2s4deoUbr/9drz88st45plncO7cOaRSKZTLZeRyOaTTabzwwgsIh/e2glpeXka328WpU6fw+OOP4+LFi2g0Gi4xqN1uu3ZiXXXeqKEhfaxr9vQ7HTO8j06ZGje+h7S5pZIDw3VrCQzXG1w07qRensYhdIGkxoU4ITgBFG1pVqIaPQ0+ky6019OA6QTk8/l9KpVyxoqTk0qxUqm4v2OxmGchLT1WxkgAuOQNesekMFUhc80Wy68erq2jJrpoXCMUCrmkB2YbMsGFhpE/NBSkLbX9dD89Kmb2j5+DwfLU63VsbW25+ijy1La1nrmWX8cLhW1h1+SxLZQ2BOD6hO+joVTFq5/xb0VeyWTSoWodO0TfADwxISZucKcNOkdKvZEGbDabSKfTSCaTqNVq6HQ6SKVS7mDbeDyOZrOJ7e1tjI+PY3JyEv1+H+VyGefOnUOxWHRxMAAuPkX2wtJ0ts2UKtd4FPve0va87/XixDZZRMdtIF4JqMI3uCjqUUQAeDfVtRSgvYcIzFJNSg+pJ0+hJ6iTlp6ppmJTqDh101zGpriFD40ZsH8ApEU+RCVK55FOY5mZGk4FqDSM1ssG2FWBU9nQMGnqeSqVQjqd9tCJVMR+Hjn7hNSres8sH/+n0bRJIPS6+Zm2rzoO1pDyeXQ2dAE121nbWhNaNO3fxsRYDtuWesaXHXNjY2POsLCdaOQVeTCGxziTOkNkAhg3A/a2uer1em4LLKa1V6tVZyyJ6HZ3d7G+vo5er4eFhQUAQKVSQT6fx/T0NGKxmMfhoJOn/+t40FifpTOtYdc+tnUmO6GOi64jsw5dIP4StMwbXJQGJKVH71A9Wf6tioTUmd9KfqULVVmpcmRgXfl4YH/dGBW+xnWYNZjP55FKpVCv11Gr1fCud70Lq6uruHz5slujtLGx4RBJKpU6EEthbIqJI9x5g6hrenraKblOp4N0Ou0UJADPWVh6dhYzCJk+TQTJ9mE8iXSfUjhsm1ar5aFNqcSo6BU58mwzUmfqgasSGx8fRyqVcmdcxWIxTExMAIBbq8Rysk75fN69h/3A5AwaOEWqOjZYFt0+yi8pQMcPNznmFk10iDgmSNumUink83l3/hrfl0wmHc3K06jVAVNjkUqlkEgksLGxgcFg4CjRjY0NjEYjzM3NuaUW4+PjGB8fx9LSkhtLV65cQSwWw/3334/V1VVsb2+jWCzirW99Ky5duuQyXZvN5oEYol+mKh0JjhEiczogasSUPrWoXlEY556lo0ndBuIvgeF6g4tmN1kFyu/tWi163boglgoKgGfHA04kRQOaTchJyInF6wHvxqIWkdBjZMxjc3PTnXKsHi0NFDMA+Vw1wszcGwwGaDQazohyMXKn03FH7GjsgWVJp9MHUCbrqxmQaryZLadUl3rWNuOM37MNqdw0FVoXcfM5aij0sEpV3BqPI9rhzho0UvTo/ZCVfb4aKHV+WHdFFKSftT/4uaVjiRRIEWYyGcTjcezu7jpnQulJjkF7xph1AmhM9PN6ve7iWdyxI5vNukSVbDaLTqeDSqWCO++8E9ls1rXhiRMnnCNg2QuWiWn9FHXgNPmF99I4WcSlc4Zjhe2gba/XKH0cGC9/CQzXG1yYxDAajTzHbBB5APt0IJXS2NiYUxacHDq5NC1XD+YD9mkopQY1Zqb741kKhB41ty4iZZNOp/Hcc885RZ1KpdBoNBAKhVAqlTA/P+8MczQadQtFgf39+BKJhDtZl4tM2+028vk8YrEYLl68iHq97gwj2yIajSKTyTiFoUdGjEb7R1yw7jSeANyz6E3TidDYH59pM/+A/UxBPSqj0Wh4MsmorDQuw/Vv7XYbhUIB+XzeIRoaI8aE1OByjHCBrY2f6C75rAcTKriHo992TBwrfJfu8cgysEzxeNwdPTI/P49er+fO0Wq1Wg7lAHBx0Gg0inK57IwF+4ExK5aZO/4TDZdKJUxPT+PKlSu4ePEi7r//fuRyOdTrddx2223uaJWJiQnceeedePbZZ3Hjxg0sLCxgNBo5RoCoic4GsE+Rso7sM6V52YZEXnYzY20/pcI579iWZC4415T+DsRfAsP1BheN1QA41KNTlEJlCOwH1+2WMrzOoikNKKvwXpZJYz1KQfJ5RCyk1I4fP45Op4P19XVEo1H3OXdXoELX2Ikis3a77XbPSCQSqNVqWFtb8wTxdfcL1kXjZrrWhgqGdaUCosKgk0A6UVGpPo/vVUTLd6uHDuwbHYpV/tzPsdFoANhzWmq1mtu0Vr13jW0pwmJfsS62/5VK1tgTnQYaar5L20ONlsZztG7sPy48j8ViqNVqHgoWgOtHrgNUI2D7jffRYWDZOp2Oa5dyuYxWq4VcLodarYZIZG9Bsp7d9fzzz2NtbQ3T09MOgdGh0YXTOsb9kih07ilNrIkqGnfV+J/GPjVbWBE4n2MdiED2JTBcR0CIHobDoVu4ao0HKQZgn/ZQtGVX79vdNvQeP3rCGkT9X2kOIq9Op+PSu3u9HhYXF1Eul7G5uemu4w7ukUjEITAqztFo5NbkMDbVarU86GZrawurq6uOkkun0w5dMdlBlSHRD+uvO5wTKVnFrgkO1nCRltNFs7xOjaKmhPNe7Re+X9PJ6fnrLvhKIbFd2G80LHyPGimWTRccs9+YQEElbu9T5akI3I4ddWpo7EkZsp2VVtUkG322XdTLtmR5GXft9/tuXRiXEpTLZdxxxx0ol8sYDAbOOI1GI0xMTCCTyWBjYwO7u7vI5/NYXV11lDrlMMqP7/drF7IFSuvrGGC76P/8rXS9GjRlQAI5KIHheoMLJyvXQAH76eg6wDnZqQjpQdPTJuWmCoDP5/2A98RcxsjoNdp96hgLoEGgAigUChgfH0e73ca1a9cQiURw5swZd8QFg/qlUsntOhGPx91JvNwtguULh/d2kKfiDYf3Dibc2dlBpVJBv99HLpdDPp937fPur757v06Xou45F374gocCJHVJZUolTA+Y76Q3rIuXWT5STVputiOpLxpR9daVdiKNqNsydTodt4URKTylctmH9NyZxalnbFHxRSIRjxHU8UUaltlzwD7C0IXRFF6jiQmtVgvtdts5ELVaDY1Gwy0wrlQqnhge72WducaMZVQlz/FOI8Wx32g0kEwmMT09je3tbbzwwgs4c+YMxsfHAQCTk5PodDpYWVnBzMwMzpw5g8uXL6NcLuPMmTNYWVlBJpPB1taWQ0mKdLgG0K7300QYHaNsb841G29lP6hRo0Oq40bX2QXiL0E6/BEQTddWqo+/FfUA+4sn1SO3FBPgTWHWeAuAA56hBv9tYgKwH8+JxWJup3ciL2AvJseDBUmF8VmkVXTNmEV2XMdjkwTUEHS7XTzx5SfwxJefcAZO07CHwyHe8um3uEwvpdf4PKaS27igUjq6QFe9cEVxmrSg/UNFz62VVEEzJZ00a7vddrvih8Nht+DXIi0iTiZHKM1pkwmU4lM0pDuLUFhW/c1njUYj11aMt1Fp09nhqde8hmiJ40gXgtuYDtuPfUhjx7pxF38ALouQTgz3tWR/bm1todvtOmeqXC5jZmbG9SnbU+OFwL6RUYdP+1XngdLtHDs6NtRJoVHy+6FTYKn6QLwSIK4jIGp8qDTUYFmaT2kNS39RrEcLeHfB4HP4ncY1LEdv0drCwgKy2Syq1Sp2d3fdGUo0XJpYQiTCWIUaHJaJ3m0ikUC9XnceKWMeY2NjyOVy+KnLP4VBfOBRMLq+hmXXlHulXAE4hW93MaDRooHWxcTWIaAStP2i72c70xBSael7eYQIUUgul/Osq1M0ruNAkZjSoZpQoG0yNjbmaFnSXmwjHRPq6ADeuKHGr2hIW60WUqmUK6cdrzRw6kipg6AGQo0Y+5Vp9TS4zWYTtVrN7V3I9zI7lJmG6+vrLiNVUQ37Qw27Oi2KVtUBYPtrSrzOVY0F6xxkndgGisoCtHVrCQzXG1w4QVRpcGAr4gDg2diTk5B0j9JTGtPRhAKbVGDX9vD7cHh/Z3e+g7sZVKtVPPLIIxiNRrh48SJ2dnYwNjaGmzdvolKpeBaUTkxMIJ/Pu3cpLUgqSZUWy8DfPB04k8ng/3n5/8Eg7c3mAuBR1FQuj33mMYRCIXzurZ/zXKdGmp+xD2hgGHtSJcTkDWbLqVdOYUo/08NJm+ZyOUQiEYdOFCGGw3tbR21sbHjahSnyGoNjjEoNobYr62H7mOusCoWCQ0VcPjAYDNy5X9o+NJashzow3Ox2YmIC6+vrDgHRwUin0278cOyRHuP93GCYDoKuJ+R4HBsbQzabRb1eRygUQi6XQ6vVwrVr13DXXXe59XncXYNbPI1GI6ytreFtb3sb7rnnHvz5n/+5Q/Q8S4xjgO9iO+omwUqNa3xO55GOHWU2aHhZd/YFnUxFZIH4S0AVvsGFqMJSFZwMGri2GVk6eYCDm/Sq4VNUps+jt2jRllJlLE+323XnaO3s7GBnZ8chhEqlcoCGoeFh4FzXILHuFCZn8N5oNOqOQnnP197jycZinf0QKL8bjUb4wS/+oOd5TE3WDWsBOKqLlJhFTmw7lp9tq4aEiSjpdNqlgCsVpQ6HplOPRiOXnWmTHJRO0/Gh/U00pD9q/Bmbq9frnncoRWfLx/+5oJpUNpGaxleJyNLptNtNg9l7mqzC8UrqkJvzckd2TTyhwdRxnkgkEI1GsbOz44y4xpdIt3JtYTwex8mTJz3GUxEQRdta25efa/9rzEr7RRkSzhXb7zre9F2B+EuAuN7gQkWpsRbNCKRnqNSa32can+JnmozAe1QJ8v2KAEh58HtmwHFt1mOPPYbhcIivfe1r2N3dRaFQQC6Xw40bN1AoFJxXzTgFEyW4uwS9X5ad31erVYciiTif+PITqNaq2OpsIZFIIJfdW5BKao31UsSpwvfpzhBMsdZdJtLptCuT7kVHsUrSOg58jhp9u7Ex4118PmM6uoMC24ntpzEpdTJ4raV31ajzvYznMdmBCSZESETx2pZMygG8yTw8rZnjhwksig5VoZMmVkqXDoImmGgCktKNTARpt9vIZDKYnp7G5uYmlpeXUSqVPHOg3W4jkUigWCxic3MTjUYDJ0+exKlTp3Dp0iVP+3G8cMyrA8RYI42jXffGNuK8aLfbbkyznzUmpiiN92m/BVmF/hIYrje4aDowB7JOKGAfOfFvwHviqvLtwMFdvvW3BqmtkVSDppw90Uo4HMaxY8cwHA4dLdZoNJzx0YWxLBvPRlKDyRR53UlDFd87n3rnnpEJdRAOhYGRF53ZOA7FthFR1+ff9nmn1BUpaHzH7imnsRptOz5X4xpsJ1KVSjHpWiuua7IGVttdkY8m5+j7eY+iQ5uKzTZX9EMUqX1MJc7yK2VNg8O2VuSkrEC32/UswmYbEuFqFh2TL7hFF9tMnRqOfd2dJRKJoFAoYH19HZVKBdPT0x7ngmNpcnISq6uraDabLjbKDYHZhjpm2KZc56Vtx+vo5NidbXT8KQNgWQxFcXynzulADkpguN7gokrE0nmcQFS6VBjAfsYeJxgnsSpSeq00jPxeDRfTuXViWeVF5TI5OYlSqeQ2Ng2HwyiXy55dGRjgJlogLac7WigKsPX6a1/5axhgP0FlhBEQ2qcuLc2mikPbU/9XBadoS5Eo62833GXbakBeqS2Ndyhy4PvZHjTYRFm6jZcmKmg/aSq10luKrnRsaBKEGiE+Uw2IpY8VhajC1Wdr2TS2akUVPttW1+5xs1xugqtxS1KCir5Zj1QqhXg8jlqt5mlvYM+o9Ho9zMzM4PLly27PxXw+76Fd2QbquCjr4Rfv1ZgznRVSqWx/pXk1tsz2UHpcHYVA/CUwXG9w4SBX48JBT29XN0tV5akH4ul6FE2pVgWktFMotL9rArCvbDRjjgqMmW+PPPIIbrvtNjz//PNuvc3x48fx/PPPu0MlqTBmZ2dRKpXcBOf7SS+NRiO3aa7SJqqwlZaLje0hlXqjjnBon9JimTXDi3Wh0tOdGXStmMasNO5DRaY0kbb/cDh09WcaOctBQ5dIJNBut13sRZU+y0RUMTExgUKh4K5TRMhEARpt9fi1nVhGYH+zZgAeuo714kGLVMTcG1FRP9tE43JsbyIPKmNuokwkxbLoLhLM/ut0Os6A8+RsojAdk+rYqKMyGAywvb2NXq+HXC7nrm+329jc3MTCwgLK5bJrhxMnTuBP//RP3aJptrsuH2AbKIpOJpMunsdEEI5VllkXfLOOvI5l1vHO8aWnMQRUob8EyRlvcKEy0UwkS/kA3p0vbFBalbEqPA2+q2FUVKLv0qwnlk3jaVNTU4hG9/Zhq1ar6HQ6LouOio/nMRUKBQ+3T5qMRppKm/vfKT1HZRKNRhGN/P91CP//lNJwhFB4P/2abaIK9jD6UKk9jafwe/aFIhPbZvocRUQAPP1AhKletcY+FGERreqYYOxH0Y72PdeDMXamxsummqsBUQSvNCO/U4fAoimlsBVZcyGvoiNrHPid7hySTqc9xn8wGHh2W1ejzL+5GJoIR2m9ZrOJVCqFUqnkrk+n055F3zpHWCZ1XjgOeD/rpYuRtX0UCet4Afazg207alsF4i8B4nqDi3LgOkn1M/X0OBF0Y1gbqKd3Ts+OE5ABca5vUaPJ5AlV5sPh0MUvTpw4gZMnT7rnFotF3HnnnVhaWnK7P/T7+7t6l0olDy3D9T5aL2aVcWK/86l3ohfqeWiwUCgEjIBOu4NwJIxkIolUMnWAtlM6R9t2OBzibZ9/G774g188sCZKKTFVxsBeCjzbV+MxbLNWq+VBK8yG07aLxWLI5/PuXYVCAdvb224hLUVPJ+b93KqJfUcjBuyfGMCUco4BtgeRoqJE/nD3BxoW3ThW6UU1ymNjYy7jU2M/zCBk+di3pO1Yb45bXQIxGAwwMTGBbDaLtbU15/BocgepOqUO/z/23jRIzus6D366p6f37unZBzMDECB2gAR3kaDIUJQpySJlxaGcqKyyJTn2j7hkJ7YrjkuOf8ROYrtcqXLsiuXEFZWiqEqRIseObS0GaZEUN0BcQBIgQIAg9tmXnt636eX7Md9z+3kPXlCSEzscsW/V1Mx0v8tdz3POc849NxwOo1QqoVwuO6uYFjX9WiMjI1hcXMTw8DBGR0fdmFPpIh2sFDIpaPal5q/UkHnOK/6vEZbM3cgxUuD281n3fFzXLz3geocX+n9Uu2Sxznm1pqzz14KCOr7VD6YCToWcaujqXwM2KL6RkREMDAw4YZ1IJBCJRJDL5TybaEkVquAFugEjFJ4AXNYNAC50Xf1HDqRbTTRbTYT7wwglu/uWeD0BRvuK/aBaL/ua96nApaClkLN+DfaJvlOpRfXTqWAjqHHPEf17qm3zfQz/9wuFt+PBsVJrgEUtKY6nblrW+UNhrdlN9J2qHHHuUegr9az7ywgCOqf4TtLQBPlgcGP/Gr+/3jlVfAcBgtdRcahUKs5aYzb8QCDgKGz2gd14zT5gu9QytVYslUgG3aiSwut0/G2Ajc4PS/v2irf0gOsdXlQgAt6INRUWungs5aWanQpsFRwqBDWzBAAPuGmdFPympqaQSqUAwFFEjUbDWQ/tdjf0l7SgtsUGDti28n8LSsFgEMFAEM1WcyNQA94D/7QdCtyqIbNu7D/WQ4FLBbp+rkJb+0T7U+k2rZdavxScPNWZY6IAyNRGChhqoXB8lPZieywFyXbTMldQ0b7Va5nLj5Su9WMxQpDPY9u1HZwL/FzpTS2tVstZSEox1mo1T9s4P0gjcj4yVRYpWU0izLyKrVbL7anT+c32KtsBwLOtQuct62jbYteitt/SiPpODWrp+bj8Sw+4NkFREAKuFSrUNu3GWRvWrdYHF5RSRdQuVdhRuCq4AXAUSCwWQ7FYxG233QYAmJ2dBbBxmi8d3rQ46G9TrZiObt0Yy8VLS0eLWpXA/w8woT6E+kMuc4VSYlYgWZC0/ho+l4KX72f7NR0SqSkKS4ZlU0B1Ot3IMoK5VSAo9NbX150/iCCg1DDfx35RS059eOqTZGHIvbaLQlz7uV6vo9FouDPOaGkQGNh20m8aZGABWKMvOWfov2I9GdTAerAd3PDN+cJ9azrvm80mCoWCo94YScjMLHNzc5iamkI0Gr0mTL/VamFpaQlzc3MYHh52R6GwHZwnvEeTFWuAjIKUn1LHdaZKjz5Dx1WVK2UCesW/9IDrHV6sI5ifWbDhhOfiVrrHL7DBTyPXEGz17QDXWlkUnPTxDA0NodVqYWVlxQleptphaLPmJQS8lpE+22/BWqBmndudrnO/L9jtH7XcVGColcBrvvO+76APfZ7+UKrVUoJ8twor+vs0RZGOhw3XZxs0QpTWFrcJKH2rzyfYaN/wPSpM1QL361e1GDn21kJnUbqR9KGNuNR2so/5Dha1YlRJop/KWo465vQtsa6VSgXJZBJA92BVBV3b/wz6GBgYQLVaRT6fR6PRQCKRQDab9Yyv+gyV2lOaVxUgrSfnmFJ+SgNyDVDhUZ+d33zvlWtLD7g2QaEAs5kvlJLRSCvVTFXgqtanwMbnKRVnrTo6/LnoVPPlkSKzs7MuZyGzExQKBU9m8U6n4ywsCiNq/LRglHrT9wP+50NZKtH6fuy1VihYweNHMfL39SLqCCysq4KjCi0dExXinU7HpYWKRqNuQ6zuK9PgAL3PjrmOH8dd6SeltCwAE8TsGCglyuIHXAragPfEaQZ6sA42OpXzgADGgA/SlK1WyyXMJfDRCqxUKs5Soy9Qg1XYX6FQCAMDAwgGg06ZYmQhr2F9OD/tpnkqCH50qs4nMiEcb6XodewtXc57ez6u65cecL3Di2r7gHdzqd1oy42bap0BuGYBc+ERLCgQuc+Ev6mhWm2T0VFc0HfccQf6+/tx+vRprK6u4tChQ5ibm8PS0hLi8ThGRkawsrLisg8wEzk1YbaHgpt1DgQCTjN95v3P4IGnHvD4cyKRCAb7BpGIJ5yQU6GpPjzbnx5rK9ClUymYeI1atKTIVCgyCIDUqUZxAt2Nqurgp5+o2Ww6C4J9GYlEXLLidrvthLHNYKHWAIWcHseiygr7wi/wgn4h+tB4JIhaehoFaK1VzksG1Kifi1sZ+vv7XUAEhblaZvyb7SPQZbNZdzI2lZrh4WFX/9XVVfce7nPjFoqFhQVcvnwZg4ODHiuMyXaZVLdWq2H79u04ceKELyuh4fgKVKoQNRoNT0YPVSp1vvJZOo4KiNZv2CvXLz3g2iRFF5Vq2qoN6nXqX1Bhp/4yy6uzqGbNRUgfjGqN/JmYmMDa2hpmZ2dRr9cxNDTkFnk8HnegpYBiM0PYPT76nbZNKU4KXFJi6811T7Sa9SUovWYtDdvH2odss2rLrINqxswGon5FG+zgp6VbgUgBrGcz6eZm3dhKSksBTNuulhYFsG7qtnuOSKmxvVRcNHM6n8Frge7eI1pVSn1aBUJBne8G4I68SaVSiEajGBkZQTAYRKFQcHkJaR01m01Xt0Qi4akjgzHW1tZQqVQwNDTkLL9areZYCibzTafTDtjU4tQ6KtDwGrabdeffulmZfcn+1r7wo57VEuuV65cecL3DiwKKgo0eushCwaTWgzrMlcIAvHSgaubUrrmvRUPAKYy5kNPpNG666SY8/fTTOHfunBM6zJaQTCaRTqfxxhtvuIVKYcachBTGpIIITjZzxYsPv4h7jtzjsWIYkBIMBtEf6h7rzghDDeagNk/B8M27von+6kY9CQJ6UrGCs/qo2J8UlNZyJKiQytJktbReKNjZ5xwPJglmYl9ShaTA+HyOcyKRcIoFA0E0WpLPZV2U0gS6kXJMBmsDXPr6+pzFV61WXdZ2/Zxh5izsDxXMweDGpmndEE0AouVHi2h1dRXJZBKDg4NIp9Pu9OtAIIByuew5RoZjH4/HUavVUC6XkUwm0d/fj1wuh1wuh23btiEej6NSqSCbzXqCipaWljA+Po5UKoVCoeBRVFQhsXvwbLSp0uw6D5QBID2uSqGCv257sT7GXvGWnk36Di9qLSknzsVvBSYXkAoSBRsVkqrtq09Do7B4rT6f9F1fXx9uuOEGjI2NYWFhwQn0SqWCfD7vCX/nZlRublY6kyBkrUECFwWxZp7Qc7H4w/7qoINWs+WJpgOupV31c7WGrEVJS8parXyfauPsa6VW2YfW8lA/FQC3/40h2pqhnfQZAZb1oeDn+Oo4EcS136iYWKpRfS18voI20zVpNJ21mGw71YpQq1Dfr6ClSg3P5dKAF7WIAXj6AOj64RjtWK1WUSqVPEpSpVJxWTkYuUi/IpUcpYlJ4Wn6NL8x5RylJafzShkS2xb2i843VQx7xb/0LK5NUggKFEYa8s0F4Ef9cSGqg1qpKuXqNdsGha++n4uM/oFgMIj9+/djcHAQq6uriEQiSKfTnswMvCcWi6FUKiESiWB9fR3VatUT0m0FnApqoHvsh18QggqaYDCIYDuIJrpZOZQuU/AiIOjzKDCUuuTnQNdpzt/sU+1/bYdVFti3VrjrGPPgRQo6BRK+Uy1JtZaV5rRgyqKHNGq9eA/nGd+nwMD6W7Cij1R9p9p23Uag7aYSEAwG3bEjlUrFRVUSiKhAAN1Tva2fiMDKeUcFipZtJBJxdeBeQmAjw0cymUShUPBserfjqG1WWlZpYNZP16hfQI+uT30f+9lPweqVbukB1zu8qDC0i4O0jwoua1Hxf3uuExebWlV8Np9J60s1ZwIc333//fcjEAigUCggkUjgwIEDbnNno9HAzMwMAoEAMpmMo2SAjawYqVTKY+1xMasmrRqwWgBKmVLAMhuC+jDU0qS2/q33fAuhUAipeOoaX5UGsPBv9p3WiWPCftZ72W9qUTJlEetMy4Lv6XQ6rv4UqtxDxIwaVFr4DLZV6Sa1SFSwq+WlwEZLQ+eHAp0CdiAQcIqHPocKAKlK0o2abkn7lLSmnstG65yWEFMvkabTunAMCLCaqkwt1XK57NJFcTxo3WlwRjKZxNatW5HNZpHL5dyc4jxkXe2Brpwz3JeoQKP9pts+uC9Qs4pwbbGellLslWtLD7je4cVaT/xMBbFeq5SEascKYnq/pQP5HqthAl1HdK1Wc3thmF+P0XBDQ0MuzVOxWMRbb72FVmvjhFo619W5rQChAhXobpyl0AkEAnjuoedw/xP3e6wXtVr4TAVltTa06P431oPttH4aFf78jv2vIOUHGgrKvIb/6xiqxcw2cF+XKhvqs1Nt3yagVYuPPjftc1pJ1s+iWxeUFiVQct5orkulvVSZIGgxiIQ+Pgpwgp6lzWhlEuiYtUMtZj5T6WRGxUYiEdRqNZe9XbeN2HRT4XAYY2NjbuxVeSFVSEtXlSvez/sU7Dn26qPld5x7BEadrz3f1vdXesD1Di9+wRkakaSanQIC4N28rM9S+kuFmWqG+qO0EReZarbz8/PodDoYHR1FOp3GxYsX0Wg0UCqVMDs7i2Zz46yucDiMVCqFRCLhcUCzPgpCrJdaKcAGmD3/gecRiURw4GsHnLXCooK81Wpt+LukXY/f+7hrkx4foeBufWHqp1BfIwVNNBr19KX1Z2kbKaA13JzgR02bgEpwtlYg68o6af+xDUrZqVBXkFYQBLyRgQpcarWq9WoVAwVLDXSxbWefapv4TH6nVCoBj8/llgTez3kIbBxfwhO5K5XKNQE/nHeam7G/vx+ZTMbDauha0bmgvkC211LqgNcf6zdebLNSzNqHVhnrFW/pAdc7vHCRKWWlIeLWv0VtV+kc9XEB3kVF/p/CFOhaeRTK9pTeQCCAYrGIm266Caurq3j22WcRDAaxbds2p+FWKhXkcjlHsVy+fNltEp2YmEC9XkepVPJsdqXA1sg9WhzxeNwtdO4HOvnoSQDAnd+40wknFZSRSAQIAP/rpv/lnhVpd4+Tj8fjniAPtXxI7yktROEZDAYdfaTRino/BZoCMEGB+7c8fjmxgijUeK21cAhy9D/p8SjW/6V1ouWg6Zg0izrvIdXLflFBz2LzFbI+pAF1jyF/E8i4N42UHylD7vlin+uYcp5wPtbrdVSrVdcuzu9KpYJEIoHh4WEUi0VUq1VUKhVkMhnPScfBYBClUsmN7cTEBNbX15FMJpHP591RLKQq2UcM/NBUZDoHrOVofc38W32d1keq+Qx7xb/0ogrf4YUaIH80nNs69jXiTbU7pbaAa2kOjYLj5yqw6dugcKavYNu2bVhaWsLq6qqLhCsUCmg0GigWix5/QaezEdSRTCY9Vo0tBDACL6POCFYKCiwvfPiFa8CZoNwf6ndCn4JSneCkyrS/KfjVn8W+0mAODfyw7dFxUIqMz2Eb1TrTtFi6P43+Qn0Gv9d6W0Gn9KbdR6eWKetrozsprAlSqtD4zVOl7Ow1lnpVsOamdPqo1ErRelFR4Gc2ctZaiARLKmUEHQ3B5/6tRCLhNpEr6Kp1pGPF8dfvCOKa/1Pbr2PE51grlm1Rq7NXri09i+sdXmhlcNFrSC4XDoUN/RN6ZLguCAUvfsd9WjzSwYbC0woC4KypZDKJqakpHDp0CC+99BKi0Sj27NmDZrOJK1eu4Pz585ifn3eHSVIrnp6exvT0NHK5nNOYbWbtdruNYrGIQCCAsbExB9TLy8uIxWKeo9YpyBuNBp55/zMIBoMuKzgFW71eR7vYpbDYRlpuDPVWi08pHBUgFMwcD24LsIAPXBsWTsFLilUtGY0MVXBhn5P+8ovCtEfCW2DheOpzNfUS7yW4su6cW5pglm0jGBBkOU+UxqTgbrfbnj7mdohWq+U5KJRAQvAmSNE6ZZ/rCcicVzpfubeL41+pVFAoFFygC8PkGUASj8dRr9cxODjo+ZwKwvr6OhKJhDuUk3PIvl/nI/vbBuiokqnsgkYfquLlpyD0ykbpAdc7vHBSc6FbHwgApyUqRcHPgW74s2rXFJZcWFyMCiAEM1o+wAb9ViqVcPDgQQwMDGBtbQ31eh2RSASVSgVLS0tYWFjA2traNRRmKpVCMpl0FFA+n0dfXx8SiYSrZ6vVcsDFqEPWj1qz+pwopAgAeqYS+0BpLo1UZJ9ZP5kGP9jgBP6vFgP7XcFOLQYKOd1uoHknWawfhcKc/aKOfj5bn6mWOb+n9m/vUXDhnFCrUvuCc8MeMaLKkfp8bAkEAo6S5bv0iJRgMOg2NlerVc/4KaASNDQ8n4DBerKP1MIrlUpOaWAhQLGNkUjEU39dDwry6pO0/kurDLCtqgzZz/i3Wqr2vb1ybekB1zu8qEbP/1UwcQEwJNfu17ICGfAmTFUtUIWPpTqazabbxMlADNIrTHxaLpdRLBaRz+edNUXhlkwmMTAwgGg06iIPaZUpeNI/0ulsZHNg/j1q+EqPaWF/aDAC26oWjkYFsk/UsvJzxFuKUa1dFUAKRFYBsLSc9r8eM29PB67X6549TUqf2Xmh0ZBKDXI+aEojbbdSy6yntlXbrv2kIKGKhB+dxnrwWoIx6bxKpYJareb2BxIYCNx2Ezppc84NWqv6Llqp5XLZWUtsq6XmGGCj9CCtNF0jCjZsL9vpt3a0TyzAqaLJ+7SfexbX9UsPuN7hRReBcu9cKPSTKPCogOS1XEDU9DW8mMDH4A/uq6Gmq9o8nes7d+5EKpVCJBLByMiIo3H6+/uRz+edhs60SLt370YikUCxWESrtXEs+/z8vMtuQEqIbSRlmEgkXLbvarWKpaUlJ7BIO6kw7HQ6zvpSrZk0lPpt1HcEdA/ApJUCdFMiacQgwZFWFAGVe5zYjxRMDPlWYcfvCPpK15ZKJdRqNZdLj6mzeMK0Usa6lcDPp0mQonWpe6vUkiYQ2SNntK3qZ1VQ5Nzk+zU1lbVAFfRzuRyKxaILW1ffGucD97/phmEAzufKfiI4MEUUAy3K5TLK5TLW19fdWV1K+bHeTFOmYeqcS9rXyiLwGnuiAfuN/UIL1tKouqVBx49927O4rl96wPUOL6rd8QRcdQQrRWU1euub0N9K9ahAVWuOQoZgx+eS9ms2m+6UWgZQqNVDodpsNhGPxwHA5YdjHj5thz6fwRTlctn5lYLBICqViufZrD9BTHPhUUsnLaQatu53UuFqAxd0/xOFu1oV1hrh93qP/vAeq70TECKRiIuWU8tQs0XYPUPqH+N3GqpuaUwFbRXKvI5FLW4/q1/nqPoHVXlSi00BtN1uo16ve5LyAnAgRIWAoML5wjHhHLHW6ujoKFKpFJaXl68JSlJ/H61T+nlZZ85dG+Kv9dc+Z7+pxcQfsiAs6i9WSl8tK9ZJA4N65drSA65NULj4GOiggpcLQKOWLGDxb12ELErxUCCpJgp0Q+V5/w033IDJyUkkk0nkcjls2bIFc3NzWF1dRaFQcM+gEO50OhgfH0c6nUYul3PHnYyNjTlNF4BH0DSbTeTzedTrdSwtLaGvr8+Fr9PfpZQVaUz1XWmACTNEaAAKgUaPpLAUEO8H4AFMvZ5bCiw9R+Dk+zRrgtaB72MgALNJFItFFItFZDIZDAwMeMaUcyEej7tAE0udAV7fFYW7BpUoyLBwLtGfSGtak/haJUAtVWuNETwp5Gu1mrOyNDuG+mk53nwfAYXjDMBtV2CWjFqthlAohJGREc/mZKUlae0RaFKplMtYQUuS/lpaRX4Rmbr/UdcX+06DZvi99g3nD9/J51BB61GFb196wPUOLxQuOuFVYwe6wkkj4Hi9PT9KhS41Xz9nMq/V4AMATqCQ++dmz3w+j3w+j9XVVZeChxQdaT0695lMVs+astp9OBzG0NCQ833QmmIkoA0g4Oc2TNxqs3r0iPWH+fn97FioJWX7TvffWP8g66JRZrxW/ZUUxMlk0n3HBMUEJBVqau1ZP5zWRy1a7U9SY9onOk90nrHOunmX0ZLc98R2WyXEBhRdb46rRaVBM6ybnhys3xFkqRSpNcnoUj3ok3vV+EzdRE6w9FszmiBX5w2vu55SaP3N1t+lY9gDrO9desD1Di+60C0wqRNcFwkAT7CGdfzSSuh0Oo6W0vdZwcv3cQFrOikmhM1msy78nXVQCkb9E9SyCZ4UOnwPhSnpofX1daytrQGAowpbrZY7yRbwavUUfvzOJtKl054CT/tF26/audKn6qOwQsn2G6PilIZkO1lnVSysP5ECV7Pqa/t0XJSi9Nu/xedTqLNe+r0f7aXt0rrqfju9X+cJi4K3gq5VnghYBFPru2Of6p5Fjmmz2UQ2m0V/f7+LTiQlyiNZbCQi5weVCo1o1Llgx0+pVT/qVOeTWvJst85Hjp3Sz3ZbSq94Sw+4NkFR34r6bzRKSjl7XVDlctkJEZviSGkfjUZUXwmFA89EovUUi8XQam1kHGDwxMDAABKJBGZmZtx+GQU4ACgUCtfQTdpGoEupMdsFBUC1WnW0D7MnKIgSEFVj1+9pYeg1BEH2KQMLVIDR2lE/jvqcKLR0PxipMCZyBeBOF6bTnwExmiHDUpS0jqhs0Eqgv5NBNoA3Yzmzl7D+LDquamGpsqIBAzwhWQNe1G+jVoLS10rLaUAIAy5Yd22bZn/XEHz26fr6OorFoquvzndapYxWZSBOvV5HoVBAsVh0JxdQ6aDiUC6XEYvFMDIygitXrrh6UBHg2tLQfH6vVhrnqYKSUpa6tUUBScGR69RS+r3iLT3geocXdfYC3tREADwAxuu5ONQ6UHDj/6SdAK92qcJHgxT4P4MIVLu/8cYbnR9kdXXV5Ymj0Gu326hUKi4lDwEiEol4rELuuyKwUDARVOwCZ5+wHaR81IJj23UTr1/f+llelsqxY6Bgr3SdHSfep0599SeqRcJx5QnCpOH83quClOOriWyVNiV4a/ZzKhB65pelF60VysAJLUotan/akG/bF7zXArYCpCpV6gOiFc/s8Zw//E5Bz9Jv+j99XOl02mMB8jq221q3/JxBJKoQanCUtWrVCuO80ohGHdNe8S894NoExQrQ69E4Cla6cLjYKaiUJtHFSIvMbqTldfxbw6ar1Srq9TruvPNOABtRg6dPn0axWHSLmMfQc8/X8PCw08A1GwTbotYS38lcdhRENgrOCgYKB1oWms+PAl+zz6uVocBHX5AdD76HGrcKPLaL1yoYaR3oe1GaUNvQ17exOdtSneqDtDRbMBhEuVz2ZA/R6Dn+zTbzt1KnFMQ65jon+CzAm5JMrU+do34/7C9ep1s99GDJTqfj/LQcG30fowu132nBaTSp9QnSCrKKAhUL3djNZ6h/Wdtof/M9Ok9stKalBdnvOhesBd4r3dIDrk1QLGjppCZNYaObFGR04ahvhoUAoeDFZ+qmVevnicViWFtbQ6lUwmc+8xmEw2FcvHjRLXBSRczUzdQ9aq2xaCQVBaoGQjC5L9vOOut7AG/YuJ7aq34tavP0xxFcCaIqsEh5UkiyH2kFsW80sSxBhAJOKVC+T6PdAO+mcEYJKiXI8WLfcIzYH61Wy23+LhQKiEQiCAQC7jj6YDDoTlfmpm6gq9RoiiVVbAh+FPSk9EKhkEtSS2uFNKSCG+dKs9l0ab4YBq/z1vrArOXI+nE8+cOxYP9yjHkSQTAYdL5Xpejy+bxLNzU0NORoda43KlPsX7VELX3IOaOKIkHZj9qnhUsLS6NCaW31qMK3Lz3g2gRFncNWs6OQpBVBYUAA4qKxVIdSXLq/xFpZmk6KhYKSFCDzuLVaLZdtXDVi1Zh5PwFHNVTr1LbUEgUS0AVbFRwsFBYa9m2d6H19fQ5AFcRVo2ddKCQZtq00D+9hfdhOApn1izFoYGBg4JqM66w3KT32D6kw0qrqV9I2Li0tYWVlBeFw2NGqvDccDrswew2aUOvU0pA6LkpzWouS/fl2wpb3q1KkARx8rkYLqqLEd9h+p4LCeqpfM5FIIBQKoVKpeOZ4u912B5/qFgurTGkf2TnGtrPv2H4b0cr1yb2OfJ7SiLoWuU575e1LD7g2QVFqgdqr0iiAN/qIixmAo4wU0Hi9FeS674XvouBW6qRSqaDRaCCdTjvtnBkx5ufnnaZts5/rnimCkEZ58R20rtRXZ4U8gZwWZbVaBdAV7oFA9xgY7v2xdB77wFKFFJTqX9NoP7USaG21Wi1P2iACnIL12toastks1tbWsL6+jnQ6jW3btrkjPtRXx2hCAmAwGMTIyIjT2mkFslQqFczMzGB9fR233HILQqEQlpaWUKvVkMlkMDIygkwm4/HxqcVDoapWqVrzBNPV1VVHA3NuaOg+98xxnDmuANy4WlDX+WstUc5N7unSuavWmf2b98RiMaysrKBUKrkkun19fVhcXMTu3bsRCARcpg2OKWk7zj/WyfqDVdnifZxXmlkFgOd0As4H9Ympv1J9pb3iX3rA9Q4vXBxqbdmFwwWmdAapKgpkq6XzOv2cz1Hns1o0FBalUsk5tDUBrAoQpcsIosFg0ENV8UcBlMU6ydU35Oc7UP8c36V+BBY+09Kp1gql8FOaVH1GWg9NV8T38f0EsfX1dVQqFSec1tfXkcvlMDAw4BQQUlCWgrTWjwpt1okRhPF4HIlEwmVFp+XhRzmqYsDffA+BhRaR+ipzuZyzGjUqkfOTbaCywMJ5qCmVrDVF/6aCGq/X+to1QlDQtuhYlctlVCoVTExMIJFIOEDJ5XKuXWQYNCcm2+QXlq7159zXfuDfVhG0/WXbpHOzV/xLD7g2QaGg0gVkBYby8uqbUuqC11CAUHMFulRcu912FgAFtvrAWq0WSqWSE5QauOAHXNFoFOl02i1EWllad22nPoPPJADps/V/6xdRWlEtVApHfbZfISCooFG/oAYVWGWC96pvkYKTfqtYLOasjmw2i0Ag4I7OYMQm/U3U/CkAlQImKNZqNaytraHT6SCdTiMYDKJQKKBQKCCTybgcfQqoADzZMFRYUuhru1OplLOYmFNycHDQ45dT/5v2l6UjSb2qwNZ0Tgp42o9WobDzmn/rHOGcYvb5eDzusShXV1cRi8U8fcEtE1bBUUBS6l3fpUqFzm2lAHVvoF8b2O+9cv3SA653eKGg4WLm4uBisamZAHgCEKxPiwuGPhtqmroIKVAU9LjwKGxnZmawfft2965KpYJYLOYJsmi3N/Z2jYyMuJQ+dgHrfprr+VvoM6JgA7qOeBVmoVDIky8xnU474GKb2WeBQADJZNJ9r5YmCzV5BU7WWwUk66Gh7eoToXZPnxrfs7KygsuXL2N5eRkDAwOIx+OOZiuVSigWiy71EOnUVCqFWCzmgIwHdpbLZezbtw/bt2/HysoKZmdnAQDT09OO6iLdStAkAOlhmgpaCkoMXmGhHw3YiCxtt9vOkmYghI6p+l319GSOFedCtVp1c5PUKxMkAxsWJZ+pAR9KNXPrBIM5dD+dAkYwGEQ2m8Xg4CBKpRKy2aznLDsFTF1Hui5UAWRIu7UidU0olag+Q65xa631LC//0gOud3ih4NagCQAegcpC4WupB/VvqUBVy4aLRXl5pcR4LfO40U/DxdpoNJBKpTw+LAqW9fV1FyzA96oFxPfbdhNQrOOb4KAbRSkESF3qvhg6x+mr0zapU9wWjVDUvmRfAV0NnwDMuuheJM1RyPtisRiSySRKpZLzWXU6G6HgkUjEWWg6FoVCwWU5p7WVz+ed9Ts2NoZ4PI4rV644YE4kEs5643hSgAPwWEjsY7UqFHQajQay2SwikQgSiYRrJ5+je9MU2DnW1mJWIOD36qPS/uXc1LFgPbmpmeNOcFCKl7/Vv9put90mdipWLGrZqaXKOmuEKNugPi5dM2yH7itj3dhO69PTaNFeubb0gOsdXlTDU/+GXUjKtVutktaJCm6ltIBuVJcCnlp4XGQ87nx5eRmNRgPJZBKDg4PI5/MYHx9HIpFAILARYEF/SLlcxvT0tKMVlQay1BC1ewoHLnI+Vw9W1OepELEBK7QE1Gei1JIKcfYzBQyfy88VAPlDoccAEVJTDLCgFahKQiKRQDKZxNDQEGq1GsrlMgqFgnsngxE0sKXd3oiGy2azrm3NZhPhcBiTk5NIp9MuJD6RSGBoaMgT6KDCnO0gICn9xv7UIKCVlRVUKhXU63VMTU0hGo1ibm7O0ZO0ttnftAgVdNjvpP/UwmCmC97L8H6OJxUiAJ6s8lQOtI1M4kvfXyAQQKVSQblcdpu6qdBwPfDgU533Ov8JXgqArCvZABadRxastd02rZXOYV3TvXJt6QHXO7xwwajGqdq+CmDL+yvtpnSH0mFAN6Tez8JQzZF5Awk0tGSi0SgqlYpLmKsAS8Gt0Wn8XqOoWPz8F0AXTHTjq7aT7eA+I91/o+3g9X193WzgaolqfymVA3STtVLoUbhr7j/2JfuamjgFM+upfjgKec3fSGuRwozCjpYdSzAYRCqVwujoKJrNJpaXlx3w0VfJ6/gM/t3X1002qwEqvJ5zTc8y0y0JHEe2QalqpbPZd9aKUTpRLTeOF6ll9pk+jxanUsgcSz6LfaV0NoHargU9sNMWjpcqd+ovtfNa16sqRsqS8DsNQtJ+8WMAeqVb/L3T1yl//Md/jEOHDiGdTiOdTuPw4cP41re+5b6v1Wr4zGc+g+HhYSSTSXzsYx/D4uKi5xlXrlzBI4884o61+NVf/dXr7p/oFW/whU5wwHtWEIWdZoNQaorX+y1CwLt3ys/HxELhQeqDmvDq6qonxZBuEFbfggY2KLUGXAta2gdsH4WG7q0iUFGo0pJjfTVST4Wzfq51ov+HiVlVKJVKJddWXkuLS/0gweDGHrZ4PI7BwUEMDg4ik8kgk8kgkUgAgOcennE2NDSEgYEBR2MpSOleIwJNMBhELBZDPB5HoVDA6uqq23xLy4bbELiXi1aHH8BonzFtEscgGAy6bBSWhtUQd6VsVfFQ/4+lWHWOs18VkKggqBWnh3YCXWtLLSeuBSod9HXZtmm2Dn5m56POVaWD9R7tK6C7x08pQdtW/V/Xp1Uwe6VbfiCLa3p6Gr/7u7+L3bt3o9Pp4Itf/CL+4T/8h3jllVdw8OBB/PIv/zK+8Y1v4Gtf+xoGBgbwC7/wC3j00Ufx3HPPAdgYtEceeQQTExN4/vnnMT8/j09+8pPo7+/Hb//2b/+dNHCzF2pzStuoX4bfA/5ZMjQYwlIRQFez1fuoiSpdEY1G3bHqDOWuVCoYGhrC0tISLl26hHq9jmQy6eqSTCYdNcVMFayXCnkWvp/vpJDV72hRUeNmGykoWUcKVX7PzzTlFQWbpZkajQaWl5dRKpXQaDQ8+6CCwSBWVlbc2VmNRgOlUgnBYNCz1wiAB0iZToh1obVA4Vkul5HNZpFMJhGLxXD+/Hmn9KXTaUQiEZRKJWeZMRClr6/P7aN68803USwWsWvXLmddxWIxF+SgVhP7mWPEPtFQdlKiui+Lc6NWqyEajbofPk8tL1JtSmurj1H9nJyHSqtyzxXHhPQa57IqM6oAkD7lvOV8IoDYACINguEY2YAM0tRaVw3O0XVo/bJ8rvrf/JgUZQ56vq23Lz8QcP3Yj/2Y5/9//+//Pf74j/8Yx44dw/T0ND7/+c/jy1/+Mt7//vcDAL7whS9g//79OHbsGO655x489thjOH36NP7mb/4G4+PjuPXWW/Fv/+2/xa/92q/h3/ybf+M5+qJXNor6rpRK8KPe1L+lFpNdILr4VQvm9Vx0+m7AG01XKpVQKpWQSCTcHqVAIIB0Og2gS4uor02Fmmqn+m7WUwWe9Q9p36gP0E9rVa2bVqIKD/U/6DMBePZe0dIhNab0J/uSEWnWulNgYF9oEAvfRz9LLBbDtm3bXPAFLSb2i9aXQE5KloVAzqz81rpWYU5BScGvQRAWLDhnCNTaDl6vYKQgxRB4tbD5Lg2gYB/pc5Te1CS0mv+RwESfXX9/PzKZDGZmZjyArNY4AA/1qXORc8cqWFonzjXtQ30WP9N1ademVUh7Pq7vXX4gqlBLq9XCV77yFZTLZRw+fBgvv/wy1tfX8dBDD7lr9u3bh23btuHo0aMAgKNHj+Lmm2/G+Pi4u+ZDH/oQCoUCTp06dd138WgC/Xk3FRV4umgAeDRYjWwDrt1se70Fw3dYCk01YqVkGBKfzWYxMjLishI0m02n/TPMnkJfF7Rf/RSolKLRulutlFaV+mc0y4XSp6SwrJavtCP7mDQn6alCoYCFhQVcvnwZpVLJWQY8MJNplPSIEgUuDR5h37LebB/fyX7cunUrtm3b5vHVaY4+9gdD4+l7Y/Sm9c2R2iNFyOeR6uOPWkc69zgWSlfa/I76w+er39ACmh8Q2+94n2bJ13kBdI+/YRv4/lgs5tkkrYoX71M/pK4FpfY0EMj6SUlD0gKzc9uuS46bKqJKo7M+ukWhV64tP3BwxsmTJ3H48GHUajUkk0n8+Z//OQ4cOIBXX30V4XAYmUzGc/34+DgWFhYAAAsLCx7Q4vf87nrld37nd/Cbv/mbP2hVfyiKLmQKRD3VmAvHWiZAV2tU6sP6GXidghmDDFRIAN29U0ym++yzz+LHfuzH8PWvfx3tdhuXLl3CXXfdhXg8jlKp5KgmRoeR9uEC5TPV6tDvFKS4kFXQUdtn4EhfX58L/1bLjoKBkX/WmlTA7nQ2NgtfvHgRq6uraDabmJ6eRjgcRj6fRy6Xc9Fq/f39GBwcxMTEhCe7gwpdDWKhoA+Hw46W5EGeoVAIqVQKi4uLeOuttzA1NYW9e/diZWXF9d3g4KBLxspz1sLhsAuTTyaTDkTpX2u3u+mhuGFYLXZ7nhdTVVF5YOCJ9VfpHFOhC8ApCWpxaQi49pFSq5r/UJUlteYYrck6sf7sa/Y7z4LjM/msVqvlMr9QCVCFie3gvjGb5UMVKlLsVplUhcQqXJyLPMPOjzGxbEWvXFt+YODau3cvXn31VeTzefzpn/4pPvWpT+E73/nO30XdXPnsZz+LX/mVX3H/FwoFbN269e/0ne+UopaQfgZ4gxkYGaY+LT8/Ep/Ha1Sjtt+xqCaoz5qbm0MqlcLw8DCazSbm5uYAAMlkEsvLyx6hRY25WCx63m01XT5faSsFb22XUprUuBn5CMADFtYPof2mbVpfX0e5XEY+n0epVEKn08Hg4CAGBgbQarUwMzPjAid4fEins+FLSqfTLvMFfS0cF7aDQp5tph+n3W4jkUggGo2iWq1ibm7OnVvG/uc+uU6n42EdGPVHoCJA0DJif9NHo/NCA2QY7MBoPlUUNAKQfcjnKl3H8bHttDSYjrf1C7LwnRxn1k/P6fJjE4AueLIPbD3om+x0Oi4JL+cFKWW9T7dssNj1QrDRvlJrVNuj/afWrSpwParw+uUHBq5wOIxdu3YBAO644w68+OKL+IM/+AN8/OMfd/t21OpaXFzExMQEAGBiYgIvvPCC53l0QPMav6JO+ndbUae2pqGxQoC/SX/o5lV1OPN7LiTN3E5rTI/kaLfbLvsA/+cm2KtXr6Kvrw+HDx/G1atX8corr+Dw4cOYmprCpUuXXBYEZoxPJBIoFApOEKuAZCg9rQj6MnQxW18HHe+sD4WLRhha+pHWBv0t7DNgA7RKpRJyuZwLDqDwiMViCIVCmJubcxpxX18f6vU6rl69ikAg4IBmfHwc+/btcwCnVoEKalqS7Nd0Oo1EIoH5+XkcP34cyWQSkUjEJduNRqMYHBxEIBDA0tKSqzNPW1aAps+LlFkoFEI+n3e+KSo5fL4e/aHUXjKZ9CgInH9Kd6lCY32OLLQq1S9kx9OCC8eMPqhgMOiyZHQ6HZf5hHNAQ9rpf+P3pGb1PfPz884aBrp7COv1ukvMzKhRvp9t4dhpVCHnngV6BWaCm+4RpFUOeCNN1efXK97yt/ZxsXBx3nHHHejv78e3v/1t993Zs2dx5coVHD58GABw+PBhnDx50i06AHj88ceRTqdx4MCB/9Oq/FAW5cTVUlHwAa7dqKxcvFIZpE7UWlNtWSlHWgsUOAQDarKky7Zt24ZgMIhKpeKsMIIs60OhyDqqb0H9Lfo/68J2MDpPLTH1jQHw0FGkktTHxecRwPRd6ndQAKQ/j5upeW6T+oyAjeCKhYUFzMzMOMtS/SEahk4LlP4TBlaEw2Ekk0kXAMPNyWtra6jVaojFYhgbG3ORfErhqd9FfXTsK9Jl1s+j+8e0rywYqO9Kx8aP0tL+tLSg1pd9rf/bYBjWLRAIeHxZkUgEsVjMc1I2x5VgzT5Vny0jQglOHA+tm84bPletdq4ftu16vj7eS/pd1zUBVfuSxbIsveItP5DF9dnPfhYf/vCHsW3bNhSLRXz5y1/GU089hSNHjmBgYAA/+7M/i1/5lV/B0NAQ0uk0fvEXfxGHDx/GPffcAwD44Ac/iAMHDuCnf/qn8Xu/93tYWFjAb/zGb+Azn/nMu9ai+l5FfTHU0JRis5aX+ndUoPNepRGVhgO8R7/r93yW5eGr1arLuL22toZoNIorV65gdHTUhc9T8DDBKetAIaIau7ZBhZwCtWqi6p9RPxbrS6BiKDqL+hSUxgPgQFE1X1oqiUTC+ejYX1on+nFCoZDLgcd2UeDrvf39/S7Ig4EetHQ4dgpsnU4HmUwGW7duxenTp10YPq1H9Zex7aQf2+02yuWyx4qwgR5+Gj5PAbDUl7WOrGXMOcaiFB7/VyvOjhn9loFAwGPxaAQgLWr64dTXxr6u1WqeuUwreXR01GWA4fXKAvBZum5UIVSfngK0pfaVSuTf9nmc82ybpTd75dryAwHX0tISPvnJT2J+fh4DAwM4dOgQjhw5gg984AMAgN///d9HMBjExz72MdTrdXzoQx/C5z73OXd/X18fvv71r+Pnf/7ncfjwYSQSCXzqU5/Cb/3Wb/3fbdUPWVFBrtop0BXCXOB2EVEhYHi0+jUU4CjwVGgToHgfaUJSh81mE2fOnME999yDt956C4cOHcKZM2fwoQ99CK+99hpeeOEFJJNJ1Go1lEolpNNpRKNRd3KuWlK0COh/UKsB6IYsK/2j7SSgMvpLBSrbqdaIUq56ZlksFnOnB2uarOXlZWSzWdfHCpLqZ6MFkM/nEQgEXFZ1jVzjO/V+9i3rOj097QR2Mpl09GUqlcL27dsxNTWFYrHoOaiTNCxBLhKJ4MCBAwgGg1hcXESpVEJfXx/K5TICgY3N1LRgdW+YgqcCrVqo6ldUilZpQLUiNEhCfWPKJqgiRh8n0BXktHroy2Mf5vN5N0c5v+v1OkqlEubn51Gv192m73Q6jbm5OUxMTODq1asuUXClUnHt1qAnBWmCmibupSKg0by0pHRvnBb2o463KnK6ybpX/MsPBFyf//zn3/b7aDSKP/qjP8If/dEfXfeaG264Ad/85jd/kNe+64tqu1zcdlGpZaU8vkYo8Rncb8TPKXA0W4E+S60VPpca4sLCgie/3uLiIjKZDCYnJ91CpGWhXL5qptZi0dxvGgGnfhG2nZ9p3ji1CvkMfZ9qxFbztfQjBYyGgavPAugGCVBz5z4vZmhQIOS7aLlZ/x1BUJMSE6xXV1exvLyM1dVVj3+Mf6u1xcTGsVgMlUoF+Xze0V7sM1qs6ve07dIxIp1LitP6uPh+GxpuLR62U+lqtdKsta9psTQsvVwuOx8f26GKCseMCgu/z+Vy6O/vR7FYxPDwsNsvB8D5rVQhtGuMY2X/ViuSfax74BSI2G+6VcQvJVSv+JdersJ3eFEhrD4MhpHrXhk9x0m1X9VG6a9QK0R9TwzgALqn0fJzvZ558L773e/i4MGDiEajWFhYQCQSQSqVwq233orvfve7WF5eRigUwltvvYV0Oo2hoSFHCSl1WCgUPH4eAC6CTNup9KBSNwSFSqXihBgFqRWQ7EMKJwUt0nKMrrN+IbVEbKoyCp5AIIByuYxwOOyOj+90Ou7kaFqgBKRqtepOlKYlwQMh+/r6kEql3H6yixcvuv5Sa5NWXV9fnxPMtAyy2SxmZ2edj5DWB8FAtz8QdNknDFBhgBQTFjPzB9C1FgjaQJeyVqVDtyioFa9KBsdf90Zpgl1annyG0pSdTje9GH2AmjV+YmICpVIJb775Jm699VYsLCzgrrvucmm8FEg4R9UK03VoFSi2S/102j5Lh9Ky4n18tj6zB1zXL//HwRm98ndf1NHtt8GY16hlpNYFwU+1Y37n5yDnItUNuwoWfGe9XsfS0hIWFxexd+9evPXWWwgGNyK/0um0y7nXarWQy+UcVaVhzdwgTKBot9se5z81avoxWAe9jtYi72c7otEoIpHINXtxbCACi1KjGhln/WH0tahPQq1FRgAmk0mkUinnO6lUKq4tfLbmOWRdCUDxeBypVMr95vli5XLZjZH6C7k3TPc/MVSeQEugUt8KKS0N1LDHsZAWVKuQ46BCnVadWnB+wQoKTFQw2Cd6D8eb1/O3+spUmWi1Wi7oolarOWWBPspKpeI2eTebTWQyGTdu2jZdQ6yXApQFK/tj22IpfF3Xumb54xfw0ivd0gOuTVA44UkBUoCrBkth4+co18Xkt8isP0gXD30Y1sqh8MnlclhcXMRdd93lIumWlpYQiUQwPDzsBBJ9DqyzaptKwVHrVf8AtVMCnIKeBi+o5UCLIxKJXLNvBoB7h+1DWhIa8cgfXse6asYNPp/WCvMb8ph4Plc3gPPdtIQIDjanHgBnvSntqkDNPtUDOzXkn/dbQLbWvIaGK8DZjCQKTmrd0+Kxe7tUaaLg5w+pTqVStY/5bLaX/adzsdFooFgsoq+vDyMjI1hfX0ehUHA+tXA4fM3G+Gg0ikwmg3q9jmKx6FGEuFa4JghqLOqj1TorxahFrXXOcbX4Fdh0zfeKf+lRhZuk2GAA3ZPCRUMOXylCauK8D+hmiNA9KHyHLjre60eP8Nm1Wg2nT5/Gww8/jAMHDqC/vx/f/e538fDDD+Ouu+7CCy+84HwjuVzOZZ6o1WrYtm0bAHiSv/I7AG7DLdClnnTTry7yTCbjhLM69+ljYvut70RpoFarhWw266IIAXhAFYBH2HMceLJxuVxGNBrF2NgY9uzZ4yiv1dVVZ13ZqL1EIuG+W19fRzgcxtDQkLu2UCigXq+7MHkGIjCHIikxBQ0eUplMJl3uSD6bEYasP+cP6UYAjga2VryNduORNjyLS6k9BTMqGCwKRjo31cqjdcc+p6KiSggPtiwUCk6J2L59OxKJBF599VVcunQJrVYL4+PjmJ6exsTEBI4fP45QKITXXnsNo6OjGB4exptvvomrV6+iv7/fWadM4cX6MnCF4K7JnNUna1kQ9e1pH6oSwOvU98dre3Shf+kB1zu8XM9prZYSJ77SRhoSzefQOtAkpSxcOCz8mwtZQ395Lf1EKysrLqEpfRD9/f2Ynp52wpFRVrRIeFQ6fSpcrBQCaulpEAAPsrQUDYUyhS3voRZtfQakp/R6pQpt0IZaDAxwAbrHt7RaLXeo5tTUlCdSkv1PesoGRDAKrtVqIZ1OO0GpkXZAN0M/x5nAwX4D4CwXPTAxEom4vlErTpMCA95MGKwbBbKmN9I9UWqNs58U2DkvSfWqJaEWlypm1iepCgoVDR0XYCNJATPrNxoNrKysuKCNeDyOgYEBpNNpFAoFVCoVLC0t4YEHHkAkEkGxWHQb9pWOVpZD62qpUkujq5Kn4E9GgMBt968p/dgrb196wLVJii4iwHtOF4WFBipQ+HBvD9CN0FM/kI2Oss5kvZaFC5Lv5F6YiYkJXLx40dEvY2NjHqdzvV5HpVJBKpVCIBBwmQtarZbLtqJZC3QbAIUrfUs2r50KaRvm7yd0VEP2a5NSPwpuqjzwWgLSli1bMDU1hZGREedHUd+cjiWfzfOhuCeLFgv7gFQn/WrxeNxRmclk0vUfLapUKuWCESy9aYU95wrD6dXnp2DEMdQgGYKvRs2xbUqD8TOlHnmfn3BX0LTRoAq8fAeziWQyGUxNTaG/vx8LCwsoFArOegmFQkin04jH426uJhIJ7Nu3D8lk0vkMVYFRQNctIXZ7CK/l+rL9rXNKFSkNjrLKgfZ7r/iXHnBtgkJBpBuDNT0TKRcNQmASVvVbaRYF/qhw4EKnIFaBYa0VPq+/vx+rq6uoVqu4++678fjjj2PXrl34zne+g5/4iZ/A2NgYstmsy/6wvr6OT37yk7jjjjswNzeH+fl5lzNOgy6UKgLgBBAFJYGc9SMtyGzpCtLce0ZKTwMiAC9oM4xdw6jVguDzWQcCVzqdxu23345oNIpGo+FSQ7FvSe0CG5p3tVp1beXzeLx8p9NxNJ9aVBT6GrEHwPlytm7dimAw6CIOGdrN/WAEfQIWrZFgMOgs4U6n4yhOtT6ADWsuFot5KEFtl7XSaTWSBtVnqpXH+anpr2y9WcgkcLw47hMTE7j55ptx5coVnD9/Htls1rU/mUxix44diMfjyGazeOihh3D16lXs2rUL4XAYq6urKBaLHkBX4OWxMaq0aGSqzkeuJ12Xuo4516jMqUWn65X16BX/0gOuTVAo+JSasA5qK4R5ny4cLjxqfKrN8nM+2zqG/ehJRggGg0Gsra0hlUohmUxiYmICp06dQqVSwdTUlDsxuN1uu1DtyclJtFotz5Eo6oxXbZwaODV1jZrTnHu6gdqvDdpO22cEJw1IUDrS+nu0DA4OYnx83CXE1SARu6eImr3SrRxfu/9Jo/QULIGuds+UTLSUGMCilon2LceXfcV5RYtOLW62X8eAgpU/BCD+1uAetUh1Hqp/1fqDdMzs+1ioqLCPGo0GqtUqcrkc5ubmMDc350Cj0+kgnU5jZGQEkUgEg4ODGBoawsLCgnsnIw21PnadqcJI0OJ4EXx07fBzjic/t/SgWrgEZd3P1QMv/9IDrnd44eLX/UStVjc5rmreQHefCDe9+iV4tX4bLg4bLUbtW535vI6Li4LqwoULuPfee/HII48gHo/j8uXL+Pa3v40f+ZEfweXLl5HP55FOp1Gr1XD+/Hm0Wi0cP34cMzMzADYyRSSTSSfAmZJIgSAUCrkTfQOBgMt64BfKr8KZwrxcLrt7tB8UoJR6ZL9TqAeDQU9dKMRuvfVWjI+Po1qtugAJ7pWilVitVl2QRn9/vwttV/BMp9Oe0G7+Jtix3xm80mw2neXGa5vNpjtuZWBgAPl8HsVi0X2ukZQa+MK60i+nFBaBlkEh9KepX00BT31zOp8Y/UfBziS51lcEbAAhg0TK5bLH58Si/+fzeZw8eRKvvvoqlpeXHcXabrdx55134oYbbsDs7Cxuv/12dDodjI2NIZVKodlsYnFx0WUT4XsUaCz1rEqfWpxclwro6m+1tL4df3vKs6WYe6VbeuHw7/DCiczFQsFmqRwCGjU4CjHVlq0goVCnlcFrdI+Q3q8+McDrq8nn8+h0OrjppptQKBSwa9cuXLx4EZOTk9i6dSsCgY19SvF4HLlcziWu5ZESPB6eG1xtYAIDGDS4wfoHGHSiVoKfo5+fa1v5uRUmNuxcAwxoBQ4MDLis4nwe4PXJxGIxDA8PO0BRK1IDKrj3TM/u0sMy7fhQs1cQ51YAWqca7s52qRVHzV8tI7XQdA6waGAGhbGOl72e84Sf29/W36rPU4vFz4rmdao48NpQKITx8XG0223Mzc1heHgYjUYDmUzGATmPiNH1ojQ655m+XxUd3YZCFuB6gT3WguV3nI/s0+u1tVc2Sg+43uHFLhTAG46swluFEQWRan6WclLhqc/Qd6oQsD9A168xOzuLfD6P0dFRnD9/Hlu3bkWn08HAwAB27tzpWbA8RXhgYMCFbVNDtlFqLPSVVKtVJ1DUClQhp/fQ16In6KoQsUJctV3tC416Y/2azabznVmrlP3HoAQGBNBvxWeo4PITWpaq4jjqeNMi5FYC9c0x84jmFbzeGNr+07bzOioNfJZGWupz7TNZZ0Z/qpVCZcD6mFShUtqQAMv26/4+vocKWTAYxPDwMOLxOBYWFhAOhz0BQrVazQVysC9ZX7uZWqlEpUtZL/Vp6XxheyxN7DfGSlX2aMLrlx5V+A4vKgxUmJJvV00c6FoJTu19TwAAlf1JREFUKriAa6kxq91y0SjQMWUQP+M16o+hf+m1117Dzp07cd999+Gll17CAw884DYl33777fjTP/1TLC0toa+vDxcvXsTw8DC2b9/u3kV/EIUsQYolHo8D2PDpcC8SBRP31pDaY//oKba6uZb9odo1+yaTySCfz7vUUUx5RNDguWGlUgnRaBRTU1Mu6EN9N4xuZFShWlekHAmq7FelXinUyuWye8by8rInSpRUHUFrYWEB7XYb09PTro60wNR/AnR9UqQ+Cb4qmG1wgVoAFvB17rGotcr26Z46bjLnGKm/Vmk6/rA+GuDBcVPQ57sDgQBGRkYwODiIXC6HK1euIJlM4s0338TevXtRqVQwOzuLlZUVxGIxlEolz/NoPZGa5bxhIJTSofxOfZJq1VN5IjOgypm1+u33vXJt6QHXO7yocNCFyugypfdUY7OaPwuFtWp/lm9XitBqhtYPQc2Sh4hyka6srGBychJra2sYHx93gqnVarkThoeGhtz96rtQIUshxfOV9DoWBWQNjKBg5GZRPZ2Ywl416mAw6MKmqRAA3qM41GGfTCZdGwhaBJNEIuEsAfYTLQIVTtanwvZQMNZqNXdc/erqqqNV2W96Hli73Xb76bjnTSlO9r+eZ6bUJ+tApUcBQi0kzklVkHTOWf+WbkbWuWaFs52z7CcFOJ17nMcapq/znWHwDApaXV1FMBhEsVhEIpFAq7WxObxerztAtf3iN8903Pi/fbcqhHq/+mN1LunzlAnoFf/Sg/VNUJTvVyqEgkCpFt24q4sQ6GYZ15OFbQYOPpdBAEqR6N/0wXCxFYtFzM7OolAo4M4778Rf//VfIxwO4+jRo4hEIrjlllucAKvX61hZWXHh6wA8VgGDMLTeBBygS4NSK280Gi6UnGeEFYtFFy1WKpVQKBRc2DitRqUXqSmPjY1hYmLC4x/jD8G3VqthYGAAN9xwA6amplCpVLCwsOAiJFlYf/r2EomE8z0x4wQB0oIDT2JeXFxENpt1SXlTqRRisRiq1So6nY0gEAZZRCIRjI6OYmJiwvlvNKiBFh/pOs4VHUdaCtzcnEgkXL5FWju6QVqzXahfkRYmM9RzfBW0WBdVyNS3xHFX3x/nJTPD8z0K3lQ0YrEYpqenUSqV8PLLL7vchblczh0bc+HCBYRCIbdlQuvJseb2DI6N9UVxbgDXp/bp/1QGhcqOrvNeQMb3V3rA9Q4vCkAUKlzoFLy6ECgAbMScOtApyPx8Y8rnKzDyOwowRqdRq6agLZVK2LVrF0qlEpaWltDpdDA/P4+9e/cik8m4OlYqFYRCIQwMDDgwZdEIM1KH/F8FHy2cSqWCSqXihAM/1xNs2U7NcaifEwyZgUH3Jqn1xb5iEt3+/n4HmFQECOoUtlYzZ//rOOkYM9CgWCx6cjbG43EP1aZgqhuQOU603AhC6udSsLTCVv1cbLdawNYSVwpP+5XPpA9O80bq9TpenHOcA1p3DU5h0AnnCAFL/XTJZBKjo6Mol8u4evUqBgcHsba2hlAohEQi4VgCWt/sRypF+iz1xamPSvvK0u5qcan1pj4vjqEFdR2XXrm29KjCTVBUuAHe1De6OBS8/OiL7wVyGorNz/2ex2v4Oa8pFosoFovYvn07Wq0W3nzzTaTTabz55pvYtm0bxsbG3PER1WrVCVomjk0mkx6AojWoWTLUQmDiWm6eVSFLrdgCt578aykrBQg9CFAFJotm7+A4UDAzXJ/+LPXLsGhdbaQogywqlYprBy1EtXAIAvSbJJNJJBIJpxhobj0NBlHBqrSf9jv7Q+cVr1Hlh/8rhXi9uaX/awopbn9Qn6MCK31D7CsFKp1/VD4I2MPDw24D/NzcHA4cOIDl5WV3akEul8PKyoobX93gr+PEMfGjqTl/uFZ4L9enshWW8ldFVN9prbJeubb0gOsdXpSWoHBQqk8FIAVyp9PxbNJV5z/pNaCbnsdGHtpNlqp9qiXCBbi+vo5QKIRCoYDl5WXceOON+MhHPoI/+7M/w7/8l/8SX/nKV/Dggw9iaWkJly5dQqfTwdraGhqNBoaHh1GtVnH58mWEQiEkk0kPxaaBCBRiFMwMjyd4qWMe2DjtVulTAoAKIPaRCsBMJoPBwUEsLi6iUqm4/UR69AXTNDUaDQwMDHgCPwBvXrpwOOzR5IEu8NnouHK5jEql4k7u1ROGdQMzoyTZ/51OB+Pj427v1tLSEur1ujv/TC0YJmPmHLIh/mqJc8w1gIZUK9/P7zjXeJSKPhfo7hOjlWHroOd7BQIBR7uSToxGoxgYGHDjQcWFABEMBl0S4unpadxyyy3Yv38/nn32WVQqFezYsQMvvfQS7r//fly+fBnf/e53cfbsWQf8CjBKEXOuK63HoCUqR2rZK1vAvuIaUovKnk7A+xlo1CvXLz2q8B1eVAPmgrCTWgWO+sGAa8PEreZnNUMN+OC7LfWhC5rvCAa7uQiDwSAmJycRj8ddpoL+/n5s3boVY2NjjhokKAwPDwMAqtWqAwYNK9aoMqZLYrQdtWwGQmhAgfr96L+IRCJuE7P6M9gOAG6DMFMG6fN4DY9p4SnHVhvXeitgaGQhhb/60ACgVqu5jcMEZZtZXnPe8R3Mpq8Ckc9Vv5IqKhxj7h3jMzUwxoag6xywForOSe0HFq2Dfa5af/V6HeVy2TPOaqVoolo+E4Cbf5lMBqOjo0gkEsjn845mrdfr2LJlizs8UjdU67zX+aCWuaXReZ0Cj7WUFKjZH2yL3qf3+1l3vdItPYtrExROZNX4FKQUQCxwEYhYdMEp766LVZ9nhZIubOvPYARcIBBw51GFQiHs27cP1WoVW7ZswbZt27C0tIRgMIiVlRVMTEwgkUi4CDLd+6L1ZRQl8wjS+mHh3xr6zjx/Kuh0z5RG9FmhkclkkEwm3RlPFJKsH89/KpVKjiK0YczUxFknBlGo79D2L4UcQVgpMPVdUZAyLyCDIBhQoAKegKtCVyk1tlmBQ/0v1spX60ojBrU96g9VS0T7h4Ckign7hycJ0D+mbIOl0VgfHqIZDAYxMDCAVCoFAFhcXHT+1f7+fgwNDTnlh2OqvjddX2wX+5P10zlq/aWWktd+t33CPrfKYM+/9falB1zv8GIFOGkGwOtr4jX6uQoJwBsAQCFAhz0FFYUfNXwKJvWL6aJSH1A+n8fCwgJisRhGRkZw8OBBnDt3Dvfeey++8IUv4NFHH8X999+P73znOwiFQnjuueeQz+dxyy23YMuWLVhbW8PCwgIGBwcdjabCkMCl/g1GyCWTSU//aEJY3UjKvIi6N4eRjRSAwWAQ4+PjLnN7uVx2IEDgajabWF1dxcWLFzEyMoJkMun6g8Lu7fZKESA0KKVeryMQCLhs5zz2he9leHun03G+rFqthtHRUbcnbm5uDrlczllQSmH5af20Oglk6psjzcW6qtWuvh3dr8R52Ol0UK1WXcAFrRWNIuTY0rKlpajbCgKBgMuuwjFjwAlD+9vtNrLZLC5evOiAYseOHRgaGsLq6iqy2Sxuv/12vPTSS3jwwQcxOjqKN954A9lsFvV63aOYKNiwjja9GvuGYE8wYgJj9onu7VM6MxQKed7LNcz7NRl2r/iXHlW4CYpaVuozUP8Mf/Nzq+WqJqd+LwtC9B3wWhuBp0KLwpwCbX19Hdls1vH/4+PjuHjxIvr7+3HlyhUUCgVMTEw4QCkUCrh8+TKWlpZcYAb9VkofsQ9s9JqCtjrvKVAJWnpqMn+UUtS+4zsYkq+BASwEzE6n46wu+mBIg1laUCPWOp2OJ7hDqSEKtuHhYZdLTz9XwdnpdNxxHuPj445WVF+N1p0ApAJRLXRVjtRfqj4sKjzsQwUspQc1mwXnFC0itYw02tCPpiQ4qzXOucbxa7U2tg8Ui0UAcGm4IpEIqtWqC8efm5vDtm3bEA6HXXooSw1aNsGyFboGlCZVS9bSf+xX7R8NglIGwFp5veJfesD1Di8UFCqgAW/CT+sXIrBoQIY6xdXhzCMngK6Q0KAP0lzW0uO7KdQajQZCoRAuX76MQqGAWCyG7du348SJE5idncXw8DBeeOEF7Nq1CzfffLN73sLCAl555RUEAhtZDniEBBc/60uHfz6fd1o0BSB9IaTq2F62jf40+ox4xD3gTZvFAAG2JZVKYXR01Dc0nu8pFAo4ceIEzp07BwDuzCzdcK2aNftWM4+wfzUv4eTkJG688Ua0222sra15jiphlvOtW7fiPe95D2644QZntQwNDWHnzp1IJpOOuuWcoIXHOcSxVa2f9CF9ge32Rmg+LVWdW1YJ0EAabhGgkkFgWVtbw+rqKtbW1hxIra+vo7+/H4lEwtO/pGMLhQLy+bzbU0UAZd8tLCzg8uXLLrnu2NgYpqamEAwGkc1mcejQIUxPTyMWi7ngDm6hUOWHQSuWBqW1xDHlWlJLlKDLNctnsi/JIKjyorS1+rEtU9Ir15YeVbgJilJ8FHKM5KMw5GK2/Lv1efE7LjI9iVdpDwAeActr1M+i7+ZCLpVKLhNBKpVCvV7H4uIi9u/fj5dffhkrKyvYt28fzp07h3K5jGazibW1NZTLZYTDYaTTaZepW9tDgGabWHdmgdDDCdlmG81GAcRnEbyo7Wp/kTYdHBx0oKCRdeqLy+VyDnh1D5gGtLA/OU6kg9QJrwpBrVZDPB7H1q1bkcvlUKvVXI6//v5+3HDDDRgdHUUsFkO5XEY2m0W73XYbkovForN8bOYJCmEdN7VYtaiVC2xkBOEZXuq/4bW0OmgxWAHPuWTHkv+rgqQKFZ+nVCJ9gQsLCw4Io9EoUqmU2x+Yy+UwMDCAeDzuLN12u+2UGK2/0nuc48o0KG2tn9vr/Oh0BUSuX9vP9IfyGrXye8VbesD1Di/fK2hCaSP+r0LfRj6pJsnn6zX8nsKK/oTrBXRwQZNaYjonBgyEQiHMzMzgvvvuw6lTp3Ds2DFs374d27Ztw+uvvw4A7siPyclJpFIpLC8vo1QqAYATJPRZUWiSmtPMEwq0Wtfr+QBJV2nmB+1rCkEbXUhBz76u1WrI5XIoFAouG4iCPOlGOzYKXDpeDBwYGBjA7bff7iwOtWz27t2LwcFBZLNZLC8vuyASpaA0UwpBV+eLgry11q2FRh+MZkzRIAReQwvKtlcLLQydkyroOZfs2WitVstZf1Q+yuUylpeX3cGpkUgEIyMjyGQyLnLwxhtvRKvVQrFYdJvGV1dXPVsoNNBDKUELvFYp0X5ke+0Y83l2TbMNSgvqO/yUzl7ZKD3geocXu7i5OCjkOLEpXBXEVMCQAqJw4bNJUWhRfl+DCdR3ZAWOJvw9deoUtm/fjvHxcUxNTeHo0aMIh8MYGRnBkSNH8Eu/9Ev48Ic/jBMnTrjNxy+//DLK5TL27NmDcDiMQqGA4eFhByzBYND5Lmhl8QBBWkfW2iKQFQoFdz9BWKPlGBShJwSzDxOJBJLJpAsWUJ+eAmOxWMT58+fRaDTcIZm8ngEJKqD4Huu30T10AHDw4EFMTk6ir68Pq6urzkolGF66dAn5fB79/f1uD1yxWEQoFMLg4KDb70aKkfUm2ChtqNsG1FprNpsuPZMqKip02fekYgE40OQePFqLBD/6mDSdEseWzybFFo/H0Wq1MDs76yyrxcVFXLx40VGIzWYTU1NTuO222zAwMIBTp07h+PHjuOuuu3Dy5Ek0m02XP/PSpUuoVquIRCJuozY3QXNc1AepbIcCjp0HvN6CjoKV3kfAC4fDTpGyrEmvXFt6wLUJih91oA5eLjDV7BRs+L+CnVpLCoaqJSuw6T4aPletL4JAIBBwG3cZenz+/HkcOXLERYUVi0VMTEygr2/jHCn6oGZnZ7FlyxakUilUq1WXMonCC4DHWlSLkgJULSO9RvPNKS1D2o5t4V4mbX8ymbwmD6FSWxybcrmMQqGATCbjoXF5xphq4kq36vgAcDn5Go0GlpeXXaAG28CsHtlsFmtrax6qVIUnn0sAUOWH3+n80n196rvRH1UOtH91DrFfqBTQh+VHs/EZFgQ0uIHjwnczndbi4iKKxaID5Gaz6fYNVioVnDt3zo3xlStXsGXLFrTbG5vX8/m8hw70AwkboKFjzrpZxsNv/5UqUbr2+KN+O17XK29fesC1CYo60K12p9QFf5PLB7xHqXMBUltXCo3PUYqHRQNAAHiAxPq/Op0OXnnlFRw4cABbtmzBoUOHUC6XMTw8jFdeeQXJZBLPPvssPv3pT+PgwYM4efKkE2pXr15FX18f3vve96JareLcuXNuP5iGaPPd0WjU0VmVSsWBJzV7+nZSqZQLD9c+ZWomTe1ErZsCJZlM4sCBA4hGo7h06RLq9TpisZjbt0VfY39/PyqVCpaXl5FOpzE5OQnAq43TP6MUm1KPfGcoFEI8HketVsNbb72FSCSCiYkJt+8oHA5jdXUVly5dckJcLVMN2yfwq2BUSo8JbLklAICL4lP/GOk9ApuCjeZLrNVqjoJTBoDKAd+r80mfpdQkn8kAmna77ai+ZrOJmZkZz0nffX192LNnD8bGxnDkyBG89tpr+Imf+AkcOXIErVYLn/jEJ1Aul3H69Gl3xA6tQwtQllKl0qG+O4KirlGtC8dZ98XpvewffqeKR8/aevvSC1/ZBEWj2DjBKSwtH87FovSNfZbf/6oJqtasC1qpSg0G0Ws6nQ4WFhbw1ltvYWlpCRMTExgfH8fCwgKi0Sjuu+8+zM/Pu/1bPL6dC315eRnr6+surU+xWHSClCCsdCXfSe1ehR6v1+SuSolpFB+FsloJBOWBgQFMTExgZGTE9Zf6k1Q5YBoiWot0+PO5DAvXjbdqxaplRMuLEZOk6trttnsPgUkVGbUA2Fa1ljSnnwa6WGHtF77P5/P9Ou/U6tUsJhTeVJB0vHTMNAuKHQOgSyXyMEjWuV6vO+uYWVpee+017Nq1y214v+mmm7B161YsLy/jypUrLoLQBmeowmbZCbsOrKWmFr8+R/9WKpKKivadtWh7xb/0gGsTFI10A649KVULF5/df6U0h1IWSgPpdXyPXVDqvGadFCgZUn758mXMzMxgfHwc27dvRy6XQzKZxM6dOzEyMoIXXngB+/fvxw033OCyP9DvQR+NCnHr5NeNxawr20FwomBQ+o//8/lKkamApHVE62FgYADj4+PodDouNNzPh8F+4vtphVAYa/oipeR0nLSt1WoVKysryOfzro30JWk2fKVSWejXs8EPVG5U8VG/F+tKgCWI2jRTOvf4TPWrEvhsJndVxKy/Vseb1jSfQ99eu72xRUDBmH4wZshYWVnB/v37nUW5f/9+pFIpzM7O4uLFix7/klK4lgK1TIal3+2cUatWrWqdf6SsNavJ9aIue8W/9KjCTVA06o2LmVFX1ldC+kLByWqFuj9FqRAFCBWkDJPW/S28h4tPBVMgEMDJkyeRTqfxnve8B7fffjtefPFFnDx5EidOnMDP/MzP4HOf+xweeeQR/PRP/zQ+//nPY2ZmBlu2bEG9Xsdrr72GgwcPYmJiwmVfIC1IgGM9A4GAO/aC7dHcgRRcGhkHdDfJart1Tw3BodFouNyG27Ztw+XLl7G4uOgyH2gi4FBo47gMHl7IDO/sR7VQWAcADlzUh8l0R/V6HefOnUMul8NDDz2EkZERFItFXLlyxR1Fz/cxUCUajbo5o74jWihsI/uJ/cnoTm7kBeBy/OkGWVqYpExZKGyZLJjApxvB+WxGhKqVRYqX/cPcl81m09GhjUYDc3NzmJmZcZR1u72xDeDAgQNIJBK4fPkytm/fjqmpKZw8eRIPPfQQdu3ahXw+jyNHjuD48eOoVCqIx+POSlZfqfUFck5rRgsLLErlawCHjrNVODViFujS9Lp9o1f8Sw+4NlFRMFELSJ3MfpFOBCLl5Pm9pYz8NlGqX0MXrNJEVmNuNpu4cOECisUi0uk0tmzZgnPnzuGNN97Aj/7oj+LWW29FrVbD7t27cccdd+DSpUtOMCwtLWF4eBjT09NOsBGUWAduegbgLAJaCnqN0lTaThUSpMBsqDMLrZNwOIypqSmsr6+jUCgA6EZuUvASREmBsU9pISldx75Wi1B9jKQGaYVGo1EMDg66vUvcQkDQ5jsJhJo6iQJVfVUKWjxPrVAoeCwR9g8FsVpKKog5BzlfmBGD4FSpVFxACQBPfkeCrGYZ4ZwDgOHhYcRiMdTrdVy9ehULCwueyL5Wq4VkMonJyUk0m028+eabuO222xAIBHD27Fl8/OMfR6fTQTabxZUrV1CtVp3CpfSltcAsbX69Dci8nvOHip6uSypGnHvqG6MSyjXVA6zvXXr26CYoKih0wehvpYKAayO3VKNXClE1wOs5p6mt8zpdjKSqCIx8Rn9/PxYXF7GysuIyQUxNTWF+fh7r6+s4ePAgzpw5g2g0iltuuQXBYBCFQsGFe8/NzbkTeClAFFgUaLSPLP3G//mZUowqhLTNtrDNfX19nvRKtKAogIPBIJLJ5DU5Arkvi/Qb8x9yTxKtSqXE2OfRaNQdlqn06fLyssumoQqEBosQbHX/FQWl0n6NRgMrKysuW7oWCmzN8qD0mF9iZGaLiMfjSKVSSCaTHutMKWX1owFdK2ttbc2d2UZKOZVKYW5uzkUEKnU+NDSE0dFRlEolvPHGG9i1axdqtZpL5BwMBrG0tITFxUUHkOxr9d2yX5R6VoBSWpFrxoI5QUrXnlKIqgBSybDg1itvX3oW1yYotCbUiuDeI2qm6jsgpUIBT2HHFDfUgv04faVHADgHuXVQU0tl4cJWYdhsNvHCCy+4NESdTgcvvPACTpw4gbvvvhtf/OIXMTc3h4cffhiHDx/Gd7/7XbeRdnV11fnFGKTADc0E1Hg87oQ1owrj8bgLutA9TxTw3FNkfXPsA00FRUHDUPhYLIbR0VGEQiEsLS25jdZs+9DQEMbGxtzpuiyk8MLhsKPQmNeQlhX3szH6jmAFbCTObTQaLqiA/p3BwUF3UjIADA4Oehz/PJ5F/UAMcOD45vN55HI5zM7OeoBcr9E5pICvdDT7j1Ql20Zgj0ajGBkZwcjIiMf65ZzmGPCYkWKxiGw2i3g8jltuuQWrq6uYm5vDwsIC4vE4gK6yMj09jZtvvhlTU1N44oknsLa2hlQqhSeeeAKpVAqxWAynT5/G0aNHnWVMhUuVMs4z7qUjaCl48XoFa64z9o1V6FhPjV5lH5IhoJUOwMOM9Ip/6QHXJijKqatDXEFE/V+Wb9cFBXijBXXPiBVAftqkBnUAXaqRfwNwmynD4TAuXrzotN7h4WGMjo7i4sWLOHToEG699Va89tpr2LdvH/bt24fz5887Id9qtbC0tOSi/lSzp+WkwRUUBKSobEBCp9PN+ajBGxqcwb6xIM530ipKJBLYvn07FhYWkMvlUK1W0W63nbVlaVa1fGjt8rwvhntrpgjWW8Gv2Wy6UHtuL+DmWWYZ0Y246su0lib35jHQRDPl61xRYWwpLzunrKDVOas0om78Zt8wdVO73XZWdjwed6c4Ly4uYnV1FfPz80gkEm68a7UaWq0WtmzZgpGREQDAG2+8gT179jjrau/eve4Zs7OzDiCUOifQ2781YIXrwyo7fmvE7sNSv5euH12PSvFbv3SvXFt6wLUJitJ8anV1Ot39MVw06tymc18XCJ9HbVPT79BK05x/urmZ9eBzeT8tBKWQKOCefPJJjI+P4+d+7uewc+dONJtNfOlLX0KtVsNP/uRP4qabbsJXv/pVfOxjH0MwGMS3vvUtXLlyBeFwGOfPn0elUsGuXbtcpnRSZgxGoLVC4Wh9dqFQCNVq1fl/1LeiNBqFlt6r1BcpMwq2/fv3Y9u2bZidncWZM2cQi8Wwbds2dwaYCjKeN0aLMZVKuet48GEwuBF2z/7M5/POyoxGoygWi1hYWHBANTAw4OrebG5kX19eXkY2m8W2bducFcGxVwsjEom48WWCYgaD6ByhEsAgDgpdPXlZrS+lsoGNAAyOCbczELy1fznnms0mqtWq85H19/cjn8/jySefRKFQwOnTp53yQPAaGBjA4cOHMTIygrm5ORw6dAg/9mM/hq985Su4+eab8cEPfhBXrlzB888/j1dffdX5ANXfqCyFKjtUHMhoqP/J+sKUemSbrOLE9cn/1X/G9cLjWiz13yve0gOuTVD8NDxq63qNClx1xhN0NJgDuHZjMa0Oy80DXa3Qati08HRBUgAwYOD06dOo1+tIp9MYHx9HMpnE+fPnsb6+jm3btmFsbAypVAoHDx7ExYsXMTs767G6IpEIDhw44Cge1kHBl/2igQ+0pEjBAXB5BAHvpmAKXxVM2jfsC34fiUSQTCYxPj6OcrmMaDTqKCw/fwbHkP1kE98C8PhXGBnY6XQ8YJvNZp2FR6uKkX+M4ltbW3NHeVjfkgYcqJClBatKETdCa1owtb7YTyqANeBB5xT/VqqX77ZZUTiGzIhRKBSwsLDgwJzKWSwWw8TEBAYHB1Gr1fDqq6/iwx/+sKPyDh06hOHhYbzxxhuYmZlxypaOp1o/+lv7l/5RnTca1Wu3NPgFcdg5wXVo930po9Ir1y+94IxNUJQrp7ClULZBGPRjWIevUmcataQasTrfKWT0efx5OyqRdSEdFAqF8NZbb2F5edlZH6OjowgGg1hdXUUoFMLY2Jg7q+vmm292zwoGg6jVarh69arLwG6pKxZ9P/tIgwAsJar9x++VHtI6qDDnuymsYrGYC9gAukpGq9VygRg2CwUAZ4FolB/HhtfRMg4EulGTpMeU7otGo0in0xgYGHDW2traGrLZLAqFggM6gjQjHDk+VkFRAcyM9Npu5h/UazT5ru1D638loCYSCc8ZZupb63Q6SCaTLvx/dnbWRSSyDul0Glu3bkUgEMD58+dx/vx5bNmyBbOzs9i9ezemp6fR19eHq1evYn5+3kMp2zlrx55F55i2Qf2k12NElA7ks3Tt6LziGuN49yyuty89i2sTFKUZNHyYAo1CV/cr8UdpP+XuNeO7OtzpRObzdWGqcAPg0ZRp/ViwBIBsNounnnoK4XAYyWQS+/btQ6PRcHu9HnroIfzO7/wObrrpJtx88804fPiwS8zLc6WOHz+O0dFR7Nmzx9WV+Qy13fRvUbvVAA3uBQM29ifxFGGCNikxgoqlkthm+mRIlaVSKQQCAUc/dTobB0xqtCAAd7gh+5S+NgVYFZSsG4Uh0PUpagJY1ov0ISmrWq2Gc+fOeQAhHA5jcHDQnbelGUTUatbzsVSwqtAl4Kq/027MZn/wGZVK5RofKa12ziX+PTg4iGazieeee87Ro/39/SgWi2i1Wrjzzjuxa9cuHDt2DMePH8dP/dRP4ezZs3jqqafwG7/xG0in05iZmcFjjz2G5eVlpFIpty+M81hpTg3BVyVIrTT+kIIn/cngGgVH/s3nqOWq76F1qxZ6z/J6+9KzuDZB4SKyqYnsmT5qWalFoRq0apaWHtN7AXisFqV0WNT5zqI0CK25/v5+nDt3DisrK+jr68OOHTuwdetWXL16FdlsFslkEnfddRfOnz+PhYUFHD58GNu2bXNHVcRiMReyncvlXD0ajQbW1tawsrLinPvMJqEWEjfbaq5Cv8I2UpjqqclKF1HwqmWqlJgGZqhlxL4maOm1vMZP42ddFEw1gAKAA6p2e2MzLiP4NDqQY8p7rW+UcyYajbpoTqWgWTSNlAZ+WKVJtyJovXkKcqlUctnr+R2fwTnFgyRDoY1ToScnJzE0NITh4WGMj48jFArhtddewx133IFdu3bh5ZdfxsDAgAOpq1ev4urVq4hEIh6/lg04UXC21Kr+cC0R8P2Cl/gcnS92ntn1pEFOumZ7xb/0LK5NULiAKpWKh17g5KfmqM5k9QVpVBMAF3arVhjfo9qn7k9Sga28PAWMHgeiYMf3Pv3004jFYvjgBz+IAwcOAABefPFF/Pmf/zn+wT/4B/jwhz+MLVu24C/+4i/wW7/1WxgdHcUv/dIvYWVlxUWS1et1vPnmmxgZGcHk5CSi0aizamKxmAM4XfjBYNBRWQoo7XbbbQ9gn5FGI3XIiDcqAApQqhhQ6NCxTquMY5VMJrG+vu4sBZ7xxfHUfIN8Nx31QFeoaeQjfU8UxkrnkQKMRqPYunWrq6uCFj/juCYSCRf9ODk5iWQy6bEsOYd0HvBcLEtb0wKnz81SjAp2VHLYDmbJiMfjuHDhAi5cuOAZo+HhYWzfvt2N/9NPP42f/MmfxL59+zA/P4/+/n58/OMfR71ex0svvYQjR454aFnOA85b/U59f2yrKkH8UZBiW9gn1h9taXa1yKyiosmvexbX25eexbUJCgWWprhRvl15el7H/6n5+WmadjGqE1l9ZAA82iCL9Tdp3XShMlrs9OnTOHPmDJrNJlKpFG644QYUCgWcOnUK/f39uOOOO3D48GFcvXoVO3bswJYtW9BsNl3uQmAj5DubzWJpaQnxeByjo6MYHBy8hmrSCDACAiMfKWjVMlDQUvBSS0Cj4dhWoOtzUX+OjgkBAYDL7qHPUs3f9jWtE96j1pYCBak+9hPrq1YhrU69lgKX35M+VHrZ+mx047HdzM75Yy1Q+tTY1+pztAE1pLHn5uZQKBTcRuxoNIrx8XHs3LkTU1NTeOutt3Dp0iXs3bsXq6ureO6553DnnXdiamoKq6urOHv2rKNKNXDEUuSMSmWxvi/A699i/9qADfVz+T1L5xC/07XEz3rA9b1LD7g2QVFBqAtKJ7s6iC1wWSc5C4URhYwuFgoY1coVBPV/pTk0y4IKskQigStXruD1119Hp7Nx1Mju3buRTCZx+fJlFAoFDAwM4P7778cTTzyBRqOBu+++G6lUCkD3oEpaSqurq2g0GojH4xgaGkKrtXEeFt+nfaTBFH6+GbUIGIGowpTUoYZ/K3CpAqEBCKqBExgAONpP0w6phax+K1JqzLxBQFUKk4X/W8VB60arg0EXqmzweBMFc97D/2lRqp9IrQ/tF32/n4VhFS8AzueXy+WwvLyMWq3mfJ0jIyPYvXs3xsfHEQwGcfr0aezbtw/NZhNHjx7FhQsXsGfPHsTjcVy8eBEnT57E0tKS5/manYTjybmia0DHxNKEdv3wfgtu+kx9hu0D9pMe6dKjCt++9KjCTVAYxmt36/Nvar3WeqLAoHDT/U4APAKN2r06qMPhsNvvBMBZLAQQfZbSPppDkPWo1+uO2nnkkUdw6NAh7Nu3DwMDAzh58iT+5//8n3jf+96H7du3Y2RkBH/0R3+ET3/60zhw4AC+8Y1v4PXXX0c4HHZZKYrFIl599VXs2LEDU1NTiEQiyOVyngwb7C8mdAW6uQW1D0lTKZ0Xj8cdzcl2alqmYDDoOdmYfcBnkp4kmIRCIQwMDLjMEOvr60gmk84iBbqWtfYrrR+r7TOghPWu1WoucnNwcNCT3sn64Sg4ac319fVhfHwcmUzGbR5Xq7zZbLqoTp60zL7ks7lXTvNFcs5xSwLbpgKdSk6xWHT1mpmZwblz59DpbAQcMXfl7t27MTo6irNnz+L555/Ho48+igMHDuCLX/wi+vv78TM/8zOYmprCzMwMvvjFL+L06dOIx+NuU3sgEHB0skaRsq209Ej9cc7YYCWuMbudxI+xYMBQKBRCuVy+RmHSd2qQRg+43r70gGsTFLWSuGjIh+tn1Nq0WD5eLRKgm+CVWjQXpFpaFJLWoa8+LwVIRvnR36SaeKezcdDkyMgIBgcHMTg4iN27d+Mb3/gGTp48iWg0ivvvvx8LCwtYW1vDrl27cPjwYbz++utoNBpIpVIOHHO5nNusvHXrVieUlOKi/8fmoAO6FgrvoTUBwGOpUJgA3b1vBEBaRewzHQ9ew/5RbVstGtW+GVauVFosFnPApf4ubqRVn6al6fRzTSXE8SB9yEhDP+HLuikNqJY2+1CtGdbR0m5qnWvQSb1eRyQSQT6fx5UrV7CysoKhoSEEAgEXLBKLxZDNZnH27FnMzMzgpptucrQuA3qYTf/ixYsepcAyFLqetL+0vqrg6VoklWf9nNdbuwpKOod0HKwy2itvX3pU4SYoqoHp4uPkt9m+G42GE9RcEOrT4b3q49E9PcrJa9Qa66IUmgplS6HZfTP1eh3xeBzf/e538cYbbyAcDiOTyWBsbAzpdBoXL17Em2++ieHhYTz44IN46qmnUCqVsH//foyOjjqHP9sPwIFXq9XyHL+hAGOFFvuN+5kIsny27iti8aO4gK7wtYKL12j0oApCZrsgeCrNS8qOfij+z/EhaCnV1ul0HAVI8GMdeZ0GE7AuAwMDztLiOCvVx7mTSCRcHfhOgoYeCKnzgj/2wEk+kxuL5+bmHMAuLS1hZWXF1RMAtm7dip07dyKVSiGfz2N+fh6ZTAYA8Oqrr2Lfvn3Ys2cPMpkMLl++jBdffNFZkjr2GtVJALYgxv7l/7YvdP7ofSw6b9hOWsXKQKhio3PGUom94l8CnU0I7/SHvFuKOsUBb5g1aUIuBIIHF5+e5aU+LPWj8HlcXCroNOKK9OD1nNCsiwpNtSoIqv39/YjH4/iDP/gDl3z35MmTOHbsGN566y3cddddeM973oOVlRV89atfxdTUFPbv34/nn38eTz31FFqtjUSxAwMDDnS3bt2KHTt2IJPJOIGpWdHZb7Rems2Nk4UpaOk/SiQSSCQSzhKlT4jCJBKJOIDkvRokoVYK/+YmZAptFebsUwZGaKBFvV53oeDRaNRtaO7r68PAwIDr83K5jFKphGaz6fL8cRxJZ6qVp5GA7Bu1ui0NqvND54PmOCR4EYwJ6FYJaLfbbn68+OKLKBQKLjNKpVLBsWPHXF8wV+UnPvEJTExMoFar4dixY1heXsahQ4dw6dIlRKNR/Pqv/zoikQhWV1fx67/+6zhz5gyCwaBnfxgLlTwN0VdaHYDLvKFWka5FXQd+FhvQBUH1s2rkLZ+lG//Vr/xuCtDI5/NIp9M/0D09qnATFLsJVDVBpb90oqtlpRq9Wl+qdfKHNJVSWPo+1UD1/bpQNXBDAw64KAcGBrCysoKXXnoJ8XgcW7ZswbZt21yeuhdeeAGNRgOPPvooPvKRj+DrX/86brnlFtxzzz04ceKEC8zQti4vLyMcDrtNqkAXtGlNKAWkfWKj49RK1ES+Srtqn9BPoZqyZr/w0+5pTTBHIOupWr9arhper+OgAlj7g4XfqTavz9GtDSosNciDUZlqdfNZvJdt1ITIpVLJ7T1kMAgVAgJ5PB7H1NQUOp0OZmdnUS6XkclkHIgzK8j6+rr7/uDBg4jFYqhUKnjooYcQiURQqVRw4cIFnDt3DolEwiUeZv1UUVMGwyoa9GWy79j/ei/nvVJ+HH/tG41e5T2qOLDwOq67no/re5eexbUJikYJqiVDocDTeJWyU7pCs2CzWOqMi04jDK3TmZqzOqtpwTCtEBeggof65Lio6Y/asWMHPvCBD+DRRx91J+e+9NJLeOaZZ7B//37cd999GBgYwB/8wR8glUrh5ptvxtGjR3H8+HEXiNHpdFAqlRAIBLB9+3YcOHAAU1NTyGazWF1dRTKZRDKZ9Jw0zPY0m02srq66SEBmiyDlpudYWVqJwkqtFo5NqVRy48AchhTWCpw8uoTvosALh8OoVqvI5/NuXxOtnGAwiFQq5axNBmfwuBQmt7XAq8BoQUcFpio19JvqOV3W90MhTn8b67O2tuaxMPr6+lzW92KxiP7+fpf+67HHHnPZRoaGhpzvc8uWLejr68Pp06fRbrfx8MMP49y5c3jttdfwr//1v8bWrVtx6tQpfPvb38YzzzyD5eVllyuTPlsVcWyn+qeoEHJ+83u2hdlO6I9j3+m61Kz3vJ9ApRShjcpl3/lZaj2L6/qlZ3FtgqILDfDmVaOQ4d8sKkRVc+dCtUEWSuGopQR4fR12MakFpnVQcNBFSCFSr9eRSqXw5ptvot1uu/OUYrEYdu3ahUajgW9/+9tot9t43/veh0984hP4whe+gHg8jptuuglra2s4ffq0Axy2a3Z21h1emMlkUKlUUC6X0W63Hb2mznJSdgDcfiv+Vj+gBiXoj5/PQy04S92y8H8eSa/PViGn9B77WftbBR79lOxv3m/9nSo4dQ5xrPR5GoDBoicWcw7YjbOhUAiJROKajBpXr15FvV5Hf38/duzYgWaziZmZGVSrVZePsVQqIZVKucTKzz//PILBIG699Vbk83mcOnXKWemBQACvvPIKjh49itnZWTf37X4pXUMEdF0PGpCk81QtXI63H7tg77HMhH7PuacWnCqclj3plWtLLzhjkxTV1DSqTcPQtSiPboWvHyjxWlpmSp2pgKOlx/u46C0wqRC279NnMUPCk08+ibNnzyKXy2F4eBh79+7F8PAwXnzxRTz55JPYvn077rvvPmSzWWzZsgW333474vG4CxBg5F+5XMalS5dw7tw5ABvHvtMaYAopgna5XEaxWESn03Eh8wRC9dPZwAL1K6plq0DDPmR4uI4Tnx0MBt35U8xaz3eoP8mOmdYJ6O73UjpP66vjopQgr2F4vSo5bCefy3G2gEzrSsPLad0lk0mXE5KZPnK5HMrlMmKxGOLxOLLZLE6fPu2JiOW5YoODg8jlcqjX69i1axeGhoZw/PhxJBIJPPjggwCAq1ev4umnn8bFixc942EVKh1364vkeCtAc8y0v+xz1Gepe9vUp2jnvNKI9ggitQI3IRH291p6VOEmKBSmXEhA9wgM0oSkG1TjVbpEfVKaxkk3GWvEl0bNaT2UHuFvKwxVm9eFqZaOWhUUWqlUCtPT0/jkJz+JAwcOuKCNp59+GhMTE7jzzjvxZ3/2Z+7vS5cu4ZVXXsGVK1ewuLjozrNaWlpCu93GHXfcgZtvvhnJZBJLS0uo1WoYHR11e3vOnj2LQGDjBN10Ou18NJqBAugerx4IdBMQ02fjBwQESdJGrVYLsVgMmUzG0yedTsdFBxJcWRhsQToY6O6jY/Qg65PP51EqlVwOQd7DLOw6fsAGMAQCARcEQuHLuipYMkkxLVMVuLohWcFelZVKpeJoxmaziYWFBYyOjiKdTuPFF1/E1atX3bMCgQBKpRK2bNmChx9+GHNzc5idncXhw4fx1ltvYWlpCe95z3vw0Y9+FOPj4zhy5Aj++q//Gi+88ILHQrX+PL5b+0BZANZbs5/oPbzPWkV8h+5btDQsi1rSnFNqwan/UFOHvRtKjyr8IS1+FIRq/UrLWceuUonqmNZgAuXkeb0VQHy//q1apT5TrRHrN2HddG9Uo9FALBZDPp9HuVzGE088gWazicOHD2P//v2IRqP40pe+hOnpaezatQtvvvkmXnrpJezbtw+33HILBgYGUCgUPIK11Wq5sOmbbroJAwMDLilvtVpFuVxGpVJxx2qwTbpJm4KGAksd6+qvU58PaSgmoWV0Xa1WQ7FYdIDA9xAIKXBtRJmGUzcaDUct8nv2Of1gHBP2v2rwfgLVz8/D8VSlg++koqPfsVD48ln9/f3OIuYzx8bGEA6Hsbq6isXFRZdvMhAIoFqtIhQK4T3veQ927dqFp59+Gg8//DCq1ao7/fi9730vxsfHUa/X8dxzz+HEiROuzTqn2Ea1etSatFaQ9qfV5XWe27XAfrZUPfvAT4nT8eD7LDXZK29fehbXJigMKdagCOXxCTr0HQSDQQ99ZqlAghzQBTZmyNDNrBo6TI2YVheFKZ/DaEQV6LQS9Z20vHi6Lqk0BYxGo4FIJIJ/9s/+Ge69914MDAzgr/7qr/Dkk0/i4x//ODKZDNbW1vDkk08ik8lg9+7dWFpawrlz53Du3DkXuVitVrG2tobdu3djx44d7pgMHuteq9Vwww03YGJiwmm6iUQCgHdvDv0RFMwajMH+UMuJViUBiLkGaUW1221HoxEEgsEgksmkG4u1tTUA3cSrFP4MvmBReksDYgiEjKgkLcn+V7AlJcgx57hpairuoWPkm/XD8DvOT9aLfZBIJBAIBHD27FnMzs6673midTabRV9fH375l38ZY2NjeOqpp/DBD34QmUwGn/vc57Bjxw7cc889OHDgAE6dOoWnnnoKf/VXf+XqbDdhWx+X+qr4mfX3WdBTRYx9pd+pxc166LxR3xmVHe13jgX/VytM/Zo/7KVncf2QFmrOCh4APPtRdMHYRaoapf1cLSR+RoBT6471oGBVDRXANaBlBZu1TPT4dbUaSZ81mxv550ZGRnDzzTfj3nvvxdraGp544gncc8892LVrF+655x4cO3YMJ0+exK233opEIuEAIhwOu4wWMzMzaLVa2LFjB7Zt2+Z8SjMzMx7LhgLD0p0aXGB9hvYodr/7STXqZmNGBxKECNgWWFSAKYWrlhTroAEgqqRYy0LHhddQKWK7FHR0Luj84/Wsu1paOpe4J2x1ddXtvYrFYlhZWUEkEkG5XAYA7N27FxMTE3j++edx9epVTE9P44knnsD4+DjuvPNOTE9P48yZMzhy5Aief/55Vx/WVS1BFq6RdrvtoTIV3JQJ0GLXBtsEdPeDUWFUBULXnw2CUibDvp/9zPnSK9cvPeDaBEW5dRal+lTb5CK10YF2ESq1opqlghmv47X6vy5CS0XZsHM/oUBLhO0jtcZAgf7+fpw5cwYjIyPo6+vDPffcg4ceegh/+Id/iMcffxzlchkPPvgg4vE4nn/+eeRyOWzduhW33XYb3nrrLaytrTnLrdVqYWFhAdVqFcPDw5iensbw8LDbeNxsNj3v10231qnO/zXYwm4BUIsV6PoGadHyGrafgMNjTnQMrJ+Ffad7i0iP8h49RZjX67N4jx0/zSxB+lDfqW3SMeW12jbOA1obV65cwYULF9y2hHw+j1gshnK5jFqthu3bt+Pee+/Fyy+/jEuXLuH9738/Tpw4gWPHjuFTn/oUtm7dik6ng2eeeQbPP/+8C7ThtgH63TjvOCYsSs0qkOgaYR9butXS39p+HSuuO6Cbt9Lvfl27Wrh2NTCqV/xLjyrcBIWTn5YI4LVgdMFQiOk5TaR6lPahBkrnsmqGqmHzuer8VnqL1/O5fCeFId+hGTxsIAkFqAYh8P9Wq4XBwUF89rOfxb59+1CpVHDmzBk8//zzGB8fx4MPPoiBgQF8/vOfR6VSwaOPPopms4krV67g8ccfd3t6VlZWUCqVEI/HceONN+LQoUO48cYbsbS0hJmZGU+6JLaDWTKs/4EBGOxv0muao5EnDCslS5Bstzcy3PPgRwZJaIYO9otaeBo0QSHHZxBAmZVEcynqIZRA90DSTqfjrJ1qtYparYZOZyNzPy2KZDKJTqeDQqHgxlytNtaVAMR28fkzMzPIZrNot9sYHx/HwsICCoUCYrEY1tbW0Gw2kclk8K/+1b/C7Oys83GdPHkSr7/+Oj7ykY9gx44duHjxIp577jl89atfdYdCcn5oUIvtH6XgWNgOna9W0dNAKH5nc1bq+tC5rnNcqUAboKH/q2/57RS+H8byt6EKe+Hwm6AojQB0o6BUk1MLQYuGXitHrxaW1bxVUOvi6evrc4JcLb12u+05YkM1R9ZfhYJqp1oPe6ozhXE2m8UTTzyBU6dOIZlM4tChQ/jABz6A1157DU8//TRWV1fx0EMPIZlM4rXXXkM4HMbu3buxe/duDA0NeUC2v78fly9fxjPPPINKpYJMJuNSR3ETtYb7W9pPLRHry6EviwlnGZ7O8bEgF41GXbsJaOrP0kwT1qptNBouYq9SqaBUKl0TfMN2Kw1KYc0wds14T+WGFqJGVlqlRp+tQj8ejyOVSiEcDuPMmTNYWFhw4FQul1Eul5FIJFwo/ejoKO69914sLS3h2Wefxe23346ZmRl8+9vfxiOPPIIdO3bgypUrePXVV/HSSy+5gA9mJtF5olY+Pwe6fkAFGY4F79V5ybapMqfPUapd1wvXg907yX7TbQ18p1p9+tMrb196VOEmKRQ8b0dvWH+M8uh8hv5WLU+pDAtiFLx8jz3mgQvTLxJR0+dYuk2pLKVB+b1amM8//zyazSZ2797t9nlNT0/jlVdeQaPRwEc/+lH8yI/8CP73//7fKJfLuPvuu3H77bfj9OnTyOVyjlYicKyuruLMmTM4cOAAtmzZgoWFBXekCWk39Yfwh6CiQpDX6X4otosWkLZPLR+CSL1ed5YKLSeNCrR7hAqFgud0Yt6nWVL4uQJuIBBwPhkVsHr8CkHW+tso2DUlGP1b9NnRKlleXkalUsHExAQymQwuXbqEpaUlpFIp54ccGhrC4cOHsWfPHjz++OMYGxvD/Pw8/uIv/gLRaBS7d+9Gs9nESy+9hGPHjuHChQsOeNm/tHQ004WuCwUipfd0XtvIPqtQ8ToNTLHRitZi43ecwxqkpMqgnfd2/fSKf+lRhZug6KKjFqyavC4IDYqw0VVWO1ZfB59Hyo80jNIqgDeJqH0+Bb49j4v1tqHU1rrT661lSArvgQcewEc+8hHs378fwWAQr7/+Op599lm0Wi3ce++9GBsbw3e+8x2cOnUKP/7jP44bbrgBjz/+OJ599lnMzs4664qBG8PDw/jxH/9xDA0NoVKpYGZmxoWzs3/11GBSfqRiVdgRHNS/EQqFHGXI1E8U9OyTarWKVqvlju9Ip9NIJpNYXV11qaPYX+122x0syboR6NLpNCKRiMcCjkajnk3QfKdag/yfdGUmk/H4hGhpqH8T2PDJaRg/0zwdP34c0WgU27dvR7lcxsLCgssdSMtwdHQUn/70p1EqlfDcc8/hp37qp1Cr1fDYY4/h0UcfxU033YRsNosnn3wSn//85z20HYv641R5ooKh/wNdBYnjpPOSn+sa4f82Y8r15ijXla4nrhF9hlpV6pu0DMUmFM1/q9KLKvwhLmqpqIZpF6IKFqu9qW+CWqWlHNWBrxSlHj1v6TMFQz8NknWxn1vtVEFAfSkE2f7+fhw/fhypVArtdhuHDx/GgQMHEAwG8YUvfAFra2v4p//0n+LBBx/EyMgIvvnNb+KjH/0obrjhBpw5cwZLS0vuaBWCaLFYxGuvvYZbbrnFBQ7YjahsMy0opVyBbuSfFarsc/YlD+pkm7hZuNncyOrOwxwzmQw6nQ7y+TxyuZzLn0jAY/487kFTC4kCjyBTKpXc0SOkJrVetKiotHDbhfXDqDCllUWwY97Jq1evYmZmBoODgxgfH0c+n8fs7KwDBgZUbNmyBbfccguWl5fx4osvIpPJYH19Hd/5znfw8MMP4/bbb0c4HMZjjz2GZ555xmPt6NlwWi/93wKLziO7BngdfYjah2pB0Rq1z1AKUNeGzg0FKipuqhjyt4Jer7x96Vlcm6Bw4lPoUbAz+o6CRjVPpUgUZFT7Ixhwwy4XpS42K5B1YdqpY+sIdBeuH1XoR6+odamfM1MEgwmGhobw2c9+FgcPHnR+qzNnzuDYsWM4ePAgJicnMTs7ixdeeAG33HILIpEIXn/9dbz88ssIBDY27CqgDA4O4sYbb8R73vMeNJtNrK2tOYtF902xqKZcrVZdZCLQ9fFxnGgla5uBjdON+Z5UKoXbbrsNExMTGB8fR7FYxFNPPYWjR48inU678H7ufyOY0dqiVagRhJVKBZcvX3YWMDNWhEIhlEolZzH19fV5wvKDwY0wfQJrILCR0SKXy7ln9ff3Y3BwEACwvLyMV199FdFoFKOjoygWiy7BcSQSQbPZRDabRTQaxYc//GHE43G8/PLLuPnmm3HbbbehXC7jO9/5Dt7//vfj3nvvxdzcHI4fP47/+l//q+tPniatwGQBi33LOcg5pICjUYU2OpPZUBjwoX48nb8KmHwX1xCDQajMENg0uMNSk8p0vJssLZa/9+CM3/3d30UgEMAv/dIvuc9qtRo+85nPYHh4GMlkEh/72MewuLjoue/KlSt45JFHEI/HMTY2hl/91V/taRlvU9SfoNo04PVTqTC11o9q/gpm1LoBb0JevsvSd7qXiJ8pkFkNXakaaqZ8jj5PneuqnfJvtWoCgQByuRyOHDmC1157DcViEbt378bdd9+NaDSK48eP49vf/jYymQweeughHD9+HIuLixgfH3cCularuU3AgUAA+XweZ86cwaVLl5xCoCCjVo3Wi4KJwlEDMDSi0Gr/HMd4PI7BwUGMjIx43se+qFarqFarzi8FbACeHiSpgQYUgprVnoWBGBpgoMEJbI+dMzwXjPfGYjFEo1GsrKzg+PHjeOWVV1xWk/7+fszMzGBpaQmBQMBlDIlGo9i7dy86nQ6ee+45RCIRvPe970U2m8Wzzz6LD3zgA7jjjjtw9epVHD16FE8++aRnnvrNQWUNdEysX9eP4tPnaqQg57xa1ko56r1KXyqNauc+68gx1Khcfq+WWK987/K37qUXX3wR/+W//BccOnTI8/kv//Iv4xvf+Aa+9rWvYWBgAL/wC7+ARx99FM899xyAjcnxyCOPuI2G8/Pz+OQnP4n+/n789m//9v9Za36Ii2qRChAUVCrwlcJT/l7pEtVQeY1y7BYsGWWmGzp5He9RAcNn6YJUR7jSMhpibxc/n2O3AfT1bWQNJx32kY98BJOTk7jjjjvw6quvYnl5GRcvXsS9996LyclJvPLKK9i2bRvGx8cxPz/vfCCJRMITAXjs2DEcOnQIO3bscGHXmvBWN4dS0ClAKHWqARC6x6vdbjtLbnx8HKlUymXRYPh6KBRylOb6+ro7k0qBEehuhFXKiePBwza516ler7u8gRpcwHFi0Q3E2WzWhZv39/cjlUoBALLZLE6ePOkoz3Q6jUqlgoWFBZf1Q6nIgwcPYmpqCi+++CK2bt2KD3zgA7h06RKeffZZTExM4Pbbb0d/fz9eeOEFPPPMMzh//rwDbz7LT0kCvJQfi/UbWWVI564Clx+tRxCyYMfruP64zugX1DWk1DPfp+tG66Y0Yq/4l78VVVgqlXD77bfjc5/7HP7dv/t3uPXWW/Ef/+N/RD6fx+joKL785S/jJ37iJwAAZ86cwf79+3H06FHcc889+Na3voWPfOQjmJubw/j4OADgP//n/4xf+7Vfc4cBfq/ybqMKOeFJBflZp7oQde8UPydYWJ+A9XlZipHP1oWokWusG8GPlAm/0/0wFmQ51gq6pD15rwVIrQefGQgE8OlPfxp33HEH9u3bh3w+j4WFBXz5y1/G+vo6fvZnfxYrKys4duwYnn32WRSLRQdYCuYECQB48MEHsWvXLgwPD2Ntbc3lQrTzkwBDIUnLjOPWarWwvLzsAI6JcHfv3o2JiQkMDw+7fgM2aBMA2L59Oy5cuIA//MM/RL1eRyaTwcjIiHsOw+QJpEp58d0co1qthkKhgLW1NYRCIWQyGU8SZgCe0HwCJwCXjmtkZATlchkXL17E1atXEY1GsWPHDkdZnz59Gtls1pMpPhQKuZRaFy5cQCQSwSc+8Qk0m0288MIL2LZtGz7wgQ9gbGwML7/8Mp566ik89thjblxJr1lAoVLAeajzVYMiOGd43AvvVfrOWkC8Rp+jAUzax6yT+n/VYuY4qJ+WY2WBSevLZ71bgOvvjSr8zGc+g0ceeQQPPfSQ5/OXX34Z6+vrns/37duHbdu24ejRowCAo0eP4uabb3agBQAf+tCHUCgUcOrUKd/3karQn3dbsUCjlBt9HCzWQWz39/Aa9b/o9fpOpb+UztN7dIH5gQzgBUbWgdSVRmypFagWnDrBldKhcD5y5Ai+9a1vIZ/PI5PJ4MYbb8QDDzyAZDKJp556Cn19fTh8+DAOHTqEdDqNtbU155OqVCoufyIPxjx16hTefPNNLCwsuCM6mEuQfUpQ4P4kWmcKUolEwu1r2rJlC/bv349bbrkFO3fuxNjYmGsPrbJ2u+18ZkNDQ5icnERfX5/bIMx+JTWlfhjWy9J97H+lixUEms2mA7ZcLudReGKxGMLhMK5cuYIXX3wRs7Oz2LlzJ3bu3IlKpYLFxUVcunQJ2WzW+b8o4Ldv346JiQmUSiWk02k89NBDKBaLePLJJ9FsNvHwww+77xmIwfmop1Yr7e3XNqW9lV1gUUpO14IqTPpMyyQo9e33XA1kArqb0vlOzZyvdfYLCPEbw165tvzAVOFXvvIVHD9+HC+++OI133GRZzIZz+fcMc9rFLT4Pb/zK7/zO7+D3/zN3/xBq/pDU3RCW4cyBTrQTTOjVolaXLoglJ/3W+y8XvcBqQarwkKtH93rohac0lksWn91dvf19blsHqyLWpO6V4fa6+zsLHK5HPbt24c777wTo6OjuOOOO5BIJPDVr34VCwsLeO9734t/9I/+EaampvDMM88gm80iHo87KrDT6SCTySCfz2NpaQnr6+tYXV3FwYMHEY/HEQ6HHaVXKpUcwDC7ObXyZnPjZGYF7ng8jm3btmFqagrJZNKTQkutaP4fCAQwNDSEO++8E+FwGIuLi+7oFma2sBaBgpIqOvyMwKcpoag46NEtKkxnZmZQLBZdYMiuXbuQyWSwuLiI8+fPo1KpoNFouM3bnU7HbUKOxWK4cOECOp0O/sk/+ScYGBjAX/7lX2JsbAwPPPAAhoaGsLS0hFOnTuHYsWNOCVE61iphlqazARN+ipgqTPZz4Fp/rvVP6TtVmeL3ZAmsosaiVKZVvHTt6frrlbcvPxBwXb16Ff/iX/wLPP74476RVn9X5bOf/Sx+5Vd+xf1fKBSwdevWv7f3vxOK1aw1ao8CyQ+glILgAga6wQbVatW9Q8OhrRWlyWM1ZRDPaeI1rAN/a73po9EQbNVoKUit8FRqRykjpXN473/4D/8B27Ztw2233YZPfvKTuOuuu7Bt2zYcO3YMjz32GG6++WbceuutOHToEP76r/8aJ06ccOdkMZs8BSCt+zfeeMMdG7Jjxw6MjIx4KD7u1QK6508Vi0XX53v27MHk5KQ7tp45CUOhkIsYpE9qcnISQDfp7vve9z7cfvvtmJ2dxde+9jUUi0WXiYIASkuPkYDsa1ogPM5laWkJADxUoG52DgaDqNVqePHFF10f7Nu3D7t27UK73XZWGffNccMvxyeRSCCdTqPZbCKfzyOZTOK+++5DKpXCM888g2AwiH/+z/85xsfHUavV8N//+3/HSy+9hEuXLrnnkXokGKiSwvpyvDlPaOlRqVGFh5Qir6WCoMqQ+o913qq1b/1rHCP7PdeY+mbVd8w5wX2JmnaK0ZNclz0gu375gYDr5ZdfxtLSEm6//Xb3WavVwtNPP43/9J/+E44cOYJGo4FcLuexuhYXFzExMQEAmJiYwAsvvOB5LqMOeY0tzBn3bi26UIEuVaTao1/Eky48oBs4oD4yfSZ/2yAQpccUTHQxq3aqC9tquOp/42ZZC7SqHWvdQ6GQJ0cg60bfUq1WQzQaxezsLLLZLKanp7Fnzx4cOHAADz30ECYnJ/GlL30Jb7zxBm699Vbcc889GBgYwLe+9S33DL5THemk0vL5PIrFIlKpFEZHRxGLxRCJRDA0NISBgQGk02lH92UyGUcv3nXXXRgeHkY+n8fq6qrzlYXDYQwPD7s9WqQf6/U6zp496yhxBkRMT09jdXXVs5eJiovNUMK+VKGcSCScj41jt76+jnK5jJWVFTemsVjMRQWn02m0222cOHHCgXq1WvUoOJ1OByMjIy7cOxgM4tZbb8X999+PTqeDt956C8PDw7j//vsxNDSEbDaLN954A0888QTm5uY8fU4AVbpYGQa/qFNLI/pZUrzfgo72GcHDWqz6bD5fIxVVyWLhPNBgIxYyGXyWBvb4va9Xri0/UHBGsVjE5cuXPZ/9zM/8DPbt24df+7Vfw9atWzE6Oor/8T/+Bz72sY8BAM6ePYt9+/ZdE5wxPz+PsbExAMCf/Mmf4Fd/9VextLT0fQHUuy04w2bkZlQaNWS1vlQTVb+Q+pHsNSro+B4/bZOCSf1PpHX03RZoVQCoc5oBAbrnRYFR6RbWT60um82D1/A6Zo34xV/8Rdx1113YsmULarUazp49i5MnT+L5559HKBTC/v370el0UCwW8eyzz6JarSKTyXj2OfE9tGDY79zPpFZLOBzGvn37sGPHDoyPj2Pv3r1IJpMuoIKZNCqVijvQcmlpCX/zN3+Ds2fPuqhHBR5aQAzM2L9/v9uTBXQtaE0DBWwkvy2VSigUCs7i4hwCNgRsMpnE1q1bXf3m5+exsrLiMnqoiCgWi47SJahxHLZu3Yr9+/fjtttuQ71ex9e+9jVkMhnce++9eN/73odqtYrPf/7zeP311zE3N+c5R8taF5xv+j8tfJ17/M4qXAoWSlNr9KTeq8qKUncaSarWmlpXfK8Gi/AzWtNkBGykoQVWVUjeLeVvE5zxf7wB+X3ve5+LKgSAn//5n8c3v/lN/Lf/9t+QTqfxi7/4iwDgzs9ptVq49dZbMTk5id/7vd/DwsICfvqnfxo/93M/932Hw7/bgCsWi3kWAye4WidKb1hOXX1RytdTMPI+G5GltCMDOQKBgBMe6jjXxa6UorXkVJvlURRK0/A7aqV8P6MV9Rn8m795PRMBc/Pr9u3bceedd2L//v245557EAhs7Ns6cuQIzp8/j3K5jAMHDmBgYABvvPEGXnnlFaytrSEQ6Oaaox+LtGK5XHYaNf26Gj4PwFk3w8PDGBwcxJ49e5DJZJBIJNDX14dyuYylpSUsLy9jbm4OJ0+edG3hHjMev5LL5VAsFp2wLpfLSCaTSCQSniwa3CtEvxMBltf09fW5jcUEDfrtKpWKC9CgVcY5xqCNdruNSCSCZDKJQCCAbDaLwcFB3H333S6P5OzsLF5++WVMTk7ive99L2644QaUSiWcOHECf/Inf4JiseiZexoJSaoY6Cps6rNVGk5paRbOJ2shKRvAZ2nAhtLRFgCpFKjFpyDHZ1KpUTBiHbUdWi9tC8ee4/huKe+IlE+///u/j2AwiI997GOo1+v40Ic+hM997nPu+76+Pnz961/Hz//8z+Pw4cNIJBL41Kc+hd/6rd/6v12VH5qioc0smltQLSRdkAQZ/q9AAnQ3TupC1ueo5soFzegopWz8dB/rhOZnSi9SwFh/FwFHNea34/u13uyn/v5+50s6e/YsstksTp8+jXA4jD179mB4eBgf/ehHceXKFXzpS1/CsWPHsGvXLhw8eBCJRALPP/88lpeX0Ww2kUwmXW5DghKjD9vtjdyF+Xze9TET67bbG5kaLl++jPPnz+PYsWPOD8WMJ/l83o0lAYGWKDX9SCSC0dFRjI6OuvG+ePGi8y+2WhsnCVerVQcI/JmYmHDgOj4+7rEYyaBQWLLQIqzX61haWvIIZh7XwncfPHgQ+/fvx/79+9FqbZx79pd/+ZeYnp52oe7VahWPP/44XnrpJdRqNY/Q13lM4LIKmc4zBRsCiG6hUB+utZzUegX8zyWz7+Fa4zzj/Xy/9acpMNk2KJj5vdPS9r1y/dJL+bQJChelJm/loYRK+VF740LVhQN495QA3o2mvNZGp6nfR4UCFx5Bgpqyn4+C96rfiMEJ1jdD+o3UivXXsa2Ad/8XnwF48zrq9Twva/v27di1axf+8T/+x9iyZYs7Dfn06dP4X//rfyGdTuOuu+5ygvv111/HysoKarUaUqkUqtWqpw7RaNTReNovSuECcMeeWJ9MOBxGKpXyZKVn/ySTSbRaGxk0NKiDvjDuUWq1Wg4U6DuMRCKeVElK+dKCDoVCqFarKJVKDoR5LheViHA4jHw+7/xyN954I2666SbccMMNaLVaWFxcxNGjRxGJRDA5OYm7774b8XgcFy9exOnTp3H+/HnMz8+7+UfLXWlI9S1ZwGJ7mOuRc4h9ZYGFf7Molcc5RP+ezildP1xful4UGPX9VP60DVZB03mp46AnR6sofjeB1/8TqvD/RXm3AZdaQxwuOn91gVjtFPCmv+HnXKgKerxWv2fRQAheR+6eG1T1qBP1qym9o5YR0M04YCkapU0ALxCTstFrtN3aD7yeQkX7LRwO40d/9Eexf/9+3HfffUgmk2g2m/j617+OEydOoFwuY+vWrYhEIlhfX8fc3BwuXryIxcVFrK+vY2RkxJ2JRWHaaDQQi8UQj8edVcXPOU4EGwIQhaMKYFKMfAYT2iqQsF68t91ue87k0uNUVKun1cj+YBtKpZIbO6WFmQl/165d2Lp1K5LJJEZGRjA2Noa5uTm88sorWF1dxd69e7FlyxZkMhkEg0Fks1kcPXoUs7Ozbix0bKmkqFKjlowqLBz7VqvlycfI59mxtds+7DvZRt0ozb5gnfyCK/w2DnMeq/JnGQauW7XQuK40mlLrbNftD3PpAdcPaaEVw4lOwaTC3vqx7D4hanj8XhcKr2FINxchKRgucloEGuihGifrofQfi4KLRolZSpLf05IBvDkUVbCxT0iJ6r2skwXRaDTq0jsRcHfu3In9+/dj9+7deOCBBxAKhXD8+HFcuHDB+Z8YeNTX14dLly7h9OnTjiIEgMHBQdTrddeOSqXi+oh1oVXFdvA3gUKPn7dbHNh3BHoqDTqu7GceeaL9QiuN1/DvTCbjEvhS+Wg0Gi7Z7969e5FOpzE5OYlarYaZmRmXR/C2227DyMgI2u02lpaWkMvlkMvlcOHCBVSrVcRiMTcWDP9Wi0r9Vjrv2G5ts7IEGkKugRUEHACu/zgntH8UAHV+Xg9UdV7pPFc/rAU164O2gVCqlClVz/7ahGL5b13eET6uXvm/XxQM7IJSas86gpVTt8DAa+w7FGystqgCxkZo6SK1i9L6DlTosD4KiLyOz/WjfbT9pBd1/5m1QtkWW+9UKoULFy5gZmYGr7/+OgKBAHbs2IFdu3bhxhtvRLVaxV/91V/h/PnzuHr1Ku644w5kMhkMDg5ifX0dmUwGKysrKBQKLrQ9Eom4vVwM6uh0Oi4dUiAQ8Pxmn0UiESe4KFx5jbaVFBP9NuVy2RNYo8JQM5IzgIM+RB53UqlUEI1GMTg4iFAohMnJSRcRGY1GUS6X8eqrr2J+fh5LS0u46aabXCRlrVZDLpfDqVOnkM/nXVZ1pSip+KgFTrqbAEwaV+fQ9cbS+mZVmdFIU0sd+/mU9DNdN7SidDxUEbJWkvqhLbXu9x5dN5zfquS8myyuv03pWVyboITDYY+Fw6KRf6p9arQVDw8MBoPOZ0TN3ibgVZqEn6lAVG1ZhaMCmxUY1ERZLI2i/geljfi9bhoF4CwIfQd9NaqtWt8E4AU7CjluHuZR9nv27MHevXvx0EMPYXp6GvF43IHaW2+9haWlJdfXDFSIRqOYmZnB4uKis+TS6bTLrsHDK1dWVhzIsu084JHaO8eX1pRm/GfdGZBAS4aZ4HWMOGYcU93UqyDKo07279+PZDLpxpUbo8+dO4dLly65c8EmJyedb4v75VZWVjA3N+fJV8mzurg3TceefxO4Go2Gy2CilJuOMecYfU8EdqCbJ5OAwrlPQNP+5vdkJNQKVIVGqULro1Kg4W+tl1pYqpSp5Wj9XVYZtRuvf5hLjyr8IS0aMaWLnxtydXFoIIel8RSkCHYq1FXwaWABtUWl+Pge/m9BwTrPdYFaClF9dXqdAozVbC0lo6cu6w8FHPtPNzCzHbZ/m80mhoeHsWvXLuzcuRMPPPCA890sLy9jcXERr7/+OgqFgtuQPDQ0hHQ6jWBw48DE+fl5RCIRNBoNzM/PI5VKIZfLOdChxdPpdNzZWqurq4jFYg70Go0GotGoU1yAbn5HnqPGLBixWMxZeMwIr8l4mfWDbWd2+sHBQQSDG3u3lpeXMTMzg/Pnz7tx279/P4aGhhAOh1EsFpHL5TAzM4NcLofl5WXPnFNRYmkzggwtMmUDVLmx0aqq0Fi/lSpe6rdS0NLPOc814lCT+LIt6nvkWmId1QrWOebHduhcZnuYaUX7QVkBDRB5t5QeVfhDWghM6qOylAr/psDQxcSFocKEoMDPrcNbFxt/q+ZpA0P8+HzAa+XwOSokVFO2TnN9Nv9XPx+LWm+WVmJfKFgCXv+a7qVpNBoIh8NYXl5GLpfDxYsX0el0sHv3bkxNTWF6ehoTExNIJBLIZrPI5/M4ceIElpaWkEqlXCLeUCjk6LSZmRmsr6/jwIEDGB4eBrDhgyGluLy8jGKx6DYUBwIB7Ny5E6FQCEtLSwgGgxgYGMDOnTtRq9WQz+cxMzPjGc92u42RkREMDg46X2U0GkW7vZGqKZFIYGJiwmXaaDabKBaLrp3nz59HoVBAq9XCxMQEBgcH3Sb3er2OhYUFLC4uYmVlxe3p0n1WFO46fhwbBR4dN7UI1Sekv1Xp8rNa7Pzkc3Re6DxWCtXOCypillmwLIKuDy2kZZXq5vzSExW0TroGdE29m4Drb1N6wLUJilovgPekYavpqtamVAWFsn7GBWKDPHTh6iJUnxS/U6pPwZH3KSCyTkodqRDRhctnKIBRQ1aLTOvp59dgsWBo/WyaHLjVajnhPz8/j7/5m7/B5cuXsW/fPrzvfe9DKpXCrl27HF134403YnZ2FidOnMDCwoLLQbe6uuqCIhhJyAwaPC04k8lgdXUVuVzO7eFikt5gMIirV68C2AiiGBsbQz6fd6cJ1+t1hMNhBAIb0X+00IrFoguPr1aryGazaLfbuHLlikvxRAu1VCoB2DhRevv27Uin0y7jCADMzs66PIelUsmTqYX9yPFXhYrfqeWuhePO66y/UwFP55ayATre1jelwEGrTgM+rGWu64rzUbefWKWIv9XvpmuIdVLrjuvKntel/anrrFeuX3pU4SYoXFAWSLgPisJLN2+qBgpsCATrH7Kao3L8XGSkRgh6ulCV5rECxAKYghGjBenH0fu0LmyTFSwEZr5HtWC+T7VZpQRt1g/2B/9WCoj9x77rdDqYnp522c2np6cxMDCARCLhsmcwSSoTzZK+q9frOHHiBFZWVlAul7G4uIhgMIiJiQnE43HP0TS6J4tZO7jXivQfaclKpeLoRkY9Tk5OOnoxHo+7jBnJZBKRSMTj97py5QqKxaLLAF8sFnHq1CksLCy4VFEAPBGPepaXFe4q5NVqUsraKjaci3wmx1bHwPqA7BxWelCpX96v81jrQ0VKaUZV3HifjfSLxWLOP8n60uKyIfQ2SCMQCHiiglWBtJThu6H0qMIf8sIJTqe8ggG/t9aN+rX0OXrf9XQXpSwUWCiAVBjpYlXO3lJD/FyFj9V+FaiuRxtpJJnWV3+z0K+kZzyxzvyebaRAUcFHqicUCmFmZgbz8/MoFAqOUhsbG8Pg4KDLH0hgGRkZwdDQkAv+2LJlizsG5NKlS1haWsLs7CxWV1ev6T/6pliXdDqNgwcPYnBwEIlEAoODg+h0NkLfQ6EQEomE80UxhRN/ms0mKpWKC5ao1+tuP1elUnEHb+ZyOayuruLcuXMol8ueCEylclURUCGvfWvHVgFM55I90FLvUetKLWqlm1WR41gSjKxVTmtH94UpeHEOELD0qBmdJ1SoOF/saQp+c1y/Y1+oZaplE9oSf++lZ3FtgqJaJNClIAA4SkcXg/q0NDpKBQ2LCib9jAKAi9Ivk4AKJz2mQSkZChXWk/QQQ7qVBrUU0fU+o0Cwvi5aBWwD9/JYILR+LWrGKtD8glUUKDWKk0JSgyLGxsaQyWSQSqVc+DiBjr4sDScvl8seoCZFpj/hcNgFZTAij+1vtVrufDDmNSyVSrhw4QIWFhacVVWpVJDL5Vw7C4WCy8LRbDZdSL5ViPhb95Ex9ZMNQVdq2SojOl7aRlrfqqgw6tMWnTO8VgMsNJRdE0OzD3UDeCAQQKlU8rAYfjS5rjG2VyluC9R+dD2LKl28V31zrO+7pfQsrh/yohSZLcqj8xq1tjSKzlpoKoz5LP7owreL00/nsVqmfZd1vut31jq0AKZ1o3BXTVz30CjQs++spm7fyx8bZaaf8fQCFZ48NDKXy7n3LS0tuQiyCxcuYHBwEDfeeCO2bNmC0dFR7N271x2HwiAKJrZlxGEgEHDppGg5sZ2MOiSNWK1WcfXqVVQqFczPz2N1dRVra2u4ePEiyuWyi2TU8HT2Pa13PctLN0pbi53Cm6ClwKERrtrHOn6WTtT62PmjY6AMgc4R/VwZALaPv/kupaDVorPzhOOudJ8+i4qXKpRKpfI7BW6/KF8bnNHzcX3v0gOuTVSsIFXrQzl6oAtcSnP4BT+wqEWh2mIwuBEhV6vVPAvQgpOlZmzElgokBQn1VViLkdfqHicFLQpKfRafwag39oG2if3De1VI8Tv+1vopeOj+qkqlAgAuCk8FT6PRwJtvvolIJILz588jkUggk8ng8OHD7rywRCKBWCzmLLZOp+PJBMI28DyvbDaLy5cvo1KpOJ9ZpVLBpUuXUCqVHKitr6+jWq267QDctMyM88wkz/YyiEStPp0H6vNjf+kYamCD7T++R8dKc2XqfNU+t/ORxY+Ks/NJn6vKDdkDWl58ngKbBUugC4ZKe+p7VTnTOcP1wGstNc17dH30ytuXHlW4CQoXHmkcFSr6vXUCqxDlnh8KAhUqSudwoVlrjclhVau1NIiljJQO8XufbhbVCDMFYj7HRoWpUNXMEjbiUa+39WGxn/u9Q7VzBVn2JaMHg8GNDOpKP7HetMBarZbLDZhIJBCPx5FOpzE2NuZyEcbjcQBweQR5BEqhUHCZ6oGNwyEpcHW/mt88iUajaLVaLkCBfhwKcLU6lBbTeWT7jb+tFWUtJY6NzitrDalCxnuUmlSA0PlE+k/nL9uhyolaPdpPZBX8lDJdVwo6Cja0uPmMZrPpMvxT4dO5qcBu2QQCZy844+1Lz+LaBIWLlCBByoffqVVlQUxpL+BabU4FkS5G1RCVggO8wRkUFgpaat2pdsk6WGtJn6XWj1pg6l/TNqplp/4Hax2qL0/pGaWGeK0FWPaLttsKM7aHVJxaA5rhgf3KyMpGo4FSqYSlpSVcuXLFvdMv5VC73UYikcDAwIDL4K7jaNvC+UA/paZU0n63PjwNZrBzReeBWhmqLNhNvzrP/KJAtT9ZD2UTrOWjioWCqrUQlZK2dfNrnz0fjsX2KceSY66prdTCVOBk4RzSwA8NotmEdsT/k9KzuDZBUYuIC4TaMy0hLlJuBKUAYlg0BSad10AXlFSL5Pss7ULtXL+zQEOrQp3hfnQIqRoKUvVHBQLd4yb83mW1bxVSgYD3/DE/qlKFkgoZvk9pJV6jlq4KdhvooSHOfv5CtTAIZprmSBUPtVqBaxMSM0JQLWv2pW52te1VSxboZrXQdmg71aenbVNLU/vK0tGWCeC8UP8j54vOA6UhddzVotN3W8tMgV8VIIKEXq8WO+/nuuH/qjTq+zRIRsGbz9M5qMEm9kgVpR51Tr4bSs/i+iEuXDxcHPSBWJ+WLgQFPF5rrQu931IlGhKu77D7tvgd/6ewoJDgMy0IWYuMddHnqWBW0NBnKnDrcxVgVLAo1al1sNaGaufafhb2BT/jPXrOGK9j3TRlkNJTKsh1HFXgAl2BzvHX8dFsEGqxsE9sWiztBxX4bJedE2p56hjo9UrB6d4vFm2HAhzfa617BXu+348C5jOpLKlSoVS1goqChbaV1yqgKb2oQKYsABUCVVzUmmV/ab+p1cnnvJtA629besC1iYoKVhUUuklXF4YCDxeQFba6GO3iVcGnG3NZFOD8gMn64Xi9Ulask+6F4TN4D/1Hfouez6OGba1T7QML1NpOSwVqNJilglTrVyClwFJQUOGmtJCOqaUk/SgmP8uTYeT2PdezLLW9HBMNXFHgoQWkB33qPUp58R7bLrtdgZ9bK4bvDQa7G8T5Lo4H60hw0jpZ5cbPJ6frw8/Hq3OO7edz2T6do6y79q0N7mE7bZonO668R7cG9Mrblx5wbYKiGr0uZhVQ1krqdLonCCtFpMBD4cK/deHzHf39/QgGg87JrAJMgcDSZ1on+5n6pVQjVsGnlqMudHW++4X4q0BV34daZfyMv1V7t74eBVCgm51e9/soSGof63h1Ot3DCRluru+yfjNrWeqYqUWg/7NP+DwCoFpEqmBwDqkVaGla9qlmhbBtU8WB92p99f2kCdkPFvy5SdxaR29nkSg4qYJjrSreq/PGbjNgCQaDjiLWgCU/xYD1VXBif+h2EmuRke5U65onIvfK25cecG2SolohFzAFFIUQF4FaQApwCjYqbC31poIH8A/DV2GqAtfP4lJLwPqFbJ14j/pv9G+1eJSO4fvVd2RpHV6j/aeaubab2jX35FhHv44DBZ6f4NbPVEnQjeN6raV+WQ9bPwp4AimL+nR0TNgWLarYWD+ntVr85hF/LLXJ+601r8+/HhgrRWujRa3vEIAHeKySoWPM9ystbCk8Pe5HLWfmZ9QgJG27XTM612lB6tj6zUcqM7pWeuX6pQdcm6AoFQJ4jyvXBaD0hRU8unCt0FD6wlIoFG4UXipo+V5Lu/FzrZ/1D2hbLNXD+zXEnO9RwWzpTwu89rc+X4WaRmXaSDiGmds2q4/GCi0FRKXl1CrVaD6lzvQYeSsYtd0END2l2q9uatHqWKvg1jljhSz7VTOicGwVHDWi0foH/a6zc8KOqQU4bb9ti563xb5Wq16jXNkmXq/tttcp6Oo4+c17HXsL9HpCNQCXZYb1VOWjB1jfX+kB1yYoXACWUlKtXBO08refBs/vlDpSX5KlQayws5+phqgLXg+vpCCjRsuziAB4Dje0oKl0FJ9r26i0IetDAcn3qUBVeouZItiv3LRMcLRaMetlaTMFLxXyCqiqVLTbbc9px2wb+8uOmd0KwD4MBoNOCKrAZT2sJa2+Ou1TKijWUmcdbMQehbwCpAIK28rTn/k9GQG19PzoabUyWX/WxUZuss/4PEb56bYIbadS2wQM3sP68rkcY0sLAnBRnRw39pHOHW0D28026jzjb56tpuPYK/6lB1ybpPhNZhVMfhSO7g9RDVMXs3Uy298qgHUx6iK1dVLhzUXPI0CULlG/hQZEsJ5MgUQBYeuuYfYUFhpib++x1ib71YKb7V9NBOunCCjwaog1fUNqjbC+BHQ+RwGKz1dgY5vVYiR9BXiDJNQisQLc1lnfR0Cwc87OPdsHflSyvdYvulT7mO/W+ls2QO8nqKiPSPvQAp9tgwVLrgUFbh1TnRtWuVPlieNGBYd+Q9aT20CsVcc+7O3l+v5KD7g2QeHisXs/mKiW/9vjvi1lE4lEPMJMaTFrRQDewyFVUFLDZWZsvZ+aNd+vgpJtUcqP7eG7+VwV/kolKaCqEFRBos50oGuhtdttl5ev1Wp5kvAq2PlZeapZ8x38XOkmTQlFIaVt5xjQ96HWA69RQWb9VbZoEAoFsHX4K+BpPkQqNyqsOcZspwaUKMi+nSWj9JodA41S5FizPpyrfhYa+0bXAIFdKUS19lkX3Tem1pkNglAw92uX+toUcLTeqiBYq5UWciAQcH4zVQg1kKZX3r70gGuTFF0QKrD1cytErdCy2rdaUAQO619Q2kMXotVi/Sw2Lkath7U+rMWj9A99Pu1222UPt7QN38fnEjSVBqXlqUCiVpj1V6klYUGRRcFIwYNt1oABBSYVphwTBSpeY/eQAfAoBNbyIAhwjLT/+b+11vTdtk8tUFvrh/XzG3P7Pj/AVeXA0oZa2JcKGqr0WAtOLXa+h0oQ6WreZxNH2/Zpvdgetej5fLX4ea8qHqyvBpuodW77rWdxfe8S/N6X9Mr/60LQ4D4PFQi6MAHvXhxLB5Gu08Wv2qNqyFzkuigthcI6WGGhDnjAGwjht0C1rhQO6iuwAlxBg7+DwaDL1afPV/BRQcT7/KgoC6bU7PkMBUG1DFS4ap/xb3uPRiz60ZSWgtI+1x8KQD6L9JRSsbyf3zFbvN7nR4lxLFhXCzI6bhxL9Q2p0Ld14VxRi5HP5/vtHFLr0AKuAp/ey/5RBUWLrhPtDz6Tc6Xd7u7v0vlBC4/v9bOUVRFQH6jOZSpqtn69cm3pWVyboFiBq1w6BaAKVw3npbNfgYeLV31c/J9hubRSKITsguZ3dGyrhqtAo8KGi1nDna3fht9rRno/nwnvp6XBfTKWwmq3207LVj+MClPr+7JAp9FvfLYFNi0UUPqOQCCAWCzmBJfNts9+UypMs0hYQa8BBOrD5L3W8mE/AfD41/hMq6SoZWiDUDgGnFucQzaMnfXRDeS6XYN9xDRdKuz5Lvo+1bKk5akgaIFFrWZlEvguVVC4jvwYCqUBdewthazzX31auv7UGtb5xM/Y35rTslf8Sw+4NlFRLVB5fE509Wuo5gp4Hex6ndWYVYvmwrXWkQo2q+XqdXwXhZnuI7KgoUCnNJ3VwK1wUyGi1oelPO1WAWsBUiDqe61Gr74f1ZT9gi+0nwF4wEXHR/tOLV8/WlepKGZEVxrSJhjmuwgumiaMAKLv1r6380dBjfephWQjMbWwTTovtO1+1o3OFVUSrPWkVgsFv1p6Os/1uda60/fo83Xs2G5bJ+u/4z3Wx2fXLwGTxa9OveJfesC1CYpOdBVkLOoXCgaDLleeH/2j9KAKQl2sNphBF6i13Phbgwv4fACuLuoToaXV6XQ3DHPfEgAXLq/+PD7bHpVO+staZix6bpa1gtSaArybUFVT9gMw+5mlzdQS4nMUOLQe1qJRC0gFsPYFlRW1aPmdKiY8pFKtWxupaAM51HrQQB4FT60rr1NrXAU7x8gmYNb7LW3N59j9Y359pc9g33LuA3DzjwwE71fLzFq+qlAkk0m0221UKhUP6HOeqN+Mz1briuuAyqXOAV6jFqGdW71ybekB1yYp1nrigrU0FtAVHJqhHYCj1DSzuKXW+C4ViHwmr9P71JJRa4TvUKGj+d8sRajvZhsViBS0eY8KbH2PUkt6rdKT/Jzv1LZaak4tQOs3tJaqDcf2889p3a1fy/a1Wol6rQZWaD9asFOQ0swMOpZaPytw+UwLLqRz1ddkBTfrzTlo81Hqu61SYTeC09q19dW+I5BQ4bJ9pmyAbRfrqe9kX/ltGVErl9eqwqdzVylWBXRazdrPfhZrr1xbesEZm6RwUqtApYC2ixyAZyFyoVlfhFJKvMfuBdIFZ2kZPpfv4d+8zgobSxNpnfyEu7aH99lIMP5WClP9HNSy1crjs6wgsRabBWm1SvR/BRfep8+yQGffo2PR39/vjtRg8Qu3tvdez2pQAFEq0IIrADd2OuYcH/t+nSOW+rRWhs5P7Vt9hs4JVXT0Xp3Hej37VwNo+HzOBVX0VJnjvTqnrBXbaDQ8m4N1Tmh/8n6tE9tqQVfXmio3PeD6/krP4tpExdJ8lntX35T1uwBd66FerzsBQT8WaRmgm5IG6Pob9NwoCjhdnOFw2AkqntBr93Op0AO8x6botUAXWLRtfvt2KKTUKc4MIDya3g94ga5PSH03fpQbr2HRPmGdFby0TgA8FJlG2+mY6fvZDj960fqzNEhDlQ2l4TgXlEpWy4mWgloMnBO0nv1yJioYcC6oYsN+4tjwuVYR6HQ611CHesyJWpdqYfuNIf9uNpsuEEMDkEjDqlVnfcSsO8eINLaCip77xn5TS1nHRKl8tsseS2OVn155+9LrpU1W1BJRi4jCkcLEj/azPioWtSTUElLqRbV+voM/NkRYHdKss1pd1tKj8LT19rOsLFWkwK1tsUJW+8yv/yhQ2HbV/NUCUQtFlQJL9WjwA7+3wMJ3aKANQcaCglqI6ufRNqvFZ6Pr1ArWdvv5/dQCsJGf1kLnfaow8F7N/g7AY40r0Oi7tV0M6begZdvENus8VqDROct5qfOU60eVJG2bBhixrXyPUqV+PjpeYzP5W6pU50mvfO/Ss7g2SaHA0NQxakVYAascvnXAA929YeobUiHAdwLdCCkVCBb41JrQxaiavZ8/zg9gtR42CES1cm2/hsLbfUdAF1i03sxiQI0fgMsBaP0NKjT5Di3sW7UoAoEN6o/ZTewePLV2+BkAz/hqH3EOqMDT32qR8nq7v4/jqX1yPRpSx0lBmGPD+qh1RtDU53U63SAcu5lYwUPpUd6nAGcB1vaDApy1/FgI1nwurS+1lqxPT8fAUoCqqLAOrVbL+diUIuTc1XYqOPbSPX3/pQdcm6QwnFkpJaX7dAEA3j02Cm5cbFzYKjz17CDL+1tKQy0HwBt1pvScAqUFVwU8G3Wo9+ii5v8KWEqbUXCw7lpnAE6zViHC53Q6HUSjUQBAtVp1/af7xaz2TmtNaTnNoagZMljHdtu7/42gzL7SyDdaA6Q++b9avH193c3iKuytxWtBUkFY55XuC1Qfl75Xqcd2u+2h0/wsOL5Hf7fb7Wsi8vi91k8BSuvKsdFgI17PPrBRhHqNWp0KZlxT7FfODVqUjUbDjYmOnSqJnFs613T9qYLB5/Q2H3//pQdcm6SokLBamfqTdHFaB7tq1ypo9T5L2yhY6LuVUvIDMi2quWob1DIgGGl9KDQA78GSVgPnc1nUulSQ9tPSbTi3Ult+1BT70VpOfIZ+phuN2U62ncLNRmuqpq997KepWytFFQZtP3/rHiY+Q8HGjq8CGHMc6hjpmGvf+VnUWmcqG9rvalXrnLDWvoKL7Sutk92MbqlGtVBZrLKj81e/Uwvfz/rTdlnrT325quj1AOsHKz3g2iRFFyGLWhM2slA1bi5WFZq66EOhkHPAK7VkF50KRX6mFp4V0FpvCmr9ztJarVb3SAu+S49a6XQ67vgWzWXIvzVwQyPP7GZeC+RqGbIdCix6HS0LtrvVankOC+QzFIRU6+czedItLS8dU7aD9/J9ekwL4E2DpElwdQ+YtVpU0CpQaHu0bxWQ6HNisb4wPlfpPz5TwdNPYLP+VoiHw2HPHj/2Y19f39sqc9bCUmvGznFa4fV63XNCM8eCFh3pP1pcFjAZDaonXKtlqgme+R2VM31nr3zv0gOuTVIoPNWasMDCxWKd6TZaTikg3qsCSUFG36/FWm5arHBVH5zeb9unFptaDFovtWqUHtX6aXvUqrD1U9pJgYf3WSqJn1s/k/pE1EJlG/yEq5+/UhUCPx+btsevn/mZavoW5GywhVrheo/6W3S+6TXad7pHy6++qjyp5WoBVEFP56ifT0wVDr+x1vlkLSudv6yDWk5+/W3pXj8qVMdZI3atRcXIXbUM+b5e+d6lB1ybqFjhaCe5OtC5oLlwrHBQK02tNeuo1/dYoWB/qzDTOtoFrkJWf2tuPiscVEvX9/n5Q/Q6v/dZ+lGDTlj8KCS1Dq3A9NP69V4dI1JJHBdNiGv7UsFHLUpaopauazQanvbRGmT9lWpVZcGOF/vJj+7isywQsw52LPQZShnzO+1LvxRIqrDxuZZK9et37U+lza2ixrba+aWgp9aQDTTSdlgrXsHWJtdlPk7ea/uiV65fesC1iYpqcBp6TF9EvV4H4N2ErAEI1udhoxOVylOh0G5vpA6ihqoaOzVzPfQR6EYa6jv5TKWlWN/rRUnyWaoh8x6tox99pp/5+eiAa30NDFCxwp1/qyLAv/VMNPWZ2Xqw3urA17RQVtO3kWYUgEoraV+yP5Q25PW8Ruk6DbTQupKO5f98D4Wtjh3vV2XFWlhAF5AsTch6Uqjr+W6cX35WLgNVOp2OJ2iE64JFA5i0D7kmeK+1+Cwlz2epT1LZBj0wVGlaDZ3X4J5areb6jX1t/Zi9cv3SA65NVPw0fdU+NUmsWj/WKlFAUF+QPk8tL17H96sgUxqMi0/3ClkAUVCy79W6Xc+C0T5Qio8bOq3WrBowC+usvgYLlLFYzF3DyDVSYrZtBH2tk1pzBArVwFW71meoxaJRc5ZSU4Dg8zQDu5/lY4FIi1JWOi4aAUiQ0Qg+CxR2ftoQfB1rvc7SZXy3gpzfWNlxIKirdWMtar6fCiDHhW3he/3mhSo81orT9E0K3KpEqLVnQf56/dMr15YecG2S4hcYQcGg1owCC4WUddYr5aRgwvsikYhnXxYA1Go1tNsbYdx0mFNjbTabnvB7BT/mY9NFbAVHp9NxB0XSgmEbAe9+JBswwO80BJ3P1nBwdZQr0KtjnO9jwARpPLUIlMJkW9T6VYuU/aVBBGqp2roB3oAbpZlUe1fgoF9TQZjP13fZqE3Wk/3GwuezfQQePovZHxhpSCtJ/YX2elVc1JLyO0pE/UUKJJaeUxpTT1VWECOAcT4o3UclRJU6/VsZCLVYreLG9zebTUQiEbTbbU+WeNafc00BT5XCHlj9YKUHXJuoqKC0jm3VfC0Vo8eVsygAKvBRcLDoIlOnumq1XIwaYehXD32vaqHaNs0yzutVICtt5BcYos+z7VPNVq9hXRRwNBmvWiraXq2jAp/2WSAQcIoD4M1/aOkyfqegyz4hJcbr2V82clSVG7U47Tjxer88gkq3sqglzXv9AJnjxbayHn5gbCljnYcWtBSsddy0jX5Ki7WcLA2t16giqO9Rf5jfnLPWrYIei7UarQWmClCvfO/SA65NUiyVoJqqUkUqdCwdpUJDF6/VOvXZ6rtR6kwBhM9ToUkByeAApX+0jkqfaVHBb+tAjVcFptZHP9PAFBWIfhSN+mkorCx9ZIW0tZSUGlMw4jhYELHjqM/UfUwKJHqdWsVqbej1qmzwuQomOq+0rmynUotqJdAi1f7zs1z4TvYLv1erU608nZNK4Wldbd11HWh9LeVsKU+da34KiD5DP1fLkHNRrW0FQxb92851e2xRr7x96QHXJimW7uFkB7q56TR5qM1/xwXGotqu3wLVwAONYOO9ChIqCHQhUzjb/UIqcG2ofqfTDfSo1+uurdwjYwUBBSbBlNQc9yKpBadUKe+jAFarTgWUgpEKSv1Mr9dnc1yUDqIFxs8YZMD7WWder8fCa2JX9qWG1OteOlVUWL9IJOKew2crVaj+KQpnpZXVGlJ6WeeiBWnSZErbWiqb/2u/ttttp/Qofcr2aRCNWuB+EaM6560iwvnCelplg3SvvssGZVjAtwoEA0Cs4sD1x/babR29cv3SA65NVNTHorQScG2SUdXKleIDvNSW0j/WatK9LW+nLargAbyWDv+3/i0FDvUz2feoJqzP52+liiis+DepLG2/1ol9av0ObLv2q7Wy+B5aunwm38WN0SrEtZ/0O30u0KW6LPDwuZqtn0CsAGP7zvqNtPhtJ9D2qxXEtilNqePlB/jsP/pCbbSlWkMq/FXRUstN+8L+1jlvLWDWSzP669pRS1GLZQJYd820T2VRv2c/MULTgprSjxxXtYp75e1LD7g2SeHkVqFpF7FaTPq3Uij8X6kZCwRchCpEgOtvjNX3UWjxnUoVWkFvaUt1ditg+oGDtod1pWBSEOW9So9ZilPbb6kzPpvWrrXarFav9VPA4He0JKxlQGHmR/Va0FbBR9ACunkYVQAr3WaT617PguVz9Z16rZ4OrVa9WoLa/6o8aB/qGOsc07r4UbDWwtH6q2XHd9ggEH239omdEzbyUsFWLUy22SqUfI6fMqGBNlZ57JXvXQKdTdhThUIBAwMD/6+r8fdaLM2nGhyL9XmxqDaugR28nz+q4fL5/B0Ohz0WmNJefAeL5rhTAeDnJ+L79EcFmwKwdV7r861gbLfbLo2VRrKpv0sj16wvSuutAlGjw/idpv+hgkHainVjX9v28xrtQ+0bv31TfIe1IkmFaTu1fWr9qD+G88VaK+zzQCDgFBC1Xi0I8HNNOmyBlnRlIBBArVbzpZ05xjpX2Ycacq7Ki62H0oJad/ah3ful64RF1wj7V9eEAg0pW6sc6DOtpanWt93K8m4q+Xwe6XT6B7qnZ3FtkqI0jF1QVuvjderfsRqtCgNdMCqcVJDrYlVKSt9HDVYXptJ4XKRaD32mtRzpc+Di53vtpl1+b6keCmeNqrQUoRWwFkQV0C3wqVBmO/36zS8U+3pA7ZcrT4FPtXMViNp31uKyc0Pvp5DXfU/aZharSGj/KO3GOvj1BcdEGQNLIVslQ+eWH7XKcdcx0v7T53NN6JhR8eDctUCpFruuD96vlpcqawQiS4Grha0gxT73oyt75drSA65NVMipA93MAdQquY+k1epm0FAfCYWTZlWwoGM1SuBaH5OlYxQAqM3zfgpDLmgFX+DaVEoUBrrZV69pNBqek5a58Jm8VMFHBb9mLFDAIwhcDyDYbk28SwFlHelqZfH5FN7W0rRKgPaF/qYQ1XorWKnFxL6wJxWrpchr7cnAfB7Qtay17ynclQ70q6fOB6WjbVsVBCxFZqMk/ea9jgOL0pf6ftZfQVnntQVX9ouO1fX8oLzWzhO2IxDwZuzQsY9Go575ws97ARrfX+kB1yYp1qdj99QwAlB9Vyo8dOEqHaKChddayoTfc/FZYaOLXOvIYv1CFkA0qk81dft+/a111/OyNApSDy+0fhcLKHyedZqr5cdoTaBLK1nQ1f4jwNl0RwAcwGu4O5+jWrkKW7WQlQLU+aH9wnlCK0OBg4KW9dC6aZopjZ60oKV10zoopWujBy1Q6m/OBbX+7b1qkaolxD4l4Go/qkWoc8uOnQUQXqMsgh0TjRrVftd+stZ+p7NBX9q+0mt65e1LD7g2SeGkthqcXeS6kIEuVaXX2EWo79BnWy3QUmnqX+GzlCKzGrC1DvhuAo+Cgl3EKjCsxdhqbWRxoD9JKTC+y2r/ShexbQQmSxWxPhQ02sdKtSldx4hJOz5W8NnINrUUNKBElQSCjrVaFMS0biwKxLb91ndlgVCDCJjlxO6J47VK7/IzSzX6bTHQNmidtU90e4AqIvZZdiw4vjp3dU1x7pAutMEWtg2qaOi81DrZzd2q1Gkf6+c9a+v7Kz3g2iTFgpMNV1Yhpfn0FOx0/40ubKV4lBJhUaGmC0/rRjonEAh4IgnVD6ACTS0TdebTUtKNqlYrtwIlGAyiXq87KpGCVNNI8VnckwN4j6ewodcarq79SxpWfXp6jVovvKZeryMcDiMajbr0QOp78bNm6Hfhe9leto9UMQUkn8+DK/0AjYEbejSMBQ49W0yFvio1sVjMARifoxtoGWzA/lFLXeeTbb9SwNYXxD7gmJKm07Wh1rLOD85p/VwtXp3blsa0yo5aT35zh3VTylg/43Wka0lzKxgy5VmvXL/0gGuTFKtNWstKtUVex99q5bBYweEnxJTK02fpIlefiBX0aoVpfdSCULru/2vvWmOjqL742dLu0lrbBUq7LVoe4VF5FLVIWQ0xkQ1YGx/Ih4Y0kajRICUBbYigUTAmlsTERI3hiwqf/BMwgkYeobRQBcurttKCVkqKJaYPhfQl9H3+H8iZ/uZ0trQKW5beXzJpd+bOnXvPvXN+55x7ZkbK4xvC5fr4v/RXyuM52Ia+vv6HR/W6m5TVHiR6jKioRPnp0JuWnZyPDwvjuoWQgVPaNvYLPTitzHHtC7PZJCEAPRJMItBzQOYVejVOhouch+/ac/JcnL7CjV4mht0wHOly9WenIqEjEUjfOzs7bWSMssO5rf+KLPCr2thGvJ/wL7YHxwfntFxDv6ZK+iveN8pD+oV14PwxGByGuMIEaP0hcaFCRstdbh58EBfJQeoRIMHotOxga1uofPSzSnLjYkgKr4NenrZmnepBBeCUcCCKQRSbyAhDq/hCYCJ7mM4p1KMJThSclgOGlTDhA5UQyr23t9f2YCoqd+154Tigpyaeqrz1QbxObAtmX+p1IvSEkBilfSILfGGsfpZKkoF06FLmpTwsLe3Q8xCJFr0zvU6KRgC+LUaTiZ5PuA/niMwhJA+MTMi8kfNEvriOpckLxxvH65577rHkIwaWnls453HOGgSHIa4wgZP1r/dr6xNDRPJbbn5UZNrCFWB4Ay12J9JEZY5hHrRkkTjR6kQlgMoTFZPO6EOFguFHLRu5LpIUXh/DiBi2xHNRORENfPcf/o8KE8kN1xKlnDYkUKZyHTkXCQbLIpE6hSmd5E408CvXcr6TfLTcdJmIiAgbuaBSFiWNfZA+yT6ZPxgSxbmtr69lpdcc9V9MnNEJHVJvsDdf6PAf3h+YtCNtwrHUBqLO6NVrmE4esYEzDHGFCXBCS4gIlQ6SjlbYomjlGCoWuXGROLA8kqEOczCzY+o6vhVAt0+nnWsCQZISJdbd3U0ej8eyygWokDUJ43W1dYyEINCkjYoRFRAqULy2DinpRBPtWclv3I+vY9JhKCFoVKRSv/YA5Q0aLteNdSgce5QLhq+wrzjGkgavPWchAR1WFE/L5XJZ70SUc/HaeJ5W8E7tEm8b2ynjoce9r6/P+twLznM9/mh4YDs0YWJWqMxNMXJkfuLYoZGAKfJSh9Qvj4nIOSYVfugwxBVGQMWk10CIBr53D29EjLPLF3vRWkfFSNRvTeKCu9TX1dVlKQYMrwihYghR0tOx/cFChUT932nSmYz4CXpcY5IymD0n5CdKA9e50PuU9mPoRr+oFklCE7Q2FHS4FYlTk50mCBlD/YAuyt7lurEWFBkZaftwpihTGVftDSJBizEjZWSNEsug/KTN4qkgkUl7IyIiyOPx2B70xrVL9JDl2ki4KC/MGpQEFLkmev/oqSF5Ibnr5wfF0MLQKIZDMXSIrw5DzxA9Ixxj9Op0RMLJcJCQIH4k1IQIhw5DXGEEDLvgq2/k5hXlhzcyUf8zWhjjDxZakXrwptVhErmxdShJFBG+pd6JBLTFjzc9Ws6o0LG92nrGYxh+QdnoNsp15TpIvOhBIKEiwUm92oNFhYWKWYccMdNSyqLSdVJ+KFORGabiI1HgPiRPuR6uK2ljRxsWSDKo5NHz0ASCa3FITDjmSOBIdNoTRoMH60YC0MaBTvVH4whloOUgdQphIrGhx4/jgyFD/TUANBKQ6PT7QKOioqwsTYObw/krfAZ3JPAZItm08tQKHW8aJ6tOp2aj8sUMPCERDPtJvRjeQA/K5XJZz1fhPlSgRAMfbkUSRgUpWYz6gV6tGJ2scCQAVHL6eSIi+3NkSMxE/SErKS9KThQ4ygtDX6g0RQGiBS/HdAIAbtg2kYEmAuyfTmWXa+BffCgc5YJEq2WNxoHMLyEIp2xXDAuiB4R16vbinERyFbniPHL6jcaD3DcY1sU+YF+0vOQe0S8Wlr7ox1IwgQUNEU2s4j1Lv2Tu4H1hEBzG4woToDLu6emhsWPHElG/tyKpvqiwkVy0Z6YVmIToxHLEG1/CgrIPs/rEosTFbQkxofJ2sprRo9DrGuiB4DenkGgxsQJDVNInUU469Vqv62FISepFz1Oek2JmyyoWLwMVrbQXw5bSZ72QL8SDz12hl4vWP66r9PT0UGdnp7WOhYaIy9X/fSkkZk0GLpc99IrPXOnElMG8GiRhbLfMRSQAzDJFr0quhy8qxrYhUWijSNqEbxHRa4soG/wfjTNt9Mg4dnR0OHpn2AZpBz52EBkZac0TuRdk3U3muMw5bQAYDA2GuMIEGEsnsr9pWn47JUNohY3ZZPJbznEiE1Q0cj30CqRuVAbym4hs6b9o8crNi8pVh7mQ+ISw9EtNpW0YOtLvMhRgfSgD7INe79FeHNaBa3B4jTFjxlhZdrih/JBwcK1RgEpNgF4IJkxgOBeTdpzCbjiWsg+Pa3mJZ4j14FoVkhgaSNI2fQ2t9GWcZcyQLGW8dShU6sEwo+x3epsHjhXWr/uOxh3KTkc5nKIdOKelfShTp3ki5fQ6nMHNMSy/dMuWLQPc67S0NOt4R0cH5eXl0YQJEyg2NpZWrFhBjY2Ntjrq6uooOzubYmJiKDExkTZs2GAWJYcIsd7k+R18e4IskEtorq+vz1pgjo6OtrwmUaxyo4tiEqUnnoEOfcjzQnITSviks7NzQMICKhmncJuUw/CR3PBEAwkTvxisgaE6qU/aJJtehxFIX3TqvQ6/onWs1yqkX/q39FtISjLsMGyEckbi19a8PNwtbZd2SaKGtFkyL1FOev1QyBnrQi9W5o+0GT1BJzKQhA2tyPVzhdIPXC/D8J8km6Bnht4cGlTSbo/HM+CTMnosJcNViEn6LnMeiV/GS48LtluOY//0uEhZbSCITHE8Zf7hG0EMbo5he1xz5syhw4cP91cAaaCvv/467du3j3bv3k3x8fG0du1aev755+n48eNEdGNAs7Ozyefz0U8//UT19fX0wgsvUFRUFH3wwQe3oDt3N/BG0WEFuRl1PF2UEq7xoKWr33yO10AlI3CyILWFr9c79LoGhh0FGA7SxhESoZCr9BcJBmUk/+N+tKi1UhGlJSSFFjHKWJQfhqcwBIbeInqgOryJnp60WQwKNBpwHczJA8bxxgeLMWynyRHlLf+LbLEdekz1MRx3nD+YXag9CQm54vNU6OFo76y3t/9hbdkn+zGhAvuHcpexwnFHb0pHE1A+SFaYpar7ji9zlj6goaPnpCZuNGSMxzU0DJu4IiMjyefzDdjf0tJCX3zxBX311Vf0xBNPEBHR9u3b6YEHHqATJ07QokWL6NChQ3T+/Hk6fPgwJSUl0YMPPkjvv/8+vfnmm7RlyxbbBDVwBk54Ivt3tnQmGXoPeD5a0RiO0plfSFC6LrRg5beuT1ugqBhQQRHZkwyChVl0PXJ9IRqnEA56HLqd2B8dAtLhS7m+DifhWKCCR+sfDQnt+eAY6jUglCOGz7RnRtSfDarnBBoPOpMRFaZ4AXp9SRMVyhJDv/LIARoIeg1HkyfOZ7mOJhQi+wPuGOLTD/RqmTh5sk5Gk57/aMhpL0/ajPs0YQZbk9MywHnj5NEaBMew/dILFy5QSkoKTZs2jXJzc6muro6IiMrKyqi7u5sCgYBVNi0tjVJTU6m0tJSIiEpLS2nevHmUlJRklVm2bBm1trbSuXPngl6zs7OTWltbbdtoBN70vb397wdE5Ys3sD6XqF/ZSKjEyYNDr0FCI0T9azGoPNFS1NayvFBWZx7KcbxRdeYfeiqdnZ227DcdOtNyEeBxJFQheVQqEsZBrwoJU38AU9ogx5E4nDxAJDztiYgs5bM00jcJL8q6nRzHsUBj49q1a47JFTqkhdcQ4ke5iaxlLqCXo/8X+eq31aMyJiJbarkYAFiHzEcZA+354NspMJkG5YiZg2gE4Bgw25M58L5BuWGCkcxlJw8S244y10SE18I5ifJ0uk8MnDEs4srMzKQdO3bQwYMHadu2bVRbW0uLFy+mtrY2amhoILfbTV6v13ZOUlISNTQ0EBFRQ0ODjbTkuBwLhoKCAoqPj7e2+++/fzjNvmuglT0qY+3BoOJFBYY3FXojaInqG12A19JWs26jlAuWzKDbqy1Wrdi09asViJaDVjJILDpkpklX2upkFOg1GqwHLW3tfej24PjoEBnKSstN2o/7MElFywU9CJQPEpd+cBjPw/+xnU5epx4D3U7t7WgvCcdFzsX1Ij2P9TijHJwiDU7nI6HjuDrNIZSHNkS0zNEzRZno9ujzjMc1NAwrVJiVlWX9n56eTpmZmTR58mTatWsXRUdH3/LGCTZt2kRvvPGG9bu1tXXUkhfRwGwxfXPLTeNkIToRi+x3UjgY3tCKOlh4A29wTYaoKLA/WBe2Ty90Y9o9WthOfUVlqOtHJYUKUxMh7sP2OpVBotEeB5E95KW9RK3YiOwv79UeI8pX5ITp/7rtKHctNxwDHeLT9Th5E059QLKSvqMhRTTQM5V26pCck1GFxzBUjOOC8tUJJrqMJlk9vk6GhW67E2FqMtZ1Ylk0fAwGx39KYfF6vTRz5kyqqakhn89HXV1d1NzcbCvT2NhorYn5fL4BWYby22ndTODxeCguLs62jUY4eTnBPJ//Urf8dvKknMoRBVfiArT0tRLQN7dWjqjMdF2DWal4HW1ta+Wi/9dltby1l6S9BzlH9xf7hF4QKkwNNADwt5MBoPul5Y5KWStvp/OcvBs0QpzaHGyO4G9tLGhC0WWRzLSXo9uivatg8y3YPA02Drqtw4HTfHLaDGkNDf+JuNrb2+nixYuUnJxMGRkZFBUVRUVFRdbx6upqqqurI7/fT0REfr+fKisrqampySpTWFhIcXFxNHv27P/SlFEHPdGdbuibEQ+zPbbuFB5zOtfpJgtGpE7tGcpNP1TFEEyJBFPKg9UfrO26XqdFen1dp3VGPOdmClCPpz7HyWtAonQiY/RAteLHazgRgRMGU/DBPNahkNpgcJrDuD+YcYXydPLQ8ZjepKx+qDkY6ejrOZX/N303APAwkJ+fz0ePHuXa2lo+fvw4BwIBTkhI4KamJmZmXr16NaempnJxcTGfOXOG/X4/+/1+6/yenh6eO3cuL126lCsqKvjgwYM8ceJE3rRp03CawS0tLUxEZjOb2cxmtjDfWlpahqX/mW+w/5CRk5PDycnJ7Ha7edKkSZyTk8M1NTXW8evXr/OaNWt43LhxHBMTw8uXL+f6+npbHZcuXeKsrCyOjo7mhIQEzs/P5+7u7mE12hCX2cxmNrPdHdu/IS4Xc/j5p62trRQfHz/SzTAwMDAw+I9oaWkZdt5CWL5fJAy51sDAwMDAAf9Gn4clcV25cmWkm2BgYGBgcAvQ1tY27HPC8u3w48ePJ6IbL+w1IUNnyLNuly9fHrWPDwwGI5/BYeQzOIx8BsdQ5MPM1NbWRikpKcOuPyyJS9KR4+PjzaS5CUbzc29DgZHP4DDyGRxGPoPjZvL5t45HWIYKDQwMDAxGLwxxGRgYGBiEFcKSuDweD23evJk8Hs9IN+WOhZHR4DDyGRxGPoPDyGdw3G75hOVzXAYGBgYGoxdh6XEZGBgYGIxeGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrhCVxffbZZzRlyhQaO3YsZWZm0qlTp0a6SSHBDz/8QE8//TSlpKSQy+WivXv32o4zM7377ruUnJxM0dHRFAgE6MKFC7YyV69epdzcXIqLiyOv10svv/wytbe3h7AXtw8FBQX0yCOP0L333kuJiYn03HPPUXV1ta1MR0cH5eXl0YQJEyg2NpZWrFgx4OOmdXV1lJ2dTTExMZSYmEgbNmywfVU4XLFt2zZKT0+3Hgr1+/104MAB6/holo0Ttm7dSi6Xi9avX2/tG80y2rJli+1bbS6Xi9LS0qzjIZXNsN8nP8LYuXMnu91u/vLLL/ncuXP8yiuvsNfr5cbGxpFu2m3H/v37+e233+ZvvvmGiYj37NljO75161aOj4/nvXv38i+//MLPPPMMT506la9fv26VefLJJ3n+/Pl84sQJ/vHHH3n69Om8cuXKEPfk9mDZsmW8fft2rqqq4oqKCn7qqac4NTWV29vbrTKrV6/m+++/n4uKivjMmTO8aNEifvTRR63j8s24QCDA5eXlvH//fk5ISBj2N+PuRHz33Xe8b98+/v3337m6uprfeustjoqK4qqqKmYe3bLROHXqFE+ZMoXT09N53bp11v7RLKPNmzfznDlzuL6+3tr++usv63goZRN2xLVw4ULOy8uzfvf29nJKSgoXFBSMYKtCD01cfX197PP5+MMPP7T2NTc3s8fj4f/973/MzHz+/HkmIj59+rRV5sCBA+xyufjPP/8MWdtDhaamJiYiLikpYeYb8oiKiuLdu3dbZX799VcmIi4tLWXmG8ZBREQENzQ0WGW2bdvGcXFx3NnZGdoOhADjxo3jzz//3MgG0NbWxjNmzODCwkJ+/PHHLeIa7TLavHkzz58/3/FYqGUTVqHCrq4uKisro0AgYO2LiIigQCBApaWlI9iykUdtbS01NDTYZBMfH0+ZmZmWbEpLS8nr9dKCBQusMoFAgCIiIujkyZMhb/PtRktLCxH1v5S5rKyMuru7bTJKS0uj1NRUm4zmzZtHSUlJVplly5ZRa2srnTt3LoStv73o7e2lnTt30j///EN+v9/IBpCXl0fZ2dk2WRCZ+UNEdOHCBUpJSaFp06ZRbm4u1dXVEVHoZRNWL9n9+++/qbe319ZxIqKkpCT67bffRqhVdwYaGhqIiBxlI8caGhooMTHRdjwyMpLGjx9vlblb0NfXR+vXr6fHHnuM5s6dS0Q3+u92u8nr9drKahk5yVCOhTsqKyvJ7/dTR0cHxcbG0p49e2j27NlUUVEx6mVDRLRz5076+eef6fTp0wOOjfb5k5mZSTt27KBZs2ZRfX09vffee7R48WKqqqoKuWzCirgMDIaKvLw8qqqqomPHjo10U+4ozJo1iyoqKqilpYW+/vprWrVqFZWUlIx0s+4IXL58mdatW0eFhYU0duzYkW7OHYesrCzr//T0dMrMzKTJkyfTrl27KDo6OqRtCatQYUJCAo0ZM2ZApkpjYyP5fL4RatWdAen/YLLx+XzU1NRkO97T00NXr169q+S3du1a+v777+nIkSN03333Wft9Ph91dXVRc3OzrbyWkZMM5Vi4w+120/Tp0ykjI4MKCgpo/vz59PHHHxvZ0I1wV1NTEz388MMUGRlJkZGRVFJSQp988glFRkZSUlLSqJcRwuv10syZM6mmpibk8yesiMvtdlNGRgYVFRVZ+/r6+qioqIj8fv8ItmzkMXXqVPL5fDbZtLa20smTJy3Z+P1+am5uprKyMqtMcXEx9fX1UWZmZsjbfKvBzLR27Vras2cPFRcX09SpU23HMzIyKCoqyiaj6upqqqurs8mosrLSRvCFhYUUFxdHs2fPDk1HQoi+vj7q7Ow0siGiJUuWUGVlJVVUVFjbggULKDc31/p/tMsI0d7eThcvXqTk5OTQz59hp5aMMHbu3Mkej4d37NjB58+f51dffZW9Xq8tU+VuRVtbG5eXl3N5eTkTEX/00UdcXl7Of/zxBzPfSIf3er387bff8tmzZ/nZZ591TId/6KGH+OTJk3zs2DGeMWPGXZMO/9prr3F8fDwfPXrUlrJ77do1q8zq1as5NTWVi4uL+cyZM+z3+9nv91vHJWV36dKlXFFRwQcPHuSJEyfeFenMGzdu5JKSEq6treWzZ8/yxo0b2eVy8aFDh5h5dMsmGDCrkHl0yyg/P5+PHj3KtbW1fPz4cQ4EApyQkMBNTU3MHFrZhB1xMTN/+umnnJqaym63mxcuXMgnTpwY6SaFBEeOHGEiGrCtWrWKmW+kxL/zzjuclJTEHo+HlyxZwtXV1bY6rly5witXruTY2FiOi4vjF198kdva2kagN7ceTrIhIt6+fbtV5vr167xmzRoeN24cx8TE8PLly7m+vt5Wz6VLlzgrK4ujo6M5ISGB8/Pzubu7O8S9ufV46aWXePLkyex2u3nixIm8ZMkSi7SYR7dsgkET12iWUU5ODicnJ7Pb7eZJkyZxTk4O19TUWMdDKRvzWRMDAwMDg7BCWK1xGRgYGBgYGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgrGOIyMDAwMAgr/B/AzvkASUIB3QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n_slices_skip = 4\n",
+ "display_slices(image, mask, skip = n_slices_skip) # visualize that our segmentations were succesfully convereted "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Note: Cyan color denotes tumor while magenta denotes surrounding area of high-dose radiation. Only displaying 7 slices."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 3: Saving arrays to nifti format. \n",
+ "\n",
+ "If you want to use a manual approach, you can view the nifti files easily after running get_images_and_mask(). Saving files as nifti is advisable since spacing information is preserved."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "nifti_path = os.path.join('.', 'Example_Data', 'Nifti_Data') # nifti subfolder \n",
+ "if not os.path.exists(nifti_path):\n",
+ " os.makedirs(nifti_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "dicom_sitk_handle = Dicom_reader.dicom_handle # SimpleITK image handle\n",
+ "mask_sitk_handle = Dicom_reader.annotation_handle # SimpleITK mask handle\n",
+ "sitk.WriteImage(dicom_sitk_handle, os.path.join(nifti_path, 'Image.nii'))\n",
+ "sitk.WriteImage(mask_sitk_handle, os.path.join(nifti_path, 'Mask.nii'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "One can also use the built in .write_parallel attribute to generate nifti files for all relevant pairs the DicomReaderWriter object has found/generated. In this case there are 9 image/mask pairs for unique UIDs that contain all contours we are interested in. Note a corresponding log excel file in the specified output path. The nifti files are written in the following format: \"Overall_Data_{description}_ {iteration}.nii.gz\" (image) or \"Overall_mask_{description}_ y{iteration}.nii.gz\" (mask)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "%%time\n",
+ "%%capture\n",
+ "Dicom_reader.write_parallel(out_path = nifti_path, excel_file = os.path.join(nifti_path,'.','MRN_Path_To_Iteration.xlsx'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "We can now reload the nifti files and disaply them to check that nothing went wrong. You can inspect the other converted files by changing the numerical suffix as per the excel log file ('MRN_Path_To_Iteration.xlsx')."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "nifti_image = sitk.ReadImage(os.path.join(nifti_path,\"Overall_Data_Examples_8.nii.gz\")) # reload image\n",
+ "image = sitk.GetArrayFromImage(nifti_image)\n",
+ "nifti_mask = sitk.ReadImage(os.path.join(nifti_path,\"Overall_mask_Examples_y8.nii.gz\")) # reload mask\n",
+ "mask = sitk.GetArrayFromImage(nifti_mask)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "display_slices(image, mask, skip = n_slices_skip) # visualize that our segmentations were succesfully convereted from nifti "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 4: Saving and loading numpy files for later use. \n",
+ "\n",
+ "Finally we can save the numpy arrays themselves to files for later use (so you don't have to reinstantiate the computationally expensive DicomReaderWriter object) and subsequently re-load the numpy arrays."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "numpy_path = os.path.join(data_path, 'Numpy_Data') # go into numpy subfolder \n",
+ "if not os.path.exists(numpy_path):\n",
+ " os.makedirs(numpy_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "np.save(os.path.join(numpy_path, 'image'), image) # save the arrays\n",
+ "np.save(os.path.join(numpy_path, 'mask'), mask)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "image = np.load(os.path.join(numpy_path,'image.npy')) # load the arrays\n",
+ "mask = np.load(os.path.join(numpy_path,'mask.npy'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 5: Radiomics Use-case Example. \n",
+ "\n",
+ "Here we use the popular open-source radiomics library PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/) to calculate radiomic features for our ROIs. In this case, we only calculate a limited number features from the tumor as an illustrative example. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " from radiomics import featureextractor\n",
+ "except:\n",
+ " !pip install pyradiomics\n",
+ " from radiomics import featureextractor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "pd.set_option('display.max_columns', None) # show all columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%%time\n",
+ "# note: need sitk images (sitk.ReadImage(nifti file)) to plug into PyRadiomics, preserves spacing \n",
+ "\n",
+ "ROI_index = 1 # index for tumor\n",
+ "nifti_mask_tumor = sitk.BinaryThreshold(nifti_mask, lowerThreshold=ROI_index, upperThreshold=ROI_index) # select only ROI of interest\n",
+ "\n",
+ "params = {} # can edit in more params as neccessary \n",
+ "extractor = featureextractor.RadiomicsFeatureExtractor(**params) # instantiate extractor with parameters \n",
+ "extractor.disableAllFeatures() # in case where only want some features, can delete disable/enable lines if you want deafult\n",
+ "extractor.enableFeatureClassByName('firstorder') \n",
+ "extractor.enableFeatureClassByName('glcm') \n",
+ "features = {} # empty dictionary \n",
+ "features = extractor.execute(nifti_image, nifti_mask_tumor) # unpack results into features dictionary\n",
+ "df = pd.DataFrame({k: [v] for k, v in features.items()}) # put dictionary into a dataframe "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "df # display dataframe to inspect features "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Numerical results for radiomic features shown here are consistent with importing nifti files as image and label map in 3D Slicer (https://www.slicer.org/) and using Radiomics extension (https://www.slicer.org/wiki/Documentation/Nightly/Extensions/Radiomics)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "## Part 6: Predictions To RT-Structure Example \n",
+ "\n",
+ "Here we will provide a simple example for converting a predicted NumPy array of a square into a Dicom RT-Structure file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "RT_path = os.path.join('Example_Data', 'RT_Structures')\n",
+ "if not os.path.exists(RT_path):\n",
+ " os.makedirs(RT_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "First, we will create a fake prediction, it will be the same size as the image NumPy array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "image = Dicom_reader.ArrayDicom"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Now, deep learning model typically create segmentations in the format of (z_images, rows, cols, # of classes) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "def create_circular_mask(h, w, center=None, radius=None):\n",
+ "\n",
+ " if center is None: # use the middle of the image\n",
+ " center = (int(w/2), int(h/2))\n",
+ " if radius is None: # use the smallest distance between the center and image walls\n",
+ " radius = min(center[0], center[1], w-center[0], h-center[1])\n",
+ "\n",
+ " Y, X = np.ogrid[:h, :w]\n",
+ " dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)\n",
+ "\n",
+ " mask = dist_from_center <= radius\n",
+ " return mask"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "predictions = np.zeros(image.shape + (4,)) # Four classes: background, square, circle, target\n",
+ "predictions.shape\n",
+ "predictions[75:80, 250:350, 100:200, 1] = 1 # Here we are drawing a square\n",
+ "predictions[75:80, 250:350, 300:400, 2] += create_circular_mask(100, 100, center=None, radius=50).astype('int')\n",
+ "predictions[75:80, 100:200, 200:300, 3] += create_circular_mask(100, 100, center=None, radius=50).astype('int')\n",
+ "predictions[75:80, 100:200, 200:300, 3] -= create_circular_mask(100, 100, center=None, radius=33).astype('int')\n",
+ "predictions[75:80, 100:200, 200:300, 3] += create_circular_mask(100, 100, center=None, radius=15).astype('int')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "display_slices(image, np.argmax(predictions, axis=-1), skip = 1) # visualize our square on the image"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Convert the NumPy arrays into RT-Structure"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "Dicom_reader.prediction_array_to_RT(prediction_array=predictions, output_dir=RT_path,\n",
+ " ROI_Names=['square', 'circle', 'target'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "# Final notes\n",
+ "\n",
+ "### I hope that this code has been useful, if you have any suggestions or problems, please open an issue ticket or merge request on the Github: https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask\n",
+ "\n",
+ "#### Thank you!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
}
\ No newline at end of file
diff --git a/Examples/Old_Legacy_Notebook.ipynb b/Examples/Old_Legacy_Notebook.ipynb
index 43e6a28..d9975ee 100644
--- a/Examples/Old_Legacy_Notebook.ipynb
+++ b/Examples/Old_Legacy_Notebook.ipynb
@@ -1,401 +1,401 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Data curation"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Import some necessary functions"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os, pydicom, sys\n",
- "import numpy as np\n",
- "from Plot_And_Scroll_Images.Plot_Scroll_Images import plot_Image_Scroll_Bar_Image, plot_scroll_Image\n",
- "import SimpleITK as sitk\n",
- "from Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Finding the Data"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Find where we put our data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_path = r'K:\\Morfeus\\BMAnderson\\CNN\\Data\\Data_Liver\\Liver_Disease_Ablation_Segmentation\\Images'\n",
- "print('We have ' + str(len(os.listdir(data_path))) + ' patients!')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ensuring contour fidelity..."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Note that we've set 'get_images_mask' to False, this means we won't be getting any of the image data, just looking at the dicom RT files"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Dicom_Reader.down_folder(data_path)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### What ROI names do we have?\n",
- "\n",
- "#### This will tell us all the unique roi names, hence all_rois"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "for roi in Dicom_Reader.all_rois:\n",
- " print(roi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Make contour associations"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "#### We have quite a few contour names here.. now, we can either change the ROI names in the RT files, or make an associations file\n",
- "\n",
- "#### The associations file associates a contour name with another one {'Current contour':'Desired name'}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "associations = {'Liver_BMA_Program_4':'Liver',\n",
- " 'bma_liver':'Liver',\n",
- " 'best_liver':'Liver',\n",
- " 'tried_liver':'Liver'}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Tell the Dicom_Reader that we want to set the associations, get the images and mask for contour 'Liver'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Dicom_Reader.set_associations(associations)\n",
- "Dicom_Reader.set_get_images_and_mask(True)\n",
- "Dicom_Reader.set_contour_names(['liver'])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Re-write RTs\n",
- "#### This is commented out, because if I run it, then the example above won't show any different contour names"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Dicom_Reader.associations = associations\n",
- "# for RT in Dicom_Reader.all_RTs:\n",
- "# Dicom_Reader.rewrite_RT(RT)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Pulling images and mask"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### We'll first do this with one patient"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "patient_data_path = os.path.join(data_path,os.listdir(data_path)[0],'CT 2')\n",
- "Dicom_Reader.Make_Contour_From_directory(patient_data_path)\n",
- "print('Done!')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## View images"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### The images and mask are saved within the Dicom_Reader class, so we just have to load them"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Images = Dicom_Reader.ArrayDicom\n",
- "mask = Dicom_Reader.mask # This is the mask"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Viewing nifti handles"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "dicom_handle = Dicom_Reader.dicom_handle\n",
- "annotations_handle = Dicom_Reader.annotation_handle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Threshold"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Images[Images<-200] = -200\n",
- "Images[Images>200] = 200"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "plot_Image_Scroll_Bar_Image(Images)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Images[mask==1] += 300"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Turn predictions into an RT"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Your prediction needs to be of the form [# Images, rows, columns, #classes + 1], the [...,0] is background"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "prediction = np.zeros(Images.shape+(2,)) # Two classes, background and test"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "prediction[...,300:400,300:400,1] = 1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Need to pass the prediction, an output directory, and ROI_Names list equal to the number of classes"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "help(Dicom_Reader.with_annotations)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "out_path = os.path.join(data_path,os.listdir(data_path)[0],'CT 2','new_RT')\n",
- "ROI_Names=['test']"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "Dicom_Reader.with_annotations(prediction,out_path=out_path,ROI_Names=ROI_Names)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Recap\n",
- "\n",
- "### Checking ROI contour names and making associations\n",
- "\n",
- "### Loading in image and mask from desired contour name\n",
- "\n",
- "### Viewing images and mask\n",
- "\n",
- "### Turning predictions into an RT Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Separate into Train/Test/Validation\n",
- "\n",
- "### This is also important, but I would recommend using the 'Parallel' approach available in https://github.com/brianmanderson/Dicom_Data_to_Numpy_Arrays"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Data curation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Import some necessary functions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os, pydicom, sys\n",
+ "import numpy as np\n",
+ "from Plot_And_Scroll_Images.Plot_Scroll_Images import plot_Image_Scroll_Bar_Image, plot_scroll_Image\n",
+ "import SimpleITK as sitk\n",
+ "from Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Finding the Data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Find where we put our data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_path = r'K:\\Morfeus\\BMAnderson\\CNN\\Data\\Data_Liver\\Liver_Disease_Ablation_Segmentation\\Images'\n",
+ "print('We have ' + str(len(os.listdir(data_path))) + ' patients!')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ensuring contour fidelity..."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Note that we've set 'get_images_mask' to False, this means we won't be getting any of the image data, just looking at the dicom RT files"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Dicom_Reader.down_folder(data_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### What ROI names do we have?\n",
+ "\n",
+ "#### This will tell us all the unique roi names, hence all_rois"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "for roi in Dicom_Reader.all_rois:\n",
+ " print(roi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Make contour associations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### We have quite a few contour names here.. now, we can either change the ROI names in the RT files, or make an associations file\n",
+ "\n",
+ "#### The associations file associates a contour name with another one {'Current contour':'Desired name'}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "associations = {'Liver_BMA_Program_4':'Liver',\n",
+ " 'bma_liver':'Liver',\n",
+ " 'best_liver':'Liver',\n",
+ " 'tried_liver':'Liver'}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Tell the Dicom_Reader that we want to set the associations, get the images and mask for contour 'Liver'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Dicom_Reader.set_associations(associations)\n",
+ "Dicom_Reader.set_get_images_and_mask(True)\n",
+ "Dicom_Reader.set_contour_names(['liver'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Re-write RTs\n",
+ "#### This is commented out, because if I run it, then the example above won't show any different contour names"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Dicom_Reader.associations = associations\n",
+ "# for RT in Dicom_Reader.all_RTs:\n",
+ "# Dicom_Reader.rewrite_RT(RT)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Pulling images and mask"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### We'll first do this with one patient"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "patient_data_path = os.path.join(data_path,os.listdir(data_path)[0],'CT 2')\n",
+ "Dicom_Reader.Make_Contour_From_directory(patient_data_path)\n",
+ "print('Done!')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## View images"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### The images and mask are saved within the Dicom_Reader class, so we just have to load them"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Images = Dicom_Reader.ArrayDicom\n",
+ "mask = Dicom_Reader.mask # This is the mask"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Viewing nifti handles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dicom_handle = Dicom_Reader.dicom_handle\n",
+ "annotations_handle = Dicom_Reader.annotation_handle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Threshold"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Images[Images<-200] = -200\n",
+ "Images[Images>200] = 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "plot_Image_Scroll_Bar_Image(Images)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Images[mask==1] += 300"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Turn predictions into an RT"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Your prediction needs to be of the form [# Images, rows, columns, #classes + 1], the [...,0] is background"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "prediction = np.zeros(Images.shape+(2,)) # Two classes, background and test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "prediction[...,300:400,300:400,1] = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Need to pass the prediction, an output directory, and ROI_Names list equal to the number of classes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "help(Dicom_Reader.with_annotations)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "out_path = os.path.join(data_path,os.listdir(data_path)[0],'CT 2','new_RT')\n",
+ "ROI_Names=['test']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Dicom_Reader.with_annotations(prediction,out_path=out_path,ROI_Names=ROI_Names)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Recap\n",
+ "\n",
+ "### Checking ROI contour names and making associations\n",
+ "\n",
+ "### Loading in image and mask from desired contour name\n",
+ "\n",
+ "### Viewing images and mask\n",
+ "\n",
+ "### Turning predictions into an RT Structure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Separate into Train/Test/Validation\n",
+ "\n",
+ "### This is also important, but I would recommend using the 'Parallel' approach available in https://github.com/brianmanderson/Dicom_Data_to_Numpy_Arrays"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/LICENSE.txt b/LICENSE.txt
index e72bfdd..871ce8e 100644
--- a/LICENSE.txt
+++ b/LICENSE.txt
@@ -1,674 +1,674 @@
- GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc.
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-
- Copyright (C)
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- Copyright (C)
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
- You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
- .
-
- The GNU General Public License does not permit incorporating your program
-into proprietary programs. If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library. If this is what you want to do, use the GNU Lesser General
-Public License instead of this License. But first, please read
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+ .
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
.
\ No newline at end of file
diff --git a/MANIFEST.in b/MANIFEST.in
index 4f84cad..e39e39f 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,7 +1,7 @@
-recursive-include src *template_RS.dcm
-recursive-include src *.dcm
-recursive-include Images *.png
-recursive-include src *.dcm
-recursive-include src *.ipynb
-recursive-include src *.py
-recursive-include src *.txt
+recursive-include src *template_RS.dcm
+recursive-include src *.dcm
+recursive-include Images *.png
+recursive-include src *.dcm
+recursive-include src *.ipynb
+recursive-include src *.py
+recursive-include src *.txt
diff --git a/README.md b/README.md
index d6cc13e..be4a384 100644
--- a/README.md
+++ b/README.md
@@ -1,42 +1,42 @@
-# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful
-### DOI:https://doi.org/10.1016/j.prro.2021.02.003
-
-## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures
-## Installation guide
- pip install DicomRTTool
-### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki
-
-### Quick use guide
- from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass
- Dicom_path = r'.some_path_to_dicom'
- Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)
- Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders
- all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present
-
- Contour_names = ['tumor'] # Define what rois you want
- associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations
- Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations)
-
- Dicom_reader.get_images_and_mask()
-
- image_numpy = Dicom_reader.ArrayDicom
- mask_numpy = Dicom_reader.mask
- image_sitk_handle = Dicom_reader.dicom_handle
- mask_sitk_handle = Dicom_reader.annotation_handle
-
-### Other interesting additions
-### Adding information to the Dicom_reader.series_instances_dictionary
- from DicomRTTool.ReaderWriter import Tag
- plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))}
- image_sitk_string_keys = {"MyPatientName": "0010|0010"}
- Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys)
-
-
-##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you!
-
-###### Ring update allows for multiple rings to be represented correctly
-
-![multiple_rings.png](./Images/multiple_rings.png)
-
-
-#### Works on oblique images for masks and predictions*
+# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful
+### DOI:https://doi.org/10.1016/j.prro.2021.02.003
+
+## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures
+## Installation guide
+ pip install DicomRTTool
+### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki
+
+### Quick use guide
+ from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass
+ Dicom_path = r'.some_path_to_dicom'
+ Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)
+ Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders
+ all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present
+
+ Contour_names = ['tumor'] # Define what rois you want
+ associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations
+ Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations)
+
+ Dicom_reader.get_images_and_mask()
+
+ image_numpy = Dicom_reader.ArrayDicom
+ mask_numpy = Dicom_reader.mask
+ image_sitk_handle = Dicom_reader.dicom_handle
+ mask_sitk_handle = Dicom_reader.annotation_handle
+
+### Other interesting additions
+### Adding information to the Dicom_reader.series_instances_dictionary
+ from DicomRTTool.ReaderWriter import Tag
+ plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))}
+ image_sitk_string_keys = {"MyPatientName": "0010|0010"}
+ Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys)
+
+
+##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you!
+
+###### Ring update allows for multiple rings to be represented correctly
+
+![multiple_rings.png](./Images/multiple_rings.png)
+
+
+#### Works on oblique images for masks and predictions*
diff --git a/requirements.txt b/requirements.txt
index 50c6cde..635b5ab 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,18 +1,18 @@
-numpy~=1.22.3
-matplotlib~=3.5.1
-opencv-python>=4.2.0.32
-openpyxl
-pandas~=1.4.2
-Pillow
-pydicom~=2.3.0
-scikit-image~=0.19.2
-scipy
-SimpleITK~=2.1.1.2
-six
-xlrd
-check-manifest
-tqdm~=4.64.0
-pytest
-NiftiResampler
-PlotScrollNumpyArrays~=0.0.1
+numpy~=1.22.3
+matplotlib~=3.5.1
+opencv-python>=4.2.0.32
+openpyxl
+pandas~=1.4.2
+Pillow
+pydicom~=2.3.0
+scikit-image~=0.19.2
+scipy
+SimpleITK~=2.1.1.2
+six
+xlrd
+check-manifest
+tqdm~=4.64.0
+pytest
+NiftiResampler
+PlotScrollNumpyArrays~=0.0.1
setuptools~=62.1.0
\ No newline at end of file
diff --git a/setup.py b/setup.py
index f09ea89..62352a0 100644
--- a/setup.py
+++ b/setup.py
@@ -1,30 +1,30 @@
-__author__ = 'Brian M Anderson'
-# Created on 9/15/2020
-
-
-from setuptools import setup
-
-with open("README.md", "r") as fh:
- long_description = fh.read()
-with open('requirements.txt') as f:
- required = f.read().splitlines()
-
-setup(
- name='DicomRTTool',
- author='Brian Mark Anderson',
- author_email='b5anderson@health.ucsd.edu',
- version='2.1.1',
- description='Services for reading dicom files, RT structures, and dose files, as well as tools for '
- 'converting numpy prediction masks back to an RT structure',
- long_description=long_description,
- long_description_content_type="text/markdown",
- package_dir={'DicomRTTool': 'src/DicomRTTool'},
- packages=['DicomRTTool'],
- include_package_data=True,
- url='https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask',
- classifiers=[
- "Programming Language :: Python :: 3",
- "License :: OSI Approved :: GNU Affero General Public License v3",
- ],
- install_requires=required,
-)
+__author__ = 'Brian M Anderson'
+# Created on 9/15/2020
+
+
+from setuptools import setup
+
+with open("README.md", "r") as fh:
+ long_description = fh.read()
+with open('requirements.txt') as f:
+ required = f.read().splitlines()
+
+setup(
+ name='DicomRTTool',
+ author='Brian Mark Anderson',
+ author_email='b5anderson@health.ucsd.edu',
+ version='2.1.1',
+ description='Services for reading dicom files, RT structures, and dose files, as well as tools for '
+ 'converting numpy prediction masks back to an RT structure',
+ long_description=long_description,
+ long_description_content_type="text/markdown",
+ package_dir={'DicomRTTool': 'src/DicomRTTool'},
+ packages=['DicomRTTool'],
+ include_package_data=True,
+ url='https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask',
+ classifiers=[
+ "Programming Language :: Python :: 3",
+ "License :: OSI Approved :: GNU Affero General Public License v3",
+ ],
+ install_requires=required,
+)
diff --git a/src/DicomRTTool/ReaderWriter.py b/src/DicomRTTool/ReaderWriter.py
index 40e6370..d11ea3f 100644
--- a/src/DicomRTTool/ReaderWriter.py
+++ b/src/DicomRTTool/ReaderWriter.py
@@ -1,1630 +1,1630 @@
-__author__ = 'Brian M Anderson'
-
-# Created on 12/31/2020
-import os
-from .Services.DicomBases import ImageBase, RDBase, RTBase, PlanBase, PyDicomKeys, SitkDicomKeys, ROIClass
-from .Services.StaticScripts import poly2mask, add_to_mask
-from .Viewer import plot_scroll_Image
-from NiftiResampler.ResampleTools import ImageResampler
-from tqdm import tqdm
-import typing
-import pydicom
-import numpy as np
-from pydicom.tag import Tag
-import SimpleITK as sitk
-from skimage.measure import label, regionprops, find_contours
-from threading import Thread
-from multiprocessing import cpu_count
-from queue import *
-import pandas as pd
-import copy
-from typing import List, Dict
-
-
-def contour_worker(A):
- q, kwargs = A
- point_maker = PointOutputMakerClass(**kwargs)
- while True:
- item = q.get()
- if item is None:
- break
- else:
- point_maker.make_output(**item)
- q.task_done()
-
-
-def worker_def(A):
- q, pbar = A
- while True:
- item = q.get()
- if item is None:
- break
- else:
- iteration, index, out_path, key_dict = item
- base_class = DicomReaderWriter(**key_dict)
- try:
- base_class.set_index(index)
- base_class.get_images_and_mask()
- base_class.__set_iteration__(iteration)
- base_class.write_images_annotations(out_path)
- except:
- print('failed on {}'.format(base_class.series_instances_dictionary[index].path))
- fid = open(os.path.join(base_class.series_instances_dictionary[index].path, 'failed.txt'),
- 'w+')
- fid.close()
- pbar.update()
- q.task_done()
-
-
-def folder_worker(A):
- q, pbar = A
- while True:
- item = q.get()
- if item is None:
- break
- else:
- dicom_path, images_dictionary, rt_dictionary, rd_dictionary, rp_dictionary, verbose, strings = item
- plan_strings, structure_strings, image_strings, dose_strings = strings
- dicom_adder = AddDicomToDictionary(plan_strings, structure_strings, image_strings, dose_strings)
- try:
- if verbose:
- print('Loading from {}'.format(dicom_path))
- dicom_adder.add_dicom_to_dictionary_from_path(dicom_path=dicom_path,
- images_dictionary=images_dictionary,
- rt_dictionary=rt_dictionary,
- rd_dictionary=rd_dictionary,
- rp_dictionary=rp_dictionary)
- except:
- print('failed on {}'.format(dicom_path))
- pbar.update()
- q.task_done()
-
-
-class ROIAssociationClass(object):
- def __init__(self, roi_name: str, other_names: List[str]):
- self.roi_name = roi_name.lower()
- self.other_names = list(set([i.lower() for i in other_names]))
-
- def add_name(self, roi_name: str):
- if roi_name not in self.other_names:
- self.other_names.append(roi_name.lower())
-
-
-class PointOutputMakerClass(object):
- def __init__(self, image_size_rows: int, image_size_cols: int, PixelSize, contour_dict, RS):
- self.image_size_rows, self.image_size_cols = image_size_rows, image_size_cols
- self.PixelSize = PixelSize
- self.contour_dict = contour_dict
- self.RS = RS
-
- def make_output(self, annotation, i, dicom_handle):
- self.contour_dict[i] = []
- regions = regionprops(label(annotation))
- for ii in range(len(regions)):
- temp_image = np.zeros([self.image_size_rows, self.image_size_cols])
- data = regions[ii].coords
- rows = []
- cols = []
- for iii in range(len(data)):
- rows.append(data[iii][0])
- cols.append(data[iii][1])
- temp_image[rows, cols] = 1
- contours = find_contours(temp_image, level=0.5, fully_connected='low', positive_orientation='high')
- for contour in contours:
- contour = np.squeeze(contour)
- with np.errstate(divide='ignore'):
- slope = (contour[1:, 1] - contour[:-1, 1]) / (contour[1:, 0] - contour[:-1, 0])
- slope_index = None
- out_contour = []
- for index in range(len(slope)):
- if slope[index] != slope_index:
- out_contour.append(contour[index])
- slope_index = slope[index]
- contour = [[float(c[1]), float(c[0]), float(i)] for c in out_contour]
- contour = np.asarray([dicom_handle.TransformContinuousIndexToPhysicalPoint(zz) for zz in contour])
- self.contour_dict[i].append(np.asarray(contour))
-
-
-def add_images_to_dictionary(images_dictionary: Dict[str, ImageBase], dicom_names: typing.List[str],
- sitk_dicom_reader: sitk.ImageFileReader, path: typing.Union[str, bytes, os.PathLike],
- sitk_string_keys: SitkDicomKeys = None):
- """
- Args:
- images_dictionary:
- dicom_names:
- sitk_dicom_reader:
- path:
- sitk_string_keys:
-
- Returns:
-
- """
- series_instance_uid = sitk_dicom_reader.GetMetaData("0020|000e")
- if series_instance_uid not in images_dictionary:
- new_image = ImageBase()
- new_image.load_info(dicom_names, sitk_dicom_reader, path, sitk_string_keys)
- images_dictionary[series_instance_uid] = new_image
-
-
-def add_rp_to_dictionary(ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
- rp_dictionary: Dict[str, PlanBase], pydicom_string_keys: PyDicomKeys = None):
- try:
- series_instance_uid = ds.SeriesInstanceUID
- if series_instance_uid not in rp_dictionary:
- new_plan = PlanBase()
- new_plan.load_info(ds, path, pydicom_string_keys)
- rp_dictionary[series_instance_uid] = new_plan
- except:
- print("Had an error loading " + path)
-
-
-def add_rt_to_dictionary(ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike], rt_dictionary: Dict[str, RTBase],
- pydicom_string_keys: PyDicomKeys = None):
- """
- Args:
- ds:
- path:
- rt_dictionary:
- pydicom_string_keys:
-
- Returns:
-
- """
- try:
- series_instance_uid = ds.SeriesInstanceUID
- if series_instance_uid not in rt_dictionary:
- new_RT = RTBase()
- new_RT.load_info(ds, path, pydicom_string_keys)
- rt_dictionary[series_instance_uid] = new_RT
- except:
- print("Had an error loading " + path)
-
-
-def add_rd_to_dictionary(sitk_dicom_reader, rd_dictionary: Dict[str, RDBase], sitk_string_keys: SitkDicomKeys = None):
- try:
- series_instance_uid = sitk_dicom_reader.GetMetaData("0020|000e")
- if series_instance_uid not in rd_dictionary:
- new_rd = RDBase()
- new_rd.load_info(sitk_dicom_reader, sitk_string_keys)
- rd_dictionary[series_instance_uid] = new_rd
- else:
- rd_base: RDBase
- rd_base = rd_dictionary[series_instance_uid]
- rd_base.add_beam(sitk_dicom_reader)
- except:
- print("Had an error loading " + sitk_dicom_reader.GetFileName())
-
-
-def add_sops_to_dictionary(sitk_dicom_reader, series_instances_dictionary: Dict[str, ImageBase]):
- """
- :param sitk_dicom_reader: sitk.ImageSeriesReader()
- :param series_instances_dictionary: dictionary of series instance UIDs
- """
- series_instance_uid = sitk_dicom_reader.GetMetaData(0, "0020|000e")
- keys = []
- series_instance_uids = []
- for key, value in series_instances_dictionary.items():
- keys.append(key)
- series_instance_uids.append(value.SeriesInstanceUID)
- index = keys[series_instance_uids.index(series_instance_uid)]
- sopinstanceuids = [sitk_dicom_reader.GetMetaData(i, "0008|0018") for i in
- range(len(sitk_dicom_reader.GetFileNames()))]
- series_instances_dictionary[index].SOPs = sopinstanceuids
-
-
-def return_template_dictionary():
- template_dictionary = ImageBase()
- return template_dictionary
-
-
-class AddDicomToDictionary(object):
- def __init__(self, plan_pydicom_string_keys: PyDicomKeys = Dict or None,
- struct_pydicom_string_keys: PyDicomKeys = Dict or None,
- image_sitk_string_keys: SitkDicomKeys = Dict or None,
- dose_sitk_string_keys: SitkDicomKeys = Dict or None):
- self.image_reader = sitk.ImageFileReader()
- self.image_reader.LoadPrivateTagsOn()
- self.reader = sitk.ImageSeriesReader()
- self.reader.GlobalWarningDisplayOff()
- self.plan_pydicom_string_keys = plan_pydicom_string_keys
- self.struct_pydicom_string_keys = struct_pydicom_string_keys
- self.image_sitk_string_keys = image_sitk_string_keys
- self.dose_sitk_string_keys = dose_sitk_string_keys
-
- def add_dicom_to_dictionary_from_path(self, dicom_path, images_dictionary: Dict[str, ImageBase],
- rt_dictionary: Dict[str, RTBase],
- rd_dictionary: Dict[str, RDBase],
- rp_dictionary: Dict[str, PlanBase]):
- fileList = [os.path.join(dicom_path, i) for i in os.listdir(dicom_path) if i.lower().endswith('.dcm')]
- series_ids = self.reader.GetGDCMSeriesIDs(dicom_path)
- all_names = []
- for series_id in series_ids:
- dicom_names = self.reader.GetGDCMSeriesFileNames(dicom_path, series_id)
- all_names += dicom_names
- self.image_reader.SetFileName(dicom_names[0])
- self.image_reader.ReadImageInformation()
- modality = self.image_reader.GetMetaData("0008|0060")
- if modality.lower().find('rtdose') != -1:
- for dicom_name in dicom_names:
- self.image_reader.SetFileName(dicom_name)
- self.image_reader.Execute()
- add_rd_to_dictionary(sitk_dicom_reader=self.image_reader,
- rd_dictionary=rd_dictionary, sitk_string_keys=self.dose_sitk_string_keys)
- else:
- self.image_reader.Execute()
- add_images_to_dictionary(images_dictionary=images_dictionary, dicom_names=dicom_names,
- sitk_dicom_reader=self.image_reader, path=dicom_path,
- sitk_string_keys=self.image_sitk_string_keys)
- RT_Files = [file for file in fileList if file not in all_names]
- for lstRSFile in RT_Files:
- rt = pydicom.read_file(lstRSFile)
- modality = rt.Modality
- if modality.lower().find('struct') != -1:
- add_rt_to_dictionary(ds=rt, path=lstRSFile, rt_dictionary=rt_dictionary)
- elif modality.lower().find('plan') != -1:
- add_rp_to_dictionary(ds=rt, path=lstRSFile, rp_dictionary=rp_dictionary,
- pydicom_string_keys=self.plan_pydicom_string_keys)
- xxx = 1
-
-
-class DicomReaderWriter(object):
- images_dictionary: Dict[str, ImageBase]
- rt_dictionary: Dict[str, RTBase]
- rd_dictionary: Dict[str, RDBase]
- rp_dictionary: Dict[str, PlanBase]
- rois_in_index_dict: Dict[int, List[str]] # List of rois at any index
- dicom_handle: sitk.Image or None
- dose_handle: sitk.Image or None
- annotation_handle: sitk.Image or None
- all_rois: List[str]
- roi_class_list: List[ROIClass]
- rois_in_loaded_index: List[str]
- indexes_with_contours: List[int] # A list of all the indexes which contain the desired contours
- roi_groups: Dict[str, List[str]] # A dictionary with ROI names grouped by code associations
- all_RTs: Dict[str, List[str]] # A dictionary of RT being the key, and a list of ROIs in that RT
- RTs_with_ROI_Names: Dict[str, List[str]] # A dictionary with key being an ROI name, and value being a list of RTs
- series_instances_dictionary = Dict[int, ImageBase]
- mask_dictionary: Dict[str, sitk.Image]
- mask: np.ndarray or None
- group_dose_by_frame_of_reference: bool
-
- def __init__(self, description='', Contour_Names: List[str]=None, associations: List[ROIAssociationClass] = None,
- arg_max=True, verbose=True, create_new_RT=True, template_dir=None, delete_previous_rois=True,
- require_all_contours=True, iteration=0, get_dose_output=False,
- flip_axes=(False, False, False), index=0, series_instances_dictionary: Dict[int, ImageBase] = None,
- plan_pydicom_string_keys: PyDicomKeys = None,
- struct_pydicom_string_keys: PyDicomKeys = None,
- image_sitk_string_keys: SitkDicomKeys = None,
- dose_sitk_string_keys: SitkDicomKeys = None, group_dose_by_frame_of_reference=True):
- """
- :param description: string, description information to add to .nii files
- :param delete_previous_rois: delete the previous RTs within the structure when writing out a prediction
- :param Contour_Names: list of contour names
- :param template_dir: default to None, specifies path to template RT structure
- :param arg_max: perform argmax on the mask
- :param create_new_RT: boolean, if the Dicom-RT writer should create a new RT structure
- :param require_all_contours: Boolean, require all contours present when making nifti files?
- :param associations: dictionary of associations {'liver_bma_program_4': 'liver'}
- :param iteration: what iteration for writing .nii files
- :param get_dose_output: boolean, collect dose information
- :param flip_axes: tuple(3), axis that you want to flip, defaults to (False, False, False)
- :param index: index to reference series_instances_dictionary, default 0
- :param series_instances_dictionary: dictionary of series instance UIDs of images and RTs
- :param group_dose_by_frame_of_reference: a boolean, should dose files be associated with images based on the
- frame of reference. This is a last resort if the dose does not reference a structure or plan file.
- """
- self.roi_class_list = []
- self.dose = None
- self.group_dose_by_frame_of_reference = group_dose_by_frame_of_reference
- self.verbose = verbose
- self.annotation_handle = None
- self.dicom_handle = None
- self.dose_handle = None
- self.rois_in_index_dict = {}
- self.rt_dictionary = {}
- self.mask_dictionary = {}
- self.dicom_handle_uid = None
- self.dicom_info_uid = None
- self.RS_struct_uid = None
- self.mask = None
- self.rd_study_instance_uid = None
- self.index = index
- self.all_RTs = {}
- self.RTs_with_ROI_Names = {}
- self.all_rois = []
- self.roi_groups = {}
- self.indexes_with_contours = []
- self.plan_pydicom_string_keys = plan_pydicom_string_keys
- self.struct_pydicom_string_keys = struct_pydicom_string_keys
- self.image_sitk_string_keys = image_sitk_string_keys
- self.dose_sitk_string_keys = dose_sitk_string_keys
- self.images_dictionary = {}
- self.rd_dictionary = {}
- self.rp_dictionary = {}
- if series_instances_dictionary is None:
- series_instances_dictionary = {}
- self.series_instances_dictionary = series_instances_dictionary
- self.get_dose_output = get_dose_output
- self.require_all_contours = require_all_contours
- self.flip_axes = flip_axes
- self.create_new_RT = create_new_RT
- self.arg_max = arg_max
- if template_dir is None or not os.path.exists(template_dir):
- template_dir = os.path.join(os.path.split(__file__)[0], 'template_RS.dcm')
- self.template_dir = template_dir
- self.template = True
- self.delete_previous_rois = delete_previous_rois
- self.associations = associations
- if Contour_Names is None:
- self.Contour_Names = []
- else:
- self.Contour_Names = Contour_Names
- self.__initialize_reader__()
- self.set_contour_names_and_associations(contour_names=Contour_Names, associations=associations,
- check_contours=False)
- self.__set_description__(description)
- self.__set_iteration__(iteration)
-
- def __initialize_reader__(self):
- self.reader = sitk.ImageSeriesReader()
- self.image_reader = sitk.ImageFileReader()
- self.image_reader.LoadPrivateTagsOn()
- self.reader.MetaDataDictionaryArrayUpdateOn()
- self.reader.LoadPrivateTagsOn()
- self.reader.SetOutputPixelType(sitk.sitkFloat32)
-
- def set_index(self, index: int):
- self.index = index
- if self.index in self.rois_in_index_dict:
- self.rois_in_loaded_index = self.rois_in_index_dict[self.index]
- else:
- self.rois_in_loaded_index = []
-
- def __mask_empty_mask__(self) -> None:
- if self.dicom_handle:
- self.image_size_cols, self.image_size_rows, self.image_size_z = self.dicom_handle.GetSize()
- self.mask = np.zeros(
- [self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols, len(self.Contour_Names) + 1],
- dtype=np.int8)
- self.annotation_handle = sitk.GetImageFromArray(self.mask)
-
- def __reset_mask__(self):
- self.__mask_empty_mask__()
- self.mask_dictionary = {}
-
- def __reset__(self):
- self.__reset_RTs__()
- self.rd_study_instance_uid = None
- self.dicom_handle_uid = None
- self.dicom_info_uid = None
- self.series_instances_dictionary = {}
- self.rt_dictionary = {}
- self.images_dictionary = {}
- self.mask_dictionary = {}
-
- def __reset_RTs__(self):
- self.all_rois = []
- self.roi_class_list = []
- self.roi_groups = {}
- self.indexes_with_contours = []
- self.RS_struct_uid = None
- self.RTs_with_ROI_Names = {}
-
- def __compile__(self):
- """
- The goal of this is to combine image, rt, and dose dictionaries based on the SeriesInstanceUIDs
- """
- if self.verbose:
- print('Compiling dictionaries together...')
- series_instance_uids = []
- for key, value in self.series_instances_dictionary.items():
- series_instance_uids.append(value.SeriesInstanceUID)
- index = 0
- image_keys = list(self.images_dictionary.keys())
- image_keys.sort()
- for series_instance_uid in image_keys: # Will help keep things in order later
- if series_instance_uid not in series_instance_uids:
- while index in self.series_instances_dictionary:
- index += 1
- self.series_instances_dictionary[index] = self.images_dictionary[series_instance_uid]
- series_instance_uids.append(series_instance_uid)
- for rt_series_instance_uid in self.rt_dictionary:
- series_instance_uid = self.rt_dictionary[rt_series_instance_uid].SeriesInstanceUID
- rt_dictionary = self.rt_dictionary[rt_series_instance_uid]
- path = rt_dictionary.path
- self.all_RTs[path] = rt_dictionary.ROI_Names
- for roi in rt_dictionary.ROI_Names:
- if roi not in self.RTs_with_ROI_Names:
- self.RTs_with_ROI_Names[roi] = [path]
- else:
- self.RTs_with_ROI_Names[roi].append(path)
- if series_instance_uid in series_instance_uids:
- index = series_instance_uids.index(series_instance_uid)
- self.series_instances_dictionary[index].RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
- else:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
- self.series_instances_dictionary[index] = template
- for rd_series_instance_uid in self.rd_dictionary:
- struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
- if struct_ref is None:
- continue
- for image_series_key in self.series_instances_dictionary:
- rts = self.series_instances_dictionary[image_series_key].RTs
- for rt_key in rts:
- structure_sop_uid = rts[rt_key].SOPInstanceUID
- if struct_ref == structure_sop_uid:
- rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
- self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
- self.rd_dictionary[rd_series_instance_uid]})
- for rp_series_instance_uid in self.rp_dictionary:
- added = False
- struct_ref = self.rp_dictionary[rp_series_instance_uid].ReferencedStructureSetSOPInstanceUID
- for image_series_key in self.series_instances_dictionary:
- rts = self.series_instances_dictionary[image_series_key].RTs
- for rt_key in rts:
- structure_sop_uid = rts[rt_key].SOPInstanceUID
- if struct_ref == structure_sop_uid:
- rts[rt_key].Plans[rp_series_instance_uid] = self.rp_dictionary[rp_series_instance_uid]
- self.series_instances_dictionary[image_series_key].RPs.update({rp_series_instance_uid:
- self.rp_dictionary[rp_series_instance_uid]})
- added = True
- if not added:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RPs.update({rp_series_instance_uid: self.rp_dictionary[rp_series_instance_uid]})
- self.series_instances_dictionary[index] = template
- for rd_series_instance_uid in self.rd_dictionary:
- struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
- if struct_ref is not None:
- continue
- plan_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedPlanSOPInstanceUID
- for image_series_key in self.series_instances_dictionary:
- rps = self.series_instances_dictionary[image_series_key].RPs
- rts = self.series_instances_dictionary[image_series_key].RTs
- for rp_key in rps:
- plan_sop_uid = rps[rp_key].SOPInstanceUID
- if plan_ref == plan_sop_uid:
- rt_key_sopinstanceUID = rps[rp_key].ReferencedStructureSetSOPInstanceUID
- for rt_key in rts:
- if rts[rt_key].SOPInstanceUID == rt_key_sopinstanceUID:
- rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
- self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
- self.rd_dictionary[rd_series_instance_uid]})
- for rd_series_instance_uid in self.rd_dictionary:
- added = False
- dose = self.rd_dictionary[rd_series_instance_uid]
- if self.group_dose_by_frame_of_reference:
- for image_series_key in self.series_instances_dictionary:
- image = self.series_instances_dictionary[image_series_key]
- if image.StudyInstanceUID != dose.StudyInstanceUID:
- continue
- if image.FrameOfReference == self.rd_dictionary[rd_series_instance_uid].ReferencedFrameOfReference:
- self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid: dose})
- added = True
- if self.verbose:
- print(f"Could not associate the dose files {dose.Dose_Files} with a plan or structure.\n"
- f"Grouping with images {image.path} based on Frame of Reference UID")
- if not added:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RDs.update({rd_series_instance_uid: dose})
- self.series_instances_dictionary[index] = template
-
- def __manual_compile_based_on_folders__(self, reset_series_instances_dict=False):
- """
- The goal of this is to combine image, rt, and dose dictionaries based on folder location
- AKA, if the RT structure and images are in the same folder
- :return:
- """
- print("Don't use this unless you know why you're doing it...")
- if reset_series_instances_dict:
- self.series_instances_dictionary = {}
- if self.verbose:
- print('Compiling dictionaries together...')
- folders = []
- for key, value in self.series_instances_dictionary.items():
- folders.append(value.path)
- index = 0
- image_keys = list(self.images_dictionary.keys())
- image_keys.sort()
- for series_instance_uid in image_keys: # Will help keep things in order later
- folder = self.images_dictionary[series_instance_uid].path
- if folder not in folders:
- while index in self.series_instances_dictionary:
- index += 1
- self.series_instances_dictionary[index] = self.images_dictionary[series_instance_uid]
- folders.append(folder)
- for rt_series_instance_uid in self.rt_dictionary:
- rt_path = os.path.split(self.rt_dictionary[rt_series_instance_uid].path)[0]
- rt_dictionary = self.rt_dictionary[rt_series_instance_uid]
- path = rt_dictionary.path
- self.all_RTs[path] = rt_dictionary.ROI_Names
- for roi in rt_dictionary.ROI_Names:
- if roi not in self.RTs_with_ROI_Names:
- self.RTs_with_ROI_Names[roi] = [path]
- else:
- self.RTs_with_ROI_Names[roi].append(path)
- if rt_path in folders:
- index = folders.index(rt_path)
- self.series_instances_dictionary[index].RTs.update({rt_series_instance_uid:
- self.rt_dictionary[rt_series_instance_uid]})
- else:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
- self.series_instances_dictionary[index] = template
- for rd_series_instance_uid in self.rd_dictionary:
- added = False
- struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
- for image_series_key in self.series_instances_dictionary:
- rts = self.series_instances_dictionary[image_series_key].RTs
- for rt_key in rts:
- structure_sop_uid = rts[rt_key].SOPInstanceUID
- if struct_ref == structure_sop_uid:
- rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
- self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
- self.rd_dictionary[rd_series_instance_uid]})
- added = True
- if not added:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RDs.update({rd_series_instance_uid: self.rd_dictionary[rd_series_instance_uid]})
- self.series_instances_dictionary[index] = template
- for rp_series_instance_uid in self.rp_dictionary:
- added = False
- struct_ref = self.rp_dictionary[rp_series_instance_uid].ReferencedStructureSetSOPInstanceUID
- for image_series_key in self.series_instances_dictionary:
- rts = self.series_instances_dictionary[image_series_key].RTs
- for rt_key in rts:
- structure_sop_uid = rts[rt_key].SOPInstanceUID
- if struct_ref == structure_sop_uid:
- rts[rt_key].Plans[rp_series_instance_uid] = self.rp_dictionary[rp_series_instance_uid]
- self.series_instances_dictionary[image_series_key].RPs.update({rp_series_instance_uid:
- self.rp_dictionary[rp_series_instance_uid]})
- added = True
- if not added:
- while index in self.series_instances_dictionary:
- index += 1
- template = return_template_dictionary()
- template.RPs.update({rp_series_instance_uid: self.rp_dictionary[rp_series_instance_uid]})
- self.series_instances_dictionary[index] = template
- self.__check_if_all_contours_present__()
-
- def set_contour_names_and_associations(self, contour_names: List[str] = None,
- associations: List[ROIAssociationClass] = None, check_contours=True):
- if contour_names is not None:
- self.__set_contour_names__(contour_names=contour_names)
- if associations is not None:
- self.__set_associations__(associations=associations)
- if check_contours: # I don't want to run this on the first build..
- self.__check_if_all_contours_present__()
- if contour_names is not None or self.associations is not None:
- if self.verbose:
- print("Contour names or associations changed, resetting mask")
- self.__reset_mask__()
-
- def __set_associations__(self, associations: List[ROIAssociationClass] = None):
- if associations is not None:
- self.associations, self.hierarchy = associations, {}
-
- def __set_contour_names__(self, contour_names: List[str]):
- self.__reset_RTs__()
- contour_names = [i.lower() for i in contour_names]
- self.Contour_Names = contour_names
-
- def __set_description__(self, description: str):
- self.description = description
-
- def __set_iteration__(self, iteration=0):
- self.iteration = str(iteration)
-
- def __check_contours_at_index__(self, index: int, RTs: List[RTBase] = None) -> None:
- self.rois_in_loaded_index = []
- if self.series_instances_dictionary[index].path is None:
- return
- if RTs is None:
- RTs = self.series_instances_dictionary[index].RTs
- true_rois = []
- for RT_key in RTs:
- RT = RTs[RT_key]
- for code_key in RT.CodeAssociations:
- if code_key not in self.roi_groups:
- self.roi_groups[code_key] = RT.CodeAssociations[code_key]
- else:
- self.roi_groups[code_key] = list(set(self.roi_groups[code_key] + RT.CodeAssociations[code_key]))
- for roi in RT.ROIs_In_Structure.values():
- roi_name = roi.ROIName
- if roi_name not in self.RTs_with_ROI_Names:
- self.RTs_with_ROI_Names[roi.ROIName] = [RT.path]
- elif RT.path not in self.RTs_with_ROI_Names[roi_name]:
- self.RTs_with_ROI_Names[roi_name].append(RT.path)
- if roi_name not in self.rois_in_loaded_index:
- self.rois_in_loaded_index.append(roi_name)
- if roi_name not in self.all_rois:
- self.all_rois.append(roi_name)
- self.roi_class_list.append(roi)
- if self.Contour_Names:
- if roi_name in self.Contour_Names:
- true_rois.append(roi_name)
- elif self.associations:
- for association in self.associations:
- if roi_name in association.other_names:
- true_rois.append(association.roi_name)
- elif roi_name in self.Contour_Names:
- true_rois.append(roi_name)
- all_contours_exist = True
- some_contours_exist = False
- lacking_rois = []
- for roi in self.Contour_Names:
- if roi not in true_rois:
- lacking_rois.append(roi)
- else:
- some_contours_exist = True
- if lacking_rois:
- all_contours_exist = False
- if self.verbose:
- print('Lacking {} in index {}, location {}. Found {}'.format(lacking_rois, index,
- self.series_instances_dictionary[index].path, self.rois_in_loaded_index))
- if index not in self.indexes_with_contours:
- if all_contours_exist:
- self.indexes_with_contours.append(index)
- elif some_contours_exist and not self.require_all_contours:
- self.indexes_with_contours.append(index) # Add the index that have at least some of the contours
-
- def __check_if_all_contours_present__(self):
- self.indexes_with_contours = []
- for index in self.series_instances_dictionary:
- self.__check_contours_at_index__(index)
- self.rois_in_index_dict[index] = self.rois_in_loaded_index
-
- def return_rois(self, print_rois=True) -> List[str]:
- if print_rois:
- print('The following ROIs were found')
- for roi in self.all_rois:
- print(roi)
- return self.all_rois
-
- def return_found_rois_with_same_code(self, print_rois=True) -> Dict[str, List[str]]:
- if print_rois:
- print('The following ROIs were found to have the same structure code')
- for code in self.roi_groups:
- print(f"For code {code} we found:")
- for roi in self.roi_groups[code]:
- print(roi)
- return self.roi_groups
-
- def return_files_from_UID(self, UID: str) -> List[str]:
- """
- Args:
- UID: A string UID found in images_dictionary.
-
- Returns:
- file_list: A list of file paths that are associated with that UID, being images, RTs, RDs, and RPs
- """
- out_file_paths = list()
- if UID not in self.images_dictionary:
- print(UID + " Not found in dictionary")
- return out_file_paths
- image_dictionary = self.images_dictionary[UID]
- dicom_path = image_dictionary.path
- image_reader = sitk.ImageFileReader()
- image_reader.LoadPrivateTagsOn()
- reader = sitk.ImageSeriesReader()
- reader.GlobalWarningDisplayOff()
- out_file_paths += reader.GetGDCMSeriesFileNames(dicom_path, UID)
- for structure_key in image_dictionary.RTs:
- out_file_paths += [image_dictionary.RTs[structure_key].path]
- for structure_key in image_dictionary.RDs:
- out_file_paths += [image_dictionary.RDs[structure_key].path]
- return out_file_paths
-
- def return_files_from_index(self, index: int) -> List[str]:
- """
- Args:
- index: An integer index found in images_dictionary.
-
- Returns:
- file_list: A list of file paths that are associated with that index, being images, RTs, RDs, and RPs
- """
- out_file_paths = list()
- image_dictionary = self.series_instances_dictionary[index]
- UID = image_dictionary.SeriesInstanceUID
- dicom_path = image_dictionary.path
- image_reader = sitk.ImageFileReader()
- image_reader.LoadPrivateTagsOn()
- reader = sitk.ImageSeriesReader()
- reader.GlobalWarningDisplayOff()
- out_file_paths += reader.GetGDCMSeriesFileNames(dicom_path, UID)
- for structure_key in image_dictionary.RTs:
- out_file_paths += [image_dictionary.RTs[structure_key].path]
- for structure_key in image_dictionary.RPs:
- out_file_paths += [image_dictionary.RPs[structure_key].path]
- for structure_key in image_dictionary.RDs:
- out_file_paths += [image_dictionary.RDs[structure_key].path]
- return out_file_paths
-
- def return_files_from_patientID(self, patientID: str) -> List[str]:
- """
- Args:
- patientID:
-
- Returns:
-
- """
- out_file_paths = list()
- for index in self.series_instances_dictionary:
- if self.series_instances_dictionary[index].PatientID == patientID:
- out_file_paths += self.return_files_from_index(index)
- return out_file_paths
-
- def where_are_RTs(self, ROIName: str) -> List[str]:
- print('Please move over to using .where_is_ROI(), as this better represents the definition')
- return self.where_is_ROI(ROIName=ROIName)
-
- def where_is_ROI(self, ROIName: str) -> List[str]:
- out_folders = list()
- if ROIName.lower() in self.RTs_with_ROI_Names:
- print('Contours of {} are located:'.format(ROIName.lower()))
- for path in self.RTs_with_ROI_Names[ROIName.lower()]:
- out_folders.append(path)
- print(path)
- else:
- print('{} was not found within the set, check spelling or list all rois'.format(ROIName))
- return out_folders
-
- def which_indexes_have_all_rois(self):
- if self.Contour_Names:
- print('The following indexes have all ROIs present')
- for index in self.indexes_with_contours:
- print('Index {}, located at {}'.format(index, self.series_instances_dictionary[index].path))
- print('Finished listing present indexes')
- return self.indexes_with_contours
- else:
- print('You need to first define what ROIs you want, please use'
- ' .set_contour_names_and_associations()')
-
- def characterize_data_to_excel(self, wanted_rois: List[str] = None,
- excel_path: typing.Union[str, bytes, os.PathLike] = "./Data.xlsx"):
- print("This is going to load every index and record volume data to the excel_path"
- " indicated above. Be aware that this can take some time...")
- self.verbose = False
- print("To prevent annoying messages, verbosity has been turned off...")
- loading_rois = []
- if wanted_rois is None:
- if self.Contour_Names:
- loading_rois = self.Contour_Names
- print("Since no rois were explicitly defined, this will evaluate previously defined Contour Names")
- else:
- print("Since no rois were explicitly defined, this will evaluate all rois")
- loading_rois = self.all_rois
- else:
- for roi in wanted_rois:
- if roi in self.all_rois:
- loading_rois.append(roi)
- else:
- if self.associations:
- for association in self.associations:
- if association.roi_name == roi:
- loading_rois += association.other_names
- loading_rois = list(set(loading_rois))
- final_out_dict = {'PatientID': [], 'PixelSpacingX': [], 'PixelSpacingY': [],
- 'SliceThickness': [], 'zzzRTPath': [], 'zzzImagePath': []}
- image_out_dict = {'PatientID': [], 'ImagePath': [], 'PixelSpacingX': [], 'PixelSpacingY': [],
- 'SliceThickness': []}
- temp_associations = {}
- column_names = []
- for roi in loading_rois:
- if self.associations:
- for association in self.associations:
- if roi in association.other_names:
- true_name = association.roi_name
- temp_associations[roi] = true_name
- if roi not in final_out_dict:
- final_out_dict[f"{roi} cc"] = []
- column_names.append(roi)
- """
- Now we load the images/mask, and get volume data
- """
- pbar = tqdm(total=len(self.series_instances_dictionary), desc='Building data...')
- for index in self.series_instances_dictionary:
- pbar.update()
- if self.series_instances_dictionary[index].SeriesInstanceUID is None: # No image? Move along
- continue
- self.set_index(index)
- has_wanted_roi = False
- for roi in column_names:
- if roi in self.rois_in_loaded_index:
- has_wanted_roi = True
- break
- if not has_wanted_roi:
- continue
- image_base = self.series_instances_dictionary[index]
- image_out_dict['PatientID'].append(image_base.PatientID)
- image_out_dict['ImagePath'].append(image_base.path)
- image_out_dict['PixelSpacingX'].append(image_base.pixel_spacing_x)
- image_out_dict['PixelSpacingY'].append(image_base.pixel_spacing_y)
- image_out_dict['SliceThickness'].append(image_base.slice_thickness)
- self.get_images()
- """
- If there is no image set, move along
- """
- dimension = np.prod(self.dicom_handle.GetSpacing()) # Voxel dimensions, in mm
- for rt_index in image_base.RTs:
- rt_base = image_base.RTs[rt_index]
- self.__check_contours_at_index__(index)
- final_out_dict['PatientID'].append(rt_base.PatientID)
- final_out_dict['zzzRTPath'].append(rt_base.path)
- final_out_dict['zzzImagePath'].append(image_base.path)
- final_out_dict['PixelSpacingX'].append(image_base.pixel_spacing_x)
- final_out_dict['PixelSpacingY'].append(image_base.pixel_spacing_y)
- final_out_dict['SliceThickness'].append(image_base.slice_thickness)
- """
- Default values to be nothing, then replace them as they come
- """
- for roi in column_names:
- final_out_dict[f"{roi} cc"].append(np.nan)
- for roi in column_names:
- if roi in rt_base.ROI_Names:
- mask = self.__return_mask_for_roi__(rt_base, roi)
- volume = np.around(np.sum(mask) * dimension / 1000, 3) # Volume in cm^3, not mm^3. 3 sig figs
- final_out_dict[f"{roi} cc"][-1] = volume
- for key in temp_associations.keys():
- if temp_associations[key] not in final_out_dict:
- final_out_dict[temp_associations[key]] = [np.nan for _ in range(len(final_out_dict['PatientID']))]
- df = pd.DataFrame(final_out_dict)
- for key in temp_associations:
- df[temp_associations[key]] = df[f"{key} cc"] + df.fillna(0)[temp_associations[key]]
- df = df.reindex(sorted(df.columns), axis=1)
- df_image = pd.DataFrame(image_out_dict)
- with pd.ExcelWriter(excel_path) as writer:
- # use to_excel function and specify the sheet_name and index
- # to store the dataframe in specified sheet
- df.to_excel(writer, sheet_name="ROIs", index=False)
- df_image.to_excel(writer, sheet_name="Images", index=False)
-
- def which_indexes_lack_all_rois(self):
- if self.Contour_Names:
- print('The following indexes are lacking all ROIs')
- indexes_lacking_rois = []
- for index in self.series_instances_dictionary:
- if index not in self.indexes_with_contours:
- indexes_lacking_rois.append(index)
- print('Index {}, located at '
- '{}'.format(index, self.series_instances_dictionary[index].path))
- print('Finished listing lacking indexes')
- return indexes_lacking_rois
- else:
- print('You need to first define what ROIs you want, please use'
- ' .set_contour_names_and_associations(roi_list)')
-
- def down_folder(self, input_path: typing.Union[str, bytes, os.PathLike]):
- print('Please move from down_folder() to walk_through_folders()')
- self.walk_through_folders(input_path=input_path)
-
- def walk_through_folders(self, input_path: typing.Union[str, bytes, os.PathLike],
- thread_count=int(cpu_count() * 0.9 - 1)):
- """
- Iteratively work down paths to find DICOM files, if they are present, add to the series instance UID dictionary
- :param input_path: path to walk
- """
- paths_with_dicom = []
- for root, dirs, files in os.walk(input_path):
- dicom_files = [i for i in files if i.lower().endswith('.dcm')]
- if dicom_files:
- paths_with_dicom.append(root)
- # dicom_adder.add_dicom_to_dictionary_from_path(dicom_path=root, images_dictionary=self.images_dictionary,
- # rt_dictionary=self.rt_dictionary)
- if paths_with_dicom:
- q = Queue(maxsize=thread_count)
- pbar = tqdm(total=len(paths_with_dicom), desc='Loading through DICOM files')
- A = (q, pbar)
- threads = []
- for worker in range(thread_count):
- t = Thread(target=folder_worker, args=(A,))
- t.start()
- threads.append(t)
- for index, path in enumerate(paths_with_dicom):
- item = [path, self.images_dictionary, self.rt_dictionary, self.rd_dictionary, self.rp_dictionary,
- self.verbose, (self.plan_pydicom_string_keys, self.struct_pydicom_string_keys,
- self.image_sitk_string_keys, self.dose_sitk_string_keys)]
- q.put(item)
- for i in range(thread_count):
- q.put(None)
- for t in threads:
- t.join()
- self.__compile__()
- if self.verbose or len(self.series_instances_dictionary) > 1:
- for key in self.series_instances_dictionary:
- print('Index {}, description {} at {}'.format(key,
- self.series_instances_dictionary[key].Description,
- self.series_instances_dictionary[key].path))
- print('{} unique series IDs were found. Default is index 0, to change use '
- 'set_index(index)'.format(len(self.series_instances_dictionary)))
- self.set_index(0)
- self.__check_if_all_contours_present__()
- return None
-
- def write_parallel(self, out_path: typing.Union[str, bytes, os.PathLike],
- excel_file: typing.Union[str, bytes, os.PathLike],
- thread_count=int(cpu_count() * 0.9 - 1)):
- if not os.path.exists(out_path):
- os.makedirs(out_path)
- if not os.path.exists(excel_file):
- final_out_dict = {'PatientID': [], 'Path': [], 'Iteration': [], 'Folder': [], 'SeriesInstanceUID': [],
- 'Pixel_Spacing_X': [], 'Pixel_Spacing_Y': [], 'Slice_Thickness': []}
- for roi in self.Contour_Names:
- column_name = 'Volume_{} [cc]'.format(roi)
- final_out_dict[column_name] = []
- df = pd.DataFrame(final_out_dict)
- df.to_excel(excel_file, index=False)
- else:
- df = pd.read_excel(excel_file, engine='openpyxl')
- add_columns = False
- for roi in self.Contour_Names:
- column_name = 'Volume_{} [cc]'.format(roi)
- if column_name not in df.columns:
- df[column_name] = np.nan
- add_columns = True
- if add_columns:
- df.to_excel(excel_file, index=False)
- key_dict = {'series_instances_dictionary': self.series_instances_dictionary, 'associations': self.associations,
- 'arg_max': self.arg_max, 'require_all_contours': self.require_all_contours,
- 'Contour_Names': self.Contour_Names,
- 'description': self.desciption, 'get_dose_output': self.get_dose_output}
- rewrite_excel = False
- '''
- First, build the excel file that we will use to reference iterations, Series UIDs, and paths
- '''
- for index in self.indexes_with_contours:
- series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
- previous_run = df.loc[df['SeriesInstanceUID'] == series_instance_uid]
- if previous_run.shape[0] == 0:
- rewrite_excel = True
- iteration = 0
- while iteration in df['Iteration'].values:
- iteration += 1
- temp_dict = {'PatientID': [self.series_instances_dictionary[index].PatientID],
- 'Path': [self.series_instances_dictionary[index].path],
- 'Iteration': [int(iteration)], 'Folder': [None],
- 'SeriesInstanceUID': [series_instance_uid],
- 'Pixel_Spacing_X': [self.series_instances_dictionary[index].pixel_spacing_x],
- 'Pixel_Spacing_Y': [self.series_instances_dictionary[index].pixel_spacing_y],
- 'Slice_Thickness': [self.series_instances_dictionary[index].slice_thickness]}
- temp_df = pd.DataFrame(temp_dict)
- df = df.append(temp_df)
- if rewrite_excel:
- df.to_excel(excel_file, index=False)
- '''
- Next, read through the excel sheet and see if the out paths already exist
- '''
- items = []
- for index in self.indexes_with_contours:
- series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
- previous_run = df.loc[df['SeriesInstanceUID'] == series_instance_uid]
- if previous_run.shape[0] == 0:
- continue
- iteration = int(previous_run['Iteration'].values[0])
- folder = previous_run['Folder'].values[0]
- if pd.isnull(folder):
- folder = None
- write_path = out_path
- if folder is not None:
- write_path = os.path.join(out_path, folder)
- write_image = os.path.join(write_path, 'Overall_Data_{}_{}.nii.gz'.format(self.desciption, iteration))
- rerun = True
- if os.path.exists(write_image):
- print('Already wrote out index {} at {}'.format(index, write_path))
- rerun = False
- for roi in self.Contour_Names:
- column_name = 'Volume_{} [cc]'.format(roi)
- if pd.isnull(previous_run[column_name].values[0]):
- rerun = True
- print('Volume for {} was not defined at index {}.. so rerunning'.format(roi, index))
- break
- if not rerun:
- continue
- item = [iteration, index, write_path, key_dict]
- items.append(item)
- if items:
- q = Queue(maxsize=thread_count)
- pbar = tqdm(total=len(items), desc='Writing nifti files...')
- A = (q, pbar)
- threads = []
- for worker in range(thread_count):
- t = Thread(target=worker_def, args=(A,))
- t.start()
- threads.append(t)
- for item in items:
- q.put(item)
- for i in range(thread_count):
- q.put(None)
- for t in threads:
- t.join()
- """
- Now, take the volumes that have been calculated during this process and add them to the excel sheet
- """
- for item in items:
- index = item[1]
- iteration = item[0]
- if 'Volumes' not in self.series_instances_dictionary[index].additional_tags.keys():
- continue
- for roi_index, roi in enumerate(self.Contour_Names):
- column_name = 'Volume_{} [cc]'.format(roi)
- df.loc[df.Iteration == iteration, column_name] = \
- self.series_instances_dictionary[index].additional_tags['Volumes'][roi_index]
- df.to_excel(excel_file, index=False)
-
- def get_images_and_mask(self) -> None:
- if self.index not in self.series_instances_dictionary:
- print("Index is not preset in the dictionary! Set it using set_index(index)")
- return None
- self.get_images()
- self.get_mask()
- if self.get_dose_output:
- self.get_dose()
-
- def get_all_info(self) -> None:
- """
- Print all of the keys and their respective values
- :return:
- """
- self.load_key_information_only()
- for key in self.image_reader.GetMetaDataKeys():
- print("{} is {}".format(key, self.image_reader.GetMetaData(key)))
-
- def return_key_info(self, key):
- """
- Return the dicom information for a particular key
- Example: "0008|0022" will return the date acquired in YYYYMMDD format
- :param key: dicom key "0008|0022"
- :return: value associated with the key
- """
- self.load_key_information_only()
- if not self.image_reader.HasMetaDataKey(key):
- print("{} is not present in the reader".format(key))
- return None
- return self.image_reader.GetMetaData(key)
-
- def load_key_information_only(self) -> None:
- if self.index not in self.series_instances_dictionary:
- print('Index is not present in the dictionary! Set it using set_index(index)')
- return None
- index = self.index
- series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
- if self.dicom_info_uid != series_instance_uid: # Only load if needed
- dicom_names = self.series_instances_dictionary[index].files
- self.image_reader.SetFileName(dicom_names[0])
- self.image_reader.ReadImageInformation()
- self.dicom_info_uid = series_instance_uid
-
- def get_images(self) -> None:
- if self.index not in self.series_instances_dictionary:
- print('Index is not present in the dictionary! Set it using set_index(index)')
- return None
- index = self.index
- series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
- if series_instance_uid is None:
- print("This index does not have an associated image within the loaded folders")
- return None
- if self.dicom_handle_uid != series_instance_uid: # Only load if needed
- if self.verbose:
- print('Loading images for {} at \n {}\n'.format(self.series_instances_dictionary[index].Description,
- self.series_instances_dictionary[index].path))
- dicom_names = self.series_instances_dictionary[index].files
- self.ds = pydicom.read_file(dicom_names[0])
- self.reader.SetFileNames(dicom_names)
- self.dicom_handle = self.reader.Execute()
- if self.verbose:
- print("Erasing any previous mask as we load a new new image set")
- self.__reset_mask__()
- add_sops_to_dictionary(sitk_dicom_reader=self.reader,
- series_instances_dictionary=self.series_instances_dictionary)
- if max(self.flip_axes):
- flipimagefilter = sitk.FlipImageFilter()
- flipimagefilter.SetFlipAxes(self.flip_axes)
- self.dicom_handle = flipimagefilter.Execute(self.dicom_handle)
- self.ArrayDicom = sitk.GetArrayFromImage(self.dicom_handle)
- self.image_size_cols, self.image_size_rows, self.image_size_z = self.dicom_handle.GetSize()
- self.dicom_handle_uid = series_instance_uid
-
- def get_dose(self, dose_type="PLAN") -> None:
- """
- :param dose_type: Type of dose to pull, https://dicom.innolitics.com/ciods/rt-dose/rt-dose/3004000a
- Can be "PLAN", "BEAM", etc.
- :return:
- """
- if self.index not in self.series_instances_dictionary:
- print('Index is not present in the dictionary! Set it using set_index(index)')
- return None
- index = self.index
- if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
- print('Loading images for index {}, since mask was requested but image loading was '
- 'previously different\n'.format(index))
- self.get_images()
- if self.rd_study_instance_uid is not None:
- if self.rd_study_instance_uid == self.series_instances_dictionary[index].StudyInstanceUID: # Already loaded
- return None
- self.rd_study_instance_uid = self.series_instances_dictionary[index].StudyInstanceUID
- RDs = self.series_instances_dictionary[index].RDs
- reader = sitk.ImageFileReader()
- output, spacing, direction, origin = None, None, None, None
- self.dose = None
- resampler = ImageResampler()
- resampled_dose_handle: sitk.Image
- filter_rds = False
- if len(RDs) > 1:
- filter_rds = True
- for rd_series_instance_uid in RDs:
- rd = RDs[rd_series_instance_uid]
- if filter_rds:
- if rd.DoseSummationType != dose_type:
- if self.verbose:
- print(f"Found multiple dose types, loading {dose_type}, this can be changed via"
- f" .get_dose(dose_type='PLAN'), etc.")
- continue
- for dose_file in rd.Dose_Files:
- reader.SetFileName(dose_file)
- reader.ReadImageInformation()
- dose_handle = reader.Execute()
- resampled_dose_handle = resampler.resample_image(input_image_handle=dose_handle,
- ref_resampling_handle=self.dicom_handle,
- interpolator='Linear', empty_value=0)
- resampled_dose_handle = sitk.Cast(resampled_dose_handle, sitk.sitkFloat32)
- scaling_factor = float(reader.GetMetaData("3004|000e"))
- resampled_dose_handle = resampled_dose_handle * scaling_factor
- if output is None:
- output = resampled_dose_handle
- else:
- output += resampled_dose_handle
- if output is not None:
- self.dose = sitk.GetArrayFromImage(output)
- self.dose_handle = output
-
- def __characterize_RT__(self, RT: RTBase):
- if self.RS_struct_uid != RT.SeriesInstanceUID:
- self.structure_references = {}
- self.RS_struct = pydicom.read_file(RT.path)
- self.RS_struct_uid = RT.SeriesInstanceUID
- for contour_number in range(len(self.RS_struct.ROIContourSequence)):
- self.structure_references[
- self.RS_struct.ROIContourSequence[contour_number].ReferencedROINumber] = contour_number
-
- def __return_mask_for_roi__(self, RT: RTBase, roi_name: str):
- self.__characterize_RT__(RT)
- structure_index = self.structure_references[RT.ROIs_In_Structure[roi_name]]
- mask = self.contours_to_mask(structure_index, roi_name)
- return mask
-
- def get_mask(self) -> None:
- if self.index not in self.series_instances_dictionary:
- print('Index is not present in the dictionary! Set it using set_index(index)')
- return None
- if not self.Contour_Names:
- print('If you want a mask, you need to set the contour names you are looking for, use '
- 'set_contour_names_and_associations(list_of_roi_names).\nIf you just '
- 'want to look at images use get_images() not get_images_and_mask() or get_mask()')
- return None
- index = self.index
- if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
- print('Loading images for index {}, since mask was requested but image loading was '
- 'previously different\n'.format(index))
- self.get_images()
- RTs = self.series_instances_dictionary[index].RTs
- for RT_key in RTs:
- RT = RTs[RT_key]
- for ROI_Name in RT.ROIs_In_Structure.keys():
- true_name = None
- if ROI_Name.lower() in self.Contour_Names:
- true_name = ROI_Name.lower()
- else:
- if self.associations:
- for association in self.associations:
- if ROI_Name.lower() in association.other_names:
- true_name = association.roi_name
- break # Found the name we wanted
- if true_name and true_name in self.Contour_Names:
- mask = self.__return_mask_for_roi__(RT, ROI_Name)
- self.mask[..., self.Contour_Names.index(true_name) + 1] += mask
- self.mask[self.mask > 1] = 1
- for true_name in self.Contour_Names:
- mask_img = sitk.GetImageFromArray(self.mask[..., self.Contour_Names.index(true_name) + 1].astype(np.uint8))
- mask_img.SetSpacing(self.dicom_handle.GetSpacing())
- mask_img.SetDirection(self.dicom_handle.GetDirection())
- mask_img.SetOrigin(self.dicom_handle.GetOrigin())
- self.mask_dictionary[true_name] = mask_img
- if self.flip_axes[0]:
- self.mask = self.mask[:, :, ::-1, ...]
- if self.flip_axes[1]:
- self.mask = self.mask[:, ::-1, ...]
- if self.flip_axes[2]:
- self.mask = self.mask[::-1, ...]
- voxel_size = np.prod(self.dicom_handle.GetSpacing())/1000 # volume in cc per voxel
- volumes = np.sum(self.mask[..., 1:], axis=(0, 1, 2)) * voxel_size # Volume in cc
- self.series_instances_dictionary[index].additional_tags['Volumes'] = volumes
- if self.arg_max:
- self.mask = np.argmax(self.mask, axis=-1)
- self.annotation_handle = sitk.GetImageFromArray(self.mask.astype(np.int8))
- self.annotation_handle.SetSpacing(self.dicom_handle.GetSpacing())
- self.annotation_handle.SetOrigin(self.dicom_handle.GetOrigin())
- self.annotation_handle.SetDirection(self.dicom_handle.GetDirection())
- return None
-
- def reshape_contour_data(self, as_array: np.array):
- as_array = np.asarray(as_array)
- if as_array.shape[-1] != 3:
- as_array = np.reshape(as_array, [as_array.shape[0] // 3, 3])
- matrix_points = np.asarray([self.dicom_handle.TransformPhysicalPointToIndex(as_array[i])
- for i in range(as_array.shape[0])])
- return matrix_points
-
- def return_mask(self, mask: np.array, matrix_points: np.array, geometric_type: str):
- col_val = matrix_points[:, 0]
- row_val = matrix_points[:, 1]
- z_vals = matrix_points[:, 2]
- if geometric_type != "OPEN_NONPLANAR":
- temp_mask = poly2mask(row_val, col_val, (self.image_size_rows, self.image_size_cols))
- # temp_mask[self.row_val, self.col_val] = 0
- mask[z_vals[0], temp_mask] += 1
- else:
- for point_index in range(len(z_vals) - 1, 0, -1):
- z_start = z_vals[point_index]
- z_stop = z_vals[point_index - 1]
- z_dif = z_stop - z_start
- r_start = row_val[point_index]
- r_stop = row_val[point_index - 1]
- r_dif = r_stop - r_start
- c_start = col_val[point_index]
- c_stop = col_val[point_index - 1]
- c_dif = c_stop - c_start
-
- step = 1
- if z_dif != 0:
- r_slope = r_dif / z_dif
- c_slope = c_dif / z_dif
- if z_dif < 0:
- step = -1
- for z_value in range(z_start, z_stop + step, step):
- r_value = r_start + r_slope * (z_value - z_start)
- c_value = c_start + c_slope * (z_value - z_start)
- add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
- if r_dif != 0:
- c_slope = c_dif / r_dif
- z_slope = z_dif / r_dif
- if r_dif < 0:
- step = -1
- for r_value in range(r_start, r_stop + step, step):
- c_value = c_start + c_slope * (r_value - r_start)
- z_value = z_start + z_slope * (r_value - r_start)
- add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
- if c_dif != 0:
- r_slope = r_dif / c_dif
- z_slope = z_dif / c_dif
- if c_dif < 0:
- step = -1
- for c_value in range(c_start, c_stop + step, step):
- r_value = r_start + r_slope * (c_value - c_start)
- z_value = z_start + z_slope * (c_value - c_start)
- add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
- return mask
-
- def contour_points_to_mask(self, contour_points, mask=None):
- if mask is None:
- mask = np.zeros([self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols], dtype=np.int8)
- matrix_points = self.reshape_contour_data(contour_points)
- mask = self.return_mask(mask, matrix_points, geometric_type="CLOSED_PLANAR")
- return mask
-
- def contours_to_mask(self, index: int, true_name: str):
- mask = np.zeros([self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols], dtype=np.int8)
- if Tag((0x3006, 0x0039)) in self.RS_struct.keys():
- Contour_sequence = self.RS_struct.ROIContourSequence[index]
- if Tag((0x3006, 0x0040)) in Contour_sequence:
- Contour_data = Contour_sequence.ContourSequence
- for i in range(len(Contour_data)):
- matrix_points = self.reshape_contour_data(Contour_data[i].ContourData[:])
- mask = self.return_mask(mask, matrix_points, geometric_type=Contour_data[i].ContourGeometricType)
- mask = mask % 2
- else:
- print(f"This structure set had no data present for {true_name}! Returning a blank mask")
- else:
- print("This structure set had no data present! Returning a blank mask")
- return mask
-
- def use_template(self) -> None:
- self.template = True
- if not self.template_dir:
- self.template_dir = os.path.join('\\\\mymdafiles', 'ro-admin', 'SHARED', 'Radiation physics', 'BMAnderson',
- 'Auto_Contour_Sites', 'template_RS.dcm')
- if not os.path.exists(self.template_dir):
- self.template_dir = os.path.join('..', '..', 'Shared_Drive', 'Auto_Contour_Sites', 'template_RS.dcm')
- self.key_list = self.template_dir.replace('template_RS.dcm', 'key_list.txt')
- self.RS_struct = pydicom.read_file(self.template_dir)
- print('Running off a template')
- self.change_template()
-
- def write_images_annotations(self, out_path: typing.Union[str, bytes, os.PathLike]) -> None:
- image_path = os.path.join(out_path, 'Overall_Data_{}_{}.nii.gz'.format(self.desciption, self.iteration))
- annotation_path = os.path.join(out_path, 'Overall_mask_{}_y{}.nii.gz'.format(self.desciption, self.iteration))
- pixel_id = self.dicom_handle.GetPixelIDTypeAsString()
- if pixel_id.find('32-bit signed integer') != 0:
- self.dicom_handle = sitk.Cast(self.dicom_handle, sitk.sitkFloat32)
- sitk.WriteImage(self.dicom_handle, image_path)
-
- self.annotation_handle.SetSpacing(self.dicom_handle.GetSpacing())
- self.annotation_handle.SetOrigin(self.dicom_handle.GetOrigin())
- self.annotation_handle.SetDirection(self.dicom_handle.GetDirection())
- pixel_id = self.annotation_handle.GetPixelIDTypeAsString()
- if pixel_id.find('int') == -1:
- self.annotation_handle = sitk.Cast(self.annotation_handle, sitk.sitkUInt8)
- sitk.WriteImage(self.annotation_handle, annotation_path)
- if self.dose_handle:
- dose_path = os.path.join(out_path, 'Overall_dose_{}_{}.nii.gz'.format(self.desciption, self.iteration))
- sitk.WriteImage(self.dose_handle, dose_path)
- fid = open(os.path.join(self.series_instances_dictionary[self.index].path,
- '{}_Iteration_{}.txt'.format(self.desciption, self.iteration)), 'w+')
- fid.close()
-
- def prediction_array_to_RT(self, prediction_array: np.array, output_dir: typing.Union[str, bytes, os.PathLike],
- ROI_Names: List[str], ROI_Types: List[str] = None) -> None:
- """
- :param prediction_array: numpy array of prediction, expected shape is [#Images, Rows, Cols, #Classes + 1]
- :param output_dir: directory to pass RT structure to
- :param ROI_Names: list of ROI names equal to the number of classes
- :return:
- """
- if ROI_Names is None:
- print("You need to provide ROI_Names")
- return None
- if prediction_array.shape[-1] != (len(ROI_Names) + 1):
- print("Your last dimension of prediction array should be equal to the number or ROI_names minus 1,"
- "channel. 0 is for background")
- return None
- if self.index not in self.series_instances_dictionary:
- print("Index is not present in the dictionary! Set it using set_index(index)")
- return None
- index = self.index
- if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
- self.get_images()
- self.SOPInstanceUIDs = self.series_instances_dictionary[index].SOPs
- if self.create_new_RT or len(self.series_instances_dictionary[index].RTs) == 0:
- self.use_template()
- elif self.RS_struct_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
- RTs = self.series_instances_dictionary[index].RTs
- for uid_key in RTs:
- self.RS_struct = pydicom.read_file(RTs[uid_key].path)
- self.RS_struct_uid = self.series_instances_dictionary[index].SeriesInstanceUID
- break
-
- prediction_array = np.squeeze(prediction_array)
- contour_values = np.max(prediction_array, axis=0) # See what the maximum value is across the prediction array
- while len(contour_values.shape) > 1:
- contour_values = np.max(contour_values, axis=0)
- contour_values[0] = 1 # Keep background
- prediction_array = prediction_array[..., contour_values == 1]
- contour_values = contour_values[1:]
- not_contained = list(np.asarray(ROI_Names)[contour_values == 0])
- ROI_Names = list(np.asarray(ROI_Names)[contour_values == 1])
- if not_contained:
- print('RT Structure not made for ROIs {}, given prediction_array had no mask'.format(not_contained))
- self.image_size_z, self.image_size_rows, self.image_size_cols = prediction_array.shape[:3]
- self.ROI_Names = ROI_Names
- if ROI_Types is None:
- self.ROI_Types = ["ORGAN" for _ in ROI_Names]
- else:
- self.ROI_Types = ROI_Types
- self.output_dir = output_dir
- if len(prediction_array.shape) == 3:
- prediction_array = np.expand_dims(prediction_array, axis=-1)
- if self.flip_axes[0]:
- prediction_array = prediction_array[:, :, ::-1, ...]
- if self.flip_axes[1]:
- prediction_array = prediction_array[:, ::-1, ...]
- if self.flip_axes[2]:
- prediction_array = prediction_array[::-1, ...]
- self.annotations = prediction_array
- self.mask_to_contours()
-
- def with_annotations(self, annotations: np.array, output_dir: typing.Union[str, bytes, os.PathLike],
- ROI_Names=None) -> None:
- print('Please move over to using prediction_array_to_RT')
- self.prediction_array_to_RT(prediction_array=annotations, output_dir=output_dir, ROI_Names=ROI_Names)
-
- def mask_to_contours(self) -> None:
- self.PixelSize = self.dicom_handle.GetSpacing()
- current_names = []
- for names in self.RS_struct.StructureSetROISequence:
- current_names.append(names.ROIName)
- Contour_Key = {}
- xxx = 1
- for name in self.ROI_Names:
- Contour_Key[name] = xxx
- xxx += 1
- base_annotations = copy.deepcopy(self.annotations)
- temp_color_list = []
- color_list = [[128, 0, 0], [170, 110, 40], [0, 128, 128], [0, 0, 128], [230, 25, 75], [225, 225, 25],
- [0, 130, 200], [145, 30, 180],
- [255, 255, 255]]
- self.struct_index = 0
- new_ROINumber = 1000
- for Name, ROI_Type in zip(self.ROI_Names, self.ROI_Types):
- new_ROINumber -= 1
- if not temp_color_list:
- temp_color_list = copy.deepcopy(color_list)
- color_int = np.random.randint(len(temp_color_list))
- print('Writing data for ' + Name)
- annotations = copy.deepcopy(base_annotations[:, :, :, int(self.ROI_Names.index(Name) + 1)])
- annotations = annotations.astype('int')
-
- make_new = 1
- allow_slip_in = True
- if (Name not in current_names and allow_slip_in) or self.delete_previous_rois:
- self.RS_struct.StructureSetROISequence.insert(0,
- copy.deepcopy(self.RS_struct.StructureSetROISequence[0]))
- else:
- print('Prediction ROI {} is already within RT structure'.format(Name))
- continue
- self.RS_struct.StructureSetROISequence[self.struct_index].ROINumber = new_ROINumber
- self.RS_struct.StructureSetROISequence[self.struct_index].ReferencedFrameOfReferenceUID = \
- self.ds.FrameOfReferenceUID
- self.RS_struct.StructureSetROISequence[self.struct_index].ROIName = Name
- self.RS_struct.StructureSetROISequence[self.struct_index].ROIVolume = 0
- self.RS_struct.StructureSetROISequence[self.struct_index].ROIGenerationAlgorithm = 'SEMIAUTOMATIC'
- if make_new == 1:
- self.RS_struct.RTROIObservationsSequence.insert(0,
- copy.deepcopy(
- self.RS_struct.RTROIObservationsSequence[0]))
- if 'MaterialID' in self.RS_struct.RTROIObservationsSequence[self.struct_index]:
- del self.RS_struct.RTROIObservationsSequence[self.struct_index].MaterialID
- self.RS_struct.RTROIObservationsSequence[self.struct_index].ObservationNumber = new_ROINumber
- self.RS_struct.RTROIObservationsSequence[self.struct_index].ReferencedROINumber = new_ROINumber
- self.RS_struct.RTROIObservationsSequence[self.struct_index].ROIObservationLabel = Name
-
- self.RS_struct.RTROIObservationsSequence[self.struct_index].RTROIInterpretedType = ROI_Type
-
- if make_new == 1:
- self.RS_struct.ROIContourSequence.insert(0, copy.deepcopy(self.RS_struct.ROIContourSequence[0]))
- self.RS_struct.ROIContourSequence[self.struct_index].ReferencedROINumber = new_ROINumber
- del self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[1:]
- self.RS_struct.ROIContourSequence[self.struct_index].ROIDisplayColor = temp_color_list[color_int]
- del temp_color_list[color_int]
- thread_count = int(cpu_count() * 0.9 - 1)
- contour_dict = {}
- q = Queue(maxsize=thread_count)
- threads = []
- kwargs = {'image_size_rows': self.image_size_rows, 'image_size_cols': self.image_size_cols,
- 'PixelSize': self.PixelSize, 'contour_dict': contour_dict, 'RS': self.RS_struct}
-
- A = [q, kwargs]
- # pointer_class = PointOutputMakerClass(**kwargs)
- for worker in range(thread_count):
- t = Thread(target=contour_worker, args=(A,))
- t.start()
- threads.append(t)
- contour_num = 0
- if np.max(annotations) > 0: # If we have an annotation, write it
- image_locations = np.max(annotations, axis=(1, 2))
- indexes = np.where(image_locations > 0)[0]
- for index in indexes:
- item = {'annotation': annotations[index], 'i': index, 'dicom_handle': self.dicom_handle}
- # pointer_class.make_output(**item)
- q.put(item)
- for i in range(thread_count):
- q.put(None)
- for t in threads:
- t.join()
- for i in contour_dict.keys():
- for points in contour_dict[i]:
- output = np.asarray(points).flatten('C')
- if contour_num > 0:
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence.append(
- copy.deepcopy(
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[0]))
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
- contour_num].ContourNumber = str(contour_num)
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
- contour_num].ContourGeometricType = 'CLOSED_PLANAR'
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
- contour_num].ContourImageSequence[0].ReferencedSOPInstanceUID = self.SOPInstanceUIDs[i]
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
- contour_num].ContourData = list(output)
- self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
- contour_num].NumberOfContourPoints = len(output) // 3
- contour_num += 1
- self.RS_struct.SOPInstanceUID += '.' + str(np.random.randint(999))
- if self.template or self.delete_previous_rois:
- for i in range(len(self.RS_struct.StructureSetROISequence), len(self.ROI_Names), -1):
- del self.RS_struct.StructureSetROISequence[-1]
- for i in range(len(self.RS_struct.RTROIObservationsSequence), len(self.ROI_Names), -1):
- del self.RS_struct.RTROIObservationsSequence[-1]
- for i in range(len(self.RS_struct.ROIContourSequence), len(self.ROI_Names), -1):
- del self.RS_struct.ROIContourSequence[-1]
- for i in range(len(self.RS_struct.StructureSetROISequence)):
- self.RS_struct.StructureSetROISequence[i].ROINumber = i + 1
- self.RS_struct.RTROIObservationsSequence[i].ReferencedROINumber = i + 1
- self.RS_struct.ROIContourSequence[i].ReferencedROINumber = i + 1
- if not os.path.exists(self.output_dir):
- os.makedirs(self.output_dir)
- self.RS_struct.SeriesInstanceUID = pydicom.uid.generate_uid(prefix='1.2.826.0.1.3680043.8.498.')
- out_name = os.path.join(self.output_dir,
- 'RS_MRN' + self.RS_struct.PatientID + '_' + self.RS_struct.SeriesInstanceUID + '.dcm')
- if os.path.exists(out_name):
- out_name = os.path.join(self.output_dir,
- 'RS_MRN' + self.RS_struct.PatientID + '_' + self.RS_struct.SeriesInstanceUID + '1.dcm')
- print('Writing out data...{}'.format(self.output_dir))
- pydicom.write_file(out_name, self.RS_struct)
- fid = open(os.path.join(self.output_dir, 'Completed.txt'), 'w+')
- fid.close()
- print('Finished!')
- return None
-
- def change_template(self):
- keys = self.RS_struct.keys()
- ref_key = Tag((0x3006),(0x0010))
- if ref_key in keys:
- self.RS_struct[ref_key]._value[0].FrameOfReferenceUID = self.ds.FrameOfReferenceUID
- self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].ReferencedSOPInstanceUID = self.ds.StudyInstanceUID
- self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].SeriesInstanceUID = self.ds.SeriesInstanceUID
- for i in range(len(self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].ContourImageSequence) - 1):
- del self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].ContourImageSequence[-1]
- fill_segment = copy.deepcopy(
- self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].ContourImageSequence[0])
- for i in range(len(self.SOPInstanceUIDs)):
- temp_segment = copy.deepcopy(fill_segment)
- temp_segment.ReferencedSOPInstanceUID = self.SOPInstanceUIDs[i]
- self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].ContourImageSequence.append(temp_segment)
- del self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
- 0].ContourImageSequence[0]
-
- new_keys = open(self.key_list)
- keys = {}
- i = 0
- for line in new_keys:
- keys[i] = line.strip('\n').split(',')
- i += 1
- new_keys.close()
- for index in keys.keys():
- new_key = keys[index]
- try:
- self.RS_struct[new_key[0], new_key[1]] = self.ds[[new_key[0], new_key[1]]]
- except:
- continue
- return None
-
- def rewrite_RT(self, lstRSFile: typing.Union[str, bytes, os.PathLike] = None):
- if lstRSFile is not None:
- self.RS_struct = pydicom.read_file(lstRSFile)
- if Tag((0x3006, 0x020)) in self.RS_struct.keys():
- self.ROI_Structure = self.RS_struct.StructureSetROISequence
- else:
- self.ROI_Structure = []
- if Tag((0x3006, 0x080)) in self.RS_struct.keys():
- self.Observation_Sequence = self.RS_struct.RTROIObservationsSequence
- else:
- self.Observation_Sequence = []
- self.rois_in_loaded_index = []
- for i, Structures in enumerate(self.ROI_Structure):
- if Structures.ROIName in self.associations:
- new_name = self.associations[Structures.ROIName]
- self.RS_struct.StructureSetROISequence[i].ROIName = new_name
- self.rois_in_loaded_index.append(self.RS_struct.StructureSetROISequence[i].ROIName)
- for i, ObsSequence in enumerate(self.Observation_Sequence):
- if ObsSequence.ROIObservationLabel in self.associations:
- new_name = self.associations[ObsSequence.ROIObservationLabel]
- self.RS_struct.RTROIObservationsSequence[i].ROIObservationLabel = new_name
- self.RS_struct.save_as(lstRSFile)
-
-
-if __name__ == '__main__':
- pass
+__author__ = 'Brian M Anderson'
+
+# Created on 12/31/2020
+import os
+from .Services.DicomBases import ImageBase, RDBase, RTBase, PlanBase, PyDicomKeys, SitkDicomKeys, ROIClass
+from .Services.StaticScripts import poly2mask, add_to_mask
+from .Viewer import plot_scroll_Image
+from NiftiResampler.ResampleTools import ImageResampler
+from tqdm import tqdm
+import typing
+import pydicom
+import numpy as np
+from pydicom.tag import Tag
+import SimpleITK as sitk
+from skimage.measure import label, regionprops, find_contours
+from threading import Thread
+from multiprocessing import cpu_count
+from queue import *
+import pandas as pd
+import copy
+from typing import List, Dict
+
+
+def contour_worker(A):
+ q, kwargs = A
+ point_maker = PointOutputMakerClass(**kwargs)
+ while True:
+ item = q.get()
+ if item is None:
+ break
+ else:
+ point_maker.make_output(**item)
+ q.task_done()
+
+
+def worker_def(A):
+ q, pbar = A
+ while True:
+ item = q.get()
+ if item is None:
+ break
+ else:
+ iteration, index, out_path, key_dict = item
+ base_class = DicomReaderWriter(**key_dict)
+ try:
+ base_class.set_index(index)
+ base_class.get_images_and_mask()
+ base_class.__set_iteration__(iteration)
+ base_class.write_images_annotations(out_path)
+ except:
+ print('failed on {}'.format(base_class.series_instances_dictionary[index].path))
+ fid = open(os.path.join(base_class.series_instances_dictionary[index].path, 'failed.txt'),
+ 'w+')
+ fid.close()
+ pbar.update()
+ q.task_done()
+
+
+def folder_worker(A):
+ q, pbar = A
+ while True:
+ item = q.get()
+ if item is None:
+ break
+ else:
+ dicom_path, images_dictionary, rt_dictionary, rd_dictionary, rp_dictionary, verbose, strings = item
+ plan_strings, structure_strings, image_strings, dose_strings = strings
+ dicom_adder = AddDicomToDictionary(plan_strings, structure_strings, image_strings, dose_strings)
+ try:
+ if verbose:
+ print('Loading from {}'.format(dicom_path))
+ dicom_adder.add_dicom_to_dictionary_from_path(dicom_path=dicom_path,
+ images_dictionary=images_dictionary,
+ rt_dictionary=rt_dictionary,
+ rd_dictionary=rd_dictionary,
+ rp_dictionary=rp_dictionary)
+ except:
+ print('failed on {}'.format(dicom_path))
+ pbar.update()
+ q.task_done()
+
+
+class ROIAssociationClass(object):
+ def __init__(self, roi_name: str, other_names: List[str]):
+ self.roi_name = roi_name.lower()
+ self.other_names = list(set([i.lower() for i in other_names]))
+
+ def add_name(self, roi_name: str):
+ if roi_name not in self.other_names:
+ self.other_names.append(roi_name.lower())
+
+
+class PointOutputMakerClass(object):
+ def __init__(self, image_size_rows: int, image_size_cols: int, PixelSize, contour_dict, RS):
+ self.image_size_rows, self.image_size_cols = image_size_rows, image_size_cols
+ self.PixelSize = PixelSize
+ self.contour_dict = contour_dict
+ self.RS = RS
+
+ def make_output(self, annotation, i, dicom_handle):
+ self.contour_dict[i] = []
+ regions = regionprops(label(annotation))
+ for ii in range(len(regions)):
+ temp_image = np.zeros([self.image_size_rows, self.image_size_cols])
+ data = regions[ii].coords
+ rows = []
+ cols = []
+ for iii in range(len(data)):
+ rows.append(data[iii][0])
+ cols.append(data[iii][1])
+ temp_image[rows, cols] = 1
+ contours = find_contours(temp_image, level=0.5, fully_connected='low', positive_orientation='high')
+ for contour in contours:
+ contour = np.squeeze(contour)
+ with np.errstate(divide='ignore'):
+ slope = (contour[1:, 1] - contour[:-1, 1]) / (contour[1:, 0] - contour[:-1, 0])
+ slope_index = None
+ out_contour = []
+ for index in range(len(slope)):
+ if slope[index] != slope_index:
+ out_contour.append(contour[index])
+ slope_index = slope[index]
+ contour = [[float(c[1]), float(c[0]), float(i)] for c in out_contour]
+ contour = np.asarray([dicom_handle.TransformContinuousIndexToPhysicalPoint(zz) for zz in contour])
+ self.contour_dict[i].append(np.asarray(contour))
+
+
+def add_images_to_dictionary(images_dictionary: Dict[str, ImageBase], dicom_names: typing.List[str],
+ sitk_dicom_reader: sitk.ImageFileReader, path: typing.Union[str, bytes, os.PathLike],
+ sitk_string_keys: SitkDicomKeys = None):
+ """
+ Args:
+ images_dictionary:
+ dicom_names:
+ sitk_dicom_reader:
+ path:
+ sitk_string_keys:
+
+ Returns:
+
+ """
+ series_instance_uid = sitk_dicom_reader.GetMetaData("0020|000e")
+ if series_instance_uid not in images_dictionary:
+ new_image = ImageBase()
+ new_image.load_info(dicom_names, sitk_dicom_reader, path, sitk_string_keys)
+ images_dictionary[series_instance_uid] = new_image
+
+
+def add_rp_to_dictionary(ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
+ rp_dictionary: Dict[str, PlanBase], pydicom_string_keys: PyDicomKeys = None):
+ try:
+ series_instance_uid = ds.SeriesInstanceUID
+ if series_instance_uid not in rp_dictionary:
+ new_plan = PlanBase()
+ new_plan.load_info(ds, path, pydicom_string_keys)
+ rp_dictionary[series_instance_uid] = new_plan
+ except:
+ print("Had an error loading " + path)
+
+
+def add_rt_to_dictionary(ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike], rt_dictionary: Dict[str, RTBase],
+ pydicom_string_keys: PyDicomKeys = None):
+ """
+ Args:
+ ds:
+ path:
+ rt_dictionary:
+ pydicom_string_keys:
+
+ Returns:
+
+ """
+ try:
+ series_instance_uid = ds.SeriesInstanceUID
+ if series_instance_uid not in rt_dictionary:
+ new_RT = RTBase()
+ new_RT.load_info(ds, path, pydicom_string_keys)
+ rt_dictionary[series_instance_uid] = new_RT
+ except:
+ print("Had an error loading " + path)
+
+
+def add_rd_to_dictionary(sitk_dicom_reader, rd_dictionary: Dict[str, RDBase], sitk_string_keys: SitkDicomKeys = None):
+ try:
+ series_instance_uid = sitk_dicom_reader.GetMetaData("0020|000e")
+ if series_instance_uid not in rd_dictionary:
+ new_rd = RDBase()
+ new_rd.load_info(sitk_dicom_reader, sitk_string_keys)
+ rd_dictionary[series_instance_uid] = new_rd
+ else:
+ rd_base: RDBase
+ rd_base = rd_dictionary[series_instance_uid]
+ rd_base.add_beam(sitk_dicom_reader)
+ except:
+ print("Had an error loading " + sitk_dicom_reader.GetFileName())
+
+
+def add_sops_to_dictionary(sitk_dicom_reader, series_instances_dictionary: Dict[str, ImageBase]):
+ """
+ :param sitk_dicom_reader: sitk.ImageSeriesReader()
+ :param series_instances_dictionary: dictionary of series instance UIDs
+ """
+ series_instance_uid = sitk_dicom_reader.GetMetaData(0, "0020|000e")
+ keys = []
+ series_instance_uids = []
+ for key, value in series_instances_dictionary.items():
+ keys.append(key)
+ series_instance_uids.append(value.SeriesInstanceUID)
+ index = keys[series_instance_uids.index(series_instance_uid)]
+ sopinstanceuids = [sitk_dicom_reader.GetMetaData(i, "0008|0018") for i in
+ range(len(sitk_dicom_reader.GetFileNames()))]
+ series_instances_dictionary[index].SOPs = sopinstanceuids
+
+
+def return_template_dictionary():
+ template_dictionary = ImageBase()
+ return template_dictionary
+
+
+class AddDicomToDictionary(object):
+ def __init__(self, plan_pydicom_string_keys: PyDicomKeys = Dict or None,
+ struct_pydicom_string_keys: PyDicomKeys = Dict or None,
+ image_sitk_string_keys: SitkDicomKeys = Dict or None,
+ dose_sitk_string_keys: SitkDicomKeys = Dict or None):
+ self.image_reader = sitk.ImageFileReader()
+ self.image_reader.LoadPrivateTagsOn()
+ self.reader = sitk.ImageSeriesReader()
+ self.reader.GlobalWarningDisplayOff()
+ self.plan_pydicom_string_keys = plan_pydicom_string_keys
+ self.struct_pydicom_string_keys = struct_pydicom_string_keys
+ self.image_sitk_string_keys = image_sitk_string_keys
+ self.dose_sitk_string_keys = dose_sitk_string_keys
+
+ def add_dicom_to_dictionary_from_path(self, dicom_path, images_dictionary: Dict[str, ImageBase],
+ rt_dictionary: Dict[str, RTBase],
+ rd_dictionary: Dict[str, RDBase],
+ rp_dictionary: Dict[str, PlanBase]):
+ fileList = [os.path.join(dicom_path, i) for i in os.listdir(dicom_path) if i.lower().endswith('.dcm')]
+ series_ids = self.reader.GetGDCMSeriesIDs(dicom_path)
+ all_names = []
+ for series_id in series_ids:
+ dicom_names = self.reader.GetGDCMSeriesFileNames(dicom_path, series_id)
+ all_names += dicom_names
+ self.image_reader.SetFileName(dicom_names[0])
+ self.image_reader.ReadImageInformation()
+ modality = self.image_reader.GetMetaData("0008|0060")
+ if modality.lower().find('rtdose') != -1:
+ for dicom_name in dicom_names:
+ self.image_reader.SetFileName(dicom_name)
+ self.image_reader.Execute()
+ add_rd_to_dictionary(sitk_dicom_reader=self.image_reader,
+ rd_dictionary=rd_dictionary, sitk_string_keys=self.dose_sitk_string_keys)
+ else:
+ self.image_reader.Execute()
+ add_images_to_dictionary(images_dictionary=images_dictionary, dicom_names=dicom_names,
+ sitk_dicom_reader=self.image_reader, path=dicom_path,
+ sitk_string_keys=self.image_sitk_string_keys)
+ RT_Files = [file for file in fileList if file not in all_names]
+ for lstRSFile in RT_Files:
+ rt = pydicom.read_file(lstRSFile)
+ modality = rt.Modality
+ if modality.lower().find('struct') != -1:
+ add_rt_to_dictionary(ds=rt, path=lstRSFile, rt_dictionary=rt_dictionary)
+ elif modality.lower().find('plan') != -1:
+ add_rp_to_dictionary(ds=rt, path=lstRSFile, rp_dictionary=rp_dictionary,
+ pydicom_string_keys=self.plan_pydicom_string_keys)
+ xxx = 1
+
+
+class DicomReaderWriter(object):
+ images_dictionary: Dict[str, ImageBase]
+ rt_dictionary: Dict[str, RTBase]
+ rd_dictionary: Dict[str, RDBase]
+ rp_dictionary: Dict[str, PlanBase]
+ rois_in_index_dict: Dict[int, List[str]] # List of rois at any index
+ dicom_handle: sitk.Image or None
+ dose_handle: sitk.Image or None
+ annotation_handle: sitk.Image or None
+ all_rois: List[str]
+ roi_class_list: List[ROIClass]
+ rois_in_loaded_index: List[str]
+ indexes_with_contours: List[int] # A list of all the indexes which contain the desired contours
+ roi_groups: Dict[str, List[str]] # A dictionary with ROI names grouped by code associations
+ all_RTs: Dict[str, List[str]] # A dictionary of RT being the key, and a list of ROIs in that RT
+ RTs_with_ROI_Names: Dict[str, List[str]] # A dictionary with key being an ROI name, and value being a list of RTs
+ series_instances_dictionary = Dict[int, ImageBase]
+ mask_dictionary: Dict[str, sitk.Image]
+ mask: np.ndarray or None
+ group_dose_by_frame_of_reference: bool
+
+ def __init__(self, description='', Contour_Names: List[str]=None, associations: List[ROIAssociationClass] = None,
+ arg_max=True, verbose=True, create_new_RT=True, template_dir=None, delete_previous_rois=True,
+ require_all_contours=True, iteration=0, get_dose_output=False,
+ flip_axes=(False, False, False), index=0, series_instances_dictionary: Dict[int, ImageBase] = None,
+ plan_pydicom_string_keys: PyDicomKeys = None,
+ struct_pydicom_string_keys: PyDicomKeys = None,
+ image_sitk_string_keys: SitkDicomKeys = None,
+ dose_sitk_string_keys: SitkDicomKeys = None, group_dose_by_frame_of_reference=True):
+ """
+ :param description: string, description information to add to .nii files
+ :param delete_previous_rois: delete the previous RTs within the structure when writing out a prediction
+ :param Contour_Names: list of contour names
+ :param template_dir: default to None, specifies path to template RT structure
+ :param arg_max: perform argmax on the mask
+ :param create_new_RT: boolean, if the Dicom-RT writer should create a new RT structure
+ :param require_all_contours: Boolean, require all contours present when making nifti files?
+ :param associations: dictionary of associations {'liver_bma_program_4': 'liver'}
+ :param iteration: what iteration for writing .nii files
+ :param get_dose_output: boolean, collect dose information
+ :param flip_axes: tuple(3), axis that you want to flip, defaults to (False, False, False)
+ :param index: index to reference series_instances_dictionary, default 0
+ :param series_instances_dictionary: dictionary of series instance UIDs of images and RTs
+ :param group_dose_by_frame_of_reference: a boolean, should dose files be associated with images based on the
+ frame of reference. This is a last resort if the dose does not reference a structure or plan file.
+ """
+ self.roi_class_list = []
+ self.dose = None
+ self.group_dose_by_frame_of_reference = group_dose_by_frame_of_reference
+ self.verbose = verbose
+ self.annotation_handle = None
+ self.dicom_handle = None
+ self.dose_handle = None
+ self.rois_in_index_dict = {}
+ self.rt_dictionary = {}
+ self.mask_dictionary = {}
+ self.dicom_handle_uid = None
+ self.dicom_info_uid = None
+ self.RS_struct_uid = None
+ self.mask = None
+ self.rd_study_instance_uid = None
+ self.index = index
+ self.all_RTs = {}
+ self.RTs_with_ROI_Names = {}
+ self.all_rois = []
+ self.roi_groups = {}
+ self.indexes_with_contours = []
+ self.plan_pydicom_string_keys = plan_pydicom_string_keys
+ self.struct_pydicom_string_keys = struct_pydicom_string_keys
+ self.image_sitk_string_keys = image_sitk_string_keys
+ self.dose_sitk_string_keys = dose_sitk_string_keys
+ self.images_dictionary = {}
+ self.rd_dictionary = {}
+ self.rp_dictionary = {}
+ if series_instances_dictionary is None:
+ series_instances_dictionary = {}
+ self.series_instances_dictionary = series_instances_dictionary
+ self.get_dose_output = get_dose_output
+ self.require_all_contours = require_all_contours
+ self.flip_axes = flip_axes
+ self.create_new_RT = create_new_RT
+ self.arg_max = arg_max
+ if template_dir is None or not os.path.exists(template_dir):
+ template_dir = os.path.join(os.path.split(__file__)[0], 'template_RS.dcm')
+ self.template_dir = template_dir
+ self.template = True
+ self.delete_previous_rois = delete_previous_rois
+ self.associations = associations
+ if Contour_Names is None:
+ self.Contour_Names = []
+ else:
+ self.Contour_Names = Contour_Names
+ self.__initialize_reader__()
+ self.set_contour_names_and_associations(contour_names=Contour_Names, associations=associations,
+ check_contours=False)
+ self.__set_description__(description)
+ self.__set_iteration__(iteration)
+
+ def __initialize_reader__(self):
+ self.reader = sitk.ImageSeriesReader()
+ self.image_reader = sitk.ImageFileReader()
+ self.image_reader.LoadPrivateTagsOn()
+ self.reader.MetaDataDictionaryArrayUpdateOn()
+ self.reader.LoadPrivateTagsOn()
+ self.reader.SetOutputPixelType(sitk.sitkFloat32)
+
+ def set_index(self, index: int):
+ self.index = index
+ if self.index in self.rois_in_index_dict:
+ self.rois_in_loaded_index = self.rois_in_index_dict[self.index]
+ else:
+ self.rois_in_loaded_index = []
+
+ def __mask_empty_mask__(self) -> None:
+ if self.dicom_handle:
+ self.image_size_cols, self.image_size_rows, self.image_size_z = self.dicom_handle.GetSize()
+ self.mask = np.zeros(
+ [self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols, len(self.Contour_Names) + 1],
+ dtype=np.int8)
+ self.annotation_handle = sitk.GetImageFromArray(self.mask)
+
+ def __reset_mask__(self):
+ self.__mask_empty_mask__()
+ self.mask_dictionary = {}
+
+ def __reset__(self):
+ self.__reset_RTs__()
+ self.rd_study_instance_uid = None
+ self.dicom_handle_uid = None
+ self.dicom_info_uid = None
+ self.series_instances_dictionary = {}
+ self.rt_dictionary = {}
+ self.images_dictionary = {}
+ self.mask_dictionary = {}
+
+ def __reset_RTs__(self):
+ self.all_rois = []
+ self.roi_class_list = []
+ self.roi_groups = {}
+ self.indexes_with_contours = []
+ self.RS_struct_uid = None
+ self.RTs_with_ROI_Names = {}
+
+ def __compile__(self):
+ """
+ The goal of this is to combine image, rt, and dose dictionaries based on the SeriesInstanceUIDs
+ """
+ if self.verbose:
+ print('Compiling dictionaries together...')
+ series_instance_uids = []
+ for key, value in self.series_instances_dictionary.items():
+ series_instance_uids.append(value.SeriesInstanceUID)
+ index = 0
+ image_keys = list(self.images_dictionary.keys())
+ image_keys.sort()
+ for series_instance_uid in image_keys: # Will help keep things in order later
+ if series_instance_uid not in series_instance_uids:
+ while index in self.series_instances_dictionary:
+ index += 1
+ self.series_instances_dictionary[index] = self.images_dictionary[series_instance_uid]
+ series_instance_uids.append(series_instance_uid)
+ for rt_series_instance_uid in self.rt_dictionary:
+ series_instance_uid = self.rt_dictionary[rt_series_instance_uid].SeriesInstanceUID
+ rt_dictionary = self.rt_dictionary[rt_series_instance_uid]
+ path = rt_dictionary.path
+ self.all_RTs[path] = rt_dictionary.ROI_Names
+ for roi in rt_dictionary.ROI_Names:
+ if roi not in self.RTs_with_ROI_Names:
+ self.RTs_with_ROI_Names[roi] = [path]
+ else:
+ self.RTs_with_ROI_Names[roi].append(path)
+ if series_instance_uid in series_instance_uids:
+ index = series_instance_uids.index(series_instance_uid)
+ self.series_instances_dictionary[index].RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
+ else:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
+ self.series_instances_dictionary[index] = template
+ for rd_series_instance_uid in self.rd_dictionary:
+ struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
+ if struct_ref is None:
+ continue
+ for image_series_key in self.series_instances_dictionary:
+ rts = self.series_instances_dictionary[image_series_key].RTs
+ for rt_key in rts:
+ structure_sop_uid = rts[rt_key].SOPInstanceUID
+ if struct_ref == structure_sop_uid:
+ rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
+ self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
+ self.rd_dictionary[rd_series_instance_uid]})
+ for rp_series_instance_uid in self.rp_dictionary:
+ added = False
+ struct_ref = self.rp_dictionary[rp_series_instance_uid].ReferencedStructureSetSOPInstanceUID
+ for image_series_key in self.series_instances_dictionary:
+ rts = self.series_instances_dictionary[image_series_key].RTs
+ for rt_key in rts:
+ structure_sop_uid = rts[rt_key].SOPInstanceUID
+ if struct_ref == structure_sop_uid:
+ rts[rt_key].Plans[rp_series_instance_uid] = self.rp_dictionary[rp_series_instance_uid]
+ self.series_instances_dictionary[image_series_key].RPs.update({rp_series_instance_uid:
+ self.rp_dictionary[rp_series_instance_uid]})
+ added = True
+ if not added:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RPs.update({rp_series_instance_uid: self.rp_dictionary[rp_series_instance_uid]})
+ self.series_instances_dictionary[index] = template
+ for rd_series_instance_uid in self.rd_dictionary:
+ struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
+ if struct_ref is not None:
+ continue
+ plan_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedPlanSOPInstanceUID
+ for image_series_key in self.series_instances_dictionary:
+ rps = self.series_instances_dictionary[image_series_key].RPs
+ rts = self.series_instances_dictionary[image_series_key].RTs
+ for rp_key in rps:
+ plan_sop_uid = rps[rp_key].SOPInstanceUID
+ if plan_ref == plan_sop_uid:
+ rt_key_sopinstanceUID = rps[rp_key].ReferencedStructureSetSOPInstanceUID
+ for rt_key in rts:
+ if rts[rt_key].SOPInstanceUID == rt_key_sopinstanceUID:
+ rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
+ self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
+ self.rd_dictionary[rd_series_instance_uid]})
+ for rd_series_instance_uid in self.rd_dictionary:
+ added = False
+ dose = self.rd_dictionary[rd_series_instance_uid]
+ if self.group_dose_by_frame_of_reference:
+ for image_series_key in self.series_instances_dictionary:
+ image = self.series_instances_dictionary[image_series_key]
+ if image.StudyInstanceUID != dose.StudyInstanceUID:
+ continue
+ if image.FrameOfReference == self.rd_dictionary[rd_series_instance_uid].ReferencedFrameOfReference:
+ self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid: dose})
+ added = True
+ if self.verbose:
+ print(f"Could not associate the dose files {dose.Dose_Files} with a plan or structure.\n"
+ f"Grouping with images {image.path} based on Frame of Reference UID")
+ if not added:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RDs.update({rd_series_instance_uid: dose})
+ self.series_instances_dictionary[index] = template
+
+ def __manual_compile_based_on_folders__(self, reset_series_instances_dict=False):
+ """
+ The goal of this is to combine image, rt, and dose dictionaries based on folder location
+ AKA, if the RT structure and images are in the same folder
+ :return:
+ """
+ print("Don't use this unless you know why you're doing it...")
+ if reset_series_instances_dict:
+ self.series_instances_dictionary = {}
+ if self.verbose:
+ print('Compiling dictionaries together...')
+ folders = []
+ for key, value in self.series_instances_dictionary.items():
+ folders.append(value.path)
+ index = 0
+ image_keys = list(self.images_dictionary.keys())
+ image_keys.sort()
+ for series_instance_uid in image_keys: # Will help keep things in order later
+ folder = self.images_dictionary[series_instance_uid].path
+ if folder not in folders:
+ while index in self.series_instances_dictionary:
+ index += 1
+ self.series_instances_dictionary[index] = self.images_dictionary[series_instance_uid]
+ folders.append(folder)
+ for rt_series_instance_uid in self.rt_dictionary:
+ rt_path = os.path.split(self.rt_dictionary[rt_series_instance_uid].path)[0]
+ rt_dictionary = self.rt_dictionary[rt_series_instance_uid]
+ path = rt_dictionary.path
+ self.all_RTs[path] = rt_dictionary.ROI_Names
+ for roi in rt_dictionary.ROI_Names:
+ if roi not in self.RTs_with_ROI_Names:
+ self.RTs_with_ROI_Names[roi] = [path]
+ else:
+ self.RTs_with_ROI_Names[roi].append(path)
+ if rt_path in folders:
+ index = folders.index(rt_path)
+ self.series_instances_dictionary[index].RTs.update({rt_series_instance_uid:
+ self.rt_dictionary[rt_series_instance_uid]})
+ else:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RTs.update({rt_series_instance_uid: self.rt_dictionary[rt_series_instance_uid]})
+ self.series_instances_dictionary[index] = template
+ for rd_series_instance_uid in self.rd_dictionary:
+ added = False
+ struct_ref = self.rd_dictionary[rd_series_instance_uid].ReferencedStructureSetSOPInstanceUID
+ for image_series_key in self.series_instances_dictionary:
+ rts = self.series_instances_dictionary[image_series_key].RTs
+ for rt_key in rts:
+ structure_sop_uid = rts[rt_key].SOPInstanceUID
+ if struct_ref == structure_sop_uid:
+ rts[rt_key].Doses[rd_series_instance_uid] = self.rd_dictionary[rd_series_instance_uid]
+ self.series_instances_dictionary[image_series_key].RDs.update({rd_series_instance_uid:
+ self.rd_dictionary[rd_series_instance_uid]})
+ added = True
+ if not added:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RDs.update({rd_series_instance_uid: self.rd_dictionary[rd_series_instance_uid]})
+ self.series_instances_dictionary[index] = template
+ for rp_series_instance_uid in self.rp_dictionary:
+ added = False
+ struct_ref = self.rp_dictionary[rp_series_instance_uid].ReferencedStructureSetSOPInstanceUID
+ for image_series_key in self.series_instances_dictionary:
+ rts = self.series_instances_dictionary[image_series_key].RTs
+ for rt_key in rts:
+ structure_sop_uid = rts[rt_key].SOPInstanceUID
+ if struct_ref == structure_sop_uid:
+ rts[rt_key].Plans[rp_series_instance_uid] = self.rp_dictionary[rp_series_instance_uid]
+ self.series_instances_dictionary[image_series_key].RPs.update({rp_series_instance_uid:
+ self.rp_dictionary[rp_series_instance_uid]})
+ added = True
+ if not added:
+ while index in self.series_instances_dictionary:
+ index += 1
+ template = return_template_dictionary()
+ template.RPs.update({rp_series_instance_uid: self.rp_dictionary[rp_series_instance_uid]})
+ self.series_instances_dictionary[index] = template
+ self.__check_if_all_contours_present__()
+
+ def set_contour_names_and_associations(self, contour_names: List[str] = None,
+ associations: List[ROIAssociationClass] = None, check_contours=True):
+ if contour_names is not None:
+ self.__set_contour_names__(contour_names=contour_names)
+ if associations is not None:
+ self.__set_associations__(associations=associations)
+ if check_contours: # I don't want to run this on the first build..
+ self.__check_if_all_contours_present__()
+ if contour_names is not None or self.associations is not None:
+ if self.verbose:
+ print("Contour names or associations changed, resetting mask")
+ self.__reset_mask__()
+
+ def __set_associations__(self, associations: List[ROIAssociationClass] = None):
+ if associations is not None:
+ self.associations, self.hierarchy = associations, {}
+
+ def __set_contour_names__(self, contour_names: List[str]):
+ self.__reset_RTs__()
+ contour_names = [i.lower() for i in contour_names]
+ self.Contour_Names = contour_names
+
+ def __set_description__(self, description: str):
+ self.description = description
+
+ def __set_iteration__(self, iteration=0):
+ self.iteration = str(iteration)
+
+ def __check_contours_at_index__(self, index: int, RTs: List[RTBase] = None) -> None:
+ self.rois_in_loaded_index = []
+ if self.series_instances_dictionary[index].path is None:
+ return
+ if RTs is None:
+ RTs = self.series_instances_dictionary[index].RTs
+ true_rois = []
+ for RT_key in RTs:
+ RT = RTs[RT_key]
+ for code_key in RT.CodeAssociations:
+ if code_key not in self.roi_groups:
+ self.roi_groups[code_key] = RT.CodeAssociations[code_key]
+ else:
+ self.roi_groups[code_key] = list(set(self.roi_groups[code_key] + RT.CodeAssociations[code_key]))
+ for roi in RT.ROIs_In_Structure.values():
+ roi_name = roi.ROIName
+ if roi_name not in self.RTs_with_ROI_Names:
+ self.RTs_with_ROI_Names[roi.ROIName] = [RT.path]
+ elif RT.path not in self.RTs_with_ROI_Names[roi_name]:
+ self.RTs_with_ROI_Names[roi_name].append(RT.path)
+ if roi_name not in self.rois_in_loaded_index:
+ self.rois_in_loaded_index.append(roi_name)
+ if roi_name not in self.all_rois:
+ self.all_rois.append(roi_name)
+ self.roi_class_list.append(roi)
+ if self.Contour_Names:
+ if roi_name in self.Contour_Names:
+ true_rois.append(roi_name)
+ elif self.associations:
+ for association in self.associations:
+ if roi_name in association.other_names:
+ true_rois.append(association.roi_name)
+ elif roi_name in self.Contour_Names:
+ true_rois.append(roi_name)
+ all_contours_exist = True
+ some_contours_exist = False
+ lacking_rois = []
+ for roi in self.Contour_Names:
+ if roi not in true_rois:
+ lacking_rois.append(roi)
+ else:
+ some_contours_exist = True
+ if lacking_rois:
+ all_contours_exist = False
+ if self.verbose:
+ print('Lacking {} in index {}, location {}. Found {}'.format(lacking_rois, index,
+ self.series_instances_dictionary[index].path, self.rois_in_loaded_index))
+ if index not in self.indexes_with_contours:
+ if all_contours_exist:
+ self.indexes_with_contours.append(index)
+ elif some_contours_exist and not self.require_all_contours:
+ self.indexes_with_contours.append(index) # Add the index that have at least some of the contours
+
+ def __check_if_all_contours_present__(self):
+ self.indexes_with_contours = []
+ for index in self.series_instances_dictionary:
+ self.__check_contours_at_index__(index)
+ self.rois_in_index_dict[index] = self.rois_in_loaded_index
+
+ def return_rois(self, print_rois=True) -> List[str]:
+ if print_rois:
+ print('The following ROIs were found')
+ for roi in self.all_rois:
+ print(roi)
+ return self.all_rois
+
+ def return_found_rois_with_same_code(self, print_rois=True) -> Dict[str, List[str]]:
+ if print_rois:
+ print('The following ROIs were found to have the same structure code')
+ for code in self.roi_groups:
+ print(f"For code {code} we found:")
+ for roi in self.roi_groups[code]:
+ print(roi)
+ return self.roi_groups
+
+ def return_files_from_UID(self, UID: str) -> List[str]:
+ """
+ Args:
+ UID: A string UID found in images_dictionary.
+
+ Returns:
+ file_list: A list of file paths that are associated with that UID, being images, RTs, RDs, and RPs
+ """
+ out_file_paths = list()
+ if UID not in self.images_dictionary:
+ print(UID + " Not found in dictionary")
+ return out_file_paths
+ image_dictionary = self.images_dictionary[UID]
+ dicom_path = image_dictionary.path
+ image_reader = sitk.ImageFileReader()
+ image_reader.LoadPrivateTagsOn()
+ reader = sitk.ImageSeriesReader()
+ reader.GlobalWarningDisplayOff()
+ out_file_paths += reader.GetGDCMSeriesFileNames(dicom_path, UID)
+ for structure_key in image_dictionary.RTs:
+ out_file_paths += [image_dictionary.RTs[structure_key].path]
+ for structure_key in image_dictionary.RDs:
+ out_file_paths += [image_dictionary.RDs[structure_key].path]
+ return out_file_paths
+
+ def return_files_from_index(self, index: int) -> List[str]:
+ """
+ Args:
+ index: An integer index found in images_dictionary.
+
+ Returns:
+ file_list: A list of file paths that are associated with that index, being images, RTs, RDs, and RPs
+ """
+ out_file_paths = list()
+ image_dictionary = self.series_instances_dictionary[index]
+ UID = image_dictionary.SeriesInstanceUID
+ dicom_path = image_dictionary.path
+ image_reader = sitk.ImageFileReader()
+ image_reader.LoadPrivateTagsOn()
+ reader = sitk.ImageSeriesReader()
+ reader.GlobalWarningDisplayOff()
+ out_file_paths += reader.GetGDCMSeriesFileNames(dicom_path, UID)
+ for structure_key in image_dictionary.RTs:
+ out_file_paths += [image_dictionary.RTs[structure_key].path]
+ for structure_key in image_dictionary.RPs:
+ out_file_paths += [image_dictionary.RPs[structure_key].path]
+ for structure_key in image_dictionary.RDs:
+ out_file_paths += [image_dictionary.RDs[structure_key].path]
+ return out_file_paths
+
+ def return_files_from_patientID(self, patientID: str) -> List[str]:
+ """
+ Args:
+ patientID:
+
+ Returns:
+
+ """
+ out_file_paths = list()
+ for index in self.series_instances_dictionary:
+ if self.series_instances_dictionary[index].PatientID == patientID:
+ out_file_paths += self.return_files_from_index(index)
+ return out_file_paths
+
+ def where_are_RTs(self, ROIName: str) -> List[str]:
+ print('Please move over to using .where_is_ROI(), as this better represents the definition')
+ return self.where_is_ROI(ROIName=ROIName)
+
+ def where_is_ROI(self, ROIName: str) -> List[str]:
+ out_folders = list()
+ if ROIName.lower() in self.RTs_with_ROI_Names:
+ print('Contours of {} are located:'.format(ROIName.lower()))
+ for path in self.RTs_with_ROI_Names[ROIName.lower()]:
+ out_folders.append(path)
+ print(path)
+ else:
+ print('{} was not found within the set, check spelling or list all rois'.format(ROIName))
+ return out_folders
+
+ def which_indexes_have_all_rois(self):
+ if self.Contour_Names:
+ print('The following indexes have all ROIs present')
+ for index in self.indexes_with_contours:
+ print('Index {}, located at {}'.format(index, self.series_instances_dictionary[index].path))
+ print('Finished listing present indexes')
+ return self.indexes_with_contours
+ else:
+ print('You need to first define what ROIs you want, please use'
+ ' .set_contour_names_and_associations()')
+
+ def characterize_data_to_excel(self, wanted_rois: List[str] = None,
+ excel_path: typing.Union[str, bytes, os.PathLike] = "./Data.xlsx"):
+ print("This is going to load every index and record volume data to the excel_path"
+ " indicated above. Be aware that this can take some time...")
+ self.verbose = False
+ print("To prevent annoying messages, verbosity has been turned off...")
+ loading_rois = []
+ if wanted_rois is None:
+ if self.Contour_Names:
+ loading_rois = self.Contour_Names
+ print("Since no rois were explicitly defined, this will evaluate previously defined Contour Names")
+ else:
+ print("Since no rois were explicitly defined, this will evaluate all rois")
+ loading_rois = self.all_rois
+ else:
+ for roi in wanted_rois:
+ if roi in self.all_rois:
+ loading_rois.append(roi)
+ else:
+ if self.associations:
+ for association in self.associations:
+ if association.roi_name == roi:
+ loading_rois += association.other_names
+ loading_rois = list(set(loading_rois))
+ final_out_dict = {'PatientID': [], 'PixelSpacingX': [], 'PixelSpacingY': [],
+ 'SliceThickness': [], 'zzzRTPath': [], 'zzzImagePath': []}
+ image_out_dict = {'PatientID': [], 'ImagePath': [], 'PixelSpacingX': [], 'PixelSpacingY': [],
+ 'SliceThickness': []}
+ temp_associations = {}
+ column_names = []
+ for roi in loading_rois:
+ if self.associations:
+ for association in self.associations:
+ if roi in association.other_names:
+ true_name = association.roi_name
+ temp_associations[roi] = true_name
+ if roi not in final_out_dict:
+ final_out_dict[f"{roi} cc"] = []
+ column_names.append(roi)
+ """
+ Now we load the images/mask, and get volume data
+ """
+ pbar = tqdm(total=len(self.series_instances_dictionary), desc='Building data...')
+ for index in self.series_instances_dictionary:
+ pbar.update()
+ if self.series_instances_dictionary[index].SeriesInstanceUID is None: # No image? Move along
+ continue
+ self.set_index(index)
+ has_wanted_roi = False
+ for roi in column_names:
+ if roi in self.rois_in_loaded_index:
+ has_wanted_roi = True
+ break
+ if not has_wanted_roi:
+ continue
+ image_base = self.series_instances_dictionary[index]
+ image_out_dict['PatientID'].append(image_base.PatientID)
+ image_out_dict['ImagePath'].append(image_base.path)
+ image_out_dict['PixelSpacingX'].append(image_base.pixel_spacing_x)
+ image_out_dict['PixelSpacingY'].append(image_base.pixel_spacing_y)
+ image_out_dict['SliceThickness'].append(image_base.slice_thickness)
+ self.get_images()
+ """
+ If there is no image set, move along
+ """
+ dimension = np.prod(self.dicom_handle.GetSpacing()) # Voxel dimensions, in mm
+ for rt_index in image_base.RTs:
+ rt_base = image_base.RTs[rt_index]
+ self.__check_contours_at_index__(index)
+ final_out_dict['PatientID'].append(rt_base.PatientID)
+ final_out_dict['zzzRTPath'].append(rt_base.path)
+ final_out_dict['zzzImagePath'].append(image_base.path)
+ final_out_dict['PixelSpacingX'].append(image_base.pixel_spacing_x)
+ final_out_dict['PixelSpacingY'].append(image_base.pixel_spacing_y)
+ final_out_dict['SliceThickness'].append(image_base.slice_thickness)
+ """
+ Default values to be nothing, then replace them as they come
+ """
+ for roi in column_names:
+ final_out_dict[f"{roi} cc"].append(np.nan)
+ for roi in column_names:
+ if roi in rt_base.ROI_Names:
+ mask = self.__return_mask_for_roi__(rt_base, roi)
+ volume = np.around(np.sum(mask) * dimension / 1000, 3) # Volume in cm^3, not mm^3. 3 sig figs
+ final_out_dict[f"{roi} cc"][-1] = volume
+ for key in temp_associations.keys():
+ if temp_associations[key] not in final_out_dict:
+ final_out_dict[temp_associations[key]] = [np.nan for _ in range(len(final_out_dict['PatientID']))]
+ df = pd.DataFrame(final_out_dict)
+ for key in temp_associations:
+ df[temp_associations[key]] = df[f"{key} cc"] + df.fillna(0)[temp_associations[key]]
+ df = df.reindex(sorted(df.columns), axis=1)
+ df_image = pd.DataFrame(image_out_dict)
+ with pd.ExcelWriter(excel_path) as writer:
+ # use to_excel function and specify the sheet_name and index
+ # to store the dataframe in specified sheet
+ df.to_excel(writer, sheet_name="ROIs", index=False)
+ df_image.to_excel(writer, sheet_name="Images", index=False)
+
+ def which_indexes_lack_all_rois(self):
+ if self.Contour_Names:
+ print('The following indexes are lacking all ROIs')
+ indexes_lacking_rois = []
+ for index in self.series_instances_dictionary:
+ if index not in self.indexes_with_contours:
+ indexes_lacking_rois.append(index)
+ print('Index {}, located at '
+ '{}'.format(index, self.series_instances_dictionary[index].path))
+ print('Finished listing lacking indexes')
+ return indexes_lacking_rois
+ else:
+ print('You need to first define what ROIs you want, please use'
+ ' .set_contour_names_and_associations(roi_list)')
+
+ def down_folder(self, input_path: typing.Union[str, bytes, os.PathLike]):
+ print('Please move from down_folder() to walk_through_folders()')
+ self.walk_through_folders(input_path=input_path)
+
+ def walk_through_folders(self, input_path: typing.Union[str, bytes, os.PathLike],
+ thread_count=int(cpu_count() * 0.9 - 1)):
+ """
+ Iteratively work down paths to find DICOM files, if they are present, add to the series instance UID dictionary
+ :param input_path: path to walk
+ """
+ paths_with_dicom = []
+ for root, dirs, files in os.walk(input_path):
+ dicom_files = [i for i in files if i.lower().endswith('.dcm')]
+ if dicom_files:
+ paths_with_dicom.append(root)
+ # dicom_adder.add_dicom_to_dictionary_from_path(dicom_path=root, images_dictionary=self.images_dictionary,
+ # rt_dictionary=self.rt_dictionary)
+ if paths_with_dicom:
+ q = Queue(maxsize=thread_count)
+ pbar = tqdm(total=len(paths_with_dicom), desc='Loading through DICOM files')
+ A = (q, pbar)
+ threads = []
+ for worker in range(thread_count):
+ t = Thread(target=folder_worker, args=(A,))
+ t.start()
+ threads.append(t)
+ for index, path in enumerate(paths_with_dicom):
+ item = [path, self.images_dictionary, self.rt_dictionary, self.rd_dictionary, self.rp_dictionary,
+ self.verbose, (self.plan_pydicom_string_keys, self.struct_pydicom_string_keys,
+ self.image_sitk_string_keys, self.dose_sitk_string_keys)]
+ q.put(item)
+ for i in range(thread_count):
+ q.put(None)
+ for t in threads:
+ t.join()
+ self.__compile__()
+ if self.verbose or len(self.series_instances_dictionary) > 1:
+ for key in self.series_instances_dictionary:
+ print('Index {}, description {} at {}'.format(key,
+ self.series_instances_dictionary[key].Description,
+ self.series_instances_dictionary[key].path))
+ print('{} unique series IDs were found. Default is index 0, to change use '
+ 'set_index(index)'.format(len(self.series_instances_dictionary)))
+ self.set_index(0)
+ self.__check_if_all_contours_present__()
+ return None
+
+ def write_parallel(self, out_path: typing.Union[str, bytes, os.PathLike],
+ excel_file: typing.Union[str, bytes, os.PathLike],
+ thread_count=int(cpu_count() * 0.9 - 1)):
+ if not os.path.exists(out_path):
+ os.makedirs(out_path)
+ if not os.path.exists(excel_file):
+ final_out_dict = {'PatientID': [], 'Path': [], 'Iteration': [], 'Folder': [], 'SeriesInstanceUID': [],
+ 'Pixel_Spacing_X': [], 'Pixel_Spacing_Y': [], 'Slice_Thickness': []}
+ for roi in self.Contour_Names:
+ column_name = 'Volume_{} [cc]'.format(roi)
+ final_out_dict[column_name] = []
+ df = pd.DataFrame(final_out_dict)
+ df.to_excel(excel_file, index=False)
+ else:
+ df = pd.read_excel(excel_file, engine='openpyxl')
+ add_columns = False
+ for roi in self.Contour_Names:
+ column_name = 'Volume_{} [cc]'.format(roi)
+ if column_name not in df.columns:
+ df[column_name] = np.nan
+ add_columns = True
+ if add_columns:
+ df.to_excel(excel_file, index=False)
+ key_dict = {'series_instances_dictionary': self.series_instances_dictionary, 'associations': self.associations,
+ 'arg_max': self.arg_max, 'require_all_contours': self.require_all_contours,
+ 'Contour_Names': self.Contour_Names,
+ 'description': self.desciption, 'get_dose_output': self.get_dose_output}
+ rewrite_excel = False
+ '''
+ First, build the excel file that we will use to reference iterations, Series UIDs, and paths
+ '''
+ for index in self.indexes_with_contours:
+ series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
+ previous_run = df.loc[df['SeriesInstanceUID'] == series_instance_uid]
+ if previous_run.shape[0] == 0:
+ rewrite_excel = True
+ iteration = 0
+ while iteration in df['Iteration'].values:
+ iteration += 1
+ temp_dict = {'PatientID': [self.series_instances_dictionary[index].PatientID],
+ 'Path': [self.series_instances_dictionary[index].path],
+ 'Iteration': [int(iteration)], 'Folder': [None],
+ 'SeriesInstanceUID': [series_instance_uid],
+ 'Pixel_Spacing_X': [self.series_instances_dictionary[index].pixel_spacing_x],
+ 'Pixel_Spacing_Y': [self.series_instances_dictionary[index].pixel_spacing_y],
+ 'Slice_Thickness': [self.series_instances_dictionary[index].slice_thickness]}
+ temp_df = pd.DataFrame(temp_dict)
+ df = df.append(temp_df)
+ if rewrite_excel:
+ df.to_excel(excel_file, index=False)
+ '''
+ Next, read through the excel sheet and see if the out paths already exist
+ '''
+ items = []
+ for index in self.indexes_with_contours:
+ series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
+ previous_run = df.loc[df['SeriesInstanceUID'] == series_instance_uid]
+ if previous_run.shape[0] == 0:
+ continue
+ iteration = int(previous_run['Iteration'].values[0])
+ folder = previous_run['Folder'].values[0]
+ if pd.isnull(folder):
+ folder = None
+ write_path = out_path
+ if folder is not None:
+ write_path = os.path.join(out_path, folder)
+ write_image = os.path.join(write_path, 'Overall_Data_{}_{}.nii.gz'.format(self.desciption, iteration))
+ rerun = True
+ if os.path.exists(write_image):
+ print('Already wrote out index {} at {}'.format(index, write_path))
+ rerun = False
+ for roi in self.Contour_Names:
+ column_name = 'Volume_{} [cc]'.format(roi)
+ if pd.isnull(previous_run[column_name].values[0]):
+ rerun = True
+ print('Volume for {} was not defined at index {}.. so rerunning'.format(roi, index))
+ break
+ if not rerun:
+ continue
+ item = [iteration, index, write_path, key_dict]
+ items.append(item)
+ if items:
+ q = Queue(maxsize=thread_count)
+ pbar = tqdm(total=len(items), desc='Writing nifti files...')
+ A = (q, pbar)
+ threads = []
+ for worker in range(thread_count):
+ t = Thread(target=worker_def, args=(A,))
+ t.start()
+ threads.append(t)
+ for item in items:
+ q.put(item)
+ for i in range(thread_count):
+ q.put(None)
+ for t in threads:
+ t.join()
+ """
+ Now, take the volumes that have been calculated during this process and add them to the excel sheet
+ """
+ for item in items:
+ index = item[1]
+ iteration = item[0]
+ if 'Volumes' not in self.series_instances_dictionary[index].additional_tags.keys():
+ continue
+ for roi_index, roi in enumerate(self.Contour_Names):
+ column_name = 'Volume_{} [cc]'.format(roi)
+ df.loc[df.Iteration == iteration, column_name] = \
+ self.series_instances_dictionary[index].additional_tags['Volumes'][roi_index]
+ df.to_excel(excel_file, index=False)
+
+ def get_images_and_mask(self) -> None:
+ if self.index not in self.series_instances_dictionary:
+ print("Index is not preset in the dictionary! Set it using set_index(index)")
+ return None
+ self.get_images()
+ self.get_mask()
+ if self.get_dose_output:
+ self.get_dose()
+
+ def get_all_info(self) -> None:
+ """
+ Print all of the keys and their respective values
+ :return:
+ """
+ self.load_key_information_only()
+ for key in self.image_reader.GetMetaDataKeys():
+ print("{} is {}".format(key, self.image_reader.GetMetaData(key)))
+
+ def return_key_info(self, key):
+ """
+ Return the dicom information for a particular key
+ Example: "0008|0022" will return the date acquired in YYYYMMDD format
+ :param key: dicom key "0008|0022"
+ :return: value associated with the key
+ """
+ self.load_key_information_only()
+ if not self.image_reader.HasMetaDataKey(key):
+ print("{} is not present in the reader".format(key))
+ return None
+ return self.image_reader.GetMetaData(key)
+
+ def load_key_information_only(self) -> None:
+ if self.index not in self.series_instances_dictionary:
+ print('Index is not present in the dictionary! Set it using set_index(index)')
+ return None
+ index = self.index
+ series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
+ if self.dicom_info_uid != series_instance_uid: # Only load if needed
+ dicom_names = self.series_instances_dictionary[index].files
+ self.image_reader.SetFileName(dicom_names[0])
+ self.image_reader.ReadImageInformation()
+ self.dicom_info_uid = series_instance_uid
+
+ def get_images(self) -> None:
+ if self.index not in self.series_instances_dictionary:
+ print('Index is not present in the dictionary! Set it using set_index(index)')
+ return None
+ index = self.index
+ series_instance_uid = self.series_instances_dictionary[index].SeriesInstanceUID
+ if series_instance_uid is None:
+ print("This index does not have an associated image within the loaded folders")
+ return None
+ if self.dicom_handle_uid != series_instance_uid: # Only load if needed
+ if self.verbose:
+ print('Loading images for {} at \n {}\n'.format(self.series_instances_dictionary[index].Description,
+ self.series_instances_dictionary[index].path))
+ dicom_names = self.series_instances_dictionary[index].files
+ self.ds = pydicom.read_file(dicom_names[0])
+ self.reader.SetFileNames(dicom_names)
+ self.dicom_handle = self.reader.Execute()
+ if self.verbose:
+ print("Erasing any previous mask as we load a new new image set")
+ self.__reset_mask__()
+ add_sops_to_dictionary(sitk_dicom_reader=self.reader,
+ series_instances_dictionary=self.series_instances_dictionary)
+ if max(self.flip_axes):
+ flipimagefilter = sitk.FlipImageFilter()
+ flipimagefilter.SetFlipAxes(self.flip_axes)
+ self.dicom_handle = flipimagefilter.Execute(self.dicom_handle)
+ self.ArrayDicom = sitk.GetArrayFromImage(self.dicom_handle)
+ self.image_size_cols, self.image_size_rows, self.image_size_z = self.dicom_handle.GetSize()
+ self.dicom_handle_uid = series_instance_uid
+
+ def get_dose(self, dose_type="PLAN") -> None:
+ """
+ :param dose_type: Type of dose to pull, https://dicom.innolitics.com/ciods/rt-dose/rt-dose/3004000a
+ Can be "PLAN", "BEAM", etc.
+ :return:
+ """
+ if self.index not in self.series_instances_dictionary:
+ print('Index is not present in the dictionary! Set it using set_index(index)')
+ return None
+ index = self.index
+ if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
+ print('Loading images for index {}, since mask was requested but image loading was '
+ 'previously different\n'.format(index))
+ self.get_images()
+ if self.rd_study_instance_uid is not None:
+ if self.rd_study_instance_uid == self.series_instances_dictionary[index].StudyInstanceUID: # Already loaded
+ return None
+ self.rd_study_instance_uid = self.series_instances_dictionary[index].StudyInstanceUID
+ RDs = self.series_instances_dictionary[index].RDs
+ reader = sitk.ImageFileReader()
+ output, spacing, direction, origin = None, None, None, None
+ self.dose = None
+ resampler = ImageResampler()
+ resampled_dose_handle: sitk.Image
+ filter_rds = False
+ if len(RDs) > 1:
+ filter_rds = True
+ for rd_series_instance_uid in RDs:
+ rd = RDs[rd_series_instance_uid]
+ if filter_rds:
+ if rd.DoseSummationType != dose_type:
+ if self.verbose:
+ print(f"Found multiple dose types, loading {dose_type}, this can be changed via"
+ f" .get_dose(dose_type='PLAN'), etc.")
+ continue
+ for dose_file in rd.Dose_Files:
+ reader.SetFileName(dose_file)
+ reader.ReadImageInformation()
+ dose_handle = reader.Execute()
+ resampled_dose_handle = resampler.resample_image(input_image_handle=dose_handle,
+ ref_resampling_handle=self.dicom_handle,
+ interpolator='Linear', empty_value=0)
+ resampled_dose_handle = sitk.Cast(resampled_dose_handle, sitk.sitkFloat32)
+ scaling_factor = float(reader.GetMetaData("3004|000e"))
+ resampled_dose_handle = resampled_dose_handle * scaling_factor
+ if output is None:
+ output = resampled_dose_handle
+ else:
+ output += resampled_dose_handle
+ if output is not None:
+ self.dose = sitk.GetArrayFromImage(output)
+ self.dose_handle = output
+
+ def __characterize_RT__(self, RT: RTBase):
+ if self.RS_struct_uid != RT.SeriesInstanceUID:
+ self.structure_references = {}
+ self.RS_struct = pydicom.read_file(RT.path)
+ self.RS_struct_uid = RT.SeriesInstanceUID
+ for contour_number in range(len(self.RS_struct.ROIContourSequence)):
+ self.structure_references[
+ self.RS_struct.ROIContourSequence[contour_number].ReferencedROINumber] = contour_number
+
+ def __return_mask_for_roi__(self, RT: RTBase, roi_name: str):
+ self.__characterize_RT__(RT)
+ structure_index = self.structure_references[RT.ROIs_In_Structure[roi_name]]
+ mask = self.contours_to_mask(structure_index, roi_name)
+ return mask
+
+ def get_mask(self) -> None:
+ if self.index not in self.series_instances_dictionary:
+ print('Index is not present in the dictionary! Set it using set_index(index)')
+ return None
+ if not self.Contour_Names:
+ print('If you want a mask, you need to set the contour names you are looking for, use '
+ 'set_contour_names_and_associations(list_of_roi_names).\nIf you just '
+ 'want to look at images use get_images() not get_images_and_mask() or get_mask()')
+ return None
+ index = self.index
+ if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
+ print('Loading images for index {}, since mask was requested but image loading was '
+ 'previously different\n'.format(index))
+ self.get_images()
+ RTs = self.series_instances_dictionary[index].RTs
+ for RT_key in RTs:
+ RT = RTs[RT_key]
+ for ROI_Name in RT.ROIs_In_Structure.keys():
+ true_name = None
+ if ROI_Name.lower() in self.Contour_Names:
+ true_name = ROI_Name.lower()
+ else:
+ if self.associations:
+ for association in self.associations:
+ if ROI_Name.lower() in association.other_names:
+ true_name = association.roi_name
+ break # Found the name we wanted
+ if true_name and true_name in self.Contour_Names:
+ mask = self.__return_mask_for_roi__(RT, ROI_Name)
+ self.mask[..., self.Contour_Names.index(true_name) + 1] += mask
+ self.mask[self.mask > 1] = 1
+ for true_name in self.Contour_Names:
+ mask_img = sitk.GetImageFromArray(self.mask[..., self.Contour_Names.index(true_name) + 1].astype(np.uint8))
+ mask_img.SetSpacing(self.dicom_handle.GetSpacing())
+ mask_img.SetDirection(self.dicom_handle.GetDirection())
+ mask_img.SetOrigin(self.dicom_handle.GetOrigin())
+ self.mask_dictionary[true_name] = mask_img
+ if self.flip_axes[0]:
+ self.mask = self.mask[:, :, ::-1, ...]
+ if self.flip_axes[1]:
+ self.mask = self.mask[:, ::-1, ...]
+ if self.flip_axes[2]:
+ self.mask = self.mask[::-1, ...]
+ voxel_size = np.prod(self.dicom_handle.GetSpacing())/1000 # volume in cc per voxel
+ volumes = np.sum(self.mask[..., 1:], axis=(0, 1, 2)) * voxel_size # Volume in cc
+ self.series_instances_dictionary[index].additional_tags['Volumes'] = volumes
+ if self.arg_max:
+ self.mask = np.argmax(self.mask, axis=-1)
+ self.annotation_handle = sitk.GetImageFromArray(self.mask.astype(np.int8))
+ self.annotation_handle.SetSpacing(self.dicom_handle.GetSpacing())
+ self.annotation_handle.SetOrigin(self.dicom_handle.GetOrigin())
+ self.annotation_handle.SetDirection(self.dicom_handle.GetDirection())
+ return None
+
+ def reshape_contour_data(self, as_array: np.array):
+ as_array = np.asarray(as_array)
+ if as_array.shape[-1] != 3:
+ as_array = np.reshape(as_array, [as_array.shape[0] // 3, 3])
+ matrix_points = np.asarray([self.dicom_handle.TransformPhysicalPointToIndex(as_array[i])
+ for i in range(as_array.shape[0])])
+ return matrix_points
+
+ def return_mask(self, mask: np.array, matrix_points: np.array, geometric_type: str):
+ col_val = matrix_points[:, 0]
+ row_val = matrix_points[:, 1]
+ z_vals = matrix_points[:, 2]
+ if geometric_type != "OPEN_NONPLANAR":
+ temp_mask = poly2mask(row_val, col_val, (self.image_size_rows, self.image_size_cols))
+ # temp_mask[self.row_val, self.col_val] = 0
+ mask[z_vals[0], temp_mask] += 1
+ else:
+ for point_index in range(len(z_vals) - 1, 0, -1):
+ z_start = z_vals[point_index]
+ z_stop = z_vals[point_index - 1]
+ z_dif = z_stop - z_start
+ r_start = row_val[point_index]
+ r_stop = row_val[point_index - 1]
+ r_dif = r_stop - r_start
+ c_start = col_val[point_index]
+ c_stop = col_val[point_index - 1]
+ c_dif = c_stop - c_start
+
+ step = 1
+ if z_dif != 0:
+ r_slope = r_dif / z_dif
+ c_slope = c_dif / z_dif
+ if z_dif < 0:
+ step = -1
+ for z_value in range(z_start, z_stop + step, step):
+ r_value = r_start + r_slope * (z_value - z_start)
+ c_value = c_start + c_slope * (z_value - z_start)
+ add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
+ if r_dif != 0:
+ c_slope = c_dif / r_dif
+ z_slope = z_dif / r_dif
+ if r_dif < 0:
+ step = -1
+ for r_value in range(r_start, r_stop + step, step):
+ c_value = c_start + c_slope * (r_value - r_start)
+ z_value = z_start + z_slope * (r_value - r_start)
+ add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
+ if c_dif != 0:
+ r_slope = r_dif / c_dif
+ z_slope = z_dif / c_dif
+ if c_dif < 0:
+ step = -1
+ for c_value in range(c_start, c_stop + step, step):
+ r_value = r_start + r_slope * (c_value - c_start)
+ z_value = z_start + z_slope * (c_value - c_start)
+ add_to_mask(mask=mask, z_value=z_value, r_value=r_value, c_value=c_value)
+ return mask
+
+ def contour_points_to_mask(self, contour_points, mask=None):
+ if mask is None:
+ mask = np.zeros([self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols], dtype=np.int8)
+ matrix_points = self.reshape_contour_data(contour_points)
+ mask = self.return_mask(mask, matrix_points, geometric_type="CLOSED_PLANAR")
+ return mask
+
+ def contours_to_mask(self, index: int, true_name: str):
+ mask = np.zeros([self.dicom_handle.GetSize()[-1], self.image_size_rows, self.image_size_cols], dtype=np.int8)
+ if Tag((0x3006, 0x0039)) in self.RS_struct.keys():
+ Contour_sequence = self.RS_struct.ROIContourSequence[index]
+ if Tag((0x3006, 0x0040)) in Contour_sequence:
+ Contour_data = Contour_sequence.ContourSequence
+ for i in range(len(Contour_data)):
+ matrix_points = self.reshape_contour_data(Contour_data[i].ContourData[:])
+ mask = self.return_mask(mask, matrix_points, geometric_type=Contour_data[i].ContourGeometricType)
+ mask = mask % 2
+ else:
+ print(f"This structure set had no data present for {true_name}! Returning a blank mask")
+ else:
+ print("This structure set had no data present! Returning a blank mask")
+ return mask
+
+ def use_template(self) -> None:
+ self.template = True
+ if not self.template_dir:
+ self.template_dir = os.path.join('\\\\mymdafiles', 'ro-admin', 'SHARED', 'Radiation physics', 'BMAnderson',
+ 'Auto_Contour_Sites', 'template_RS.dcm')
+ if not os.path.exists(self.template_dir):
+ self.template_dir = os.path.join('..', '..', 'Shared_Drive', 'Auto_Contour_Sites', 'template_RS.dcm')
+ self.key_list = self.template_dir.replace('template_RS.dcm', 'key_list.txt')
+ self.RS_struct = pydicom.read_file(self.template_dir)
+ print('Running off a template')
+ self.change_template()
+
+ def write_images_annotations(self, out_path: typing.Union[str, bytes, os.PathLike]) -> None:
+ image_path = os.path.join(out_path, 'Overall_Data_{}_{}.nii.gz'.format(self.desciption, self.iteration))
+ annotation_path = os.path.join(out_path, 'Overall_mask_{}_y{}.nii.gz'.format(self.desciption, self.iteration))
+ pixel_id = self.dicom_handle.GetPixelIDTypeAsString()
+ if pixel_id.find('32-bit signed integer') != 0:
+ self.dicom_handle = sitk.Cast(self.dicom_handle, sitk.sitkFloat32)
+ sitk.WriteImage(self.dicom_handle, image_path)
+
+ self.annotation_handle.SetSpacing(self.dicom_handle.GetSpacing())
+ self.annotation_handle.SetOrigin(self.dicom_handle.GetOrigin())
+ self.annotation_handle.SetDirection(self.dicom_handle.GetDirection())
+ pixel_id = self.annotation_handle.GetPixelIDTypeAsString()
+ if pixel_id.find('int') == -1:
+ self.annotation_handle = sitk.Cast(self.annotation_handle, sitk.sitkUInt8)
+ sitk.WriteImage(self.annotation_handle, annotation_path)
+ if self.dose_handle:
+ dose_path = os.path.join(out_path, 'Overall_dose_{}_{}.nii.gz'.format(self.desciption, self.iteration))
+ sitk.WriteImage(self.dose_handle, dose_path)
+ fid = open(os.path.join(self.series_instances_dictionary[self.index].path,
+ '{}_Iteration_{}.txt'.format(self.desciption, self.iteration)), 'w+')
+ fid.close()
+
+ def prediction_array_to_RT(self, prediction_array: np.array, output_dir: typing.Union[str, bytes, os.PathLike],
+ ROI_Names: List[str], ROI_Types: List[str] = None) -> None:
+ """
+ :param prediction_array: numpy array of prediction, expected shape is [#Images, Rows, Cols, #Classes + 1]
+ :param output_dir: directory to pass RT structure to
+ :param ROI_Names: list of ROI names equal to the number of classes
+ :return:
+ """
+ if ROI_Names is None:
+ print("You need to provide ROI_Names")
+ return None
+ if prediction_array.shape[-1] != (len(ROI_Names) + 1):
+ print("Your last dimension of prediction array should be equal to the number or ROI_names minus 1,"
+ "channel. 0 is for background")
+ return None
+ if self.index not in self.series_instances_dictionary:
+ print("Index is not present in the dictionary! Set it using set_index(index)")
+ return None
+ index = self.index
+ if self.dicom_handle_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
+ self.get_images()
+ self.SOPInstanceUIDs = self.series_instances_dictionary[index].SOPs
+ if self.create_new_RT or len(self.series_instances_dictionary[index].RTs) == 0:
+ self.use_template()
+ elif self.RS_struct_uid != self.series_instances_dictionary[index].SeriesInstanceUID:
+ RTs = self.series_instances_dictionary[index].RTs
+ for uid_key in RTs:
+ self.RS_struct = pydicom.read_file(RTs[uid_key].path)
+ self.RS_struct_uid = self.series_instances_dictionary[index].SeriesInstanceUID
+ break
+
+ prediction_array = np.squeeze(prediction_array)
+ contour_values = np.max(prediction_array, axis=0) # See what the maximum value is across the prediction array
+ while len(contour_values.shape) > 1:
+ contour_values = np.max(contour_values, axis=0)
+ contour_values[0] = 1 # Keep background
+ prediction_array = prediction_array[..., contour_values == 1]
+ contour_values = contour_values[1:]
+ not_contained = list(np.asarray(ROI_Names)[contour_values == 0])
+ ROI_Names = list(np.asarray(ROI_Names)[contour_values == 1])
+ if not_contained:
+ print('RT Structure not made for ROIs {}, given prediction_array had no mask'.format(not_contained))
+ self.image_size_z, self.image_size_rows, self.image_size_cols = prediction_array.shape[:3]
+ self.ROI_Names = ROI_Names
+ if ROI_Types is None:
+ self.ROI_Types = ["ORGAN" for _ in ROI_Names]
+ else:
+ self.ROI_Types = ROI_Types
+ self.output_dir = output_dir
+ if len(prediction_array.shape) == 3:
+ prediction_array = np.expand_dims(prediction_array, axis=-1)
+ if self.flip_axes[0]:
+ prediction_array = prediction_array[:, :, ::-1, ...]
+ if self.flip_axes[1]:
+ prediction_array = prediction_array[:, ::-1, ...]
+ if self.flip_axes[2]:
+ prediction_array = prediction_array[::-1, ...]
+ self.annotations = prediction_array
+ self.mask_to_contours()
+
+ def with_annotations(self, annotations: np.array, output_dir: typing.Union[str, bytes, os.PathLike],
+ ROI_Names=None) -> None:
+ print('Please move over to using prediction_array_to_RT')
+ self.prediction_array_to_RT(prediction_array=annotations, output_dir=output_dir, ROI_Names=ROI_Names)
+
+ def mask_to_contours(self) -> None:
+ self.PixelSize = self.dicom_handle.GetSpacing()
+ current_names = []
+ for names in self.RS_struct.StructureSetROISequence:
+ current_names.append(names.ROIName)
+ Contour_Key = {}
+ xxx = 1
+ for name in self.ROI_Names:
+ Contour_Key[name] = xxx
+ xxx += 1
+ base_annotations = copy.deepcopy(self.annotations)
+ temp_color_list = []
+ color_list = [[128, 0, 0], [170, 110, 40], [0, 128, 128], [0, 0, 128], [230, 25, 75], [225, 225, 25],
+ [0, 130, 200], [145, 30, 180],
+ [255, 255, 255]]
+ self.struct_index = 0
+ new_ROINumber = 1000
+ for Name, ROI_Type in zip(self.ROI_Names, self.ROI_Types):
+ new_ROINumber -= 1
+ if not temp_color_list:
+ temp_color_list = copy.deepcopy(color_list)
+ color_int = np.random.randint(len(temp_color_list))
+ print('Writing data for ' + Name)
+ annotations = copy.deepcopy(base_annotations[:, :, :, int(self.ROI_Names.index(Name) + 1)])
+ annotations = annotations.astype('int')
+
+ make_new = 1
+ allow_slip_in = True
+ if (Name not in current_names and allow_slip_in) or self.delete_previous_rois:
+ self.RS_struct.StructureSetROISequence.insert(0,
+ copy.deepcopy(self.RS_struct.StructureSetROISequence[0]))
+ else:
+ print('Prediction ROI {} is already within RT structure'.format(Name))
+ continue
+ self.RS_struct.StructureSetROISequence[self.struct_index].ROINumber = new_ROINumber
+ self.RS_struct.StructureSetROISequence[self.struct_index].ReferencedFrameOfReferenceUID = \
+ self.ds.FrameOfReferenceUID
+ self.RS_struct.StructureSetROISequence[self.struct_index].ROIName = Name
+ self.RS_struct.StructureSetROISequence[self.struct_index].ROIVolume = 0
+ self.RS_struct.StructureSetROISequence[self.struct_index].ROIGenerationAlgorithm = 'SEMIAUTOMATIC'
+ if make_new == 1:
+ self.RS_struct.RTROIObservationsSequence.insert(0,
+ copy.deepcopy(
+ self.RS_struct.RTROIObservationsSequence[0]))
+ if 'MaterialID' in self.RS_struct.RTROIObservationsSequence[self.struct_index]:
+ del self.RS_struct.RTROIObservationsSequence[self.struct_index].MaterialID
+ self.RS_struct.RTROIObservationsSequence[self.struct_index].ObservationNumber = new_ROINumber
+ self.RS_struct.RTROIObservationsSequence[self.struct_index].ReferencedROINumber = new_ROINumber
+ self.RS_struct.RTROIObservationsSequence[self.struct_index].ROIObservationLabel = Name
+
+ self.RS_struct.RTROIObservationsSequence[self.struct_index].RTROIInterpretedType = ROI_Type
+
+ if make_new == 1:
+ self.RS_struct.ROIContourSequence.insert(0, copy.deepcopy(self.RS_struct.ROIContourSequence[0]))
+ self.RS_struct.ROIContourSequence[self.struct_index].ReferencedROINumber = new_ROINumber
+ del self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[1:]
+ self.RS_struct.ROIContourSequence[self.struct_index].ROIDisplayColor = temp_color_list[color_int]
+ del temp_color_list[color_int]
+ thread_count = int(cpu_count() * 0.9 - 1)
+ contour_dict = {}
+ q = Queue(maxsize=thread_count)
+ threads = []
+ kwargs = {'image_size_rows': self.image_size_rows, 'image_size_cols': self.image_size_cols,
+ 'PixelSize': self.PixelSize, 'contour_dict': contour_dict, 'RS': self.RS_struct}
+
+ A = [q, kwargs]
+ # pointer_class = PointOutputMakerClass(**kwargs)
+ for worker in range(thread_count):
+ t = Thread(target=contour_worker, args=(A,))
+ t.start()
+ threads.append(t)
+ contour_num = 0
+ if np.max(annotations) > 0: # If we have an annotation, write it
+ image_locations = np.max(annotations, axis=(1, 2))
+ indexes = np.where(image_locations > 0)[0]
+ for index in indexes:
+ item = {'annotation': annotations[index], 'i': index, 'dicom_handle': self.dicom_handle}
+ # pointer_class.make_output(**item)
+ q.put(item)
+ for i in range(thread_count):
+ q.put(None)
+ for t in threads:
+ t.join()
+ for i in contour_dict.keys():
+ for points in contour_dict[i]:
+ output = np.asarray(points).flatten('C')
+ if contour_num > 0:
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence.append(
+ copy.deepcopy(
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[0]))
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
+ contour_num].ContourNumber = str(contour_num)
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
+ contour_num].ContourGeometricType = 'CLOSED_PLANAR'
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
+ contour_num].ContourImageSequence[0].ReferencedSOPInstanceUID = self.SOPInstanceUIDs[i]
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
+ contour_num].ContourData = list(output)
+ self.RS_struct.ROIContourSequence[self.struct_index].ContourSequence[
+ contour_num].NumberOfContourPoints = len(output) // 3
+ contour_num += 1
+ self.RS_struct.SOPInstanceUID += '.' + str(np.random.randint(999))
+ if self.template or self.delete_previous_rois:
+ for i in range(len(self.RS_struct.StructureSetROISequence), len(self.ROI_Names), -1):
+ del self.RS_struct.StructureSetROISequence[-1]
+ for i in range(len(self.RS_struct.RTROIObservationsSequence), len(self.ROI_Names), -1):
+ del self.RS_struct.RTROIObservationsSequence[-1]
+ for i in range(len(self.RS_struct.ROIContourSequence), len(self.ROI_Names), -1):
+ del self.RS_struct.ROIContourSequence[-1]
+ for i in range(len(self.RS_struct.StructureSetROISequence)):
+ self.RS_struct.StructureSetROISequence[i].ROINumber = i + 1
+ self.RS_struct.RTROIObservationsSequence[i].ReferencedROINumber = i + 1
+ self.RS_struct.ROIContourSequence[i].ReferencedROINumber = i + 1
+ if not os.path.exists(self.output_dir):
+ os.makedirs(self.output_dir)
+ self.RS_struct.SeriesInstanceUID = pydicom.uid.generate_uid(prefix='1.2.826.0.1.3680043.8.498.')
+ out_name = os.path.join(self.output_dir,
+ 'RS_MRN' + self.RS_struct.PatientID + '_' + self.RS_struct.SeriesInstanceUID + '.dcm')
+ if os.path.exists(out_name):
+ out_name = os.path.join(self.output_dir,
+ 'RS_MRN' + self.RS_struct.PatientID + '_' + self.RS_struct.SeriesInstanceUID + '1.dcm')
+ print('Writing out data...{}'.format(self.output_dir))
+ pydicom.write_file(out_name, self.RS_struct)
+ fid = open(os.path.join(self.output_dir, 'Completed.txt'), 'w+')
+ fid.close()
+ print('Finished!')
+ return None
+
+ def change_template(self):
+ keys = self.RS_struct.keys()
+ ref_key = Tag((0x3006),(0x0010))
+ if ref_key in keys:
+ self.RS_struct[ref_key]._value[0].FrameOfReferenceUID = self.ds.FrameOfReferenceUID
+ self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].ReferencedSOPInstanceUID = self.ds.StudyInstanceUID
+ self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].SeriesInstanceUID = self.ds.SeriesInstanceUID
+ for i in range(len(self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].ContourImageSequence) - 1):
+ del self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].ContourImageSequence[-1]
+ fill_segment = copy.deepcopy(
+ self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].ContourImageSequence[0])
+ for i in range(len(self.SOPInstanceUIDs)):
+ temp_segment = copy.deepcopy(fill_segment)
+ temp_segment.ReferencedSOPInstanceUID = self.SOPInstanceUIDs[i]
+ self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].ContourImageSequence.append(temp_segment)
+ del self.RS_struct[ref_key]._value[0].RTReferencedStudySequence[0].RTReferencedSeriesSequence[
+ 0].ContourImageSequence[0]
+
+ new_keys = open(self.key_list)
+ keys = {}
+ i = 0
+ for line in new_keys:
+ keys[i] = line.strip('\n').split(',')
+ i += 1
+ new_keys.close()
+ for index in keys.keys():
+ new_key = keys[index]
+ try:
+ self.RS_struct[new_key[0], new_key[1]] = self.ds[[new_key[0], new_key[1]]]
+ except:
+ continue
+ return None
+
+ def rewrite_RT(self, lstRSFile: typing.Union[str, bytes, os.PathLike] = None):
+ if lstRSFile is not None:
+ self.RS_struct = pydicom.read_file(lstRSFile)
+ if Tag((0x3006, 0x020)) in self.RS_struct.keys():
+ self.ROI_Structure = self.RS_struct.StructureSetROISequence
+ else:
+ self.ROI_Structure = []
+ if Tag((0x3006, 0x080)) in self.RS_struct.keys():
+ self.Observation_Sequence = self.RS_struct.RTROIObservationsSequence
+ else:
+ self.Observation_Sequence = []
+ self.rois_in_loaded_index = []
+ for i, Structures in enumerate(self.ROI_Structure):
+ if Structures.ROIName in self.associations:
+ new_name = self.associations[Structures.ROIName]
+ self.RS_struct.StructureSetROISequence[i].ROIName = new_name
+ self.rois_in_loaded_index.append(self.RS_struct.StructureSetROISequence[i].ROIName)
+ for i, ObsSequence in enumerate(self.Observation_Sequence):
+ if ObsSequence.ROIObservationLabel in self.associations:
+ new_name = self.associations[ObsSequence.ROIObservationLabel]
+ self.RS_struct.RTROIObservationsSequence[i].ROIObservationLabel = new_name
+ self.RS_struct.save_as(lstRSFile)
+
+
+if __name__ == '__main__':
+ pass
diff --git a/src/DicomRTTool/Services/DicomBases.py b/src/DicomRTTool/Services/DicomBases.py
index 7836cd6..6c3743b 100644
--- a/src/DicomRTTool/Services/DicomBases.py
+++ b/src/DicomRTTool/Services/DicomBases.py
@@ -1,255 +1,255 @@
-import typing
-import pydicom
-from pydicom.tag import Tag, BaseTag
-import SimpleITK as sitk
-from typing import List, Dict
-import os
-
-
-PyDicomKeys = Dict[str, BaseTag] # Example: {"MyNamedRTPlan": Tag((0x300a, 0x002))}
-SitkDicomKeys = Dict[str, str] # Example: {"MyPatientName": "0010|0010"}
-
-
-class DICOMBase(object):
- PatientID: str = None
- SeriesInstanceUID: str = None
- SOPInstanceUID: str = None
- StudyInstanceUID: str = None
- path: typing.Union[str, bytes, os.PathLike] = None
- additional_tags: Dict
-
- def load_info(self, *args, **kwargs):
- pass
-
-
-class RDBase(DICOMBase):
- SOPInstanceUID: str = None
- Description: str = None
- ReferencedStructureSetSOPInstanceUID: str = None
- ReferencedPlanSOPInstanceUID: str = None
- ReferencedFrameOfReference: str
- DoseSummationType: str
- DoseType: str # GY or RELATIVE
- DoseUnits: str
- Dose_Files: List[str] # If this is a beam dose, we will have multiple files
-
- def __init__(self):
- self.additional_tags = dict()
- self.Dose_Files = []
-
- def load_info(self, sitk_dicom_reader, sitk_string_keys: SitkDicomKeys = None):
- file_name = sitk_dicom_reader.GetFileName()
- ds = pydicom.read_file(file_name)
- self.SeriesInstanceUID = ds.SeriesInstanceUID
- self.DoseType = ds.DoseType
- self.DoseUnits = ds.DoseUnits
- self.DoseSummationType = ds.DoseSummationType
- self.ReferencedFrameOfReference = sitk_dicom_reader.GetMetaData("0020|0052")
- self.ReferencedStructureSetSOPInstanceUID = ds.ReferencedStructureSetSequence[0].ReferencedSOPInstanceUID \
- if "ReferencedStructureSetSequence" in ds.values() else None
- if Tag((0x300a, 0x002)) in ds.keys():
- self.ReferencedPlanSOPInstanceUID = ds.ReferencedRTPlanSequence[0].ReferencedSOPInstanceUID
- self.StudyInstanceUID = sitk_dicom_reader.GetMetaData("0020|000d")
- if "0008|103e" in sitk_dicom_reader.GetMetaDataKeys():
- self.Description = sitk_dicom_reader.GetMetaData("0008|103e")
- self.path = sitk_dicom_reader.GetFileName()
- self.Dose_Files.append(self.path)
- self.SOPInstanceUID = sitk_dicom_reader.GetMetaData("0008|0018")
- if sitk_string_keys is not None:
- for string in sitk_string_keys:
- key = sitk_string_keys[string]
- if key in sitk_dicom_reader.GetMetaDataKeys():
- try:
- self.additional_tags[string] = sitk_dicom_reader.GetMetaData(key)
- except:
- continue
-
- def add_beam(self, sitk_dicom_reader):
- file_name = sitk_dicom_reader.GetFileName()
- ds = pydicom.read_file(file_name)
- if self.SeriesInstanceUID == ds.SeriesInstanceUID:
- """
- Means these are compatible beams
- """
- if ds.DoseSummationType == "BEAM":
- self.Dose_Files.append(file_name)
-
-
-class PlanBase(DICOMBase):
- PlanLabel: str
- PlanName: str
- ReferencedStructureSetSOPInstanceUID: str
- ReferencedDoseSOPUID: str
- StudyDescription: str
- SeriesDescription: str
-
- def __init__(self):
- self.additional_tags = {}
-
- def load_info(self, ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
- pydicom_string_keys: PyDicomKeys = None):
- refed_structure_uid = ds.ReferencedStructureSetSequence[0].ReferencedSOPInstanceUID
- refed_dose_uid = ds.DoseReferenceSequence[0].DoseReferenceUID
- plan_label = None
- plan_name = None
- if Tag((0x300a, 0x002)) in ds.keys():
- plan_label = ds.RTPlanLabel
- if Tag((0x300a, 0x003)) in ds.keys():
- plan_name = ds.RTPlanName
- self.path = path
- self.SOPInstanceUID = ds.SOPInstanceUID
- self.PlanLabel = plan_label
- self.PlanName = plan_name
- self.ReferencedStructureSetSOPInstanceUID = refed_structure_uid
- self.ReferencedDoseSOPUID = refed_dose_uid
- if Tag((0x0008, 0x1030)) in ds.keys():
- self.StudyDescription = ds.StudyDescription
- if Tag((0x0008, 0x103e)) in ds.keys():
- self.SeriesDescription = ds.SeriesDescription
- if pydicom_string_keys is not None:
- for string in pydicom_string_keys:
- key = pydicom_string_keys[string]
- if key in ds.keys():
- try:
- self.additional_tags[string] = ds[key].value
- except:
- continue
-
-
-class ROIClass(object):
- ROIName: str
- ROIType: str
- ROINumber: int
- StructureCode: str
-
-
-class RTBase(DICOMBase):
- ROI_Names: List[str]
- ROIs_In_Structure: Dict[str, ROIClass]
- referenced_series_instance_uid: str
- Plans: Dict[str, PlanBase]
- Doses: Dict[str, RDBase]
- CodeAssociations: Dict[str, List[str]]
-
- def __init__(self):
- self.Plans = dict()
- self.Doses = dict()
- self.additional_tags = dict()
- self.ROI_Names = []
- self.ROIs_In_Structure = {}
-
- def load_info(self, ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
- pydicom_string_keys: PyDicomKeys = None):
- self.StudyInstanceUID = ds.StudyInstanceUID
- for referenced_frame_of_reference in ds.ReferencedFrameOfReferenceSequence:
- for referred_study_sequence in referenced_frame_of_reference.RTReferencedStudySequence:
- for referred_series in referred_study_sequence.RTReferencedSeriesSequence:
- refed_series_instance_uid = referred_series.SeriesInstanceUID
- if Tag((0x3006, 0x020)) in ds.keys():
- ROI_Structure = ds.StructureSetROISequence
- else:
- ROI_Structure = []
- if Tag((0x3006, 0x080)) in ds.keys():
- ROI_Observation = ds.RTROIObservationsSequence
- else:
- ROI_Observation = []
- code_strings = {}
- type_strings = {}
- for Observation in ROI_Observation:
- if Tag((0x3006, 0x086)) in Observation:
- code_strings[Observation.ReferencedROINumber] = \
- Observation.RTROIIdentificationCodeSequence[0].CodeValue
- if (Tag(0x3006, 0x00a4)) in Observation:
- type_strings[Observation.ReferencedROINumber] = Observation.RTROIInterpretedType
- roi_structure_code_and_names = {}
- rois = []
- for Structures in ROI_Structure:
- roi_name = Structures.ROIName.lower()
- rois.append(roi_name)
- roi_number = Structures.ROINumber
- new_roi = ROIClass()
- new_roi.ROIName = roi_name
- new_roi.ROINumber = roi_number
- if roi_number in code_strings:
- structure_code = code_strings[roi_number]
- new_roi.StructureCode = structure_code
- if structure_code not in roi_structure_code_and_names:
- roi_structure_code_and_names[structure_code] = []
- if roi_name not in roi_structure_code_and_names[structure_code]:
- roi_structure_code_and_names[structure_code].append(roi_name)
- if roi_number in type_strings:
- roi_type = type_strings[roi_number]
- new_roi.ROIType = roi_type
- if roi_name not in self.ROIs_In_Structure:
- self.ROIs_In_Structure[roi_name] = new_roi
- self.path = path
- self.ROI_Names = rois
- self.SeriesInstanceUID = refed_series_instance_uid
- self.SOPInstanceUID = ds.SOPInstanceUID
- self.CodeAssociations = roi_structure_code_and_names
- if pydicom_string_keys is not None:
- for string in pydicom_string_keys:
- key = pydicom_string_keys[string]
- if key in ds.keys():
- try:
- self.additional_tags[string] = ds[key].value
- except:
- continue
-
-
-class ImageBase(DICOMBase):
- Description: str = None
- FrameOfReference: str
- slice_thickness: float = None
- pixel_spacing_x: float = None
- pixel_spacing_y: float = None
- SOPs: typing.List[str]
- files: typing.List[str]
- RTs: Dict[str, RTBase]
- RDs: Dict[str, RDBase]
- RPs: Dict[str, PlanBase]
-
- def __init__(self):
- self.RTs = dict()
- self.RPs = dict()
- self.RDs = dict()
- self.additional_tags = dict()
-
- def load_info(self, dicom_names: typing.List[str], sitk_dicom_reader: sitk.ImageFileReader,
- path: typing.Union[str, bytes, os.PathLike],
- sitk_string_keys: SitkDicomKeys = None):
- """
- Args:
- dicom_names:
- sitk_dicom_reader:
- path:
- sitk_string_keys:
-
- Returns:
-
- """
- self.SeriesInstanceUID = sitk_dicom_reader.GetMetaData("0020|000e")
- self.FrameOfReference = sitk_dicom_reader.GetMetaData("0020|0052")
- patientID = sitk_dicom_reader.GetMetaData("0010|0020")
- while len(patientID) > 0 and patientID[-1] == ' ':
- patientID = patientID[:-1]
- self.PatientID = patientID
- meta_keys = sitk_dicom_reader.GetMetaDataKeys()
- self.files = dicom_names
- if "0008|103e" in meta_keys:
- self.Description = sitk_dicom_reader.GetMetaData("0008|103e")
- if "0028|0030" in meta_keys:
- pixel_spacing_x, pixel_spacing_y = sitk_dicom_reader.GetMetaData("0028|0030").strip(' ').split('\\')
- self.pixel_spacing_x, self.pixel_spacing_y = float(pixel_spacing_x), float(pixel_spacing_y)
- if "0018|0050" in meta_keys:
- self.slice_thickness = float(sitk_dicom_reader.GetMetaData("0018|0050"))
- self.StudyInstanceUID = sitk_dicom_reader.GetMetaData("0020|000d")
- self.path = path
- if sitk_string_keys is not None:
- for string in sitk_string_keys:
- key = sitk_string_keys[string]
- if key in sitk_dicom_reader.GetMetaDataKeys():
- try:
- self.additional_tags[string] = sitk_dicom_reader.GetMetaData(key)
- except:
- continue
+import typing
+import pydicom
+from pydicom.tag import Tag, BaseTag
+import SimpleITK as sitk
+from typing import List, Dict
+import os
+
+
+PyDicomKeys = Dict[str, BaseTag] # Example: {"MyNamedRTPlan": Tag((0x300a, 0x002))}
+SitkDicomKeys = Dict[str, str] # Example: {"MyPatientName": "0010|0010"}
+
+
+class DICOMBase(object):
+ PatientID: str = None
+ SeriesInstanceUID: str = None
+ SOPInstanceUID: str = None
+ StudyInstanceUID: str = None
+ path: typing.Union[str, bytes, os.PathLike] = None
+ additional_tags: Dict
+
+ def load_info(self, *args, **kwargs):
+ pass
+
+
+class RDBase(DICOMBase):
+ SOPInstanceUID: str = None
+ Description: str = None
+ ReferencedStructureSetSOPInstanceUID: str = None
+ ReferencedPlanSOPInstanceUID: str = None
+ ReferencedFrameOfReference: str
+ DoseSummationType: str
+ DoseType: str # GY or RELATIVE
+ DoseUnits: str
+ Dose_Files: List[str] # If this is a beam dose, we will have multiple files
+
+ def __init__(self):
+ self.additional_tags = dict()
+ self.Dose_Files = []
+
+ def load_info(self, sitk_dicom_reader, sitk_string_keys: SitkDicomKeys = None):
+ file_name = sitk_dicom_reader.GetFileName()
+ ds = pydicom.read_file(file_name)
+ self.SeriesInstanceUID = ds.SeriesInstanceUID
+ self.DoseType = ds.DoseType
+ self.DoseUnits = ds.DoseUnits
+ self.DoseSummationType = ds.DoseSummationType
+ self.ReferencedFrameOfReference = sitk_dicom_reader.GetMetaData("0020|0052")
+ self.ReferencedStructureSetSOPInstanceUID = ds.ReferencedStructureSetSequence[0].ReferencedSOPInstanceUID \
+ if "ReferencedStructureSetSequence" in ds.values() else None
+ if Tag((0x300a, 0x002)) in ds.keys():
+ self.ReferencedPlanSOPInstanceUID = ds.ReferencedRTPlanSequence[0].ReferencedSOPInstanceUID
+ self.StudyInstanceUID = sitk_dicom_reader.GetMetaData("0020|000d")
+ if "0008|103e" in sitk_dicom_reader.GetMetaDataKeys():
+ self.Description = sitk_dicom_reader.GetMetaData("0008|103e")
+ self.path = sitk_dicom_reader.GetFileName()
+ self.Dose_Files.append(self.path)
+ self.SOPInstanceUID = sitk_dicom_reader.GetMetaData("0008|0018")
+ if sitk_string_keys is not None:
+ for string in sitk_string_keys:
+ key = sitk_string_keys[string]
+ if key in sitk_dicom_reader.GetMetaDataKeys():
+ try:
+ self.additional_tags[string] = sitk_dicom_reader.GetMetaData(key)
+ except:
+ continue
+
+ def add_beam(self, sitk_dicom_reader):
+ file_name = sitk_dicom_reader.GetFileName()
+ ds = pydicom.read_file(file_name)
+ if self.SeriesInstanceUID == ds.SeriesInstanceUID:
+ """
+ Means these are compatible beams
+ """
+ if ds.DoseSummationType == "BEAM":
+ self.Dose_Files.append(file_name)
+
+
+class PlanBase(DICOMBase):
+ PlanLabel: str
+ PlanName: str
+ ReferencedStructureSetSOPInstanceUID: str
+ ReferencedDoseSOPUID: str
+ StudyDescription: str
+ SeriesDescription: str
+
+ def __init__(self):
+ self.additional_tags = {}
+
+ def load_info(self, ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
+ pydicom_string_keys: PyDicomKeys = None):
+ refed_structure_uid = ds.ReferencedStructureSetSequence[0].ReferencedSOPInstanceUID
+ refed_dose_uid = ds.DoseReferenceSequence[0].DoseReferenceUID
+ plan_label = None
+ plan_name = None
+ if Tag((0x300a, 0x002)) in ds.keys():
+ plan_label = ds.RTPlanLabel
+ if Tag((0x300a, 0x003)) in ds.keys():
+ plan_name = ds.RTPlanName
+ self.path = path
+ self.SOPInstanceUID = ds.SOPInstanceUID
+ self.PlanLabel = plan_label
+ self.PlanName = plan_name
+ self.ReferencedStructureSetSOPInstanceUID = refed_structure_uid
+ self.ReferencedDoseSOPUID = refed_dose_uid
+ if Tag((0x0008, 0x1030)) in ds.keys():
+ self.StudyDescription = ds.StudyDescription
+ if Tag((0x0008, 0x103e)) in ds.keys():
+ self.SeriesDescription = ds.SeriesDescription
+ if pydicom_string_keys is not None:
+ for string in pydicom_string_keys:
+ key = pydicom_string_keys[string]
+ if key in ds.keys():
+ try:
+ self.additional_tags[string] = ds[key].value
+ except:
+ continue
+
+
+class ROIClass(object):
+ ROIName: str
+ ROIType: str
+ ROINumber: int
+ StructureCode: str
+
+
+class RTBase(DICOMBase):
+ ROI_Names: List[str]
+ ROIs_In_Structure: Dict[str, ROIClass]
+ referenced_series_instance_uid: str
+ Plans: Dict[str, PlanBase]
+ Doses: Dict[str, RDBase]
+ CodeAssociations: Dict[str, List[str]]
+
+ def __init__(self):
+ self.Plans = dict()
+ self.Doses = dict()
+ self.additional_tags = dict()
+ self.ROI_Names = []
+ self.ROIs_In_Structure = {}
+
+ def load_info(self, ds: pydicom.Dataset, path: typing.Union[str, bytes, os.PathLike],
+ pydicom_string_keys: PyDicomKeys = None):
+ self.StudyInstanceUID = ds.StudyInstanceUID
+ for referenced_frame_of_reference in ds.ReferencedFrameOfReferenceSequence:
+ for referred_study_sequence in referenced_frame_of_reference.RTReferencedStudySequence:
+ for referred_series in referred_study_sequence.RTReferencedSeriesSequence:
+ refed_series_instance_uid = referred_series.SeriesInstanceUID
+ if Tag((0x3006, 0x020)) in ds.keys():
+ ROI_Structure = ds.StructureSetROISequence
+ else:
+ ROI_Structure = []
+ if Tag((0x3006, 0x080)) in ds.keys():
+ ROI_Observation = ds.RTROIObservationsSequence
+ else:
+ ROI_Observation = []
+ code_strings = {}
+ type_strings = {}
+ for Observation in ROI_Observation:
+ if Tag((0x3006, 0x086)) in Observation:
+ code_strings[Observation.ReferencedROINumber] = \
+ Observation.RTROIIdentificationCodeSequence[0].CodeValue
+ if (Tag(0x3006, 0x00a4)) in Observation:
+ type_strings[Observation.ReferencedROINumber] = Observation.RTROIInterpretedType
+ roi_structure_code_and_names = {}
+ rois = []
+ for Structures in ROI_Structure:
+ roi_name = Structures.ROIName.lower()
+ rois.append(roi_name)
+ roi_number = Structures.ROINumber
+ new_roi = ROIClass()
+ new_roi.ROIName = roi_name
+ new_roi.ROINumber = roi_number
+ if roi_number in code_strings:
+ structure_code = code_strings[roi_number]
+ new_roi.StructureCode = structure_code
+ if structure_code not in roi_structure_code_and_names:
+ roi_structure_code_and_names[structure_code] = []
+ if roi_name not in roi_structure_code_and_names[structure_code]:
+ roi_structure_code_and_names[structure_code].append(roi_name)
+ if roi_number in type_strings:
+ roi_type = type_strings[roi_number]
+ new_roi.ROIType = roi_type
+ if roi_name not in self.ROIs_In_Structure:
+ self.ROIs_In_Structure[roi_name] = new_roi
+ self.path = path
+ self.ROI_Names = rois
+ self.SeriesInstanceUID = refed_series_instance_uid
+ self.SOPInstanceUID = ds.SOPInstanceUID
+ self.CodeAssociations = roi_structure_code_and_names
+ if pydicom_string_keys is not None:
+ for string in pydicom_string_keys:
+ key = pydicom_string_keys[string]
+ if key in ds.keys():
+ try:
+ self.additional_tags[string] = ds[key].value
+ except:
+ continue
+
+
+class ImageBase(DICOMBase):
+ Description: str = None
+ FrameOfReference: str
+ slice_thickness: float = None
+ pixel_spacing_x: float = None
+ pixel_spacing_y: float = None
+ SOPs: typing.List[str]
+ files: typing.List[str]
+ RTs: Dict[str, RTBase]
+ RDs: Dict[str, RDBase]
+ RPs: Dict[str, PlanBase]
+
+ def __init__(self):
+ self.RTs = dict()
+ self.RPs = dict()
+ self.RDs = dict()
+ self.additional_tags = dict()
+
+ def load_info(self, dicom_names: typing.List[str], sitk_dicom_reader: sitk.ImageFileReader,
+ path: typing.Union[str, bytes, os.PathLike],
+ sitk_string_keys: SitkDicomKeys = None):
+ """
+ Args:
+ dicom_names:
+ sitk_dicom_reader:
+ path:
+ sitk_string_keys:
+
+ Returns:
+
+ """
+ self.SeriesInstanceUID = sitk_dicom_reader.GetMetaData("0020|000e")
+ self.FrameOfReference = sitk_dicom_reader.GetMetaData("0020|0052")
+ patientID = sitk_dicom_reader.GetMetaData("0010|0020")
+ while len(patientID) > 0 and patientID[-1] == ' ':
+ patientID = patientID[:-1]
+ self.PatientID = patientID
+ meta_keys = sitk_dicom_reader.GetMetaDataKeys()
+ self.files = dicom_names
+ if "0008|103e" in meta_keys:
+ self.Description = sitk_dicom_reader.GetMetaData("0008|103e")
+ if "0028|0030" in meta_keys:
+ pixel_spacing_x, pixel_spacing_y = sitk_dicom_reader.GetMetaData("0028|0030").strip(' ').split('\\')
+ self.pixel_spacing_x, self.pixel_spacing_y = float(pixel_spacing_x), float(pixel_spacing_y)
+ if "0018|0050" in meta_keys:
+ self.slice_thickness = float(sitk_dicom_reader.GetMetaData("0018|0050"))
+ self.StudyInstanceUID = sitk_dicom_reader.GetMetaData("0020|000d")
+ self.path = path
+ if sitk_string_keys is not None:
+ for string in sitk_string_keys:
+ key = sitk_string_keys[string]
+ if key in sitk_dicom_reader.GetMetaDataKeys():
+ try:
+ self.additional_tags[string] = sitk_dicom_reader.GetMetaData(key)
+ except:
+ continue
diff --git a/src/DicomRTTool/Services/StaticScripts.py b/src/DicomRTTool/Services/StaticScripts.py
index 27d9c20..e2561f1 100644
--- a/src/DicomRTTool/Services/StaticScripts.py
+++ b/src/DicomRTTool/Services/StaticScripts.py
@@ -1,38 +1,38 @@
-import numpy as np
-import cv2
-
-
-def add_to_mask(mask, z_value, r_value, c_value, mask_value=1):
- mask[int(np.floor(z_value)), int(np.floor(r_value)), int(np.floor(c_value))] = mask_value
- mask[int(np.floor(z_value)), int(np.ceil(r_value)), int(np.floor(c_value))] = mask_value
- mask[int(np.floor(z_value)), int(np.floor(r_value)), int(np.ceil(c_value))] = mask_value
- mask[int(np.floor(z_value)), int(np.ceil(r_value)), int(np.ceil(c_value))] = mask_value
- mask[int(np.ceil(z_value)), int(np.floor(r_value)), int(np.floor(c_value))] = mask_value
- mask[int(np.ceil(z_value)), int(np.ceil(r_value)), int(np.floor(c_value))] = mask_value
- mask[int(np.ceil(z_value)), int(np.floor(r_value)), int(np.ceil(c_value))] = mask_value
- mask[int(np.ceil(z_value)), int(np.ceil(r_value)), int(np.ceil(c_value))] = mask_value
- return None
-
-
-def poly2mask(vertex_row_coords: np.array, vertex_col_coords: np.array,
- shape: tuple) -> np.array:
- """[converts polygon coordinates to filled boolean mask]
-
- Args:
- vertex_row_coords (np.array): [row image coordinates]
- vertex_col_coords (np.array): [column image coordinates]
- shape (tuple): [image dimensions]
-
- Returns:
- [np.array]: [filled boolean polygon mask with vertices at
- (row, col) coordinates]
- """
- xy_coords = np.array([vertex_col_coords, vertex_row_coords])
- coords = np.expand_dims(xy_coords.T, 0)
- mask = np.zeros(shape)
- cv2.fillPoly(mask, coords, 1)
- return np.array(mask, dtype=bool)
-
-
-if __name__ == '__main__':
- pass
+import numpy as np
+import cv2
+
+
+def add_to_mask(mask, z_value, r_value, c_value, mask_value=1):
+ mask[int(np.floor(z_value)), int(np.floor(r_value)), int(np.floor(c_value))] = mask_value
+ mask[int(np.floor(z_value)), int(np.ceil(r_value)), int(np.floor(c_value))] = mask_value
+ mask[int(np.floor(z_value)), int(np.floor(r_value)), int(np.ceil(c_value))] = mask_value
+ mask[int(np.floor(z_value)), int(np.ceil(r_value)), int(np.ceil(c_value))] = mask_value
+ mask[int(np.ceil(z_value)), int(np.floor(r_value)), int(np.floor(c_value))] = mask_value
+ mask[int(np.ceil(z_value)), int(np.ceil(r_value)), int(np.floor(c_value))] = mask_value
+ mask[int(np.ceil(z_value)), int(np.floor(r_value)), int(np.ceil(c_value))] = mask_value
+ mask[int(np.ceil(z_value)), int(np.ceil(r_value)), int(np.ceil(c_value))] = mask_value
+ return None
+
+
+def poly2mask(vertex_row_coords: np.array, vertex_col_coords: np.array,
+ shape: tuple) -> np.array:
+ """[converts polygon coordinates to filled boolean mask]
+
+ Args:
+ vertex_row_coords (np.array): [row image coordinates]
+ vertex_col_coords (np.array): [column image coordinates]
+ shape (tuple): [image dimensions]
+
+ Returns:
+ [np.array]: [filled boolean polygon mask with vertices at
+ (row, col) coordinates]
+ """
+ xy_coords = np.array([vertex_col_coords, vertex_row_coords])
+ coords = np.expand_dims(xy_coords.T, 0)
+ mask = np.zeros(shape)
+ cv2.fillPoly(mask, coords, 1)
+ return np.array(mask, dtype=bool)
+
+
+if __name__ == '__main__':
+ pass
diff --git a/src/DicomRTTool/Viewer.py b/src/DicomRTTool/Viewer.py
index 36b9148..c8609c7 100644
--- a/src/DicomRTTool/Viewer.py
+++ b/src/DicomRTTool/Viewer.py
@@ -1,62 +1,62 @@
-__author__ = 'Brian M Anderson'
-# Created on 12/31/2020
-import numpy as np
-import copy
-import matplotlib.pyplot as plt
-
-
-def plot_scroll_Image(x):
- '''
- :param x: input to view of form [rows, columns, # images]
- :return:
- '''
- if x.dtype not in ['float32','float64']:
- x = copy.deepcopy(x).astype('float32')
- if len(x.shape) > 3:
- x = np.squeeze(x)
- if len(x.shape) == 3:
- if x.shape[0] != x.shape[1]:
- x = np.transpose(x,[1,2,0])
- elif x.shape[0] == x.shape[2]:
- x = np.transpose(x, [1, 2, 0])
- fig, ax = plt.subplots(1, 1)
- if len(x.shape) == 2:
- x = np.expand_dims(x,axis=-1)
- tracker = IndexTracker(ax, x)
- fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
- return fig,tracker
- #Image is input in the form of [#images,512,512,#channels]
-
-
-class IndexTracker(object):
- def __init__(self, ax, X):
- self.ax = ax
- ax.set_title('use scroll wheel to navigate images')
-
- self.X = X
- rows, cols, self.slices = X.shape
- self.ind = np.where((np.min(self.X,axis=(0,1))!= np.max(self.X,axis=(0,1))))[-1]
- if len(self.ind) > 0:
- self.ind = self.ind[len(self.ind)//2]
- else:
- self.ind = self.slices//2
-
- self.im = ax.imshow(self.X[:, :, self.ind],cmap='gray')
- self.update()
-
- def onscroll(self, event):
- print("%s %s" % (event.button, event.step))
- if event.button == 'up':
- self.ind = (self.ind + 1) % self.slices
- else:
- self.ind = (self.ind - 1) % self.slices
- self.update()
-
- def update(self):
- self.im.set_data(self.X[:, :, self.ind])
- self.ax.set_ylabel('slice %s' % self.ind)
- self.im.axes.figure.canvas.draw()
-
-
-if __name__ == '__main__':
- pass
+__author__ = 'Brian M Anderson'
+# Created on 12/31/2020
+import numpy as np
+import copy
+import matplotlib.pyplot as plt
+
+
+def plot_scroll_Image(x):
+ '''
+ :param x: input to view of form [rows, columns, # images]
+ :return:
+ '''
+ if x.dtype not in ['float32','float64']:
+ x = copy.deepcopy(x).astype('float32')
+ if len(x.shape) > 3:
+ x = np.squeeze(x)
+ if len(x.shape) == 3:
+ if x.shape[0] != x.shape[1]:
+ x = np.transpose(x,[1,2,0])
+ elif x.shape[0] == x.shape[2]:
+ x = np.transpose(x, [1, 2, 0])
+ fig, ax = plt.subplots(1, 1)
+ if len(x.shape) == 2:
+ x = np.expand_dims(x,axis=-1)
+ tracker = IndexTracker(ax, x)
+ fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
+ return fig,tracker
+ #Image is input in the form of [#images,512,512,#channels]
+
+
+class IndexTracker(object):
+ def __init__(self, ax, X):
+ self.ax = ax
+ ax.set_title('use scroll wheel to navigate images')
+
+ self.X = X
+ rows, cols, self.slices = X.shape
+ self.ind = np.where((np.min(self.X,axis=(0,1))!= np.max(self.X,axis=(0,1))))[-1]
+ if len(self.ind) > 0:
+ self.ind = self.ind[len(self.ind)//2]
+ else:
+ self.ind = self.slices//2
+
+ self.im = ax.imshow(self.X[:, :, self.ind],cmap='gray')
+ self.update()
+
+ def onscroll(self, event):
+ print("%s %s" % (event.button, event.step))
+ if event.button == 'up':
+ self.ind = (self.ind + 1) % self.slices
+ else:
+ self.ind = (self.ind - 1) % self.slices
+ self.update()
+
+ def update(self):
+ self.im.set_data(self.X[:, :, self.ind])
+ self.ax.set_ylabel('slice %s' % self.ind)
+ self.im.axes.figure.canvas.draw()
+
+
+if __name__ == '__main__':
+ pass
diff --git a/src/DicomRTTool/__init__.py b/src/DicomRTTool/__init__.py
index 34bb2b5..e98873e 100644
--- a/src/DicomRTTool/__init__.py
+++ b/src/DicomRTTool/__init__.py
@@ -1,8 +1,8 @@
-__author__ = 'Brian M Anderson'
-# Created on 10/28/2020
-from .ReaderWriter import DicomReaderWriter, sitk
-from .Viewer import plot_scroll_Image
-
-
-if __name__ == '__main__':
- xxx = 1
+__author__ = 'Brian M Anderson'
+# Created on 10/28/2020
+from .ReaderWriter import DicomReaderWriter, sitk
+from .Viewer import plot_scroll_Image
+
+
+if __name__ == '__main__':
+ xxx = 1
diff --git a/src/DicomRTTool/key_list.txt b/src/DicomRTTool/key_list.txt
index 8cb594f..012c0f1 100644
--- a/src/DicomRTTool/key_list.txt
+++ b/src/DicomRTTool/key_list.txt
@@ -1,13 +1,13 @@
-0008, 0005
-0008, 0020
-0008, 0030
-0008, 0050
-0008, 0090
-0008, 1030
-0010, 0010
-0010, 0020
-0010, 0030
-0010, 0040
-0020, 000d
-0020, 0010
-0020, 0052
+0008, 0005
+0008, 0020
+0008, 0030
+0008, 0050
+0008, 0090
+0008, 1030
+0010, 0010
+0010, 0020
+0010, 0030
+0010, 0040
+0020, 000d
+0020, 0010
+0020, 0052
diff --git a/src/Distribute_Train_Test_Validation.py b/src/Distribute_Train_Test_Validation.py
index 1296a04..168f03e 100644
--- a/src/Distribute_Train_Test_Validation.py
+++ b/src/Distribute_Train_Test_Validation.py
@@ -1,129 +1,129 @@
-__author__ = 'Brian M Anderson'
-# Created on 4/16/2020
-
-import numpy as np
-import os
-import typing
-import pandas as pd
-
-
-def define_folders_for_excel_sheet(excel_file: typing.Union[str, bytes, os.PathLike],
- validation_fraction: float, test_fraction=0,
- patientIDcolumnname='PatientID') -> pd.DataFrame:
- """
- The goal of this is to provide a Folder name (Train, Test, or Validation) for each image set based
- on the patient ID
- :param patientIDcolumnname: string of the column name that you want to distribute across
- :param excel_file: the excel file which was created during the niftii writing process
- :param validation_fraction: fraction [0-1] of data to be placed in the validation set
- :param test_fraction: fraction [0-1] of the data to be placed in the test set
- :return: a pandas dataframe of the loaded excel sheet
- """
- assert os.path.exists(excel_file), FileExistsError("File not found")
- data_df = pd.read_excel(excel_file, engine='openpyxl')
-
- unique_patients = np.unique(data_df[patientIDcolumnname].values)
- total_patients = len(unique_patients)
- patient_image_dictionary = {}
- not_distributed = []
- validation_mrns = []
- test_mrns = []
- for patient_MRN in unique_patients:
- patient_indexes = data_df.loc[data_df[patientIDcolumnname] == patient_MRN].index.values
- patient_image_dictionary[patient_MRN] = {'Indexes': patient_indexes, 'Folder': None}
- """
- Check to see if we have already assigned a Train/Test/Validation folder to this patient's MRN
- We do not want to break up a patient's images!
- """
- folder = None
- for patient_folder in data_df.Folder[patient_indexes]:
- if patient_folder == 'Train':
- folder = 'Train'
- break
- elif patient_folder == 'Validation':
- folder = 'Validation'
- validation_mrns.append(patient_MRN)
- break
- elif patient_folder == 'Test':
- folder = 'Test'
- test_mrns.append(patient_MRN)
- break
- patient_image_dictionary[patient_MRN]['Folder'] = folder
- """
- If this patient was already assigned a folder, assign that folder to the other images and save
- """
- if folder is not None:
- rewrite = False
- for index in patient_indexes:
- if data_df.Folder[index] != folder:
- data_df.loc[data_df.index == index, 'Folder'] = folder
- rewrite = True
- if rewrite:
- data_df.to_excel(excel_file, index=0)
- else:
- not_distributed.append(patient_MRN)
- not_distributed = np.asarray(not_distributed)
- if len(not_distributed) > 0:
- """
- Shuffle the indexes up that haven't been distributed
- """
- perm = np.arange(len(not_distributed))
- np.random.shuffle(perm)
- not_distributed = not_distributed[perm]
- """
- For each patient, check to see if they should go in validation or test, overflow goes into train
- """
- for patient_MRN in not_distributed:
- patient_indexes = patient_image_dictionary[patient_MRN]['Indexes']
- number_to_validation = int(total_patients * validation_fraction) - len(validation_mrns)
- number_to_test = int(total_patients * test_fraction) - len(test_mrns)
- folder = 'Train'
- if number_to_validation > 0:
- folder = 'Validation'
- validation_mrns.append(patient_MRN)
- elif number_to_test > 0:
- folder = 'Test'
- test_mrns.append(patient_MRN)
- for index in patient_indexes:
- data_df.loc[data_df.index == index, 'Folder'] = folder
- data_df.to_excel(excel_file, index=0)
- return data_df
-
-
-def distribute(niftii_path: typing.Union[str, bytes, os.PathLike],
- excel_file: typing.Union[str, bytes, os.PathLike],
- validation_fraction: float, test_fraction=0, patientIDcolumnname='PatientID'):
- """
- :param patientIDcolumnname: string of the column name that you want to distribute across
- :param niftii_path: path to the niftii files
- :param excel_file: the excel file which was created during the niftii writing process
- :param validation_fraction: fraction [0-1] of data to be placed in the validation set
- :param test_fraction: fraction [0-1] of the data to be placed in the test set
- :return:
- """
- train_path = os.path.join(niftii_path, 'Train')
- test_path = os.path.join(niftii_path, 'Test')
- validation_path = os.path.join(niftii_path, 'Validation')
- for out_path in [train_path, test_path, validation_path]:
- if not os.path.exists(out_path):
- os.makedirs(out_path)
-
- data_df = define_folders_for_excel_sheet(excel_file=excel_file, patientIDcolumnname=patientIDcolumnname,
- validation_fraction=validation_fraction, test_fraction=test_fraction)
-
- file_list = [i for i in os.listdir(niftii_path) if i.find('Overall_Data') == 0]
- '''
- Group all of the images up based on their MRN, we don't want to contaminate other groups
- '''
- for image_file in file_list:
- iteration = image_file.split('_')[-1].split('.')[0]
- out_folder = data_df.Folder[data_df.Iteration == int(iteration)].values[0]
- os.rename(os.path.join(niftii_path, image_file), os.path.join(niftii_path, out_folder, image_file))
- label_file = image_file.replace('_{}'.format(iteration), '_y{}'.format(iteration)).replace('Overall_Data',
- 'Overall_mask')
- os.rename(os.path.join(niftii_path, label_file), os.path.join(niftii_path, out_folder, label_file))
- return None
-
-
-if __name__ == '__main__':
- pass
+__author__ = 'Brian M Anderson'
+# Created on 4/16/2020
+
+import numpy as np
+import os
+import typing
+import pandas as pd
+
+
+def define_folders_for_excel_sheet(excel_file: typing.Union[str, bytes, os.PathLike],
+ validation_fraction: float, test_fraction=0,
+ patientIDcolumnname='PatientID') -> pd.DataFrame:
+ """
+ The goal of this is to provide a Folder name (Train, Test, or Validation) for each image set based
+ on the patient ID
+ :param patientIDcolumnname: string of the column name that you want to distribute across
+ :param excel_file: the excel file which was created during the niftii writing process
+ :param validation_fraction: fraction [0-1] of data to be placed in the validation set
+ :param test_fraction: fraction [0-1] of the data to be placed in the test set
+ :return: a pandas dataframe of the loaded excel sheet
+ """
+ assert os.path.exists(excel_file), FileExistsError("File not found")
+ data_df = pd.read_excel(excel_file, engine='openpyxl')
+
+ unique_patients = np.unique(data_df[patientIDcolumnname].values)
+ total_patients = len(unique_patients)
+ patient_image_dictionary = {}
+ not_distributed = []
+ validation_mrns = []
+ test_mrns = []
+ for patient_MRN in unique_patients:
+ patient_indexes = data_df.loc[data_df[patientIDcolumnname] == patient_MRN].index.values
+ patient_image_dictionary[patient_MRN] = {'Indexes': patient_indexes, 'Folder': None}
+ """
+ Check to see if we have already assigned a Train/Test/Validation folder to this patient's MRN
+ We do not want to break up a patient's images!
+ """
+ folder = None
+ for patient_folder in data_df.Folder[patient_indexes]:
+ if patient_folder == 'Train':
+ folder = 'Train'
+ break
+ elif patient_folder == 'Validation':
+ folder = 'Validation'
+ validation_mrns.append(patient_MRN)
+ break
+ elif patient_folder == 'Test':
+ folder = 'Test'
+ test_mrns.append(patient_MRN)
+ break
+ patient_image_dictionary[patient_MRN]['Folder'] = folder
+ """
+ If this patient was already assigned a folder, assign that folder to the other images and save
+ """
+ if folder is not None:
+ rewrite = False
+ for index in patient_indexes:
+ if data_df.Folder[index] != folder:
+ data_df.loc[data_df.index == index, 'Folder'] = folder
+ rewrite = True
+ if rewrite:
+ data_df.to_excel(excel_file, index=0)
+ else:
+ not_distributed.append(patient_MRN)
+ not_distributed = np.asarray(not_distributed)
+ if len(not_distributed) > 0:
+ """
+ Shuffle the indexes up that haven't been distributed
+ """
+ perm = np.arange(len(not_distributed))
+ np.random.shuffle(perm)
+ not_distributed = not_distributed[perm]
+ """
+ For each patient, check to see if they should go in validation or test, overflow goes into train
+ """
+ for patient_MRN in not_distributed:
+ patient_indexes = patient_image_dictionary[patient_MRN]['Indexes']
+ number_to_validation = int(total_patients * validation_fraction) - len(validation_mrns)
+ number_to_test = int(total_patients * test_fraction) - len(test_mrns)
+ folder = 'Train'
+ if number_to_validation > 0:
+ folder = 'Validation'
+ validation_mrns.append(patient_MRN)
+ elif number_to_test > 0:
+ folder = 'Test'
+ test_mrns.append(patient_MRN)
+ for index in patient_indexes:
+ data_df.loc[data_df.index == index, 'Folder'] = folder
+ data_df.to_excel(excel_file, index=0)
+ return data_df
+
+
+def distribute(niftii_path: typing.Union[str, bytes, os.PathLike],
+ excel_file: typing.Union[str, bytes, os.PathLike],
+ validation_fraction: float, test_fraction=0, patientIDcolumnname='PatientID'):
+ """
+ :param patientIDcolumnname: string of the column name that you want to distribute across
+ :param niftii_path: path to the niftii files
+ :param excel_file: the excel file which was created during the niftii writing process
+ :param validation_fraction: fraction [0-1] of data to be placed in the validation set
+ :param test_fraction: fraction [0-1] of the data to be placed in the test set
+ :return:
+ """
+ train_path = os.path.join(niftii_path, 'Train')
+ test_path = os.path.join(niftii_path, 'Test')
+ validation_path = os.path.join(niftii_path, 'Validation')
+ for out_path in [train_path, test_path, validation_path]:
+ if not os.path.exists(out_path):
+ os.makedirs(out_path)
+
+ data_df = define_folders_for_excel_sheet(excel_file=excel_file, patientIDcolumnname=patientIDcolumnname,
+ validation_fraction=validation_fraction, test_fraction=test_fraction)
+
+ file_list = [i for i in os.listdir(niftii_path) if i.find('Overall_Data') == 0]
+ '''
+ Group all of the images up based on their MRN, we don't want to contaminate other groups
+ '''
+ for image_file in file_list:
+ iteration = image_file.split('_')[-1].split('.')[0]
+ out_folder = data_df.Folder[data_df.Iteration == int(iteration)].values[0]
+ os.rename(os.path.join(niftii_path, image_file), os.path.join(niftii_path, out_folder, image_file))
+ label_file = image_file.replace('_{}'.format(iteration), '_y{}'.format(iteration)).replace('Overall_Data',
+ 'Overall_mask')
+ os.rename(os.path.join(niftii_path, label_file), os.path.join(niftii_path, out_folder, label_file))
+ return None
+
+
+if __name__ == '__main__':
+ pass
diff --git a/src/Main.py b/src/Main.py
index d0a353f..252e9b1 100644
--- a/src/Main.py
+++ b/src/Main.py
@@ -1,29 +1,29 @@
-__author__ = 'Brian M Anderson'
-# Created on 4/16/2020
-
-
-Contour_Names = ['Lung (Left)', 'Lung (Right)']
-image_path = r'\\mymdafiles\di_data1\Morfeus\Lung_Exports\From_Raystation'
-'''
-This will print if any rois are missing at certain locations
-'''
-check_rois = False
-if check_rois:
- from .Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack
- Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False,Contour_Names=Contour_Names)
- Dicom_Reader.down_folder(image_path)
-
-'''
-This will turn the dicom into niftii files
-'''
-nifti_path = r'\\mymdafiles\di_data1\Morfeus\Lung_Exports\Nifti_Files'
-write_files = False
-if write_files:
- from .Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack, os
- Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False, Contour_Names=Contour_Names, desc='Test')
- Dicom_Reader.down_folder(image_path)
- Dicom_Reader.write_parallel(out_path=nifti_path, excel_file=os.path.join('.', 'MRN_Path_To_Iteration.xlsx'))
-
-'''
-Distribute the nifti files to other folders
+__author__ = 'Brian M Anderson'
+# Created on 4/16/2020
+
+
+Contour_Names = ['Lung (Left)', 'Lung (Right)']
+image_path = r'\\mymdafiles\di_data1\Morfeus\Lung_Exports\From_Raystation'
+'''
+This will print if any rois are missing at certain locations
+'''
+check_rois = False
+if check_rois:
+ from .Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack
+ Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False,Contour_Names=Contour_Names)
+ Dicom_Reader.down_folder(image_path)
+
+'''
+This will turn the dicom into niftii files
+'''
+nifti_path = r'\\mymdafiles\di_data1\Morfeus\Lung_Exports\Nifti_Files'
+write_files = False
+if write_files:
+ from .Image_Array_And_Mask_From_Dicom_RT import Dicom_to_Imagestack, os
+ Dicom_Reader = Dicom_to_Imagestack(get_images_mask=False, Contour_Names=Contour_Names, desc='Test')
+ Dicom_Reader.down_folder(image_path)
+ Dicom_Reader.write_parallel(out_path=nifti_path, excel_file=os.path.join('.', 'MRN_Path_To_Iteration.xlsx'))
+
+'''
+Distribute the nifti files to other folders
'''
\ No newline at end of file
diff --git a/test_all.py b/test_all.py
index 2df1909..d29520e 100644
--- a/test_all.py
+++ b/test_all.py
@@ -1,157 +1,157 @@
-from src.DicomRTTool.ReaderWriter import DicomReaderWriter, os, sitk, np
-import zipfile
-import pytest
-
-
-"""
-First, check to see if .zip files have been unzipped
-"""
-base = '.'
-i = 0
-while 'AnonDICOM.zip' not in os.listdir(base):
- i += 1
- base = os.path.join(base, '..')
- if i > 3:
- break
-if not os.path.exists(os.path.join(base, 'AnonDICOM')):
- with zipfile.ZipFile(os.path.join(base, "AnonDICOM.zip"), 'r') as zip_ref:
- zip_ref.extractall(base)
-
-
-@pytest.fixture
-def path():
- base = '.'
- i = 0
- while 'AnonDICOM' not in os.listdir(base):
- i += 1
- base = os.path.join(base, '..')
- if i > 3:
- break
- return os.path.join(base, 'AnonDICOM')
-
-
-@pytest.fixture
-def base_mask(path):
- return sitk.ReadImage(os.path.join(path, 'Mask.nii.gz'))
-
-
-@pytest.fixture
-def base_mask007(path):
- return sitk.ReadImage(os.path.join(path, 'Mask_007.nii.gz'))
-
-
-@pytest.fixture
-def base_mask009(path):
- return sitk.ReadImage(os.path.join(path, 'Mask_009.nii.gz'))
-
-
-@pytest.fixture
-def base_image(path):
- return sitk.ReadImage(os.path.join(path, 'Image.nii.gz'))
-
-
-@pytest.fixture
-def main_reader(path):
- reader = DicomReaderWriter(description='Examples', Contour_Names=['spinalcord', 'body'],
- arg_max=True, verbose=True)
- reader.walk_through_folders(path, thread_count=1) # For pytest to work, thread_count MUST be 1
- reader.set_index(reader.indexes_with_contours[0])
- reader.get_mask()
- return reader
-
-
-@pytest.fixture
-def main_reader007(main_reader):
- main_reader.set_contour_names_and_associations(contour_names=['brainstem', 'dose 1200[cgy]', 'dose 500[cgy]'])
- main_reader.set_index(main_reader.indexes_with_contours[0])
- main_reader.get_images_and_mask()
- return main_reader
-
-
-@pytest.fixture
-def main_reader009(main_reader007):
- main_reader007.set_index(main_reader007.indexes_with_contours[1])
- main_reader007.get_images_and_mask()
- return main_reader007
-
-
-class TestMaskCTChecker(object):
- @pytest.fixture(autouse=True)
- def setup(self, main_reader, base_mask):
- self.reader = main_reader
- self.mask = base_mask
-
- def test_performed(self):
- assert self.reader.annotation_handle
-
- def test_size(self):
- assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
-
- def test_spacing(self):
- assert self.mask.GetSpacing() == self.reader.annotation_handle.GetSpacing()
-
- def test_direction(self):
- assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
-
- def test_origin(self):
- assert self.mask.GetOrigin() == self.reader.annotation_handle.GetOrigin()
-
- def test_array(self):
- assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
- sitk.GetArrayFromImage(self.mask))
-
-
-class TestMaskMR007Checker(object):
- @pytest.fixture(autouse=True)
- def setup(self, main_reader007, base_mask007):
- self.reader = main_reader007
- self.mask = base_mask007
-
- def test_performed(self):
- assert self.reader.annotation_handle
-
- def test_size(self):
- assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
-
- def test_spacing(self):
- assert tuple(map(lambda x: isinstance(x, float) and round(x, 6) or x, self.mask.GetSpacing()))\
- == self.reader.annotation_handle.GetSpacing()
-
- def test_direction(self):
- assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
-
- def test_origin(self):
- assert tuple(map(lambda x: isinstance(x, float) and round(x, 3) or x, self.mask.GetOrigin()))\
- == self.reader.annotation_handle.GetOrigin()
-
- def test_array(self):
- assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
- sitk.GetArrayFromImage(self.mask))
-
-
-class TestMaskMR009Checker(object):
- @pytest.fixture(autouse=True)
- def setup(self, main_reader009, base_mask009):
- self.reader = main_reader009
- self.mask = base_mask009
-
- def test_performed(self):
- assert self.reader.annotation_handle
-
- def test_size(self):
- assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
-
- def test_spacing(self):
- assert tuple(map(lambda x: isinstance(x, float) and round(x, 6) or x, self.mask.GetSpacing()))\
- == self.reader.annotation_handle.GetSpacing()
-
- def test_direction(self):
- assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
-
- def test_origin(self):
- assert tuple(map(lambda x: isinstance(x, float) and round(x, 3) or x, self.mask.GetOrigin()))\
- == self.reader.annotation_handle.GetOrigin()
-
- def test_array(self):
- assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
+from src.DicomRTTool.ReaderWriter import DicomReaderWriter, os, sitk, np
+import zipfile
+import pytest
+
+
+"""
+First, check to see if .zip files have been unzipped
+"""
+base = '.'
+i = 0
+while 'AnonDICOM.zip' not in os.listdir(base):
+ i += 1
+ base = os.path.join(base, '..')
+ if i > 3:
+ break
+if not os.path.exists(os.path.join(base, 'AnonDICOM')):
+ with zipfile.ZipFile(os.path.join(base, "AnonDICOM.zip"), 'r') as zip_ref:
+ zip_ref.extractall(base)
+
+
+@pytest.fixture
+def path():
+ base = '.'
+ i = 0
+ while 'AnonDICOM' not in os.listdir(base):
+ i += 1
+ base = os.path.join(base, '..')
+ if i > 3:
+ break
+ return os.path.join(base, 'AnonDICOM')
+
+
+@pytest.fixture
+def base_mask(path):
+ return sitk.ReadImage(os.path.join(path, 'Mask.nii.gz'))
+
+
+@pytest.fixture
+def base_mask007(path):
+ return sitk.ReadImage(os.path.join(path, 'Mask_007.nii.gz'))
+
+
+@pytest.fixture
+def base_mask009(path):
+ return sitk.ReadImage(os.path.join(path, 'Mask_009.nii.gz'))
+
+
+@pytest.fixture
+def base_image(path):
+ return sitk.ReadImage(os.path.join(path, 'Image.nii.gz'))
+
+
+@pytest.fixture
+def main_reader(path):
+ reader = DicomReaderWriter(description='Examples', Contour_Names=['spinalcord', 'body'],
+ arg_max=True, verbose=True)
+ reader.walk_through_folders(path, thread_count=1) # For pytest to work, thread_count MUST be 1
+ reader.set_index(reader.indexes_with_contours[0])
+ reader.get_mask()
+ return reader
+
+
+@pytest.fixture
+def main_reader007(main_reader):
+ main_reader.set_contour_names_and_associations(contour_names=['brainstem', 'dose 1200[cgy]', 'dose 500[cgy]'])
+ main_reader.set_index(main_reader.indexes_with_contours[0])
+ main_reader.get_images_and_mask()
+ return main_reader
+
+
+@pytest.fixture
+def main_reader009(main_reader007):
+ main_reader007.set_index(main_reader007.indexes_with_contours[1])
+ main_reader007.get_images_and_mask()
+ return main_reader007
+
+
+class TestMaskCTChecker(object):
+ @pytest.fixture(autouse=True)
+ def setup(self, main_reader, base_mask):
+ self.reader = main_reader
+ self.mask = base_mask
+
+ def test_performed(self):
+ assert self.reader.annotation_handle
+
+ def test_size(self):
+ assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
+
+ def test_spacing(self):
+ assert self.mask.GetSpacing() == self.reader.annotation_handle.GetSpacing()
+
+ def test_direction(self):
+ assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
+
+ def test_origin(self):
+ assert self.mask.GetOrigin() == self.reader.annotation_handle.GetOrigin()
+
+ def test_array(self):
+ assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
+ sitk.GetArrayFromImage(self.mask))
+
+
+class TestMaskMR007Checker(object):
+ @pytest.fixture(autouse=True)
+ def setup(self, main_reader007, base_mask007):
+ self.reader = main_reader007
+ self.mask = base_mask007
+
+ def test_performed(self):
+ assert self.reader.annotation_handle
+
+ def test_size(self):
+ assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
+
+ def test_spacing(self):
+ assert tuple(map(lambda x: isinstance(x, float) and round(x, 6) or x, self.mask.GetSpacing()))\
+ == self.reader.annotation_handle.GetSpacing()
+
+ def test_direction(self):
+ assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
+
+ def test_origin(self):
+ assert tuple(map(lambda x: isinstance(x, float) and round(x, 3) or x, self.mask.GetOrigin()))\
+ == self.reader.annotation_handle.GetOrigin()
+
+ def test_array(self):
+ assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
+ sitk.GetArrayFromImage(self.mask))
+
+
+class TestMaskMR009Checker(object):
+ @pytest.fixture(autouse=True)
+ def setup(self, main_reader009, base_mask009):
+ self.reader = main_reader009
+ self.mask = base_mask009
+
+ def test_performed(self):
+ assert self.reader.annotation_handle
+
+ def test_size(self):
+ assert self.mask.GetSize() == self.reader.annotation_handle.GetSize()
+
+ def test_spacing(self):
+ assert tuple(map(lambda x: isinstance(x, float) and round(x, 6) or x, self.mask.GetSpacing()))\
+ == self.reader.annotation_handle.GetSpacing()
+
+ def test_direction(self):
+ assert self.mask.GetDirection() == self.reader.annotation_handle.GetDirection()
+
+ def test_origin(self):
+ assert tuple(map(lambda x: isinstance(x, float) and round(x, 3) or x, self.mask.GetOrigin()))\
+ == self.reader.annotation_handle.GetOrigin()
+
+ def test_array(self):
+ assert np.min(sitk.GetArrayFromImage(self.reader.annotation_handle) ==
sitk.GetArrayFromImage(self.mask))
\ No newline at end of file