forked from Farama-Foundation/Minigrid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrappers.py
357 lines (277 loc) · 10.2 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import math
import operator
from functools import reduce
import numpy as np
import gym
from gym import error, spaces, utils
from .minigrid import OBJECT_TO_IDX, COLOR_TO_IDX, STATE_TO_IDX
class ReseedWrapper(gym.core.Wrapper):
"""
Wrapper to always regenerate an environment with the same set of seeds.
This can be used to force an environment to always keep the same
configuration when reset.
"""
def __init__(self, env, seeds=[0], seed_idx=0):
self.seeds = list(seeds)
self.seed_idx = seed_idx
super().__init__(env)
def reset(self, **kwargs):
seed = self.seeds[self.seed_idx]
self.seed_idx = (self.seed_idx + 1) % len(self.seeds)
self.env.seed(seed)
return self.env.reset(**kwargs)
def step(self, action):
obs, reward, done, info = self.env.step(action)
return obs, reward, done, info
class ActionBonus(gym.core.Wrapper):
"""
Wrapper which adds an exploration bonus.
This is a reward to encourage exploration of less
visited (state,action) pairs.
"""
def __init__(self, env):
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
env = self.unwrapped
tup = (tuple(env.agent_pos), env.agent_dir, action)
# Get the count for this (s,a) pair
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this (s,a) pair
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class StateBonus(gym.core.Wrapper):
"""
Adds an exploration bonus based on which positions
are visited on the grid.
"""
def __init__(self, env):
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
# Tuple based on which we index the counts
# We use the position after an update
env = self.unwrapped
tup = (tuple(env.agent_pos))
# Get the count for this key
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this key
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ImgObsWrapper(gym.core.ObservationWrapper):
"""
Use the image as the only observation output, no language/mission.
"""
def __init__(self, env):
super().__init__(env)
self.observation_space = env.observation_space.spaces['image']
def observation(self, obs):
return obs['image']
class OneHotPartialObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to get a one-hot encoding of a partially observable
agent view as observation.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
obs_shape = env.observation_space['image'].shape
# Number of bits per cell
num_bits = len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + len(STATE_TO_IDX)
self.observation_space.spaces["image"] = spaces.Box(
low=0,
high=255,
shape=(obs_shape[0], obs_shape[1], num_bits),
dtype='uint8'
)
def observation(self, obs):
img = obs['image']
out = np.zeros(self.observation_space.spaces['image'].shape, dtype='uint8')
for i in range(img.shape[0]):
for j in range(img.shape[1]):
type = img[i, j, 0]
color = img[i, j, 1]
state = img[i, j, 2]
out[i, j, type] = 1
out[i, j, len(OBJECT_TO_IDX) + color] = 1
out[i, j, len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + state] = 1
return {
'mission': obs['mission'],
'image': out
}
class RGBImgObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to use fully observable RGB image as the only observation output,
no language/mission. This can be used to have the agent to solve the
gridworld in pixel space.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
self.observation_space.spaces['image'] = spaces.Box(
low=0,
high=255,
shape=(self.env.width * tile_size, self.env.height * tile_size, 3),
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
rgb_img = env.render(
mode='rgb_array',
highlight=False,
tile_size=self.tile_size
)
return {
'mission': obs['mission'],
'image': rgb_img
}
class RGBImgPartialObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to use partially observable RGB image as the only observation output
This can be used to have the agent to solve the gridworld in pixel space.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
obs_shape = env.observation_space.spaces['image'].shape
self.observation_space.spaces['image'] = spaces.Box(
low=0,
high=255,
shape=(obs_shape[0] * tile_size, obs_shape[1] * tile_size, 3),
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
rgb_img_partial = env.get_obs_render(
obs['image'],
tile_size=self.tile_size
)
return {
'mission': obs['mission'],
'image': rgb_img_partial
}
class FullyObsWrapper(gym.core.ObservationWrapper):
"""
Fully observable gridworld using a compact grid encoding
"""
def __init__(self, env):
super().__init__(env)
self.observation_space.spaces["image"] = spaces.Box(
low=0,
high=255,
shape=(self.env.width, self.env.height, 3), # number of cells
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
full_grid = env.grid.encode()
full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array([
OBJECT_TO_IDX['agent'],
COLOR_TO_IDX['red'],
env.agent_dir
])
return {
'mission': obs['mission'],
'image': full_grid
}
class FlatObsWrapper(gym.core.ObservationWrapper):
"""
Encode mission strings using a one-hot scheme,
and combine these with observed images into one flat array
"""
def __init__(self, env, maxStrLen=96):
super().__init__(env)
self.maxStrLen = maxStrLen
self.numCharCodes = 27
imgSpace = env.observation_space.spaces['image']
imgSize = reduce(operator.mul, imgSpace.shape, 1)
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(imgSize + self.numCharCodes * self.maxStrLen,),
dtype='uint8'
)
self.cachedStr = None
self.cachedArray = None
def observation(self, obs):
image = obs['image']
mission = obs['mission']
# Cache the last-encoded mission string
if mission != self.cachedStr:
assert len(mission) <= self.maxStrLen, 'mission string too long ({} chars)'.format(len(mission))
mission = mission.lower()
strArray = np.zeros(shape=(self.maxStrLen, self.numCharCodes), dtype='float32')
for idx, ch in enumerate(mission):
if ch >= 'a' and ch <= 'z':
chNo = ord(ch) - ord('a')
elif ch == ' ':
chNo = ord('z') - ord('a') + 1
assert chNo < self.numCharCodes, '%s : %d' % (ch, chNo)
strArray[idx, chNo] = 1
self.cachedStr = mission
self.cachedArray = strArray
obs = np.concatenate((image.flatten(), self.cachedArray.flatten()))
return obs
class ViewSizeWrapper(gym.core.Wrapper):
"""
Wrapper to customize the agent field of view size.
This cannot be used with fully observable wrappers.
"""
def __init__(self, env, agent_view_size=7):
super().__init__(env)
assert agent_view_size % 2 == 1
assert agent_view_size >= 3
# Override default view size
env.unwrapped.agent_view_size = agent_view_size
# Compute observation space with specified view size
observation_space = gym.spaces.Box(
low=0,
high=255,
shape=(agent_view_size, agent_view_size, 3),
dtype='uint8'
)
# Override the environment's observation space
self.observation_space = spaces.Dict({
'image': observation_space
})
def reset(self, **kwargs):
return self.env.reset(**kwargs)
def step(self, action):
return self.env.step(action)
from .minigrid import Goal
class DirectionObsWrapper(gym.core.ObservationWrapper):
"""
Provides the slope/angular direction to the goal with the observations as modeled by (y2 - y2 )/( x2 - x1)
type = {slope , angle}
"""
def __init__(self, env,type='slope'):
super().__init__(env)
self.goal_position = None
self.type = type
def reset(self):
obs = self.env.reset()
if not self.goal_position:
self.goal_position = [x for x,y in enumerate(self.grid.grid) if isinstance(y,(Goal) ) ]
if len(self.goal_position) >= 1: # in case there are multiple goals , needs to be handled for other env types
self.goal_position = (int(self.goal_position[0]/self.height) , self.goal_position[0]%self.width)
return obs
def observation(self, obs):
slope = np.divide( self.goal_position[1] - self.agent_pos[1] , self.goal_position[0] - self.agent_pos[0])
obs['goal_direction'] = np.arctan( slope ) if self.type == 'angle' else slope
return obs